Fix comment for consistency sake.
[llvm/avr.git] / lib / Transforms / Scalar / LoopStrengthReduce.cpp
blob82eb14fb2ae33db23794fe705b285375418e9894
1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "loop-reduce"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/Constants.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/IntrinsicInst.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/Type.h"
29 #include "llvm/DerivedTypes.h"
30 #include "llvm/Analysis/Dominators.h"
31 #include "llvm/Analysis/IVUsers.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopPass.h"
34 #include "llvm/Analysis/ScalarEvolutionExpander.h"
35 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/Support/CFG.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/ValueHandle.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetLowering.h"
45 #include <algorithm>
46 using namespace llvm;
48 STATISTIC(NumReduced , "Number of IV uses strength reduced");
49 STATISTIC(NumInserted, "Number of PHIs inserted");
50 STATISTIC(NumVariable, "Number of PHIs with variable strides");
51 STATISTIC(NumEliminated, "Number of strides eliminated");
52 STATISTIC(NumShadow, "Number of Shadow IVs optimized");
53 STATISTIC(NumImmSunk, "Number of common expr immediates sunk into uses");
54 STATISTIC(NumLoopCond, "Number of loop terminating conds optimized");
56 static cl::opt<bool> EnableFullLSRMode("enable-full-lsr",
57 cl::init(false),
58 cl::Hidden);
60 namespace {
62 struct BasedUser;
64 /// IVInfo - This structure keeps track of one IV expression inserted during
65 /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
66 /// well as the PHI node and increment value created for rewrite.
67 struct IVExpr {
68 const SCEV *Stride;
69 const SCEV *Base;
70 PHINode *PHI;
72 IVExpr(const SCEV *const stride, const SCEV *const base, PHINode *phi)
73 : Stride(stride), Base(base), PHI(phi) {}
76 /// IVsOfOneStride - This structure keeps track of all IV expression inserted
77 /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
78 struct IVsOfOneStride {
79 std::vector<IVExpr> IVs;
81 void addIV(const SCEV *const Stride, const SCEV *const Base, PHINode *PHI) {
82 IVs.push_back(IVExpr(Stride, Base, PHI));
86 class LoopStrengthReduce : public LoopPass {
87 IVUsers *IU;
88 LoopInfo *LI;
89 DominatorTree *DT;
90 ScalarEvolution *SE;
91 bool Changed;
93 /// IVsByStride - Keep track of all IVs that have been inserted for a
94 /// particular stride.
95 std::map<const SCEV *, IVsOfOneStride> IVsByStride;
97 /// StrideNoReuse - Keep track of all the strides whose ivs cannot be
98 /// reused (nor should they be rewritten to reuse other strides).
99 SmallSet<const SCEV *, 4> StrideNoReuse;
101 /// DeadInsts - Keep track of instructions we may have made dead, so that
102 /// we can remove them after we are done working.
103 SmallVector<WeakVH, 16> DeadInsts;
105 /// TLI - Keep a pointer of a TargetLowering to consult for determining
106 /// transformation profitability.
107 const TargetLowering *TLI;
109 public:
110 static char ID; // Pass ID, replacement for typeid
111 explicit LoopStrengthReduce(const TargetLowering *tli = NULL) :
112 LoopPass(&ID), TLI(tli) {
115 bool runOnLoop(Loop *L, LPPassManager &LPM);
117 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
118 // We split critical edges, so we change the CFG. However, we do update
119 // many analyses if they are around.
120 AU.addPreservedID(LoopSimplifyID);
121 AU.addPreserved<LoopInfo>();
122 AU.addPreserved<DominanceFrontier>();
123 AU.addPreserved<DominatorTree>();
125 AU.addRequiredID(LoopSimplifyID);
126 AU.addRequired<LoopInfo>();
127 AU.addRequired<DominatorTree>();
128 AU.addRequired<ScalarEvolution>();
129 AU.addPreserved<ScalarEvolution>();
130 AU.addRequired<IVUsers>();
131 AU.addPreserved<IVUsers>();
134 private:
135 ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
136 IVStrideUse* &CondUse,
137 const SCEV *const * &CondStride);
139 void OptimizeIndvars(Loop *L);
140 void OptimizeLoopCountIV(Loop *L);
141 void OptimizeLoopTermCond(Loop *L);
143 /// OptimizeShadowIV - If IV is used in a int-to-float cast
144 /// inside the loop then try to eliminate the cast opeation.
145 void OptimizeShadowIV(Loop *L);
147 /// OptimizeMax - Rewrite the loop's terminating condition
148 /// if it uses a max computation.
149 ICmpInst *OptimizeMax(Loop *L, ICmpInst *Cond,
150 IVStrideUse* &CondUse);
152 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
153 const SCEV *const * &CondStride);
154 bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
155 const SCEV *CheckForIVReuse(bool, bool, bool, const SCEV *const&,
156 IVExpr&, const Type*,
157 const std::vector<BasedUser>& UsersToProcess);
158 bool ValidScale(bool, int64_t,
159 const std::vector<BasedUser>& UsersToProcess);
160 bool ValidOffset(bool, int64_t, int64_t,
161 const std::vector<BasedUser>& UsersToProcess);
162 const SCEV *CollectIVUsers(const SCEV *const &Stride,
163 IVUsersOfOneStride &Uses,
164 Loop *L,
165 bool &AllUsesAreAddresses,
166 bool &AllUsesAreOutsideLoop,
167 std::vector<BasedUser> &UsersToProcess);
168 bool ShouldUseFullStrengthReductionMode(
169 const std::vector<BasedUser> &UsersToProcess,
170 const Loop *L,
171 bool AllUsesAreAddresses,
172 const SCEV *Stride);
173 void PrepareToStrengthReduceFully(
174 std::vector<BasedUser> &UsersToProcess,
175 const SCEV *Stride,
176 const SCEV *CommonExprs,
177 const Loop *L,
178 SCEVExpander &PreheaderRewriter);
179 void PrepareToStrengthReduceFromSmallerStride(
180 std::vector<BasedUser> &UsersToProcess,
181 Value *CommonBaseV,
182 const IVExpr &ReuseIV,
183 Instruction *PreInsertPt);
184 void PrepareToStrengthReduceWithNewPhi(
185 std::vector<BasedUser> &UsersToProcess,
186 const SCEV *Stride,
187 const SCEV *CommonExprs,
188 Value *CommonBaseV,
189 Instruction *IVIncInsertPt,
190 const Loop *L,
191 SCEVExpander &PreheaderRewriter);
192 void StrengthReduceStridedIVUsers(const SCEV *const &Stride,
193 IVUsersOfOneStride &Uses,
194 Loop *L);
195 void DeleteTriviallyDeadInstructions();
199 char LoopStrengthReduce::ID = 0;
200 static RegisterPass<LoopStrengthReduce>
201 X("loop-reduce", "Loop Strength Reduction");
203 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
204 return new LoopStrengthReduce(TLI);
207 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
208 /// specified set are trivially dead, delete them and see if this makes any of
209 /// their operands subsequently dead.
210 void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
211 if (DeadInsts.empty()) return;
213 while (!DeadInsts.empty()) {
214 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.back());
215 DeadInsts.pop_back();
217 if (I == 0 || !isInstructionTriviallyDead(I))
218 continue;
220 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
221 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
222 *OI = 0;
223 if (U->use_empty())
224 DeadInsts.push_back(U);
228 I->eraseFromParent();
229 Changed = true;
233 /// containsAddRecFromDifferentLoop - Determine whether expression S involves a
234 /// subexpression that is an AddRec from a loop other than L. An outer loop
235 /// of L is OK, but not an inner loop nor a disjoint loop.
236 static bool containsAddRecFromDifferentLoop(const SCEV *S, Loop *L) {
237 // This is very common, put it first.
238 if (isa<SCEVConstant>(S))
239 return false;
240 if (const SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) {
241 for (unsigned int i=0; i< AE->getNumOperands(); i++)
242 if (containsAddRecFromDifferentLoop(AE->getOperand(i), L))
243 return true;
244 return false;
246 if (const SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) {
247 if (const Loop *newLoop = AE->getLoop()) {
248 if (newLoop == L)
249 return false;
250 // if newLoop is an outer loop of L, this is OK.
251 if (!LoopInfo::isNotAlreadyContainedIn(L, newLoop))
252 return false;
254 return true;
256 if (const SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S))
257 return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
258 containsAddRecFromDifferentLoop(DE->getRHS(), L);
259 #if 0
260 // SCEVSDivExpr has been backed out temporarily, but will be back; we'll
261 // need this when it is.
262 if (const SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S))
263 return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
264 containsAddRecFromDifferentLoop(DE->getRHS(), L);
265 #endif
266 if (const SCEVCastExpr *CE = dyn_cast<SCEVCastExpr>(S))
267 return containsAddRecFromDifferentLoop(CE->getOperand(), L);
268 return false;
271 /// isAddressUse - Returns true if the specified instruction is using the
272 /// specified value as an address.
273 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
274 bool isAddress = isa<LoadInst>(Inst);
275 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
276 if (SI->getOperand(1) == OperandVal)
277 isAddress = true;
278 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
279 // Addressing modes can also be folded into prefetches and a variety
280 // of intrinsics.
281 switch (II->getIntrinsicID()) {
282 default: break;
283 case Intrinsic::prefetch:
284 case Intrinsic::x86_sse2_loadu_dq:
285 case Intrinsic::x86_sse2_loadu_pd:
286 case Intrinsic::x86_sse_loadu_ps:
287 case Intrinsic::x86_sse_storeu_ps:
288 case Intrinsic::x86_sse2_storeu_pd:
289 case Intrinsic::x86_sse2_storeu_dq:
290 case Intrinsic::x86_sse2_storel_dq:
291 if (II->getOperand(1) == OperandVal)
292 isAddress = true;
293 break;
296 return isAddress;
299 /// getAccessType - Return the type of the memory being accessed.
300 static const Type *getAccessType(const Instruction *Inst) {
301 const Type *AccessTy = Inst->getType();
302 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
303 AccessTy = SI->getOperand(0)->getType();
304 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
305 // Addressing modes can also be folded into prefetches and a variety
306 // of intrinsics.
307 switch (II->getIntrinsicID()) {
308 default: break;
309 case Intrinsic::x86_sse_storeu_ps:
310 case Intrinsic::x86_sse2_storeu_pd:
311 case Intrinsic::x86_sse2_storeu_dq:
312 case Intrinsic::x86_sse2_storel_dq:
313 AccessTy = II->getOperand(1)->getType();
314 break;
317 return AccessTy;
320 namespace {
321 /// BasedUser - For a particular base value, keep information about how we've
322 /// partitioned the expression so far.
323 struct BasedUser {
324 /// SE - The current ScalarEvolution object.
325 ScalarEvolution *SE;
327 /// Base - The Base value for the PHI node that needs to be inserted for
328 /// this use. As the use is processed, information gets moved from this
329 /// field to the Imm field (below). BasedUser values are sorted by this
330 /// field.
331 const SCEV *Base;
333 /// Inst - The instruction using the induction variable.
334 Instruction *Inst;
336 /// OperandValToReplace - The operand value of Inst to replace with the
337 /// EmittedBase.
338 Value *OperandValToReplace;
340 /// Imm - The immediate value that should be added to the base immediately
341 /// before Inst, because it will be folded into the imm field of the
342 /// instruction. This is also sometimes used for loop-variant values that
343 /// must be added inside the loop.
344 const SCEV *Imm;
346 /// Phi - The induction variable that performs the striding that
347 /// should be used for this user.
348 PHINode *Phi;
350 // isUseOfPostIncrementedValue - True if this should use the
351 // post-incremented version of this IV, not the preincremented version.
352 // This can only be set in special cases, such as the terminating setcc
353 // instruction for a loop and uses outside the loop that are dominated by
354 // the loop.
355 bool isUseOfPostIncrementedValue;
357 BasedUser(IVStrideUse &IVSU, ScalarEvolution *se)
358 : SE(se), Base(IVSU.getOffset()), Inst(IVSU.getUser()),
359 OperandValToReplace(IVSU.getOperandValToReplace()),
360 Imm(SE->getIntegerSCEV(0, Base->getType())),
361 isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue()) {}
363 // Once we rewrite the code to insert the new IVs we want, update the
364 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
365 // to it.
366 void RewriteInstructionToUseNewBase(const SCEV *const &NewBase,
367 Instruction *InsertPt,
368 SCEVExpander &Rewriter, Loop *L, Pass *P,
369 LoopInfo &LI,
370 SmallVectorImpl<WeakVH> &DeadInsts);
372 Value *InsertCodeForBaseAtPosition(const SCEV *const &NewBase,
373 const Type *Ty,
374 SCEVExpander &Rewriter,
375 Instruction *IP, Loop *L,
376 LoopInfo &LI);
377 void dump() const;
381 void BasedUser::dump() const {
382 errs() << " Base=" << *Base;
383 errs() << " Imm=" << *Imm;
384 errs() << " Inst: " << *Inst;
387 Value *BasedUser::InsertCodeForBaseAtPosition(const SCEV *const &NewBase,
388 const Type *Ty,
389 SCEVExpander &Rewriter,
390 Instruction *IP, Loop *L,
391 LoopInfo &LI) {
392 // Figure out where we *really* want to insert this code. In particular, if
393 // the user is inside of a loop that is nested inside of L, we really don't
394 // want to insert this expression before the user, we'd rather pull it out as
395 // many loops as possible.
396 Instruction *BaseInsertPt = IP;
398 // Figure out the most-nested loop that IP is in.
399 Loop *InsertLoop = LI.getLoopFor(IP->getParent());
401 // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
402 // the preheader of the outer-most loop where NewBase is not loop invariant.
403 if (L->contains(IP->getParent()))
404 while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) {
405 BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator();
406 InsertLoop = InsertLoop->getParentLoop();
409 Value *Base = Rewriter.expandCodeFor(NewBase, 0, BaseInsertPt);
411 const SCEV *NewValSCEV = SE->getUnknown(Base);
413 // Always emit the immediate into the same block as the user.
414 NewValSCEV = SE->getAddExpr(NewValSCEV, Imm);
416 return Rewriter.expandCodeFor(NewValSCEV, Ty, IP);
420 // Once we rewrite the code to insert the new IVs we want, update the
421 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
422 // to it. NewBasePt is the last instruction which contributes to the
423 // value of NewBase in the case that it's a diffferent instruction from
424 // the PHI that NewBase is computed from, or null otherwise.
426 void BasedUser::RewriteInstructionToUseNewBase(const SCEV *const &NewBase,
427 Instruction *NewBasePt,
428 SCEVExpander &Rewriter, Loop *L, Pass *P,
429 LoopInfo &LI,
430 SmallVectorImpl<WeakVH> &DeadInsts) {
431 if (!isa<PHINode>(Inst)) {
432 // By default, insert code at the user instruction.
433 BasicBlock::iterator InsertPt = Inst;
435 // However, if the Operand is itself an instruction, the (potentially
436 // complex) inserted code may be shared by many users. Because of this, we
437 // want to emit code for the computation of the operand right before its old
438 // computation. This is usually safe, because we obviously used to use the
439 // computation when it was computed in its current block. However, in some
440 // cases (e.g. use of a post-incremented induction variable) the NewBase
441 // value will be pinned to live somewhere after the original computation.
442 // In this case, we have to back off.
444 // If this is a use outside the loop (which means after, since it is based
445 // on a loop indvar) we use the post-incremented value, so that we don't
446 // artificially make the preinc value live out the bottom of the loop.
447 if (!isUseOfPostIncrementedValue && L->contains(Inst->getParent())) {
448 if (NewBasePt && isa<PHINode>(OperandValToReplace)) {
449 InsertPt = NewBasePt;
450 ++InsertPt;
451 } else if (Instruction *OpInst
452 = dyn_cast<Instruction>(OperandValToReplace)) {
453 InsertPt = OpInst;
454 while (isa<PHINode>(InsertPt)) ++InsertPt;
457 Value *NewVal = InsertCodeForBaseAtPosition(NewBase,
458 OperandValToReplace->getType(),
459 Rewriter, InsertPt, L, LI);
460 // Replace the use of the operand Value with the new Phi we just created.
461 Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
463 DEBUG(errs() << " Replacing with ");
464 DEBUG(WriteAsOperand(errs(), NewVal, /*PrintType=*/false));
465 DEBUG(errs() << ", which has value " << *NewBase << " plus IMM "
466 << *Imm << "\n");
467 return;
470 // PHI nodes are more complex. We have to insert one copy of the NewBase+Imm
471 // expression into each operand block that uses it. Note that PHI nodes can
472 // have multiple entries for the same predecessor. We use a map to make sure
473 // that a PHI node only has a single Value* for each predecessor (which also
474 // prevents us from inserting duplicate code in some blocks).
475 DenseMap<BasicBlock*, Value*> InsertedCode;
476 PHINode *PN = cast<PHINode>(Inst);
477 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
478 if (PN->getIncomingValue(i) == OperandValToReplace) {
479 // If the original expression is outside the loop, put the replacement
480 // code in the same place as the original expression,
481 // which need not be an immediate predecessor of this PHI. This way we
482 // need only one copy of it even if it is referenced multiple times in
483 // the PHI. We don't do this when the original expression is inside the
484 // loop because multiple copies sometimes do useful sinking of code in
485 // that case(?).
486 Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
487 BasicBlock *PHIPred = PN->getIncomingBlock(i);
488 if (L->contains(OldLoc->getParent())) {
489 // If this is a critical edge, split the edge so that we do not insert
490 // the code on all predecessor/successor paths. We do this unless this
491 // is the canonical backedge for this loop, as this can make some
492 // inserted code be in an illegal position.
493 if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
494 (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
496 // First step, split the critical edge.
497 BasicBlock *NewBB = SplitCriticalEdge(PHIPred, PN->getParent(),
498 P, false);
500 // Next step: move the basic block. In particular, if the PHI node
501 // is outside of the loop, and PredTI is in the loop, we want to
502 // move the block to be immediately before the PHI block, not
503 // immediately after PredTI.
504 if (L->contains(PHIPred) && !L->contains(PN->getParent()))
505 NewBB->moveBefore(PN->getParent());
507 // Splitting the edge can reduce the number of PHI entries we have.
508 e = PN->getNumIncomingValues();
509 PHIPred = NewBB;
510 i = PN->getBasicBlockIndex(PHIPred);
513 Value *&Code = InsertedCode[PHIPred];
514 if (!Code) {
515 // Insert the code into the end of the predecessor block.
516 Instruction *InsertPt = (L->contains(OldLoc->getParent())) ?
517 PHIPred->getTerminator() :
518 OldLoc->getParent()->getTerminator();
519 Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(),
520 Rewriter, InsertPt, L, LI);
522 DEBUG(errs() << " Changing PHI use to ");
523 DEBUG(WriteAsOperand(errs(), Code, /*PrintType=*/false));
524 DEBUG(errs() << ", which has value " << *NewBase << " plus IMM "
525 << *Imm << "\n");
528 // Replace the use of the operand Value with the new Phi we just created.
529 PN->setIncomingValue(i, Code);
530 Rewriter.clear();
534 // PHI node might have become a constant value after SplitCriticalEdge.
535 DeadInsts.push_back(Inst);
539 /// fitsInAddressMode - Return true if V can be subsumed within an addressing
540 /// mode, and does not need to be put in a register first.
541 static bool fitsInAddressMode(const SCEV *const &V, const Type *AccessTy,
542 const TargetLowering *TLI, bool HasBaseReg) {
543 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
544 int64_t VC = SC->getValue()->getSExtValue();
545 if (TLI) {
546 TargetLowering::AddrMode AM;
547 AM.BaseOffs = VC;
548 AM.HasBaseReg = HasBaseReg;
549 return TLI->isLegalAddressingMode(AM, AccessTy);
550 } else {
551 // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
552 return (VC > -(1 << 16) && VC < (1 << 16)-1);
556 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
557 if (GlobalValue *GV = dyn_cast<GlobalValue>(SU->getValue())) {
558 if (TLI) {
559 TargetLowering::AddrMode AM;
560 AM.BaseGV = GV;
561 AM.HasBaseReg = HasBaseReg;
562 return TLI->isLegalAddressingMode(AM, AccessTy);
563 } else {
564 // Default: assume global addresses are not legal.
568 return false;
571 /// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
572 /// loop varying to the Imm operand.
573 static void MoveLoopVariantsToImmediateField(const SCEV *&Val, const SCEV *&Imm,
574 Loop *L, ScalarEvolution *SE) {
575 if (Val->isLoopInvariant(L)) return; // Nothing to do.
577 if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
578 SmallVector<const SCEV *, 4> NewOps;
579 NewOps.reserve(SAE->getNumOperands());
581 for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
582 if (!SAE->getOperand(i)->isLoopInvariant(L)) {
583 // If this is a loop-variant expression, it must stay in the immediate
584 // field of the expression.
585 Imm = SE->getAddExpr(Imm, SAE->getOperand(i));
586 } else {
587 NewOps.push_back(SAE->getOperand(i));
590 if (NewOps.empty())
591 Val = SE->getIntegerSCEV(0, Val->getType());
592 else
593 Val = SE->getAddExpr(NewOps);
594 } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
595 // Try to pull immediates out of the start value of nested addrec's.
596 const SCEV *Start = SARE->getStart();
597 MoveLoopVariantsToImmediateField(Start, Imm, L, SE);
599 SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
600 Ops[0] = Start;
601 Val = SE->getAddRecExpr(Ops, SARE->getLoop());
602 } else {
603 // Otherwise, all of Val is variant, move the whole thing over.
604 Imm = SE->getAddExpr(Imm, Val);
605 Val = SE->getIntegerSCEV(0, Val->getType());
610 /// MoveImmediateValues - Look at Val, and pull out any additions of constants
611 /// that can fit into the immediate field of instructions in the target.
612 /// Accumulate these immediate values into the Imm value.
613 static void MoveImmediateValues(const TargetLowering *TLI,
614 const Type *AccessTy,
615 const SCEV *&Val, const SCEV *&Imm,
616 bool isAddress, Loop *L,
617 ScalarEvolution *SE) {
618 if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
619 SmallVector<const SCEV *, 4> NewOps;
620 NewOps.reserve(SAE->getNumOperands());
622 for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
623 const SCEV *NewOp = SAE->getOperand(i);
624 MoveImmediateValues(TLI, AccessTy, NewOp, Imm, isAddress, L, SE);
626 if (!NewOp->isLoopInvariant(L)) {
627 // If this is a loop-variant expression, it must stay in the immediate
628 // field of the expression.
629 Imm = SE->getAddExpr(Imm, NewOp);
630 } else {
631 NewOps.push_back(NewOp);
635 if (NewOps.empty())
636 Val = SE->getIntegerSCEV(0, Val->getType());
637 else
638 Val = SE->getAddExpr(NewOps);
639 return;
640 } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
641 // Try to pull immediates out of the start value of nested addrec's.
642 const SCEV *Start = SARE->getStart();
643 MoveImmediateValues(TLI, AccessTy, Start, Imm, isAddress, L, SE);
645 if (Start != SARE->getStart()) {
646 SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
647 Ops[0] = Start;
648 Val = SE->getAddRecExpr(Ops, SARE->getLoop());
650 return;
651 } else if (const SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
652 // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
653 if (isAddress &&
654 fitsInAddressMode(SME->getOperand(0), AccessTy, TLI, false) &&
655 SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {
657 const SCEV *SubImm = SE->getIntegerSCEV(0, Val->getType());
658 const SCEV *NewOp = SME->getOperand(1);
659 MoveImmediateValues(TLI, AccessTy, NewOp, SubImm, isAddress, L, SE);
661 // If we extracted something out of the subexpressions, see if we can
662 // simplify this!
663 if (NewOp != SME->getOperand(1)) {
664 // Scale SubImm up by "8". If the result is a target constant, we are
665 // good.
666 SubImm = SE->getMulExpr(SubImm, SME->getOperand(0));
667 if (fitsInAddressMode(SubImm, AccessTy, TLI, false)) {
668 // Accumulate the immediate.
669 Imm = SE->getAddExpr(Imm, SubImm);
671 // Update what is left of 'Val'.
672 Val = SE->getMulExpr(SME->getOperand(0), NewOp);
673 return;
679 // Loop-variant expressions must stay in the immediate field of the
680 // expression.
681 if ((isAddress && fitsInAddressMode(Val, AccessTy, TLI, false)) ||
682 !Val->isLoopInvariant(L)) {
683 Imm = SE->getAddExpr(Imm, Val);
684 Val = SE->getIntegerSCEV(0, Val->getType());
685 return;
688 // Otherwise, no immediates to move.
691 static void MoveImmediateValues(const TargetLowering *TLI,
692 Instruction *User,
693 const SCEV *&Val, const SCEV *&Imm,
694 bool isAddress, Loop *L,
695 ScalarEvolution *SE) {
696 const Type *AccessTy = getAccessType(User);
697 MoveImmediateValues(TLI, AccessTy, Val, Imm, isAddress, L, SE);
700 /// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
701 /// added together. This is used to reassociate common addition subexprs
702 /// together for maximal sharing when rewriting bases.
703 static void SeparateSubExprs(SmallVector<const SCEV *, 16> &SubExprs,
704 const SCEV *Expr,
705 ScalarEvolution *SE) {
706 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
707 for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
708 SeparateSubExprs(SubExprs, AE->getOperand(j), SE);
709 } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
710 const SCEV *Zero = SE->getIntegerSCEV(0, Expr->getType());
711 if (SARE->getOperand(0) == Zero) {
712 SubExprs.push_back(Expr);
713 } else {
714 // Compute the addrec with zero as its base.
715 SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
716 Ops[0] = Zero; // Start with zero base.
717 SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop()));
720 SeparateSubExprs(SubExprs, SARE->getOperand(0), SE);
722 } else if (!Expr->isZero()) {
723 // Do not add zero.
724 SubExprs.push_back(Expr);
728 // This is logically local to the following function, but C++ says we have
729 // to make it file scope.
730 struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
732 /// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
733 /// the Uses, removing any common subexpressions, except that if all such
734 /// subexpressions can be folded into an addressing mode for all uses inside
735 /// the loop (this case is referred to as "free" in comments herein) we do
736 /// not remove anything. This looks for things like (a+b+c) and
737 /// (a+c+d) and computes the common (a+c) subexpression. The common expression
738 /// is *removed* from the Bases and returned.
739 static const SCEV *
740 RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
741 ScalarEvolution *SE, Loop *L,
742 const TargetLowering *TLI) {
743 unsigned NumUses = Uses.size();
745 // Only one use? This is a very common case, so we handle it specially and
746 // cheaply.
747 const SCEV *Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
748 const SCEV *Result = Zero;
749 const SCEV *FreeResult = Zero;
750 if (NumUses == 1) {
751 // If the use is inside the loop, use its base, regardless of what it is:
752 // it is clearly shared across all the IV's. If the use is outside the loop
753 // (which means after it) we don't want to factor anything *into* the loop,
754 // so just use 0 as the base.
755 if (L->contains(Uses[0].Inst->getParent()))
756 std::swap(Result, Uses[0].Base);
757 return Result;
760 // To find common subexpressions, count how many of Uses use each expression.
761 // If any subexpressions are used Uses.size() times, they are common.
762 // Also track whether all uses of each expression can be moved into an
763 // an addressing mode "for free"; such expressions are left within the loop.
764 // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
765 std::map<const SCEV *, SubExprUseData> SubExpressionUseData;
767 // UniqueSubExprs - Keep track of all of the subexpressions we see in the
768 // order we see them.
769 SmallVector<const SCEV *, 16> UniqueSubExprs;
771 SmallVector<const SCEV *, 16> SubExprs;
772 unsigned NumUsesInsideLoop = 0;
773 for (unsigned i = 0; i != NumUses; ++i) {
774 // If the user is outside the loop, just ignore it for base computation.
775 // Since the user is outside the loop, it must be *after* the loop (if it
776 // were before, it could not be based on the loop IV). We don't want users
777 // after the loop to affect base computation of values *inside* the loop,
778 // because we can always add their offsets to the result IV after the loop
779 // is done, ensuring we get good code inside the loop.
780 if (!L->contains(Uses[i].Inst->getParent()))
781 continue;
782 NumUsesInsideLoop++;
784 // If the base is zero (which is common), return zero now, there are no
785 // CSEs we can find.
786 if (Uses[i].Base == Zero) return Zero;
788 // If this use is as an address we may be able to put CSEs in the addressing
789 // mode rather than hoisting them.
790 bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace);
791 // We may need the AccessTy below, but only when isAddrUse, so compute it
792 // only in that case.
793 const Type *AccessTy = 0;
794 if (isAddrUse)
795 AccessTy = getAccessType(Uses[i].Inst);
797 // Split the expression into subexprs.
798 SeparateSubExprs(SubExprs, Uses[i].Base, SE);
799 // Add one to SubExpressionUseData.Count for each subexpr present, and
800 // if the subexpr is not a valid immediate within an addressing mode use,
801 // set SubExpressionUseData.notAllUsesAreFree. We definitely want to
802 // hoist these out of the loop (if they are common to all uses).
803 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
804 if (++SubExpressionUseData[SubExprs[j]].Count == 1)
805 UniqueSubExprs.push_back(SubExprs[j]);
806 if (!isAddrUse || !fitsInAddressMode(SubExprs[j], AccessTy, TLI, false))
807 SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true;
809 SubExprs.clear();
812 // Now that we know how many times each is used, build Result. Iterate over
813 // UniqueSubexprs so that we have a stable ordering.
814 for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
815 std::map<const SCEV *, SubExprUseData>::iterator I =
816 SubExpressionUseData.find(UniqueSubExprs[i]);
817 assert(I != SubExpressionUseData.end() && "Entry not found?");
818 if (I->second.Count == NumUsesInsideLoop) { // Found CSE!
819 if (I->second.notAllUsesAreFree)
820 Result = SE->getAddExpr(Result, I->first);
821 else
822 FreeResult = SE->getAddExpr(FreeResult, I->first);
823 } else
824 // Remove non-cse's from SubExpressionUseData.
825 SubExpressionUseData.erase(I);
828 if (FreeResult != Zero) {
829 // We have some subexpressions that can be subsumed into addressing
830 // modes in every use inside the loop. However, it's possible that
831 // there are so many of them that the combined FreeResult cannot
832 // be subsumed, or that the target cannot handle both a FreeResult
833 // and a Result in the same instruction (for example because it would
834 // require too many registers). Check this.
835 for (unsigned i=0; i<NumUses; ++i) {
836 if (!L->contains(Uses[i].Inst->getParent()))
837 continue;
838 // We know this is an addressing mode use; if there are any uses that
839 // are not, FreeResult would be Zero.
840 const Type *AccessTy = getAccessType(Uses[i].Inst);
841 if (!fitsInAddressMode(FreeResult, AccessTy, TLI, Result!=Zero)) {
842 // FIXME: could split up FreeResult into pieces here, some hoisted
843 // and some not. There is no obvious advantage to this.
844 Result = SE->getAddExpr(Result, FreeResult);
845 FreeResult = Zero;
846 break;
851 // If we found no CSE's, return now.
852 if (Result == Zero) return Result;
854 // If we still have a FreeResult, remove its subexpressions from
855 // SubExpressionUseData. This means they will remain in the use Bases.
856 if (FreeResult != Zero) {
857 SeparateSubExprs(SubExprs, FreeResult, SE);
858 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
859 std::map<const SCEV *, SubExprUseData>::iterator I =
860 SubExpressionUseData.find(SubExprs[j]);
861 SubExpressionUseData.erase(I);
863 SubExprs.clear();
866 // Otherwise, remove all of the CSE's we found from each of the base values.
867 for (unsigned i = 0; i != NumUses; ++i) {
868 // Uses outside the loop don't necessarily include the common base, but
869 // the final IV value coming into those uses does. Instead of trying to
870 // remove the pieces of the common base, which might not be there,
871 // subtract off the base to compensate for this.
872 if (!L->contains(Uses[i].Inst->getParent())) {
873 Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result);
874 continue;
877 // Split the expression into subexprs.
878 SeparateSubExprs(SubExprs, Uses[i].Base, SE);
880 // Remove any common subexpressions.
881 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
882 if (SubExpressionUseData.count(SubExprs[j])) {
883 SubExprs.erase(SubExprs.begin()+j);
884 --j; --e;
887 // Finally, add the non-shared expressions together.
888 if (SubExprs.empty())
889 Uses[i].Base = Zero;
890 else
891 Uses[i].Base = SE->getAddExpr(SubExprs);
892 SubExprs.clear();
895 return Result;
898 /// ValidScale - Check whether the given Scale is valid for all loads and
899 /// stores in UsersToProcess.
901 bool LoopStrengthReduce::ValidScale(bool HasBaseReg, int64_t Scale,
902 const std::vector<BasedUser>& UsersToProcess) {
903 if (!TLI)
904 return true;
906 for (unsigned i = 0, e = UsersToProcess.size(); i!=e; ++i) {
907 // If this is a load or other access, pass the type of the access in.
908 const Type *AccessTy =
909 Type::getVoidTy(UsersToProcess[i].Inst->getContext());
910 if (isAddressUse(UsersToProcess[i].Inst,
911 UsersToProcess[i].OperandValToReplace))
912 AccessTy = getAccessType(UsersToProcess[i].Inst);
913 else if (isa<PHINode>(UsersToProcess[i].Inst))
914 continue;
916 TargetLowering::AddrMode AM;
917 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
918 AM.BaseOffs = SC->getValue()->getSExtValue();
919 AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
920 AM.Scale = Scale;
922 // If load[imm+r*scale] is illegal, bail out.
923 if (!TLI->isLegalAddressingMode(AM, AccessTy))
924 return false;
926 return true;
929 /// ValidOffset - Check whether the given Offset is valid for all loads and
930 /// stores in UsersToProcess.
932 bool LoopStrengthReduce::ValidOffset(bool HasBaseReg,
933 int64_t Offset,
934 int64_t Scale,
935 const std::vector<BasedUser>& UsersToProcess) {
936 if (!TLI)
937 return true;
939 for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
940 // If this is a load or other access, pass the type of the access in.
941 const Type *AccessTy =
942 Type::getVoidTy(UsersToProcess[i].Inst->getContext());
943 if (isAddressUse(UsersToProcess[i].Inst,
944 UsersToProcess[i].OperandValToReplace))
945 AccessTy = getAccessType(UsersToProcess[i].Inst);
946 else if (isa<PHINode>(UsersToProcess[i].Inst))
947 continue;
949 TargetLowering::AddrMode AM;
950 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
951 AM.BaseOffs = SC->getValue()->getSExtValue();
952 AM.BaseOffs = (uint64_t)AM.BaseOffs + (uint64_t)Offset;
953 AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
954 AM.Scale = Scale;
956 // If load[imm+r*scale] is illegal, bail out.
957 if (!TLI->isLegalAddressingMode(AM, AccessTy))
958 return false;
960 return true;
963 /// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
964 /// a nop.
965 bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
966 const Type *Ty2) {
967 if (Ty1 == Ty2)
968 return false;
969 Ty1 = SE->getEffectiveSCEVType(Ty1);
970 Ty2 = SE->getEffectiveSCEVType(Ty2);
971 if (Ty1 == Ty2)
972 return false;
973 if (Ty1->canLosslesslyBitCastTo(Ty2))
974 return false;
975 if (TLI && TLI->isTruncateFree(Ty1, Ty2))
976 return false;
977 return true;
980 /// CheckForIVReuse - Returns the multiple if the stride is the multiple
981 /// of a previous stride and it is a legal value for the target addressing
982 /// mode scale component and optional base reg. This allows the users of
983 /// this stride to be rewritten as prev iv * factor. It returns 0 if no
984 /// reuse is possible. Factors can be negative on same targets, e.g. ARM.
986 /// If all uses are outside the loop, we don't require that all multiplies
987 /// be folded into the addressing mode, nor even that the factor be constant;
988 /// a multiply (executed once) outside the loop is better than another IV
989 /// within. Well, usually.
990 const SCEV *LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
991 bool AllUsesAreAddresses,
992 bool AllUsesAreOutsideLoop,
993 const SCEV *const &Stride,
994 IVExpr &IV, const Type *Ty,
995 const std::vector<BasedUser>& UsersToProcess) {
996 if (StrideNoReuse.count(Stride))
997 return SE->getIntegerSCEV(0, Stride->getType());
999 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
1000 int64_t SInt = SC->getValue()->getSExtValue();
1001 for (unsigned NewStride = 0, e = IU->StrideOrder.size();
1002 NewStride != e; ++NewStride) {
1003 std::map<const SCEV *, IVsOfOneStride>::iterator SI =
1004 IVsByStride.find(IU->StrideOrder[NewStride]);
1005 if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first) ||
1006 StrideNoReuse.count(SI->first))
1007 continue;
1008 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1009 if (SI->first != Stride &&
1010 (unsigned(abs64(SInt)) < SSInt || (SInt % SSInt) != 0))
1011 continue;
1012 int64_t Scale = SInt / SSInt;
1013 // Check that this stride is valid for all the types used for loads and
1014 // stores; if it can be used for some and not others, we might as well use
1015 // the original stride everywhere, since we have to create the IV for it
1016 // anyway. If the scale is 1, then we don't need to worry about folding
1017 // multiplications.
1018 if (Scale == 1 ||
1019 (AllUsesAreAddresses &&
1020 ValidScale(HasBaseReg, Scale, UsersToProcess))) {
1021 // Prefer to reuse an IV with a base of zero.
1022 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1023 IE = SI->second.IVs.end(); II != IE; ++II)
1024 // Only reuse previous IV if it would not require a type conversion
1025 // and if the base difference can be folded.
1026 if (II->Base->isZero() &&
1027 !RequiresTypeConversion(II->Base->getType(), Ty)) {
1028 IV = *II;
1029 return SE->getIntegerSCEV(Scale, Stride->getType());
1031 // Otherwise, settle for an IV with a foldable base.
1032 if (AllUsesAreAddresses)
1033 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1034 IE = SI->second.IVs.end(); II != IE; ++II)
1035 // Only reuse previous IV if it would not require a type conversion
1036 // and if the base difference can be folded.
1037 if (SE->getEffectiveSCEVType(II->Base->getType()) ==
1038 SE->getEffectiveSCEVType(Ty) &&
1039 isa<SCEVConstant>(II->Base)) {
1040 int64_t Base =
1041 cast<SCEVConstant>(II->Base)->getValue()->getSExtValue();
1042 if (Base > INT32_MIN && Base <= INT32_MAX &&
1043 ValidOffset(HasBaseReg, -Base * Scale,
1044 Scale, UsersToProcess)) {
1045 IV = *II;
1046 return SE->getIntegerSCEV(Scale, Stride->getType());
1051 } else if (AllUsesAreOutsideLoop) {
1052 // Accept nonconstant strides here; it is really really right to substitute
1053 // an existing IV if we can.
1054 for (unsigned NewStride = 0, e = IU->StrideOrder.size();
1055 NewStride != e; ++NewStride) {
1056 std::map<const SCEV *, IVsOfOneStride>::iterator SI =
1057 IVsByStride.find(IU->StrideOrder[NewStride]);
1058 if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
1059 continue;
1060 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1061 if (SI->first != Stride && SSInt != 1)
1062 continue;
1063 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1064 IE = SI->second.IVs.end(); II != IE; ++II)
1065 // Accept nonzero base here.
1066 // Only reuse previous IV if it would not require a type conversion.
1067 if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
1068 IV = *II;
1069 return Stride;
1072 // Special case, old IV is -1*x and this one is x. Can treat this one as
1073 // -1*old.
1074 for (unsigned NewStride = 0, e = IU->StrideOrder.size();
1075 NewStride != e; ++NewStride) {
1076 std::map<const SCEV *, IVsOfOneStride>::iterator SI =
1077 IVsByStride.find(IU->StrideOrder[NewStride]);
1078 if (SI == IVsByStride.end())
1079 continue;
1080 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first))
1081 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0)))
1082 if (Stride == ME->getOperand(1) &&
1083 SC->getValue()->getSExtValue() == -1LL)
1084 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1085 IE = SI->second.IVs.end(); II != IE; ++II)
1086 // Accept nonzero base here.
1087 // Only reuse previous IV if it would not require type conversion.
1088 if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
1089 IV = *II;
1090 return SE->getIntegerSCEV(-1LL, Stride->getType());
1094 return SE->getIntegerSCEV(0, Stride->getType());
1097 /// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
1098 /// returns true if Val's isUseOfPostIncrementedValue is true.
1099 static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
1100 return Val.isUseOfPostIncrementedValue;
1103 /// isNonConstantNegative - Return true if the specified scev is negated, but
1104 /// not a constant.
1105 static bool isNonConstantNegative(const SCEV *const &Expr) {
1106 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
1107 if (!Mul) return false;
1109 // If there is a constant factor, it will be first.
1110 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
1111 if (!SC) return false;
1113 // Return true if the value is negative, this matches things like (-42 * V).
1114 return SC->getValue()->getValue().isNegative();
1117 /// CollectIVUsers - Transform our list of users and offsets to a bit more
1118 /// complex table. In this new vector, each 'BasedUser' contains 'Base', the base
1119 /// of the strided accesses, as well as the old information from Uses. We
1120 /// progressively move information from the Base field to the Imm field, until
1121 /// we eventually have the full access expression to rewrite the use.
1122 const SCEV *LoopStrengthReduce::CollectIVUsers(const SCEV *const &Stride,
1123 IVUsersOfOneStride &Uses,
1124 Loop *L,
1125 bool &AllUsesAreAddresses,
1126 bool &AllUsesAreOutsideLoop,
1127 std::vector<BasedUser> &UsersToProcess) {
1128 // FIXME: Generalize to non-affine IV's.
1129 if (!Stride->isLoopInvariant(L))
1130 return SE->getIntegerSCEV(0, Stride->getType());
1132 UsersToProcess.reserve(Uses.Users.size());
1133 for (ilist<IVStrideUse>::iterator I = Uses.Users.begin(),
1134 E = Uses.Users.end(); I != E; ++I) {
1135 UsersToProcess.push_back(BasedUser(*I, SE));
1137 // Move any loop variant operands from the offset field to the immediate
1138 // field of the use, so that we don't try to use something before it is
1139 // computed.
1140 MoveLoopVariantsToImmediateField(UsersToProcess.back().Base,
1141 UsersToProcess.back().Imm, L, SE);
1142 assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
1143 "Base value is not loop invariant!");
1146 // We now have a whole bunch of uses of like-strided induction variables, but
1147 // they might all have different bases. We want to emit one PHI node for this
1148 // stride which we fold as many common expressions (between the IVs) into as
1149 // possible. Start by identifying the common expressions in the base values
1150 // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
1151 // "A+B"), emit it to the preheader, then remove the expression from the
1152 // UsersToProcess base values.
1153 const SCEV *CommonExprs =
1154 RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI);
1156 // Next, figure out what we can represent in the immediate fields of
1157 // instructions. If we can represent anything there, move it to the imm
1158 // fields of the BasedUsers. We do this so that it increases the commonality
1159 // of the remaining uses.
1160 unsigned NumPHI = 0;
1161 bool HasAddress = false;
1162 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1163 // If the user is not in the current loop, this means it is using the exit
1164 // value of the IV. Do not put anything in the base, make sure it's all in
1165 // the immediate field to allow as much factoring as possible.
1166 if (!L->contains(UsersToProcess[i].Inst->getParent())) {
1167 UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm,
1168 UsersToProcess[i].Base);
1169 UsersToProcess[i].Base =
1170 SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
1171 } else {
1172 // Not all uses are outside the loop.
1173 AllUsesAreOutsideLoop = false;
1175 // Addressing modes can be folded into loads and stores. Be careful that
1176 // the store is through the expression, not of the expression though.
1177 bool isPHI = false;
1178 bool isAddress = isAddressUse(UsersToProcess[i].Inst,
1179 UsersToProcess[i].OperandValToReplace);
1180 if (isa<PHINode>(UsersToProcess[i].Inst)) {
1181 isPHI = true;
1182 ++NumPHI;
1185 if (isAddress)
1186 HasAddress = true;
1188 // If this use isn't an address, then not all uses are addresses.
1189 if (!isAddress && !isPHI)
1190 AllUsesAreAddresses = false;
1192 MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base,
1193 UsersToProcess[i].Imm, isAddress, L, SE);
1197 // If one of the use is a PHI node and all other uses are addresses, still
1198 // allow iv reuse. Essentially we are trading one constant multiplication
1199 // for one fewer iv.
1200 if (NumPHI > 1)
1201 AllUsesAreAddresses = false;
1203 // There are no in-loop address uses.
1204 if (AllUsesAreAddresses && (!HasAddress && !AllUsesAreOutsideLoop))
1205 AllUsesAreAddresses = false;
1207 return CommonExprs;
1210 /// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction
1211 /// is valid and profitable for the given set of users of a stride. In
1212 /// full strength-reduction mode, all addresses at the current stride are
1213 /// strength-reduced all the way down to pointer arithmetic.
1215 bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
1216 const std::vector<BasedUser> &UsersToProcess,
1217 const Loop *L,
1218 bool AllUsesAreAddresses,
1219 const SCEV *Stride) {
1220 if (!EnableFullLSRMode)
1221 return false;
1223 // The heuristics below aim to avoid increasing register pressure, but
1224 // fully strength-reducing all the addresses increases the number of
1225 // add instructions, so don't do this when optimizing for size.
1226 // TODO: If the loop is large, the savings due to simpler addresses
1227 // may oughtweight the costs of the extra increment instructions.
1228 if (L->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize))
1229 return false;
1231 // TODO: For now, don't do full strength reduction if there could
1232 // potentially be greater-stride multiples of the current stride
1233 // which could reuse the current stride IV.
1234 if (IU->StrideOrder.back() != Stride)
1235 return false;
1237 // Iterate through the uses to find conditions that automatically rule out
1238 // full-lsr mode.
1239 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
1240 const SCEV *Base = UsersToProcess[i].Base;
1241 const SCEV *Imm = UsersToProcess[i].Imm;
1242 // If any users have a loop-variant component, they can't be fully
1243 // strength-reduced.
1244 if (Imm && !Imm->isLoopInvariant(L))
1245 return false;
1246 // If there are to users with the same base and the difference between
1247 // the two Imm values can't be folded into the address, full
1248 // strength reduction would increase register pressure.
1249 do {
1250 const SCEV *CurImm = UsersToProcess[i].Imm;
1251 if ((CurImm || Imm) && CurImm != Imm) {
1252 if (!CurImm) CurImm = SE->getIntegerSCEV(0, Stride->getType());
1253 if (!Imm) Imm = SE->getIntegerSCEV(0, Stride->getType());
1254 const Instruction *Inst = UsersToProcess[i].Inst;
1255 const Type *AccessTy = getAccessType(Inst);
1256 const SCEV *Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
1257 if (!Diff->isZero() &&
1258 (!AllUsesAreAddresses ||
1259 !fitsInAddressMode(Diff, AccessTy, TLI, /*HasBaseReg=*/true)))
1260 return false;
1262 } while (++i != e && Base == UsersToProcess[i].Base);
1265 // If there's exactly one user in this stride, fully strength-reducing it
1266 // won't increase register pressure. If it's starting from a non-zero base,
1267 // it'll be simpler this way.
1268 if (UsersToProcess.size() == 1 && !UsersToProcess[0].Base->isZero())
1269 return true;
1271 // Otherwise, if there are any users in this stride that don't require
1272 // a register for their base, full strength-reduction will increase
1273 // register pressure.
1274 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1275 if (UsersToProcess[i].Base->isZero())
1276 return false;
1278 // Otherwise, go for it.
1279 return true;
1282 /// InsertAffinePhi Create and insert a PHI node for an induction variable
1283 /// with the specified start and step values in the specified loop.
1285 /// If NegateStride is true, the stride should be negated by using a
1286 /// subtract instead of an add.
1288 /// Return the created phi node.
1290 static PHINode *InsertAffinePhi(const SCEV *Start, const SCEV *Step,
1291 Instruction *IVIncInsertPt,
1292 const Loop *L,
1293 SCEVExpander &Rewriter) {
1294 assert(Start->isLoopInvariant(L) && "New PHI start is not loop invariant!");
1295 assert(Step->isLoopInvariant(L) && "New PHI stride is not loop invariant!");
1297 BasicBlock *Header = L->getHeader();
1298 BasicBlock *Preheader = L->getLoopPreheader();
1299 BasicBlock *LatchBlock = L->getLoopLatch();
1300 const Type *Ty = Start->getType();
1301 Ty = Rewriter.SE.getEffectiveSCEVType(Ty);
1303 PHINode *PN = PHINode::Create(Ty, "lsr.iv", Header->begin());
1304 PN->addIncoming(Rewriter.expandCodeFor(Start, Ty, Preheader->getTerminator()),
1305 Preheader);
1307 // If the stride is negative, insert a sub instead of an add for the
1308 // increment.
1309 bool isNegative = isNonConstantNegative(Step);
1310 const SCEV *IncAmount = Step;
1311 if (isNegative)
1312 IncAmount = Rewriter.SE.getNegativeSCEV(Step);
1314 // Insert an add instruction right before the terminator corresponding
1315 // to the back-edge or just before the only use. The location is determined
1316 // by the caller and passed in as IVIncInsertPt.
1317 Value *StepV = Rewriter.expandCodeFor(IncAmount, Ty,
1318 Preheader->getTerminator());
1319 Instruction *IncV;
1320 if (isNegative) {
1321 IncV = BinaryOperator::CreateSub(PN, StepV, "lsr.iv.next",
1322 IVIncInsertPt);
1323 } else {
1324 IncV = BinaryOperator::CreateAdd(PN, StepV, "lsr.iv.next",
1325 IVIncInsertPt);
1327 if (!isa<ConstantInt>(StepV)) ++NumVariable;
1329 PN->addIncoming(IncV, LatchBlock);
1331 ++NumInserted;
1332 return PN;
1335 static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) {
1336 // We want to emit code for users inside the loop first. To do this, we
1337 // rearrange BasedUser so that the entries at the end have
1338 // isUseOfPostIncrementedValue = false, because we pop off the end of the
1339 // vector (so we handle them first).
1340 std::partition(UsersToProcess.begin(), UsersToProcess.end(),
1341 PartitionByIsUseOfPostIncrementedValue);
1343 // Sort this by base, so that things with the same base are handled
1344 // together. By partitioning first and stable-sorting later, we are
1345 // guaranteed that within each base we will pop off users from within the
1346 // loop before users outside of the loop with a particular base.
1348 // We would like to use stable_sort here, but we can't. The problem is that
1349 // const SCEV *'s don't have a deterministic ordering w.r.t to each other, so
1350 // we don't have anything to do a '<' comparison on. Because we think the
1351 // number of uses is small, do a horrible bubble sort which just relies on
1352 // ==.
1353 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1354 // Get a base value.
1355 const SCEV *Base = UsersToProcess[i].Base;
1357 // Compact everything with this base to be consecutive with this one.
1358 for (unsigned j = i+1; j != e; ++j) {
1359 if (UsersToProcess[j].Base == Base) {
1360 std::swap(UsersToProcess[i+1], UsersToProcess[j]);
1361 ++i;
1367 /// PrepareToStrengthReduceFully - Prepare to fully strength-reduce
1368 /// UsersToProcess, meaning lowering addresses all the way down to direct
1369 /// pointer arithmetic.
1371 void
1372 LoopStrengthReduce::PrepareToStrengthReduceFully(
1373 std::vector<BasedUser> &UsersToProcess,
1374 const SCEV *Stride,
1375 const SCEV *CommonExprs,
1376 const Loop *L,
1377 SCEVExpander &PreheaderRewriter) {
1378 DEBUG(errs() << " Fully reducing all users\n");
1380 // Rewrite the UsersToProcess records, creating a separate PHI for each
1381 // unique Base value.
1382 Instruction *IVIncInsertPt = L->getLoopLatch()->getTerminator();
1383 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
1384 // TODO: The uses are grouped by base, but not sorted. We arbitrarily
1385 // pick the first Imm value here to start with, and adjust it for the
1386 // other uses.
1387 const SCEV *Imm = UsersToProcess[i].Imm;
1388 const SCEV *Base = UsersToProcess[i].Base;
1389 const SCEV *Start = SE->getAddExpr(CommonExprs, Base, Imm);
1390 PHINode *Phi = InsertAffinePhi(Start, Stride, IVIncInsertPt, L,
1391 PreheaderRewriter);
1392 // Loop over all the users with the same base.
1393 do {
1394 UsersToProcess[i].Base = SE->getIntegerSCEV(0, Stride->getType());
1395 UsersToProcess[i].Imm = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
1396 UsersToProcess[i].Phi = Phi;
1397 assert(UsersToProcess[i].Imm->isLoopInvariant(L) &&
1398 "ShouldUseFullStrengthReductionMode should reject this!");
1399 } while (++i != e && Base == UsersToProcess[i].Base);
1403 /// FindIVIncInsertPt - Return the location to insert the increment instruction.
1404 /// If the only use if a use of postinc value, (must be the loop termination
1405 /// condition), then insert it just before the use.
1406 static Instruction *FindIVIncInsertPt(std::vector<BasedUser> &UsersToProcess,
1407 const Loop *L) {
1408 if (UsersToProcess.size() == 1 &&
1409 UsersToProcess[0].isUseOfPostIncrementedValue &&
1410 L->contains(UsersToProcess[0].Inst->getParent()))
1411 return UsersToProcess[0].Inst;
1412 return L->getLoopLatch()->getTerminator();
1415 /// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the
1416 /// given users to share.
1418 void
1419 LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
1420 std::vector<BasedUser> &UsersToProcess,
1421 const SCEV *Stride,
1422 const SCEV *CommonExprs,
1423 Value *CommonBaseV,
1424 Instruction *IVIncInsertPt,
1425 const Loop *L,
1426 SCEVExpander &PreheaderRewriter) {
1427 DEBUG(errs() << " Inserting new PHI:\n");
1429 PHINode *Phi = InsertAffinePhi(SE->getUnknown(CommonBaseV),
1430 Stride, IVIncInsertPt, L,
1431 PreheaderRewriter);
1433 // Remember this in case a later stride is multiple of this.
1434 IVsByStride[Stride].addIV(Stride, CommonExprs, Phi);
1436 // All the users will share this new IV.
1437 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1438 UsersToProcess[i].Phi = Phi;
1440 DEBUG(errs() << " IV=");
1441 DEBUG(WriteAsOperand(errs(), Phi, /*PrintType=*/false));
1442 DEBUG(errs() << "\n");
1445 /// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to
1446 /// reuse an induction variable with a stride that is a factor of the current
1447 /// induction variable.
1449 void
1450 LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
1451 std::vector<BasedUser> &UsersToProcess,
1452 Value *CommonBaseV,
1453 const IVExpr &ReuseIV,
1454 Instruction *PreInsertPt) {
1455 DEBUG(errs() << " Rewriting in terms of existing IV of STRIDE "
1456 << *ReuseIV.Stride << " and BASE " << *ReuseIV.Base << "\n");
1458 // All the users will share the reused IV.
1459 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1460 UsersToProcess[i].Phi = ReuseIV.PHI;
1462 Constant *C = dyn_cast<Constant>(CommonBaseV);
1463 if (C &&
1464 (!C->isNullValue() &&
1465 !fitsInAddressMode(SE->getUnknown(CommonBaseV), CommonBaseV->getType(),
1466 TLI, false)))
1467 // We want the common base emitted into the preheader! This is just
1468 // using cast as a copy so BitCast (no-op cast) is appropriate
1469 CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(),
1470 "commonbase", PreInsertPt);
1473 static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset,
1474 const Type *AccessTy,
1475 std::vector<BasedUser> &UsersToProcess,
1476 const TargetLowering *TLI) {
1477 SmallVector<Instruction*, 16> AddrModeInsts;
1478 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1479 if (UsersToProcess[i].isUseOfPostIncrementedValue)
1480 continue;
1481 ExtAddrMode AddrMode =
1482 AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace,
1483 AccessTy, UsersToProcess[i].Inst,
1484 AddrModeInsts, *TLI);
1485 if (GV && GV != AddrMode.BaseGV)
1486 return false;
1487 if (Offset && !AddrMode.BaseOffs)
1488 // FIXME: How to accurate check it's immediate offset is folded.
1489 return false;
1490 AddrModeInsts.clear();
1492 return true;
1495 /// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
1496 /// stride of IV. All of the users may have different starting values, and this
1497 /// may not be the only stride.
1498 void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV *const &Stride,
1499 IVUsersOfOneStride &Uses,
1500 Loop *L) {
1501 // If all the users are moved to another stride, then there is nothing to do.
1502 if (Uses.Users.empty())
1503 return;
1505 // Keep track if every use in UsersToProcess is an address. If they all are,
1506 // we may be able to rewrite the entire collection of them in terms of a
1507 // smaller-stride IV.
1508 bool AllUsesAreAddresses = true;
1510 // Keep track if every use of a single stride is outside the loop. If so,
1511 // we want to be more aggressive about reusing a smaller-stride IV; a
1512 // multiply outside the loop is better than another IV inside. Well, usually.
1513 bool AllUsesAreOutsideLoop = true;
1515 // Transform our list of users and offsets to a bit more complex table. In
1516 // this new vector, each 'BasedUser' contains 'Base' the base of the
1517 // strided accessas well as the old information from Uses. We progressively
1518 // move information from the Base field to the Imm field, until we eventually
1519 // have the full access expression to rewrite the use.
1520 std::vector<BasedUser> UsersToProcess;
1521 const SCEV *CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
1522 AllUsesAreOutsideLoop,
1523 UsersToProcess);
1525 // Sort the UsersToProcess array so that users with common bases are
1526 // next to each other.
1527 SortUsersToProcess(UsersToProcess);
1529 // If we managed to find some expressions in common, we'll need to carry
1530 // their value in a register and add it in for each use. This will take up
1531 // a register operand, which potentially restricts what stride values are
1532 // valid.
1533 bool HaveCommonExprs = !CommonExprs->isZero();
1534 const Type *ReplacedTy = CommonExprs->getType();
1536 // If all uses are addresses, consider sinking the immediate part of the
1537 // common expression back into uses if they can fit in the immediate fields.
1538 if (TLI && HaveCommonExprs && AllUsesAreAddresses) {
1539 const SCEV *NewCommon = CommonExprs;
1540 const SCEV *Imm = SE->getIntegerSCEV(0, ReplacedTy);
1541 MoveImmediateValues(TLI, Type::getVoidTy(
1542 L->getLoopPreheader()->getContext()),
1543 NewCommon, Imm, true, L, SE);
1544 if (!Imm->isZero()) {
1545 bool DoSink = true;
1547 // If the immediate part of the common expression is a GV, check if it's
1548 // possible to fold it into the target addressing mode.
1549 GlobalValue *GV = 0;
1550 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm))
1551 GV = dyn_cast<GlobalValue>(SU->getValue());
1552 int64_t Offset = 0;
1553 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
1554 Offset = SC->getValue()->getSExtValue();
1555 if (GV || Offset)
1556 // Pass VoidTy as the AccessTy to be conservative, because
1557 // there could be multiple access types among all the uses.
1558 DoSink = IsImmFoldedIntoAddrMode(GV, Offset,
1559 Type::getVoidTy(L->getLoopPreheader()->getContext()),
1560 UsersToProcess, TLI);
1562 if (DoSink) {
1563 DEBUG(errs() << " Sinking " << *Imm << " back down into uses\n");
1564 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1565 UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm);
1566 CommonExprs = NewCommon;
1567 HaveCommonExprs = !CommonExprs->isZero();
1568 ++NumImmSunk;
1573 // Now that we know what we need to do, insert the PHI node itself.
1575 DEBUG(errs() << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE "
1576 << *Stride << ":\n"
1577 << " Common base: " << *CommonExprs << "\n");
1579 SCEVExpander Rewriter(*SE);
1580 SCEVExpander PreheaderRewriter(*SE);
1582 BasicBlock *Preheader = L->getLoopPreheader();
1583 Instruction *PreInsertPt = Preheader->getTerminator();
1584 BasicBlock *LatchBlock = L->getLoopLatch();
1585 Instruction *IVIncInsertPt = LatchBlock->getTerminator();
1587 Value *CommonBaseV = Constant::getNullValue(ReplacedTy);
1589 const SCEV *RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy);
1590 IVExpr ReuseIV(SE->getIntegerSCEV(0,
1591 Type::getInt32Ty(Preheader->getContext())),
1592 SE->getIntegerSCEV(0,
1593 Type::getInt32Ty(Preheader->getContext())),
1596 /// Choose a strength-reduction strategy and prepare for it by creating
1597 /// the necessary PHIs and adjusting the bookkeeping.
1598 if (ShouldUseFullStrengthReductionMode(UsersToProcess, L,
1599 AllUsesAreAddresses, Stride)) {
1600 PrepareToStrengthReduceFully(UsersToProcess, Stride, CommonExprs, L,
1601 PreheaderRewriter);
1602 } else {
1603 // Emit the initial base value into the loop preheader.
1604 CommonBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, ReplacedTy,
1605 PreInsertPt);
1607 // If all uses are addresses, check if it is possible to reuse an IV. The
1608 // new IV must have a stride that is a multiple of the old stride; the
1609 // multiple must be a number that can be encoded in the scale field of the
1610 // target addressing mode; and we must have a valid instruction after this
1611 // substitution, including the immediate field, if any.
1612 RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses,
1613 AllUsesAreOutsideLoop,
1614 Stride, ReuseIV, ReplacedTy,
1615 UsersToProcess);
1616 if (!RewriteFactor->isZero())
1617 PrepareToStrengthReduceFromSmallerStride(UsersToProcess, CommonBaseV,
1618 ReuseIV, PreInsertPt);
1619 else {
1620 IVIncInsertPt = FindIVIncInsertPt(UsersToProcess, L);
1621 PrepareToStrengthReduceWithNewPhi(UsersToProcess, Stride, CommonExprs,
1622 CommonBaseV, IVIncInsertPt,
1623 L, PreheaderRewriter);
1627 // Process all the users now, replacing their strided uses with
1628 // strength-reduced forms. This outer loop handles all bases, the inner
1629 // loop handles all users of a particular base.
1630 while (!UsersToProcess.empty()) {
1631 const SCEV *Base = UsersToProcess.back().Base;
1632 Instruction *Inst = UsersToProcess.back().Inst;
1634 // Emit the code for Base into the preheader.
1635 Value *BaseV = 0;
1636 if (!Base->isZero()) {
1637 BaseV = PreheaderRewriter.expandCodeFor(Base, 0, PreInsertPt);
1639 DEBUG(errs() << " INSERTING code for BASE = " << *Base << ":");
1640 if (BaseV->hasName())
1641 DEBUG(errs() << " Result value name = %" << BaseV->getName());
1642 DEBUG(errs() << "\n");
1644 // If BaseV is a non-zero constant, make sure that it gets inserted into
1645 // the preheader, instead of being forward substituted into the uses. We
1646 // do this by forcing a BitCast (noop cast) to be inserted into the
1647 // preheader in this case.
1648 if (!fitsInAddressMode(Base, getAccessType(Inst), TLI, false) &&
1649 isa<Constant>(BaseV)) {
1650 // We want this constant emitted into the preheader! This is just
1651 // using cast as a copy so BitCast (no-op cast) is appropriate
1652 BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
1653 PreInsertPt);
1657 // Emit the code to add the immediate offset to the Phi value, just before
1658 // the instructions that we identified as using this stride and base.
1659 do {
1660 // FIXME: Use emitted users to emit other users.
1661 BasedUser &User = UsersToProcess.back();
1663 DEBUG(errs() << " Examining ");
1664 if (User.isUseOfPostIncrementedValue)
1665 DEBUG(errs() << "postinc");
1666 else
1667 DEBUG(errs() << "preinc");
1668 DEBUG(errs() << " use ");
1669 DEBUG(WriteAsOperand(errs(), UsersToProcess.back().OperandValToReplace,
1670 /*PrintType=*/false));
1671 DEBUG(errs() << " in Inst: " << *User.Inst);
1673 // If this instruction wants to use the post-incremented value, move it
1674 // after the post-inc and use its value instead of the PHI.
1675 Value *RewriteOp = User.Phi;
1676 if (User.isUseOfPostIncrementedValue) {
1677 RewriteOp = User.Phi->getIncomingValueForBlock(LatchBlock);
1678 // If this user is in the loop, make sure it is the last thing in the
1679 // loop to ensure it is dominated by the increment. In case it's the
1680 // only use of the iv, the increment instruction is already before the
1681 // use.
1682 if (L->contains(User.Inst->getParent()) && User.Inst != IVIncInsertPt)
1683 User.Inst->moveBefore(IVIncInsertPt);
1686 const SCEV *RewriteExpr = SE->getUnknown(RewriteOp);
1688 if (SE->getEffectiveSCEVType(RewriteOp->getType()) !=
1689 SE->getEffectiveSCEVType(ReplacedTy)) {
1690 assert(SE->getTypeSizeInBits(RewriteOp->getType()) >
1691 SE->getTypeSizeInBits(ReplacedTy) &&
1692 "Unexpected widening cast!");
1693 RewriteExpr = SE->getTruncateExpr(RewriteExpr, ReplacedTy);
1696 // If we had to insert new instructions for RewriteOp, we have to
1697 // consider that they may not have been able to end up immediately
1698 // next to RewriteOp, because non-PHI instructions may never precede
1699 // PHI instructions in a block. In this case, remember where the last
1700 // instruction was inserted so that if we're replacing a different
1701 // PHI node, we can use the later point to expand the final
1702 // RewriteExpr.
1703 Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp);
1704 if (RewriteOp == User.Phi) NewBasePt = 0;
1706 // Clear the SCEVExpander's expression map so that we are guaranteed
1707 // to have the code emitted where we expect it.
1708 Rewriter.clear();
1710 // If we are reusing the iv, then it must be multiplied by a constant
1711 // factor to take advantage of the addressing mode scale component.
1712 if (!RewriteFactor->isZero()) {
1713 // If we're reusing an IV with a nonzero base (currently this happens
1714 // only when all reuses are outside the loop) subtract that base here.
1715 // The base has been used to initialize the PHI node but we don't want
1716 // it here.
1717 if (!ReuseIV.Base->isZero()) {
1718 const SCEV *typedBase = ReuseIV.Base;
1719 if (SE->getEffectiveSCEVType(RewriteExpr->getType()) !=
1720 SE->getEffectiveSCEVType(ReuseIV.Base->getType())) {
1721 // It's possible the original IV is a larger type than the new IV,
1722 // in which case we have to truncate the Base. We checked in
1723 // RequiresTypeConversion that this is valid.
1724 assert(SE->getTypeSizeInBits(RewriteExpr->getType()) <
1725 SE->getTypeSizeInBits(ReuseIV.Base->getType()) &&
1726 "Unexpected lengthening conversion!");
1727 typedBase = SE->getTruncateExpr(ReuseIV.Base,
1728 RewriteExpr->getType());
1730 RewriteExpr = SE->getMinusSCEV(RewriteExpr, typedBase);
1733 // Multiply old variable, with base removed, by new scale factor.
1734 RewriteExpr = SE->getMulExpr(RewriteFactor,
1735 RewriteExpr);
1737 // The common base is emitted in the loop preheader. But since we
1738 // are reusing an IV, it has not been used to initialize the PHI node.
1739 // Add it to the expression used to rewrite the uses.
1740 // When this use is outside the loop, we earlier subtracted the
1741 // common base, and are adding it back here. Use the same expression
1742 // as before, rather than CommonBaseV, so DAGCombiner will zap it.
1743 if (!CommonExprs->isZero()) {
1744 if (L->contains(User.Inst->getParent()))
1745 RewriteExpr = SE->getAddExpr(RewriteExpr,
1746 SE->getUnknown(CommonBaseV));
1747 else
1748 RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs);
1752 // Now that we know what we need to do, insert code before User for the
1753 // immediate and any loop-variant expressions.
1754 if (BaseV)
1755 // Add BaseV to the PHI value if needed.
1756 RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV));
1758 User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt,
1759 Rewriter, L, this, *LI,
1760 DeadInsts);
1762 // Mark old value we replaced as possibly dead, so that it is eliminated
1763 // if we just replaced the last use of that value.
1764 DeadInsts.push_back(User.OperandValToReplace);
1766 UsersToProcess.pop_back();
1767 ++NumReduced;
1769 // If there are any more users to process with the same base, process them
1770 // now. We sorted by base above, so we just have to check the last elt.
1771 } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
1772 // TODO: Next, find out which base index is the most common, pull it out.
1775 // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
1776 // different starting values, into different PHIs.
1779 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1780 /// set the IV user and stride information and return true, otherwise return
1781 /// false.
1782 bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
1783 const SCEV *const * &CondStride) {
1784 for (unsigned Stride = 0, e = IU->StrideOrder.size();
1785 Stride != e && !CondUse; ++Stride) {
1786 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
1787 IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
1788 assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
1790 for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
1791 E = SI->second->Users.end(); UI != E; ++UI)
1792 if (UI->getUser() == Cond) {
1793 // NOTE: we could handle setcc instructions with multiple uses here, but
1794 // InstCombine does it as well for simple uses, it's not clear that it
1795 // occurs enough in real life to handle.
1796 CondUse = UI;
1797 CondStride = &SI->first;
1798 return true;
1801 return false;
1804 namespace {
1805 // Constant strides come first which in turns are sorted by their absolute
1806 // values. If absolute values are the same, then positive strides comes first.
1807 // e.g.
1808 // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
1809 struct StrideCompare {
1810 const ScalarEvolution *SE;
1811 explicit StrideCompare(const ScalarEvolution *se) : SE(se) {}
1813 bool operator()(const SCEV *const &LHS, const SCEV *const &RHS) {
1814 const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
1815 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
1816 if (LHSC && RHSC) {
1817 int64_t LV = LHSC->getValue()->getSExtValue();
1818 int64_t RV = RHSC->getValue()->getSExtValue();
1819 uint64_t ALV = (LV < 0) ? -LV : LV;
1820 uint64_t ARV = (RV < 0) ? -RV : RV;
1821 if (ALV == ARV) {
1822 if (LV != RV)
1823 return LV > RV;
1824 } else {
1825 return ALV < ARV;
1828 // If it's the same value but different type, sort by bit width so
1829 // that we emit larger induction variables before smaller
1830 // ones, letting the smaller be re-written in terms of larger ones.
1831 return SE->getTypeSizeInBits(RHS->getType()) <
1832 SE->getTypeSizeInBits(LHS->getType());
1834 return LHSC && !RHSC;
1839 /// ChangeCompareStride - If a loop termination compare instruction is the
1840 /// only use of its stride, and the compaison is against a constant value,
1841 /// try eliminate the stride by moving the compare instruction to another
1842 /// stride and change its constant operand accordingly. e.g.
1844 /// loop:
1845 /// ...
1846 /// v1 = v1 + 3
1847 /// v2 = v2 + 1
1848 /// if (v2 < 10) goto loop
1849 /// =>
1850 /// loop:
1851 /// ...
1852 /// v1 = v1 + 3
1853 /// if (v1 < 30) goto loop
1854 ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
1855 IVStrideUse* &CondUse,
1856 const SCEV *const* &CondStride) {
1857 // If there's only one stride in the loop, there's nothing to do here.
1858 if (IU->StrideOrder.size() < 2)
1859 return Cond;
1860 // If there are other users of the condition's stride, don't bother
1861 // trying to change the condition because the stride will still
1862 // remain.
1863 std::map<const SCEV *, IVUsersOfOneStride *>::iterator I =
1864 IU->IVUsesByStride.find(*CondStride);
1865 if (I == IU->IVUsesByStride.end() ||
1866 I->second->Users.size() != 1)
1867 return Cond;
1868 // Only handle constant strides for now.
1869 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride);
1870 if (!SC) return Cond;
1872 ICmpInst::Predicate Predicate = Cond->getPredicate();
1873 int64_t CmpSSInt = SC->getValue()->getSExtValue();
1874 unsigned BitWidth = SE->getTypeSizeInBits((*CondStride)->getType());
1875 uint64_t SignBit = 1ULL << (BitWidth-1);
1876 const Type *CmpTy = Cond->getOperand(0)->getType();
1877 const Type *NewCmpTy = NULL;
1878 unsigned TyBits = SE->getTypeSizeInBits(CmpTy);
1879 unsigned NewTyBits = 0;
1880 const SCEV **NewStride = NULL;
1881 Value *NewCmpLHS = NULL;
1882 Value *NewCmpRHS = NULL;
1883 int64_t Scale = 1;
1884 const SCEV *NewOffset = SE->getIntegerSCEV(0, CmpTy);
1886 if (ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1))) {
1887 int64_t CmpVal = C->getValue().getSExtValue();
1889 // Check stride constant and the comparision constant signs to detect
1890 // overflow.
1891 if ((CmpVal & SignBit) != (CmpSSInt & SignBit))
1892 return Cond;
1894 // Look for a suitable stride / iv as replacement.
1895 for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
1896 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
1897 IU->IVUsesByStride.find(IU->StrideOrder[i]);
1898 if (!isa<SCEVConstant>(SI->first))
1899 continue;
1900 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1901 if (SSInt == CmpSSInt ||
1902 abs64(SSInt) < abs64(CmpSSInt) ||
1903 (SSInt % CmpSSInt) != 0)
1904 continue;
1906 Scale = SSInt / CmpSSInt;
1907 int64_t NewCmpVal = CmpVal * Scale;
1908 APInt Mul = APInt(BitWidth*2, CmpVal, true);
1909 Mul = Mul * APInt(BitWidth*2, Scale, true);
1910 // Check for overflow.
1911 if (!Mul.isSignedIntN(BitWidth))
1912 continue;
1913 // Check for overflow in the stride's type too.
1914 if (!Mul.isSignedIntN(SE->getTypeSizeInBits(SI->first->getType())))
1915 continue;
1917 // Watch out for overflow.
1918 if (ICmpInst::isSignedPredicate(Predicate) &&
1919 (CmpVal & SignBit) != (NewCmpVal & SignBit))
1920 continue;
1922 if (NewCmpVal == CmpVal)
1923 continue;
1924 // Pick the best iv to use trying to avoid a cast.
1925 NewCmpLHS = NULL;
1926 for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
1927 E = SI->second->Users.end(); UI != E; ++UI) {
1928 Value *Op = UI->getOperandValToReplace();
1930 // If the IVStrideUse implies a cast, check for an actual cast which
1931 // can be used to find the original IV expression.
1932 if (SE->getEffectiveSCEVType(Op->getType()) !=
1933 SE->getEffectiveSCEVType(SI->first->getType())) {
1934 CastInst *CI = dyn_cast<CastInst>(Op);
1935 // If it's not a simple cast, it's complicated.
1936 if (!CI)
1937 continue;
1938 // If it's a cast from a type other than the stride type,
1939 // it's complicated.
1940 if (CI->getOperand(0)->getType() != SI->first->getType())
1941 continue;
1942 // Ok, we found the IV expression in the stride's type.
1943 Op = CI->getOperand(0);
1946 NewCmpLHS = Op;
1947 if (NewCmpLHS->getType() == CmpTy)
1948 break;
1950 if (!NewCmpLHS)
1951 continue;
1953 NewCmpTy = NewCmpLHS->getType();
1954 NewTyBits = SE->getTypeSizeInBits(NewCmpTy);
1955 const Type *NewCmpIntTy = IntegerType::get(Cond->getContext(), NewTyBits);
1956 if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
1957 // Check if it is possible to rewrite it using
1958 // an iv / stride of a smaller integer type.
1959 unsigned Bits = NewTyBits;
1960 if (ICmpInst::isSignedPredicate(Predicate))
1961 --Bits;
1962 uint64_t Mask = (1ULL << Bits) - 1;
1963 if (((uint64_t)NewCmpVal & Mask) != (uint64_t)NewCmpVal)
1964 continue;
1967 // Don't rewrite if use offset is non-constant and the new type is
1968 // of a different type.
1969 // FIXME: too conservative?
1970 if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->getOffset()))
1971 continue;
1973 bool AllUsesAreAddresses = true;
1974 bool AllUsesAreOutsideLoop = true;
1975 std::vector<BasedUser> UsersToProcess;
1976 const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
1977 AllUsesAreAddresses,
1978 AllUsesAreOutsideLoop,
1979 UsersToProcess);
1980 // Avoid rewriting the compare instruction with an iv of new stride
1981 // if it's likely the new stride uses will be rewritten using the
1982 // stride of the compare instruction.
1983 if (AllUsesAreAddresses &&
1984 ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess))
1985 continue;
1987 // Avoid rewriting the compare instruction with an iv which has
1988 // implicit extension or truncation built into it.
1989 // TODO: This is over-conservative.
1990 if (SE->getTypeSizeInBits(CondUse->getOffset()->getType()) != TyBits)
1991 continue;
1993 // If scale is negative, use swapped predicate unless it's testing
1994 // for equality.
1995 if (Scale < 0 && !Cond->isEquality())
1996 Predicate = ICmpInst::getSwappedPredicate(Predicate);
1998 NewStride = &IU->StrideOrder[i];
1999 if (!isa<PointerType>(NewCmpTy))
2000 NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal);
2001 else {
2002 Constant *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal);
2003 NewCmpRHS = ConstantExpr::getIntToPtr(CI, NewCmpTy);
2005 NewOffset = TyBits == NewTyBits
2006 ? SE->getMulExpr(CondUse->getOffset(),
2007 SE->getConstant(CmpTy, Scale))
2008 : SE->getConstant(NewCmpIntTy,
2009 cast<SCEVConstant>(CondUse->getOffset())->getValue()
2010 ->getSExtValue()*Scale);
2011 break;
2015 // Forgo this transformation if it the increment happens to be
2016 // unfortunately positioned after the condition, and the condition
2017 // has multiple uses which prevent it from being moved immediately
2018 // before the branch. See
2019 // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
2020 // for an example of this situation.
2021 if (!Cond->hasOneUse()) {
2022 for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end();
2023 I != E; ++I)
2024 if (I == NewCmpLHS)
2025 return Cond;
2028 if (NewCmpRHS) {
2029 // Create a new compare instruction using new stride / iv.
2030 ICmpInst *OldCond = Cond;
2031 // Insert new compare instruction.
2032 Cond = new ICmpInst(OldCond, Predicate, NewCmpLHS, NewCmpRHS,
2033 L->getHeader()->getName() + ".termcond");
2035 // Remove the old compare instruction. The old indvar is probably dead too.
2036 DeadInsts.push_back(CondUse->getOperandValToReplace());
2037 OldCond->replaceAllUsesWith(Cond);
2038 OldCond->eraseFromParent();
2040 IU->IVUsesByStride[*NewStride]->addUser(NewOffset, Cond, NewCmpLHS);
2041 CondUse = &IU->IVUsesByStride[*NewStride]->Users.back();
2042 CondStride = NewStride;
2043 ++NumEliminated;
2044 Changed = true;
2047 return Cond;
2050 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
2051 /// a max computation.
2053 /// This is a narrow solution to a specific, but acute, problem. For loops
2054 /// like this:
2056 /// i = 0;
2057 /// do {
2058 /// p[i] = 0.0;
2059 /// } while (++i < n);
2061 /// the trip count isn't just 'n', because 'n' might not be positive. And
2062 /// unfortunately this can come up even for loops where the user didn't use
2063 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2064 /// will commonly be lowered like this:
2066 /// if (n > 0) {
2067 /// i = 0;
2068 /// do {
2069 /// p[i] = 0.0;
2070 /// } while (++i < n);
2071 /// }
2073 /// and then it's possible for subsequent optimization to obscure the if
2074 /// test in such a way that indvars can't find it.
2076 /// When indvars can't find the if test in loops like this, it creates a
2077 /// max expression, which allows it to give the loop a canonical
2078 /// induction variable:
2080 /// i = 0;
2081 /// max = n < 1 ? 1 : n;
2082 /// do {
2083 /// p[i] = 0.0;
2084 /// } while (++i != max);
2086 /// Canonical induction variables are necessary because the loop passes
2087 /// are designed around them. The most obvious example of this is the
2088 /// LoopInfo analysis, which doesn't remember trip count values. It
2089 /// expects to be able to rediscover the trip count each time it is
2090 /// needed, and it does this using a simple analyis that only succeeds if
2091 /// the loop has a canonical induction variable.
2093 /// However, when it comes time to generate code, the maximum operation
2094 /// can be quite costly, especially if it's inside of an outer loop.
2096 /// This function solves this problem by detecting this type of loop and
2097 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2098 /// the instructions for the maximum computation.
2100 ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond,
2101 IVStrideUse* &CondUse) {
2102 // Check that the loop matches the pattern we're looking for.
2103 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2104 Cond->getPredicate() != CmpInst::ICMP_NE)
2105 return Cond;
2107 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2108 if (!Sel || !Sel->hasOneUse()) return Cond;
2110 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2111 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2112 return Cond;
2113 const SCEV *One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
2115 // Add one to the backedge-taken count to get the trip count.
2116 const SCEV *IterationCount = SE->getAddExpr(BackedgeTakenCount, One);
2118 // Check for a max calculation that matches the pattern.
2119 if (!isa<SCEVSMaxExpr>(IterationCount) && !isa<SCEVUMaxExpr>(IterationCount))
2120 return Cond;
2121 const SCEVNAryExpr *Max = cast<SCEVNAryExpr>(IterationCount);
2122 if (Max != SE->getSCEV(Sel)) return Cond;
2124 // To handle a max with more than two operands, this optimization would
2125 // require additional checking and setup.
2126 if (Max->getNumOperands() != 2)
2127 return Cond;
2129 const SCEV *MaxLHS = Max->getOperand(0);
2130 const SCEV *MaxRHS = Max->getOperand(1);
2131 if (!MaxLHS || MaxLHS != One) return Cond;
2133 // Check the relevant induction variable for conformance to
2134 // the pattern.
2135 const SCEV *IV = SE->getSCEV(Cond->getOperand(0));
2136 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2137 if (!AR || !AR->isAffine() ||
2138 AR->getStart() != One ||
2139 AR->getStepRecurrence(*SE) != One)
2140 return Cond;
2142 assert(AR->getLoop() == L &&
2143 "Loop condition operand is an addrec in a different loop!");
2145 // Check the right operand of the select, and remember it, as it will
2146 // be used in the new comparison instruction.
2147 Value *NewRHS = 0;
2148 if (SE->getSCEV(Sel->getOperand(1)) == MaxRHS)
2149 NewRHS = Sel->getOperand(1);
2150 else if (SE->getSCEV(Sel->getOperand(2)) == MaxRHS)
2151 NewRHS = Sel->getOperand(2);
2152 if (!NewRHS) return Cond;
2154 // Determine the new comparison opcode. It may be signed or unsigned,
2155 // and the original comparison may be either equality or inequality.
2156 CmpInst::Predicate Pred =
2157 isa<SCEVSMaxExpr>(Max) ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
2158 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2159 Pred = CmpInst::getInversePredicate(Pred);
2161 // Ok, everything looks ok to change the condition into an SLT or SGE and
2162 // delete the max calculation.
2163 ICmpInst *NewCond =
2164 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2166 // Delete the max calculation instructions.
2167 Cond->replaceAllUsesWith(NewCond);
2168 CondUse->setUser(NewCond);
2169 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2170 Cond->eraseFromParent();
2171 Sel->eraseFromParent();
2172 if (Cmp->use_empty())
2173 Cmp->eraseFromParent();
2174 return NewCond;
2177 /// OptimizeShadowIV - If IV is used in a int-to-float cast
2178 /// inside the loop then try to eliminate the cast opeation.
2179 void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
2181 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2182 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2183 return;
2185 for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e;
2186 ++Stride) {
2187 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
2188 IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
2189 assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
2190 if (!isa<SCEVConstant>(SI->first))
2191 continue;
2193 for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
2194 E = SI->second->Users.end(); UI != E; /* empty */) {
2195 ilist<IVStrideUse>::iterator CandidateUI = UI;
2196 ++UI;
2197 Instruction *ShadowUse = CandidateUI->getUser();
2198 const Type *DestTy = NULL;
2200 /* If shadow use is a int->float cast then insert a second IV
2201 to eliminate this cast.
2203 for (unsigned i = 0; i < n; ++i)
2204 foo((double)i);
2206 is transformed into
2208 double d = 0.0;
2209 for (unsigned i = 0; i < n; ++i, ++d)
2210 foo(d);
2212 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
2213 DestTy = UCast->getDestTy();
2214 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
2215 DestTy = SCast->getDestTy();
2216 if (!DestTy) continue;
2218 if (TLI) {
2219 // If target does not support DestTy natively then do not apply
2220 // this transformation.
2221 EVT DVT = TLI->getValueType(DestTy);
2222 if (!TLI->isTypeLegal(DVT)) continue;
2225 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2226 if (!PH) continue;
2227 if (PH->getNumIncomingValues() != 2) continue;
2229 const Type *SrcTy = PH->getType();
2230 int Mantissa = DestTy->getFPMantissaWidth();
2231 if (Mantissa == -1) continue;
2232 if ((int)SE->getTypeSizeInBits(SrcTy) > Mantissa)
2233 continue;
2235 unsigned Entry, Latch;
2236 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2237 Entry = 0;
2238 Latch = 1;
2239 } else {
2240 Entry = 1;
2241 Latch = 0;
2244 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2245 if (!Init) continue;
2246 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
2248 BinaryOperator *Incr =
2249 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2250 if (!Incr) continue;
2251 if (Incr->getOpcode() != Instruction::Add
2252 && Incr->getOpcode() != Instruction::Sub)
2253 continue;
2255 /* Initialize new IV, double d = 0.0 in above example. */
2256 ConstantInt *C = NULL;
2257 if (Incr->getOperand(0) == PH)
2258 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2259 else if (Incr->getOperand(1) == PH)
2260 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2261 else
2262 continue;
2264 if (!C) continue;
2266 /* Add new PHINode. */
2267 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
2269 /* create new increment. '++d' in above example. */
2270 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2271 BinaryOperator *NewIncr =
2272 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2273 Instruction::FAdd : Instruction::FSub,
2274 NewPH, CFP, "IV.S.next.", Incr);
2276 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2277 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2279 /* Remove cast operation */
2280 ShadowUse->replaceAllUsesWith(NewPH);
2281 ShadowUse->eraseFromParent();
2282 NumShadow++;
2283 break;
2288 /// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
2289 /// uses in the loop, look to see if we can eliminate some, in favor of using
2290 /// common indvars for the different uses.
2291 void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
2292 // TODO: implement optzns here.
2294 OptimizeShadowIV(L);
2297 /// OptimizeLoopTermCond - Change loop terminating condition to use the
2298 /// postinc iv when possible.
2299 void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
2300 // Finally, get the terminating condition for the loop if possible. If we
2301 // can, we want to change it to use a post-incremented version of its
2302 // induction variable, to allow coalescing the live ranges for the IV into
2303 // one register value.
2304 BasicBlock *LatchBlock = L->getLoopLatch();
2305 BasicBlock *ExitingBlock = L->getExitingBlock();
2306 LLVMContext &Context = LatchBlock->getContext();
2308 if (!ExitingBlock)
2309 // Multiple exits, just look at the exit in the latch block if there is one.
2310 ExitingBlock = LatchBlock;
2311 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2312 if (!TermBr)
2313 return;
2314 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2315 return;
2317 // Search IVUsesByStride to find Cond's IVUse if there is one.
2318 IVStrideUse *CondUse = 0;
2319 const SCEV *const *CondStride = 0;
2320 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2321 if (!FindIVUserForCond(Cond, CondUse, CondStride))
2322 return; // setcc doesn't use the IV.
2324 if (ExitingBlock != LatchBlock) {
2325 if (!Cond->hasOneUse())
2326 // See below, we don't want the condition to be cloned.
2327 return;
2329 // If exiting block is the latch block, we know it's safe and profitable to
2330 // transform the icmp to use post-inc iv. Otherwise do so only if it would
2331 // not reuse another iv and its iv would be reused by other uses. We are
2332 // optimizing for the case where the icmp is the only use of the iv.
2333 IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[*CondStride];
2334 for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
2335 E = StrideUses.Users.end(); I != E; ++I) {
2336 if (I->getUser() == Cond)
2337 continue;
2338 if (!I->isUseOfPostIncrementedValue())
2339 return;
2342 // FIXME: This is expensive, and worse still ChangeCompareStride does a
2343 // similar check. Can we perform all the icmp related transformations after
2344 // StrengthReduceStridedIVUsers?
2345 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride)) {
2346 int64_t SInt = SC->getValue()->getSExtValue();
2347 for (unsigned NewStride = 0, ee = IU->StrideOrder.size(); NewStride != ee;
2348 ++NewStride) {
2349 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
2350 IU->IVUsesByStride.find(IU->StrideOrder[NewStride]);
2351 if (!isa<SCEVConstant>(SI->first) || SI->first == *CondStride)
2352 continue;
2353 int64_t SSInt =
2354 cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
2355 if (SSInt == SInt)
2356 return; // This can definitely be reused.
2357 if (unsigned(abs64(SSInt)) < SInt || (SSInt % SInt) != 0)
2358 continue;
2359 int64_t Scale = SSInt / SInt;
2360 bool AllUsesAreAddresses = true;
2361 bool AllUsesAreOutsideLoop = true;
2362 std::vector<BasedUser> UsersToProcess;
2363 const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
2364 AllUsesAreAddresses,
2365 AllUsesAreOutsideLoop,
2366 UsersToProcess);
2367 // Avoid rewriting the compare instruction with an iv of new stride
2368 // if it's likely the new stride uses will be rewritten using the
2369 // stride of the compare instruction.
2370 if (AllUsesAreAddresses &&
2371 ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess))
2372 return;
2376 StrideNoReuse.insert(*CondStride);
2379 // If the trip count is computed in terms of a max (due to ScalarEvolution
2380 // being unable to find a sufficient guard, for example), change the loop
2381 // comparison to use SLT or ULT instead of NE.
2382 Cond = OptimizeMax(L, Cond, CondUse);
2384 // If possible, change stride and operands of the compare instruction to
2385 // eliminate one stride.
2386 if (ExitingBlock == LatchBlock)
2387 Cond = ChangeCompareStride(L, Cond, CondUse, CondStride);
2389 // It's possible for the setcc instruction to be anywhere in the loop, and
2390 // possible for it to have multiple users. If it is not immediately before
2391 // the latch block branch, move it.
2392 if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
2393 if (Cond->hasOneUse()) { // Condition has a single use, just move it.
2394 Cond->moveBefore(TermBr);
2395 } else {
2396 // Otherwise, clone the terminating condition and insert into the loopend.
2397 Cond = cast<ICmpInst>(Cond->clone(Context));
2398 Cond->setName(L->getHeader()->getName() + ".termcond");
2399 LatchBlock->getInstList().insert(TermBr, Cond);
2401 // Clone the IVUse, as the old use still exists!
2402 IU->IVUsesByStride[*CondStride]->addUser(CondUse->getOffset(), Cond,
2403 CondUse->getOperandValToReplace());
2404 CondUse = &IU->IVUsesByStride[*CondStride]->Users.back();
2408 // If we get to here, we know that we can transform the setcc instruction to
2409 // use the post-incremented version of the IV, allowing us to coalesce the
2410 // live ranges for the IV correctly.
2411 CondUse->setOffset(SE->getMinusSCEV(CondUse->getOffset(), *CondStride));
2412 CondUse->setIsUseOfPostIncrementedValue(true);
2413 Changed = true;
2415 ++NumLoopCond;
2418 /// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for deciding
2419 /// when to exit the loop is used only for that purpose, try to rearrange things
2420 /// so it counts down to a test against zero.
2421 void LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) {
2423 // If the number of times the loop is executed isn't computable, give up.
2424 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2425 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2426 return;
2428 // Get the terminating condition for the loop if possible (this isn't
2429 // necessarily in the latch, or a block that's a predecessor of the header).
2430 if (!L->getExitBlock())
2431 return; // More than one loop exit blocks.
2433 // Okay, there is one exit block. Try to find the condition that causes the
2434 // loop to be exited.
2435 BasicBlock *ExitingBlock = L->getExitingBlock();
2436 if (!ExitingBlock)
2437 return; // More than one block exiting!
2439 // Okay, we've computed the exiting block. See what condition causes us to
2440 // exit.
2442 // FIXME: we should be able to handle switch instructions (with a single exit)
2443 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2444 if (TermBr == 0) return;
2445 assert(TermBr->isConditional() && "If unconditional, it can't be in loop!");
2446 if (!isa<ICmpInst>(TermBr->getCondition()))
2447 return;
2448 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2450 // Handle only tests for equality for the moment, and only stride 1.
2451 if (Cond->getPredicate() != CmpInst::ICMP_EQ)
2452 return;
2453 const SCEV *IV = SE->getSCEV(Cond->getOperand(0));
2454 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2455 const SCEV *One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
2456 if (!AR || !AR->isAffine() || AR->getStepRecurrence(*SE) != One)
2457 return;
2458 // If the RHS of the comparison is defined inside the loop, the rewrite
2459 // cannot be done.
2460 if (Instruction *CR = dyn_cast<Instruction>(Cond->getOperand(1)))
2461 if (L->contains(CR->getParent()))
2462 return;
2464 // Make sure the IV is only used for counting. Value may be preinc or
2465 // postinc; 2 uses in either case.
2466 if (!Cond->getOperand(0)->hasNUses(2))
2467 return;
2468 PHINode *phi = dyn_cast<PHINode>(Cond->getOperand(0));
2469 Instruction *incr;
2470 if (phi && phi->getParent()==L->getHeader()) {
2471 // value tested is preinc. Find the increment.
2472 // A CmpInst is not a BinaryOperator; we depend on this.
2473 Instruction::use_iterator UI = phi->use_begin();
2474 incr = dyn_cast<BinaryOperator>(UI);
2475 if (!incr)
2476 incr = dyn_cast<BinaryOperator>(++UI);
2477 // 1 use for postinc value, the phi. Unnecessarily conservative?
2478 if (!incr || !incr->hasOneUse() || incr->getOpcode()!=Instruction::Add)
2479 return;
2480 } else {
2481 // Value tested is postinc. Find the phi node.
2482 incr = dyn_cast<BinaryOperator>(Cond->getOperand(0));
2483 if (!incr || incr->getOpcode()!=Instruction::Add)
2484 return;
2486 Instruction::use_iterator UI = Cond->getOperand(0)->use_begin();
2487 phi = dyn_cast<PHINode>(UI);
2488 if (!phi)
2489 phi = dyn_cast<PHINode>(++UI);
2490 // 1 use for preinc value, the increment.
2491 if (!phi || phi->getParent()!=L->getHeader() || !phi->hasOneUse())
2492 return;
2495 // Replace the increment with a decrement.
2496 BinaryOperator *decr =
2497 BinaryOperator::Create(Instruction::Sub, incr->getOperand(0),
2498 incr->getOperand(1), "tmp", incr);
2499 incr->replaceAllUsesWith(decr);
2500 incr->eraseFromParent();
2502 // Substitute endval-startval for the original startval, and 0 for the
2503 // original endval. Since we're only testing for equality this is OK even
2504 // if the computation wraps around.
2505 BasicBlock *Preheader = L->getLoopPreheader();
2506 Instruction *PreInsertPt = Preheader->getTerminator();
2507 int inBlock = L->contains(phi->getIncomingBlock(0)) ? 1 : 0;
2508 Value *startVal = phi->getIncomingValue(inBlock);
2509 Value *endVal = Cond->getOperand(1);
2510 // FIXME check for case where both are constant
2511 Constant* Zero = ConstantInt::get(Cond->getOperand(1)->getType(), 0);
2512 BinaryOperator *NewStartVal =
2513 BinaryOperator::Create(Instruction::Sub, endVal, startVal,
2514 "tmp", PreInsertPt);
2515 phi->setIncomingValue(inBlock, NewStartVal);
2516 Cond->setOperand(1, Zero);
2518 Changed = true;
2521 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
2523 IU = &getAnalysis<IVUsers>();
2524 LI = &getAnalysis<LoopInfo>();
2525 DT = &getAnalysis<DominatorTree>();
2526 SE = &getAnalysis<ScalarEvolution>();
2527 Changed = false;
2529 if (!IU->IVUsesByStride.empty()) {
2530 DEBUG(errs() << "\nLSR on \"" << L->getHeader()->getParent()->getName()
2531 << "\" ";
2532 L->dump());
2534 // Sort the StrideOrder so we process larger strides first.
2535 std::stable_sort(IU->StrideOrder.begin(), IU->StrideOrder.end(),
2536 StrideCompare(SE));
2538 // Optimize induction variables. Some indvar uses can be transformed to use
2539 // strides that will be needed for other purposes. A common example of this
2540 // is the exit test for the loop, which can often be rewritten to use the
2541 // computation of some other indvar to decide when to terminate the loop.
2542 OptimizeIndvars(L);
2544 // Change loop terminating condition to use the postinc iv when possible
2545 // and optimize loop terminating compare. FIXME: Move this after
2546 // StrengthReduceStridedIVUsers?
2547 OptimizeLoopTermCond(L);
2549 // FIXME: We can shrink overlarge IV's here. e.g. if the code has
2550 // computation in i64 values and the target doesn't support i64, demote
2551 // the computation to 32-bit if safe.
2553 // FIXME: Attempt to reuse values across multiple IV's. In particular, we
2554 // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
2555 // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
2556 // Need to be careful that IV's are all the same type. Only works for
2557 // intptr_t indvars.
2559 // IVsByStride keeps IVs for one particular loop.
2560 assert(IVsByStride.empty() && "Stale entries in IVsByStride?");
2562 // Note: this processes each stride/type pair individually. All users
2563 // passed into StrengthReduceStridedIVUsers have the same type AND stride.
2564 // Also, note that we iterate over IVUsesByStride indirectly by using
2565 // StrideOrder. This extra layer of indirection makes the ordering of
2566 // strides deterministic - not dependent on map order.
2567 for (unsigned Stride = 0, e = IU->StrideOrder.size();
2568 Stride != e; ++Stride) {
2569 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
2570 IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
2571 assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
2572 // FIXME: Generalize to non-affine IV's.
2573 if (!SI->first->isLoopInvariant(L))
2574 continue;
2575 StrengthReduceStridedIVUsers(SI->first, *SI->second, L);
2579 // After all sharing is done, see if we can adjust the loop to test against
2580 // zero instead of counting up to a maximum. This is usually faster.
2581 OptimizeLoopCountIV(L);
2583 // We're done analyzing this loop; release all the state we built up for it.
2584 IVsByStride.clear();
2585 StrideNoReuse.clear();
2587 // Clean up after ourselves
2588 if (!DeadInsts.empty())
2589 DeleteTriviallyDeadInstructions();
2591 // At this point, it is worth checking to see if any recurrence PHIs are also
2592 // dead, so that we can remove them as well.
2593 DeleteDeadPHIs(L->getHeader());
2595 return Changed;