1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/Value.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterCoalescer.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
40 STATISTIC(numJoins
, "Number of interval joins performed");
41 STATISTIC(numCrossRCs
, "Number of cross class joins performed");
42 STATISTIC(numCommutes
, "Number of instruction commuting performed");
43 STATISTIC(numExtends
, "Number of copies extended");
44 STATISTIC(NumReMats
, "Number of instructions re-materialized");
45 STATISTIC(numPeep
, "Number of identity moves eliminated after coalescing");
46 STATISTIC(numAborts
, "Number of times interval joining aborted");
47 STATISTIC(numDeadValNo
, "Number of valno def marked dead");
49 char SimpleRegisterCoalescing::ID
= 0;
51 EnableJoining("join-liveintervals",
52 cl::desc("Coalesce copies (default=true)"),
56 NewHeuristic("new-coalescer-heuristic",
57 cl::desc("Use new coalescer heuristic"),
58 cl::init(false), cl::Hidden
);
61 DisableCrossClassJoin("disable-cross-class-join",
62 cl::desc("Avoid coalescing cross register class copies"),
63 cl::init(false), cl::Hidden
);
66 PhysJoinTweak("tweak-phys-join-heuristics",
67 cl::desc("Tweak heuristics for joining phys reg with vr"),
68 cl::init(false), cl::Hidden
);
70 static RegisterPass
<SimpleRegisterCoalescing
>
71 X("simple-register-coalescing", "Simple Register Coalescing");
73 // Declare that we implement the RegisterCoalescer interface
74 static RegisterAnalysisGroup
<RegisterCoalescer
, true/*The Default*/> V(X
);
76 const PassInfo
*const llvm::SimpleRegisterCoalescingID
= &X
;
78 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage
&AU
) const {
80 AU
.addRequired
<LiveIntervals
>();
81 AU
.addPreserved
<LiveIntervals
>();
82 AU
.addRequired
<MachineLoopInfo
>();
83 AU
.addPreserved
<MachineLoopInfo
>();
84 AU
.addPreservedID(MachineDominatorsID
);
86 AU
.addPreservedID(StrongPHIEliminationID
);
88 AU
.addPreservedID(PHIEliminationID
);
89 AU
.addPreservedID(TwoAddressInstructionPassID
);
90 MachineFunctionPass::getAnalysisUsage(AU
);
93 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
94 /// being the source and IntB being the dest, thus this defines a value number
95 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
96 /// see if we can merge these two pieces of B into a single value number,
97 /// eliminating a copy. For example:
101 /// B1 = A3 <- this copy
103 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
104 /// value number to be replaced with B0 (which simplifies the B liveinterval).
106 /// This returns true if an interval was modified.
108 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval
&IntA
,
110 MachineInstr
*CopyMI
) {
111 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
113 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
114 // the example above.
115 LiveInterval::iterator BLR
= IntB
.FindLiveRangeContaining(CopyIdx
);
116 assert(BLR
!= IntB
.end() && "Live range not found!");
117 VNInfo
*BValNo
= BLR
->valno
;
119 // Get the location that B is defined at. Two options: either this value has
120 // an unknown definition point or it is defined at CopyIdx. If unknown, we
122 if (!BValNo
->getCopy()) return false;
123 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
125 // AValNo is the value number in A that defines the copy, A3 in the example.
126 unsigned CopyUseIdx
= li_
->getUseIndex(CopyIdx
);
127 LiveInterval::iterator ALR
= IntA
.FindLiveRangeContaining(CopyUseIdx
);
128 assert(ALR
!= IntA
.end() && "Live range not found!");
129 VNInfo
*AValNo
= ALR
->valno
;
130 // If it's re-defined by an early clobber somewhere in the live range, then
131 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
133 // 172 %ECX<def> = MOV32rr %reg1039<kill>
134 // 180 INLINEASM <es:subl $5,$1
135 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
136 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
137 // 188 %EAX<def> = MOV32rr %EAX<kill>
138 // 196 %ECX<def> = MOV32rr %ECX<kill>
139 // 204 %ECX<def> = MOV32rr %ECX<kill>
140 // 212 %EAX<def> = MOV32rr %EAX<kill>
141 // 220 %EAX<def> = MOV32rr %EAX
142 // 228 %reg1039<def> = MOV32rr %ECX<kill>
143 // The early clobber operand ties ECX input to the ECX def.
145 // The live interval of ECX is represented as this:
146 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
147 // The coalescer has no idea there was a def in the middle of [174,230].
148 if (AValNo
->hasRedefByEC())
151 // If AValNo is defined as a copy from IntB, we can potentially process this.
152 // Get the instruction that defines this value number.
153 unsigned SrcReg
= li_
->getVNInfoSourceReg(AValNo
);
154 if (!SrcReg
) return false; // Not defined by a copy.
156 // If the value number is not defined by a copy instruction, ignore it.
158 // If the source register comes from an interval other than IntB, we can't
160 if (SrcReg
!= IntB
.reg
) return false;
162 // Get the LiveRange in IntB that this value number starts with.
163 LiveInterval::iterator ValLR
= IntB
.FindLiveRangeContaining(AValNo
->def
-1);
164 assert(ValLR
!= IntB
.end() && "Live range not found!");
166 // Make sure that the end of the live range is inside the same block as
168 MachineInstr
*ValLREndInst
= li_
->getInstructionFromIndex(ValLR
->end
-1);
170 ValLREndInst
->getParent() != CopyMI
->getParent()) return false;
172 // Okay, we now know that ValLR ends in the same block that the CopyMI
173 // live-range starts. If there are no intervening live ranges between them in
174 // IntB, we can merge them.
175 if (ValLR
+1 != BLR
) return false;
177 // If a live interval is a physical register, conservatively check if any
178 // of its sub-registers is overlapping the live interval of the virtual
179 // register. If so, do not coalesce.
180 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
) &&
181 *tri_
->getSubRegisters(IntB
.reg
)) {
182 for (const unsigned* SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
)
183 if (li_
->hasInterval(*SR
) && IntA
.overlaps(li_
->getInterval(*SR
))) {
185 errs() << "Interfere with sub-register ";
186 li_
->getInterval(*SR
).print(errs(), tri_
);
193 errs() << "\nExtending: ";
194 IntB
.print(errs(), tri_
);
197 unsigned FillerStart
= ValLR
->end
, FillerEnd
= BLR
->start
;
198 // We are about to delete CopyMI, so need to remove it as the 'instruction
199 // that defines this value #'. Update the the valnum with the new defining
201 BValNo
->def
= FillerStart
;
204 // Okay, we can merge them. We need to insert a new liverange:
205 // [ValLR.end, BLR.begin) of either value number, then we merge the
206 // two value numbers.
207 IntB
.addRange(LiveRange(FillerStart
, FillerEnd
, BValNo
));
209 // If the IntB live range is assigned to a physical register, and if that
210 // physreg has sub-registers, update their live intervals as well.
211 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
)) {
212 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
213 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
214 SRLI
.addRange(LiveRange(FillerStart
, FillerEnd
,
215 SRLI
.getNextValue(FillerStart
, 0, true,
216 li_
->getVNInfoAllocator())));
220 // Okay, merge "B1" into the same value number as "B0".
221 if (BValNo
!= ValLR
->valno
) {
222 IntB
.addKills(ValLR
->valno
, BValNo
->kills
);
223 IntB
.MergeValueNumberInto(BValNo
, ValLR
->valno
);
226 errs() << " result = ";
227 IntB
.print(errs(), tri_
);
231 // If the source instruction was killing the source register before the
232 // merge, unset the isKill marker given the live range has been extended.
233 int UIdx
= ValLREndInst
->findRegisterUseOperandIdx(IntB
.reg
, true);
235 ValLREndInst
->getOperand(UIdx
).setIsKill(false);
236 IntB
.removeKill(ValLR
->valno
, FillerStart
);
239 // If the copy instruction was killing the destination register before the
240 // merge, find the last use and trim the live range. That will also add the
242 if (CopyMI
->killsRegister(IntA
.reg
))
243 TrimLiveIntervalToLastUse(CopyUseIdx
, CopyMI
->getParent(), IntA
, ALR
);
249 /// HasOtherReachingDefs - Return true if there are definitions of IntB
250 /// other than BValNo val# that can reach uses of AValno val# of IntA.
251 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval
&IntA
,
255 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
257 if (AI
->valno
!= AValNo
) continue;
258 LiveInterval::Ranges::iterator BI
=
259 std::upper_bound(IntB
.ranges
.begin(), IntB
.ranges
.end(), AI
->start
);
260 if (BI
!= IntB
.ranges
.begin())
262 for (; BI
!= IntB
.ranges
.end() && AI
->end
>= BI
->start
; ++BI
) {
263 if (BI
->valno
== BValNo
)
265 if (BI
->start
<= AI
->start
&& BI
->end
> AI
->start
)
267 if (BI
->start
> AI
->start
&& BI
->start
< AI
->end
)
274 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
275 /// being the source and IntB being the dest, thus this defines a value number
276 /// in IntB. If the source value number (in IntA) is defined by a commutable
277 /// instruction and its other operand is coalesced to the copy dest register,
278 /// see if we can transform the copy into a noop by commuting the definition. For
281 /// A3 = op A2 B0<kill>
283 /// B1 = A3 <- this copy
285 /// = op A3 <- more uses
289 /// B2 = op B0 A2<kill>
291 /// B1 = B2 <- now an identify copy
293 /// = op B2 <- more uses
295 /// This returns true if an interval was modified.
297 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval
&IntA
,
299 MachineInstr
*CopyMI
) {
300 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
302 // FIXME: For now, only eliminate the copy by commuting its def when the
303 // source register is a virtual register. We want to guard against cases
304 // where the copy is a back edge copy and commuting the def lengthen the
305 // live interval of the source register to the entire loop.
306 if (TargetRegisterInfo::isPhysicalRegister(IntA
.reg
))
309 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
310 // the example above.
311 LiveInterval::iterator BLR
= IntB
.FindLiveRangeContaining(CopyIdx
);
312 assert(BLR
!= IntB
.end() && "Live range not found!");
313 VNInfo
*BValNo
= BLR
->valno
;
315 // Get the location that B is defined at. Two options: either this value has
316 // an unknown definition point or it is defined at CopyIdx. If unknown, we
318 if (!BValNo
->getCopy()) return false;
319 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
321 // AValNo is the value number in A that defines the copy, A3 in the example.
322 LiveInterval::iterator ALR
= IntA
.FindLiveRangeContaining(CopyIdx
-1);
323 assert(ALR
!= IntA
.end() && "Live range not found!");
324 VNInfo
*AValNo
= ALR
->valno
;
325 // If other defs can reach uses of this def, then it's not safe to perform
326 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
328 if (AValNo
->isPHIDef() || !AValNo
->isDefAccurate() ||
329 AValNo
->isUnused() || AValNo
->hasPHIKill())
331 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(AValNo
->def
);
332 const TargetInstrDesc
&TID
= DefMI
->getDesc();
333 if (!TID
.isCommutable())
335 // If DefMI is a two-address instruction then commuting it will change the
336 // destination register.
337 int DefIdx
= DefMI
->findRegisterDefOperandIdx(IntA
.reg
);
338 assert(DefIdx
!= -1);
340 if (!DefMI
->isRegTiedToUseOperand(DefIdx
, &UseOpIdx
))
342 unsigned Op1
, Op2
, NewDstIdx
;
343 if (!tii_
->findCommutedOpIndices(DefMI
, Op1
, Op2
))
347 else if (Op2
== UseOpIdx
)
352 MachineOperand
&NewDstMO
= DefMI
->getOperand(NewDstIdx
);
353 unsigned NewReg
= NewDstMO
.getReg();
354 if (NewReg
!= IntB
.reg
|| !NewDstMO
.isKill())
357 // Make sure there are no other definitions of IntB that would reach the
358 // uses which the new definition can reach.
359 if (HasOtherReachingDefs(IntA
, IntB
, AValNo
, BValNo
))
362 // If some of the uses of IntA.reg is already coalesced away, return false.
363 // It's not possible to determine whether it's safe to perform the coalescing.
364 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(IntA
.reg
),
365 UE
= mri_
->use_end(); UI
!= UE
; ++UI
) {
366 MachineInstr
*UseMI
= &*UI
;
367 unsigned UseIdx
= li_
->getInstructionIndex(UseMI
);
368 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
369 if (ULR
== IntA
.end())
371 if (ULR
->valno
== AValNo
&& JoinedCopies
.count(UseMI
))
375 // At this point we have decided that it is legal to do this
376 // transformation. Start by commuting the instruction.
377 MachineBasicBlock
*MBB
= DefMI
->getParent();
378 MachineInstr
*NewMI
= tii_
->commuteInstruction(DefMI
);
381 if (NewMI
!= DefMI
) {
382 li_
->ReplaceMachineInstrInMaps(DefMI
, NewMI
);
383 MBB
->insert(DefMI
, NewMI
);
386 unsigned OpIdx
= NewMI
->findRegisterUseOperandIdx(IntA
.reg
, false);
387 NewMI
->getOperand(OpIdx
).setIsKill();
389 bool BHasPHIKill
= BValNo
->hasPHIKill();
390 SmallVector
<VNInfo
*, 4> BDeadValNos
;
391 VNInfo::KillSet BKills
;
392 std::map
<unsigned, unsigned> BExtend
;
394 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
403 // then do not add kills of A to the newly created B interval.
404 bool Extended
= BLR
->end
> ALR
->end
&& ALR
->end
!= ALR
->start
;
406 BExtend
[ALR
->end
] = BLR
->end
;
408 // Update uses of IntA of the specific Val# with IntB.
409 bool BHasSubRegs
= false;
410 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
))
411 BHasSubRegs
= *tri_
->getSubRegisters(IntB
.reg
);
412 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(IntA
.reg
),
413 UE
= mri_
->use_end(); UI
!= UE
;) {
414 MachineOperand
&UseMO
= UI
.getOperand();
415 MachineInstr
*UseMI
= &*UI
;
417 if (JoinedCopies
.count(UseMI
))
419 unsigned UseIdx
= li_
->getInstructionIndex(UseMI
);
420 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
421 if (ULR
== IntA
.end() || ULR
->valno
!= AValNo
)
423 UseMO
.setReg(NewReg
);
426 if (UseMO
.isKill()) {
428 UseMO
.setIsKill(false);
430 BKills
.push_back(VNInfo::KillInfo(false, li_
->getUseIndex(UseIdx
)+1));
432 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
433 if (!tii_
->isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
435 if (DstReg
== IntB
.reg
) {
436 // This copy will become a noop. If it's defining a new val#,
437 // remove that val# as well. However this live range is being
438 // extended to the end of the existing live range defined by the copy.
439 unsigned DefIdx
= li_
->getDefIndex(UseIdx
);
440 const LiveRange
*DLR
= IntB
.getLiveRangeContaining(DefIdx
);
441 BHasPHIKill
|= DLR
->valno
->hasPHIKill();
442 assert(DLR
->valno
->def
== DefIdx
);
443 BDeadValNos
.push_back(DLR
->valno
);
444 BExtend
[DLR
->start
] = DLR
->end
;
445 JoinedCopies
.insert(UseMI
);
446 // If this is a kill but it's going to be removed, the last use
447 // of the same val# is the new kill.
453 // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
454 // simply extend BLR if CopyMI doesn't end the range.
456 errs() << "\nExtending: ";
457 IntB
.print(errs(), tri_
);
460 // Remove val#'s defined by copies that will be coalesced away.
461 for (unsigned i
= 0, e
= BDeadValNos
.size(); i
!= e
; ++i
) {
462 VNInfo
*DeadVNI
= BDeadValNos
[i
];
464 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
465 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
466 const LiveRange
*SRLR
= SRLI
.getLiveRangeContaining(DeadVNI
->def
);
467 SRLI
.removeValNo(SRLR
->valno
);
470 IntB
.removeValNo(BDeadValNos
[i
]);
473 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
474 // is updated. Kills are also updated.
475 VNInfo
*ValNo
= BValNo
;
476 ValNo
->def
= AValNo
->def
;
478 for (unsigned j
= 0, ee
= ValNo
->kills
.size(); j
!= ee
; ++j
) {
479 unsigned Kill
= ValNo
->kills
[j
].killIdx
;
480 if (Kill
!= BLR
->end
)
481 BKills
.push_back(VNInfo::KillInfo(ValNo
->kills
[j
].isPHIKill
, Kill
));
483 ValNo
->kills
.clear();
484 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
486 if (AI
->valno
!= AValNo
) continue;
487 unsigned End
= AI
->end
;
488 std::map
<unsigned, unsigned>::iterator EI
= BExtend
.find(End
);
489 if (EI
!= BExtend
.end())
491 IntB
.addRange(LiveRange(AI
->start
, End
, ValNo
));
493 // If the IntB live range is assigned to a physical register, and if that
494 // physreg has sub-registers, update their live intervals as well.
496 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
497 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
498 SRLI
.MergeInClobberRange(AI
->start
, End
, li_
->getVNInfoAllocator());
502 IntB
.addKills(ValNo
, BKills
);
503 ValNo
->setHasPHIKill(BHasPHIKill
);
506 errs() << " result = ";
507 IntB
.print(errs(), tri_
);
509 errs() << "\nShortening: ";
510 IntA
.print(errs(), tri_
);
513 IntA
.removeValNo(AValNo
);
516 errs() << " result = ";
517 IntA
.print(errs(), tri_
);
525 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
526 /// fallthoughs to SuccMBB.
527 static bool isSameOrFallThroughBB(MachineBasicBlock
*MBB
,
528 MachineBasicBlock
*SuccMBB
,
529 const TargetInstrInfo
*tii_
) {
532 MachineBasicBlock
*TBB
= 0, *FBB
= 0;
533 SmallVector
<MachineOperand
, 4> Cond
;
534 return !tii_
->AnalyzeBranch(*MBB
, TBB
, FBB
, Cond
) && !TBB
&& !FBB
&&
535 MBB
->isSuccessor(SuccMBB
);
538 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
539 /// from a physical register live interval as well as from the live intervals
540 /// of its sub-registers.
541 static void removeRange(LiveInterval
&li
, unsigned Start
, unsigned End
,
542 LiveIntervals
*li_
, const TargetRegisterInfo
*tri_
) {
543 li
.removeRange(Start
, End
, true);
544 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
)) {
545 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
546 if (!li_
->hasInterval(*SR
))
548 LiveInterval
&sli
= li_
->getInterval(*SR
);
549 unsigned RemoveEnd
= Start
;
550 while (RemoveEnd
!= End
) {
551 LiveInterval::iterator LR
= sli
.FindLiveRangeContaining(Start
);
554 RemoveEnd
= (LR
->end
< End
) ? LR
->end
: End
;
555 sli
.removeRange(Start
, RemoveEnd
, true);
562 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
563 /// as the copy instruction, trim the live interval to the last use and return
566 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx
,
567 MachineBasicBlock
*CopyMBB
,
569 const LiveRange
*LR
) {
570 unsigned MBBStart
= li_
->getMBBStartIdx(CopyMBB
);
572 MachineOperand
*LastUse
= lastRegisterUse(LR
->start
, CopyIdx
-1, li
.reg
,
575 MachineInstr
*LastUseMI
= LastUse
->getParent();
576 if (!isSameOrFallThroughBB(LastUseMI
->getParent(), CopyMBB
, tii_
)) {
583 // r1025<dead> = r1024<kill>
584 if (MBBStart
< LR
->end
)
585 removeRange(li
, MBBStart
, LR
->end
, li_
, tri_
);
589 // There are uses before the copy, just shorten the live range to the end
591 LastUse
->setIsKill();
592 removeRange(li
, li_
->getDefIndex(LastUseIdx
), LR
->end
, li_
, tri_
);
593 li
.addKill(LR
->valno
, LastUseIdx
+1, false);
594 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
595 if (tii_
->isMoveInstr(*LastUseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
597 // Last use is itself an identity code.
598 int DeadIdx
= LastUseMI
->findRegisterDefOperandIdx(li
.reg
, false, tri_
);
599 LastUseMI
->getOperand(DeadIdx
).setIsDead();
605 if (LR
->start
<= MBBStart
&& LR
->end
> MBBStart
) {
606 if (LR
->start
== 0) {
607 assert(TargetRegisterInfo::isPhysicalRegister(li
.reg
));
608 // Live-in to the function but dead. Remove it from entry live-in set.
609 mf_
->begin()->removeLiveIn(li
.reg
);
611 // FIXME: Shorten intervals in BBs that reaches this BB.
617 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
618 /// computation, replace the copy by rematerialize the definition.
619 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval
&SrcInt
,
622 MachineInstr
*CopyMI
) {
623 unsigned CopyIdx
= li_
->getUseIndex(li_
->getInstructionIndex(CopyMI
));
624 LiveInterval::iterator SrcLR
= SrcInt
.FindLiveRangeContaining(CopyIdx
);
625 assert(SrcLR
!= SrcInt
.end() && "Live range not found!");
626 VNInfo
*ValNo
= SrcLR
->valno
;
627 // If other defs can reach uses of this def, then it's not safe to perform
628 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
630 if (ValNo
->isPHIDef() || !ValNo
->isDefAccurate() ||
631 ValNo
->isUnused() || ValNo
->hasPHIKill())
633 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(ValNo
->def
);
634 const TargetInstrDesc
&TID
= DefMI
->getDesc();
635 if (!TID
.isAsCheapAsAMove())
637 if (!DefMI
->getDesc().isRematerializable() ||
638 !tii_
->isTriviallyReMaterializable(DefMI
))
640 bool SawStore
= false;
641 if (!DefMI
->isSafeToMove(tii_
, SawStore
))
643 if (TID
.getNumDefs() != 1)
645 if (DefMI
->getOpcode() != TargetInstrInfo::IMPLICIT_DEF
) {
646 // Make sure the copy destination register class fits the instruction
647 // definition register class. The mismatch can happen as a result of earlier
648 // extract_subreg, insert_subreg, subreg_to_reg coalescing.
649 const TargetRegisterClass
*RC
= TID
.OpInfo
[0].getRegClass(tri_
);
650 if (TargetRegisterInfo::isVirtualRegister(DstReg
)) {
651 if (mri_
->getRegClass(DstReg
) != RC
)
653 } else if (!RC
->contains(DstReg
))
657 unsigned DefIdx
= li_
->getDefIndex(CopyIdx
);
658 const LiveRange
*DLR
= li_
->getInterval(DstReg
).getLiveRangeContaining(DefIdx
);
659 DLR
->valno
->setCopy(0);
660 // Don't forget to update sub-register intervals.
661 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
662 for (const unsigned* SR
= tri_
->getSubRegisters(DstReg
); *SR
; ++SR
) {
663 if (!li_
->hasInterval(*SR
))
665 DLR
= li_
->getInterval(*SR
).getLiveRangeContaining(DefIdx
);
666 if (DLR
&& DLR
->valno
->getCopy() == CopyMI
)
667 DLR
->valno
->setCopy(0);
671 // If copy kills the source register, find the last use and propagate
673 bool checkForDeadDef
= false;
674 MachineBasicBlock
*MBB
= CopyMI
->getParent();
675 if (CopyMI
->killsRegister(SrcInt
.reg
))
676 if (!TrimLiveIntervalToLastUse(CopyIdx
, MBB
, SrcInt
, SrcLR
)) {
677 checkForDeadDef
= true;
680 MachineBasicBlock::iterator MII
= next(MachineBasicBlock::iterator(CopyMI
));
681 tii_
->reMaterialize(*MBB
, MII
, DstReg
, DstSubIdx
, DefMI
);
682 MachineInstr
*NewMI
= prior(MII
);
684 if (checkForDeadDef
) {
685 // PR4090 fix: Trim interval failed because there was no use of the
686 // source interval in this MBB. If the def is in this MBB too then we
687 // should mark it dead:
688 if (DefMI
->getParent() == MBB
) {
689 DefMI
->addRegisterDead(SrcInt
.reg
, tri_
);
690 SrcLR
->end
= SrcLR
->start
+ 1;
694 // CopyMI may have implicit operands, transfer them over to the newly
695 // rematerialized instruction. And update implicit def interval valnos.
696 for (unsigned i
= CopyMI
->getDesc().getNumOperands(),
697 e
= CopyMI
->getNumOperands(); i
!= e
; ++i
) {
698 MachineOperand
&MO
= CopyMI
->getOperand(i
);
699 if (MO
.isReg() && MO
.isImplicit())
700 NewMI
->addOperand(MO
);
701 if (MO
.isDef() && li_
->hasInterval(MO
.getReg())) {
702 unsigned Reg
= MO
.getReg();
703 DLR
= li_
->getInterval(Reg
).getLiveRangeContaining(DefIdx
);
704 if (DLR
&& DLR
->valno
->getCopy() == CopyMI
)
705 DLR
->valno
->setCopy(0);
709 li_
->ReplaceMachineInstrInMaps(CopyMI
, NewMI
);
710 CopyMI
->eraseFromParent();
711 ReMatCopies
.insert(CopyMI
);
712 ReMatDefs
.insert(DefMI
);
717 /// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
719 bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr
*CopyMI
,
720 unsigned DstReg
) const {
721 MachineBasicBlock
*MBB
= CopyMI
->getParent();
722 const MachineLoop
*L
= loopInfo
->getLoopFor(MBB
);
725 if (MBB
!= L
->getLoopLatch())
728 LiveInterval
&LI
= li_
->getInterval(DstReg
);
729 unsigned DefIdx
= li_
->getInstructionIndex(CopyMI
);
730 LiveInterval::const_iterator DstLR
=
731 LI
.FindLiveRangeContaining(li_
->getDefIndex(DefIdx
));
732 if (DstLR
== LI
.end())
734 if (DstLR
->valno
->kills
.size() == 1 && DstLR
->valno
->kills
[0].isPHIKill
)
739 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
740 /// update the subregister number if it is not zero. If DstReg is a
741 /// physical register and the existing subregister number of the def / use
742 /// being updated is not zero, make sure to set it to the correct physical
745 SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg
, unsigned DstReg
,
747 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
748 if (DstIsPhys
&& SubIdx
) {
749 // Figure out the real physical register we are updating with.
750 DstReg
= tri_
->getSubReg(DstReg
, SubIdx
);
754 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(SrcReg
),
755 E
= mri_
->reg_end(); I
!= E
; ) {
756 MachineOperand
&O
= I
.getOperand();
757 MachineInstr
*UseMI
= &*I
;
759 unsigned OldSubIdx
= O
.getSubReg();
761 unsigned UseDstReg
= DstReg
;
763 UseDstReg
= tri_
->getSubReg(DstReg
, OldSubIdx
);
765 unsigned CopySrcReg
, CopyDstReg
, CopySrcSubIdx
, CopyDstSubIdx
;
766 if (tii_
->isMoveInstr(*UseMI
, CopySrcReg
, CopyDstReg
,
767 CopySrcSubIdx
, CopyDstSubIdx
) &&
768 CopySrcReg
!= CopyDstReg
&&
769 CopySrcReg
== SrcReg
&& CopyDstReg
!= UseDstReg
) {
770 // If the use is a copy and it won't be coalesced away, and its source
771 // is defined by a trivial computation, try to rematerialize it instead.
772 if (ReMaterializeTrivialDef(li_
->getInterval(SrcReg
), CopyDstReg
,
773 CopyDstSubIdx
, UseMI
))
782 // Sub-register indexes goes from small to large. e.g.
783 // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
784 // EAX: 1 -> AL, 2 -> AX
785 // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
786 // sub-register 2 is also AX.
787 if (SubIdx
&& OldSubIdx
&& SubIdx
!= OldSubIdx
)
788 assert(OldSubIdx
< SubIdx
&& "Conflicting sub-register index!");
791 // Remove would-be duplicated kill marker.
792 if (O
.isKill() && UseMI
->killsRegister(DstReg
))
796 // After updating the operand, check if the machine instruction has
797 // become a copy. If so, update its val# information.
798 if (JoinedCopies
.count(UseMI
))
801 const TargetInstrDesc
&TID
= UseMI
->getDesc();
802 unsigned CopySrcReg
, CopyDstReg
, CopySrcSubIdx
, CopyDstSubIdx
;
803 if (TID
.getNumDefs() == 1 && TID
.getNumOperands() > 2 &&
804 tii_
->isMoveInstr(*UseMI
, CopySrcReg
, CopyDstReg
,
805 CopySrcSubIdx
, CopyDstSubIdx
) &&
806 CopySrcReg
!= CopyDstReg
&&
807 (TargetRegisterInfo::isVirtualRegister(CopyDstReg
) ||
808 allocatableRegs_
[CopyDstReg
])) {
809 LiveInterval
&LI
= li_
->getInterval(CopyDstReg
);
810 unsigned DefIdx
= li_
->getDefIndex(li_
->getInstructionIndex(UseMI
));
811 if (const LiveRange
*DLR
= LI
.getLiveRangeContaining(DefIdx
)) {
812 if (DLR
->valno
->def
== DefIdx
)
813 DLR
->valno
->setCopy(UseMI
);
819 /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
820 /// due to live range lengthening as the result of coalescing.
821 void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg
,
823 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(Reg
),
824 UE
= mri_
->use_end(); UI
!= UE
; ++UI
) {
825 MachineOperand
&UseMO
= UI
.getOperand();
828 MachineInstr
*UseMI
= UseMO
.getParent();
829 unsigned UseIdx
= li_
->getUseIndex(li_
->getInstructionIndex(UseMI
));
830 const LiveRange
*LR
= LI
.getLiveRangeContaining(UseIdx
);
831 if (!LR
|| !LI
.isKill(LR
->valno
, UseIdx
+1)) {
832 if (LR
->valno
->def
!= UseIdx
+1) {
833 // Interesting problem. After coalescing reg1027's def and kill are both
834 // at the same point: %reg1027,0.000000e+00 = [56,814:0) 0@70-(814)
837 // 60 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
838 // 68 %reg1027<def> = t2LDRi12 %reg1027<kill>, 8, 14, %reg0
839 // 76 t2CMPzri %reg1038<kill,undef>, 0, 14, %reg0, %CPSR<imp-def>
840 // 84 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
841 // 96 t2Bcc mbb<bb5,0x2030910>, 1, %CPSR<kill>
843 // Do not remove the kill marker on t2LDRi12.
844 UseMO
.setIsKill(false);
850 /// removeIntervalIfEmpty - Check if the live interval of a physical register
851 /// is empty, if so remove it and also remove the empty intervals of its
852 /// sub-registers. Return true if live interval is removed.
853 static bool removeIntervalIfEmpty(LiveInterval
&li
, LiveIntervals
*li_
,
854 const TargetRegisterInfo
*tri_
) {
856 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
))
857 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
858 if (!li_
->hasInterval(*SR
))
860 LiveInterval
&sli
= li_
->getInterval(*SR
);
862 li_
->removeInterval(*SR
);
864 li_
->removeInterval(li
.reg
);
870 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
871 /// Return true if live interval is removed.
872 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval
&li
,
873 MachineInstr
*CopyMI
) {
874 unsigned CopyIdx
= li_
->getInstructionIndex(CopyMI
);
875 LiveInterval::iterator MLR
=
876 li
.FindLiveRangeContaining(li_
->getDefIndex(CopyIdx
));
878 return false; // Already removed by ShortenDeadCopySrcLiveRange.
879 unsigned RemoveStart
= MLR
->start
;
880 unsigned RemoveEnd
= MLR
->end
;
881 unsigned DefIdx
= li_
->getDefIndex(CopyIdx
);
882 // Remove the liverange that's defined by this.
883 if (RemoveStart
== DefIdx
&& RemoveEnd
== DefIdx
+1) {
884 removeRange(li
, RemoveStart
, RemoveEnd
, li_
, tri_
);
885 return removeIntervalIfEmpty(li
, li_
, tri_
);
890 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
891 /// the val# it defines. If the live interval becomes empty, remove it as well.
892 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval
&li
,
893 MachineInstr
*DefMI
) {
894 unsigned DefIdx
= li_
->getDefIndex(li_
->getInstructionIndex(DefMI
));
895 LiveInterval::iterator MLR
= li
.FindLiveRangeContaining(DefIdx
);
896 if (DefIdx
!= MLR
->valno
->def
)
898 li
.removeValNo(MLR
->valno
);
899 return removeIntervalIfEmpty(li
, li_
, tri_
);
902 /// PropagateDeadness - Propagate the dead marker to the instruction which
903 /// defines the val#.
904 static void PropagateDeadness(LiveInterval
&li
, MachineInstr
*CopyMI
,
905 unsigned &LRStart
, LiveIntervals
*li_
,
906 const TargetRegisterInfo
* tri_
) {
907 MachineInstr
*DefMI
=
908 li_
->getInstructionFromIndex(li_
->getDefIndex(LRStart
));
909 if (DefMI
&& DefMI
!= CopyMI
) {
910 int DeadIdx
= DefMI
->findRegisterDefOperandIdx(li
.reg
, false);
912 DefMI
->getOperand(DeadIdx
).setIsDead();
914 DefMI
->addOperand(MachineOperand::CreateReg(li
.reg
,
915 true, true, false, true));
920 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
921 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
922 /// ends the live range there. If there isn't another use, then this live range
923 /// is dead. Return true if live interval is removed.
925 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval
&li
,
926 MachineInstr
*CopyMI
) {
927 unsigned CopyIdx
= li_
->getInstructionIndex(CopyMI
);
929 // FIXME: special case: function live in. It can be a general case if the
930 // first instruction index starts at > 0 value.
931 assert(TargetRegisterInfo::isPhysicalRegister(li
.reg
));
932 // Live-in to the function but dead. Remove it from entry live-in set.
933 if (mf_
->begin()->isLiveIn(li
.reg
))
934 mf_
->begin()->removeLiveIn(li
.reg
);
935 const LiveRange
*LR
= li
.getLiveRangeContaining(CopyIdx
);
936 removeRange(li
, LR
->start
, LR
->end
, li_
, tri_
);
937 return removeIntervalIfEmpty(li
, li_
, tri_
);
940 LiveInterval::iterator LR
= li
.FindLiveRangeContaining(CopyIdx
-1);
942 // Livein but defined by a phi.
945 unsigned RemoveStart
= LR
->start
;
946 unsigned RemoveEnd
= li_
->getDefIndex(CopyIdx
)+1;
947 if (LR
->end
> RemoveEnd
)
948 // More uses past this copy? Nothing to do.
951 // If there is a last use in the same bb, we can't remove the live range.
952 // Shorten the live interval and return.
953 MachineBasicBlock
*CopyMBB
= CopyMI
->getParent();
954 if (TrimLiveIntervalToLastUse(CopyIdx
, CopyMBB
, li
, LR
))
957 // There are other kills of the val#. Nothing to do.
958 if (!li
.isOnlyLROfValNo(LR
))
961 MachineBasicBlock
*StartMBB
= li_
->getMBBFromIndex(RemoveStart
);
962 if (!isSameOrFallThroughBB(StartMBB
, CopyMBB
, tii_
))
963 // If the live range starts in another mbb and the copy mbb is not a fall
964 // through mbb, then we can only cut the range from the beginning of the
966 RemoveStart
= li_
->getMBBStartIdx(CopyMBB
) + 1;
968 if (LR
->valno
->def
== RemoveStart
) {
969 // If the def MI defines the val# and this copy is the only kill of the
970 // val#, then propagate the dead marker.
971 PropagateDeadness(li
, CopyMI
, RemoveStart
, li_
, tri_
);
974 if (li
.isKill(LR
->valno
, RemoveEnd
))
975 li
.removeKill(LR
->valno
, RemoveEnd
);
978 removeRange(li
, RemoveStart
, RemoveEnd
, li_
, tri_
);
979 return removeIntervalIfEmpty(li
, li_
, tri_
);
982 /// CanCoalesceWithImpDef - Returns true if the specified copy instruction
983 /// from an implicit def to another register can be coalesced away.
984 bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr
*CopyMI
,
986 LiveInterval
&ImpLi
) const{
987 if (!CopyMI
->killsRegister(ImpLi
.reg
))
989 // Make sure this is the only use.
990 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(ImpLi
.reg
),
991 UE
= mri_
->use_end(); UI
!= UE
;) {
992 MachineInstr
*UseMI
= &*UI
;
994 if (CopyMI
== UseMI
|| JoinedCopies
.count(UseMI
))
1002 /// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
1003 /// a virtual destination register with physical source register.
1005 SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr
*CopyMI
,
1006 MachineBasicBlock
*CopyMBB
,
1007 LiveInterval
&DstInt
,
1008 LiveInterval
&SrcInt
) {
1009 // If the virtual register live interval is long but it has low use desity,
1010 // do not join them, instead mark the physical register as its allocation
1012 const TargetRegisterClass
*RC
= mri_
->getRegClass(DstInt
.reg
);
1013 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1014 unsigned Length
= li_
->getApproximateInstructionCount(DstInt
);
1015 if (Length
> Threshold
&&
1016 (((float)std::distance(mri_
->use_begin(DstInt
.reg
),
1017 mri_
->use_end()) / Length
) < (1.0 / Threshold
)))
1020 // If the virtual register live interval extends into a loop, turn down
1022 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
1023 const MachineLoop
*L
= loopInfo
->getLoopFor(CopyMBB
);
1025 // Let's see if the virtual register live interval extends into the loop.
1026 LiveInterval::iterator DLR
= DstInt
.FindLiveRangeContaining(CopyIdx
);
1027 assert(DLR
!= DstInt
.end() && "Live range not found!");
1028 DLR
= DstInt
.FindLiveRangeContaining(DLR
->end
+1);
1029 if (DLR
!= DstInt
.end()) {
1030 CopyMBB
= li_
->getMBBFromIndex(DLR
->start
);
1031 L
= loopInfo
->getLoopFor(CopyMBB
);
1035 if (!L
|| Length
<= Threshold
)
1038 unsigned UseIdx
= li_
->getUseIndex(CopyIdx
);
1039 LiveInterval::iterator SLR
= SrcInt
.FindLiveRangeContaining(UseIdx
);
1040 MachineBasicBlock
*SMBB
= li_
->getMBBFromIndex(SLR
->start
);
1041 if (loopInfo
->getLoopFor(SMBB
) != L
) {
1042 if (!loopInfo
->isLoopHeader(CopyMBB
))
1044 // If vr's live interval extends pass the loop header, do not join.
1045 for (MachineBasicBlock::succ_iterator SI
= CopyMBB
->succ_begin(),
1046 SE
= CopyMBB
->succ_end(); SI
!= SE
; ++SI
) {
1047 MachineBasicBlock
*SuccMBB
= *SI
;
1048 if (SuccMBB
== CopyMBB
)
1050 if (DstInt
.overlaps(li_
->getMBBStartIdx(SuccMBB
),
1051 li_
->getMBBEndIdx(SuccMBB
)+1))
1058 /// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
1059 /// copy from a virtual source register to a physical destination register.
1061 SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr
*CopyMI
,
1062 MachineBasicBlock
*CopyMBB
,
1063 LiveInterval
&DstInt
,
1064 LiveInterval
&SrcInt
) {
1065 // If the virtual register live interval is long but it has low use desity,
1066 // do not join them, instead mark the physical register as its allocation
1068 const TargetRegisterClass
*RC
= mri_
->getRegClass(SrcInt
.reg
);
1069 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1070 unsigned Length
= li_
->getApproximateInstructionCount(SrcInt
);
1071 if (Length
> Threshold
&&
1072 (((float)std::distance(mri_
->use_begin(SrcInt
.reg
),
1073 mri_
->use_end()) / Length
) < (1.0 / Threshold
)))
1077 // Must be implicit_def.
1080 // If the virtual register live interval is defined or cross a loop, turn
1081 // down aggressiveness.
1082 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
1083 unsigned UseIdx
= li_
->getUseIndex(CopyIdx
);
1084 LiveInterval::iterator SLR
= SrcInt
.FindLiveRangeContaining(UseIdx
);
1085 assert(SLR
!= SrcInt
.end() && "Live range not found!");
1086 SLR
= SrcInt
.FindLiveRangeContaining(SLR
->start
-1);
1087 if (SLR
== SrcInt
.end())
1089 MachineBasicBlock
*SMBB
= li_
->getMBBFromIndex(SLR
->start
);
1090 const MachineLoop
*L
= loopInfo
->getLoopFor(SMBB
);
1092 if (!L
|| Length
<= Threshold
)
1095 if (loopInfo
->getLoopFor(CopyMBB
) != L
) {
1096 if (SMBB
!= L
->getLoopLatch())
1098 // If vr's live interval is extended from before the loop latch, do not
1100 for (MachineBasicBlock::pred_iterator PI
= SMBB
->pred_begin(),
1101 PE
= SMBB
->pred_end(); PI
!= PE
; ++PI
) {
1102 MachineBasicBlock
*PredMBB
= *PI
;
1103 if (PredMBB
== SMBB
)
1105 if (SrcInt
.overlaps(li_
->getMBBStartIdx(PredMBB
),
1106 li_
->getMBBEndIdx(PredMBB
)+1))
1113 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1114 /// two virtual registers from different register classes.
1116 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned LargeReg
,
1118 unsigned Threshold
) {
1119 // Then make sure the intervals are *short*.
1120 LiveInterval
&LargeInt
= li_
->getInterval(LargeReg
);
1121 LiveInterval
&SmallInt
= li_
->getInterval(SmallReg
);
1122 unsigned LargeSize
= li_
->getApproximateInstructionCount(LargeInt
);
1123 unsigned SmallSize
= li_
->getApproximateInstructionCount(SmallInt
);
1124 if (SmallSize
> Threshold
|| LargeSize
> Threshold
)
1125 if ((float)std::distance(mri_
->use_begin(SmallReg
),
1126 mri_
->use_end()) / SmallSize
<
1127 (float)std::distance(mri_
->use_begin(LargeReg
),
1128 mri_
->use_end()) / LargeSize
)
1133 /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
1134 /// register with a physical register, check if any of the virtual register
1135 /// operand is a sub-register use or def. If so, make sure it won't result
1136 /// in an illegal extract_subreg or insert_subreg instruction. e.g.
1137 /// vr1024 = extract_subreg vr1025, 1
1139 /// vr1024 = mov8rr AH
1140 /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
1141 /// AH does not have a super-reg whose sub-register 1 is AH.
1143 SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr
*CopyMI
,
1146 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(VirtReg
),
1147 E
= mri_
->reg_end(); I
!= E
; ++I
) {
1148 MachineOperand
&O
= I
.getOperand();
1149 MachineInstr
*MI
= &*I
;
1150 if (MI
== CopyMI
|| JoinedCopies
.count(MI
))
1152 unsigned SubIdx
= O
.getSubReg();
1153 if (SubIdx
&& !tri_
->getSubReg(PhysReg
, SubIdx
))
1155 if (MI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
) {
1156 SubIdx
= MI
->getOperand(2).getImm();
1157 if (O
.isUse() && !tri_
->getSubReg(PhysReg
, SubIdx
))
1160 unsigned SrcReg
= MI
->getOperand(1).getReg();
1161 const TargetRegisterClass
*RC
=
1162 TargetRegisterInfo::isPhysicalRegister(SrcReg
)
1163 ? tri_
->getPhysicalRegisterRegClass(SrcReg
)
1164 : mri_
->getRegClass(SrcReg
);
1165 if (!tri_
->getMatchingSuperReg(PhysReg
, SubIdx
, RC
))
1169 if (MI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
1170 MI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) {
1171 SubIdx
= MI
->getOperand(3).getImm();
1172 if (VirtReg
== MI
->getOperand(0).getReg()) {
1173 if (!tri_
->getSubReg(PhysReg
, SubIdx
))
1176 unsigned DstReg
= MI
->getOperand(0).getReg();
1177 const TargetRegisterClass
*RC
=
1178 TargetRegisterInfo::isPhysicalRegister(DstReg
)
1179 ? tri_
->getPhysicalRegisterRegClass(DstReg
)
1180 : mri_
->getRegClass(DstReg
);
1181 if (!tri_
->getMatchingSuperReg(PhysReg
, SubIdx
, RC
))
1190 /// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
1191 /// an extract_subreg where dst is a physical register, e.g.
1192 /// cl = EXTRACT_SUBREG reg1024, 1
1194 SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg
,
1195 unsigned SrcReg
, unsigned SubIdx
,
1196 unsigned &RealDstReg
) {
1197 const TargetRegisterClass
*RC
= mri_
->getRegClass(SrcReg
);
1198 RealDstReg
= tri_
->getMatchingSuperReg(DstReg
, SubIdx
, RC
);
1199 assert(RealDstReg
&& "Invalid extract_subreg instruction!");
1201 // For this type of EXTRACT_SUBREG, conservatively
1202 // check if the live interval of the source register interfere with the
1203 // actual super physical register we are trying to coalesce with.
1204 LiveInterval
&RHS
= li_
->getInterval(SrcReg
);
1205 if (li_
->hasInterval(RealDstReg
) &&
1206 RHS
.overlaps(li_
->getInterval(RealDstReg
))) {
1208 errs() << "Interfere with register ";
1209 li_
->getInterval(RealDstReg
).print(errs(), tri_
);
1211 return false; // Not coalescable
1213 for (const unsigned* SR
= tri_
->getSubRegisters(RealDstReg
); *SR
; ++SR
)
1214 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
1216 errs() << "Interfere with sub-register ";
1217 li_
->getInterval(*SR
).print(errs(), tri_
);
1219 return false; // Not coalescable
1224 /// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
1225 /// an insert_subreg where src is a physical register, e.g.
1226 /// reg1024 = INSERT_SUBREG reg1024, c1, 0
1228 SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg
,
1229 unsigned SrcReg
, unsigned SubIdx
,
1230 unsigned &RealSrcReg
) {
1231 const TargetRegisterClass
*RC
= mri_
->getRegClass(DstReg
);
1232 RealSrcReg
= tri_
->getMatchingSuperReg(SrcReg
, SubIdx
, RC
);
1233 assert(RealSrcReg
&& "Invalid extract_subreg instruction!");
1235 LiveInterval
&RHS
= li_
->getInterval(DstReg
);
1236 if (li_
->hasInterval(RealSrcReg
) &&
1237 RHS
.overlaps(li_
->getInterval(RealSrcReg
))) {
1239 errs() << "Interfere with register ";
1240 li_
->getInterval(RealSrcReg
).print(errs(), tri_
);
1242 return false; // Not coalescable
1244 for (const unsigned* SR
= tri_
->getSubRegisters(RealSrcReg
); *SR
; ++SR
)
1245 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
1247 errs() << "Interfere with sub-register ";
1248 li_
->getInterval(*SR
).print(errs(), tri_
);
1250 return false; // Not coalescable
1255 /// getRegAllocPreference - Return register allocation preference register.
1257 static unsigned getRegAllocPreference(unsigned Reg
, MachineFunction
&MF
,
1258 MachineRegisterInfo
*MRI
,
1259 const TargetRegisterInfo
*TRI
) {
1260 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
1262 std::pair
<unsigned, unsigned> Hint
= MRI
->getRegAllocationHint(Reg
);
1263 return TRI
->ResolveRegAllocHint(Hint
.first
, Hint
.second
, MF
);
1266 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1267 /// which are the src/dst of the copy instruction CopyMI. This returns true
1268 /// if the copy was successfully coalesced away. If it is not currently
1269 /// possible to coalesce this interval, but it may be possible if other
1270 /// things get coalesced, then it returns true by reference in 'Again'.
1271 bool SimpleRegisterCoalescing::JoinCopy(CopyRec
&TheCopy
, bool &Again
) {
1272 MachineInstr
*CopyMI
= TheCopy
.MI
;
1275 if (JoinedCopies
.count(CopyMI
) || ReMatCopies
.count(CopyMI
))
1276 return false; // Already done.
1278 DEBUG(errs() << li_
->getInstructionIndex(CopyMI
) << '\t' << *CopyMI
);
1280 unsigned SrcReg
, DstReg
, SrcSubIdx
= 0, DstSubIdx
= 0;
1281 bool isExtSubReg
= CopyMI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
;
1282 bool isInsSubReg
= CopyMI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
;
1283 bool isSubRegToReg
= CopyMI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
;
1284 unsigned SubIdx
= 0;
1286 DstReg
= CopyMI
->getOperand(0).getReg();
1287 DstSubIdx
= CopyMI
->getOperand(0).getSubReg();
1288 SrcReg
= CopyMI
->getOperand(1).getReg();
1289 SrcSubIdx
= CopyMI
->getOperand(2).getImm();
1290 } else if (isInsSubReg
|| isSubRegToReg
) {
1291 DstReg
= CopyMI
->getOperand(0).getReg();
1292 DstSubIdx
= CopyMI
->getOperand(3).getImm();
1293 SrcReg
= CopyMI
->getOperand(2).getReg();
1294 SrcSubIdx
= CopyMI
->getOperand(2).getSubReg();
1295 if (SrcSubIdx
&& SrcSubIdx
!= DstSubIdx
) {
1296 // r1025 = INSERT_SUBREG r1025, r1024<2>, 2 Then r1024 has already been
1297 // coalesced to a larger register so the subreg indices cancel out.
1298 DEBUG(errs() << "\tSource of insert_subreg is already coalesced "
1299 << "to another register.\n");
1300 return false; // Not coalescable.
1302 } else if (!tii_
->isMoveInstr(*CopyMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
)){
1303 llvm_unreachable("Unrecognized copy instruction!");
1306 // If they are already joined we continue.
1307 if (SrcReg
== DstReg
) {
1308 DEBUG(errs() << "\tCopy already coalesced.\n");
1309 return false; // Not coalescable.
1312 bool SrcIsPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
1313 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
1315 // If they are both physical registers, we cannot join them.
1316 if (SrcIsPhys
&& DstIsPhys
) {
1317 DEBUG(errs() << "\tCan not coalesce physregs.\n");
1318 return false; // Not coalescable.
1321 // We only join virtual registers with allocatable physical registers.
1322 if (SrcIsPhys
&& !allocatableRegs_
[SrcReg
]) {
1323 DEBUG(errs() << "\tSrc reg is unallocatable physreg.\n");
1324 return false; // Not coalescable.
1326 if (DstIsPhys
&& !allocatableRegs_
[DstReg
]) {
1327 DEBUG(errs() << "\tDst reg is unallocatable physreg.\n");
1328 return false; // Not coalescable.
1331 // Check that a physical source register is compatible with dst regclass
1333 unsigned SrcSubReg
= SrcSubIdx
?
1334 tri_
->getSubReg(SrcReg
, SrcSubIdx
) : SrcReg
;
1335 const TargetRegisterClass
*DstRC
= mri_
->getRegClass(DstReg
);
1336 const TargetRegisterClass
*DstSubRC
= DstRC
;
1338 DstSubRC
= DstRC
->getSubRegisterRegClass(DstSubIdx
);
1339 assert(DstSubRC
&& "Illegal subregister index");
1340 if (!DstSubRC
->contains(SrcSubReg
)) {
1341 DEBUG(errs() << "\tIncompatible destination regclass: "
1342 << tri_
->getName(SrcSubReg
) << " not in "
1343 << DstSubRC
->getName() << ".\n");
1344 return false; // Not coalescable.
1348 // Check that a physical dst register is compatible with source regclass
1350 unsigned DstSubReg
= DstSubIdx
?
1351 tri_
->getSubReg(DstReg
, DstSubIdx
) : DstReg
;
1352 const TargetRegisterClass
*SrcRC
= mri_
->getRegClass(SrcReg
);
1353 const TargetRegisterClass
*SrcSubRC
= SrcRC
;
1355 SrcSubRC
= SrcRC
->getSubRegisterRegClass(SrcSubIdx
);
1356 assert(SrcSubRC
&& "Illegal subregister index");
1357 if (!SrcSubRC
->contains(DstReg
)) {
1358 DEBUG(errs() << "\tIncompatible source regclass: "
1359 << tri_
->getName(DstSubReg
) << " not in "
1360 << SrcSubRC
->getName() << ".\n");
1362 return false; // Not coalescable.
1366 // Should be non-null only when coalescing to a sub-register class.
1367 bool CrossRC
= false;
1368 const TargetRegisterClass
*SrcRC
= SrcIsPhys
? 0 : mri_
->getRegClass(SrcReg
);
1369 const TargetRegisterClass
*DstRC
= DstIsPhys
? 0 : mri_
->getRegClass(DstReg
);
1370 const TargetRegisterClass
*NewRC
= NULL
;
1371 MachineBasicBlock
*CopyMBB
= CopyMI
->getParent();
1372 unsigned RealDstReg
= 0;
1373 unsigned RealSrcReg
= 0;
1374 if (isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) {
1375 SubIdx
= CopyMI
->getOperand(isExtSubReg
? 2 : 3).getImm();
1376 if (SrcIsPhys
&& isExtSubReg
) {
1377 // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
1378 // coalesced with AX.
1379 unsigned DstSubIdx
= CopyMI
->getOperand(0).getSubReg();
1381 // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
1382 // coalesced to a larger register so the subreg indices cancel out.
1383 if (DstSubIdx
!= SubIdx
) {
1384 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1385 return false; // Not coalescable.
1388 SrcReg
= tri_
->getSubReg(SrcReg
, SubIdx
);
1390 } else if (DstIsPhys
&& (isInsSubReg
|| isSubRegToReg
)) {
1391 // EAX = INSERT_SUBREG EAX, r1024, 0
1392 unsigned SrcSubIdx
= CopyMI
->getOperand(2).getSubReg();
1394 // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
1395 // coalesced to a larger register so the subreg indices cancel out.
1396 if (SrcSubIdx
!= SubIdx
) {
1397 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1398 return false; // Not coalescable.
1401 DstReg
= tri_
->getSubReg(DstReg
, SubIdx
);
1403 } else if ((DstIsPhys
&& isExtSubReg
) ||
1404 (SrcIsPhys
&& (isInsSubReg
|| isSubRegToReg
))) {
1405 if (!isSubRegToReg
&& CopyMI
->getOperand(1).getSubReg()) {
1406 DEBUG(errs() << "\tSrc of extract_subreg already coalesced with reg"
1407 << " of a super-class.\n");
1408 return false; // Not coalescable.
1412 if (!CanJoinExtractSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealDstReg
))
1413 return false; // Not coalescable
1415 if (!CanJoinInsertSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealSrcReg
))
1416 return false; // Not coalescable
1420 unsigned OldSubIdx
= isExtSubReg
? CopyMI
->getOperand(0).getSubReg()
1421 : CopyMI
->getOperand(2).getSubReg();
1423 if (OldSubIdx
== SubIdx
&& !differingRegisterClasses(SrcReg
, DstReg
))
1424 // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
1425 // coalesced to a larger register so the subreg indices cancel out.
1426 // Also check if the other larger register is of the same register
1427 // class as the would be resulting register.
1430 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1431 return false; // Not coalescable.
1435 if (!DstIsPhys
&& !SrcIsPhys
) {
1436 if (isInsSubReg
|| isSubRegToReg
) {
1437 NewRC
= tri_
->getMatchingSuperRegClass(DstRC
, SrcRC
, SubIdx
);
1438 } else // extract_subreg {
1439 NewRC
= tri_
->getMatchingSuperRegClass(SrcRC
, DstRC
, SubIdx
);
1442 DEBUG(errs() << "\t Conflicting sub-register indices.\n");
1443 return false; // Not coalescable
1446 unsigned LargeReg
= isExtSubReg
? SrcReg
: DstReg
;
1447 unsigned SmallReg
= isExtSubReg
? DstReg
: SrcReg
;
1448 unsigned Limit
= allocatableRCRegs_
[mri_
->getRegClass(SmallReg
)].count();
1449 if (!isWinToJoinCrossClass(LargeReg
, SmallReg
, Limit
)) {
1450 Again
= true; // May be possible to coalesce later.
1455 } else if (differingRegisterClasses(SrcReg
, DstReg
)) {
1456 if (DisableCrossClassJoin
)
1460 // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
1461 // with another? If it's the resulting destination register, then
1462 // the subidx must be propagated to uses (but only those defined
1463 // by the EXTRACT_SUBREG). If it's being coalesced into another
1464 // register, it should be safe because register is assumed to have
1465 // the register class of the super-register.
1467 // Process moves where one of the registers have a sub-register index.
1468 MachineOperand
*DstMO
= CopyMI
->findRegisterDefOperand(DstReg
);
1469 MachineOperand
*SrcMO
= CopyMI
->findRegisterUseOperand(SrcReg
);
1470 SubIdx
= DstMO
->getSubReg();
1472 if (SrcMO
->getSubReg())
1473 // FIXME: can we handle this?
1475 // This is not an insert_subreg but it looks like one.
1476 // e.g. %reg1024:4 = MOV32rr %EAX
1479 if (!CanJoinInsertSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealSrcReg
))
1480 return false; // Not coalescable
1484 SubIdx
= SrcMO
->getSubReg();
1486 // This is not a extract_subreg but it looks like one.
1487 // e.g. %cl = MOV16rr %reg1024:1
1490 if (!CanJoinExtractSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
,RealDstReg
))
1491 return false; // Not coalescable
1497 unsigned LargeReg
= SrcReg
;
1498 unsigned SmallReg
= DstReg
;
1500 // Now determine the register class of the joined register.
1502 if (SubIdx
&& DstRC
&& DstRC
->isASubClass()) {
1503 // This is a move to a sub-register class. However, the source is a
1504 // sub-register of a larger register class. We don't know what should
1505 // the register class be. FIXME.
1509 if (!DstIsPhys
&& !SrcIsPhys
)
1511 } else if (!SrcIsPhys
&& !DstIsPhys
) {
1512 NewRC
= getCommonSubClass(SrcRC
, DstRC
);
1514 DEBUG(errs() << "\tDisjoint regclasses: "
1515 << SrcRC
->getName() << ", "
1516 << DstRC
->getName() << ".\n");
1517 return false; // Not coalescable.
1519 if (DstRC
->getSize() > SrcRC
->getSize())
1520 std::swap(LargeReg
, SmallReg
);
1523 // If we are joining two virtual registers and the resulting register
1524 // class is more restrictive (fewer register, smaller size). Check if it's
1525 // worth doing the merge.
1526 if (!SrcIsPhys
&& !DstIsPhys
&&
1527 (isExtSubReg
|| DstRC
->isASubClass()) &&
1528 !isWinToJoinCrossClass(LargeReg
, SmallReg
,
1529 allocatableRCRegs_
[NewRC
].count())) {
1530 DEBUG(errs() << "\tSrc/Dest are different register classes.\n");
1531 // Allow the coalescer to try again in case either side gets coalesced to
1532 // a physical register that's compatible with the other side. e.g.
1533 // r1024 = MOV32to32_ r1025
1534 // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
1535 Again
= true; // May be possible to coalesce later.
1540 // Will it create illegal extract_subreg / insert_subreg?
1541 if (SrcIsPhys
&& HasIncompatibleSubRegDefUse(CopyMI
, DstReg
, SrcReg
))
1543 if (DstIsPhys
&& HasIncompatibleSubRegDefUse(CopyMI
, SrcReg
, DstReg
))
1546 LiveInterval
&SrcInt
= li_
->getInterval(SrcReg
);
1547 LiveInterval
&DstInt
= li_
->getInterval(DstReg
);
1548 assert(SrcInt
.reg
== SrcReg
&& DstInt
.reg
== DstReg
&&
1549 "Register mapping is horribly broken!");
1552 errs() << "\t\tInspecting "; SrcInt
.print(errs(), tri_
);
1553 errs() << " and "; DstInt
.print(errs(), tri_
);
1557 // Save a copy of the virtual register live interval. We'll manually
1558 // merge this into the "real" physical register live interval this is
1560 LiveInterval
*SavedLI
= 0;
1562 SavedLI
= li_
->dupInterval(&SrcInt
);
1563 else if (RealSrcReg
)
1564 SavedLI
= li_
->dupInterval(&DstInt
);
1566 // Check if it is necessary to propagate "isDead" property.
1567 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
) {
1568 MachineOperand
*mopd
= CopyMI
->findRegisterDefOperand(DstReg
, false);
1569 bool isDead
= mopd
->isDead();
1571 // We need to be careful about coalescing a source physical register with a
1572 // virtual register. Once the coalescing is done, it cannot be broken and
1573 // these are not spillable! If the destination interval uses are far away,
1574 // think twice about coalescing them!
1575 if (!isDead
&& (SrcIsPhys
|| DstIsPhys
)) {
1576 // If the copy is in a loop, take care not to coalesce aggressively if the
1577 // src is coming in from outside the loop (or the dst is out of the loop).
1578 // If it's not in a loop, then determine whether to join them base purely
1579 // by the length of the interval.
1580 if (PhysJoinTweak
) {
1582 if (!isWinToJoinVRWithSrcPhysReg(CopyMI
, CopyMBB
, DstInt
, SrcInt
)) {
1583 mri_
->setRegAllocationHint(DstInt
.reg
, 0, SrcReg
);
1585 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1586 Again
= true; // May be possible to coalesce later.
1590 if (!isWinToJoinVRWithDstPhysReg(CopyMI
, CopyMBB
, DstInt
, SrcInt
)) {
1591 mri_
->setRegAllocationHint(SrcInt
.reg
, 0, DstReg
);
1593 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1594 Again
= true; // May be possible to coalesce later.
1599 // If the virtual register live interval is long but it has low use desity,
1600 // do not join them, instead mark the physical register as its allocation
1602 LiveInterval
&JoinVInt
= SrcIsPhys
? DstInt
: SrcInt
;
1603 unsigned JoinVReg
= SrcIsPhys
? DstReg
: SrcReg
;
1604 unsigned JoinPReg
= SrcIsPhys
? SrcReg
: DstReg
;
1605 const TargetRegisterClass
*RC
= mri_
->getRegClass(JoinVReg
);
1606 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1607 if (TheCopy
.isBackEdge
)
1608 Threshold
*= 2; // Favors back edge copies.
1610 unsigned Length
= li_
->getApproximateInstructionCount(JoinVInt
);
1611 float Ratio
= 1.0 / Threshold
;
1612 if (Length
> Threshold
&&
1613 (((float)std::distance(mri_
->use_begin(JoinVReg
),
1614 mri_
->use_end()) / Length
) < Ratio
)) {
1615 mri_
->setRegAllocationHint(JoinVInt
.reg
, 0, JoinPReg
);
1617 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1618 Again
= true; // May be possible to coalesce later.
1625 // Okay, attempt to join these two intervals. On failure, this returns false.
1626 // Otherwise, if one of the intervals being joined is a physreg, this method
1627 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1628 // been modified, so we can use this information below to update aliases.
1629 bool Swapped
= false;
1630 // If SrcInt is implicitly defined, it's safe to coalesce.
1631 bool isEmpty
= SrcInt
.empty();
1632 if (isEmpty
&& !CanCoalesceWithImpDef(CopyMI
, DstInt
, SrcInt
)) {
1633 // Only coalesce an empty interval (defined by implicit_def) with
1634 // another interval which has a valno defined by the CopyMI and the CopyMI
1635 // is a kill of the implicit def.
1636 DEBUG(errs() << "Not profitable!\n");
1640 if (!isEmpty
&& !JoinIntervals(DstInt
, SrcInt
, Swapped
)) {
1641 // Coalescing failed.
1643 // If definition of source is defined by trivial computation, try
1644 // rematerializing it.
1645 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
&&
1646 ReMaterializeTrivialDef(SrcInt
, DstReg
, DstSubIdx
, CopyMI
))
1649 // If we can eliminate the copy without merging the live ranges, do so now.
1650 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
&&
1651 (AdjustCopiesBackFrom(SrcInt
, DstInt
, CopyMI
) ||
1652 RemoveCopyByCommutingDef(SrcInt
, DstInt
, CopyMI
))) {
1653 JoinedCopies
.insert(CopyMI
);
1657 // Otherwise, we are unable to join the intervals.
1658 DEBUG(errs() << "Interference!\n");
1659 Again
= true; // May be possible to coalesce later.
1663 LiveInterval
*ResSrcInt
= &SrcInt
;
1664 LiveInterval
*ResDstInt
= &DstInt
;
1666 std::swap(SrcReg
, DstReg
);
1667 std::swap(ResSrcInt
, ResDstInt
);
1669 assert(TargetRegisterInfo::isVirtualRegister(SrcReg
) &&
1670 "LiveInterval::join didn't work right!");
1672 // If we're about to merge live ranges into a physical register live interval,
1673 // we have to update any aliased register's live ranges to indicate that they
1674 // have clobbered values for this range.
1675 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
1676 // If this is a extract_subreg where dst is a physical register, e.g.
1677 // cl = EXTRACT_SUBREG reg1024, 1
1678 // then create and update the actual physical register allocated to RHS.
1679 if (RealDstReg
|| RealSrcReg
) {
1680 LiveInterval
&RealInt
=
1681 li_
->getOrCreateInterval(RealDstReg
? RealDstReg
: RealSrcReg
);
1682 for (LiveInterval::const_vni_iterator I
= SavedLI
->vni_begin(),
1683 E
= SavedLI
->vni_end(); I
!= E
; ++I
) {
1684 const VNInfo
*ValNo
= *I
;
1685 VNInfo
*NewValNo
= RealInt
.getNextValue(ValNo
->def
, ValNo
->getCopy(),
1686 false, // updated at *
1687 li_
->getVNInfoAllocator());
1688 NewValNo
->setFlags(ValNo
->getFlags()); // * updated here.
1689 RealInt
.addKills(NewValNo
, ValNo
->kills
);
1690 RealInt
.MergeValueInAsValue(*SavedLI
, ValNo
, NewValNo
);
1692 RealInt
.weight
+= SavedLI
->weight
;
1693 DstReg
= RealDstReg
? RealDstReg
: RealSrcReg
;
1696 // Update the liveintervals of sub-registers.
1697 for (const unsigned *AS
= tri_
->getSubRegisters(DstReg
); *AS
; ++AS
)
1698 li_
->getOrCreateInterval(*AS
).MergeInClobberRanges(*ResSrcInt
,
1699 li_
->getVNInfoAllocator());
1702 // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
1703 // larger super-register.
1704 if ((isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) &&
1705 !SrcIsPhys
&& !DstIsPhys
) {
1706 if ((isExtSubReg
&& !Swapped
) ||
1707 ((isInsSubReg
|| isSubRegToReg
) && Swapped
)) {
1708 ResSrcInt
->Copy(*ResDstInt
, mri_
, li_
->getVNInfoAllocator());
1709 std::swap(SrcReg
, DstReg
);
1710 std::swap(ResSrcInt
, ResDstInt
);
1714 // Coalescing to a virtual register that is of a sub-register class of the
1715 // other. Make sure the resulting register is set to the right register class.
1719 // This may happen even if it's cross-rc coalescing. e.g.
1720 // %reg1026<def> = SUBREG_TO_REG 0, %reg1037<kill>, 4
1721 // reg1026 -> GR64, reg1037 -> GR32_ABCD. The resulting register will have to
1722 // be allocate a register from GR64_ABCD.
1724 mri_
->setRegClass(DstReg
, NewRC
);
1727 // Add all copies that define val# in the source interval into the queue.
1728 for (LiveInterval::const_vni_iterator i
= ResSrcInt
->vni_begin(),
1729 e
= ResSrcInt
->vni_end(); i
!= e
; ++i
) {
1730 const VNInfo
*vni
= *i
;
1731 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1732 if (!vni
->def
|| vni
->isUnused() || vni
->isPHIDef() || !vni
->isDefAccurate())
1734 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
1735 unsigned NewSrcReg
, NewDstReg
, NewSrcSubIdx
, NewDstSubIdx
;
1737 JoinedCopies
.count(CopyMI
) == 0 &&
1738 tii_
->isMoveInstr(*CopyMI
, NewSrcReg
, NewDstReg
,
1739 NewSrcSubIdx
, NewDstSubIdx
)) {
1740 unsigned LoopDepth
= loopInfo
->getLoopDepth(CopyMBB
);
1741 JoinQueue
->push(CopyRec(CopyMI
, LoopDepth
,
1742 isBackEdgeCopy(CopyMI
, DstReg
)));
1747 // Remember to delete the copy instruction.
1748 JoinedCopies
.insert(CopyMI
);
1750 // Some live range has been lengthened due to colaescing, eliminate the
1751 // unnecessary kills.
1752 RemoveUnnecessaryKills(SrcReg
, *ResDstInt
);
1753 if (TargetRegisterInfo::isVirtualRegister(DstReg
))
1754 RemoveUnnecessaryKills(DstReg
, *ResDstInt
);
1756 UpdateRegDefsUses(SrcReg
, DstReg
, SubIdx
);
1758 // SrcReg is guarateed to be the register whose live interval that is
1760 li_
->removeInterval(SrcReg
);
1762 // Update regalloc hint.
1763 tri_
->UpdateRegAllocHint(SrcReg
, DstReg
, *mf_
);
1765 // Manually deleted the live interval copy.
1771 // If resulting interval has a preference that no longer fits because of subreg
1772 // coalescing, just clear the preference.
1773 unsigned Preference
= getRegAllocPreference(ResDstInt
->reg
, *mf_
, mri_
, tri_
);
1774 if (Preference
&& (isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) &&
1775 TargetRegisterInfo::isVirtualRegister(ResDstInt
->reg
)) {
1776 const TargetRegisterClass
*RC
= mri_
->getRegClass(ResDstInt
->reg
);
1777 if (!RC
->contains(Preference
))
1778 mri_
->setRegAllocationHint(ResDstInt
->reg
, 0, 0);
1782 errs() << "\n\t\tJoined. Result = ";
1783 ResDstInt
->print(errs(), tri_
);
1791 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1792 /// compute what the resultant value numbers for each value in the input two
1793 /// ranges will be. This is complicated by copies between the two which can
1794 /// and will commonly cause multiple value numbers to be merged into one.
1796 /// VN is the value number that we're trying to resolve. InstDefiningValue
1797 /// keeps track of the new InstDefiningValue assignment for the result
1798 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1799 /// whether a value in this or other is a copy from the opposite set.
1800 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1801 /// already been assigned.
1803 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1804 /// contains the value number the copy is from.
1806 static unsigned ComputeUltimateVN(VNInfo
*VNI
,
1807 SmallVector
<VNInfo
*, 16> &NewVNInfo
,
1808 DenseMap
<VNInfo
*, VNInfo
*> &ThisFromOther
,
1809 DenseMap
<VNInfo
*, VNInfo
*> &OtherFromThis
,
1810 SmallVector
<int, 16> &ThisValNoAssignments
,
1811 SmallVector
<int, 16> &OtherValNoAssignments
) {
1812 unsigned VN
= VNI
->id
;
1814 // If the VN has already been computed, just return it.
1815 if (ThisValNoAssignments
[VN
] >= 0)
1816 return ThisValNoAssignments
[VN
];
1817 // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1819 // If this val is not a copy from the other val, then it must be a new value
1820 // number in the destination.
1821 DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= ThisFromOther
.find(VNI
);
1822 if (I
== ThisFromOther
.end()) {
1823 NewVNInfo
.push_back(VNI
);
1824 return ThisValNoAssignments
[VN
] = NewVNInfo
.size()-1;
1826 VNInfo
*OtherValNo
= I
->second
;
1828 // Otherwise, this *is* a copy from the RHS. If the other side has already
1829 // been computed, return it.
1830 if (OtherValNoAssignments
[OtherValNo
->id
] >= 0)
1831 return ThisValNoAssignments
[VN
] = OtherValNoAssignments
[OtherValNo
->id
];
1833 // Mark this value number as currently being computed, then ask what the
1834 // ultimate value # of the other value is.
1835 ThisValNoAssignments
[VN
] = -2;
1836 unsigned UltimateVN
=
1837 ComputeUltimateVN(OtherValNo
, NewVNInfo
, OtherFromThis
, ThisFromOther
,
1838 OtherValNoAssignments
, ThisValNoAssignments
);
1839 return ThisValNoAssignments
[VN
] = UltimateVN
;
1842 static bool InVector(VNInfo
*Val
, const SmallVector
<VNInfo
*, 8> &V
) {
1843 return std::find(V
.begin(), V
.end(), Val
) != V
.end();
1846 /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
1847 /// the specified live interval is defined by a copy from the specified
1849 bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval
&li
,
1852 unsigned SrcReg
= li_
->getVNInfoSourceReg(LR
->valno
);
1855 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1856 if ((LR
->valno
->isPHIDef() || !LR
->valno
->isDefAccurate()) &&
1857 TargetRegisterInfo::isPhysicalRegister(li
.reg
) &&
1858 *tri_
->getSuperRegisters(li
.reg
)) {
1859 // It's a sub-register live interval, we may not have precise information.
1861 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(LR
->start
);
1862 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
1864 tii_
->isMoveInstr(*DefMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
1865 DstReg
== li
.reg
&& SrcReg
== Reg
) {
1866 // Cache computed info.
1867 LR
->valno
->def
= LR
->start
;
1868 LR
->valno
->setCopy(DefMI
);
1875 /// SimpleJoin - Attempt to joint the specified interval into this one. The
1876 /// caller of this method must guarantee that the RHS only contains a single
1877 /// value number and that the RHS is not defined by a copy from this
1878 /// interval. This returns false if the intervals are not joinable, or it
1879 /// joins them and returns true.
1880 bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval
&LHS
, LiveInterval
&RHS
){
1881 assert(RHS
.containsOneValue());
1883 // Some number (potentially more than one) value numbers in the current
1884 // interval may be defined as copies from the RHS. Scan the overlapping
1885 // portions of the LHS and RHS, keeping track of this and looking for
1886 // overlapping live ranges that are NOT defined as copies. If these exist, we
1889 LiveInterval::iterator LHSIt
= LHS
.begin(), LHSEnd
= LHS
.end();
1890 LiveInterval::iterator RHSIt
= RHS
.begin(), RHSEnd
= RHS
.end();
1892 if (LHSIt
->start
< RHSIt
->start
) {
1893 LHSIt
= std::upper_bound(LHSIt
, LHSEnd
, RHSIt
->start
);
1894 if (LHSIt
!= LHS
.begin()) --LHSIt
;
1895 } else if (RHSIt
->start
< LHSIt
->start
) {
1896 RHSIt
= std::upper_bound(RHSIt
, RHSEnd
, LHSIt
->start
);
1897 if (RHSIt
!= RHS
.begin()) --RHSIt
;
1900 SmallVector
<VNInfo
*, 8> EliminatedLHSVals
;
1903 // Determine if these live intervals overlap.
1904 bool Overlaps
= false;
1905 if (LHSIt
->start
<= RHSIt
->start
)
1906 Overlaps
= LHSIt
->end
> RHSIt
->start
;
1908 Overlaps
= RHSIt
->end
> LHSIt
->start
;
1910 // If the live intervals overlap, there are two interesting cases: if the
1911 // LHS interval is defined by a copy from the RHS, it's ok and we record
1912 // that the LHS value # is the same as the RHS. If it's not, then we cannot
1913 // coalesce these live ranges and we bail out.
1915 // If we haven't already recorded that this value # is safe, check it.
1916 if (!InVector(LHSIt
->valno
, EliminatedLHSVals
)) {
1917 // Copy from the RHS?
1918 if (!RangeIsDefinedByCopyFromReg(LHS
, LHSIt
, RHS
.reg
))
1919 return false; // Nope, bail out.
1921 if (LHSIt
->contains(RHSIt
->valno
->def
))
1922 // Here is an interesting situation:
1924 // vr1025 = copy vr1024
1929 // Even though vr1025 is copied from vr1024, it's not safe to
1930 // coalesce them since the live range of vr1025 intersects the
1931 // def of vr1024. This happens because vr1025 is assigned the
1932 // value of the previous iteration of vr1024.
1934 EliminatedLHSVals
.push_back(LHSIt
->valno
);
1937 // We know this entire LHS live range is okay, so skip it now.
1938 if (++LHSIt
== LHSEnd
) break;
1942 if (LHSIt
->end
< RHSIt
->end
) {
1943 if (++LHSIt
== LHSEnd
) break;
1945 // One interesting case to check here. It's possible that we have
1946 // something like "X3 = Y" which defines a new value number in the LHS,
1947 // and is the last use of this liverange of the RHS. In this case, we
1948 // want to notice this copy (so that it gets coalesced away) even though
1949 // the live ranges don't actually overlap.
1950 if (LHSIt
->start
== RHSIt
->end
) {
1951 if (InVector(LHSIt
->valno
, EliminatedLHSVals
)) {
1952 // We already know that this value number is going to be merged in
1953 // if coalescing succeeds. Just skip the liverange.
1954 if (++LHSIt
== LHSEnd
) break;
1956 // Otherwise, if this is a copy from the RHS, mark it as being merged
1958 if (RangeIsDefinedByCopyFromReg(LHS
, LHSIt
, RHS
.reg
)) {
1959 if (LHSIt
->contains(RHSIt
->valno
->def
))
1960 // Here is an interesting situation:
1962 // vr1025 = copy vr1024
1967 // Even though vr1025 is copied from vr1024, it's not safe to
1968 // coalesced them since live range of vr1025 intersects the
1969 // def of vr1024. This happens because vr1025 is assigned the
1970 // value of the previous iteration of vr1024.
1972 EliminatedLHSVals
.push_back(LHSIt
->valno
);
1974 // We know this entire LHS live range is okay, so skip it now.
1975 if (++LHSIt
== LHSEnd
) break;
1980 if (++RHSIt
== RHSEnd
) break;
1984 // If we got here, we know that the coalescing will be successful and that
1985 // the value numbers in EliminatedLHSVals will all be merged together. Since
1986 // the most common case is that EliminatedLHSVals has a single number, we
1987 // optimize for it: if there is more than one value, we merge them all into
1988 // the lowest numbered one, then handle the interval as if we were merging
1989 // with one value number.
1990 VNInfo
*LHSValNo
= NULL
;
1991 if (EliminatedLHSVals
.size() > 1) {
1992 // Loop through all the equal value numbers merging them into the smallest
1994 VNInfo
*Smallest
= EliminatedLHSVals
[0];
1995 for (unsigned i
= 1, e
= EliminatedLHSVals
.size(); i
!= e
; ++i
) {
1996 if (EliminatedLHSVals
[i
]->id
< Smallest
->id
) {
1997 // Merge the current notion of the smallest into the smaller one.
1998 LHS
.MergeValueNumberInto(Smallest
, EliminatedLHSVals
[i
]);
1999 Smallest
= EliminatedLHSVals
[i
];
2001 // Merge into the smallest.
2002 LHS
.MergeValueNumberInto(EliminatedLHSVals
[i
], Smallest
);
2005 LHSValNo
= Smallest
;
2006 } else if (EliminatedLHSVals
.empty()) {
2007 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
) &&
2008 *tri_
->getSuperRegisters(LHS
.reg
))
2009 // Imprecise sub-register information. Can't handle it.
2011 llvm_unreachable("No copies from the RHS?");
2013 LHSValNo
= EliminatedLHSVals
[0];
2016 // Okay, now that there is a single LHS value number that we're merging the
2017 // RHS into, update the value number info for the LHS to indicate that the
2018 // value number is defined where the RHS value number was.
2019 const VNInfo
*VNI
= RHS
.getValNumInfo(0);
2020 LHSValNo
->def
= VNI
->def
;
2021 LHSValNo
->setCopy(VNI
->getCopy());
2023 // Okay, the final step is to loop over the RHS live intervals, adding them to
2025 if (VNI
->hasPHIKill())
2026 LHSValNo
->setHasPHIKill(true);
2027 LHS
.addKills(LHSValNo
, VNI
->kills
);
2028 LHS
.MergeRangesInAsValue(RHS
, LHSValNo
);
2030 LHS
.ComputeJoinedWeight(RHS
);
2032 // Update regalloc hint if both are virtual registers.
2033 if (TargetRegisterInfo::isVirtualRegister(LHS
.reg
) &&
2034 TargetRegisterInfo::isVirtualRegister(RHS
.reg
)) {
2035 std::pair
<unsigned, unsigned> RHSPref
= mri_
->getRegAllocationHint(RHS
.reg
);
2036 std::pair
<unsigned, unsigned> LHSPref
= mri_
->getRegAllocationHint(LHS
.reg
);
2037 if (RHSPref
!= LHSPref
)
2038 mri_
->setRegAllocationHint(LHS
.reg
, RHSPref
.first
, RHSPref
.second
);
2041 // Update the liveintervals of sub-registers.
2042 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
))
2043 for (const unsigned *AS
= tri_
->getSubRegisters(LHS
.reg
); *AS
; ++AS
)
2044 li_
->getOrCreateInterval(*AS
).MergeInClobberRanges(LHS
,
2045 li_
->getVNInfoAllocator());
2050 /// JoinIntervals - Attempt to join these two intervals. On failure, this
2051 /// returns false. Otherwise, if one of the intervals being joined is a
2052 /// physreg, this method always canonicalizes LHS to be it. The output
2053 /// "RHS" will not have been modified, so we can use this information
2054 /// below to update aliases.
2056 SimpleRegisterCoalescing::JoinIntervals(LiveInterval
&LHS
, LiveInterval
&RHS
,
2058 // Compute the final value assignment, assuming that the live ranges can be
2060 SmallVector
<int, 16> LHSValNoAssignments
;
2061 SmallVector
<int, 16> RHSValNoAssignments
;
2062 DenseMap
<VNInfo
*, VNInfo
*> LHSValsDefinedFromRHS
;
2063 DenseMap
<VNInfo
*, VNInfo
*> RHSValsDefinedFromLHS
;
2064 SmallVector
<VNInfo
*, 16> NewVNInfo
;
2066 // If a live interval is a physical register, conservatively check if any
2067 // of its sub-registers is overlapping the live interval of the virtual
2068 // register. If so, do not coalesce.
2069 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
) &&
2070 *tri_
->getSubRegisters(LHS
.reg
)) {
2071 // If it's coalescing a virtual register to a physical register, estimate
2072 // its live interval length. This is the *cost* of scanning an entire live
2073 // interval. If the cost is low, we'll do an exhaustive check instead.
2075 // If this is something like this:
2083 // That is, the live interval of v1024 crosses a bb. Then we can't rely on
2084 // less conservative check. It's possible a sub-register is defined before
2085 // v1024 (or live in) and live out of BB1.
2086 if (RHS
.containsOneValue() &&
2087 li_
->intervalIsInOneMBB(RHS
) &&
2088 li_
->getApproximateInstructionCount(RHS
) <= 10) {
2089 // Perform a more exhaustive check for some common cases.
2090 if (li_
->conflictsWithPhysRegRef(RHS
, LHS
.reg
, true, JoinedCopies
))
2093 for (const unsigned* SR
= tri_
->getSubRegisters(LHS
.reg
); *SR
; ++SR
)
2094 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
2096 errs() << "Interfere with sub-register ";
2097 li_
->getInterval(*SR
).print(errs(), tri_
);
2102 } else if (TargetRegisterInfo::isPhysicalRegister(RHS
.reg
) &&
2103 *tri_
->getSubRegisters(RHS
.reg
)) {
2104 if (LHS
.containsOneValue() &&
2105 li_
->getApproximateInstructionCount(LHS
) <= 10) {
2106 // Perform a more exhaustive check for some common cases.
2107 if (li_
->conflictsWithPhysRegRef(LHS
, RHS
.reg
, false, JoinedCopies
))
2110 for (const unsigned* SR
= tri_
->getSubRegisters(RHS
.reg
); *SR
; ++SR
)
2111 if (li_
->hasInterval(*SR
) && LHS
.overlaps(li_
->getInterval(*SR
))) {
2113 errs() << "Interfere with sub-register ";
2114 li_
->getInterval(*SR
).print(errs(), tri_
);
2121 // Compute ultimate value numbers for the LHS and RHS values.
2122 if (RHS
.containsOneValue()) {
2123 // Copies from a liveinterval with a single value are simple to handle and
2124 // very common, handle the special case here. This is important, because
2125 // often RHS is small and LHS is large (e.g. a physreg).
2127 // Find out if the RHS is defined as a copy from some value in the LHS.
2128 int RHSVal0DefinedFromLHS
= -1;
2130 VNInfo
*RHSValNoInfo
= NULL
;
2131 VNInfo
*RHSValNoInfo0
= RHS
.getValNumInfo(0);
2132 unsigned RHSSrcReg
= li_
->getVNInfoSourceReg(RHSValNoInfo0
);
2133 if (RHSSrcReg
== 0 || RHSSrcReg
!= LHS
.reg
) {
2134 // If RHS is not defined as a copy from the LHS, we can use simpler and
2135 // faster checks to see if the live ranges are coalescable. This joiner
2136 // can't swap the LHS/RHS intervals though.
2137 if (!TargetRegisterInfo::isPhysicalRegister(RHS
.reg
)) {
2138 return SimpleJoin(LHS
, RHS
);
2140 RHSValNoInfo
= RHSValNoInfo0
;
2143 // It was defined as a copy from the LHS, find out what value # it is.
2144 RHSValNoInfo
= LHS
.getLiveRangeContaining(RHSValNoInfo0
->def
-1)->valno
;
2145 RHSValID
= RHSValNoInfo
->id
;
2146 RHSVal0DefinedFromLHS
= RHSValID
;
2149 LHSValNoAssignments
.resize(LHS
.getNumValNums(), -1);
2150 RHSValNoAssignments
.resize(RHS
.getNumValNums(), -1);
2151 NewVNInfo
.resize(LHS
.getNumValNums(), NULL
);
2153 // Okay, *all* of the values in LHS that are defined as a copy from RHS
2154 // should now get updated.
2155 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2158 unsigned VN
= VNI
->id
;
2159 if (unsigned LHSSrcReg
= li_
->getVNInfoSourceReg(VNI
)) {
2160 if (LHSSrcReg
!= RHS
.reg
) {
2161 // If this is not a copy from the RHS, its value number will be
2162 // unmodified by the coalescing.
2163 NewVNInfo
[VN
] = VNI
;
2164 LHSValNoAssignments
[VN
] = VN
;
2165 } else if (RHSValID
== -1) {
2166 // Otherwise, it is a copy from the RHS, and we don't already have a
2167 // value# for it. Keep the current value number, but remember it.
2168 LHSValNoAssignments
[VN
] = RHSValID
= VN
;
2169 NewVNInfo
[VN
] = RHSValNoInfo
;
2170 LHSValsDefinedFromRHS
[VNI
] = RHSValNoInfo0
;
2172 // Otherwise, use the specified value #.
2173 LHSValNoAssignments
[VN
] = RHSValID
;
2174 if (VN
== (unsigned)RHSValID
) { // Else this val# is dead.
2175 NewVNInfo
[VN
] = RHSValNoInfo
;
2176 LHSValsDefinedFromRHS
[VNI
] = RHSValNoInfo0
;
2180 NewVNInfo
[VN
] = VNI
;
2181 LHSValNoAssignments
[VN
] = VN
;
2185 assert(RHSValID
!= -1 && "Didn't find value #?");
2186 RHSValNoAssignments
[0] = RHSValID
;
2187 if (RHSVal0DefinedFromLHS
!= -1) {
2188 // This path doesn't go through ComputeUltimateVN so just set
2190 RHSValsDefinedFromLHS
[RHSValNoInfo0
] = (VNInfo
*)1;
2193 // Loop over the value numbers of the LHS, seeing if any are defined from
2195 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2198 if (VNI
->isUnused() || VNI
->getCopy() == 0) // Src not defined by a copy?
2201 // DstReg is known to be a register in the LHS interval. If the src is
2202 // from the RHS interval, we can use its value #.
2203 if (li_
->getVNInfoSourceReg(VNI
) != RHS
.reg
)
2206 // Figure out the value # from the RHS.
2207 LHSValsDefinedFromRHS
[VNI
]=RHS
.getLiveRangeContaining(VNI
->def
-1)->valno
;
2210 // Loop over the value numbers of the RHS, seeing if any are defined from
2212 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
2215 if (VNI
->isUnused() || VNI
->getCopy() == 0) // Src not defined by a copy?
2218 // DstReg is known to be a register in the RHS interval. If the src is
2219 // from the LHS interval, we can use its value #.
2220 if (li_
->getVNInfoSourceReg(VNI
) != LHS
.reg
)
2223 // Figure out the value # from the LHS.
2224 RHSValsDefinedFromLHS
[VNI
]=LHS
.getLiveRangeContaining(VNI
->def
-1)->valno
;
2227 LHSValNoAssignments
.resize(LHS
.getNumValNums(), -1);
2228 RHSValNoAssignments
.resize(RHS
.getNumValNums(), -1);
2229 NewVNInfo
.reserve(LHS
.getNumValNums() + RHS
.getNumValNums());
2231 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2234 unsigned VN
= VNI
->id
;
2235 if (LHSValNoAssignments
[VN
] >= 0 || VNI
->isUnused())
2237 ComputeUltimateVN(VNI
, NewVNInfo
,
2238 LHSValsDefinedFromRHS
, RHSValsDefinedFromLHS
,
2239 LHSValNoAssignments
, RHSValNoAssignments
);
2241 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
2244 unsigned VN
= VNI
->id
;
2245 if (RHSValNoAssignments
[VN
] >= 0 || VNI
->isUnused())
2247 // If this value number isn't a copy from the LHS, it's a new number.
2248 if (RHSValsDefinedFromLHS
.find(VNI
) == RHSValsDefinedFromLHS
.end()) {
2249 NewVNInfo
.push_back(VNI
);
2250 RHSValNoAssignments
[VN
] = NewVNInfo
.size()-1;
2254 ComputeUltimateVN(VNI
, NewVNInfo
,
2255 RHSValsDefinedFromLHS
, LHSValsDefinedFromRHS
,
2256 RHSValNoAssignments
, LHSValNoAssignments
);
2260 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
2261 // interval lists to see if these intervals are coalescable.
2262 LiveInterval::const_iterator I
= LHS
.begin();
2263 LiveInterval::const_iterator IE
= LHS
.end();
2264 LiveInterval::const_iterator J
= RHS
.begin();
2265 LiveInterval::const_iterator JE
= RHS
.end();
2267 // Skip ahead until the first place of potential sharing.
2268 if (I
->start
< J
->start
) {
2269 I
= std::upper_bound(I
, IE
, J
->start
);
2270 if (I
!= LHS
.begin()) --I
;
2271 } else if (J
->start
< I
->start
) {
2272 J
= std::upper_bound(J
, JE
, I
->start
);
2273 if (J
!= RHS
.begin()) --J
;
2277 // Determine if these two live ranges overlap.
2279 if (I
->start
< J
->start
) {
2280 Overlaps
= I
->end
> J
->start
;
2282 Overlaps
= J
->end
> I
->start
;
2285 // If so, check value # info to determine if they are really different.
2287 // If the live range overlap will map to the same value number in the
2288 // result liverange, we can still coalesce them. If not, we can't.
2289 if (LHSValNoAssignments
[I
->valno
->id
] !=
2290 RHSValNoAssignments
[J
->valno
->id
])
2294 if (I
->end
< J
->end
) {
2303 // Update kill info. Some live ranges are extended due to copy coalescing.
2304 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= LHSValsDefinedFromRHS
.begin(),
2305 E
= LHSValsDefinedFromRHS
.end(); I
!= E
; ++I
) {
2306 VNInfo
*VNI
= I
->first
;
2307 unsigned LHSValID
= LHSValNoAssignments
[VNI
->id
];
2308 LiveInterval::removeKill(NewVNInfo
[LHSValID
], VNI
->def
);
2309 if (VNI
->hasPHIKill())
2310 NewVNInfo
[LHSValID
]->setHasPHIKill(true);
2311 RHS
.addKills(NewVNInfo
[LHSValID
], VNI
->kills
);
2314 // Update kill info. Some live ranges are extended due to copy coalescing.
2315 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= RHSValsDefinedFromLHS
.begin(),
2316 E
= RHSValsDefinedFromLHS
.end(); I
!= E
; ++I
) {
2317 VNInfo
*VNI
= I
->first
;
2318 unsigned RHSValID
= RHSValNoAssignments
[VNI
->id
];
2319 LiveInterval::removeKill(NewVNInfo
[RHSValID
], VNI
->def
);
2320 if (VNI
->hasPHIKill())
2321 NewVNInfo
[RHSValID
]->setHasPHIKill(true);
2322 LHS
.addKills(NewVNInfo
[RHSValID
], VNI
->kills
);
2325 // If we get here, we know that we can coalesce the live ranges. Ask the
2326 // intervals to coalesce themselves now.
2327 if ((RHS
.ranges
.size() > LHS
.ranges
.size() &&
2328 TargetRegisterInfo::isVirtualRegister(LHS
.reg
)) ||
2329 TargetRegisterInfo::isPhysicalRegister(RHS
.reg
)) {
2330 RHS
.join(LHS
, &RHSValNoAssignments
[0], &LHSValNoAssignments
[0], NewVNInfo
,
2334 LHS
.join(RHS
, &LHSValNoAssignments
[0], &RHSValNoAssignments
[0], NewVNInfo
,
2342 // DepthMBBCompare - Comparison predicate that sort first based on the loop
2343 // depth of the basic block (the unsigned), and then on the MBB number.
2344 struct DepthMBBCompare
{
2345 typedef std::pair
<unsigned, MachineBasicBlock
*> DepthMBBPair
;
2346 bool operator()(const DepthMBBPair
&LHS
, const DepthMBBPair
&RHS
) const {
2347 if (LHS
.first
> RHS
.first
) return true; // Deeper loops first
2348 return LHS
.first
== RHS
.first
&&
2349 LHS
.second
->getNumber() < RHS
.second
->getNumber();
2354 /// getRepIntervalSize - Returns the size of the interval that represents the
2355 /// specified register.
2357 unsigned JoinPriorityQueue
<SF
>::getRepIntervalSize(unsigned Reg
) {
2358 return Rc
->getRepIntervalSize(Reg
);
2361 /// CopyRecSort::operator - Join priority queue sorting function.
2363 bool CopyRecSort::operator()(CopyRec left
, CopyRec right
) const {
2364 // Inner loops first.
2365 if (left
.LoopDepth
> right
.LoopDepth
)
2367 else if (left
.LoopDepth
== right
.LoopDepth
)
2368 if (left
.isBackEdge
&& !right
.isBackEdge
)
2373 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock
*MBB
,
2374 std::vector
<CopyRec
> &TryAgain
) {
2375 DEBUG(errs() << ((Value
*)MBB
->getBasicBlock())->getName() << ":\n");
2377 std::vector
<CopyRec
> VirtCopies
;
2378 std::vector
<CopyRec
> PhysCopies
;
2379 std::vector
<CopyRec
> ImpDefCopies
;
2380 unsigned LoopDepth
= loopInfo
->getLoopDepth(MBB
);
2381 for (MachineBasicBlock::iterator MII
= MBB
->begin(), E
= MBB
->end();
2383 MachineInstr
*Inst
= MII
++;
2385 // If this isn't a copy nor a extract_subreg, we can't join intervals.
2386 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2387 if (Inst
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
) {
2388 DstReg
= Inst
->getOperand(0).getReg();
2389 SrcReg
= Inst
->getOperand(1).getReg();
2390 } else if (Inst
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
2391 Inst
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) {
2392 DstReg
= Inst
->getOperand(0).getReg();
2393 SrcReg
= Inst
->getOperand(2).getReg();
2394 } else if (!tii_
->isMoveInstr(*Inst
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
2397 bool SrcIsPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
2398 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
2400 JoinQueue
->push(CopyRec(Inst
, LoopDepth
, isBackEdgeCopy(Inst
, DstReg
)));
2402 if (li_
->hasInterval(SrcReg
) && li_
->getInterval(SrcReg
).empty())
2403 ImpDefCopies
.push_back(CopyRec(Inst
, 0, false));
2404 else if (SrcIsPhys
|| DstIsPhys
)
2405 PhysCopies
.push_back(CopyRec(Inst
, 0, false));
2407 VirtCopies
.push_back(CopyRec(Inst
, 0, false));
2414 // Try coalescing implicit copies first, followed by copies to / from
2415 // physical registers, then finally copies from virtual registers to
2416 // virtual registers.
2417 for (unsigned i
= 0, e
= ImpDefCopies
.size(); i
!= e
; ++i
) {
2418 CopyRec
&TheCopy
= ImpDefCopies
[i
];
2420 if (!JoinCopy(TheCopy
, Again
))
2422 TryAgain
.push_back(TheCopy
);
2424 for (unsigned i
= 0, e
= PhysCopies
.size(); i
!= e
; ++i
) {
2425 CopyRec
&TheCopy
= PhysCopies
[i
];
2427 if (!JoinCopy(TheCopy
, Again
))
2429 TryAgain
.push_back(TheCopy
);
2431 for (unsigned i
= 0, e
= VirtCopies
.size(); i
!= e
; ++i
) {
2432 CopyRec
&TheCopy
= VirtCopies
[i
];
2434 if (!JoinCopy(TheCopy
, Again
))
2436 TryAgain
.push_back(TheCopy
);
2440 void SimpleRegisterCoalescing::joinIntervals() {
2441 DEBUG(errs() << "********** JOINING INTERVALS ***********\n");
2444 JoinQueue
= new JoinPriorityQueue
<CopyRecSort
>(this);
2446 std::vector
<CopyRec
> TryAgainList
;
2447 if (loopInfo
->empty()) {
2448 // If there are no loops in the function, join intervals in function order.
2449 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();
2451 CopyCoalesceInMBB(I
, TryAgainList
);
2453 // Otherwise, join intervals in inner loops before other intervals.
2454 // Unfortunately we can't just iterate over loop hierarchy here because
2455 // there may be more MBB's than BB's. Collect MBB's for sorting.
2457 // Join intervals in the function prolog first. We want to join physical
2458 // registers with virtual registers before the intervals got too long.
2459 std::vector
<std::pair
<unsigned, MachineBasicBlock
*> > MBBs
;
2460 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();I
!= E
;++I
){
2461 MachineBasicBlock
*MBB
= I
;
2462 MBBs
.push_back(std::make_pair(loopInfo
->getLoopDepth(MBB
), I
));
2465 // Sort by loop depth.
2466 std::sort(MBBs
.begin(), MBBs
.end(), DepthMBBCompare());
2468 // Finally, join intervals in loop nest order.
2469 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
)
2470 CopyCoalesceInMBB(MBBs
[i
].second
, TryAgainList
);
2473 // Joining intervals can allow other intervals to be joined. Iteratively join
2474 // until we make no progress.
2476 SmallVector
<CopyRec
, 16> TryAgain
;
2477 bool ProgressMade
= true;
2478 while (ProgressMade
) {
2479 ProgressMade
= false;
2480 while (!JoinQueue
->empty()) {
2481 CopyRec R
= JoinQueue
->pop();
2483 bool Success
= JoinCopy(R
, Again
);
2485 ProgressMade
= true;
2487 TryAgain
.push_back(R
);
2491 while (!TryAgain
.empty()) {
2492 JoinQueue
->push(TryAgain
.back());
2493 TryAgain
.pop_back();
2498 bool ProgressMade
= true;
2499 while (ProgressMade
) {
2500 ProgressMade
= false;
2502 for (unsigned i
= 0, e
= TryAgainList
.size(); i
!= e
; ++i
) {
2503 CopyRec
&TheCopy
= TryAgainList
[i
];
2506 bool Success
= JoinCopy(TheCopy
, Again
);
2507 if (Success
|| !Again
) {
2508 TheCopy
.MI
= 0; // Mark this one as done.
2509 ProgressMade
= true;
2520 /// Return true if the two specified registers belong to different register
2521 /// classes. The registers may be either phys or virt regs.
2523 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA
,
2524 unsigned RegB
) const {
2525 // Get the register classes for the first reg.
2526 if (TargetRegisterInfo::isPhysicalRegister(RegA
)) {
2527 assert(TargetRegisterInfo::isVirtualRegister(RegB
) &&
2528 "Shouldn't consider two physregs!");
2529 return !mri_
->getRegClass(RegB
)->contains(RegA
);
2532 // Compare against the regclass for the second reg.
2533 const TargetRegisterClass
*RegClassA
= mri_
->getRegClass(RegA
);
2534 if (TargetRegisterInfo::isVirtualRegister(RegB
)) {
2535 const TargetRegisterClass
*RegClassB
= mri_
->getRegClass(RegB
);
2536 return RegClassA
!= RegClassB
;
2538 return !RegClassA
->contains(RegB
);
2541 /// lastRegisterUse - Returns the last use of the specific register between
2542 /// cycles Start and End or NULL if there are no uses.
2544 SimpleRegisterCoalescing::lastRegisterUse(unsigned Start
, unsigned End
,
2545 unsigned Reg
, unsigned &UseIdx
) const{
2547 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
2548 MachineOperand
*LastUse
= NULL
;
2549 for (MachineRegisterInfo::use_iterator I
= mri_
->use_begin(Reg
),
2550 E
= mri_
->use_end(); I
!= E
; ++I
) {
2551 MachineOperand
&Use
= I
.getOperand();
2552 MachineInstr
*UseMI
= Use
.getParent();
2553 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2554 if (tii_
->isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
2556 // Ignore identity copies.
2558 unsigned Idx
= li_
->getInstructionIndex(UseMI
);
2559 if (Idx
>= Start
&& Idx
< End
&& Idx
>= UseIdx
) {
2561 UseIdx
= li_
->getUseIndex(Idx
);
2567 int e
= (End
-1) / InstrSlots::NUM
* InstrSlots::NUM
;
2570 // Skip deleted instructions
2571 MachineInstr
*MI
= li_
->getInstructionFromIndex(e
);
2572 while ((e
- InstrSlots::NUM
) >= s
&& !MI
) {
2573 e
-= InstrSlots::NUM
;
2574 MI
= li_
->getInstructionFromIndex(e
);
2576 if (e
< s
|| MI
== NULL
)
2579 // Ignore identity copies.
2580 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2581 if (!(tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
2583 for (unsigned i
= 0, NumOps
= MI
->getNumOperands(); i
!= NumOps
; ++i
) {
2584 MachineOperand
&Use
= MI
->getOperand(i
);
2585 if (Use
.isReg() && Use
.isUse() && Use
.getReg() &&
2586 tri_
->regsOverlap(Use
.getReg(), Reg
)) {
2587 UseIdx
= li_
->getUseIndex(e
);
2592 e
-= InstrSlots::NUM
;
2599 void SimpleRegisterCoalescing::printRegName(unsigned reg
) const {
2600 if (TargetRegisterInfo::isPhysicalRegister(reg
))
2601 errs() << tri_
->getName(reg
);
2603 errs() << "%reg" << reg
;
2606 void SimpleRegisterCoalescing::releaseMemory() {
2607 JoinedCopies
.clear();
2608 ReMatCopies
.clear();
2612 static bool isZeroLengthInterval(LiveInterval
*li
) {
2613 for (LiveInterval::Ranges::const_iterator
2614 i
= li
->ranges
.begin(), e
= li
->ranges
.end(); i
!= e
; ++i
)
2615 if (i
->end
- i
->start
> LiveInterval::InstrSlots::NUM
)
2621 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction
&fn
) {
2623 mri_
= &fn
.getRegInfo();
2624 tm_
= &fn
.getTarget();
2625 tri_
= tm_
->getRegisterInfo();
2626 tii_
= tm_
->getInstrInfo();
2627 li_
= &getAnalysis
<LiveIntervals
>();
2628 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
2630 DEBUG(errs() << "********** SIMPLE REGISTER COALESCING **********\n"
2631 << "********** Function: "
2632 << ((Value
*)mf_
->getFunction())->getName() << '\n');
2634 allocatableRegs_
= tri_
->getAllocatableSet(fn
);
2635 for (TargetRegisterInfo::regclass_iterator I
= tri_
->regclass_begin(),
2636 E
= tri_
->regclass_end(); I
!= E
; ++I
)
2637 allocatableRCRegs_
.insert(std::make_pair(*I
,
2638 tri_
->getAllocatableSet(fn
, *I
)));
2640 // Join (coalesce) intervals if requested.
2641 if (EnableJoining
) {
2644 errs() << "********** INTERVALS POST JOINING **********\n";
2645 for (LiveIntervals::iterator I
= li_
->begin(), E
= li_
->end(); I
!= E
; ++I
){
2646 I
->second
->print(errs(), tri_
);
2652 // Perform a final pass over the instructions and compute spill weights
2653 // and remove identity moves.
2654 SmallVector
<unsigned, 4> DeadDefs
;
2655 for (MachineFunction::iterator mbbi
= mf_
->begin(), mbbe
= mf_
->end();
2656 mbbi
!= mbbe
; ++mbbi
) {
2657 MachineBasicBlock
* mbb
= mbbi
;
2658 unsigned loopDepth
= loopInfo
->getLoopDepth(mbb
);
2660 for (MachineBasicBlock::iterator mii
= mbb
->begin(), mie
= mbb
->end();
2662 MachineInstr
*MI
= mii
;
2663 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2664 if (JoinedCopies
.count(MI
)) {
2665 // Delete all coalesced copies.
2666 if (!tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
)) {
2667 assert((MI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
||
2668 MI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
2669 MI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) &&
2670 "Unrecognized copy instruction");
2671 DstReg
= MI
->getOperand(0).getReg();
2673 if (MI
->registerDefIsDead(DstReg
)) {
2674 LiveInterval
&li
= li_
->getInterval(DstReg
);
2675 if (!ShortenDeadCopySrcLiveRange(li
, MI
))
2676 ShortenDeadCopyLiveRange(li
, MI
);
2678 li_
->RemoveMachineInstrFromMaps(MI
);
2679 mii
= mbbi
->erase(mii
);
2684 // Now check if this is a remat'ed def instruction which is now dead.
2685 if (ReMatDefs
.count(MI
)) {
2687 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2688 const MachineOperand
&MO
= MI
->getOperand(i
);
2691 unsigned Reg
= MO
.getReg();
2694 if (TargetRegisterInfo::isVirtualRegister(Reg
))
2695 DeadDefs
.push_back(Reg
);
2698 if (TargetRegisterInfo::isPhysicalRegister(Reg
) ||
2699 !mri_
->use_empty(Reg
)) {
2705 while (!DeadDefs
.empty()) {
2706 unsigned DeadDef
= DeadDefs
.back();
2707 DeadDefs
.pop_back();
2708 RemoveDeadDef(li_
->getInterval(DeadDef
), MI
);
2710 li_
->RemoveMachineInstrFromMaps(mii
);
2711 mii
= mbbi
->erase(mii
);
2717 // If the move will be an identity move delete it
2718 bool isMove
= tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
);
2719 if (isMove
&& SrcReg
== DstReg
) {
2720 if (li_
->hasInterval(SrcReg
)) {
2721 LiveInterval
&RegInt
= li_
->getInterval(SrcReg
);
2722 // If def of this move instruction is dead, remove its live range
2723 // from the dstination register's live interval.
2724 if (MI
->registerDefIsDead(DstReg
)) {
2725 if (!ShortenDeadCopySrcLiveRange(RegInt
, MI
))
2726 ShortenDeadCopyLiveRange(RegInt
, MI
);
2729 li_
->RemoveMachineInstrFromMaps(MI
);
2730 mii
= mbbi
->erase(mii
);
2733 SmallSet
<unsigned, 4> UniqueUses
;
2734 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2735 const MachineOperand
&mop
= MI
->getOperand(i
);
2736 if (mop
.isReg() && mop
.getReg() &&
2737 TargetRegisterInfo::isVirtualRegister(mop
.getReg())) {
2738 unsigned reg
= mop
.getReg();
2739 // Multiple uses of reg by the same instruction. It should not
2740 // contribute to spill weight again.
2741 if (UniqueUses
.count(reg
) != 0)
2743 LiveInterval
&RegInt
= li_
->getInterval(reg
);
2745 li_
->getSpillWeight(mop
.isDef(), mop
.isUse(), loopDepth
);
2746 UniqueUses
.insert(reg
);
2754 for (LiveIntervals::iterator I
= li_
->begin(), E
= li_
->end(); I
!= E
; ++I
) {
2755 LiveInterval
&LI
= *I
->second
;
2756 if (TargetRegisterInfo::isVirtualRegister(LI
.reg
)) {
2757 // If the live interval length is essentially zero, i.e. in every live
2758 // range the use follows def immediately, it doesn't make sense to spill
2759 // it and hope it will be easier to allocate for this li.
2760 if (isZeroLengthInterval(&LI
))
2761 LI
.weight
= HUGE_VALF
;
2763 bool isLoad
= false;
2764 SmallVector
<LiveInterval
*, 4> SpillIs
;
2765 if (li_
->isReMaterializable(LI
, SpillIs
, isLoad
)) {
2766 // If all of the definitions of the interval are re-materializable,
2767 // it is a preferred candidate for spilling. If non of the defs are
2768 // loads, then it's potentially very cheap to re-materialize.
2769 // FIXME: this gets much more complicated once we support non-trivial
2770 // re-materialization.
2778 // Slightly prefer live interval that has been assigned a preferred reg.
2779 std::pair
<unsigned, unsigned> Hint
= mri_
->getRegAllocationHint(LI
.reg
);
2780 if (Hint
.first
|| Hint
.second
)
2783 // Divide the weight of the interval by its size. This encourages
2784 // spilling of intervals that are large and have few uses, and
2785 // discourages spilling of small intervals with many uses.
2786 LI
.weight
/= li_
->getApproximateInstructionCount(LI
) * InstrSlots::NUM
;
2794 /// print - Implement the dump method.
2795 void SimpleRegisterCoalescing::print(raw_ostream
&O
, const Module
* m
) const {
2799 RegisterCoalescer
* llvm::createSimpleRegisterCoalescer() {
2800 return new SimpleRegisterCoalescing();
2803 // Make sure that anything that uses RegisterCoalescer pulls in this file...
2804 DEFINING_FILE_FOR(SimpleRegisterCoalescing
)