Indentation.
[llvm/avr.git] / lib / CodeGen / PreAllocSplitting.cpp
blobfbab7e8be7552f8352709f4add6da9d80587aeb9
1 //===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the machine instruction level pre-register allocation
11 // live interval splitting pass. It finds live interval barriers, i.e.
12 // instructions which will kill all physical registers in certain register
13 // classes, and split all live intervals which cross the barrier.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "pre-alloc-split"
18 #include "VirtRegMap.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/LiveStackAnalysis.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/CodeGen/RegisterCoalescer.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/DepthFirstIterator.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/Statistic.h"
39 using namespace llvm;
41 static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);
42 static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1), cl::Hidden);
43 static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1), cl::Hidden);
45 STATISTIC(NumSplits, "Number of intervals split");
46 STATISTIC(NumRemats, "Number of intervals split by rematerialization");
47 STATISTIC(NumFolds, "Number of intervals split with spill folding");
48 STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding");
49 STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers");
50 STATISTIC(NumDeadSpills, "Number of dead spills removed");
52 namespace {
53 class VISIBILITY_HIDDEN PreAllocSplitting : public MachineFunctionPass {
54 MachineFunction *CurrMF;
55 const TargetMachine *TM;
56 const TargetInstrInfo *TII;
57 const TargetRegisterInfo* TRI;
58 MachineFrameInfo *MFI;
59 MachineRegisterInfo *MRI;
60 LiveIntervals *LIs;
61 LiveStacks *LSs;
62 VirtRegMap *VRM;
64 // Barrier - Current barrier being processed.
65 MachineInstr *Barrier;
67 // BarrierMBB - Basic block where the barrier resides in.
68 MachineBasicBlock *BarrierMBB;
70 // Barrier - Current barrier index.
71 unsigned BarrierIdx;
73 // CurrLI - Current live interval being split.
74 LiveInterval *CurrLI;
76 // CurrSLI - Current stack slot live interval.
77 LiveInterval *CurrSLI;
79 // CurrSValNo - Current val# for the stack slot live interval.
80 VNInfo *CurrSValNo;
82 // IntervalSSMap - A map from live interval to spill slots.
83 DenseMap<unsigned, int> IntervalSSMap;
85 // Def2SpillMap - A map from a def instruction index to spill index.
86 DenseMap<unsigned, unsigned> Def2SpillMap;
88 public:
89 static char ID;
90 PreAllocSplitting() : MachineFunctionPass(&ID) {}
92 virtual bool runOnMachineFunction(MachineFunction &MF);
94 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
95 AU.setPreservesCFG();
96 AU.addRequired<LiveIntervals>();
97 AU.addPreserved<LiveIntervals>();
98 AU.addRequired<LiveStacks>();
99 AU.addPreserved<LiveStacks>();
100 AU.addPreserved<RegisterCoalescer>();
101 if (StrongPHIElim)
102 AU.addPreservedID(StrongPHIEliminationID);
103 else
104 AU.addPreservedID(PHIEliminationID);
105 AU.addRequired<MachineDominatorTree>();
106 AU.addRequired<MachineLoopInfo>();
107 AU.addRequired<VirtRegMap>();
108 AU.addPreserved<MachineDominatorTree>();
109 AU.addPreserved<MachineLoopInfo>();
110 AU.addPreserved<VirtRegMap>();
111 MachineFunctionPass::getAnalysisUsage(AU);
114 virtual void releaseMemory() {
115 IntervalSSMap.clear();
116 Def2SpillMap.clear();
119 virtual const char *getPassName() const {
120 return "Pre-Register Allocaton Live Interval Splitting";
123 /// print - Implement the dump method.
124 virtual void print(std::ostream &O, const Module* M = 0) const {
125 LIs->print(O, M);
128 void print(std::ostream *O, const Module* M = 0) const {
129 if (O) print(*O, M);
132 private:
133 MachineBasicBlock::iterator
134 findNextEmptySlot(MachineBasicBlock*, MachineInstr*,
135 unsigned&);
137 MachineBasicBlock::iterator
138 findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
139 SmallPtrSet<MachineInstr*, 4>&, unsigned&);
141 MachineBasicBlock::iterator
142 findRestorePoint(MachineBasicBlock*, MachineInstr*, unsigned,
143 SmallPtrSet<MachineInstr*, 4>&, unsigned&);
145 int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);
147 bool IsAvailableInStack(MachineBasicBlock*, unsigned, unsigned, unsigned,
148 unsigned&, int&) const;
150 void UpdateSpillSlotInterval(VNInfo*, unsigned, unsigned);
152 bool SplitRegLiveInterval(LiveInterval*);
154 bool SplitRegLiveIntervals(const TargetRegisterClass **,
155 SmallPtrSet<LiveInterval*, 8>&);
157 bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB,
158 MachineBasicBlock* BarrierMBB);
159 bool Rematerialize(unsigned vreg, VNInfo* ValNo,
160 MachineInstr* DefMI,
161 MachineBasicBlock::iterator RestorePt,
162 unsigned RestoreIdx,
163 SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
164 MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
165 MachineInstr* DefMI,
166 MachineInstr* Barrier,
167 MachineBasicBlock* MBB,
168 int& SS,
169 SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
170 MachineInstr* FoldRestore(unsigned vreg,
171 const TargetRegisterClass* RC,
172 MachineInstr* Barrier,
173 MachineBasicBlock* MBB,
174 int SS,
175 SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
176 void RenumberValno(VNInfo* VN);
177 void ReconstructLiveInterval(LiveInterval* LI);
178 bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split);
179 unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs,
180 unsigned Reg, int FrameIndex, bool& TwoAddr);
181 VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use,
182 MachineBasicBlock* MBB, LiveInterval* LI,
183 SmallPtrSet<MachineInstr*, 4>& Visited,
184 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
185 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
186 DenseMap<MachineInstr*, VNInfo*>& NewVNs,
187 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
188 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
189 bool IsTopLevel, bool IsIntraBlock);
190 VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use,
191 MachineBasicBlock* MBB, LiveInterval* LI,
192 SmallPtrSet<MachineInstr*, 4>& Visited,
193 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
194 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
195 DenseMap<MachineInstr*, VNInfo*>& NewVNs,
196 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
197 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
198 bool IsTopLevel, bool IsIntraBlock);
200 } // end anonymous namespace
202 char PreAllocSplitting::ID = 0;
204 static RegisterPass<PreAllocSplitting>
205 X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting");
207 const PassInfo *const llvm::PreAllocSplittingID = &X;
210 /// findNextEmptySlot - Find a gap after the given machine instruction in the
211 /// instruction index map. If there isn't one, return end().
212 MachineBasicBlock::iterator
213 PreAllocSplitting::findNextEmptySlot(MachineBasicBlock *MBB, MachineInstr *MI,
214 unsigned &SpotIndex) {
215 MachineBasicBlock::iterator MII = MI;
216 if (++MII != MBB->end()) {
217 unsigned Index = LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII));
218 if (Index) {
219 SpotIndex = Index;
220 return MII;
223 return MBB->end();
226 /// findSpillPoint - Find a gap as far away from the given MI that's suitable
227 /// for spilling the current live interval. The index must be before any
228 /// defs and uses of the live interval register in the mbb. Return begin() if
229 /// none is found.
230 MachineBasicBlock::iterator
231 PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
232 MachineInstr *DefMI,
233 SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
234 unsigned &SpillIndex) {
235 MachineBasicBlock::iterator Pt = MBB->begin();
237 MachineBasicBlock::iterator MII = MI;
238 MachineBasicBlock::iterator EndPt = DefMI
239 ? MachineBasicBlock::iterator(DefMI) : MBB->begin();
241 while (MII != EndPt && !RefsInMBB.count(MII) &&
242 MII->getOpcode() != TRI->getCallFrameSetupOpcode())
243 --MII;
244 if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
246 while (MII != EndPt && !RefsInMBB.count(MII)) {
247 unsigned Index = LIs->getInstructionIndex(MII);
249 // We can't insert the spill between the barrier (a call), and its
250 // corresponding call frame setup.
251 if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) {
252 while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) {
253 --MII;
254 if (MII == EndPt) {
255 return Pt;
258 continue;
259 } else if (LIs->hasGapBeforeInstr(Index)) {
260 Pt = MII;
261 SpillIndex = LIs->findGapBeforeInstr(Index, true);
264 if (RefsInMBB.count(MII))
265 return Pt;
268 --MII;
271 return Pt;
274 /// findRestorePoint - Find a gap in the instruction index map that's suitable
275 /// for restoring the current live interval value. The index must be before any
276 /// uses of the live interval register in the mbb. Return end() if none is
277 /// found.
278 MachineBasicBlock::iterator
279 PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
280 unsigned LastIdx,
281 SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
282 unsigned &RestoreIndex) {
283 // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
284 // begin index accordingly.
285 MachineBasicBlock::iterator Pt = MBB->end();
286 MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator();
288 // We start at the call, so walk forward until we find the call frame teardown
289 // since we can't insert restores before that. Bail if we encounter a use
290 // during this time.
291 MachineBasicBlock::iterator MII = MI;
292 if (MII == EndPt) return Pt;
294 while (MII != EndPt && !RefsInMBB.count(MII) &&
295 MII->getOpcode() != TRI->getCallFrameDestroyOpcode())
296 ++MII;
297 if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
298 ++MII;
300 // FIXME: Limit the number of instructions to examine to reduce
301 // compile time?
302 while (MII != EndPt) {
303 unsigned Index = LIs->getInstructionIndex(MII);
304 if (Index > LastIdx)
305 break;
306 unsigned Gap = LIs->findGapBeforeInstr(Index);
308 // We can't insert a restore between the barrier (a call) and its
309 // corresponding call frame teardown.
310 if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) {
311 do {
312 if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
313 ++MII;
314 } while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode());
315 } else if (Gap) {
316 Pt = MII;
317 RestoreIndex = Gap;
320 if (RefsInMBB.count(MII))
321 return Pt;
323 ++MII;
326 return Pt;
329 /// CreateSpillStackSlot - Create a stack slot for the live interval being
330 /// split. If the live interval was previously split, just reuse the same
331 /// slot.
332 int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
333 const TargetRegisterClass *RC) {
334 int SS;
335 DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
336 if (I != IntervalSSMap.end()) {
337 SS = I->second;
338 } else {
339 SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
340 IntervalSSMap[Reg] = SS;
343 // Create live interval for stack slot.
344 CurrSLI = &LSs->getOrCreateInterval(SS, RC);
345 if (CurrSLI->hasAtLeastOneValue())
346 CurrSValNo = CurrSLI->getValNumInfo(0);
347 else
348 CurrSValNo = CurrSLI->getNextValue(0, 0, false, LSs->getVNInfoAllocator());
349 return SS;
352 /// IsAvailableInStack - Return true if register is available in a split stack
353 /// slot at the specified index.
354 bool
355 PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
356 unsigned Reg, unsigned DefIndex,
357 unsigned RestoreIndex, unsigned &SpillIndex,
358 int& SS) const {
359 if (!DefMBB)
360 return false;
362 DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
363 if (I == IntervalSSMap.end())
364 return false;
365 DenseMap<unsigned, unsigned>::iterator II = Def2SpillMap.find(DefIndex);
366 if (II == Def2SpillMap.end())
367 return false;
369 // If last spill of def is in the same mbb as barrier mbb (where restore will
370 // be), make sure it's not below the intended restore index.
371 // FIXME: Undo the previous spill?
372 assert(LIs->getMBBFromIndex(II->second) == DefMBB);
373 if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
374 return false;
376 SS = I->second;
377 SpillIndex = II->second;
378 return true;
381 /// UpdateSpillSlotInterval - Given the specified val# of the register live
382 /// interval being split, and the spill and restore indicies, update the live
383 /// interval of the spill stack slot.
384 void
385 PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex,
386 unsigned RestoreIndex) {
387 assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
388 "Expect restore in the barrier mbb");
390 MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
391 if (MBB == BarrierMBB) {
392 // Intra-block spill + restore. We are done.
393 LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
394 CurrSLI->addRange(SLR);
395 return;
398 SmallPtrSet<MachineBasicBlock*, 4> Processed;
399 unsigned EndIdx = LIs->getMBBEndIdx(MBB);
400 LiveRange SLR(SpillIndex, EndIdx+1, CurrSValNo);
401 CurrSLI->addRange(SLR);
402 Processed.insert(MBB);
404 // Start from the spill mbb, figure out the extend of the spill slot's
405 // live interval.
406 SmallVector<MachineBasicBlock*, 4> WorkList;
407 const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
408 if (LR->end > EndIdx)
409 // If live range extend beyond end of mbb, add successors to work list.
410 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
411 SE = MBB->succ_end(); SI != SE; ++SI)
412 WorkList.push_back(*SI);
414 while (!WorkList.empty()) {
415 MachineBasicBlock *MBB = WorkList.back();
416 WorkList.pop_back();
417 if (Processed.count(MBB))
418 continue;
419 unsigned Idx = LIs->getMBBStartIdx(MBB);
420 LR = CurrLI->getLiveRangeContaining(Idx);
421 if (LR && LR->valno == ValNo) {
422 EndIdx = LIs->getMBBEndIdx(MBB);
423 if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
424 // Spill slot live interval stops at the restore.
425 LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
426 CurrSLI->addRange(SLR);
427 } else if (LR->end > EndIdx) {
428 // Live range extends beyond end of mbb, process successors.
429 LiveRange SLR(Idx, EndIdx+1, CurrSValNo);
430 CurrSLI->addRange(SLR);
431 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
432 SE = MBB->succ_end(); SI != SE; ++SI)
433 WorkList.push_back(*SI);
434 } else {
435 LiveRange SLR(Idx, LR->end, CurrSValNo);
436 CurrSLI->addRange(SLR);
438 Processed.insert(MBB);
443 /// PerformPHIConstruction - From properly set up use and def lists, use a PHI
444 /// construction algorithm to compute the ranges and valnos for an interval.
445 VNInfo*
446 PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
447 MachineBasicBlock* MBB, LiveInterval* LI,
448 SmallPtrSet<MachineInstr*, 4>& Visited,
449 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
450 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
451 DenseMap<MachineInstr*, VNInfo*>& NewVNs,
452 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
453 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
454 bool IsTopLevel, bool IsIntraBlock) {
455 // Return memoized result if it's available.
456 if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI))
457 return NewVNs[UseI];
458 else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI))
459 return NewVNs[UseI];
460 else if (!IsIntraBlock && LiveOut.count(MBB))
461 return LiveOut[MBB];
463 // Check if our block contains any uses or defs.
464 bool ContainsDefs = Defs.count(MBB);
465 bool ContainsUses = Uses.count(MBB);
467 VNInfo* RetVNI = 0;
469 // Enumerate the cases of use/def contaning blocks.
470 if (!ContainsDefs && !ContainsUses) {
471 return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
472 NewVNs, LiveOut, Phis,
473 IsTopLevel, IsIntraBlock);
474 } else if (ContainsDefs && !ContainsUses) {
475 SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
477 // Search for the def in this block. If we don't find it before the
478 // instruction we care about, go to the fallback case. Note that that
479 // should never happen: this cannot be intrablock, so use should
480 // always be an end() iterator.
481 assert(UseI == MBB->end() && "No use marked in intrablock");
483 MachineBasicBlock::iterator Walker = UseI;
484 --Walker;
485 while (Walker != MBB->begin()) {
486 if (BlockDefs.count(Walker))
487 break;
488 --Walker;
491 // Once we've found it, extend its VNInfo to our instruction.
492 unsigned DefIndex = LIs->getInstructionIndex(Walker);
493 DefIndex = LiveIntervals::getDefIndex(DefIndex);
494 unsigned EndIndex = LIs->getMBBEndIdx(MBB);
496 RetVNI = NewVNs[Walker];
497 LI->addRange(LiveRange(DefIndex, EndIndex+1, RetVNI));
498 } else if (!ContainsDefs && ContainsUses) {
499 SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
501 // Search for the use in this block that precedes the instruction we care
502 // about, going to the fallback case if we don't find it.
503 if (UseI == MBB->begin())
504 return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
505 Uses, NewVNs, LiveOut, Phis,
506 IsTopLevel, IsIntraBlock);
508 MachineBasicBlock::iterator Walker = UseI;
509 --Walker;
510 bool found = false;
511 while (Walker != MBB->begin()) {
512 if (BlockUses.count(Walker)) {
513 found = true;
514 break;
516 --Walker;
519 // Must check begin() too.
520 if (!found) {
521 if (BlockUses.count(Walker))
522 found = true;
523 else
524 return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
525 Uses, NewVNs, LiveOut, Phis,
526 IsTopLevel, IsIntraBlock);
529 unsigned UseIndex = LIs->getInstructionIndex(Walker);
530 UseIndex = LiveIntervals::getUseIndex(UseIndex);
531 unsigned EndIndex = 0;
532 if (IsIntraBlock) {
533 EndIndex = LIs->getInstructionIndex(UseI);
534 EndIndex = LiveIntervals::getUseIndex(EndIndex);
535 } else
536 EndIndex = LIs->getMBBEndIdx(MBB);
538 // Now, recursively phi construct the VNInfo for the use we found,
539 // and then extend it to include the instruction we care about
540 RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
541 NewVNs, LiveOut, Phis, false, true);
543 LI->addRange(LiveRange(UseIndex, EndIndex+1, RetVNI));
545 // FIXME: Need to set kills properly for inter-block stuff.
546 if (LI->isKill(RetVNI, UseIndex)) LI->removeKill(RetVNI, UseIndex);
547 if (IsIntraBlock)
548 LI->addKill(RetVNI, EndIndex, false);
549 } else if (ContainsDefs && ContainsUses) {
550 SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
551 SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
553 // This case is basically a merging of the two preceding case, with the
554 // special note that checking for defs must take precedence over checking
555 // for uses, because of two-address instructions.
557 if (UseI == MBB->begin())
558 return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
559 NewVNs, LiveOut, Phis,
560 IsTopLevel, IsIntraBlock);
562 MachineBasicBlock::iterator Walker = UseI;
563 --Walker;
564 bool foundDef = false;
565 bool foundUse = false;
566 while (Walker != MBB->begin()) {
567 if (BlockDefs.count(Walker)) {
568 foundDef = true;
569 break;
570 } else if (BlockUses.count(Walker)) {
571 foundUse = true;
572 break;
574 --Walker;
577 // Must check begin() too.
578 if (!foundDef && !foundUse) {
579 if (BlockDefs.count(Walker))
580 foundDef = true;
581 else if (BlockUses.count(Walker))
582 foundUse = true;
583 else
584 return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
585 Uses, NewVNs, LiveOut, Phis,
586 IsTopLevel, IsIntraBlock);
589 unsigned StartIndex = LIs->getInstructionIndex(Walker);
590 StartIndex = foundDef ? LiveIntervals::getDefIndex(StartIndex) :
591 LiveIntervals::getUseIndex(StartIndex);
592 unsigned EndIndex = 0;
593 if (IsIntraBlock) {
594 EndIndex = LIs->getInstructionIndex(UseI);
595 EndIndex = LiveIntervals::getUseIndex(EndIndex);
596 } else
597 EndIndex = LIs->getMBBEndIdx(MBB);
599 if (foundDef)
600 RetVNI = NewVNs[Walker];
601 else
602 RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
603 NewVNs, LiveOut, Phis, false, true);
605 LI->addRange(LiveRange(StartIndex, EndIndex+1, RetVNI));
607 if (foundUse && LI->isKill(RetVNI, StartIndex))
608 LI->removeKill(RetVNI, StartIndex);
609 if (IsIntraBlock) {
610 LI->addKill(RetVNI, EndIndex, false);
614 // Memoize results so we don't have to recompute them.
615 if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
616 else {
617 if (!NewVNs.count(UseI))
618 NewVNs[UseI] = RetVNI;
619 Visited.insert(UseI);
622 return RetVNI;
625 /// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path.
627 VNInfo*
628 PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI,
629 MachineBasicBlock* MBB, LiveInterval* LI,
630 SmallPtrSet<MachineInstr*, 4>& Visited,
631 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
632 DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
633 DenseMap<MachineInstr*, VNInfo*>& NewVNs,
634 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
635 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
636 bool IsTopLevel, bool IsIntraBlock) {
637 // NOTE: Because this is the fallback case from other cases, we do NOT
638 // assume that we are not intrablock here.
639 if (Phis.count(MBB)) return Phis[MBB];
641 unsigned StartIndex = LIs->getMBBStartIdx(MBB);
642 VNInfo *RetVNI = Phis[MBB] =
643 LI->getNextValue(0, /*FIXME*/ 0, false, LIs->getVNInfoAllocator());
645 if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
647 // If there are no uses or defs between our starting point and the
648 // beginning of the block, then recursive perform phi construction
649 // on our predecessors.
650 DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs;
651 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
652 PE = MBB->pred_end(); PI != PE; ++PI) {
653 VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI,
654 Visited, Defs, Uses, NewVNs,
655 LiveOut, Phis, false, false);
656 if (Incoming != 0)
657 IncomingVNs[*PI] = Incoming;
660 if (MBB->pred_size() == 1 && !RetVNI->hasPHIKill()) {
661 VNInfo* OldVN = RetVNI;
662 VNInfo* NewVN = IncomingVNs.begin()->second;
663 VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN);
664 if (MergedVN == OldVN) std::swap(OldVN, NewVN);
666 for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(),
667 LOE = LiveOut.end(); LOI != LOE; ++LOI)
668 if (LOI->second == OldVN)
669 LOI->second = MergedVN;
670 for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(),
671 NVE = NewVNs.end(); NVI != NVE; ++NVI)
672 if (NVI->second == OldVN)
673 NVI->second = MergedVN;
674 for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(),
675 PE = Phis.end(); PI != PE; ++PI)
676 if (PI->second == OldVN)
677 PI->second = MergedVN;
678 RetVNI = MergedVN;
679 } else {
680 // Otherwise, merge the incoming VNInfos with a phi join. Create a new
681 // VNInfo to represent the joined value.
682 for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
683 IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
684 I->second->setHasPHIKill(true);
685 unsigned KillIndex = LIs->getMBBEndIdx(I->first);
686 if (!LiveInterval::isKill(I->second, KillIndex))
687 LI->addKill(I->second, KillIndex, false);
691 unsigned EndIndex = 0;
692 if (IsIntraBlock) {
693 EndIndex = LIs->getInstructionIndex(UseI);
694 EndIndex = LiveIntervals::getUseIndex(EndIndex);
695 } else
696 EndIndex = LIs->getMBBEndIdx(MBB);
697 LI->addRange(LiveRange(StartIndex, EndIndex+1, RetVNI));
698 if (IsIntraBlock)
699 LI->addKill(RetVNI, EndIndex, false);
701 // Memoize results so we don't have to recompute them.
702 if (!IsIntraBlock)
703 LiveOut[MBB] = RetVNI;
704 else {
705 if (!NewVNs.count(UseI))
706 NewVNs[UseI] = RetVNI;
707 Visited.insert(UseI);
710 return RetVNI;
713 /// ReconstructLiveInterval - Recompute a live interval from scratch.
714 void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
715 BumpPtrAllocator& Alloc = LIs->getVNInfoAllocator();
717 // Clear the old ranges and valnos;
718 LI->clear();
720 // Cache the uses and defs of the register
721 typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
722 RegMap Defs, Uses;
724 // Keep track of the new VNs we're creating.
725 DenseMap<MachineInstr*, VNInfo*> NewVNs;
726 SmallPtrSet<VNInfo*, 2> PhiVNs;
728 // Cache defs, and create a new VNInfo for each def.
729 for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
730 DE = MRI->def_end(); DI != DE; ++DI) {
731 Defs[(*DI).getParent()].insert(&*DI);
733 unsigned DefIdx = LIs->getInstructionIndex(&*DI);
734 DefIdx = LiveIntervals::getDefIndex(DefIdx);
736 assert(DI->getOpcode() != TargetInstrInfo::PHI &&
737 "Following NewVN isPHIDef flag incorrect. Fix me!");
738 VNInfo* NewVN = LI->getNextValue(DefIdx, 0, true, Alloc);
740 // If the def is a move, set the copy field.
741 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
742 if (TII->isMoveInstr(*DI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
743 if (DstReg == LI->reg)
744 NewVN->setCopy(&*DI);
746 NewVNs[&*DI] = NewVN;
749 // Cache uses as a separate pass from actually processing them.
750 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
751 UE = MRI->use_end(); UI != UE; ++UI)
752 Uses[(*UI).getParent()].insert(&*UI);
754 // Now, actually process every use and use a phi construction algorithm
755 // to walk from it to its reaching definitions, building VNInfos along
756 // the way.
757 DenseMap<MachineBasicBlock*, VNInfo*> LiveOut;
758 DenseMap<MachineBasicBlock*, VNInfo*> Phis;
759 SmallPtrSet<MachineInstr*, 4> Visited;
760 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
761 UE = MRI->use_end(); UI != UE; ++UI) {
762 PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs,
763 Uses, NewVNs, LiveOut, Phis, true, true);
766 // Add ranges for dead defs
767 for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
768 DE = MRI->def_end(); DI != DE; ++DI) {
769 unsigned DefIdx = LIs->getInstructionIndex(&*DI);
770 DefIdx = LiveIntervals::getDefIndex(DefIdx);
772 if (LI->liveAt(DefIdx)) continue;
774 VNInfo* DeadVN = NewVNs[&*DI];
775 LI->addRange(LiveRange(DefIdx, DefIdx+1, DeadVN));
776 LI->addKill(DeadVN, DefIdx, false);
780 /// RenumberValno - Split the given valno out into a new vreg, allowing it to
781 /// be allocated to a different register. This function creates a new vreg,
782 /// copies the valno and its live ranges over to the new vreg's interval,
783 /// removes them from the old interval, and rewrites all uses and defs of
784 /// the original reg to the new vreg within those ranges.
785 void PreAllocSplitting::RenumberValno(VNInfo* VN) {
786 SmallVector<VNInfo*, 4> Stack;
787 SmallVector<VNInfo*, 4> VNsToCopy;
788 Stack.push_back(VN);
790 // Walk through and copy the valno we care about, and any other valnos
791 // that are two-address redefinitions of the one we care about. These
792 // will need to be rewritten as well. We also check for safety of the
793 // renumbering here, by making sure that none of the valno involved has
794 // phi kills.
795 while (!Stack.empty()) {
796 VNInfo* OldVN = Stack.back();
797 Stack.pop_back();
799 // Bail out if we ever encounter a valno that has a PHI kill. We can't
800 // renumber these.
801 if (OldVN->hasPHIKill()) return;
803 VNsToCopy.push_back(OldVN);
805 // Locate two-address redefinitions
806 for (VNInfo::KillSet::iterator KI = OldVN->kills.begin(),
807 KE = OldVN->kills.end(); KI != KE; ++KI) {
808 assert(!KI->isPHIKill && "VN previously reported having no PHI kills.");
809 MachineInstr* MI = LIs->getInstructionFromIndex(KI->killIdx);
810 unsigned DefIdx = MI->findRegisterDefOperandIdx(CurrLI->reg);
811 if (DefIdx == ~0U) continue;
812 if (MI->isRegTiedToUseOperand(DefIdx)) {
813 VNInfo* NextVN =
814 CurrLI->findDefinedVNInfo(LiveIntervals::getDefIndex(KI->killIdx));
815 if (NextVN == OldVN) continue;
816 Stack.push_back(NextVN);
821 // Create the new vreg
822 unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg));
824 // Create the new live interval
825 LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg);
827 for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE =
828 VNsToCopy.end(); OI != OE; ++OI) {
829 VNInfo* OldVN = *OI;
831 // Copy the valno over
832 VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator());
833 NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN);
835 // Remove the valno from the old interval
836 CurrLI->removeValNo(OldVN);
839 // Rewrite defs and uses. This is done in two stages to avoid invalidating
840 // the reg_iterator.
841 SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange;
843 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
844 E = MRI->reg_end(); I != E; ++I) {
845 MachineOperand& MO = I.getOperand();
846 unsigned InstrIdx = LIs->getInstructionIndex(&*I);
848 if ((MO.isUse() && NewLI.liveAt(LiveIntervals::getUseIndex(InstrIdx))) ||
849 (MO.isDef() && NewLI.liveAt(LiveIntervals::getDefIndex(InstrIdx))))
850 OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo()));
853 for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I =
854 OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) {
855 MachineInstr* Inst = I->first;
856 unsigned OpIdx = I->second;
857 MachineOperand& MO = Inst->getOperand(OpIdx);
858 MO.setReg(NewVReg);
861 // Grow the VirtRegMap, since we've created a new vreg.
862 VRM->grow();
864 // The renumbered vreg shares a stack slot with the old register.
865 if (IntervalSSMap.count(CurrLI->reg))
866 IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg];
868 NumRenumbers++;
871 bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo,
872 MachineInstr* DefMI,
873 MachineBasicBlock::iterator RestorePt,
874 unsigned RestoreIdx,
875 SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
876 MachineBasicBlock& MBB = *RestorePt->getParent();
878 MachineBasicBlock::iterator KillPt = BarrierMBB->end();
879 unsigned KillIdx = 0;
880 if (!ValNo->isDefAccurate() || DefMI->getParent() == BarrierMBB)
881 KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, KillIdx);
882 else
883 KillPt = findNextEmptySlot(DefMI->getParent(), DefMI, KillIdx);
885 if (KillPt == DefMI->getParent()->end())
886 return false;
888 TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI);
889 LIs->InsertMachineInstrInMaps(prior(RestorePt), RestoreIdx);
891 ReconstructLiveInterval(CurrLI);
892 unsigned RematIdx = LIs->getInstructionIndex(prior(RestorePt));
893 RematIdx = LiveIntervals::getDefIndex(RematIdx);
894 RenumberValno(CurrLI->findDefinedVNInfo(RematIdx));
896 ++NumSplits;
897 ++NumRemats;
898 return true;
901 MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg,
902 const TargetRegisterClass* RC,
903 MachineInstr* DefMI,
904 MachineInstr* Barrier,
905 MachineBasicBlock* MBB,
906 int& SS,
907 SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
908 MachineBasicBlock::iterator Pt = MBB->begin();
910 // Go top down if RefsInMBB is empty.
911 if (RefsInMBB.empty())
912 return 0;
914 MachineBasicBlock::iterator FoldPt = Barrier;
915 while (&*FoldPt != DefMI && FoldPt != MBB->begin() &&
916 !RefsInMBB.count(FoldPt))
917 --FoldPt;
919 int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg, false);
920 if (OpIdx == -1)
921 return 0;
923 SmallVector<unsigned, 1> Ops;
924 Ops.push_back(OpIdx);
926 if (!TII->canFoldMemoryOperand(FoldPt, Ops))
927 return 0;
929 DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg);
930 if (I != IntervalSSMap.end()) {
931 SS = I->second;
932 } else {
933 SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
936 MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(),
937 FoldPt, Ops, SS);
939 if (FMI) {
940 LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
941 FMI = MBB->insert(MBB->erase(FoldPt), FMI);
942 ++NumFolds;
944 IntervalSSMap[vreg] = SS;
945 CurrSLI = &LSs->getOrCreateInterval(SS, RC);
946 if (CurrSLI->hasAtLeastOneValue())
947 CurrSValNo = CurrSLI->getValNumInfo(0);
948 else
949 CurrSValNo = CurrSLI->getNextValue(0, 0, false, LSs->getVNInfoAllocator());
952 return FMI;
955 MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg,
956 const TargetRegisterClass* RC,
957 MachineInstr* Barrier,
958 MachineBasicBlock* MBB,
959 int SS,
960 SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
961 if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds)
962 return 0;
964 // Go top down if RefsInMBB is empty.
965 if (RefsInMBB.empty())
966 return 0;
968 // Can't fold a restore between a call stack setup and teardown.
969 MachineBasicBlock::iterator FoldPt = Barrier;
971 // Advance from barrier to call frame teardown.
972 while (FoldPt != MBB->getFirstTerminator() &&
973 FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
974 if (RefsInMBB.count(FoldPt))
975 return 0;
977 ++FoldPt;
980 if (FoldPt == MBB->getFirstTerminator())
981 return 0;
982 else
983 ++FoldPt;
985 // Now find the restore point.
986 while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) {
987 if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) {
988 while (FoldPt != MBB->getFirstTerminator() &&
989 FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
990 if (RefsInMBB.count(FoldPt))
991 return 0;
993 ++FoldPt;
996 if (FoldPt == MBB->getFirstTerminator())
997 return 0;
1000 ++FoldPt;
1003 if (FoldPt == MBB->getFirstTerminator())
1004 return 0;
1006 int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true);
1007 if (OpIdx == -1)
1008 return 0;
1010 SmallVector<unsigned, 1> Ops;
1011 Ops.push_back(OpIdx);
1013 if (!TII->canFoldMemoryOperand(FoldPt, Ops))
1014 return 0;
1016 MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(),
1017 FoldPt, Ops, SS);
1019 if (FMI) {
1020 LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
1021 FMI = MBB->insert(MBB->erase(FoldPt), FMI);
1022 ++NumRestoreFolds;
1025 return FMI;
1028 /// SplitRegLiveInterval - Split (spill and restore) the given live interval
1029 /// so it would not cross the barrier that's being processed. Shrink wrap
1030 /// (minimize) the live interval to the last uses.
1031 bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
1032 CurrLI = LI;
1034 // Find live range where current interval cross the barrier.
1035 LiveInterval::iterator LR =
1036 CurrLI->FindLiveRangeContaining(LIs->getUseIndex(BarrierIdx));
1037 VNInfo *ValNo = LR->valno;
1039 assert(!ValNo->isUnused() && "Val# is defined by a dead def?");
1041 MachineInstr *DefMI = ValNo->isDefAccurate()
1042 ? LIs->getInstructionFromIndex(ValNo->def) : NULL;
1044 // If this would create a new join point, do not split.
1045 if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent()))
1046 return false;
1048 // Find all references in the barrier mbb.
1049 SmallPtrSet<MachineInstr*, 4> RefsInMBB;
1050 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
1051 E = MRI->reg_end(); I != E; ++I) {
1052 MachineInstr *RefMI = &*I;
1053 if (RefMI->getParent() == BarrierMBB)
1054 RefsInMBB.insert(RefMI);
1057 // Find a point to restore the value after the barrier.
1058 unsigned RestoreIndex = 0;
1059 MachineBasicBlock::iterator RestorePt =
1060 findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB, RestoreIndex);
1061 if (RestorePt == BarrierMBB->end())
1062 return false;
1064 if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
1065 if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt,
1066 RestoreIndex, RefsInMBB))
1067 return true;
1069 // Add a spill either before the barrier or after the definition.
1070 MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
1071 const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
1072 unsigned SpillIndex = 0;
1073 MachineInstr *SpillMI = NULL;
1074 int SS = -1;
1075 if (!ValNo->isDefAccurate()) {
1076 // If we don't know where the def is we must split just before the barrier.
1077 if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier,
1078 BarrierMBB, SS, RefsInMBB))) {
1079 SpillIndex = LIs->getInstructionIndex(SpillMI);
1080 } else {
1081 MachineBasicBlock::iterator SpillPt =
1082 findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, SpillIndex);
1083 if (SpillPt == BarrierMBB->begin())
1084 return false; // No gap to insert spill.
1085 // Add spill.
1087 SS = CreateSpillStackSlot(CurrLI->reg, RC);
1088 TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC);
1089 SpillMI = prior(SpillPt);
1090 LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
1092 } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
1093 RestoreIndex, SpillIndex, SS)) {
1094 // If it's already split, just restore the value. There is no need to spill
1095 // the def again.
1096 if (!DefMI)
1097 return false; // Def is dead. Do nothing.
1099 if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier,
1100 BarrierMBB, SS, RefsInMBB))) {
1101 SpillIndex = LIs->getInstructionIndex(SpillMI);
1102 } else {
1103 // Check if it's possible to insert a spill after the def MI.
1104 MachineBasicBlock::iterator SpillPt;
1105 if (DefMBB == BarrierMBB) {
1106 // Add spill after the def and the last use before the barrier.
1107 SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI,
1108 RefsInMBB, SpillIndex);
1109 if (SpillPt == DefMBB->begin())
1110 return false; // No gap to insert spill.
1111 } else {
1112 SpillPt = findNextEmptySlot(DefMBB, DefMI, SpillIndex);
1113 if (SpillPt == DefMBB->end())
1114 return false; // No gap to insert spill.
1116 // Add spill. The store instruction kills the register if def is before
1117 // the barrier in the barrier block.
1118 SS = CreateSpillStackSlot(CurrLI->reg, RC);
1119 TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg,
1120 DefMBB == BarrierMBB, SS, RC);
1121 SpillMI = prior(SpillPt);
1122 LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
1126 // Remember def instruction index to spill index mapping.
1127 if (DefMI && SpillMI)
1128 Def2SpillMap[ValNo->def] = SpillIndex;
1130 // Add restore.
1131 bool FoldedRestore = false;
1132 if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier,
1133 BarrierMBB, SS, RefsInMBB)) {
1134 RestorePt = LMI;
1135 RestoreIndex = LIs->getInstructionIndex(RestorePt);
1136 FoldedRestore = true;
1137 } else {
1138 TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC);
1139 MachineInstr *LoadMI = prior(RestorePt);
1140 LIs->InsertMachineInstrInMaps(LoadMI, RestoreIndex);
1143 // Update spill stack slot live interval.
1144 UpdateSpillSlotInterval(ValNo, LIs->getUseIndex(SpillIndex)+1,
1145 LIs->getDefIndex(RestoreIndex));
1147 ReconstructLiveInterval(CurrLI);
1149 if (!FoldedRestore) {
1150 unsigned RestoreIdx = LIs->getInstructionIndex(prior(RestorePt));
1151 RestoreIdx = LiveIntervals::getDefIndex(RestoreIdx);
1152 RenumberValno(CurrLI->findDefinedVNInfo(RestoreIdx));
1155 ++NumSplits;
1156 return true;
1159 /// SplitRegLiveIntervals - Split all register live intervals that cross the
1160 /// barrier that's being processed.
1161 bool
1162 PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs,
1163 SmallPtrSet<LiveInterval*, 8>& Split) {
1164 // First find all the virtual registers whose live intervals are intercepted
1165 // by the current barrier.
1166 SmallVector<LiveInterval*, 8> Intervals;
1167 for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
1168 // FIXME: If it's not safe to move any instruction that defines the barrier
1169 // register class, then it means there are some special dependencies which
1170 // codegen is not modelling. Ignore these barriers for now.
1171 if (!TII->isSafeToMoveRegClassDefs(*RC))
1172 continue;
1173 std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
1174 for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
1175 unsigned Reg = VRs[i];
1176 if (!LIs->hasInterval(Reg))
1177 continue;
1178 LiveInterval *LI = &LIs->getInterval(Reg);
1179 if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
1180 // Virtual register live interval is intercepted by the barrier. We
1181 // should split and shrink wrap its interval if possible.
1182 Intervals.push_back(LI);
1186 // Process the affected live intervals.
1187 bool Change = false;
1188 while (!Intervals.empty()) {
1189 if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
1190 break;
1191 else if (NumSplits == 4)
1192 Change |= Change;
1193 LiveInterval *LI = Intervals.back();
1194 Intervals.pop_back();
1195 bool result = SplitRegLiveInterval(LI);
1196 if (result) Split.insert(LI);
1197 Change |= result;
1200 return Change;
1203 unsigned PreAllocSplitting::getNumberOfNonSpills(
1204 SmallPtrSet<MachineInstr*, 4>& MIs,
1205 unsigned Reg, int FrameIndex,
1206 bool& FeedsTwoAddr) {
1207 unsigned NonSpills = 0;
1208 for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end();
1209 UI != UE; ++UI) {
1210 int StoreFrameIndex;
1211 unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
1212 if (StoreVReg != Reg || StoreFrameIndex != FrameIndex)
1213 NonSpills++;
1215 int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg);
1216 if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx))
1217 FeedsTwoAddr = true;
1220 return NonSpills;
1223 /// removeDeadSpills - After doing splitting, filter through all intervals we've
1224 /// split, and see if any of the spills are unnecessary. If so, remove them.
1225 bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) {
1226 bool changed = false;
1228 // Walk over all of the live intervals that were touched by the splitter,
1229 // and see if we can do any DCE and/or folding.
1230 for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(),
1231 LE = split.end(); LI != LE; ++LI) {
1232 DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount;
1234 // First, collect all the uses of the vreg, and sort them by their
1235 // reaching definition (VNInfo).
1236 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg),
1237 UE = MRI->use_end(); UI != UE; ++UI) {
1238 unsigned index = LIs->getInstructionIndex(&*UI);
1239 index = LiveIntervals::getUseIndex(index);
1241 const LiveRange* LR = (*LI)->getLiveRangeContaining(index);
1242 VNUseCount[LR->valno].insert(&*UI);
1245 // Now, take the definitions (VNInfo's) one at a time and try to DCE
1246 // and/or fold them away.
1247 for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(),
1248 VE = (*LI)->vni_end(); VI != VE; ++VI) {
1250 if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit)
1251 return changed;
1253 VNInfo* CurrVN = *VI;
1255 // We don't currently try to handle definitions with PHI kills, because
1256 // it would involve processing more than one VNInfo at once.
1257 if (CurrVN->hasPHIKill()) continue;
1259 // We also don't try to handle the results of PHI joins, since there's
1260 // no defining instruction to analyze.
1261 if (!CurrVN->isDefAccurate() || CurrVN->isUnused()) continue;
1263 // We're only interested in eliminating cruft introduced by the splitter,
1264 // is of the form load-use or load-use-store. First, check that the
1265 // definition is a load, and remember what stack slot we loaded it from.
1266 MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def);
1267 int FrameIndex;
1268 if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue;
1270 // If the definition has no uses at all, just DCE it.
1271 if (VNUseCount[CurrVN].size() == 0) {
1272 LIs->RemoveMachineInstrFromMaps(DefMI);
1273 (*LI)->removeValNo(CurrVN);
1274 DefMI->eraseFromParent();
1275 VNUseCount.erase(CurrVN);
1276 NumDeadSpills++;
1277 changed = true;
1278 continue;
1281 // Second, get the number of non-store uses of the definition, as well as
1282 // a flag indicating whether it feeds into a later two-address definition.
1283 bool FeedsTwoAddr = false;
1284 unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN],
1285 (*LI)->reg, FrameIndex,
1286 FeedsTwoAddr);
1288 // If there's one non-store use and it doesn't feed a two-addr, then
1289 // this is a load-use-store case that we can try to fold.
1290 if (NonSpillCount == 1 && !FeedsTwoAddr) {
1291 // Start by finding the non-store use MachineInstr.
1292 SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin();
1293 int StoreFrameIndex;
1294 unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
1295 while (UI != VNUseCount[CurrVN].end() &&
1296 (StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) {
1297 ++UI;
1298 if (UI != VNUseCount[CurrVN].end())
1299 StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
1301 if (UI == VNUseCount[CurrVN].end()) continue;
1303 MachineInstr* use = *UI;
1305 // Attempt to fold it away!
1306 int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false);
1307 if (OpIdx == -1) continue;
1308 SmallVector<unsigned, 1> Ops;
1309 Ops.push_back(OpIdx);
1310 if (!TII->canFoldMemoryOperand(use, Ops)) continue;
1312 MachineInstr* NewMI =
1313 TII->foldMemoryOperand(*use->getParent()->getParent(),
1314 use, Ops, FrameIndex);
1316 if (!NewMI) continue;
1318 // Update relevant analyses.
1319 LIs->RemoveMachineInstrFromMaps(DefMI);
1320 LIs->ReplaceMachineInstrInMaps(use, NewMI);
1321 (*LI)->removeValNo(CurrVN);
1323 DefMI->eraseFromParent();
1324 MachineBasicBlock* MBB = use->getParent();
1325 NewMI = MBB->insert(MBB->erase(use), NewMI);
1326 VNUseCount[CurrVN].erase(use);
1328 // Remove deleted instructions. Note that we need to remove them from
1329 // the VNInfo->use map as well, just to be safe.
1330 for (SmallPtrSet<MachineInstr*, 4>::iterator II =
1331 VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end();
1332 II != IE; ++II) {
1333 for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
1334 VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE;
1335 ++VNI)
1336 if (VNI->first != CurrVN)
1337 VNI->second.erase(*II);
1338 LIs->RemoveMachineInstrFromMaps(*II);
1339 (*II)->eraseFromParent();
1342 VNUseCount.erase(CurrVN);
1344 for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
1345 VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI)
1346 if (VI->second.erase(use))
1347 VI->second.insert(NewMI);
1349 NumDeadSpills++;
1350 changed = true;
1351 continue;
1354 // If there's more than one non-store instruction, we can't profitably
1355 // fold it, so bail.
1356 if (NonSpillCount) continue;
1358 // Otherwise, this is a load-store case, so DCE them.
1359 for (SmallPtrSet<MachineInstr*, 4>::iterator UI =
1360 VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end();
1361 UI != UI; ++UI) {
1362 LIs->RemoveMachineInstrFromMaps(*UI);
1363 (*UI)->eraseFromParent();
1366 VNUseCount.erase(CurrVN);
1368 LIs->RemoveMachineInstrFromMaps(DefMI);
1369 (*LI)->removeValNo(CurrVN);
1370 DefMI->eraseFromParent();
1371 NumDeadSpills++;
1372 changed = true;
1376 return changed;
1379 bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
1380 MachineBasicBlock* DefMBB,
1381 MachineBasicBlock* BarrierMBB) {
1382 if (DefMBB == BarrierMBB)
1383 return false;
1385 if (LR->valno->hasPHIKill())
1386 return false;
1388 unsigned MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
1389 if (LR->end < MBBEnd)
1390 return false;
1392 MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>();
1393 if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB))
1394 return true;
1396 MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
1397 SmallPtrSet<MachineBasicBlock*, 4> Visited;
1398 typedef std::pair<MachineBasicBlock*,
1399 MachineBasicBlock::succ_iterator> ItPair;
1400 SmallVector<ItPair, 4> Stack;
1401 Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin()));
1403 while (!Stack.empty()) {
1404 ItPair P = Stack.back();
1405 Stack.pop_back();
1407 MachineBasicBlock* PredMBB = P.first;
1408 MachineBasicBlock::succ_iterator S = P.second;
1410 if (S == PredMBB->succ_end())
1411 continue;
1412 else if (Visited.count(*S)) {
1413 Stack.push_back(std::make_pair(PredMBB, ++S));
1414 continue;
1415 } else
1416 Stack.push_back(std::make_pair(PredMBB, S+1));
1418 MachineBasicBlock* MBB = *S;
1419 Visited.insert(MBB);
1421 if (MBB == BarrierMBB)
1422 return true;
1424 MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB);
1425 MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB);
1426 MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom();
1427 while (MDTN) {
1428 if (MDTN == DefMDTN)
1429 return true;
1430 else if (MDTN == BarrierMDTN)
1431 break;
1432 MDTN = MDTN->getIDom();
1435 MBBEnd = LIs->getMBBEndIdx(MBB);
1436 if (LR->end > MBBEnd)
1437 Stack.push_back(std::make_pair(MBB, MBB->succ_begin()));
1440 return false;
1444 bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
1445 CurrMF = &MF;
1446 TM = &MF.getTarget();
1447 TRI = TM->getRegisterInfo();
1448 TII = TM->getInstrInfo();
1449 MFI = MF.getFrameInfo();
1450 MRI = &MF.getRegInfo();
1451 LIs = &getAnalysis<LiveIntervals>();
1452 LSs = &getAnalysis<LiveStacks>();
1453 VRM = &getAnalysis<VirtRegMap>();
1455 bool MadeChange = false;
1457 // Make sure blocks are numbered in order.
1458 MF.RenumberBlocks();
1460 MachineBasicBlock *Entry = MF.begin();
1461 SmallPtrSet<MachineBasicBlock*,16> Visited;
1463 SmallPtrSet<LiveInterval*, 8> Split;
1465 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
1466 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
1467 DFI != E; ++DFI) {
1468 BarrierMBB = *DFI;
1469 for (MachineBasicBlock::iterator I = BarrierMBB->begin(),
1470 E = BarrierMBB->end(); I != E; ++I) {
1471 Barrier = &*I;
1472 const TargetRegisterClass **BarrierRCs =
1473 Barrier->getDesc().getRegClassBarriers();
1474 if (!BarrierRCs)
1475 continue;
1476 BarrierIdx = LIs->getInstructionIndex(Barrier);
1477 MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split);
1481 MadeChange |= removeDeadSpills(Split);
1483 return MadeChange;