1 //===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the machine instruction level pre-register allocation
11 // live interval splitting pass. It finds live interval barriers, i.e.
12 // instructions which will kill all physical registers in certain register
13 // classes, and split all live intervals which cross the barrier.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "pre-alloc-split"
18 #include "VirtRegMap.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/LiveStackAnalysis.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/CodeGen/RegisterCoalescer.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/DepthFirstIterator.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/Statistic.h"
41 static cl::opt
<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden
);
42 static cl::opt
<int> DeadSplitLimit("dead-split-limit", cl::init(-1), cl::Hidden
);
43 static cl::opt
<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1), cl::Hidden
);
45 STATISTIC(NumSplits
, "Number of intervals split");
46 STATISTIC(NumRemats
, "Number of intervals split by rematerialization");
47 STATISTIC(NumFolds
, "Number of intervals split with spill folding");
48 STATISTIC(NumRestoreFolds
, "Number of intervals split with restore folding");
49 STATISTIC(NumRenumbers
, "Number of intervals renumbered into new registers");
50 STATISTIC(NumDeadSpills
, "Number of dead spills removed");
53 class VISIBILITY_HIDDEN PreAllocSplitting
: public MachineFunctionPass
{
54 MachineFunction
*CurrMF
;
55 const TargetMachine
*TM
;
56 const TargetInstrInfo
*TII
;
57 const TargetRegisterInfo
* TRI
;
58 MachineFrameInfo
*MFI
;
59 MachineRegisterInfo
*MRI
;
64 // Barrier - Current barrier being processed.
65 MachineInstr
*Barrier
;
67 // BarrierMBB - Basic block where the barrier resides in.
68 MachineBasicBlock
*BarrierMBB
;
70 // Barrier - Current barrier index.
73 // CurrLI - Current live interval being split.
76 // CurrSLI - Current stack slot live interval.
77 LiveInterval
*CurrSLI
;
79 // CurrSValNo - Current val# for the stack slot live interval.
82 // IntervalSSMap - A map from live interval to spill slots.
83 DenseMap
<unsigned, int> IntervalSSMap
;
85 // Def2SpillMap - A map from a def instruction index to spill index.
86 DenseMap
<unsigned, unsigned> Def2SpillMap
;
90 PreAllocSplitting() : MachineFunctionPass(&ID
) {}
92 virtual bool runOnMachineFunction(MachineFunction
&MF
);
94 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
96 AU
.addRequired
<LiveIntervals
>();
97 AU
.addPreserved
<LiveIntervals
>();
98 AU
.addRequired
<LiveStacks
>();
99 AU
.addPreserved
<LiveStacks
>();
100 AU
.addPreserved
<RegisterCoalescer
>();
102 AU
.addPreservedID(StrongPHIEliminationID
);
104 AU
.addPreservedID(PHIEliminationID
);
105 AU
.addRequired
<MachineDominatorTree
>();
106 AU
.addRequired
<MachineLoopInfo
>();
107 AU
.addRequired
<VirtRegMap
>();
108 AU
.addPreserved
<MachineDominatorTree
>();
109 AU
.addPreserved
<MachineLoopInfo
>();
110 AU
.addPreserved
<VirtRegMap
>();
111 MachineFunctionPass::getAnalysisUsage(AU
);
114 virtual void releaseMemory() {
115 IntervalSSMap
.clear();
116 Def2SpillMap
.clear();
119 virtual const char *getPassName() const {
120 return "Pre-Register Allocaton Live Interval Splitting";
123 /// print - Implement the dump method.
124 virtual void print(std::ostream
&O
, const Module
* M
= 0) const {
128 void print(std::ostream
*O
, const Module
* M
= 0) const {
133 MachineBasicBlock::iterator
134 findNextEmptySlot(MachineBasicBlock
*, MachineInstr
*,
137 MachineBasicBlock::iterator
138 findSpillPoint(MachineBasicBlock
*, MachineInstr
*, MachineInstr
*,
139 SmallPtrSet
<MachineInstr
*, 4>&, unsigned&);
141 MachineBasicBlock::iterator
142 findRestorePoint(MachineBasicBlock
*, MachineInstr
*, unsigned,
143 SmallPtrSet
<MachineInstr
*, 4>&, unsigned&);
145 int CreateSpillStackSlot(unsigned, const TargetRegisterClass
*);
147 bool IsAvailableInStack(MachineBasicBlock
*, unsigned, unsigned, unsigned,
148 unsigned&, int&) const;
150 void UpdateSpillSlotInterval(VNInfo
*, unsigned, unsigned);
152 bool SplitRegLiveInterval(LiveInterval
*);
154 bool SplitRegLiveIntervals(const TargetRegisterClass
**,
155 SmallPtrSet
<LiveInterval
*, 8>&);
157 bool createsNewJoin(LiveRange
* LR
, MachineBasicBlock
* DefMBB
,
158 MachineBasicBlock
* BarrierMBB
);
159 bool Rematerialize(unsigned vreg
, VNInfo
* ValNo
,
161 MachineBasicBlock::iterator RestorePt
,
163 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
);
164 MachineInstr
* FoldSpill(unsigned vreg
, const TargetRegisterClass
* RC
,
166 MachineInstr
* Barrier
,
167 MachineBasicBlock
* MBB
,
169 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
);
170 MachineInstr
* FoldRestore(unsigned vreg
,
171 const TargetRegisterClass
* RC
,
172 MachineInstr
* Barrier
,
173 MachineBasicBlock
* MBB
,
175 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
);
176 void RenumberValno(VNInfo
* VN
);
177 void ReconstructLiveInterval(LiveInterval
* LI
);
178 bool removeDeadSpills(SmallPtrSet
<LiveInterval
*, 8>& split
);
179 unsigned getNumberOfNonSpills(SmallPtrSet
<MachineInstr
*, 4>& MIs
,
180 unsigned Reg
, int FrameIndex
, bool& TwoAddr
);
181 VNInfo
* PerformPHIConstruction(MachineBasicBlock::iterator Use
,
182 MachineBasicBlock
* MBB
, LiveInterval
* LI
,
183 SmallPtrSet
<MachineInstr
*, 4>& Visited
,
184 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Defs
,
185 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Uses
,
186 DenseMap
<MachineInstr
*, VNInfo
*>& NewVNs
,
187 DenseMap
<MachineBasicBlock
*, VNInfo
*>& LiveOut
,
188 DenseMap
<MachineBasicBlock
*, VNInfo
*>& Phis
,
189 bool IsTopLevel
, bool IsIntraBlock
);
190 VNInfo
* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use
,
191 MachineBasicBlock
* MBB
, LiveInterval
* LI
,
192 SmallPtrSet
<MachineInstr
*, 4>& Visited
,
193 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Defs
,
194 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Uses
,
195 DenseMap
<MachineInstr
*, VNInfo
*>& NewVNs
,
196 DenseMap
<MachineBasicBlock
*, VNInfo
*>& LiveOut
,
197 DenseMap
<MachineBasicBlock
*, VNInfo
*>& Phis
,
198 bool IsTopLevel
, bool IsIntraBlock
);
200 } // end anonymous namespace
202 char PreAllocSplitting::ID
= 0;
204 static RegisterPass
<PreAllocSplitting
>
205 X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting");
207 const PassInfo
*const llvm::PreAllocSplittingID
= &X
;
210 /// findNextEmptySlot - Find a gap after the given machine instruction in the
211 /// instruction index map. If there isn't one, return end().
212 MachineBasicBlock::iterator
213 PreAllocSplitting::findNextEmptySlot(MachineBasicBlock
*MBB
, MachineInstr
*MI
,
214 unsigned &SpotIndex
) {
215 MachineBasicBlock::iterator MII
= MI
;
216 if (++MII
!= MBB
->end()) {
217 unsigned Index
= LIs
->findGapBeforeInstr(LIs
->getInstructionIndex(MII
));
226 /// findSpillPoint - Find a gap as far away from the given MI that's suitable
227 /// for spilling the current live interval. The index must be before any
228 /// defs and uses of the live interval register in the mbb. Return begin() if
230 MachineBasicBlock::iterator
231 PreAllocSplitting::findSpillPoint(MachineBasicBlock
*MBB
, MachineInstr
*MI
,
233 SmallPtrSet
<MachineInstr
*, 4> &RefsInMBB
,
234 unsigned &SpillIndex
) {
235 MachineBasicBlock::iterator Pt
= MBB
->begin();
237 MachineBasicBlock::iterator MII
= MI
;
238 MachineBasicBlock::iterator EndPt
= DefMI
239 ? MachineBasicBlock::iterator(DefMI
) : MBB
->begin();
241 while (MII
!= EndPt
&& !RefsInMBB
.count(MII
) &&
242 MII
->getOpcode() != TRI
->getCallFrameSetupOpcode())
244 if (MII
== EndPt
|| RefsInMBB
.count(MII
)) return Pt
;
246 while (MII
!= EndPt
&& !RefsInMBB
.count(MII
)) {
247 unsigned Index
= LIs
->getInstructionIndex(MII
);
249 // We can't insert the spill between the barrier (a call), and its
250 // corresponding call frame setup.
251 if (MII
->getOpcode() == TRI
->getCallFrameDestroyOpcode()) {
252 while (MII
->getOpcode() != TRI
->getCallFrameSetupOpcode()) {
259 } else if (LIs
->hasGapBeforeInstr(Index
)) {
261 SpillIndex
= LIs
->findGapBeforeInstr(Index
, true);
264 if (RefsInMBB
.count(MII
))
274 /// findRestorePoint - Find a gap in the instruction index map that's suitable
275 /// for restoring the current live interval value. The index must be before any
276 /// uses of the live interval register in the mbb. Return end() if none is
278 MachineBasicBlock::iterator
279 PreAllocSplitting::findRestorePoint(MachineBasicBlock
*MBB
, MachineInstr
*MI
,
281 SmallPtrSet
<MachineInstr
*, 4> &RefsInMBB
,
282 unsigned &RestoreIndex
) {
283 // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
284 // begin index accordingly.
285 MachineBasicBlock::iterator Pt
= MBB
->end();
286 MachineBasicBlock::iterator EndPt
= MBB
->getFirstTerminator();
288 // We start at the call, so walk forward until we find the call frame teardown
289 // since we can't insert restores before that. Bail if we encounter a use
291 MachineBasicBlock::iterator MII
= MI
;
292 if (MII
== EndPt
) return Pt
;
294 while (MII
!= EndPt
&& !RefsInMBB
.count(MII
) &&
295 MII
->getOpcode() != TRI
->getCallFrameDestroyOpcode())
297 if (MII
== EndPt
|| RefsInMBB
.count(MII
)) return Pt
;
300 // FIXME: Limit the number of instructions to examine to reduce
302 while (MII
!= EndPt
) {
303 unsigned Index
= LIs
->getInstructionIndex(MII
);
306 unsigned Gap
= LIs
->findGapBeforeInstr(Index
);
308 // We can't insert a restore between the barrier (a call) and its
309 // corresponding call frame teardown.
310 if (MII
->getOpcode() == TRI
->getCallFrameSetupOpcode()) {
312 if (MII
== EndPt
|| RefsInMBB
.count(MII
)) return Pt
;
314 } while (MII
->getOpcode() != TRI
->getCallFrameDestroyOpcode());
320 if (RefsInMBB
.count(MII
))
329 /// CreateSpillStackSlot - Create a stack slot for the live interval being
330 /// split. If the live interval was previously split, just reuse the same
332 int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg
,
333 const TargetRegisterClass
*RC
) {
335 DenseMap
<unsigned, int>::iterator I
= IntervalSSMap
.find(Reg
);
336 if (I
!= IntervalSSMap
.end()) {
339 SS
= MFI
->CreateStackObject(RC
->getSize(), RC
->getAlignment());
340 IntervalSSMap
[Reg
] = SS
;
343 // Create live interval for stack slot.
344 CurrSLI
= &LSs
->getOrCreateInterval(SS
, RC
);
345 if (CurrSLI
->hasAtLeastOneValue())
346 CurrSValNo
= CurrSLI
->getValNumInfo(0);
348 CurrSValNo
= CurrSLI
->getNextValue(0, 0, false, LSs
->getVNInfoAllocator());
352 /// IsAvailableInStack - Return true if register is available in a split stack
353 /// slot at the specified index.
355 PreAllocSplitting::IsAvailableInStack(MachineBasicBlock
*DefMBB
,
356 unsigned Reg
, unsigned DefIndex
,
357 unsigned RestoreIndex
, unsigned &SpillIndex
,
362 DenseMap
<unsigned, int>::iterator I
= IntervalSSMap
.find(Reg
);
363 if (I
== IntervalSSMap
.end())
365 DenseMap
<unsigned, unsigned>::iterator II
= Def2SpillMap
.find(DefIndex
);
366 if (II
== Def2SpillMap
.end())
369 // If last spill of def is in the same mbb as barrier mbb (where restore will
370 // be), make sure it's not below the intended restore index.
371 // FIXME: Undo the previous spill?
372 assert(LIs
->getMBBFromIndex(II
->second
) == DefMBB
);
373 if (DefMBB
== BarrierMBB
&& II
->second
>= RestoreIndex
)
377 SpillIndex
= II
->second
;
381 /// UpdateSpillSlotInterval - Given the specified val# of the register live
382 /// interval being split, and the spill and restore indicies, update the live
383 /// interval of the spill stack slot.
385 PreAllocSplitting::UpdateSpillSlotInterval(VNInfo
*ValNo
, unsigned SpillIndex
,
386 unsigned RestoreIndex
) {
387 assert(LIs
->getMBBFromIndex(RestoreIndex
) == BarrierMBB
&&
388 "Expect restore in the barrier mbb");
390 MachineBasicBlock
*MBB
= LIs
->getMBBFromIndex(SpillIndex
);
391 if (MBB
== BarrierMBB
) {
392 // Intra-block spill + restore. We are done.
393 LiveRange
SLR(SpillIndex
, RestoreIndex
, CurrSValNo
);
394 CurrSLI
->addRange(SLR
);
398 SmallPtrSet
<MachineBasicBlock
*, 4> Processed
;
399 unsigned EndIdx
= LIs
->getMBBEndIdx(MBB
);
400 LiveRange
SLR(SpillIndex
, EndIdx
+1, CurrSValNo
);
401 CurrSLI
->addRange(SLR
);
402 Processed
.insert(MBB
);
404 // Start from the spill mbb, figure out the extend of the spill slot's
406 SmallVector
<MachineBasicBlock
*, 4> WorkList
;
407 const LiveRange
*LR
= CurrLI
->getLiveRangeContaining(SpillIndex
);
408 if (LR
->end
> EndIdx
)
409 // If live range extend beyond end of mbb, add successors to work list.
410 for (MachineBasicBlock::succ_iterator SI
= MBB
->succ_begin(),
411 SE
= MBB
->succ_end(); SI
!= SE
; ++SI
)
412 WorkList
.push_back(*SI
);
414 while (!WorkList
.empty()) {
415 MachineBasicBlock
*MBB
= WorkList
.back();
417 if (Processed
.count(MBB
))
419 unsigned Idx
= LIs
->getMBBStartIdx(MBB
);
420 LR
= CurrLI
->getLiveRangeContaining(Idx
);
421 if (LR
&& LR
->valno
== ValNo
) {
422 EndIdx
= LIs
->getMBBEndIdx(MBB
);
423 if (Idx
<= RestoreIndex
&& RestoreIndex
< EndIdx
) {
424 // Spill slot live interval stops at the restore.
425 LiveRange
SLR(Idx
, RestoreIndex
, CurrSValNo
);
426 CurrSLI
->addRange(SLR
);
427 } else if (LR
->end
> EndIdx
) {
428 // Live range extends beyond end of mbb, process successors.
429 LiveRange
SLR(Idx
, EndIdx
+1, CurrSValNo
);
430 CurrSLI
->addRange(SLR
);
431 for (MachineBasicBlock::succ_iterator SI
= MBB
->succ_begin(),
432 SE
= MBB
->succ_end(); SI
!= SE
; ++SI
)
433 WorkList
.push_back(*SI
);
435 LiveRange
SLR(Idx
, LR
->end
, CurrSValNo
);
436 CurrSLI
->addRange(SLR
);
438 Processed
.insert(MBB
);
443 /// PerformPHIConstruction - From properly set up use and def lists, use a PHI
444 /// construction algorithm to compute the ranges and valnos for an interval.
446 PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI
,
447 MachineBasicBlock
* MBB
, LiveInterval
* LI
,
448 SmallPtrSet
<MachineInstr
*, 4>& Visited
,
449 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Defs
,
450 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Uses
,
451 DenseMap
<MachineInstr
*, VNInfo
*>& NewVNs
,
452 DenseMap
<MachineBasicBlock
*, VNInfo
*>& LiveOut
,
453 DenseMap
<MachineBasicBlock
*, VNInfo
*>& Phis
,
454 bool IsTopLevel
, bool IsIntraBlock
) {
455 // Return memoized result if it's available.
456 if (IsTopLevel
&& Visited
.count(UseI
) && NewVNs
.count(UseI
))
458 else if (!IsTopLevel
&& IsIntraBlock
&& NewVNs
.count(UseI
))
460 else if (!IsIntraBlock
&& LiveOut
.count(MBB
))
463 // Check if our block contains any uses or defs.
464 bool ContainsDefs
= Defs
.count(MBB
);
465 bool ContainsUses
= Uses
.count(MBB
);
469 // Enumerate the cases of use/def contaning blocks.
470 if (!ContainsDefs
&& !ContainsUses
) {
471 return PerformPHIConstructionFallBack(UseI
, MBB
, LI
, Visited
, Defs
, Uses
,
472 NewVNs
, LiveOut
, Phis
,
473 IsTopLevel
, IsIntraBlock
);
474 } else if (ContainsDefs
&& !ContainsUses
) {
475 SmallPtrSet
<MachineInstr
*, 2>& BlockDefs
= Defs
[MBB
];
477 // Search for the def in this block. If we don't find it before the
478 // instruction we care about, go to the fallback case. Note that that
479 // should never happen: this cannot be intrablock, so use should
480 // always be an end() iterator.
481 assert(UseI
== MBB
->end() && "No use marked in intrablock");
483 MachineBasicBlock::iterator Walker
= UseI
;
485 while (Walker
!= MBB
->begin()) {
486 if (BlockDefs
.count(Walker
))
491 // Once we've found it, extend its VNInfo to our instruction.
492 unsigned DefIndex
= LIs
->getInstructionIndex(Walker
);
493 DefIndex
= LiveIntervals::getDefIndex(DefIndex
);
494 unsigned EndIndex
= LIs
->getMBBEndIdx(MBB
);
496 RetVNI
= NewVNs
[Walker
];
497 LI
->addRange(LiveRange(DefIndex
, EndIndex
+1, RetVNI
));
498 } else if (!ContainsDefs
&& ContainsUses
) {
499 SmallPtrSet
<MachineInstr
*, 2>& BlockUses
= Uses
[MBB
];
501 // Search for the use in this block that precedes the instruction we care
502 // about, going to the fallback case if we don't find it.
503 if (UseI
== MBB
->begin())
504 return PerformPHIConstructionFallBack(UseI
, MBB
, LI
, Visited
, Defs
,
505 Uses
, NewVNs
, LiveOut
, Phis
,
506 IsTopLevel
, IsIntraBlock
);
508 MachineBasicBlock::iterator Walker
= UseI
;
511 while (Walker
!= MBB
->begin()) {
512 if (BlockUses
.count(Walker
)) {
519 // Must check begin() too.
521 if (BlockUses
.count(Walker
))
524 return PerformPHIConstructionFallBack(UseI
, MBB
, LI
, Visited
, Defs
,
525 Uses
, NewVNs
, LiveOut
, Phis
,
526 IsTopLevel
, IsIntraBlock
);
529 unsigned UseIndex
= LIs
->getInstructionIndex(Walker
);
530 UseIndex
= LiveIntervals::getUseIndex(UseIndex
);
531 unsigned EndIndex
= 0;
533 EndIndex
= LIs
->getInstructionIndex(UseI
);
534 EndIndex
= LiveIntervals::getUseIndex(EndIndex
);
536 EndIndex
= LIs
->getMBBEndIdx(MBB
);
538 // Now, recursively phi construct the VNInfo for the use we found,
539 // and then extend it to include the instruction we care about
540 RetVNI
= PerformPHIConstruction(Walker
, MBB
, LI
, Visited
, Defs
, Uses
,
541 NewVNs
, LiveOut
, Phis
, false, true);
543 LI
->addRange(LiveRange(UseIndex
, EndIndex
+1, RetVNI
));
545 // FIXME: Need to set kills properly for inter-block stuff.
546 if (LI
->isKill(RetVNI
, UseIndex
)) LI
->removeKill(RetVNI
, UseIndex
);
548 LI
->addKill(RetVNI
, EndIndex
, false);
549 } else if (ContainsDefs
&& ContainsUses
) {
550 SmallPtrSet
<MachineInstr
*, 2>& BlockDefs
= Defs
[MBB
];
551 SmallPtrSet
<MachineInstr
*, 2>& BlockUses
= Uses
[MBB
];
553 // This case is basically a merging of the two preceding case, with the
554 // special note that checking for defs must take precedence over checking
555 // for uses, because of two-address instructions.
557 if (UseI
== MBB
->begin())
558 return PerformPHIConstructionFallBack(UseI
, MBB
, LI
, Visited
, Defs
, Uses
,
559 NewVNs
, LiveOut
, Phis
,
560 IsTopLevel
, IsIntraBlock
);
562 MachineBasicBlock::iterator Walker
= UseI
;
564 bool foundDef
= false;
565 bool foundUse
= false;
566 while (Walker
!= MBB
->begin()) {
567 if (BlockDefs
.count(Walker
)) {
570 } else if (BlockUses
.count(Walker
)) {
577 // Must check begin() too.
578 if (!foundDef
&& !foundUse
) {
579 if (BlockDefs
.count(Walker
))
581 else if (BlockUses
.count(Walker
))
584 return PerformPHIConstructionFallBack(UseI
, MBB
, LI
, Visited
, Defs
,
585 Uses
, NewVNs
, LiveOut
, Phis
,
586 IsTopLevel
, IsIntraBlock
);
589 unsigned StartIndex
= LIs
->getInstructionIndex(Walker
);
590 StartIndex
= foundDef
? LiveIntervals::getDefIndex(StartIndex
) :
591 LiveIntervals::getUseIndex(StartIndex
);
592 unsigned EndIndex
= 0;
594 EndIndex
= LIs
->getInstructionIndex(UseI
);
595 EndIndex
= LiveIntervals::getUseIndex(EndIndex
);
597 EndIndex
= LIs
->getMBBEndIdx(MBB
);
600 RetVNI
= NewVNs
[Walker
];
602 RetVNI
= PerformPHIConstruction(Walker
, MBB
, LI
, Visited
, Defs
, Uses
,
603 NewVNs
, LiveOut
, Phis
, false, true);
605 LI
->addRange(LiveRange(StartIndex
, EndIndex
+1, RetVNI
));
607 if (foundUse
&& LI
->isKill(RetVNI
, StartIndex
))
608 LI
->removeKill(RetVNI
, StartIndex
);
610 LI
->addKill(RetVNI
, EndIndex
, false);
614 // Memoize results so we don't have to recompute them.
615 if (!IsIntraBlock
) LiveOut
[MBB
] = RetVNI
;
617 if (!NewVNs
.count(UseI
))
618 NewVNs
[UseI
] = RetVNI
;
619 Visited
.insert(UseI
);
625 /// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path.
628 PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI
,
629 MachineBasicBlock
* MBB
, LiveInterval
* LI
,
630 SmallPtrSet
<MachineInstr
*, 4>& Visited
,
631 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Defs
,
632 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Uses
,
633 DenseMap
<MachineInstr
*, VNInfo
*>& NewVNs
,
634 DenseMap
<MachineBasicBlock
*, VNInfo
*>& LiveOut
,
635 DenseMap
<MachineBasicBlock
*, VNInfo
*>& Phis
,
636 bool IsTopLevel
, bool IsIntraBlock
) {
637 // NOTE: Because this is the fallback case from other cases, we do NOT
638 // assume that we are not intrablock here.
639 if (Phis
.count(MBB
)) return Phis
[MBB
];
641 unsigned StartIndex
= LIs
->getMBBStartIdx(MBB
);
642 VNInfo
*RetVNI
= Phis
[MBB
] =
643 LI
->getNextValue(0, /*FIXME*/ 0, false, LIs
->getVNInfoAllocator());
645 if (!IsIntraBlock
) LiveOut
[MBB
] = RetVNI
;
647 // If there are no uses or defs between our starting point and the
648 // beginning of the block, then recursive perform phi construction
649 // on our predecessors.
650 DenseMap
<MachineBasicBlock
*, VNInfo
*> IncomingVNs
;
651 for (MachineBasicBlock::pred_iterator PI
= MBB
->pred_begin(),
652 PE
= MBB
->pred_end(); PI
!= PE
; ++PI
) {
653 VNInfo
* Incoming
= PerformPHIConstruction((*PI
)->end(), *PI
, LI
,
654 Visited
, Defs
, Uses
, NewVNs
,
655 LiveOut
, Phis
, false, false);
657 IncomingVNs
[*PI
] = Incoming
;
660 if (MBB
->pred_size() == 1 && !RetVNI
->hasPHIKill()) {
661 VNInfo
* OldVN
= RetVNI
;
662 VNInfo
* NewVN
= IncomingVNs
.begin()->second
;
663 VNInfo
* MergedVN
= LI
->MergeValueNumberInto(OldVN
, NewVN
);
664 if (MergedVN
== OldVN
) std::swap(OldVN
, NewVN
);
666 for (DenseMap
<MachineBasicBlock
*, VNInfo
*>::iterator LOI
= LiveOut
.begin(),
667 LOE
= LiveOut
.end(); LOI
!= LOE
; ++LOI
)
668 if (LOI
->second
== OldVN
)
669 LOI
->second
= MergedVN
;
670 for (DenseMap
<MachineInstr
*, VNInfo
*>::iterator NVI
= NewVNs
.begin(),
671 NVE
= NewVNs
.end(); NVI
!= NVE
; ++NVI
)
672 if (NVI
->second
== OldVN
)
673 NVI
->second
= MergedVN
;
674 for (DenseMap
<MachineBasicBlock
*, VNInfo
*>::iterator PI
= Phis
.begin(),
675 PE
= Phis
.end(); PI
!= PE
; ++PI
)
676 if (PI
->second
== OldVN
)
677 PI
->second
= MergedVN
;
680 // Otherwise, merge the incoming VNInfos with a phi join. Create a new
681 // VNInfo to represent the joined value.
682 for (DenseMap
<MachineBasicBlock
*, VNInfo
*>::iterator I
=
683 IncomingVNs
.begin(), E
= IncomingVNs
.end(); I
!= E
; ++I
) {
684 I
->second
->setHasPHIKill(true);
685 unsigned KillIndex
= LIs
->getMBBEndIdx(I
->first
);
686 if (!LiveInterval::isKill(I
->second
, KillIndex
))
687 LI
->addKill(I
->second
, KillIndex
, false);
691 unsigned EndIndex
= 0;
693 EndIndex
= LIs
->getInstructionIndex(UseI
);
694 EndIndex
= LiveIntervals::getUseIndex(EndIndex
);
696 EndIndex
= LIs
->getMBBEndIdx(MBB
);
697 LI
->addRange(LiveRange(StartIndex
, EndIndex
+1, RetVNI
));
699 LI
->addKill(RetVNI
, EndIndex
, false);
701 // Memoize results so we don't have to recompute them.
703 LiveOut
[MBB
] = RetVNI
;
705 if (!NewVNs
.count(UseI
))
706 NewVNs
[UseI
] = RetVNI
;
707 Visited
.insert(UseI
);
713 /// ReconstructLiveInterval - Recompute a live interval from scratch.
714 void PreAllocSplitting::ReconstructLiveInterval(LiveInterval
* LI
) {
715 BumpPtrAllocator
& Alloc
= LIs
->getVNInfoAllocator();
717 // Clear the old ranges and valnos;
720 // Cache the uses and defs of the register
721 typedef DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> > RegMap
;
724 // Keep track of the new VNs we're creating.
725 DenseMap
<MachineInstr
*, VNInfo
*> NewVNs
;
726 SmallPtrSet
<VNInfo
*, 2> PhiVNs
;
728 // Cache defs, and create a new VNInfo for each def.
729 for (MachineRegisterInfo::def_iterator DI
= MRI
->def_begin(LI
->reg
),
730 DE
= MRI
->def_end(); DI
!= DE
; ++DI
) {
731 Defs
[(*DI
).getParent()].insert(&*DI
);
733 unsigned DefIdx
= LIs
->getInstructionIndex(&*DI
);
734 DefIdx
= LiveIntervals::getDefIndex(DefIdx
);
736 assert(DI
->getOpcode() != TargetInstrInfo::PHI
&&
737 "Following NewVN isPHIDef flag incorrect. Fix me!");
738 VNInfo
* NewVN
= LI
->getNextValue(DefIdx
, 0, true, Alloc
);
740 // If the def is a move, set the copy field.
741 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
742 if (TII
->isMoveInstr(*DI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
743 if (DstReg
== LI
->reg
)
744 NewVN
->setCopy(&*DI
);
746 NewVNs
[&*DI
] = NewVN
;
749 // Cache uses as a separate pass from actually processing them.
750 for (MachineRegisterInfo::use_iterator UI
= MRI
->use_begin(LI
->reg
),
751 UE
= MRI
->use_end(); UI
!= UE
; ++UI
)
752 Uses
[(*UI
).getParent()].insert(&*UI
);
754 // Now, actually process every use and use a phi construction algorithm
755 // to walk from it to its reaching definitions, building VNInfos along
757 DenseMap
<MachineBasicBlock
*, VNInfo
*> LiveOut
;
758 DenseMap
<MachineBasicBlock
*, VNInfo
*> Phis
;
759 SmallPtrSet
<MachineInstr
*, 4> Visited
;
760 for (MachineRegisterInfo::use_iterator UI
= MRI
->use_begin(LI
->reg
),
761 UE
= MRI
->use_end(); UI
!= UE
; ++UI
) {
762 PerformPHIConstruction(&*UI
, UI
->getParent(), LI
, Visited
, Defs
,
763 Uses
, NewVNs
, LiveOut
, Phis
, true, true);
766 // Add ranges for dead defs
767 for (MachineRegisterInfo::def_iterator DI
= MRI
->def_begin(LI
->reg
),
768 DE
= MRI
->def_end(); DI
!= DE
; ++DI
) {
769 unsigned DefIdx
= LIs
->getInstructionIndex(&*DI
);
770 DefIdx
= LiveIntervals::getDefIndex(DefIdx
);
772 if (LI
->liveAt(DefIdx
)) continue;
774 VNInfo
* DeadVN
= NewVNs
[&*DI
];
775 LI
->addRange(LiveRange(DefIdx
, DefIdx
+1, DeadVN
));
776 LI
->addKill(DeadVN
, DefIdx
, false);
780 /// RenumberValno - Split the given valno out into a new vreg, allowing it to
781 /// be allocated to a different register. This function creates a new vreg,
782 /// copies the valno and its live ranges over to the new vreg's interval,
783 /// removes them from the old interval, and rewrites all uses and defs of
784 /// the original reg to the new vreg within those ranges.
785 void PreAllocSplitting::RenumberValno(VNInfo
* VN
) {
786 SmallVector
<VNInfo
*, 4> Stack
;
787 SmallVector
<VNInfo
*, 4> VNsToCopy
;
790 // Walk through and copy the valno we care about, and any other valnos
791 // that are two-address redefinitions of the one we care about. These
792 // will need to be rewritten as well. We also check for safety of the
793 // renumbering here, by making sure that none of the valno involved has
795 while (!Stack
.empty()) {
796 VNInfo
* OldVN
= Stack
.back();
799 // Bail out if we ever encounter a valno that has a PHI kill. We can't
801 if (OldVN
->hasPHIKill()) return;
803 VNsToCopy
.push_back(OldVN
);
805 // Locate two-address redefinitions
806 for (VNInfo::KillSet::iterator KI
= OldVN
->kills
.begin(),
807 KE
= OldVN
->kills
.end(); KI
!= KE
; ++KI
) {
808 assert(!KI
->isPHIKill
&& "VN previously reported having no PHI kills.");
809 MachineInstr
* MI
= LIs
->getInstructionFromIndex(KI
->killIdx
);
810 unsigned DefIdx
= MI
->findRegisterDefOperandIdx(CurrLI
->reg
);
811 if (DefIdx
== ~0U) continue;
812 if (MI
->isRegTiedToUseOperand(DefIdx
)) {
814 CurrLI
->findDefinedVNInfo(LiveIntervals::getDefIndex(KI
->killIdx
));
815 if (NextVN
== OldVN
) continue;
816 Stack
.push_back(NextVN
);
821 // Create the new vreg
822 unsigned NewVReg
= MRI
->createVirtualRegister(MRI
->getRegClass(CurrLI
->reg
));
824 // Create the new live interval
825 LiveInterval
& NewLI
= LIs
->getOrCreateInterval(NewVReg
);
827 for (SmallVector
<VNInfo
*, 4>::iterator OI
= VNsToCopy
.begin(), OE
=
828 VNsToCopy
.end(); OI
!= OE
; ++OI
) {
831 // Copy the valno over
832 VNInfo
* NewVN
= NewLI
.createValueCopy(OldVN
, LIs
->getVNInfoAllocator());
833 NewLI
.MergeValueInAsValue(*CurrLI
, OldVN
, NewVN
);
835 // Remove the valno from the old interval
836 CurrLI
->removeValNo(OldVN
);
839 // Rewrite defs and uses. This is done in two stages to avoid invalidating
841 SmallVector
<std::pair
<MachineInstr
*, unsigned>, 8> OpsToChange
;
843 for (MachineRegisterInfo::reg_iterator I
= MRI
->reg_begin(CurrLI
->reg
),
844 E
= MRI
->reg_end(); I
!= E
; ++I
) {
845 MachineOperand
& MO
= I
.getOperand();
846 unsigned InstrIdx
= LIs
->getInstructionIndex(&*I
);
848 if ((MO
.isUse() && NewLI
.liveAt(LiveIntervals::getUseIndex(InstrIdx
))) ||
849 (MO
.isDef() && NewLI
.liveAt(LiveIntervals::getDefIndex(InstrIdx
))))
850 OpsToChange
.push_back(std::make_pair(&*I
, I
.getOperandNo()));
853 for (SmallVector
<std::pair
<MachineInstr
*, unsigned>, 8>::iterator I
=
854 OpsToChange
.begin(), E
= OpsToChange
.end(); I
!= E
; ++I
) {
855 MachineInstr
* Inst
= I
->first
;
856 unsigned OpIdx
= I
->second
;
857 MachineOperand
& MO
= Inst
->getOperand(OpIdx
);
861 // Grow the VirtRegMap, since we've created a new vreg.
864 // The renumbered vreg shares a stack slot with the old register.
865 if (IntervalSSMap
.count(CurrLI
->reg
))
866 IntervalSSMap
[NewVReg
] = IntervalSSMap
[CurrLI
->reg
];
871 bool PreAllocSplitting::Rematerialize(unsigned VReg
, VNInfo
* ValNo
,
873 MachineBasicBlock::iterator RestorePt
,
875 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
) {
876 MachineBasicBlock
& MBB
= *RestorePt
->getParent();
878 MachineBasicBlock::iterator KillPt
= BarrierMBB
->end();
879 unsigned KillIdx
= 0;
880 if (!ValNo
->isDefAccurate() || DefMI
->getParent() == BarrierMBB
)
881 KillPt
= findSpillPoint(BarrierMBB
, Barrier
, NULL
, RefsInMBB
, KillIdx
);
883 KillPt
= findNextEmptySlot(DefMI
->getParent(), DefMI
, KillIdx
);
885 if (KillPt
== DefMI
->getParent()->end())
888 TII
->reMaterialize(MBB
, RestorePt
, VReg
, 0, DefMI
);
889 LIs
->InsertMachineInstrInMaps(prior(RestorePt
), RestoreIdx
);
891 ReconstructLiveInterval(CurrLI
);
892 unsigned RematIdx
= LIs
->getInstructionIndex(prior(RestorePt
));
893 RematIdx
= LiveIntervals::getDefIndex(RematIdx
);
894 RenumberValno(CurrLI
->findDefinedVNInfo(RematIdx
));
901 MachineInstr
* PreAllocSplitting::FoldSpill(unsigned vreg
,
902 const TargetRegisterClass
* RC
,
904 MachineInstr
* Barrier
,
905 MachineBasicBlock
* MBB
,
907 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
) {
908 MachineBasicBlock::iterator Pt
= MBB
->begin();
910 // Go top down if RefsInMBB is empty.
911 if (RefsInMBB
.empty())
914 MachineBasicBlock::iterator FoldPt
= Barrier
;
915 while (&*FoldPt
!= DefMI
&& FoldPt
!= MBB
->begin() &&
916 !RefsInMBB
.count(FoldPt
))
919 int OpIdx
= FoldPt
->findRegisterDefOperandIdx(vreg
, false);
923 SmallVector
<unsigned, 1> Ops
;
924 Ops
.push_back(OpIdx
);
926 if (!TII
->canFoldMemoryOperand(FoldPt
, Ops
))
929 DenseMap
<unsigned, int>::iterator I
= IntervalSSMap
.find(vreg
);
930 if (I
!= IntervalSSMap
.end()) {
933 SS
= MFI
->CreateStackObject(RC
->getSize(), RC
->getAlignment());
936 MachineInstr
* FMI
= TII
->foldMemoryOperand(*MBB
->getParent(),
940 LIs
->ReplaceMachineInstrInMaps(FoldPt
, FMI
);
941 FMI
= MBB
->insert(MBB
->erase(FoldPt
), FMI
);
944 IntervalSSMap
[vreg
] = SS
;
945 CurrSLI
= &LSs
->getOrCreateInterval(SS
, RC
);
946 if (CurrSLI
->hasAtLeastOneValue())
947 CurrSValNo
= CurrSLI
->getValNumInfo(0);
949 CurrSValNo
= CurrSLI
->getNextValue(0, 0, false, LSs
->getVNInfoAllocator());
955 MachineInstr
* PreAllocSplitting::FoldRestore(unsigned vreg
,
956 const TargetRegisterClass
* RC
,
957 MachineInstr
* Barrier
,
958 MachineBasicBlock
* MBB
,
960 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
) {
961 if ((int)RestoreFoldLimit
!= -1 && RestoreFoldLimit
== (int)NumRestoreFolds
)
964 // Go top down if RefsInMBB is empty.
965 if (RefsInMBB
.empty())
968 // Can't fold a restore between a call stack setup and teardown.
969 MachineBasicBlock::iterator FoldPt
= Barrier
;
971 // Advance from barrier to call frame teardown.
972 while (FoldPt
!= MBB
->getFirstTerminator() &&
973 FoldPt
->getOpcode() != TRI
->getCallFrameDestroyOpcode()) {
974 if (RefsInMBB
.count(FoldPt
))
980 if (FoldPt
== MBB
->getFirstTerminator())
985 // Now find the restore point.
986 while (FoldPt
!= MBB
->getFirstTerminator() && !RefsInMBB
.count(FoldPt
)) {
987 if (FoldPt
->getOpcode() == TRI
->getCallFrameSetupOpcode()) {
988 while (FoldPt
!= MBB
->getFirstTerminator() &&
989 FoldPt
->getOpcode() != TRI
->getCallFrameDestroyOpcode()) {
990 if (RefsInMBB
.count(FoldPt
))
996 if (FoldPt
== MBB
->getFirstTerminator())
1003 if (FoldPt
== MBB
->getFirstTerminator())
1006 int OpIdx
= FoldPt
->findRegisterUseOperandIdx(vreg
, true);
1010 SmallVector
<unsigned, 1> Ops
;
1011 Ops
.push_back(OpIdx
);
1013 if (!TII
->canFoldMemoryOperand(FoldPt
, Ops
))
1016 MachineInstr
* FMI
= TII
->foldMemoryOperand(*MBB
->getParent(),
1020 LIs
->ReplaceMachineInstrInMaps(FoldPt
, FMI
);
1021 FMI
= MBB
->insert(MBB
->erase(FoldPt
), FMI
);
1028 /// SplitRegLiveInterval - Split (spill and restore) the given live interval
1029 /// so it would not cross the barrier that's being processed. Shrink wrap
1030 /// (minimize) the live interval to the last uses.
1031 bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval
*LI
) {
1034 // Find live range where current interval cross the barrier.
1035 LiveInterval::iterator LR
=
1036 CurrLI
->FindLiveRangeContaining(LIs
->getUseIndex(BarrierIdx
));
1037 VNInfo
*ValNo
= LR
->valno
;
1039 assert(!ValNo
->isUnused() && "Val# is defined by a dead def?");
1041 MachineInstr
*DefMI
= ValNo
->isDefAccurate()
1042 ? LIs
->getInstructionFromIndex(ValNo
->def
) : NULL
;
1044 // If this would create a new join point, do not split.
1045 if (DefMI
&& createsNewJoin(LR
, DefMI
->getParent(), Barrier
->getParent()))
1048 // Find all references in the barrier mbb.
1049 SmallPtrSet
<MachineInstr
*, 4> RefsInMBB
;
1050 for (MachineRegisterInfo::reg_iterator I
= MRI
->reg_begin(CurrLI
->reg
),
1051 E
= MRI
->reg_end(); I
!= E
; ++I
) {
1052 MachineInstr
*RefMI
= &*I
;
1053 if (RefMI
->getParent() == BarrierMBB
)
1054 RefsInMBB
.insert(RefMI
);
1057 // Find a point to restore the value after the barrier.
1058 unsigned RestoreIndex
= 0;
1059 MachineBasicBlock::iterator RestorePt
=
1060 findRestorePoint(BarrierMBB
, Barrier
, LR
->end
, RefsInMBB
, RestoreIndex
);
1061 if (RestorePt
== BarrierMBB
->end())
1064 if (DefMI
&& LIs
->isReMaterializable(*LI
, ValNo
, DefMI
))
1065 if (Rematerialize(LI
->reg
, ValNo
, DefMI
, RestorePt
,
1066 RestoreIndex
, RefsInMBB
))
1069 // Add a spill either before the barrier or after the definition.
1070 MachineBasicBlock
*DefMBB
= DefMI
? DefMI
->getParent() : NULL
;
1071 const TargetRegisterClass
*RC
= MRI
->getRegClass(CurrLI
->reg
);
1072 unsigned SpillIndex
= 0;
1073 MachineInstr
*SpillMI
= NULL
;
1075 if (!ValNo
->isDefAccurate()) {
1076 // If we don't know where the def is we must split just before the barrier.
1077 if ((SpillMI
= FoldSpill(LI
->reg
, RC
, 0, Barrier
,
1078 BarrierMBB
, SS
, RefsInMBB
))) {
1079 SpillIndex
= LIs
->getInstructionIndex(SpillMI
);
1081 MachineBasicBlock::iterator SpillPt
=
1082 findSpillPoint(BarrierMBB
, Barrier
, NULL
, RefsInMBB
, SpillIndex
);
1083 if (SpillPt
== BarrierMBB
->begin())
1084 return false; // No gap to insert spill.
1087 SS
= CreateSpillStackSlot(CurrLI
->reg
, RC
);
1088 TII
->storeRegToStackSlot(*BarrierMBB
, SpillPt
, CurrLI
->reg
, true, SS
, RC
);
1089 SpillMI
= prior(SpillPt
);
1090 LIs
->InsertMachineInstrInMaps(SpillMI
, SpillIndex
);
1092 } else if (!IsAvailableInStack(DefMBB
, CurrLI
->reg
, ValNo
->def
,
1093 RestoreIndex
, SpillIndex
, SS
)) {
1094 // If it's already split, just restore the value. There is no need to spill
1097 return false; // Def is dead. Do nothing.
1099 if ((SpillMI
= FoldSpill(LI
->reg
, RC
, DefMI
, Barrier
,
1100 BarrierMBB
, SS
, RefsInMBB
))) {
1101 SpillIndex
= LIs
->getInstructionIndex(SpillMI
);
1103 // Check if it's possible to insert a spill after the def MI.
1104 MachineBasicBlock::iterator SpillPt
;
1105 if (DefMBB
== BarrierMBB
) {
1106 // Add spill after the def and the last use before the barrier.
1107 SpillPt
= findSpillPoint(BarrierMBB
, Barrier
, DefMI
,
1108 RefsInMBB
, SpillIndex
);
1109 if (SpillPt
== DefMBB
->begin())
1110 return false; // No gap to insert spill.
1112 SpillPt
= findNextEmptySlot(DefMBB
, DefMI
, SpillIndex
);
1113 if (SpillPt
== DefMBB
->end())
1114 return false; // No gap to insert spill.
1116 // Add spill. The store instruction kills the register if def is before
1117 // the barrier in the barrier block.
1118 SS
= CreateSpillStackSlot(CurrLI
->reg
, RC
);
1119 TII
->storeRegToStackSlot(*DefMBB
, SpillPt
, CurrLI
->reg
,
1120 DefMBB
== BarrierMBB
, SS
, RC
);
1121 SpillMI
= prior(SpillPt
);
1122 LIs
->InsertMachineInstrInMaps(SpillMI
, SpillIndex
);
1126 // Remember def instruction index to spill index mapping.
1127 if (DefMI
&& SpillMI
)
1128 Def2SpillMap
[ValNo
->def
] = SpillIndex
;
1131 bool FoldedRestore
= false;
1132 if (MachineInstr
* LMI
= FoldRestore(CurrLI
->reg
, RC
, Barrier
,
1133 BarrierMBB
, SS
, RefsInMBB
)) {
1135 RestoreIndex
= LIs
->getInstructionIndex(RestorePt
);
1136 FoldedRestore
= true;
1138 TII
->loadRegFromStackSlot(*BarrierMBB
, RestorePt
, CurrLI
->reg
, SS
, RC
);
1139 MachineInstr
*LoadMI
= prior(RestorePt
);
1140 LIs
->InsertMachineInstrInMaps(LoadMI
, RestoreIndex
);
1143 // Update spill stack slot live interval.
1144 UpdateSpillSlotInterval(ValNo
, LIs
->getUseIndex(SpillIndex
)+1,
1145 LIs
->getDefIndex(RestoreIndex
));
1147 ReconstructLiveInterval(CurrLI
);
1149 if (!FoldedRestore
) {
1150 unsigned RestoreIdx
= LIs
->getInstructionIndex(prior(RestorePt
));
1151 RestoreIdx
= LiveIntervals::getDefIndex(RestoreIdx
);
1152 RenumberValno(CurrLI
->findDefinedVNInfo(RestoreIdx
));
1159 /// SplitRegLiveIntervals - Split all register live intervals that cross the
1160 /// barrier that's being processed.
1162 PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass
**RCs
,
1163 SmallPtrSet
<LiveInterval
*, 8>& Split
) {
1164 // First find all the virtual registers whose live intervals are intercepted
1165 // by the current barrier.
1166 SmallVector
<LiveInterval
*, 8> Intervals
;
1167 for (const TargetRegisterClass
**RC
= RCs
; *RC
; ++RC
) {
1168 // FIXME: If it's not safe to move any instruction that defines the barrier
1169 // register class, then it means there are some special dependencies which
1170 // codegen is not modelling. Ignore these barriers for now.
1171 if (!TII
->isSafeToMoveRegClassDefs(*RC
))
1173 std::vector
<unsigned> &VRs
= MRI
->getRegClassVirtRegs(*RC
);
1174 for (unsigned i
= 0, e
= VRs
.size(); i
!= e
; ++i
) {
1175 unsigned Reg
= VRs
[i
];
1176 if (!LIs
->hasInterval(Reg
))
1178 LiveInterval
*LI
= &LIs
->getInterval(Reg
);
1179 if (LI
->liveAt(BarrierIdx
) && !Barrier
->readsRegister(Reg
))
1180 // Virtual register live interval is intercepted by the barrier. We
1181 // should split and shrink wrap its interval if possible.
1182 Intervals
.push_back(LI
);
1186 // Process the affected live intervals.
1187 bool Change
= false;
1188 while (!Intervals
.empty()) {
1189 if (PreSplitLimit
!= -1 && (int)NumSplits
== PreSplitLimit
)
1191 else if (NumSplits
== 4)
1193 LiveInterval
*LI
= Intervals
.back();
1194 Intervals
.pop_back();
1195 bool result
= SplitRegLiveInterval(LI
);
1196 if (result
) Split
.insert(LI
);
1203 unsigned PreAllocSplitting::getNumberOfNonSpills(
1204 SmallPtrSet
<MachineInstr
*, 4>& MIs
,
1205 unsigned Reg
, int FrameIndex
,
1206 bool& FeedsTwoAddr
) {
1207 unsigned NonSpills
= 0;
1208 for (SmallPtrSet
<MachineInstr
*, 4>::iterator UI
= MIs
.begin(), UE
= MIs
.end();
1210 int StoreFrameIndex
;
1211 unsigned StoreVReg
= TII
->isStoreToStackSlot(*UI
, StoreFrameIndex
);
1212 if (StoreVReg
!= Reg
|| StoreFrameIndex
!= FrameIndex
)
1215 int DefIdx
= (*UI
)->findRegisterDefOperandIdx(Reg
);
1216 if (DefIdx
!= -1 && (*UI
)->isRegTiedToUseOperand(DefIdx
))
1217 FeedsTwoAddr
= true;
1223 /// removeDeadSpills - After doing splitting, filter through all intervals we've
1224 /// split, and see if any of the spills are unnecessary. If so, remove them.
1225 bool PreAllocSplitting::removeDeadSpills(SmallPtrSet
<LiveInterval
*, 8>& split
) {
1226 bool changed
= false;
1228 // Walk over all of the live intervals that were touched by the splitter,
1229 // and see if we can do any DCE and/or folding.
1230 for (SmallPtrSet
<LiveInterval
*, 8>::iterator LI
= split
.begin(),
1231 LE
= split
.end(); LI
!= LE
; ++LI
) {
1232 DenseMap
<VNInfo
*, SmallPtrSet
<MachineInstr
*, 4> > VNUseCount
;
1234 // First, collect all the uses of the vreg, and sort them by their
1235 // reaching definition (VNInfo).
1236 for (MachineRegisterInfo::use_iterator UI
= MRI
->use_begin((*LI
)->reg
),
1237 UE
= MRI
->use_end(); UI
!= UE
; ++UI
) {
1238 unsigned index
= LIs
->getInstructionIndex(&*UI
);
1239 index
= LiveIntervals::getUseIndex(index
);
1241 const LiveRange
* LR
= (*LI
)->getLiveRangeContaining(index
);
1242 VNUseCount
[LR
->valno
].insert(&*UI
);
1245 // Now, take the definitions (VNInfo's) one at a time and try to DCE
1246 // and/or fold them away.
1247 for (LiveInterval::vni_iterator VI
= (*LI
)->vni_begin(),
1248 VE
= (*LI
)->vni_end(); VI
!= VE
; ++VI
) {
1250 if (DeadSplitLimit
!= -1 && (int)NumDeadSpills
== DeadSplitLimit
)
1253 VNInfo
* CurrVN
= *VI
;
1255 // We don't currently try to handle definitions with PHI kills, because
1256 // it would involve processing more than one VNInfo at once.
1257 if (CurrVN
->hasPHIKill()) continue;
1259 // We also don't try to handle the results of PHI joins, since there's
1260 // no defining instruction to analyze.
1261 if (!CurrVN
->isDefAccurate() || CurrVN
->isUnused()) continue;
1263 // We're only interested in eliminating cruft introduced by the splitter,
1264 // is of the form load-use or load-use-store. First, check that the
1265 // definition is a load, and remember what stack slot we loaded it from.
1266 MachineInstr
* DefMI
= LIs
->getInstructionFromIndex(CurrVN
->def
);
1268 if (!TII
->isLoadFromStackSlot(DefMI
, FrameIndex
)) continue;
1270 // If the definition has no uses at all, just DCE it.
1271 if (VNUseCount
[CurrVN
].size() == 0) {
1272 LIs
->RemoveMachineInstrFromMaps(DefMI
);
1273 (*LI
)->removeValNo(CurrVN
);
1274 DefMI
->eraseFromParent();
1275 VNUseCount
.erase(CurrVN
);
1281 // Second, get the number of non-store uses of the definition, as well as
1282 // a flag indicating whether it feeds into a later two-address definition.
1283 bool FeedsTwoAddr
= false;
1284 unsigned NonSpillCount
= getNumberOfNonSpills(VNUseCount
[CurrVN
],
1285 (*LI
)->reg
, FrameIndex
,
1288 // If there's one non-store use and it doesn't feed a two-addr, then
1289 // this is a load-use-store case that we can try to fold.
1290 if (NonSpillCount
== 1 && !FeedsTwoAddr
) {
1291 // Start by finding the non-store use MachineInstr.
1292 SmallPtrSet
<MachineInstr
*, 4>::iterator UI
= VNUseCount
[CurrVN
].begin();
1293 int StoreFrameIndex
;
1294 unsigned StoreVReg
= TII
->isStoreToStackSlot(*UI
, StoreFrameIndex
);
1295 while (UI
!= VNUseCount
[CurrVN
].end() &&
1296 (StoreVReg
== (*LI
)->reg
&& StoreFrameIndex
== FrameIndex
)) {
1298 if (UI
!= VNUseCount
[CurrVN
].end())
1299 StoreVReg
= TII
->isStoreToStackSlot(*UI
, StoreFrameIndex
);
1301 if (UI
== VNUseCount
[CurrVN
].end()) continue;
1303 MachineInstr
* use
= *UI
;
1305 // Attempt to fold it away!
1306 int OpIdx
= use
->findRegisterUseOperandIdx((*LI
)->reg
, false);
1307 if (OpIdx
== -1) continue;
1308 SmallVector
<unsigned, 1> Ops
;
1309 Ops
.push_back(OpIdx
);
1310 if (!TII
->canFoldMemoryOperand(use
, Ops
)) continue;
1312 MachineInstr
* NewMI
=
1313 TII
->foldMemoryOperand(*use
->getParent()->getParent(),
1314 use
, Ops
, FrameIndex
);
1316 if (!NewMI
) continue;
1318 // Update relevant analyses.
1319 LIs
->RemoveMachineInstrFromMaps(DefMI
);
1320 LIs
->ReplaceMachineInstrInMaps(use
, NewMI
);
1321 (*LI
)->removeValNo(CurrVN
);
1323 DefMI
->eraseFromParent();
1324 MachineBasicBlock
* MBB
= use
->getParent();
1325 NewMI
= MBB
->insert(MBB
->erase(use
), NewMI
);
1326 VNUseCount
[CurrVN
].erase(use
);
1328 // Remove deleted instructions. Note that we need to remove them from
1329 // the VNInfo->use map as well, just to be safe.
1330 for (SmallPtrSet
<MachineInstr
*, 4>::iterator II
=
1331 VNUseCount
[CurrVN
].begin(), IE
= VNUseCount
[CurrVN
].end();
1333 for (DenseMap
<VNInfo
*, SmallPtrSet
<MachineInstr
*, 4> >::iterator
1334 VNI
= VNUseCount
.begin(), VNE
= VNUseCount
.end(); VNI
!= VNE
;
1336 if (VNI
->first
!= CurrVN
)
1337 VNI
->second
.erase(*II
);
1338 LIs
->RemoveMachineInstrFromMaps(*II
);
1339 (*II
)->eraseFromParent();
1342 VNUseCount
.erase(CurrVN
);
1344 for (DenseMap
<VNInfo
*, SmallPtrSet
<MachineInstr
*, 4> >::iterator
1345 VI
= VNUseCount
.begin(), VE
= VNUseCount
.end(); VI
!= VE
; ++VI
)
1346 if (VI
->second
.erase(use
))
1347 VI
->second
.insert(NewMI
);
1354 // If there's more than one non-store instruction, we can't profitably
1355 // fold it, so bail.
1356 if (NonSpillCount
) continue;
1358 // Otherwise, this is a load-store case, so DCE them.
1359 for (SmallPtrSet
<MachineInstr
*, 4>::iterator UI
=
1360 VNUseCount
[CurrVN
].begin(), UE
= VNUseCount
[CurrVN
].end();
1362 LIs
->RemoveMachineInstrFromMaps(*UI
);
1363 (*UI
)->eraseFromParent();
1366 VNUseCount
.erase(CurrVN
);
1368 LIs
->RemoveMachineInstrFromMaps(DefMI
);
1369 (*LI
)->removeValNo(CurrVN
);
1370 DefMI
->eraseFromParent();
1379 bool PreAllocSplitting::createsNewJoin(LiveRange
* LR
,
1380 MachineBasicBlock
* DefMBB
,
1381 MachineBasicBlock
* BarrierMBB
) {
1382 if (DefMBB
== BarrierMBB
)
1385 if (LR
->valno
->hasPHIKill())
1388 unsigned MBBEnd
= LIs
->getMBBEndIdx(BarrierMBB
);
1389 if (LR
->end
< MBBEnd
)
1392 MachineLoopInfo
& MLI
= getAnalysis
<MachineLoopInfo
>();
1393 if (MLI
.getLoopFor(DefMBB
) != MLI
.getLoopFor(BarrierMBB
))
1396 MachineDominatorTree
& MDT
= getAnalysis
<MachineDominatorTree
>();
1397 SmallPtrSet
<MachineBasicBlock
*, 4> Visited
;
1398 typedef std::pair
<MachineBasicBlock
*,
1399 MachineBasicBlock::succ_iterator
> ItPair
;
1400 SmallVector
<ItPair
, 4> Stack
;
1401 Stack
.push_back(std::make_pair(BarrierMBB
, BarrierMBB
->succ_begin()));
1403 while (!Stack
.empty()) {
1404 ItPair P
= Stack
.back();
1407 MachineBasicBlock
* PredMBB
= P
.first
;
1408 MachineBasicBlock::succ_iterator S
= P
.second
;
1410 if (S
== PredMBB
->succ_end())
1412 else if (Visited
.count(*S
)) {
1413 Stack
.push_back(std::make_pair(PredMBB
, ++S
));
1416 Stack
.push_back(std::make_pair(PredMBB
, S
+1));
1418 MachineBasicBlock
* MBB
= *S
;
1419 Visited
.insert(MBB
);
1421 if (MBB
== BarrierMBB
)
1424 MachineDomTreeNode
* DefMDTN
= MDT
.getNode(DefMBB
);
1425 MachineDomTreeNode
* BarrierMDTN
= MDT
.getNode(BarrierMBB
);
1426 MachineDomTreeNode
* MDTN
= MDT
.getNode(MBB
)->getIDom();
1428 if (MDTN
== DefMDTN
)
1430 else if (MDTN
== BarrierMDTN
)
1432 MDTN
= MDTN
->getIDom();
1435 MBBEnd
= LIs
->getMBBEndIdx(MBB
);
1436 if (LR
->end
> MBBEnd
)
1437 Stack
.push_back(std::make_pair(MBB
, MBB
->succ_begin()));
1444 bool PreAllocSplitting::runOnMachineFunction(MachineFunction
&MF
) {
1446 TM
= &MF
.getTarget();
1447 TRI
= TM
->getRegisterInfo();
1448 TII
= TM
->getInstrInfo();
1449 MFI
= MF
.getFrameInfo();
1450 MRI
= &MF
.getRegInfo();
1451 LIs
= &getAnalysis
<LiveIntervals
>();
1452 LSs
= &getAnalysis
<LiveStacks
>();
1453 VRM
= &getAnalysis
<VirtRegMap
>();
1455 bool MadeChange
= false;
1457 // Make sure blocks are numbered in order.
1458 MF
.RenumberBlocks();
1460 MachineBasicBlock
*Entry
= MF
.begin();
1461 SmallPtrSet
<MachineBasicBlock
*,16> Visited
;
1463 SmallPtrSet
<LiveInterval
*, 8> Split
;
1465 for (df_ext_iterator
<MachineBasicBlock
*, SmallPtrSet
<MachineBasicBlock
*,16> >
1466 DFI
= df_ext_begin(Entry
, Visited
), E
= df_ext_end(Entry
, Visited
);
1469 for (MachineBasicBlock::iterator I
= BarrierMBB
->begin(),
1470 E
= BarrierMBB
->end(); I
!= E
; ++I
) {
1472 const TargetRegisterClass
**BarrierRCs
=
1473 Barrier
->getDesc().getRegClassBarriers();
1476 BarrierIdx
= LIs
->getInstructionIndex(Barrier
);
1477 MadeChange
|= SplitRegLiveIntervals(BarrierRCs
, Split
);
1481 MadeChange
|= removeDeadSpills(Split
);