Fix comment for consistency sake.
[llvm/avr.git] / lib / CodeGen / SimpleRegisterCoalescing.cpp
blob1a7fc11c22cca5b975c119067d87a27ecf76994e
1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/Value.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterCoalescer.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include <algorithm>
37 #include <cmath>
38 using namespace llvm;
40 STATISTIC(numJoins , "Number of interval joins performed");
41 STATISTIC(numCrossRCs , "Number of cross class joins performed");
42 STATISTIC(numCommutes , "Number of instruction commuting performed");
43 STATISTIC(numExtends , "Number of copies extended");
44 STATISTIC(NumReMats , "Number of instructions re-materialized");
45 STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
46 STATISTIC(numAborts , "Number of times interval joining aborted");
47 STATISTIC(numDeadValNo, "Number of valno def marked dead");
49 char SimpleRegisterCoalescing::ID = 0;
50 static cl::opt<bool>
51 EnableJoining("join-liveintervals",
52 cl::desc("Coalesce copies (default=true)"),
53 cl::init(true));
55 static cl::opt<bool>
56 NewHeuristic("new-coalescer-heuristic",
57 cl::desc("Use new coalescer heuristic"),
58 cl::init(false), cl::Hidden);
60 static cl::opt<bool>
61 DisableCrossClassJoin("disable-cross-class-join",
62 cl::desc("Avoid coalescing cross register class copies"),
63 cl::init(false), cl::Hidden);
65 static cl::opt<bool>
66 PhysJoinTweak("tweak-phys-join-heuristics",
67 cl::desc("Tweak heuristics for joining phys reg with vr"),
68 cl::init(false), cl::Hidden);
70 static RegisterPass<SimpleRegisterCoalescing>
71 X("simple-register-coalescing", "Simple Register Coalescing");
73 // Declare that we implement the RegisterCoalescer interface
74 static RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
76 const PassInfo *const llvm::SimpleRegisterCoalescingID = &X;
78 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
79 AU.setPreservesCFG();
80 AU.addRequired<LiveIntervals>();
81 AU.addPreserved<LiveIntervals>();
82 AU.addRequired<MachineLoopInfo>();
83 AU.addPreserved<MachineLoopInfo>();
84 AU.addPreservedID(MachineDominatorsID);
85 if (StrongPHIElim)
86 AU.addPreservedID(StrongPHIEliminationID);
87 else
88 AU.addPreservedID(PHIEliminationID);
89 AU.addPreservedID(TwoAddressInstructionPassID);
90 MachineFunctionPass::getAnalysisUsage(AU);
93 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
94 /// being the source and IntB being the dest, thus this defines a value number
95 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
96 /// see if we can merge these two pieces of B into a single value number,
97 /// eliminating a copy. For example:
98 ///
99 /// A3 = B0
100 /// ...
101 /// B1 = A3 <- this copy
103 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
104 /// value number to be replaced with B0 (which simplifies the B liveinterval).
106 /// This returns true if an interval was modified.
108 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
109 LiveInterval &IntB,
110 MachineInstr *CopyMI) {
111 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
113 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
114 // the example above.
115 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
116 assert(BLR != IntB.end() && "Live range not found!");
117 VNInfo *BValNo = BLR->valno;
119 // Get the location that B is defined at. Two options: either this value has
120 // an unknown definition point or it is defined at CopyIdx. If unknown, we
121 // can't process it.
122 if (!BValNo->getCopy()) return false;
123 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
125 // AValNo is the value number in A that defines the copy, A3 in the example.
126 unsigned CopyUseIdx = li_->getUseIndex(CopyIdx);
127 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
128 assert(ALR != IntA.end() && "Live range not found!");
129 VNInfo *AValNo = ALR->valno;
130 // If it's re-defined by an early clobber somewhere in the live range, then
131 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
132 // See PR3149:
133 // 172 %ECX<def> = MOV32rr %reg1039<kill>
134 // 180 INLINEASM <es:subl $5,$1
135 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
136 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
137 // 188 %EAX<def> = MOV32rr %EAX<kill>
138 // 196 %ECX<def> = MOV32rr %ECX<kill>
139 // 204 %ECX<def> = MOV32rr %ECX<kill>
140 // 212 %EAX<def> = MOV32rr %EAX<kill>
141 // 220 %EAX<def> = MOV32rr %EAX
142 // 228 %reg1039<def> = MOV32rr %ECX<kill>
143 // The early clobber operand ties ECX input to the ECX def.
145 // The live interval of ECX is represented as this:
146 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
147 // The coalescer has no idea there was a def in the middle of [174,230].
148 if (AValNo->hasRedefByEC())
149 return false;
151 // If AValNo is defined as a copy from IntB, we can potentially process this.
152 // Get the instruction that defines this value number.
153 unsigned SrcReg = li_->getVNInfoSourceReg(AValNo);
154 if (!SrcReg) return false; // Not defined by a copy.
156 // If the value number is not defined by a copy instruction, ignore it.
158 // If the source register comes from an interval other than IntB, we can't
159 // handle this.
160 if (SrcReg != IntB.reg) return false;
162 // Get the LiveRange in IntB that this value number starts with.
163 LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1);
164 assert(ValLR != IntB.end() && "Live range not found!");
166 // Make sure that the end of the live range is inside the same block as
167 // CopyMI.
168 MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1);
169 if (!ValLREndInst ||
170 ValLREndInst->getParent() != CopyMI->getParent()) return false;
172 // Okay, we now know that ValLR ends in the same block that the CopyMI
173 // live-range starts. If there are no intervening live ranges between them in
174 // IntB, we can merge them.
175 if (ValLR+1 != BLR) return false;
177 // If a live interval is a physical register, conservatively check if any
178 // of its sub-registers is overlapping the live interval of the virtual
179 // register. If so, do not coalesce.
180 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
181 *tri_->getSubRegisters(IntB.reg)) {
182 for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
183 if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
184 DEBUG({
185 errs() << "Interfere with sub-register ";
186 li_->getInterval(*SR).print(errs(), tri_);
188 return false;
192 DEBUG({
193 errs() << "\nExtending: ";
194 IntB.print(errs(), tri_);
197 unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
198 // We are about to delete CopyMI, so need to remove it as the 'instruction
199 // that defines this value #'. Update the the valnum with the new defining
200 // instruction #.
201 BValNo->def = FillerStart;
202 BValNo->setCopy(0);
204 // Okay, we can merge them. We need to insert a new liverange:
205 // [ValLR.end, BLR.begin) of either value number, then we merge the
206 // two value numbers.
207 IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
209 // If the IntB live range is assigned to a physical register, and if that
210 // physreg has sub-registers, update their live intervals as well.
211 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
212 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
213 LiveInterval &SRLI = li_->getInterval(*SR);
214 SRLI.addRange(LiveRange(FillerStart, FillerEnd,
215 SRLI.getNextValue(FillerStart, 0, true,
216 li_->getVNInfoAllocator())));
220 // Okay, merge "B1" into the same value number as "B0".
221 if (BValNo != ValLR->valno) {
222 IntB.addKills(ValLR->valno, BValNo->kills);
223 IntB.MergeValueNumberInto(BValNo, ValLR->valno);
225 DEBUG({
226 errs() << " result = ";
227 IntB.print(errs(), tri_);
228 errs() << "\n";
231 // If the source instruction was killing the source register before the
232 // merge, unset the isKill marker given the live range has been extended.
233 int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
234 if (UIdx != -1) {
235 ValLREndInst->getOperand(UIdx).setIsKill(false);
236 IntB.removeKill(ValLR->valno, FillerStart);
239 // If the copy instruction was killing the destination register before the
240 // merge, find the last use and trim the live range. That will also add the
241 // isKill marker.
242 if (CopyMI->killsRegister(IntA.reg))
243 TrimLiveIntervalToLastUse(CopyUseIdx, CopyMI->getParent(), IntA, ALR);
245 ++numExtends;
246 return true;
249 /// HasOtherReachingDefs - Return true if there are definitions of IntB
250 /// other than BValNo val# that can reach uses of AValno val# of IntA.
251 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
252 LiveInterval &IntB,
253 VNInfo *AValNo,
254 VNInfo *BValNo) {
255 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
256 AI != AE; ++AI) {
257 if (AI->valno != AValNo) continue;
258 LiveInterval::Ranges::iterator BI =
259 std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
260 if (BI != IntB.ranges.begin())
261 --BI;
262 for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
263 if (BI->valno == BValNo)
264 continue;
265 if (BI->start <= AI->start && BI->end > AI->start)
266 return true;
267 if (BI->start > AI->start && BI->start < AI->end)
268 return true;
271 return false;
274 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
275 /// being the source and IntB being the dest, thus this defines a value number
276 /// in IntB. If the source value number (in IntA) is defined by a commutable
277 /// instruction and its other operand is coalesced to the copy dest register,
278 /// see if we can transform the copy into a noop by commuting the definition. For
279 /// example,
281 /// A3 = op A2 B0<kill>
282 /// ...
283 /// B1 = A3 <- this copy
284 /// ...
285 /// = op A3 <- more uses
287 /// ==>
289 /// B2 = op B0 A2<kill>
290 /// ...
291 /// B1 = B2 <- now an identify copy
292 /// ...
293 /// = op B2 <- more uses
295 /// This returns true if an interval was modified.
297 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
298 LiveInterval &IntB,
299 MachineInstr *CopyMI) {
300 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
302 // FIXME: For now, only eliminate the copy by commuting its def when the
303 // source register is a virtual register. We want to guard against cases
304 // where the copy is a back edge copy and commuting the def lengthen the
305 // live interval of the source register to the entire loop.
306 if (TargetRegisterInfo::isPhysicalRegister(IntA.reg))
307 return false;
309 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
310 // the example above.
311 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
312 assert(BLR != IntB.end() && "Live range not found!");
313 VNInfo *BValNo = BLR->valno;
315 // Get the location that B is defined at. Two options: either this value has
316 // an unknown definition point or it is defined at CopyIdx. If unknown, we
317 // can't process it.
318 if (!BValNo->getCopy()) return false;
319 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
321 // AValNo is the value number in A that defines the copy, A3 in the example.
322 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1);
323 assert(ALR != IntA.end() && "Live range not found!");
324 VNInfo *AValNo = ALR->valno;
325 // If other defs can reach uses of this def, then it's not safe to perform
326 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
327 // tested?
328 if (AValNo->isPHIDef() || !AValNo->isDefAccurate() ||
329 AValNo->isUnused() || AValNo->hasPHIKill())
330 return false;
331 MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
332 const TargetInstrDesc &TID = DefMI->getDesc();
333 if (!TID.isCommutable())
334 return false;
335 // If DefMI is a two-address instruction then commuting it will change the
336 // destination register.
337 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
338 assert(DefIdx != -1);
339 unsigned UseOpIdx;
340 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
341 return false;
342 unsigned Op1, Op2, NewDstIdx;
343 if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
344 return false;
345 if (Op1 == UseOpIdx)
346 NewDstIdx = Op2;
347 else if (Op2 == UseOpIdx)
348 NewDstIdx = Op1;
349 else
350 return false;
352 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
353 unsigned NewReg = NewDstMO.getReg();
354 if (NewReg != IntB.reg || !NewDstMO.isKill())
355 return false;
357 // Make sure there are no other definitions of IntB that would reach the
358 // uses which the new definition can reach.
359 if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
360 return false;
362 // If some of the uses of IntA.reg is already coalesced away, return false.
363 // It's not possible to determine whether it's safe to perform the coalescing.
364 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
365 UE = mri_->use_end(); UI != UE; ++UI) {
366 MachineInstr *UseMI = &*UI;
367 unsigned UseIdx = li_->getInstructionIndex(UseMI);
368 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
369 if (ULR == IntA.end())
370 continue;
371 if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
372 return false;
375 // At this point we have decided that it is legal to do this
376 // transformation. Start by commuting the instruction.
377 MachineBasicBlock *MBB = DefMI->getParent();
378 MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
379 if (!NewMI)
380 return false;
381 if (NewMI != DefMI) {
382 li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
383 MBB->insert(DefMI, NewMI);
384 MBB->erase(DefMI);
386 unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
387 NewMI->getOperand(OpIdx).setIsKill();
389 bool BHasPHIKill = BValNo->hasPHIKill();
390 SmallVector<VNInfo*, 4> BDeadValNos;
391 VNInfo::KillSet BKills;
392 std::map<unsigned, unsigned> BExtend;
394 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
395 // A = or A, B
396 // ...
397 // B = A
398 // ...
399 // C = A<kill>
400 // ...
401 // = B
403 // then do not add kills of A to the newly created B interval.
404 bool Extended = BLR->end > ALR->end && ALR->end != ALR->start;
405 if (Extended)
406 BExtend[ALR->end] = BLR->end;
408 // Update uses of IntA of the specific Val# with IntB.
409 bool BHasSubRegs = false;
410 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
411 BHasSubRegs = *tri_->getSubRegisters(IntB.reg);
412 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
413 UE = mri_->use_end(); UI != UE;) {
414 MachineOperand &UseMO = UI.getOperand();
415 MachineInstr *UseMI = &*UI;
416 ++UI;
417 if (JoinedCopies.count(UseMI))
418 continue;
419 unsigned UseIdx = li_->getInstructionIndex(UseMI);
420 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
421 if (ULR == IntA.end() || ULR->valno != AValNo)
422 continue;
423 UseMO.setReg(NewReg);
424 if (UseMI == CopyMI)
425 continue;
426 if (UseMO.isKill()) {
427 if (Extended)
428 UseMO.setIsKill(false);
429 else
430 BKills.push_back(VNInfo::KillInfo(false, li_->getUseIndex(UseIdx)+1));
432 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
433 if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
434 continue;
435 if (DstReg == IntB.reg) {
436 // This copy will become a noop. If it's defining a new val#,
437 // remove that val# as well. However this live range is being
438 // extended to the end of the existing live range defined by the copy.
439 unsigned DefIdx = li_->getDefIndex(UseIdx);
440 const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
441 BHasPHIKill |= DLR->valno->hasPHIKill();
442 assert(DLR->valno->def == DefIdx);
443 BDeadValNos.push_back(DLR->valno);
444 BExtend[DLR->start] = DLR->end;
445 JoinedCopies.insert(UseMI);
446 // If this is a kill but it's going to be removed, the last use
447 // of the same val# is the new kill.
448 if (UseMO.isKill())
449 BKills.pop_back();
453 // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
454 // simply extend BLR if CopyMI doesn't end the range.
455 DEBUG({
456 errs() << "\nExtending: ";
457 IntB.print(errs(), tri_);
460 // Remove val#'s defined by copies that will be coalesced away.
461 for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) {
462 VNInfo *DeadVNI = BDeadValNos[i];
463 if (BHasSubRegs) {
464 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
465 LiveInterval &SRLI = li_->getInterval(*SR);
466 const LiveRange *SRLR = SRLI.getLiveRangeContaining(DeadVNI->def);
467 SRLI.removeValNo(SRLR->valno);
470 IntB.removeValNo(BDeadValNos[i]);
473 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
474 // is updated. Kills are also updated.
475 VNInfo *ValNo = BValNo;
476 ValNo->def = AValNo->def;
477 ValNo->setCopy(0);
478 for (unsigned j = 0, ee = ValNo->kills.size(); j != ee; ++j) {
479 unsigned Kill = ValNo->kills[j].killIdx;
480 if (Kill != BLR->end)
481 BKills.push_back(VNInfo::KillInfo(ValNo->kills[j].isPHIKill, Kill));
483 ValNo->kills.clear();
484 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
485 AI != AE; ++AI) {
486 if (AI->valno != AValNo) continue;
487 unsigned End = AI->end;
488 std::map<unsigned, unsigned>::iterator EI = BExtend.find(End);
489 if (EI != BExtend.end())
490 End = EI->second;
491 IntB.addRange(LiveRange(AI->start, End, ValNo));
493 // If the IntB live range is assigned to a physical register, and if that
494 // physreg has sub-registers, update their live intervals as well.
495 if (BHasSubRegs) {
496 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
497 LiveInterval &SRLI = li_->getInterval(*SR);
498 SRLI.MergeInClobberRange(AI->start, End, li_->getVNInfoAllocator());
502 IntB.addKills(ValNo, BKills);
503 ValNo->setHasPHIKill(BHasPHIKill);
505 DEBUG({
506 errs() << " result = ";
507 IntB.print(errs(), tri_);
508 errs() << '\n';
509 errs() << "\nShortening: ";
510 IntA.print(errs(), tri_);
513 IntA.removeValNo(AValNo);
515 DEBUG({
516 errs() << " result = ";
517 IntA.print(errs(), tri_);
518 errs() << '\n';
521 ++numCommutes;
522 return true;
525 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
526 /// fallthoughs to SuccMBB.
527 static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
528 MachineBasicBlock *SuccMBB,
529 const TargetInstrInfo *tii_) {
530 if (MBB == SuccMBB)
531 return true;
532 MachineBasicBlock *TBB = 0, *FBB = 0;
533 SmallVector<MachineOperand, 4> Cond;
534 return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
535 MBB->isSuccessor(SuccMBB);
538 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
539 /// from a physical register live interval as well as from the live intervals
540 /// of its sub-registers.
541 static void removeRange(LiveInterval &li, unsigned Start, unsigned End,
542 LiveIntervals *li_, const TargetRegisterInfo *tri_) {
543 li.removeRange(Start, End, true);
544 if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
545 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
546 if (!li_->hasInterval(*SR))
547 continue;
548 LiveInterval &sli = li_->getInterval(*SR);
549 unsigned RemoveEnd = Start;
550 while (RemoveEnd != End) {
551 LiveInterval::iterator LR = sli.FindLiveRangeContaining(Start);
552 if (LR == sli.end())
553 break;
554 RemoveEnd = (LR->end < End) ? LR->end : End;
555 sli.removeRange(Start, RemoveEnd, true);
556 Start = RemoveEnd;
562 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
563 /// as the copy instruction, trim the live interval to the last use and return
564 /// true.
565 bool
566 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx,
567 MachineBasicBlock *CopyMBB,
568 LiveInterval &li,
569 const LiveRange *LR) {
570 unsigned MBBStart = li_->getMBBStartIdx(CopyMBB);
571 unsigned LastUseIdx;
572 MachineOperand *LastUse = lastRegisterUse(LR->start, CopyIdx-1, li.reg,
573 LastUseIdx);
574 if (LastUse) {
575 MachineInstr *LastUseMI = LastUse->getParent();
576 if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
577 // r1024 = op
578 // ...
579 // BB1:
580 // = r1024
582 // BB2:
583 // r1025<dead> = r1024<kill>
584 if (MBBStart < LR->end)
585 removeRange(li, MBBStart, LR->end, li_, tri_);
586 return true;
589 // There are uses before the copy, just shorten the live range to the end
590 // of last use.
591 LastUse->setIsKill();
592 removeRange(li, li_->getDefIndex(LastUseIdx), LR->end, li_, tri_);
593 li.addKill(LR->valno, LastUseIdx+1, false);
594 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
595 if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
596 DstReg == li.reg) {
597 // Last use is itself an identity code.
598 int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg, false, tri_);
599 LastUseMI->getOperand(DeadIdx).setIsDead();
601 return true;
604 // Is it livein?
605 if (LR->start <= MBBStart && LR->end > MBBStart) {
606 if (LR->start == 0) {
607 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
608 // Live-in to the function but dead. Remove it from entry live-in set.
609 mf_->begin()->removeLiveIn(li.reg);
611 // FIXME: Shorten intervals in BBs that reaches this BB.
614 return false;
617 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
618 /// computation, replace the copy by rematerialize the definition.
619 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
620 unsigned DstReg,
621 unsigned DstSubIdx,
622 MachineInstr *CopyMI) {
623 unsigned CopyIdx = li_->getUseIndex(li_->getInstructionIndex(CopyMI));
624 LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
625 assert(SrcLR != SrcInt.end() && "Live range not found!");
626 VNInfo *ValNo = SrcLR->valno;
627 // If other defs can reach uses of this def, then it's not safe to perform
628 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
629 // tested?
630 if (ValNo->isPHIDef() || !ValNo->isDefAccurate() ||
631 ValNo->isUnused() || ValNo->hasPHIKill())
632 return false;
633 MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
634 const TargetInstrDesc &TID = DefMI->getDesc();
635 if (!TID.isAsCheapAsAMove())
636 return false;
637 if (!DefMI->getDesc().isRematerializable() ||
638 !tii_->isTriviallyReMaterializable(DefMI))
639 return false;
640 bool SawStore = false;
641 if (!DefMI->isSafeToMove(tii_, SawStore))
642 return false;
643 if (TID.getNumDefs() != 1)
644 return false;
645 if (DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF) {
646 // Make sure the copy destination register class fits the instruction
647 // definition register class. The mismatch can happen as a result of earlier
648 // extract_subreg, insert_subreg, subreg_to_reg coalescing.
649 const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_);
650 if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
651 if (mri_->getRegClass(DstReg) != RC)
652 return false;
653 } else if (!RC->contains(DstReg))
654 return false;
657 unsigned DefIdx = li_->getDefIndex(CopyIdx);
658 const LiveRange *DLR= li_->getInterval(DstReg).getLiveRangeContaining(DefIdx);
659 DLR->valno->setCopy(0);
660 // Don't forget to update sub-register intervals.
661 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
662 for (const unsigned* SR = tri_->getSubRegisters(DstReg); *SR; ++SR) {
663 if (!li_->hasInterval(*SR))
664 continue;
665 DLR = li_->getInterval(*SR).getLiveRangeContaining(DefIdx);
666 if (DLR && DLR->valno->getCopy() == CopyMI)
667 DLR->valno->setCopy(0);
671 // If copy kills the source register, find the last use and propagate
672 // kill.
673 bool checkForDeadDef = false;
674 MachineBasicBlock *MBB = CopyMI->getParent();
675 if (CopyMI->killsRegister(SrcInt.reg))
676 if (!TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR)) {
677 checkForDeadDef = true;
680 MachineBasicBlock::iterator MII = next(MachineBasicBlock::iterator(CopyMI));
681 tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI);
682 MachineInstr *NewMI = prior(MII);
684 if (checkForDeadDef) {
685 // PR4090 fix: Trim interval failed because there was no use of the
686 // source interval in this MBB. If the def is in this MBB too then we
687 // should mark it dead:
688 if (DefMI->getParent() == MBB) {
689 DefMI->addRegisterDead(SrcInt.reg, tri_);
690 SrcLR->end = SrcLR->start + 1;
694 // CopyMI may have implicit operands, transfer them over to the newly
695 // rematerialized instruction. And update implicit def interval valnos.
696 for (unsigned i = CopyMI->getDesc().getNumOperands(),
697 e = CopyMI->getNumOperands(); i != e; ++i) {
698 MachineOperand &MO = CopyMI->getOperand(i);
699 if (MO.isReg() && MO.isImplicit())
700 NewMI->addOperand(MO);
701 if (MO.isDef() && li_->hasInterval(MO.getReg())) {
702 unsigned Reg = MO.getReg();
703 DLR = li_->getInterval(Reg).getLiveRangeContaining(DefIdx);
704 if (DLR && DLR->valno->getCopy() == CopyMI)
705 DLR->valno->setCopy(0);
709 li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
710 CopyMI->eraseFromParent();
711 ReMatCopies.insert(CopyMI);
712 ReMatDefs.insert(DefMI);
713 ++NumReMats;
714 return true;
717 /// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
719 bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr *CopyMI,
720 unsigned DstReg) const {
721 MachineBasicBlock *MBB = CopyMI->getParent();
722 const MachineLoop *L = loopInfo->getLoopFor(MBB);
723 if (!L)
724 return false;
725 if (MBB != L->getLoopLatch())
726 return false;
728 LiveInterval &LI = li_->getInterval(DstReg);
729 unsigned DefIdx = li_->getInstructionIndex(CopyMI);
730 LiveInterval::const_iterator DstLR =
731 LI.FindLiveRangeContaining(li_->getDefIndex(DefIdx));
732 if (DstLR == LI.end())
733 return false;
734 if (DstLR->valno->kills.size() == 1 && DstLR->valno->kills[0].isPHIKill)
735 return true;
736 return false;
739 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
740 /// update the subregister number if it is not zero. If DstReg is a
741 /// physical register and the existing subregister number of the def / use
742 /// being updated is not zero, make sure to set it to the correct physical
743 /// subregister.
744 void
745 SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg,
746 unsigned SubIdx) {
747 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
748 if (DstIsPhys && SubIdx) {
749 // Figure out the real physical register we are updating with.
750 DstReg = tri_->getSubReg(DstReg, SubIdx);
751 SubIdx = 0;
754 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
755 E = mri_->reg_end(); I != E; ) {
756 MachineOperand &O = I.getOperand();
757 MachineInstr *UseMI = &*I;
758 ++I;
759 unsigned OldSubIdx = O.getSubReg();
760 if (DstIsPhys) {
761 unsigned UseDstReg = DstReg;
762 if (OldSubIdx)
763 UseDstReg = tri_->getSubReg(DstReg, OldSubIdx);
765 unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
766 if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
767 CopySrcSubIdx, CopyDstSubIdx) &&
768 CopySrcReg != CopyDstReg &&
769 CopySrcReg == SrcReg && CopyDstReg != UseDstReg) {
770 // If the use is a copy and it won't be coalesced away, and its source
771 // is defined by a trivial computation, try to rematerialize it instead.
772 if (ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg,
773 CopyDstSubIdx, UseMI))
774 continue;
777 O.setReg(UseDstReg);
778 O.setSubReg(0);
779 continue;
782 // Sub-register indexes goes from small to large. e.g.
783 // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
784 // EAX: 1 -> AL, 2 -> AX
785 // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
786 // sub-register 2 is also AX.
787 if (SubIdx && OldSubIdx && SubIdx != OldSubIdx)
788 assert(OldSubIdx < SubIdx && "Conflicting sub-register index!");
789 else if (SubIdx)
790 O.setSubReg(SubIdx);
791 // Remove would-be duplicated kill marker.
792 if (O.isKill() && UseMI->killsRegister(DstReg))
793 O.setIsKill(false);
794 O.setReg(DstReg);
796 // After updating the operand, check if the machine instruction has
797 // become a copy. If so, update its val# information.
798 if (JoinedCopies.count(UseMI))
799 continue;
801 const TargetInstrDesc &TID = UseMI->getDesc();
802 unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
803 if (TID.getNumDefs() == 1 && TID.getNumOperands() > 2 &&
804 tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
805 CopySrcSubIdx, CopyDstSubIdx) &&
806 CopySrcReg != CopyDstReg &&
807 (TargetRegisterInfo::isVirtualRegister(CopyDstReg) ||
808 allocatableRegs_[CopyDstReg])) {
809 LiveInterval &LI = li_->getInterval(CopyDstReg);
810 unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(UseMI));
811 if (const LiveRange *DLR = LI.getLiveRangeContaining(DefIdx)) {
812 if (DLR->valno->def == DefIdx)
813 DLR->valno->setCopy(UseMI);
819 /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
820 /// due to live range lengthening as the result of coalescing.
821 void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg,
822 LiveInterval &LI) {
823 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(Reg),
824 UE = mri_->use_end(); UI != UE; ++UI) {
825 MachineOperand &UseMO = UI.getOperand();
826 if (!UseMO.isKill())
827 continue;
828 MachineInstr *UseMI = UseMO.getParent();
829 unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI));
830 const LiveRange *LR = LI.getLiveRangeContaining(UseIdx);
831 if (!LR || !LI.isKill(LR->valno, UseIdx+1)) {
832 if (LR->valno->def != UseIdx+1) {
833 // Interesting problem. After coalescing reg1027's def and kill are both
834 // at the same point: %reg1027,0.000000e+00 = [56,814:0) 0@70-(814)
836 // bb5:
837 // 60 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
838 // 68 %reg1027<def> = t2LDRi12 %reg1027<kill>, 8, 14, %reg0
839 // 76 t2CMPzri %reg1038<kill,undef>, 0, 14, %reg0, %CPSR<imp-def>
840 // 84 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
841 // 96 t2Bcc mbb<bb5,0x2030910>, 1, %CPSR<kill>
843 // Do not remove the kill marker on t2LDRi12.
844 UseMO.setIsKill(false);
850 /// removeIntervalIfEmpty - Check if the live interval of a physical register
851 /// is empty, if so remove it and also remove the empty intervals of its
852 /// sub-registers. Return true if live interval is removed.
853 static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
854 const TargetRegisterInfo *tri_) {
855 if (li.empty()) {
856 if (TargetRegisterInfo::isPhysicalRegister(li.reg))
857 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
858 if (!li_->hasInterval(*SR))
859 continue;
860 LiveInterval &sli = li_->getInterval(*SR);
861 if (sli.empty())
862 li_->removeInterval(*SR);
864 li_->removeInterval(li.reg);
865 return true;
867 return false;
870 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
871 /// Return true if live interval is removed.
872 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
873 MachineInstr *CopyMI) {
874 unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
875 LiveInterval::iterator MLR =
876 li.FindLiveRangeContaining(li_->getDefIndex(CopyIdx));
877 if (MLR == li.end())
878 return false; // Already removed by ShortenDeadCopySrcLiveRange.
879 unsigned RemoveStart = MLR->start;
880 unsigned RemoveEnd = MLR->end;
881 unsigned DefIdx = li_->getDefIndex(CopyIdx);
882 // Remove the liverange that's defined by this.
883 if (RemoveStart == DefIdx && RemoveEnd == DefIdx+1) {
884 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
885 return removeIntervalIfEmpty(li, li_, tri_);
887 return false;
890 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
891 /// the val# it defines. If the live interval becomes empty, remove it as well.
892 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
893 MachineInstr *DefMI) {
894 unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(DefMI));
895 LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
896 if (DefIdx != MLR->valno->def)
897 return false;
898 li.removeValNo(MLR->valno);
899 return removeIntervalIfEmpty(li, li_, tri_);
902 /// PropagateDeadness - Propagate the dead marker to the instruction which
903 /// defines the val#.
904 static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
905 unsigned &LRStart, LiveIntervals *li_,
906 const TargetRegisterInfo* tri_) {
907 MachineInstr *DefMI =
908 li_->getInstructionFromIndex(li_->getDefIndex(LRStart));
909 if (DefMI && DefMI != CopyMI) {
910 int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg, false);
911 if (DeadIdx != -1)
912 DefMI->getOperand(DeadIdx).setIsDead();
913 else
914 DefMI->addOperand(MachineOperand::CreateReg(li.reg,
915 true, true, false, true));
916 ++LRStart;
920 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
921 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
922 /// ends the live range there. If there isn't another use, then this live range
923 /// is dead. Return true if live interval is removed.
924 bool
925 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
926 MachineInstr *CopyMI) {
927 unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
928 if (CopyIdx == 0) {
929 // FIXME: special case: function live in. It can be a general case if the
930 // first instruction index starts at > 0 value.
931 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
932 // Live-in to the function but dead. Remove it from entry live-in set.
933 if (mf_->begin()->isLiveIn(li.reg))
934 mf_->begin()->removeLiveIn(li.reg);
935 const LiveRange *LR = li.getLiveRangeContaining(CopyIdx);
936 removeRange(li, LR->start, LR->end, li_, tri_);
937 return removeIntervalIfEmpty(li, li_, tri_);
940 LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx-1);
941 if (LR == li.end())
942 // Livein but defined by a phi.
943 return false;
945 unsigned RemoveStart = LR->start;
946 unsigned RemoveEnd = li_->getDefIndex(CopyIdx)+1;
947 if (LR->end > RemoveEnd)
948 // More uses past this copy? Nothing to do.
949 return false;
951 // If there is a last use in the same bb, we can't remove the live range.
952 // Shorten the live interval and return.
953 MachineBasicBlock *CopyMBB = CopyMI->getParent();
954 if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
955 return false;
957 // There are other kills of the val#. Nothing to do.
958 if (!li.isOnlyLROfValNo(LR))
959 return false;
961 MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
962 if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
963 // If the live range starts in another mbb and the copy mbb is not a fall
964 // through mbb, then we can only cut the range from the beginning of the
965 // copy mbb.
966 RemoveStart = li_->getMBBStartIdx(CopyMBB) + 1;
968 if (LR->valno->def == RemoveStart) {
969 // If the def MI defines the val# and this copy is the only kill of the
970 // val#, then propagate the dead marker.
971 PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
972 ++numDeadValNo;
974 if (li.isKill(LR->valno, RemoveEnd))
975 li.removeKill(LR->valno, RemoveEnd);
978 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
979 return removeIntervalIfEmpty(li, li_, tri_);
982 /// CanCoalesceWithImpDef - Returns true if the specified copy instruction
983 /// from an implicit def to another register can be coalesced away.
984 bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr *CopyMI,
985 LiveInterval &li,
986 LiveInterval &ImpLi) const{
987 if (!CopyMI->killsRegister(ImpLi.reg))
988 return false;
989 // Make sure this is the only use.
990 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(ImpLi.reg),
991 UE = mri_->use_end(); UI != UE;) {
992 MachineInstr *UseMI = &*UI;
993 ++UI;
994 if (CopyMI == UseMI || JoinedCopies.count(UseMI))
995 continue;
996 return false;
998 return true;
1002 /// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
1003 /// a virtual destination register with physical source register.
1004 bool
1005 SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI,
1006 MachineBasicBlock *CopyMBB,
1007 LiveInterval &DstInt,
1008 LiveInterval &SrcInt) {
1009 // If the virtual register live interval is long but it has low use desity,
1010 // do not join them, instead mark the physical register as its allocation
1011 // preference.
1012 const TargetRegisterClass *RC = mri_->getRegClass(DstInt.reg);
1013 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1014 unsigned Length = li_->getApproximateInstructionCount(DstInt);
1015 if (Length > Threshold &&
1016 (((float)std::distance(mri_->use_begin(DstInt.reg),
1017 mri_->use_end()) / Length) < (1.0 / Threshold)))
1018 return false;
1020 // If the virtual register live interval extends into a loop, turn down
1021 // aggressiveness.
1022 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1023 const MachineLoop *L = loopInfo->getLoopFor(CopyMBB);
1024 if (!L) {
1025 // Let's see if the virtual register live interval extends into the loop.
1026 LiveInterval::iterator DLR = DstInt.FindLiveRangeContaining(CopyIdx);
1027 assert(DLR != DstInt.end() && "Live range not found!");
1028 DLR = DstInt.FindLiveRangeContaining(DLR->end+1);
1029 if (DLR != DstInt.end()) {
1030 CopyMBB = li_->getMBBFromIndex(DLR->start);
1031 L = loopInfo->getLoopFor(CopyMBB);
1035 if (!L || Length <= Threshold)
1036 return true;
1038 unsigned UseIdx = li_->getUseIndex(CopyIdx);
1039 LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
1040 MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
1041 if (loopInfo->getLoopFor(SMBB) != L) {
1042 if (!loopInfo->isLoopHeader(CopyMBB))
1043 return false;
1044 // If vr's live interval extends pass the loop header, do not join.
1045 for (MachineBasicBlock::succ_iterator SI = CopyMBB->succ_begin(),
1046 SE = CopyMBB->succ_end(); SI != SE; ++SI) {
1047 MachineBasicBlock *SuccMBB = *SI;
1048 if (SuccMBB == CopyMBB)
1049 continue;
1050 if (DstInt.overlaps(li_->getMBBStartIdx(SuccMBB),
1051 li_->getMBBEndIdx(SuccMBB)+1))
1052 return false;
1055 return true;
1058 /// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
1059 /// copy from a virtual source register to a physical destination register.
1060 bool
1061 SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr *CopyMI,
1062 MachineBasicBlock *CopyMBB,
1063 LiveInterval &DstInt,
1064 LiveInterval &SrcInt) {
1065 // If the virtual register live interval is long but it has low use desity,
1066 // do not join them, instead mark the physical register as its allocation
1067 // preference.
1068 const TargetRegisterClass *RC = mri_->getRegClass(SrcInt.reg);
1069 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1070 unsigned Length = li_->getApproximateInstructionCount(SrcInt);
1071 if (Length > Threshold &&
1072 (((float)std::distance(mri_->use_begin(SrcInt.reg),
1073 mri_->use_end()) / Length) < (1.0 / Threshold)))
1074 return false;
1076 if (SrcInt.empty())
1077 // Must be implicit_def.
1078 return false;
1080 // If the virtual register live interval is defined or cross a loop, turn
1081 // down aggressiveness.
1082 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1083 unsigned UseIdx = li_->getUseIndex(CopyIdx);
1084 LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
1085 assert(SLR != SrcInt.end() && "Live range not found!");
1086 SLR = SrcInt.FindLiveRangeContaining(SLR->start-1);
1087 if (SLR == SrcInt.end())
1088 return true;
1089 MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
1090 const MachineLoop *L = loopInfo->getLoopFor(SMBB);
1092 if (!L || Length <= Threshold)
1093 return true;
1095 if (loopInfo->getLoopFor(CopyMBB) != L) {
1096 if (SMBB != L->getLoopLatch())
1097 return false;
1098 // If vr's live interval is extended from before the loop latch, do not
1099 // join.
1100 for (MachineBasicBlock::pred_iterator PI = SMBB->pred_begin(),
1101 PE = SMBB->pred_end(); PI != PE; ++PI) {
1102 MachineBasicBlock *PredMBB = *PI;
1103 if (PredMBB == SMBB)
1104 continue;
1105 if (SrcInt.overlaps(li_->getMBBStartIdx(PredMBB),
1106 li_->getMBBEndIdx(PredMBB)+1))
1107 return false;
1110 return true;
1113 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1114 /// two virtual registers from different register classes.
1115 bool
1116 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned LargeReg,
1117 unsigned SmallReg,
1118 unsigned Threshold) {
1119 // Then make sure the intervals are *short*.
1120 LiveInterval &LargeInt = li_->getInterval(LargeReg);
1121 LiveInterval &SmallInt = li_->getInterval(SmallReg);
1122 unsigned LargeSize = li_->getApproximateInstructionCount(LargeInt);
1123 unsigned SmallSize = li_->getApproximateInstructionCount(SmallInt);
1124 if (SmallSize > Threshold || LargeSize > Threshold)
1125 if ((float)std::distance(mri_->use_begin(SmallReg),
1126 mri_->use_end()) / SmallSize <
1127 (float)std::distance(mri_->use_begin(LargeReg),
1128 mri_->use_end()) / LargeSize)
1129 return false;
1130 return true;
1133 /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
1134 /// register with a physical register, check if any of the virtual register
1135 /// operand is a sub-register use or def. If so, make sure it won't result
1136 /// in an illegal extract_subreg or insert_subreg instruction. e.g.
1137 /// vr1024 = extract_subreg vr1025, 1
1138 /// ...
1139 /// vr1024 = mov8rr AH
1140 /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
1141 /// AH does not have a super-reg whose sub-register 1 is AH.
1142 bool
1143 SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr *CopyMI,
1144 unsigned VirtReg,
1145 unsigned PhysReg) {
1146 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(VirtReg),
1147 E = mri_->reg_end(); I != E; ++I) {
1148 MachineOperand &O = I.getOperand();
1149 MachineInstr *MI = &*I;
1150 if (MI == CopyMI || JoinedCopies.count(MI))
1151 continue;
1152 unsigned SubIdx = O.getSubReg();
1153 if (SubIdx && !tri_->getSubReg(PhysReg, SubIdx))
1154 return true;
1155 if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
1156 SubIdx = MI->getOperand(2).getImm();
1157 if (O.isUse() && !tri_->getSubReg(PhysReg, SubIdx))
1158 return true;
1159 if (O.isDef()) {
1160 unsigned SrcReg = MI->getOperand(1).getReg();
1161 const TargetRegisterClass *RC =
1162 TargetRegisterInfo::isPhysicalRegister(SrcReg)
1163 ? tri_->getPhysicalRegisterRegClass(SrcReg)
1164 : mri_->getRegClass(SrcReg);
1165 if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
1166 return true;
1169 if (MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
1170 MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
1171 SubIdx = MI->getOperand(3).getImm();
1172 if (VirtReg == MI->getOperand(0).getReg()) {
1173 if (!tri_->getSubReg(PhysReg, SubIdx))
1174 return true;
1175 } else {
1176 unsigned DstReg = MI->getOperand(0).getReg();
1177 const TargetRegisterClass *RC =
1178 TargetRegisterInfo::isPhysicalRegister(DstReg)
1179 ? tri_->getPhysicalRegisterRegClass(DstReg)
1180 : mri_->getRegClass(DstReg);
1181 if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
1182 return true;
1186 return false;
1190 /// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
1191 /// an extract_subreg where dst is a physical register, e.g.
1192 /// cl = EXTRACT_SUBREG reg1024, 1
1193 bool
1194 SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg,
1195 unsigned SrcReg, unsigned SubIdx,
1196 unsigned &RealDstReg) {
1197 const TargetRegisterClass *RC = mri_->getRegClass(SrcReg);
1198 RealDstReg = tri_->getMatchingSuperReg(DstReg, SubIdx, RC);
1199 assert(RealDstReg && "Invalid extract_subreg instruction!");
1201 // For this type of EXTRACT_SUBREG, conservatively
1202 // check if the live interval of the source register interfere with the
1203 // actual super physical register we are trying to coalesce with.
1204 LiveInterval &RHS = li_->getInterval(SrcReg);
1205 if (li_->hasInterval(RealDstReg) &&
1206 RHS.overlaps(li_->getInterval(RealDstReg))) {
1207 DEBUG({
1208 errs() << "Interfere with register ";
1209 li_->getInterval(RealDstReg).print(errs(), tri_);
1211 return false; // Not coalescable
1213 for (const unsigned* SR = tri_->getSubRegisters(RealDstReg); *SR; ++SR)
1214 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1215 DEBUG({
1216 errs() << "Interfere with sub-register ";
1217 li_->getInterval(*SR).print(errs(), tri_);
1219 return false; // Not coalescable
1221 return true;
1224 /// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
1225 /// an insert_subreg where src is a physical register, e.g.
1226 /// reg1024 = INSERT_SUBREG reg1024, c1, 0
1227 bool
1228 SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg,
1229 unsigned SrcReg, unsigned SubIdx,
1230 unsigned &RealSrcReg) {
1231 const TargetRegisterClass *RC = mri_->getRegClass(DstReg);
1232 RealSrcReg = tri_->getMatchingSuperReg(SrcReg, SubIdx, RC);
1233 assert(RealSrcReg && "Invalid extract_subreg instruction!");
1235 LiveInterval &RHS = li_->getInterval(DstReg);
1236 if (li_->hasInterval(RealSrcReg) &&
1237 RHS.overlaps(li_->getInterval(RealSrcReg))) {
1238 DEBUG({
1239 errs() << "Interfere with register ";
1240 li_->getInterval(RealSrcReg).print(errs(), tri_);
1242 return false; // Not coalescable
1244 for (const unsigned* SR = tri_->getSubRegisters(RealSrcReg); *SR; ++SR)
1245 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1246 DEBUG({
1247 errs() << "Interfere with sub-register ";
1248 li_->getInterval(*SR).print(errs(), tri_);
1250 return false; // Not coalescable
1252 return true;
1255 /// getRegAllocPreference - Return register allocation preference register.
1257 static unsigned getRegAllocPreference(unsigned Reg, MachineFunction &MF,
1258 MachineRegisterInfo *MRI,
1259 const TargetRegisterInfo *TRI) {
1260 if (TargetRegisterInfo::isPhysicalRegister(Reg))
1261 return 0;
1262 std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(Reg);
1263 return TRI->ResolveRegAllocHint(Hint.first, Hint.second, MF);
1266 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1267 /// which are the src/dst of the copy instruction CopyMI. This returns true
1268 /// if the copy was successfully coalesced away. If it is not currently
1269 /// possible to coalesce this interval, but it may be possible if other
1270 /// things get coalesced, then it returns true by reference in 'Again'.
1271 bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
1272 MachineInstr *CopyMI = TheCopy.MI;
1274 Again = false;
1275 if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
1276 return false; // Already done.
1278 DEBUG(errs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1280 unsigned SrcReg, DstReg, SrcSubIdx = 0, DstSubIdx = 0;
1281 bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG;
1282 bool isInsSubReg = CopyMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG;
1283 bool isSubRegToReg = CopyMI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG;
1284 unsigned SubIdx = 0;
1285 if (isExtSubReg) {
1286 DstReg = CopyMI->getOperand(0).getReg();
1287 DstSubIdx = CopyMI->getOperand(0).getSubReg();
1288 SrcReg = CopyMI->getOperand(1).getReg();
1289 SrcSubIdx = CopyMI->getOperand(2).getImm();
1290 } else if (isInsSubReg || isSubRegToReg) {
1291 DstReg = CopyMI->getOperand(0).getReg();
1292 DstSubIdx = CopyMI->getOperand(3).getImm();
1293 SrcReg = CopyMI->getOperand(2).getReg();
1294 SrcSubIdx = CopyMI->getOperand(2).getSubReg();
1295 if (SrcSubIdx && SrcSubIdx != DstSubIdx) {
1296 // r1025 = INSERT_SUBREG r1025, r1024<2>, 2 Then r1024 has already been
1297 // coalesced to a larger register so the subreg indices cancel out.
1298 DEBUG(errs() << "\tSource of insert_subreg is already coalesced "
1299 << "to another register.\n");
1300 return false; // Not coalescable.
1302 } else if (!tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)){
1303 llvm_unreachable("Unrecognized copy instruction!");
1306 // If they are already joined we continue.
1307 if (SrcReg == DstReg) {
1308 DEBUG(errs() << "\tCopy already coalesced.\n");
1309 return false; // Not coalescable.
1312 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
1313 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1315 // If they are both physical registers, we cannot join them.
1316 if (SrcIsPhys && DstIsPhys) {
1317 DEBUG(errs() << "\tCan not coalesce physregs.\n");
1318 return false; // Not coalescable.
1321 // We only join virtual registers with allocatable physical registers.
1322 if (SrcIsPhys && !allocatableRegs_[SrcReg]) {
1323 DEBUG(errs() << "\tSrc reg is unallocatable physreg.\n");
1324 return false; // Not coalescable.
1326 if (DstIsPhys && !allocatableRegs_[DstReg]) {
1327 DEBUG(errs() << "\tDst reg is unallocatable physreg.\n");
1328 return false; // Not coalescable.
1331 // Check that a physical source register is compatible with dst regclass
1332 if (SrcIsPhys) {
1333 unsigned SrcSubReg = SrcSubIdx ?
1334 tri_->getSubReg(SrcReg, SrcSubIdx) : SrcReg;
1335 const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
1336 const TargetRegisterClass *DstSubRC = DstRC;
1337 if (DstSubIdx)
1338 DstSubRC = DstRC->getSubRegisterRegClass(DstSubIdx);
1339 assert(DstSubRC && "Illegal subregister index");
1340 if (!DstSubRC->contains(SrcSubReg)) {
1341 DEBUG(errs() << "\tIncompatible destination regclass: "
1342 << tri_->getName(SrcSubReg) << " not in "
1343 << DstSubRC->getName() << ".\n");
1344 return false; // Not coalescable.
1348 // Check that a physical dst register is compatible with source regclass
1349 if (DstIsPhys) {
1350 unsigned DstSubReg = DstSubIdx ?
1351 tri_->getSubReg(DstReg, DstSubIdx) : DstReg;
1352 const TargetRegisterClass *SrcRC = mri_->getRegClass(SrcReg);
1353 const TargetRegisterClass *SrcSubRC = SrcRC;
1354 if (SrcSubIdx)
1355 SrcSubRC = SrcRC->getSubRegisterRegClass(SrcSubIdx);
1356 assert(SrcSubRC && "Illegal subregister index");
1357 if (!SrcSubRC->contains(DstReg)) {
1358 DEBUG(errs() << "\tIncompatible source regclass: "
1359 << tri_->getName(DstSubReg) << " not in "
1360 << SrcSubRC->getName() << ".\n");
1361 (void)DstSubReg;
1362 return false; // Not coalescable.
1366 // Should be non-null only when coalescing to a sub-register class.
1367 bool CrossRC = false;
1368 const TargetRegisterClass *SrcRC= SrcIsPhys ? 0 : mri_->getRegClass(SrcReg);
1369 const TargetRegisterClass *DstRC= DstIsPhys ? 0 : mri_->getRegClass(DstReg);
1370 const TargetRegisterClass *NewRC = NULL;
1371 MachineBasicBlock *CopyMBB = CopyMI->getParent();
1372 unsigned RealDstReg = 0;
1373 unsigned RealSrcReg = 0;
1374 if (isExtSubReg || isInsSubReg || isSubRegToReg) {
1375 SubIdx = CopyMI->getOperand(isExtSubReg ? 2 : 3).getImm();
1376 if (SrcIsPhys && isExtSubReg) {
1377 // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
1378 // coalesced with AX.
1379 unsigned DstSubIdx = CopyMI->getOperand(0).getSubReg();
1380 if (DstSubIdx) {
1381 // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
1382 // coalesced to a larger register so the subreg indices cancel out.
1383 if (DstSubIdx != SubIdx) {
1384 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1385 return false; // Not coalescable.
1387 } else
1388 SrcReg = tri_->getSubReg(SrcReg, SubIdx);
1389 SubIdx = 0;
1390 } else if (DstIsPhys && (isInsSubReg || isSubRegToReg)) {
1391 // EAX = INSERT_SUBREG EAX, r1024, 0
1392 unsigned SrcSubIdx = CopyMI->getOperand(2).getSubReg();
1393 if (SrcSubIdx) {
1394 // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
1395 // coalesced to a larger register so the subreg indices cancel out.
1396 if (SrcSubIdx != SubIdx) {
1397 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1398 return false; // Not coalescable.
1400 } else
1401 DstReg = tri_->getSubReg(DstReg, SubIdx);
1402 SubIdx = 0;
1403 } else if ((DstIsPhys && isExtSubReg) ||
1404 (SrcIsPhys && (isInsSubReg || isSubRegToReg))) {
1405 if (!isSubRegToReg && CopyMI->getOperand(1).getSubReg()) {
1406 DEBUG(errs() << "\tSrc of extract_subreg already coalesced with reg"
1407 << " of a super-class.\n");
1408 return false; // Not coalescable.
1411 if (isExtSubReg) {
1412 if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealDstReg))
1413 return false; // Not coalescable
1414 } else {
1415 if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
1416 return false; // Not coalescable
1418 SubIdx = 0;
1419 } else {
1420 unsigned OldSubIdx = isExtSubReg ? CopyMI->getOperand(0).getSubReg()
1421 : CopyMI->getOperand(2).getSubReg();
1422 if (OldSubIdx) {
1423 if (OldSubIdx == SubIdx && !differingRegisterClasses(SrcReg, DstReg))
1424 // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
1425 // coalesced to a larger register so the subreg indices cancel out.
1426 // Also check if the other larger register is of the same register
1427 // class as the would be resulting register.
1428 SubIdx = 0;
1429 else {
1430 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1431 return false; // Not coalescable.
1434 if (SubIdx) {
1435 if (!DstIsPhys && !SrcIsPhys) {
1436 if (isInsSubReg || isSubRegToReg) {
1437 NewRC = tri_->getMatchingSuperRegClass(DstRC, SrcRC, SubIdx);
1438 } else // extract_subreg {
1439 NewRC = tri_->getMatchingSuperRegClass(SrcRC, DstRC, SubIdx);
1441 if (!NewRC) {
1442 DEBUG(errs() << "\t Conflicting sub-register indices.\n");
1443 return false; // Not coalescable
1446 unsigned LargeReg = isExtSubReg ? SrcReg : DstReg;
1447 unsigned SmallReg = isExtSubReg ? DstReg : SrcReg;
1448 unsigned Limit= allocatableRCRegs_[mri_->getRegClass(SmallReg)].count();
1449 if (!isWinToJoinCrossClass(LargeReg, SmallReg, Limit)) {
1450 Again = true; // May be possible to coalesce later.
1451 return false;
1455 } else if (differingRegisterClasses(SrcReg, DstReg)) {
1456 if (DisableCrossClassJoin)
1457 return false;
1458 CrossRC = true;
1460 // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
1461 // with another? If it's the resulting destination register, then
1462 // the subidx must be propagated to uses (but only those defined
1463 // by the EXTRACT_SUBREG). If it's being coalesced into another
1464 // register, it should be safe because register is assumed to have
1465 // the register class of the super-register.
1467 // Process moves where one of the registers have a sub-register index.
1468 MachineOperand *DstMO = CopyMI->findRegisterDefOperand(DstReg);
1469 MachineOperand *SrcMO = CopyMI->findRegisterUseOperand(SrcReg);
1470 SubIdx = DstMO->getSubReg();
1471 if (SubIdx) {
1472 if (SrcMO->getSubReg())
1473 // FIXME: can we handle this?
1474 return false;
1475 // This is not an insert_subreg but it looks like one.
1476 // e.g. %reg1024:4 = MOV32rr %EAX
1477 isInsSubReg = true;
1478 if (SrcIsPhys) {
1479 if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
1480 return false; // Not coalescable
1481 SubIdx = 0;
1483 } else {
1484 SubIdx = SrcMO->getSubReg();
1485 if (SubIdx) {
1486 // This is not a extract_subreg but it looks like one.
1487 // e.g. %cl = MOV16rr %reg1024:1
1488 isExtSubReg = true;
1489 if (DstIsPhys) {
1490 if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx,RealDstReg))
1491 return false; // Not coalescable
1492 SubIdx = 0;
1497 unsigned LargeReg = SrcReg;
1498 unsigned SmallReg = DstReg;
1500 // Now determine the register class of the joined register.
1501 if (isExtSubReg) {
1502 if (SubIdx && DstRC && DstRC->isASubClass()) {
1503 // This is a move to a sub-register class. However, the source is a
1504 // sub-register of a larger register class. We don't know what should
1505 // the register class be. FIXME.
1506 Again = true;
1507 return false;
1509 if (!DstIsPhys && !SrcIsPhys)
1510 NewRC = SrcRC;
1511 } else if (!SrcIsPhys && !DstIsPhys) {
1512 NewRC = getCommonSubClass(SrcRC, DstRC);
1513 if (!NewRC) {
1514 DEBUG(errs() << "\tDisjoint regclasses: "
1515 << SrcRC->getName() << ", "
1516 << DstRC->getName() << ".\n");
1517 return false; // Not coalescable.
1519 if (DstRC->getSize() > SrcRC->getSize())
1520 std::swap(LargeReg, SmallReg);
1523 // If we are joining two virtual registers and the resulting register
1524 // class is more restrictive (fewer register, smaller size). Check if it's
1525 // worth doing the merge.
1526 if (!SrcIsPhys && !DstIsPhys &&
1527 (isExtSubReg || DstRC->isASubClass()) &&
1528 !isWinToJoinCrossClass(LargeReg, SmallReg,
1529 allocatableRCRegs_[NewRC].count())) {
1530 DEBUG(errs() << "\tSrc/Dest are different register classes.\n");
1531 // Allow the coalescer to try again in case either side gets coalesced to
1532 // a physical register that's compatible with the other side. e.g.
1533 // r1024 = MOV32to32_ r1025
1534 // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
1535 Again = true; // May be possible to coalesce later.
1536 return false;
1540 // Will it create illegal extract_subreg / insert_subreg?
1541 if (SrcIsPhys && HasIncompatibleSubRegDefUse(CopyMI, DstReg, SrcReg))
1542 return false;
1543 if (DstIsPhys && HasIncompatibleSubRegDefUse(CopyMI, SrcReg, DstReg))
1544 return false;
1546 LiveInterval &SrcInt = li_->getInterval(SrcReg);
1547 LiveInterval &DstInt = li_->getInterval(DstReg);
1548 assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg &&
1549 "Register mapping is horribly broken!");
1551 DEBUG({
1552 errs() << "\t\tInspecting "; SrcInt.print(errs(), tri_);
1553 errs() << " and "; DstInt.print(errs(), tri_);
1554 errs() << ": ";
1557 // Save a copy of the virtual register live interval. We'll manually
1558 // merge this into the "real" physical register live interval this is
1559 // coalesced with.
1560 LiveInterval *SavedLI = 0;
1561 if (RealDstReg)
1562 SavedLI = li_->dupInterval(&SrcInt);
1563 else if (RealSrcReg)
1564 SavedLI = li_->dupInterval(&DstInt);
1566 // Check if it is necessary to propagate "isDead" property.
1567 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg) {
1568 MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg, false);
1569 bool isDead = mopd->isDead();
1571 // We need to be careful about coalescing a source physical register with a
1572 // virtual register. Once the coalescing is done, it cannot be broken and
1573 // these are not spillable! If the destination interval uses are far away,
1574 // think twice about coalescing them!
1575 if (!isDead && (SrcIsPhys || DstIsPhys)) {
1576 // If the copy is in a loop, take care not to coalesce aggressively if the
1577 // src is coming in from outside the loop (or the dst is out of the loop).
1578 // If it's not in a loop, then determine whether to join them base purely
1579 // by the length of the interval.
1580 if (PhysJoinTweak) {
1581 if (SrcIsPhys) {
1582 if (!isWinToJoinVRWithSrcPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
1583 mri_->setRegAllocationHint(DstInt.reg, 0, SrcReg);
1584 ++numAborts;
1585 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1586 Again = true; // May be possible to coalesce later.
1587 return false;
1589 } else {
1590 if (!isWinToJoinVRWithDstPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
1591 mri_->setRegAllocationHint(SrcInt.reg, 0, DstReg);
1592 ++numAborts;
1593 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1594 Again = true; // May be possible to coalesce later.
1595 return false;
1598 } else {
1599 // If the virtual register live interval is long but it has low use desity,
1600 // do not join them, instead mark the physical register as its allocation
1601 // preference.
1602 LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
1603 unsigned JoinVReg = SrcIsPhys ? DstReg : SrcReg;
1604 unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg;
1605 const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg);
1606 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1607 if (TheCopy.isBackEdge)
1608 Threshold *= 2; // Favors back edge copies.
1610 unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
1611 float Ratio = 1.0 / Threshold;
1612 if (Length > Threshold &&
1613 (((float)std::distance(mri_->use_begin(JoinVReg),
1614 mri_->use_end()) / Length) < Ratio)) {
1615 mri_->setRegAllocationHint(JoinVInt.reg, 0, JoinPReg);
1616 ++numAborts;
1617 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1618 Again = true; // May be possible to coalesce later.
1619 return false;
1625 // Okay, attempt to join these two intervals. On failure, this returns false.
1626 // Otherwise, if one of the intervals being joined is a physreg, this method
1627 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1628 // been modified, so we can use this information below to update aliases.
1629 bool Swapped = false;
1630 // If SrcInt is implicitly defined, it's safe to coalesce.
1631 bool isEmpty = SrcInt.empty();
1632 if (isEmpty && !CanCoalesceWithImpDef(CopyMI, DstInt, SrcInt)) {
1633 // Only coalesce an empty interval (defined by implicit_def) with
1634 // another interval which has a valno defined by the CopyMI and the CopyMI
1635 // is a kill of the implicit def.
1636 DEBUG(errs() << "Not profitable!\n");
1637 return false;
1640 if (!isEmpty && !JoinIntervals(DstInt, SrcInt, Swapped)) {
1641 // Coalescing failed.
1643 // If definition of source is defined by trivial computation, try
1644 // rematerializing it.
1645 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
1646 ReMaterializeTrivialDef(SrcInt, DstReg, DstSubIdx, CopyMI))
1647 return true;
1649 // If we can eliminate the copy without merging the live ranges, do so now.
1650 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
1651 (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) ||
1652 RemoveCopyByCommutingDef(SrcInt, DstInt, CopyMI))) {
1653 JoinedCopies.insert(CopyMI);
1654 return true;
1657 // Otherwise, we are unable to join the intervals.
1658 DEBUG(errs() << "Interference!\n");
1659 Again = true; // May be possible to coalesce later.
1660 return false;
1663 LiveInterval *ResSrcInt = &SrcInt;
1664 LiveInterval *ResDstInt = &DstInt;
1665 if (Swapped) {
1666 std::swap(SrcReg, DstReg);
1667 std::swap(ResSrcInt, ResDstInt);
1669 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1670 "LiveInterval::join didn't work right!");
1672 // If we're about to merge live ranges into a physical register live interval,
1673 // we have to update any aliased register's live ranges to indicate that they
1674 // have clobbered values for this range.
1675 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
1676 // If this is a extract_subreg where dst is a physical register, e.g.
1677 // cl = EXTRACT_SUBREG reg1024, 1
1678 // then create and update the actual physical register allocated to RHS.
1679 if (RealDstReg || RealSrcReg) {
1680 LiveInterval &RealInt =
1681 li_->getOrCreateInterval(RealDstReg ? RealDstReg : RealSrcReg);
1682 for (LiveInterval::const_vni_iterator I = SavedLI->vni_begin(),
1683 E = SavedLI->vni_end(); I != E; ++I) {
1684 const VNInfo *ValNo = *I;
1685 VNInfo *NewValNo = RealInt.getNextValue(ValNo->def, ValNo->getCopy(),
1686 false, // updated at *
1687 li_->getVNInfoAllocator());
1688 NewValNo->setFlags(ValNo->getFlags()); // * updated here.
1689 RealInt.addKills(NewValNo, ValNo->kills);
1690 RealInt.MergeValueInAsValue(*SavedLI, ValNo, NewValNo);
1692 RealInt.weight += SavedLI->weight;
1693 DstReg = RealDstReg ? RealDstReg : RealSrcReg;
1696 // Update the liveintervals of sub-registers.
1697 for (const unsigned *AS = tri_->getSubRegisters(DstReg); *AS; ++AS)
1698 li_->getOrCreateInterval(*AS).MergeInClobberRanges(*ResSrcInt,
1699 li_->getVNInfoAllocator());
1702 // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
1703 // larger super-register.
1704 if ((isExtSubReg || isInsSubReg || isSubRegToReg) &&
1705 !SrcIsPhys && !DstIsPhys) {
1706 if ((isExtSubReg && !Swapped) ||
1707 ((isInsSubReg || isSubRegToReg) && Swapped)) {
1708 ResSrcInt->Copy(*ResDstInt, mri_, li_->getVNInfoAllocator());
1709 std::swap(SrcReg, DstReg);
1710 std::swap(ResSrcInt, ResDstInt);
1714 // Coalescing to a virtual register that is of a sub-register class of the
1715 // other. Make sure the resulting register is set to the right register class.
1716 if (CrossRC)
1717 ++numCrossRCs;
1719 // This may happen even if it's cross-rc coalescing. e.g.
1720 // %reg1026<def> = SUBREG_TO_REG 0, %reg1037<kill>, 4
1721 // reg1026 -> GR64, reg1037 -> GR32_ABCD. The resulting register will have to
1722 // be allocate a register from GR64_ABCD.
1723 if (NewRC)
1724 mri_->setRegClass(DstReg, NewRC);
1726 if (NewHeuristic) {
1727 // Add all copies that define val# in the source interval into the queue.
1728 for (LiveInterval::const_vni_iterator i = ResSrcInt->vni_begin(),
1729 e = ResSrcInt->vni_end(); i != e; ++i) {
1730 const VNInfo *vni = *i;
1731 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1732 if (!vni->def || vni->isUnused() || vni->isPHIDef() || !vni->isDefAccurate())
1733 continue;
1734 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
1735 unsigned NewSrcReg, NewDstReg, NewSrcSubIdx, NewDstSubIdx;
1736 if (CopyMI &&
1737 JoinedCopies.count(CopyMI) == 0 &&
1738 tii_->isMoveInstr(*CopyMI, NewSrcReg, NewDstReg,
1739 NewSrcSubIdx, NewDstSubIdx)) {
1740 unsigned LoopDepth = loopInfo->getLoopDepth(CopyMBB);
1741 JoinQueue->push(CopyRec(CopyMI, LoopDepth,
1742 isBackEdgeCopy(CopyMI, DstReg)));
1747 // Remember to delete the copy instruction.
1748 JoinedCopies.insert(CopyMI);
1750 // Some live range has been lengthened due to colaescing, eliminate the
1751 // unnecessary kills.
1752 RemoveUnnecessaryKills(SrcReg, *ResDstInt);
1753 if (TargetRegisterInfo::isVirtualRegister(DstReg))
1754 RemoveUnnecessaryKills(DstReg, *ResDstInt);
1756 UpdateRegDefsUses(SrcReg, DstReg, SubIdx);
1758 // SrcReg is guarateed to be the register whose live interval that is
1759 // being merged.
1760 li_->removeInterval(SrcReg);
1762 // Update regalloc hint.
1763 tri_->UpdateRegAllocHint(SrcReg, DstReg, *mf_);
1765 // Manually deleted the live interval copy.
1766 if (SavedLI) {
1767 SavedLI->clear();
1768 delete SavedLI;
1771 // If resulting interval has a preference that no longer fits because of subreg
1772 // coalescing, just clear the preference.
1773 unsigned Preference = getRegAllocPreference(ResDstInt->reg, *mf_, mri_, tri_);
1774 if (Preference && (isExtSubReg || isInsSubReg || isSubRegToReg) &&
1775 TargetRegisterInfo::isVirtualRegister(ResDstInt->reg)) {
1776 const TargetRegisterClass *RC = mri_->getRegClass(ResDstInt->reg);
1777 if (!RC->contains(Preference))
1778 mri_->setRegAllocationHint(ResDstInt->reg, 0, 0);
1781 DEBUG({
1782 errs() << "\n\t\tJoined. Result = ";
1783 ResDstInt->print(errs(), tri_);
1784 errs() << "\n";
1787 ++numJoins;
1788 return true;
1791 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1792 /// compute what the resultant value numbers for each value in the input two
1793 /// ranges will be. This is complicated by copies between the two which can
1794 /// and will commonly cause multiple value numbers to be merged into one.
1796 /// VN is the value number that we're trying to resolve. InstDefiningValue
1797 /// keeps track of the new InstDefiningValue assignment for the result
1798 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1799 /// whether a value in this or other is a copy from the opposite set.
1800 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1801 /// already been assigned.
1803 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1804 /// contains the value number the copy is from.
1806 static unsigned ComputeUltimateVN(VNInfo *VNI,
1807 SmallVector<VNInfo*, 16> &NewVNInfo,
1808 DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1809 DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1810 SmallVector<int, 16> &ThisValNoAssignments,
1811 SmallVector<int, 16> &OtherValNoAssignments) {
1812 unsigned VN = VNI->id;
1814 // If the VN has already been computed, just return it.
1815 if (ThisValNoAssignments[VN] >= 0)
1816 return ThisValNoAssignments[VN];
1817 // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1819 // If this val is not a copy from the other val, then it must be a new value
1820 // number in the destination.
1821 DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1822 if (I == ThisFromOther.end()) {
1823 NewVNInfo.push_back(VNI);
1824 return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1826 VNInfo *OtherValNo = I->second;
1828 // Otherwise, this *is* a copy from the RHS. If the other side has already
1829 // been computed, return it.
1830 if (OtherValNoAssignments[OtherValNo->id] >= 0)
1831 return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1833 // Mark this value number as currently being computed, then ask what the
1834 // ultimate value # of the other value is.
1835 ThisValNoAssignments[VN] = -2;
1836 unsigned UltimateVN =
1837 ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1838 OtherValNoAssignments, ThisValNoAssignments);
1839 return ThisValNoAssignments[VN] = UltimateVN;
1842 static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) {
1843 return std::find(V.begin(), V.end(), Val) != V.end();
1846 /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
1847 /// the specified live interval is defined by a copy from the specified
1848 /// register.
1849 bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li,
1850 LiveRange *LR,
1851 unsigned Reg) {
1852 unsigned SrcReg = li_->getVNInfoSourceReg(LR->valno);
1853 if (SrcReg == Reg)
1854 return true;
1855 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1856 if ((LR->valno->isPHIDef() || !LR->valno->isDefAccurate()) &&
1857 TargetRegisterInfo::isPhysicalRegister(li.reg) &&
1858 *tri_->getSuperRegisters(li.reg)) {
1859 // It's a sub-register live interval, we may not have precise information.
1860 // Re-compute it.
1861 MachineInstr *DefMI = li_->getInstructionFromIndex(LR->start);
1862 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1863 if (DefMI &&
1864 tii_->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
1865 DstReg == li.reg && SrcReg == Reg) {
1866 // Cache computed info.
1867 LR->valno->def = LR->start;
1868 LR->valno->setCopy(DefMI);
1869 return true;
1872 return false;
1875 /// SimpleJoin - Attempt to joint the specified interval into this one. The
1876 /// caller of this method must guarantee that the RHS only contains a single
1877 /// value number and that the RHS is not defined by a copy from this
1878 /// interval. This returns false if the intervals are not joinable, or it
1879 /// joins them and returns true.
1880 bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
1881 assert(RHS.containsOneValue());
1883 // Some number (potentially more than one) value numbers in the current
1884 // interval may be defined as copies from the RHS. Scan the overlapping
1885 // portions of the LHS and RHS, keeping track of this and looking for
1886 // overlapping live ranges that are NOT defined as copies. If these exist, we
1887 // cannot coalesce.
1889 LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
1890 LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
1892 if (LHSIt->start < RHSIt->start) {
1893 LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
1894 if (LHSIt != LHS.begin()) --LHSIt;
1895 } else if (RHSIt->start < LHSIt->start) {
1896 RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
1897 if (RHSIt != RHS.begin()) --RHSIt;
1900 SmallVector<VNInfo*, 8> EliminatedLHSVals;
1902 while (1) {
1903 // Determine if these live intervals overlap.
1904 bool Overlaps = false;
1905 if (LHSIt->start <= RHSIt->start)
1906 Overlaps = LHSIt->end > RHSIt->start;
1907 else
1908 Overlaps = RHSIt->end > LHSIt->start;
1910 // If the live intervals overlap, there are two interesting cases: if the
1911 // LHS interval is defined by a copy from the RHS, it's ok and we record
1912 // that the LHS value # is the same as the RHS. If it's not, then we cannot
1913 // coalesce these live ranges and we bail out.
1914 if (Overlaps) {
1915 // If we haven't already recorded that this value # is safe, check it.
1916 if (!InVector(LHSIt->valno, EliminatedLHSVals)) {
1917 // Copy from the RHS?
1918 if (!RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg))
1919 return false; // Nope, bail out.
1921 if (LHSIt->contains(RHSIt->valno->def))
1922 // Here is an interesting situation:
1923 // BB1:
1924 // vr1025 = copy vr1024
1925 // ..
1926 // BB2:
1927 // vr1024 = op
1928 // = vr1025
1929 // Even though vr1025 is copied from vr1024, it's not safe to
1930 // coalesce them since the live range of vr1025 intersects the
1931 // def of vr1024. This happens because vr1025 is assigned the
1932 // value of the previous iteration of vr1024.
1933 return false;
1934 EliminatedLHSVals.push_back(LHSIt->valno);
1937 // We know this entire LHS live range is okay, so skip it now.
1938 if (++LHSIt == LHSEnd) break;
1939 continue;
1942 if (LHSIt->end < RHSIt->end) {
1943 if (++LHSIt == LHSEnd) break;
1944 } else {
1945 // One interesting case to check here. It's possible that we have
1946 // something like "X3 = Y" which defines a new value number in the LHS,
1947 // and is the last use of this liverange of the RHS. In this case, we
1948 // want to notice this copy (so that it gets coalesced away) even though
1949 // the live ranges don't actually overlap.
1950 if (LHSIt->start == RHSIt->end) {
1951 if (InVector(LHSIt->valno, EliminatedLHSVals)) {
1952 // We already know that this value number is going to be merged in
1953 // if coalescing succeeds. Just skip the liverange.
1954 if (++LHSIt == LHSEnd) break;
1955 } else {
1956 // Otherwise, if this is a copy from the RHS, mark it as being merged
1957 // in.
1958 if (RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) {
1959 if (LHSIt->contains(RHSIt->valno->def))
1960 // Here is an interesting situation:
1961 // BB1:
1962 // vr1025 = copy vr1024
1963 // ..
1964 // BB2:
1965 // vr1024 = op
1966 // = vr1025
1967 // Even though vr1025 is copied from vr1024, it's not safe to
1968 // coalesced them since live range of vr1025 intersects the
1969 // def of vr1024. This happens because vr1025 is assigned the
1970 // value of the previous iteration of vr1024.
1971 return false;
1972 EliminatedLHSVals.push_back(LHSIt->valno);
1974 // We know this entire LHS live range is okay, so skip it now.
1975 if (++LHSIt == LHSEnd) break;
1980 if (++RHSIt == RHSEnd) break;
1984 // If we got here, we know that the coalescing will be successful and that
1985 // the value numbers in EliminatedLHSVals will all be merged together. Since
1986 // the most common case is that EliminatedLHSVals has a single number, we
1987 // optimize for it: if there is more than one value, we merge them all into
1988 // the lowest numbered one, then handle the interval as if we were merging
1989 // with one value number.
1990 VNInfo *LHSValNo = NULL;
1991 if (EliminatedLHSVals.size() > 1) {
1992 // Loop through all the equal value numbers merging them into the smallest
1993 // one.
1994 VNInfo *Smallest = EliminatedLHSVals[0];
1995 for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
1996 if (EliminatedLHSVals[i]->id < Smallest->id) {
1997 // Merge the current notion of the smallest into the smaller one.
1998 LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
1999 Smallest = EliminatedLHSVals[i];
2000 } else {
2001 // Merge into the smallest.
2002 LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
2005 LHSValNo = Smallest;
2006 } else if (EliminatedLHSVals.empty()) {
2007 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
2008 *tri_->getSuperRegisters(LHS.reg))
2009 // Imprecise sub-register information. Can't handle it.
2010 return false;
2011 llvm_unreachable("No copies from the RHS?");
2012 } else {
2013 LHSValNo = EliminatedLHSVals[0];
2016 // Okay, now that there is a single LHS value number that we're merging the
2017 // RHS into, update the value number info for the LHS to indicate that the
2018 // value number is defined where the RHS value number was.
2019 const VNInfo *VNI = RHS.getValNumInfo(0);
2020 LHSValNo->def = VNI->def;
2021 LHSValNo->setCopy(VNI->getCopy());
2023 // Okay, the final step is to loop over the RHS live intervals, adding them to
2024 // the LHS.
2025 if (VNI->hasPHIKill())
2026 LHSValNo->setHasPHIKill(true);
2027 LHS.addKills(LHSValNo, VNI->kills);
2028 LHS.MergeRangesInAsValue(RHS, LHSValNo);
2030 LHS.ComputeJoinedWeight(RHS);
2032 // Update regalloc hint if both are virtual registers.
2033 if (TargetRegisterInfo::isVirtualRegister(LHS.reg) &&
2034 TargetRegisterInfo::isVirtualRegister(RHS.reg)) {
2035 std::pair<unsigned, unsigned> RHSPref = mri_->getRegAllocationHint(RHS.reg);
2036 std::pair<unsigned, unsigned> LHSPref = mri_->getRegAllocationHint(LHS.reg);
2037 if (RHSPref != LHSPref)
2038 mri_->setRegAllocationHint(LHS.reg, RHSPref.first, RHSPref.second);
2041 // Update the liveintervals of sub-registers.
2042 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg))
2043 for (const unsigned *AS = tri_->getSubRegisters(LHS.reg); *AS; ++AS)
2044 li_->getOrCreateInterval(*AS).MergeInClobberRanges(LHS,
2045 li_->getVNInfoAllocator());
2047 return true;
2050 /// JoinIntervals - Attempt to join these two intervals. On failure, this
2051 /// returns false. Otherwise, if one of the intervals being joined is a
2052 /// physreg, this method always canonicalizes LHS to be it. The output
2053 /// "RHS" will not have been modified, so we can use this information
2054 /// below to update aliases.
2055 bool
2056 SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
2057 bool &Swapped) {
2058 // Compute the final value assignment, assuming that the live ranges can be
2059 // coalesced.
2060 SmallVector<int, 16> LHSValNoAssignments;
2061 SmallVector<int, 16> RHSValNoAssignments;
2062 DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
2063 DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
2064 SmallVector<VNInfo*, 16> NewVNInfo;
2066 // If a live interval is a physical register, conservatively check if any
2067 // of its sub-registers is overlapping the live interval of the virtual
2068 // register. If so, do not coalesce.
2069 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
2070 *tri_->getSubRegisters(LHS.reg)) {
2071 // If it's coalescing a virtual register to a physical register, estimate
2072 // its live interval length. This is the *cost* of scanning an entire live
2073 // interval. If the cost is low, we'll do an exhaustive check instead.
2075 // If this is something like this:
2076 // BB1:
2077 // v1024 = op
2078 // ...
2079 // BB2:
2080 // ...
2081 // RAX = v1024
2083 // That is, the live interval of v1024 crosses a bb. Then we can't rely on
2084 // less conservative check. It's possible a sub-register is defined before
2085 // v1024 (or live in) and live out of BB1.
2086 if (RHS.containsOneValue() &&
2087 li_->intervalIsInOneMBB(RHS) &&
2088 li_->getApproximateInstructionCount(RHS) <= 10) {
2089 // Perform a more exhaustive check for some common cases.
2090 if (li_->conflictsWithPhysRegRef(RHS, LHS.reg, true, JoinedCopies))
2091 return false;
2092 } else {
2093 for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR)
2094 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
2095 DEBUG({
2096 errs() << "Interfere with sub-register ";
2097 li_->getInterval(*SR).print(errs(), tri_);
2099 return false;
2102 } else if (TargetRegisterInfo::isPhysicalRegister(RHS.reg) &&
2103 *tri_->getSubRegisters(RHS.reg)) {
2104 if (LHS.containsOneValue() &&
2105 li_->getApproximateInstructionCount(LHS) <= 10) {
2106 // Perform a more exhaustive check for some common cases.
2107 if (li_->conflictsWithPhysRegRef(LHS, RHS.reg, false, JoinedCopies))
2108 return false;
2109 } else {
2110 for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR)
2111 if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
2112 DEBUG({
2113 errs() << "Interfere with sub-register ";
2114 li_->getInterval(*SR).print(errs(), tri_);
2116 return false;
2121 // Compute ultimate value numbers for the LHS and RHS values.
2122 if (RHS.containsOneValue()) {
2123 // Copies from a liveinterval with a single value are simple to handle and
2124 // very common, handle the special case here. This is important, because
2125 // often RHS is small and LHS is large (e.g. a physreg).
2127 // Find out if the RHS is defined as a copy from some value in the LHS.
2128 int RHSVal0DefinedFromLHS = -1;
2129 int RHSValID = -1;
2130 VNInfo *RHSValNoInfo = NULL;
2131 VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0);
2132 unsigned RHSSrcReg = li_->getVNInfoSourceReg(RHSValNoInfo0);
2133 if (RHSSrcReg == 0 || RHSSrcReg != LHS.reg) {
2134 // If RHS is not defined as a copy from the LHS, we can use simpler and
2135 // faster checks to see if the live ranges are coalescable. This joiner
2136 // can't swap the LHS/RHS intervals though.
2137 if (!TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
2138 return SimpleJoin(LHS, RHS);
2139 } else {
2140 RHSValNoInfo = RHSValNoInfo0;
2142 } else {
2143 // It was defined as a copy from the LHS, find out what value # it is.
2144 RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno;
2145 RHSValID = RHSValNoInfo->id;
2146 RHSVal0DefinedFromLHS = RHSValID;
2149 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
2150 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
2151 NewVNInfo.resize(LHS.getNumValNums(), NULL);
2153 // Okay, *all* of the values in LHS that are defined as a copy from RHS
2154 // should now get updated.
2155 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2156 i != e; ++i) {
2157 VNInfo *VNI = *i;
2158 unsigned VN = VNI->id;
2159 if (unsigned LHSSrcReg = li_->getVNInfoSourceReg(VNI)) {
2160 if (LHSSrcReg != RHS.reg) {
2161 // If this is not a copy from the RHS, its value number will be
2162 // unmodified by the coalescing.
2163 NewVNInfo[VN] = VNI;
2164 LHSValNoAssignments[VN] = VN;
2165 } else if (RHSValID == -1) {
2166 // Otherwise, it is a copy from the RHS, and we don't already have a
2167 // value# for it. Keep the current value number, but remember it.
2168 LHSValNoAssignments[VN] = RHSValID = VN;
2169 NewVNInfo[VN] = RHSValNoInfo;
2170 LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
2171 } else {
2172 // Otherwise, use the specified value #.
2173 LHSValNoAssignments[VN] = RHSValID;
2174 if (VN == (unsigned)RHSValID) { // Else this val# is dead.
2175 NewVNInfo[VN] = RHSValNoInfo;
2176 LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
2179 } else {
2180 NewVNInfo[VN] = VNI;
2181 LHSValNoAssignments[VN] = VN;
2185 assert(RHSValID != -1 && "Didn't find value #?");
2186 RHSValNoAssignments[0] = RHSValID;
2187 if (RHSVal0DefinedFromLHS != -1) {
2188 // This path doesn't go through ComputeUltimateVN so just set
2189 // it to anything.
2190 RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1;
2192 } else {
2193 // Loop over the value numbers of the LHS, seeing if any are defined from
2194 // the RHS.
2195 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2196 i != e; ++i) {
2197 VNInfo *VNI = *i;
2198 if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy?
2199 continue;
2201 // DstReg is known to be a register in the LHS interval. If the src is
2202 // from the RHS interval, we can use its value #.
2203 if (li_->getVNInfoSourceReg(VNI) != RHS.reg)
2204 continue;
2206 // Figure out the value # from the RHS.
2207 LHSValsDefinedFromRHS[VNI]=RHS.getLiveRangeContaining(VNI->def-1)->valno;
2210 // Loop over the value numbers of the RHS, seeing if any are defined from
2211 // the LHS.
2212 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
2213 i != e; ++i) {
2214 VNInfo *VNI = *i;
2215 if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy?
2216 continue;
2218 // DstReg is known to be a register in the RHS interval. If the src is
2219 // from the LHS interval, we can use its value #.
2220 if (li_->getVNInfoSourceReg(VNI) != LHS.reg)
2221 continue;
2223 // Figure out the value # from the LHS.
2224 RHSValsDefinedFromLHS[VNI]=LHS.getLiveRangeContaining(VNI->def-1)->valno;
2227 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
2228 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
2229 NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
2231 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2232 i != e; ++i) {
2233 VNInfo *VNI = *i;
2234 unsigned VN = VNI->id;
2235 if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
2236 continue;
2237 ComputeUltimateVN(VNI, NewVNInfo,
2238 LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
2239 LHSValNoAssignments, RHSValNoAssignments);
2241 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
2242 i != e; ++i) {
2243 VNInfo *VNI = *i;
2244 unsigned VN = VNI->id;
2245 if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
2246 continue;
2247 // If this value number isn't a copy from the LHS, it's a new number.
2248 if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
2249 NewVNInfo.push_back(VNI);
2250 RHSValNoAssignments[VN] = NewVNInfo.size()-1;
2251 continue;
2254 ComputeUltimateVN(VNI, NewVNInfo,
2255 RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
2256 RHSValNoAssignments, LHSValNoAssignments);
2260 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
2261 // interval lists to see if these intervals are coalescable.
2262 LiveInterval::const_iterator I = LHS.begin();
2263 LiveInterval::const_iterator IE = LHS.end();
2264 LiveInterval::const_iterator J = RHS.begin();
2265 LiveInterval::const_iterator JE = RHS.end();
2267 // Skip ahead until the first place of potential sharing.
2268 if (I->start < J->start) {
2269 I = std::upper_bound(I, IE, J->start);
2270 if (I != LHS.begin()) --I;
2271 } else if (J->start < I->start) {
2272 J = std::upper_bound(J, JE, I->start);
2273 if (J != RHS.begin()) --J;
2276 while (1) {
2277 // Determine if these two live ranges overlap.
2278 bool Overlaps;
2279 if (I->start < J->start) {
2280 Overlaps = I->end > J->start;
2281 } else {
2282 Overlaps = J->end > I->start;
2285 // If so, check value # info to determine if they are really different.
2286 if (Overlaps) {
2287 // If the live range overlap will map to the same value number in the
2288 // result liverange, we can still coalesce them. If not, we can't.
2289 if (LHSValNoAssignments[I->valno->id] !=
2290 RHSValNoAssignments[J->valno->id])
2291 return false;
2294 if (I->end < J->end) {
2295 ++I;
2296 if (I == IE) break;
2297 } else {
2298 ++J;
2299 if (J == JE) break;
2303 // Update kill info. Some live ranges are extended due to copy coalescing.
2304 for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
2305 E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
2306 VNInfo *VNI = I->first;
2307 unsigned LHSValID = LHSValNoAssignments[VNI->id];
2308 LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def);
2309 if (VNI->hasPHIKill())
2310 NewVNInfo[LHSValID]->setHasPHIKill(true);
2311 RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
2314 // Update kill info. Some live ranges are extended due to copy coalescing.
2315 for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
2316 E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
2317 VNInfo *VNI = I->first;
2318 unsigned RHSValID = RHSValNoAssignments[VNI->id];
2319 LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def);
2320 if (VNI->hasPHIKill())
2321 NewVNInfo[RHSValID]->setHasPHIKill(true);
2322 LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
2325 // If we get here, we know that we can coalesce the live ranges. Ask the
2326 // intervals to coalesce themselves now.
2327 if ((RHS.ranges.size() > LHS.ranges.size() &&
2328 TargetRegisterInfo::isVirtualRegister(LHS.reg)) ||
2329 TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
2330 RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo,
2331 mri_);
2332 Swapped = true;
2333 } else {
2334 LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
2335 mri_);
2336 Swapped = false;
2338 return true;
2341 namespace {
2342 // DepthMBBCompare - Comparison predicate that sort first based on the loop
2343 // depth of the basic block (the unsigned), and then on the MBB number.
2344 struct DepthMBBCompare {
2345 typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
2346 bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
2347 if (LHS.first > RHS.first) return true; // Deeper loops first
2348 return LHS.first == RHS.first &&
2349 LHS.second->getNumber() < RHS.second->getNumber();
2354 /// getRepIntervalSize - Returns the size of the interval that represents the
2355 /// specified register.
2356 template<class SF>
2357 unsigned JoinPriorityQueue<SF>::getRepIntervalSize(unsigned Reg) {
2358 return Rc->getRepIntervalSize(Reg);
2361 /// CopyRecSort::operator - Join priority queue sorting function.
2363 bool CopyRecSort::operator()(CopyRec left, CopyRec right) const {
2364 // Inner loops first.
2365 if (left.LoopDepth > right.LoopDepth)
2366 return false;
2367 else if (left.LoopDepth == right.LoopDepth)
2368 if (left.isBackEdge && !right.isBackEdge)
2369 return false;
2370 return true;
2373 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
2374 std::vector<CopyRec> &TryAgain) {
2375 DEBUG(errs() << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
2377 std::vector<CopyRec> VirtCopies;
2378 std::vector<CopyRec> PhysCopies;
2379 std::vector<CopyRec> ImpDefCopies;
2380 unsigned LoopDepth = loopInfo->getLoopDepth(MBB);
2381 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2382 MII != E;) {
2383 MachineInstr *Inst = MII++;
2385 // If this isn't a copy nor a extract_subreg, we can't join intervals.
2386 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2387 if (Inst->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
2388 DstReg = Inst->getOperand(0).getReg();
2389 SrcReg = Inst->getOperand(1).getReg();
2390 } else if (Inst->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
2391 Inst->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
2392 DstReg = Inst->getOperand(0).getReg();
2393 SrcReg = Inst->getOperand(2).getReg();
2394 } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
2395 continue;
2397 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
2398 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
2399 if (NewHeuristic) {
2400 JoinQueue->push(CopyRec(Inst, LoopDepth, isBackEdgeCopy(Inst, DstReg)));
2401 } else {
2402 if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
2403 ImpDefCopies.push_back(CopyRec(Inst, 0, false));
2404 else if (SrcIsPhys || DstIsPhys)
2405 PhysCopies.push_back(CopyRec(Inst, 0, false));
2406 else
2407 VirtCopies.push_back(CopyRec(Inst, 0, false));
2411 if (NewHeuristic)
2412 return;
2414 // Try coalescing implicit copies first, followed by copies to / from
2415 // physical registers, then finally copies from virtual registers to
2416 // virtual registers.
2417 for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
2418 CopyRec &TheCopy = ImpDefCopies[i];
2419 bool Again = false;
2420 if (!JoinCopy(TheCopy, Again))
2421 if (Again)
2422 TryAgain.push_back(TheCopy);
2424 for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
2425 CopyRec &TheCopy = PhysCopies[i];
2426 bool Again = false;
2427 if (!JoinCopy(TheCopy, Again))
2428 if (Again)
2429 TryAgain.push_back(TheCopy);
2431 for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
2432 CopyRec &TheCopy = VirtCopies[i];
2433 bool Again = false;
2434 if (!JoinCopy(TheCopy, Again))
2435 if (Again)
2436 TryAgain.push_back(TheCopy);
2440 void SimpleRegisterCoalescing::joinIntervals() {
2441 DEBUG(errs() << "********** JOINING INTERVALS ***********\n");
2443 if (NewHeuristic)
2444 JoinQueue = new JoinPriorityQueue<CopyRecSort>(this);
2446 std::vector<CopyRec> TryAgainList;
2447 if (loopInfo->empty()) {
2448 // If there are no loops in the function, join intervals in function order.
2449 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
2450 I != E; ++I)
2451 CopyCoalesceInMBB(I, TryAgainList);
2452 } else {
2453 // Otherwise, join intervals in inner loops before other intervals.
2454 // Unfortunately we can't just iterate over loop hierarchy here because
2455 // there may be more MBB's than BB's. Collect MBB's for sorting.
2457 // Join intervals in the function prolog first. We want to join physical
2458 // registers with virtual registers before the intervals got too long.
2459 std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
2460 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
2461 MachineBasicBlock *MBB = I;
2462 MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
2465 // Sort by loop depth.
2466 std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
2468 // Finally, join intervals in loop nest order.
2469 for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
2470 CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
2473 // Joining intervals can allow other intervals to be joined. Iteratively join
2474 // until we make no progress.
2475 if (NewHeuristic) {
2476 SmallVector<CopyRec, 16> TryAgain;
2477 bool ProgressMade = true;
2478 while (ProgressMade) {
2479 ProgressMade = false;
2480 while (!JoinQueue->empty()) {
2481 CopyRec R = JoinQueue->pop();
2482 bool Again = false;
2483 bool Success = JoinCopy(R, Again);
2484 if (Success)
2485 ProgressMade = true;
2486 else if (Again)
2487 TryAgain.push_back(R);
2490 if (ProgressMade) {
2491 while (!TryAgain.empty()) {
2492 JoinQueue->push(TryAgain.back());
2493 TryAgain.pop_back();
2497 } else {
2498 bool ProgressMade = true;
2499 while (ProgressMade) {
2500 ProgressMade = false;
2502 for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
2503 CopyRec &TheCopy = TryAgainList[i];
2504 if (TheCopy.MI) {
2505 bool Again = false;
2506 bool Success = JoinCopy(TheCopy, Again);
2507 if (Success || !Again) {
2508 TheCopy.MI = 0; // Mark this one as done.
2509 ProgressMade = true;
2516 if (NewHeuristic)
2517 delete JoinQueue;
2520 /// Return true if the two specified registers belong to different register
2521 /// classes. The registers may be either phys or virt regs.
2522 bool
2523 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
2524 unsigned RegB) const {
2525 // Get the register classes for the first reg.
2526 if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
2527 assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
2528 "Shouldn't consider two physregs!");
2529 return !mri_->getRegClass(RegB)->contains(RegA);
2532 // Compare against the regclass for the second reg.
2533 const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
2534 if (TargetRegisterInfo::isVirtualRegister(RegB)) {
2535 const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
2536 return RegClassA != RegClassB;
2538 return !RegClassA->contains(RegB);
2541 /// lastRegisterUse - Returns the last use of the specific register between
2542 /// cycles Start and End or NULL if there are no uses.
2543 MachineOperand *
2544 SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
2545 unsigned Reg, unsigned &UseIdx) const{
2546 UseIdx = 0;
2547 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2548 MachineOperand *LastUse = NULL;
2549 for (MachineRegisterInfo::use_iterator I = mri_->use_begin(Reg),
2550 E = mri_->use_end(); I != E; ++I) {
2551 MachineOperand &Use = I.getOperand();
2552 MachineInstr *UseMI = Use.getParent();
2553 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2554 if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
2555 SrcReg == DstReg)
2556 // Ignore identity copies.
2557 continue;
2558 unsigned Idx = li_->getInstructionIndex(UseMI);
2559 if (Idx >= Start && Idx < End && Idx >= UseIdx) {
2560 LastUse = &Use;
2561 UseIdx = li_->getUseIndex(Idx);
2564 return LastUse;
2567 int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
2568 int s = Start;
2569 while (e >= s) {
2570 // Skip deleted instructions
2571 MachineInstr *MI = li_->getInstructionFromIndex(e);
2572 while ((e - InstrSlots::NUM) >= s && !MI) {
2573 e -= InstrSlots::NUM;
2574 MI = li_->getInstructionFromIndex(e);
2576 if (e < s || MI == NULL)
2577 return NULL;
2579 // Ignore identity copies.
2580 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2581 if (!(tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
2582 SrcReg == DstReg))
2583 for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
2584 MachineOperand &Use = MI->getOperand(i);
2585 if (Use.isReg() && Use.isUse() && Use.getReg() &&
2586 tri_->regsOverlap(Use.getReg(), Reg)) {
2587 UseIdx = li_->getUseIndex(e);
2588 return &Use;
2592 e -= InstrSlots::NUM;
2595 return NULL;
2599 void SimpleRegisterCoalescing::printRegName(unsigned reg) const {
2600 if (TargetRegisterInfo::isPhysicalRegister(reg))
2601 errs() << tri_->getName(reg);
2602 else
2603 errs() << "%reg" << reg;
2606 void SimpleRegisterCoalescing::releaseMemory() {
2607 JoinedCopies.clear();
2608 ReMatCopies.clear();
2609 ReMatDefs.clear();
2612 static bool isZeroLengthInterval(LiveInterval *li) {
2613 for (LiveInterval::Ranges::const_iterator
2614 i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
2615 if (i->end - i->start > LiveInterval::InstrSlots::NUM)
2616 return false;
2617 return true;
2621 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
2622 mf_ = &fn;
2623 mri_ = &fn.getRegInfo();
2624 tm_ = &fn.getTarget();
2625 tri_ = tm_->getRegisterInfo();
2626 tii_ = tm_->getInstrInfo();
2627 li_ = &getAnalysis<LiveIntervals>();
2628 loopInfo = &getAnalysis<MachineLoopInfo>();
2630 DEBUG(errs() << "********** SIMPLE REGISTER COALESCING **********\n"
2631 << "********** Function: "
2632 << ((Value*)mf_->getFunction())->getName() << '\n');
2634 allocatableRegs_ = tri_->getAllocatableSet(fn);
2635 for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
2636 E = tri_->regclass_end(); I != E; ++I)
2637 allocatableRCRegs_.insert(std::make_pair(*I,
2638 tri_->getAllocatableSet(fn, *I)));
2640 // Join (coalesce) intervals if requested.
2641 if (EnableJoining) {
2642 joinIntervals();
2643 DEBUG({
2644 errs() << "********** INTERVALS POST JOINING **********\n";
2645 for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I){
2646 I->second->print(errs(), tri_);
2647 errs() << "\n";
2652 // Perform a final pass over the instructions and compute spill weights
2653 // and remove identity moves.
2654 SmallVector<unsigned, 4> DeadDefs;
2655 for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
2656 mbbi != mbbe; ++mbbi) {
2657 MachineBasicBlock* mbb = mbbi;
2658 unsigned loopDepth = loopInfo->getLoopDepth(mbb);
2660 for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
2661 mii != mie; ) {
2662 MachineInstr *MI = mii;
2663 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2664 if (JoinedCopies.count(MI)) {
2665 // Delete all coalesced copies.
2666 if (!tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
2667 assert((MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
2668 MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
2669 MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
2670 "Unrecognized copy instruction");
2671 DstReg = MI->getOperand(0).getReg();
2673 if (MI->registerDefIsDead(DstReg)) {
2674 LiveInterval &li = li_->getInterval(DstReg);
2675 if (!ShortenDeadCopySrcLiveRange(li, MI))
2676 ShortenDeadCopyLiveRange(li, MI);
2678 li_->RemoveMachineInstrFromMaps(MI);
2679 mii = mbbi->erase(mii);
2680 ++numPeep;
2681 continue;
2684 // Now check if this is a remat'ed def instruction which is now dead.
2685 if (ReMatDefs.count(MI)) {
2686 bool isDead = true;
2687 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2688 const MachineOperand &MO = MI->getOperand(i);
2689 if (!MO.isReg())
2690 continue;
2691 unsigned Reg = MO.getReg();
2692 if (!Reg)
2693 continue;
2694 if (TargetRegisterInfo::isVirtualRegister(Reg))
2695 DeadDefs.push_back(Reg);
2696 if (MO.isDead())
2697 continue;
2698 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
2699 !mri_->use_empty(Reg)) {
2700 isDead = false;
2701 break;
2704 if (isDead) {
2705 while (!DeadDefs.empty()) {
2706 unsigned DeadDef = DeadDefs.back();
2707 DeadDefs.pop_back();
2708 RemoveDeadDef(li_->getInterval(DeadDef), MI);
2710 li_->RemoveMachineInstrFromMaps(mii);
2711 mii = mbbi->erase(mii);
2712 continue;
2713 } else
2714 DeadDefs.clear();
2717 // If the move will be an identity move delete it
2718 bool isMove= tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
2719 if (isMove && SrcReg == DstReg) {
2720 if (li_->hasInterval(SrcReg)) {
2721 LiveInterval &RegInt = li_->getInterval(SrcReg);
2722 // If def of this move instruction is dead, remove its live range
2723 // from the dstination register's live interval.
2724 if (MI->registerDefIsDead(DstReg)) {
2725 if (!ShortenDeadCopySrcLiveRange(RegInt, MI))
2726 ShortenDeadCopyLiveRange(RegInt, MI);
2729 li_->RemoveMachineInstrFromMaps(MI);
2730 mii = mbbi->erase(mii);
2731 ++numPeep;
2732 } else {
2733 SmallSet<unsigned, 4> UniqueUses;
2734 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2735 const MachineOperand &mop = MI->getOperand(i);
2736 if (mop.isReg() && mop.getReg() &&
2737 TargetRegisterInfo::isVirtualRegister(mop.getReg())) {
2738 unsigned reg = mop.getReg();
2739 // Multiple uses of reg by the same instruction. It should not
2740 // contribute to spill weight again.
2741 if (UniqueUses.count(reg) != 0)
2742 continue;
2743 LiveInterval &RegInt = li_->getInterval(reg);
2744 RegInt.weight +=
2745 li_->getSpillWeight(mop.isDef(), mop.isUse(), loopDepth);
2746 UniqueUses.insert(reg);
2749 ++mii;
2754 for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
2755 LiveInterval &LI = *I->second;
2756 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
2757 // If the live interval length is essentially zero, i.e. in every live
2758 // range the use follows def immediately, it doesn't make sense to spill
2759 // it and hope it will be easier to allocate for this li.
2760 if (isZeroLengthInterval(&LI))
2761 LI.weight = HUGE_VALF;
2762 else {
2763 bool isLoad = false;
2764 SmallVector<LiveInterval*, 4> SpillIs;
2765 if (li_->isReMaterializable(LI, SpillIs, isLoad)) {
2766 // If all of the definitions of the interval are re-materializable,
2767 // it is a preferred candidate for spilling. If non of the defs are
2768 // loads, then it's potentially very cheap to re-materialize.
2769 // FIXME: this gets much more complicated once we support non-trivial
2770 // re-materialization.
2771 if (isLoad)
2772 LI.weight *= 0.9F;
2773 else
2774 LI.weight *= 0.5F;
2778 // Slightly prefer live interval that has been assigned a preferred reg.
2779 std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(LI.reg);
2780 if (Hint.first || Hint.second)
2781 LI.weight *= 1.01F;
2783 // Divide the weight of the interval by its size. This encourages
2784 // spilling of intervals that are large and have few uses, and
2785 // discourages spilling of small intervals with many uses.
2786 LI.weight /= li_->getApproximateInstructionCount(LI) * InstrSlots::NUM;
2790 DEBUG(dump());
2791 return true;
2794 /// print - Implement the dump method.
2795 void SimpleRegisterCoalescing::print(raw_ostream &O, const Module* m) const {
2796 li_->print(O, m);
2799 RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
2800 return new SimpleRegisterCoalescing();
2803 // Make sure that anything that uses RegisterCoalescer pulls in this file...
2804 DEFINING_FILE_FOR(SimpleRegisterCoalescing)