1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11 // inserting a dummy basic block. This pass may be "required" by passes that
12 // cannot deal with critical edges. For this usage, the structure type is
13 // forward declared. This pass obviously invalidates the CFG, but can update
14 // forward dominator (set, immediate dominators, tree, and frontier)
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "break-crit-edges"
20 #include "llvm/Transforms/Scalar.h"
21 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Function.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Type.h"
27 #include "llvm/Support/CFG.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
34 STATISTIC(NumBroken
, "Number of blocks inserted");
37 struct VISIBILITY_HIDDEN BreakCriticalEdges
: public FunctionPass
{
38 static char ID
; // Pass identification, replacement for typeid
39 BreakCriticalEdges() : FunctionPass(&ID
) {}
41 virtual bool runOnFunction(Function
&F
);
43 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
44 AU
.addPreserved
<DominatorTree
>();
45 AU
.addPreserved
<DominanceFrontier
>();
46 AU
.addPreserved
<LoopInfo
>();
48 // No loop canonicalization guarantees are broken by this pass.
49 AU
.addPreservedID(LoopSimplifyID
);
54 char BreakCriticalEdges::ID
= 0;
55 static RegisterPass
<BreakCriticalEdges
>
56 X("break-crit-edges", "Break critical edges in CFG");
58 // Publically exposed interface to pass...
59 const PassInfo
*const llvm::BreakCriticalEdgesID
= &X
;
60 FunctionPass
*llvm::createBreakCriticalEdgesPass() {
61 return new BreakCriticalEdges();
64 // runOnFunction - Loop over all of the edges in the CFG, breaking critical
65 // edges as they are found.
67 bool BreakCriticalEdges::runOnFunction(Function
&F
) {
69 for (Function::iterator I
= F
.begin(), E
= F
.end(); I
!= E
; ++I
) {
70 TerminatorInst
*TI
= I
->getTerminator();
71 if (TI
->getNumSuccessors() > 1)
72 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
73 if (SplitCriticalEdge(TI
, i
, this)) {
82 //===----------------------------------------------------------------------===//
83 // Implementation of the external critical edge manipulation functions
84 //===----------------------------------------------------------------------===//
86 // isCriticalEdge - Return true if the specified edge is a critical edge.
87 // Critical edges are edges from a block with multiple successors to a block
88 // with multiple predecessors.
90 bool llvm::isCriticalEdge(const TerminatorInst
*TI
, unsigned SuccNum
,
91 bool AllowIdenticalEdges
) {
92 assert(SuccNum
< TI
->getNumSuccessors() && "Illegal edge specification!");
93 if (TI
->getNumSuccessors() == 1) return false;
95 const BasicBlock
*Dest
= TI
->getSuccessor(SuccNum
);
96 pred_const_iterator I
= pred_begin(Dest
), E
= pred_end(Dest
);
98 // If there is more than one predecessor, this is a critical edge...
99 assert(I
!= E
&& "No preds, but we have an edge to the block?");
100 const BasicBlock
*FirstPred
= *I
;
101 ++I
; // Skip one edge due to the incoming arc from TI.
102 if (!AllowIdenticalEdges
)
105 // If AllowIdenticalEdges is true, then we allow this edge to be considered
106 // non-critical iff all preds come from TI's block.
110 // Note: leave this as is until no one ever compiles with either gcc 4.0.1
111 // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
118 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
119 /// split the critical edge. This will update DominatorTree and
120 /// DominatorFrontier information if it is available, thus calling this pass
121 /// will not invalidate any of them. This returns true if the edge was split,
122 /// false otherwise. This ensures that all edges to that dest go to one block
123 /// instead of each going to a different block.
125 BasicBlock
*llvm::SplitCriticalEdge(TerminatorInst
*TI
, unsigned SuccNum
,
126 Pass
*P
, bool MergeIdenticalEdges
) {
127 if (!isCriticalEdge(TI
, SuccNum
, MergeIdenticalEdges
)) return 0;
128 BasicBlock
*TIBB
= TI
->getParent();
129 BasicBlock
*DestBB
= TI
->getSuccessor(SuccNum
);
131 // Create a new basic block, linking it into the CFG.
132 BasicBlock
*NewBB
= BasicBlock::Create(TI
->getContext(),
133 TIBB
->getName() + "." + DestBB
->getName() + "_crit_edge");
134 // Create our unconditional branch...
135 BranchInst::Create(DestBB
, NewBB
);
137 // Branch to the new block, breaking the edge.
138 TI
->setSuccessor(SuccNum
, NewBB
);
140 // Insert the block into the function... right after the block TI lives in.
141 Function
&F
= *TIBB
->getParent();
142 Function::iterator FBBI
= TIBB
;
143 F
.getBasicBlockList().insert(++FBBI
, NewBB
);
145 // If there are any PHI nodes in DestBB, we need to update them so that they
146 // merge incoming values from NewBB instead of from TIBB.
148 for (BasicBlock::iterator I
= DestBB
->begin(); isa
<PHINode
>(I
); ++I
) {
149 PHINode
*PN
= cast
<PHINode
>(I
);
150 // We no longer enter through TIBB, now we come in through NewBB. Revector
151 // exactly one entry in the PHI node that used to come from TIBB to come
153 int BBIdx
= PN
->getBasicBlockIndex(TIBB
);
154 PN
->setIncomingBlock(BBIdx
, NewBB
);
157 // If there are any other edges from TIBB to DestBB, update those to go
158 // through the split block, making those edges non-critical as well (and
159 // reducing the number of phi entries in the DestBB if relevant).
160 if (MergeIdenticalEdges
) {
161 for (unsigned i
= SuccNum
+1, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
162 if (TI
->getSuccessor(i
) != DestBB
) continue;
164 // Remove an entry for TIBB from DestBB phi nodes.
165 DestBB
->removePredecessor(TIBB
);
167 // We found another edge to DestBB, go to NewBB instead.
168 TI
->setSuccessor(i
, NewBB
);
174 // If we don't have a pass object, we can't update anything...
175 if (P
== 0) return NewBB
;
177 // Now update analysis information. Since the only predecessor of NewBB is
178 // the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
179 // anything, as there are other successors of DestBB. However, if all other
180 // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
181 // loop header) then NewBB dominates DestBB.
182 SmallVector
<BasicBlock
*, 8> OtherPreds
;
184 for (pred_iterator I
= pred_begin(DestBB
), E
= pred_end(DestBB
); I
!= E
; ++I
)
186 OtherPreds
.push_back(*I
);
188 bool NewBBDominatesDestBB
= true;
190 // Should we update DominatorTree information?
191 if (DominatorTree
*DT
= P
->getAnalysisIfAvailable
<DominatorTree
>()) {
192 DomTreeNode
*TINode
= DT
->getNode(TIBB
);
194 // The new block is not the immediate dominator for any other nodes, but
195 // TINode is the immediate dominator for the new node.
197 if (TINode
) { // Don't break unreachable code!
198 DomTreeNode
*NewBBNode
= DT
->addNewBlock(NewBB
, TIBB
);
199 DomTreeNode
*DestBBNode
= 0;
201 // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
202 if (!OtherPreds
.empty()) {
203 DestBBNode
= DT
->getNode(DestBB
);
204 while (!OtherPreds
.empty() && NewBBDominatesDestBB
) {
205 if (DomTreeNode
*OPNode
= DT
->getNode(OtherPreds
.back()))
206 NewBBDominatesDestBB
= DT
->dominates(DestBBNode
, OPNode
);
207 OtherPreds
.pop_back();
212 // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
213 // doesn't dominate anything.
214 if (NewBBDominatesDestBB
) {
215 if (!DestBBNode
) DestBBNode
= DT
->getNode(DestBB
);
216 DT
->changeImmediateDominator(DestBBNode
, NewBBNode
);
221 // Should we update DominanceFrontier information?
222 if (DominanceFrontier
*DF
= P
->getAnalysisIfAvailable
<DominanceFrontier
>()) {
223 // If NewBBDominatesDestBB hasn't been computed yet, do so with DF.
224 if (!OtherPreds
.empty()) {
225 // FIXME: IMPLEMENT THIS!
226 llvm_unreachable("Requiring domfrontiers but not idom/domtree/domset."
227 " not implemented yet!");
230 // Since the new block is dominated by its only predecessor TIBB,
231 // it cannot be in any block's dominance frontier. If NewBB dominates
232 // DestBB, its dominance frontier is the same as DestBB's, otherwise it is
234 DominanceFrontier::DomSetType NewDFSet
;
235 if (NewBBDominatesDestBB
) {
236 DominanceFrontier::iterator I
= DF
->find(DestBB
);
237 if (I
!= DF
->end()) {
238 DF
->addBasicBlock(NewBB
, I
->second
);
240 if (I
->second
.count(DestBB
)) {
241 // However NewBB's frontier does not include DestBB.
242 DominanceFrontier::iterator NF
= DF
->find(NewBB
);
243 DF
->removeFromFrontier(NF
, DestBB
);
247 DF
->addBasicBlock(NewBB
, DominanceFrontier::DomSetType());
249 DominanceFrontier::DomSetType NewDFSet
;
250 NewDFSet
.insert(DestBB
);
251 DF
->addBasicBlock(NewBB
, NewDFSet
);
255 // Update LoopInfo if it is around.
256 if (LoopInfo
*LI
= P
->getAnalysisIfAvailable
<LoopInfo
>()) {
257 if (Loop
*TIL
= LI
->getLoopFor(TIBB
)) {
258 // If one or the other blocks were not in a loop, the new block is not
259 // either, and thus LI doesn't need to be updated.
260 if (Loop
*DestLoop
= LI
->getLoopFor(DestBB
)) {
261 if (TIL
== DestLoop
) {
262 // Both in the same loop, the NewBB joins loop.
263 DestLoop
->addBasicBlockToLoop(NewBB
, LI
->getBase());
264 } else if (TIL
->contains(DestLoop
->getHeader())) {
265 // Edge from an outer loop to an inner loop. Add to the outer loop.
266 TIL
->addBasicBlockToLoop(NewBB
, LI
->getBase());
267 } else if (DestLoop
->contains(TIL
->getHeader())) {
268 // Edge from an inner loop to an outer loop. Add to the outer loop.
269 DestLoop
->addBasicBlockToLoop(NewBB
, LI
->getBase());
271 // Edge from two loops with no containment relation. Because these
272 // are natural loops, we know that the destination block must be the
273 // header of its loop (adding a branch into a loop elsewhere would
274 // create an irreducible loop).
275 assert(DestLoop
->getHeader() == DestBB
&&
276 "Should not create irreducible loops!");
277 if (Loop
*P
= DestLoop
->getParentLoop())
278 P
->addBasicBlockToLoop(NewBB
, LI
->getBase());
281 // If TIBB is in a loop and DestBB is outside of that loop, split the
282 // other exit blocks of the loop that also have predecessors outside
283 // the loop, to maintain a LoopSimplify guarantee.
284 if (!TIL
->contains(DestBB
) &&
285 P
->mustPreserveAnalysisID(LoopSimplifyID
)) {
286 // For each unique exit block...
287 SmallVector
<BasicBlock
*, 4> ExitBlocks
;
288 TIL
->getExitBlocks(ExitBlocks
);
289 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
290 // Collect all the preds that are inside the loop, and note
291 // whether there are any preds outside the loop.
292 SmallVector
<BasicBlock
*, 4> Preds
;
293 bool AllPredsInLoop
= false;
294 BasicBlock
*Exit
= ExitBlocks
[i
];
295 for (pred_iterator I
= pred_begin(Exit
), E
= pred_end(Exit
);
297 if (TIL
->contains(*I
))
300 AllPredsInLoop
= true;
301 // If there are any preds not in the loop, we'll need to split
302 // the edges. The Preds.empty() check is needed because a block
303 // may appear multiple times in the list. We can't use
304 // getUniqueExitBlocks above because that depends on LoopSimplify
305 // form, which we're in the process of restoring!
306 if (Preds
.empty() || !AllPredsInLoop
) continue;
307 BasicBlock
*NewBB
= SplitBlockPredecessors(Exit
,
308 Preds
.data(), Preds
.size(),
310 // Update LCSSA form. This is fairly simple in LoopSimplify form:
311 // just move the existing LCSSA-mandated PHI nodes from the old exit
312 // block to the new one.
313 if (P
->mustPreserveAnalysisID(LCSSAID
))
314 for (BasicBlock::iterator I
= Exit
->begin();
315 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
316 PN
->moveBefore(NewBB
->getTerminator());
319 // LCSSA form was updated above for the case where LoopSimplify is
320 // available, which means that all predecessors of loop exit blocks
321 // are within the loop. Without LoopSimplify form, it would be
322 // necessary to insert a new phi.
323 assert((!P
->mustPreserveAnalysisID(LCSSAID
) ||
324 P
->mustPreserveAnalysisID(LoopSimplifyID
)) &&
325 "SplitCriticalEdge doesn't know how to update LCCSA form "
326 "without LoopSimplify!");