1 //===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements a top-down list scheduler, using standard algorithms.
11 // The basic approach uses a priority queue of available nodes to schedule.
12 // One at a time, nodes are taken from the priority queue (thus in priority
13 // order), checked for legality to schedule, and emitted if legal.
15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
16 // pipeline or resource constraints) or because an input to the instruction has
17 // not completed execution.
19 //===----------------------------------------------------------------------===//
21 #define DEBUG_TYPE "pre-RA-sched"
22 #include "ScheduleDAGSDNodes.h"
23 #include "llvm/CodeGen/LatencyPriorityQueue.h"
24 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
25 #include "llvm/CodeGen/SchedulerRegistry.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/ADT/PriorityQueue.h"
34 #include "llvm/ADT/Statistic.h"
38 STATISTIC(NumNoops
, "Number of noops inserted");
39 STATISTIC(NumStalls
, "Number of pipeline stalls");
41 static RegisterScheduler
42 tdListDAGScheduler("list-td", "Top-down list scheduler",
43 createTDListDAGScheduler
);
46 //===----------------------------------------------------------------------===//
47 /// ScheduleDAGList - The actual list scheduler implementation. This supports
48 /// top-down scheduling.
50 class VISIBILITY_HIDDEN ScheduleDAGList
: public ScheduleDAGSDNodes
{
52 /// AvailableQueue - The priority queue to use for the available SUnits.
54 SchedulingPriorityQueue
*AvailableQueue
;
56 /// PendingQueue - This contains all of the instructions whose operands have
57 /// been issued, but their results are not ready yet (due to the latency of
58 /// the operation). Once the operands become available, the instruction is
59 /// added to the AvailableQueue.
60 std::vector
<SUnit
*> PendingQueue
;
62 /// HazardRec - The hazard recognizer to use.
63 ScheduleHazardRecognizer
*HazardRec
;
66 ScheduleDAGList(MachineFunction
&mf
,
67 SchedulingPriorityQueue
*availqueue
,
68 ScheduleHazardRecognizer
*HR
)
69 : ScheduleDAGSDNodes(mf
),
70 AvailableQueue(availqueue
), HazardRec(HR
) {
75 delete AvailableQueue
;
81 void ReleaseSucc(SUnit
*SU
, const SDep
&D
);
82 void ReleaseSuccessors(SUnit
*SU
);
83 void ScheduleNodeTopDown(SUnit
*SU
, unsigned CurCycle
);
84 void ListScheduleTopDown();
86 } // end anonymous namespace
88 /// Schedule - Schedule the DAG using list scheduling.
89 void ScheduleDAGList::Schedule() {
90 DOUT
<< "********** List Scheduling **********\n";
92 // Build the scheduling graph.
95 AvailableQueue
->initNodes(SUnits
);
97 ListScheduleTopDown();
99 AvailableQueue
->releaseState();
102 //===----------------------------------------------------------------------===//
103 // Top-Down Scheduling
104 //===----------------------------------------------------------------------===//
106 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
107 /// the PendingQueue if the count reaches zero. Also update its cycle bound.
108 void ScheduleDAGList::ReleaseSucc(SUnit
*SU
, const SDep
&D
) {
109 SUnit
*SuccSU
= D
.getSUnit();
110 --SuccSU
->NumPredsLeft
;
113 if (SuccSU
->NumPredsLeft
< 0) {
114 cerr
<< "*** Scheduling failed! ***\n";
116 cerr
<< " has been released too many times!\n";
121 SuccSU
->setDepthToAtLeast(SU
->getDepth() + D
.getLatency());
123 // If all the node's predecessors are scheduled, this node is ready
124 // to be scheduled. Ignore the special ExitSU node.
125 if (SuccSU
->NumPredsLeft
== 0 && SuccSU
!= &ExitSU
)
126 PendingQueue
.push_back(SuccSU
);
129 void ScheduleDAGList::ReleaseSuccessors(SUnit
*SU
) {
130 // Top down: release successors.
131 for (SUnit::succ_iterator I
= SU
->Succs
.begin(), E
= SU
->Succs
.end();
133 assert(!I
->isAssignedRegDep() &&
134 "The list-td scheduler doesn't yet support physreg dependencies!");
140 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
141 /// count of its successors. If a successor pending count is zero, add it to
142 /// the Available queue.
143 void ScheduleDAGList::ScheduleNodeTopDown(SUnit
*SU
, unsigned CurCycle
) {
144 DOUT
<< "*** Scheduling [" << CurCycle
<< "]: ";
145 DEBUG(SU
->dump(this));
147 Sequence
.push_back(SU
);
148 assert(CurCycle
>= SU
->getDepth() && "Node scheduled above its depth!");
149 SU
->setDepthToAtLeast(CurCycle
);
151 ReleaseSuccessors(SU
);
152 SU
->isScheduled
= true;
153 AvailableQueue
->ScheduledNode(SU
);
156 /// ListScheduleTopDown - The main loop of list scheduling for top-down
158 void ScheduleDAGList::ListScheduleTopDown() {
159 unsigned CurCycle
= 0;
161 // Release any successors of the special Entry node.
162 ReleaseSuccessors(&EntrySU
);
164 // All leaves to Available queue.
165 for (unsigned i
= 0, e
= SUnits
.size(); i
!= e
; ++i
) {
166 // It is available if it has no predecessors.
167 if (SUnits
[i
].Preds
.empty()) {
168 AvailableQueue
->push(&SUnits
[i
]);
169 SUnits
[i
].isAvailable
= true;
173 // While Available queue is not empty, grab the node with the highest
174 // priority. If it is not ready put it back. Schedule the node.
175 std::vector
<SUnit
*> NotReady
;
176 Sequence
.reserve(SUnits
.size());
177 while (!AvailableQueue
->empty() || !PendingQueue
.empty()) {
178 // Check to see if any of the pending instructions are ready to issue. If
179 // so, add them to the available queue.
180 for (unsigned i
= 0, e
= PendingQueue
.size(); i
!= e
; ++i
) {
181 if (PendingQueue
[i
]->getDepth() == CurCycle
) {
182 AvailableQueue
->push(PendingQueue
[i
]);
183 PendingQueue
[i
]->isAvailable
= true;
184 PendingQueue
[i
] = PendingQueue
.back();
185 PendingQueue
.pop_back();
188 assert(PendingQueue
[i
]->getDepth() > CurCycle
&& "Negative latency?");
192 // If there are no instructions available, don't try to issue anything, and
193 // don't advance the hazard recognizer.
194 if (AvailableQueue
->empty()) {
199 SUnit
*FoundSUnit
= 0;
201 bool HasNoopHazards
= false;
202 while (!AvailableQueue
->empty()) {
203 SUnit
*CurSUnit
= AvailableQueue
->pop();
205 ScheduleHazardRecognizer::HazardType HT
=
206 HazardRec
->getHazardType(CurSUnit
);
207 if (HT
== ScheduleHazardRecognizer::NoHazard
) {
208 FoundSUnit
= CurSUnit
;
212 // Remember if this is a noop hazard.
213 HasNoopHazards
|= HT
== ScheduleHazardRecognizer::NoopHazard
;
215 NotReady
.push_back(CurSUnit
);
218 // Add the nodes that aren't ready back onto the available list.
219 if (!NotReady
.empty()) {
220 AvailableQueue
->push_all(NotReady
);
224 // If we found a node to schedule, do it now.
226 ScheduleNodeTopDown(FoundSUnit
, CurCycle
);
227 HazardRec
->EmitInstruction(FoundSUnit
);
229 // If this is a pseudo-op node, we don't want to increment the current
231 if (FoundSUnit
->Latency
) // Don't increment CurCycle for pseudo-ops!
233 } else if (!HasNoopHazards
) {
234 // Otherwise, we have a pipeline stall, but no other problem, just advance
235 // the current cycle and try again.
236 DOUT
<< "*** Advancing cycle, no work to do\n";
237 HazardRec
->AdvanceCycle();
241 // Otherwise, we have no instructions to issue and we have instructions
242 // that will fault if we don't do this right. This is the case for
243 // processors without pipeline interlocks and other cases.
244 DOUT
<< "*** Emitting noop\n";
245 HazardRec
->EmitNoop();
246 Sequence
.push_back(0); // NULL here means noop
253 VerifySchedule(/*isBottomUp=*/false);
257 //===----------------------------------------------------------------------===//
258 // Public Constructor Functions
259 //===----------------------------------------------------------------------===//
261 /// createTDListDAGScheduler - This creates a top-down list scheduler with a
262 /// new hazard recognizer. This scheduler takes ownership of the hazard
263 /// recognizer and deletes it when done.
265 llvm::createTDListDAGScheduler(SelectionDAGISel
*IS
, CodeGenOpt::Level
) {
266 return new ScheduleDAGList(*IS
->MF
,
267 new LatencyPriorityQueue(),
268 IS
->CreateTargetHazardRecognizer());