1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the pass that transforms the ARM machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
17 #include "ARMAddressingModes.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMInstrInfo.h"
20 #include "ARMRelocations.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/PassManager.h"
27 #include "llvm/CodeGen/MachineCodeEmitter.h"
28 #include "llvm/CodeGen/JITCodeEmitter.h"
29 #include "llvm/CodeGen/ObjectCodeEmitter.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/raw_ostream.h"
45 STATISTIC(NumEmitted
, "Number of machine instructions emitted");
49 class ARMCodeEmitter
{
51 /// getBinaryCodeForInstr - This function, generated by the
52 /// CodeEmitterGenerator using TableGen, produces the binary encoding for
53 /// machine instructions.
54 unsigned getBinaryCodeForInstr(const MachineInstr
&MI
);
57 template<class CodeEmitter
>
58 class VISIBILITY_HIDDEN Emitter
: public MachineFunctionPass
,
59 public ARMCodeEmitter
{
61 const ARMInstrInfo
*II
;
65 const std::vector
<MachineConstantPoolEntry
> *MCPEs
;
66 const std::vector
<MachineJumpTableEntry
> *MJTEs
;
71 explicit Emitter(TargetMachine
&tm
, CodeEmitter
&mce
)
72 : MachineFunctionPass(&ID
), JTI(0), II(0), TD(0), TM(tm
),
73 MCE(mce
), MCPEs(0), MJTEs(0),
74 IsPIC(TM
.getRelocationModel() == Reloc::PIC_
) {}
75 Emitter(TargetMachine
&tm
, CodeEmitter
&mce
,
76 const ARMInstrInfo
&ii
, const TargetData
&td
)
77 : MachineFunctionPass(&ID
), JTI(0), II(&ii
), TD(&td
), TM(tm
),
78 MCE(mce
), MCPEs(0), MJTEs(0),
79 IsPIC(TM
.getRelocationModel() == Reloc::PIC_
) {}
81 bool runOnMachineFunction(MachineFunction
&MF
);
83 virtual const char *getPassName() const {
84 return "ARM Machine Code Emitter";
87 void emitInstruction(const MachineInstr
&MI
);
91 void emitWordLE(unsigned Binary
);
93 void emitDWordLE(uint64_t Binary
);
95 void emitConstPoolInstruction(const MachineInstr
&MI
);
97 void emitMOVi2piecesInstruction(const MachineInstr
&MI
);
99 void emitLEApcrelJTInstruction(const MachineInstr
&MI
);
101 void emitPseudoMoveInstruction(const MachineInstr
&MI
);
103 void addPCLabel(unsigned LabelID
);
105 void emitPseudoInstruction(const MachineInstr
&MI
);
107 unsigned getMachineSoRegOpValue(const MachineInstr
&MI
,
108 const TargetInstrDesc
&TID
,
109 const MachineOperand
&MO
,
112 unsigned getMachineSoImmOpValue(unsigned SoImm
);
114 unsigned getAddrModeSBit(const MachineInstr
&MI
,
115 const TargetInstrDesc
&TID
) const;
117 void emitDataProcessingInstruction(const MachineInstr
&MI
,
118 unsigned ImplicitRd
= 0,
119 unsigned ImplicitRn
= 0);
121 void emitLoadStoreInstruction(const MachineInstr
&MI
,
122 unsigned ImplicitRd
= 0,
123 unsigned ImplicitRn
= 0);
125 void emitMiscLoadStoreInstruction(const MachineInstr
&MI
,
126 unsigned ImplicitRn
= 0);
128 void emitLoadStoreMultipleInstruction(const MachineInstr
&MI
);
130 void emitMulFrmInstruction(const MachineInstr
&MI
);
132 void emitExtendInstruction(const MachineInstr
&MI
);
134 void emitMiscArithInstruction(const MachineInstr
&MI
);
136 void emitBranchInstruction(const MachineInstr
&MI
);
138 void emitInlineJumpTable(unsigned JTIndex
);
140 void emitMiscBranchInstruction(const MachineInstr
&MI
);
142 void emitVFPArithInstruction(const MachineInstr
&MI
);
144 void emitVFPConversionInstruction(const MachineInstr
&MI
);
146 void emitVFPLoadStoreInstruction(const MachineInstr
&MI
);
148 void emitVFPLoadStoreMultipleInstruction(const MachineInstr
&MI
);
150 void emitMiscInstruction(const MachineInstr
&MI
);
152 /// getMachineOpValue - Return binary encoding of operand. If the machine
153 /// operand requires relocation, record the relocation and return zero.
154 unsigned getMachineOpValue(const MachineInstr
&MI
,const MachineOperand
&MO
);
155 unsigned getMachineOpValue(const MachineInstr
&MI
, unsigned OpIdx
) {
156 return getMachineOpValue(MI
, MI
.getOperand(OpIdx
));
159 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
161 unsigned getShiftOp(unsigned Imm
) const ;
163 /// Routines that handle operands which add machine relocations which are
164 /// fixed up by the relocation stage.
165 void emitGlobalAddress(GlobalValue
*GV
, unsigned Reloc
,
166 bool NeedStub
, intptr_t ACPV
= 0);
167 void emitExternalSymbolAddress(const char *ES
, unsigned Reloc
);
168 void emitConstPoolAddress(unsigned CPI
, unsigned Reloc
);
169 void emitJumpTableAddress(unsigned JTIndex
, unsigned Reloc
);
170 void emitMachineBasicBlock(MachineBasicBlock
*BB
, unsigned Reloc
,
171 intptr_t JTBase
= 0);
173 template <class CodeEmitter
>
174 char Emitter
<CodeEmitter
>::ID
= 0;
177 /// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
178 /// to the specified MCE object.
180 FunctionPass
*llvm::createARMCodeEmitterPass(ARMBaseTargetMachine
&TM
,
181 MachineCodeEmitter
&MCE
) {
182 return new Emitter
<MachineCodeEmitter
>(TM
, MCE
);
184 FunctionPass
*llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine
&TM
,
185 JITCodeEmitter
&JCE
) {
186 return new Emitter
<JITCodeEmitter
>(TM
, JCE
);
188 FunctionPass
*llvm::createARMObjectCodeEmitterPass(ARMBaseTargetMachine
&TM
,
189 ObjectCodeEmitter
&OCE
) {
190 return new Emitter
<ObjectCodeEmitter
>(TM
, OCE
);
193 template<class CodeEmitter
>
194 bool Emitter
<CodeEmitter
>::runOnMachineFunction(MachineFunction
&MF
) {
195 assert((MF
.getTarget().getRelocationModel() != Reloc::Default
||
196 MF
.getTarget().getRelocationModel() != Reloc::Static
) &&
197 "JIT relocation model must be set to static or default!");
198 II
= ((ARMTargetMachine
&)MF
.getTarget()).getInstrInfo();
199 TD
= ((ARMTargetMachine
&)MF
.getTarget()).getTargetData();
200 JTI
= ((ARMTargetMachine
&)MF
.getTarget()).getJITInfo();
201 MCPEs
= &MF
.getConstantPool()->getConstants();
202 MJTEs
= &MF
.getJumpTableInfo()->getJumpTables();
203 IsPIC
= TM
.getRelocationModel() == Reloc::PIC_
;
204 JTI
->Initialize(MF
, IsPIC
);
207 DEBUG(errs() << "JITTing function '"
208 << MF
.getFunction()->getName() << "'\n");
209 MCE
.startFunction(MF
);
210 for (MachineFunction::iterator MBB
= MF
.begin(), E
= MF
.end();
212 MCE
.StartMachineBasicBlock(MBB
);
213 for (MachineBasicBlock::const_iterator I
= MBB
->begin(), E
= MBB
->end();
217 } while (MCE
.finishFunction(MF
));
222 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
224 template<class CodeEmitter
>
225 unsigned Emitter
<CodeEmitter
>::getShiftOp(unsigned Imm
) const {
226 switch (ARM_AM::getAM2ShiftOpc(Imm
)) {
227 default: llvm_unreachable("Unknown shift opc!");
228 case ARM_AM::asr
: return 2;
229 case ARM_AM::lsl
: return 0;
230 case ARM_AM::lsr
: return 1;
232 case ARM_AM::rrx
: return 3;
237 /// getMachineOpValue - Return binary encoding of operand. If the machine
238 /// operand requires relocation, record the relocation and return zero.
239 template<class CodeEmitter
>
240 unsigned Emitter
<CodeEmitter
>::getMachineOpValue(const MachineInstr
&MI
,
241 const MachineOperand
&MO
) {
243 return ARMRegisterInfo::getRegisterNumbering(MO
.getReg());
245 return static_cast<unsigned>(MO
.getImm());
246 else if (MO
.isGlobal())
247 emitGlobalAddress(MO
.getGlobal(), ARM::reloc_arm_branch
, true);
248 else if (MO
.isSymbol())
249 emitExternalSymbolAddress(MO
.getSymbolName(), ARM::reloc_arm_branch
);
250 else if (MO
.isCPI()) {
251 const TargetInstrDesc
&TID
= MI
.getDesc();
252 // For VFP load, the immediate offset is multiplied by 4.
253 unsigned Reloc
= ((TID
.TSFlags
& ARMII::FormMask
) == ARMII::VFPLdStFrm
)
254 ? ARM::reloc_arm_vfp_cp_entry
: ARM::reloc_arm_cp_entry
;
255 emitConstPoolAddress(MO
.getIndex(), Reloc
);
256 } else if (MO
.isJTI())
257 emitJumpTableAddress(MO
.getIndex(), ARM::reloc_arm_relative
);
259 emitMachineBasicBlock(MO
.getMBB(), ARM::reloc_arm_branch
);
269 /// emitGlobalAddress - Emit the specified address to the code stream.
271 template<class CodeEmitter
>
272 void Emitter
<CodeEmitter
>::emitGlobalAddress(GlobalValue
*GV
, unsigned Reloc
,
273 bool NeedStub
, intptr_t ACPV
) {
274 MCE
.addRelocation(MachineRelocation::getGV(MCE
.getCurrentPCOffset(), Reloc
,
275 GV
, ACPV
, NeedStub
));
278 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
279 /// be emitted to the current location in the function, and allow it to be PC
281 template<class CodeEmitter
>
282 void Emitter
<CodeEmitter
>::emitExternalSymbolAddress(const char *ES
,
284 MCE
.addRelocation(MachineRelocation::getExtSym(MCE
.getCurrentPCOffset(),
288 /// emitConstPoolAddress - Arrange for the address of an constant pool
289 /// to be emitted to the current location in the function, and allow it to be PC
291 template<class CodeEmitter
>
292 void Emitter
<CodeEmitter
>::emitConstPoolAddress(unsigned CPI
,
294 // Tell JIT emitter we'll resolve the address.
295 MCE
.addRelocation(MachineRelocation::getConstPool(MCE
.getCurrentPCOffset(),
296 Reloc
, CPI
, 0, true));
299 /// emitJumpTableAddress - Arrange for the address of a jump table to
300 /// be emitted to the current location in the function, and allow it to be PC
302 template<class CodeEmitter
>
303 void Emitter
<CodeEmitter
>::emitJumpTableAddress(unsigned JTIndex
,
305 MCE
.addRelocation(MachineRelocation::getJumpTable(MCE
.getCurrentPCOffset(),
306 Reloc
, JTIndex
, 0, true));
309 /// emitMachineBasicBlock - Emit the specified address basic block.
310 template<class CodeEmitter
>
311 void Emitter
<CodeEmitter
>::emitMachineBasicBlock(MachineBasicBlock
*BB
,
312 unsigned Reloc
, intptr_t JTBase
) {
313 MCE
.addRelocation(MachineRelocation::getBB(MCE
.getCurrentPCOffset(),
317 template<class CodeEmitter
>
318 void Emitter
<CodeEmitter
>::emitWordLE(unsigned Binary
) {
319 DEBUG(errs() << " 0x";
320 errs().write_hex(Binary
) << "\n");
321 MCE
.emitWordLE(Binary
);
324 template<class CodeEmitter
>
325 void Emitter
<CodeEmitter
>::emitDWordLE(uint64_t Binary
) {
326 DEBUG(errs() << " 0x";
327 errs().write_hex(Binary
) << "\n");
328 MCE
.emitDWordLE(Binary
);
331 template<class CodeEmitter
>
332 void Emitter
<CodeEmitter
>::emitInstruction(const MachineInstr
&MI
) {
333 DEBUG(errs() << "JIT: " << (void*)MCE
.getCurrentPCValue() << ":\t" << MI
);
335 MCE
.processDebugLoc(MI
.getDebugLoc());
337 NumEmitted
++; // Keep track of the # of mi's emitted
338 switch (MI
.getDesc().TSFlags
& ARMII::FormMask
) {
340 llvm_unreachable("Unhandled instruction encoding format!");
344 emitPseudoInstruction(MI
);
347 case ARMII::DPSoRegFrm
:
348 emitDataProcessingInstruction(MI
);
352 emitLoadStoreInstruction(MI
);
354 case ARMII::LdMiscFrm
:
355 case ARMII::StMiscFrm
:
356 emitMiscLoadStoreInstruction(MI
);
358 case ARMII::LdStMulFrm
:
359 emitLoadStoreMultipleInstruction(MI
);
362 emitMulFrmInstruction(MI
);
365 emitExtendInstruction(MI
);
367 case ARMII::ArithMiscFrm
:
368 emitMiscArithInstruction(MI
);
371 emitBranchInstruction(MI
);
373 case ARMII::BrMiscFrm
:
374 emitMiscBranchInstruction(MI
);
377 case ARMII::VFPUnaryFrm
:
378 case ARMII::VFPBinaryFrm
:
379 emitVFPArithInstruction(MI
);
381 case ARMII::VFPConv1Frm
:
382 case ARMII::VFPConv2Frm
:
383 case ARMII::VFPConv3Frm
:
384 case ARMII::VFPConv4Frm
:
385 case ARMII::VFPConv5Frm
:
386 emitVFPConversionInstruction(MI
);
388 case ARMII::VFPLdStFrm
:
389 emitVFPLoadStoreInstruction(MI
);
391 case ARMII::VFPLdStMulFrm
:
392 emitVFPLoadStoreMultipleInstruction(MI
);
394 case ARMII::VFPMiscFrm
:
395 emitMiscInstruction(MI
);
400 template<class CodeEmitter
>
401 void Emitter
<CodeEmitter
>::emitConstPoolInstruction(const MachineInstr
&MI
) {
402 unsigned CPI
= MI
.getOperand(0).getImm(); // CP instruction index.
403 unsigned CPIndex
= MI
.getOperand(1).getIndex(); // Actual cp entry index.
404 const MachineConstantPoolEntry
&MCPE
= (*MCPEs
)[CPIndex
];
406 // Remember the CONSTPOOL_ENTRY address for later relocation.
407 JTI
->addConstantPoolEntryAddr(CPI
, MCE
.getCurrentPCValue());
409 // Emit constpool island entry. In most cases, the actual values will be
410 // resolved and relocated after code emission.
411 if (MCPE
.isMachineConstantPoolEntry()) {
412 ARMConstantPoolValue
*ACPV
=
413 static_cast<ARMConstantPoolValue
*>(MCPE
.Val
.MachineCPVal
);
415 DEBUG(errs() << " ** ARM constant pool #" << CPI
<< " @ "
416 << (void*)MCE
.getCurrentPCValue() << " " << *ACPV
<< '\n');
418 GlobalValue
*GV
= ACPV
->getGV();
420 emitGlobalAddress(GV
, ARM::reloc_arm_machine_cp_entry
,
421 isa
<Function
>(GV
), (intptr_t)ACPV
);
423 emitExternalSymbolAddress(ACPV
->getSymbol(), ARM::reloc_arm_absolute
);
427 Constant
*CV
= MCPE
.Val
.ConstVal
;
430 errs() << " ** Constant pool #" << CPI
<< " @ "
431 << (void*)MCE
.getCurrentPCValue() << " ";
432 if (const Function
*F
= dyn_cast
<Function
>(CV
))
433 errs() << F
->getName();
439 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
)) {
440 emitGlobalAddress(GV
, ARM::reloc_arm_absolute
, isa
<Function
>(GV
));
442 } else if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
443 uint32_t Val
= *(uint32_t*)CI
->getValue().getRawData();
445 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
446 if (CFP
->getType() == Type::getFloatTy(CFP
->getContext()))
447 emitWordLE(CFP
->getValueAPF().bitcastToAPInt().getZExtValue());
448 else if (CFP
->getType() == Type::getDoubleTy(CFP
->getContext()))
449 emitDWordLE(CFP
->getValueAPF().bitcastToAPInt().getZExtValue());
451 llvm_unreachable("Unable to handle this constantpool entry!");
454 llvm_unreachable("Unable to handle this constantpool entry!");
459 template<class CodeEmitter
>
460 void Emitter
<CodeEmitter
>::emitMOVi2piecesInstruction(const MachineInstr
&MI
) {
461 const MachineOperand
&MO0
= MI
.getOperand(0);
462 const MachineOperand
&MO1
= MI
.getOperand(1);
463 assert(MO1
.isImm() && ARM_AM::getSOImmVal(MO1
.isImm()) != -1 &&
464 "Not a valid so_imm value!");
465 unsigned V1
= ARM_AM::getSOImmTwoPartFirst(MO1
.getImm());
466 unsigned V2
= ARM_AM::getSOImmTwoPartSecond(MO1
.getImm());
468 // Emit the 'mov' instruction.
469 unsigned Binary
= 0xd << 21; // mov: Insts{24-21} = 0b1101
471 // Set the conditional execution predicate.
472 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
475 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRdShift
;
478 // Set bit I(25) to identify this is the immediate form of <shifter_op>
479 Binary
|= 1 << ARMII::I_BitShift
;
480 Binary
|= getMachineSoImmOpValue(V1
);
483 // Now the 'orr' instruction.
484 Binary
= 0xc << 21; // orr: Insts{24-21} = 0b1100
486 // Set the conditional execution predicate.
487 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
490 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRdShift
;
493 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRnShift
;
496 // Set bit I(25) to identify this is the immediate form of <shifter_op>
497 Binary
|= 1 << ARMII::I_BitShift
;
498 Binary
|= getMachineSoImmOpValue(V2
);
502 template<class CodeEmitter
>
503 void Emitter
<CodeEmitter
>::emitLEApcrelJTInstruction(const MachineInstr
&MI
) {
504 // It's basically add r, pc, (LJTI - $+8)
506 const TargetInstrDesc
&TID
= MI
.getDesc();
508 // Emit the 'add' instruction.
509 unsigned Binary
= 0x4 << 21; // add: Insts{24-31} = 0b0100
511 // Set the conditional execution predicate
512 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
514 // Encode S bit if MI modifies CPSR.
515 Binary
|= getAddrModeSBit(MI
, TID
);
518 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRdShift
;
520 // Encode Rn which is PC.
521 Binary
|= ARMRegisterInfo::getRegisterNumbering(ARM::PC
) << ARMII::RegRnShift
;
523 // Encode the displacement.
524 Binary
|= 1 << ARMII::I_BitShift
;
525 emitJumpTableAddress(MI
.getOperand(1).getIndex(), ARM::reloc_arm_jt_base
);
530 template<class CodeEmitter
>
531 void Emitter
<CodeEmitter
>::emitPseudoMoveInstruction(const MachineInstr
&MI
) {
532 unsigned Opcode
= MI
.getDesc().Opcode
;
534 // Part of binary is determined by TableGn.
535 unsigned Binary
= getBinaryCodeForInstr(MI
);
537 // Set the conditional execution predicate
538 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
540 // Encode S bit if MI modifies CPSR.
541 if (Opcode
== ARM::MOVsrl_flag
|| Opcode
== ARM::MOVsra_flag
)
542 Binary
|= 1 << ARMII::S_BitShift
;
544 // Encode register def if there is one.
545 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRdShift
;
547 // Encode the shift operation.
554 case ARM::MOVsrl_flag
:
556 Binary
|= (0x2 << 4) | (1 << 7);
558 case ARM::MOVsra_flag
:
560 Binary
|= (0x4 << 4) | (1 << 7);
564 // Encode register Rm.
565 Binary
|= getMachineOpValue(MI
, 1);
570 template<class CodeEmitter
>
571 void Emitter
<CodeEmitter
>::addPCLabel(unsigned LabelID
) {
572 DEBUG(errs() << " ** LPC" << LabelID
<< " @ "
573 << (void*)MCE
.getCurrentPCValue() << '\n');
574 JTI
->addPCLabelAddr(LabelID
, MCE
.getCurrentPCValue());
577 template<class CodeEmitter
>
578 void Emitter
<CodeEmitter
>::emitPseudoInstruction(const MachineInstr
&MI
) {
579 unsigned Opcode
= MI
.getDesc().Opcode
;
582 llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");//FIXME:
583 case TargetInstrInfo::INLINEASM
: {
584 // We allow inline assembler nodes with empty bodies - they can
585 // implicitly define registers, which is ok for JIT.
586 if (MI
.getOperand(0).getSymbolName()[0]) {
587 llvm_report_error("JIT does not support inline asm!");
591 case TargetInstrInfo::DBG_LABEL
:
592 case TargetInstrInfo::EH_LABEL
:
593 MCE
.emitLabel(MI
.getOperand(0).getImm());
595 case TargetInstrInfo::IMPLICIT_DEF
:
599 case ARM::CONSTPOOL_ENTRY
:
600 emitConstPoolInstruction(MI
);
603 // Remember of the address of the PC label for relocation later.
604 addPCLabel(MI
.getOperand(2).getImm());
605 // PICADD is just an add instruction that implicitly read pc.
606 emitDataProcessingInstruction(MI
, 0, ARM::PC
);
613 // Remember of the address of the PC label for relocation later.
614 addPCLabel(MI
.getOperand(2).getImm());
615 // These are just load / store instructions that implicitly read pc.
616 emitLoadStoreInstruction(MI
, 0, ARM::PC
);
623 // Remember of the address of the PC label for relocation later.
624 addPCLabel(MI
.getOperand(2).getImm());
625 // These are just load / store instructions that implicitly read pc.
626 emitMiscLoadStoreInstruction(MI
, ARM::PC
);
629 case ARM::MOVi2pieces
:
630 // Two instructions to materialize a constant.
631 emitMOVi2piecesInstruction(MI
);
633 case ARM::LEApcrelJT
:
634 // Materialize jumptable address.
635 emitLEApcrelJTInstruction(MI
);
638 case ARM::MOVsrl_flag
:
639 case ARM::MOVsra_flag
:
640 emitPseudoMoveInstruction(MI
);
645 template<class CodeEmitter
>
646 unsigned Emitter
<CodeEmitter
>::getMachineSoRegOpValue(
647 const MachineInstr
&MI
,
648 const TargetInstrDesc
&TID
,
649 const MachineOperand
&MO
,
651 unsigned Binary
= getMachineOpValue(MI
, MO
);
653 const MachineOperand
&MO1
= MI
.getOperand(OpIdx
+ 1);
654 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
+ 2);
655 ARM_AM::ShiftOpc SOpc
= ARM_AM::getSORegShOp(MO2
.getImm());
657 // Encode the shift opcode.
659 unsigned Rs
= MO1
.getReg();
661 // Set shift operand (bit[7:4]).
666 // RRX - 0110 and bit[11:8] clear.
668 default: llvm_unreachable("Unknown shift opc!");
669 case ARM_AM::lsl
: SBits
= 0x1; break;
670 case ARM_AM::lsr
: SBits
= 0x3; break;
671 case ARM_AM::asr
: SBits
= 0x5; break;
672 case ARM_AM::ror
: SBits
= 0x7; break;
673 case ARM_AM::rrx
: SBits
= 0x6; break;
676 // Set shift operand (bit[6:4]).
682 default: llvm_unreachable("Unknown shift opc!");
683 case ARM_AM::lsl
: SBits
= 0x0; break;
684 case ARM_AM::lsr
: SBits
= 0x2; break;
685 case ARM_AM::asr
: SBits
= 0x4; break;
686 case ARM_AM::ror
: SBits
= 0x6; break;
689 Binary
|= SBits
<< 4;
690 if (SOpc
== ARM_AM::rrx
)
693 // Encode the shift operation Rs or shift_imm (except rrx).
695 // Encode Rs bit[11:8].
696 assert(ARM_AM::getSORegOffset(MO2
.getImm()) == 0);
698 (ARMRegisterInfo::getRegisterNumbering(Rs
) << ARMII::RegRsShift
);
701 // Encode shift_imm bit[11:7].
702 return Binary
| ARM_AM::getSORegOffset(MO2
.getImm()) << 7;
705 template<class CodeEmitter
>
706 unsigned Emitter
<CodeEmitter
>::getMachineSoImmOpValue(unsigned SoImm
) {
707 int SoImmVal
= ARM_AM::getSOImmVal(SoImm
);
708 assert(SoImmVal
!= -1 && "Not a valid so_imm value!");
710 // Encode rotate_imm.
711 unsigned Binary
= (ARM_AM::getSOImmValRot((unsigned)SoImmVal
) >> 1)
712 << ARMII::SoRotImmShift
;
715 Binary
|= ARM_AM::getSOImmValImm((unsigned)SoImmVal
);
719 template<class CodeEmitter
>
720 unsigned Emitter
<CodeEmitter
>::getAddrModeSBit(const MachineInstr
&MI
,
721 const TargetInstrDesc
&TID
) const {
722 for (unsigned i
= MI
.getNumOperands(), e
= TID
.getNumOperands(); i
!= e
; --i
){
723 const MachineOperand
&MO
= MI
.getOperand(i
-1);
724 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
)
725 return 1 << ARMII::S_BitShift
;
730 template<class CodeEmitter
>
731 void Emitter
<CodeEmitter
>::emitDataProcessingInstruction(
732 const MachineInstr
&MI
,
734 unsigned ImplicitRn
) {
735 const TargetInstrDesc
&TID
= MI
.getDesc();
737 if (TID
.Opcode
== ARM::BFC
) {
738 llvm_report_error("ARMv6t2 JIT is not yet supported.");
741 // Part of binary is determined by TableGn.
742 unsigned Binary
= getBinaryCodeForInstr(MI
);
744 // Set the conditional execution predicate
745 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
747 // Encode S bit if MI modifies CPSR.
748 Binary
|= getAddrModeSBit(MI
, TID
);
750 // Encode register def if there is one.
751 unsigned NumDefs
= TID
.getNumDefs();
754 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
756 // Special handling for implicit use (e.g. PC).
757 Binary
|= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd
)
758 << ARMII::RegRdShift
);
760 // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
761 if (TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
764 // Encode first non-shifter register operand if there is one.
765 bool isUnary
= TID
.TSFlags
& ARMII::UnaryDP
;
768 // Special handling for implicit use (e.g. PC).
769 Binary
|= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn
)
770 << ARMII::RegRnShift
);
772 Binary
|= getMachineOpValue(MI
, OpIdx
) << ARMII::RegRnShift
;
777 // Encode shifter operand.
778 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
779 if ((TID
.TSFlags
& ARMII::FormMask
) == ARMII::DPSoRegFrm
) {
781 emitWordLE(Binary
| getMachineSoRegOpValue(MI
, TID
, MO
, OpIdx
));
786 // Encode register Rm.
787 emitWordLE(Binary
| ARMRegisterInfo::getRegisterNumbering(MO
.getReg()));
792 Binary
|= getMachineSoImmOpValue((unsigned)MO
.getImm());
797 template<class CodeEmitter
>
798 void Emitter
<CodeEmitter
>::emitLoadStoreInstruction(
799 const MachineInstr
&MI
,
801 unsigned ImplicitRn
) {
802 const TargetInstrDesc
&TID
= MI
.getDesc();
803 unsigned Form
= TID
.TSFlags
& ARMII::FormMask
;
804 bool IsPrePost
= (TID
.TSFlags
& ARMII::IndexModeMask
) != 0;
806 // Part of binary is determined by TableGn.
807 unsigned Binary
= getBinaryCodeForInstr(MI
);
809 // Set the conditional execution predicate
810 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
814 // Operand 0 of a pre- and post-indexed store is the address base
815 // writeback. Skip it.
816 bool Skipped
= false;
817 if (IsPrePost
&& Form
== ARMII::StFrm
) {
824 // Special handling for implicit use (e.g. PC).
825 Binary
|= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd
)
826 << ARMII::RegRdShift
);
828 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
830 // Set second operand
832 // Special handling for implicit use (e.g. PC).
833 Binary
|= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn
)
834 << ARMII::RegRnShift
);
836 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRnShift
;
838 // If this is a two-address operand, skip it. e.g. LDR_PRE.
839 if (!Skipped
&& TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
842 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
);
843 unsigned AM2Opc
= (ImplicitRn
== ARM::PC
)
844 ? 0 : MI
.getOperand(OpIdx
+1).getImm();
846 // Set bit U(23) according to sign of immed value (positive or negative).
847 Binary
|= ((ARM_AM::getAM2Op(AM2Opc
) == ARM_AM::add
? 1 : 0) <<
849 if (!MO2
.getReg()) { // is immediate
850 if (ARM_AM::getAM2Offset(AM2Opc
))
851 // Set the value of offset_12 field
852 Binary
|= ARM_AM::getAM2Offset(AM2Opc
);
857 // Set bit I(25), because this is not in immediate enconding.
858 Binary
|= 1 << ARMII::I_BitShift
;
859 assert(TargetRegisterInfo::isPhysicalRegister(MO2
.getReg()));
860 // Set bit[3:0] to the corresponding Rm register
861 Binary
|= ARMRegisterInfo::getRegisterNumbering(MO2
.getReg());
863 // If this instr is in scaled register offset/index instruction, set
864 // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
865 if (unsigned ShImm
= ARM_AM::getAM2Offset(AM2Opc
)) {
866 Binary
|= getShiftOp(AM2Opc
) << ARMII::ShiftImmShift
; // shift
867 Binary
|= ShImm
<< ARMII::ShiftShift
; // shift_immed
873 template<class CodeEmitter
>
874 void Emitter
<CodeEmitter
>::emitMiscLoadStoreInstruction(const MachineInstr
&MI
,
875 unsigned ImplicitRn
) {
876 const TargetInstrDesc
&TID
= MI
.getDesc();
877 unsigned Form
= TID
.TSFlags
& ARMII::FormMask
;
878 bool IsPrePost
= (TID
.TSFlags
& ARMII::IndexModeMask
) != 0;
880 // Part of binary is determined by TableGn.
881 unsigned Binary
= getBinaryCodeForInstr(MI
);
883 // Set the conditional execution predicate
884 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
888 // Operand 0 of a pre- and post-indexed store is the address base
889 // writeback. Skip it.
890 bool Skipped
= false;
891 if (IsPrePost
&& Form
== ARMII::StMiscFrm
) {
897 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
899 // Skip LDRD and STRD's second operand.
900 if (TID
.Opcode
== ARM::LDRD
|| TID
.Opcode
== ARM::STRD
)
903 // Set second operand
905 // Special handling for implicit use (e.g. PC).
906 Binary
|= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn
)
907 << ARMII::RegRnShift
);
909 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRnShift
;
911 // If this is a two-address operand, skip it. e.g. LDRH_POST.
912 if (!Skipped
&& TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
915 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
);
916 unsigned AM3Opc
= (ImplicitRn
== ARM::PC
)
917 ? 0 : MI
.getOperand(OpIdx
+1).getImm();
919 // Set bit U(23) according to sign of immed value (positive or negative)
920 Binary
|= ((ARM_AM::getAM3Op(AM3Opc
) == ARM_AM::add
? 1 : 0) <<
923 // If this instr is in register offset/index encoding, set bit[3:0]
924 // to the corresponding Rm register.
926 Binary
|= ARMRegisterInfo::getRegisterNumbering(MO2
.getReg());
931 // This instr is in immediate offset/index encoding, set bit 22 to 1.
932 Binary
|= 1 << ARMII::AM3_I_BitShift
;
933 if (unsigned ImmOffs
= ARM_AM::getAM3Offset(AM3Opc
)) {
935 Binary
|= (ImmOffs
>> 4) << ARMII::ImmHiShift
; // immedH
936 Binary
|= (ImmOffs
& 0xF); // immedL
942 static unsigned getAddrModeUPBits(unsigned Mode
) {
945 // Set addressing mode by modifying bits U(23) and P(24)
946 // IA - Increment after - bit U = 1 and bit P = 0
947 // IB - Increment before - bit U = 1 and bit P = 1
948 // DA - Decrement after - bit U = 0 and bit P = 0
949 // DB - Decrement before - bit U = 0 and bit P = 1
951 default: llvm_unreachable("Unknown addressing sub-mode!");
952 case ARM_AM::da
: break;
953 case ARM_AM::db
: Binary
|= 0x1 << ARMII::P_BitShift
; break;
954 case ARM_AM::ia
: Binary
|= 0x1 << ARMII::U_BitShift
; break;
955 case ARM_AM::ib
: Binary
|= 0x3 << ARMII::U_BitShift
; break;
961 template<class CodeEmitter
>
962 void Emitter
<CodeEmitter
>::emitLoadStoreMultipleInstruction(
963 const MachineInstr
&MI
) {
964 // Part of binary is determined by TableGn.
965 unsigned Binary
= getBinaryCodeForInstr(MI
);
967 // Set the conditional execution predicate
968 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
970 // Set base address operand
971 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRnShift
;
973 // Set addressing mode by modifying bits U(23) and P(24)
974 const MachineOperand
&MO
= MI
.getOperand(1);
975 Binary
|= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO
.getImm()));
978 if (ARM_AM::getAM4WBFlag(MO
.getImm()))
979 Binary
|= 0x1 << ARMII::W_BitShift
;
982 for (unsigned i
= 4, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
983 const MachineOperand
&MO
= MI
.getOperand(i
);
984 if (!MO
.isReg() || MO
.isImplicit())
986 unsigned RegNum
= ARMRegisterInfo::getRegisterNumbering(MO
.getReg());
987 assert(TargetRegisterInfo::isPhysicalRegister(MO
.getReg()) &&
989 Binary
|= 0x1 << RegNum
;
995 template<class CodeEmitter
>
996 void Emitter
<CodeEmitter
>::emitMulFrmInstruction(const MachineInstr
&MI
) {
997 const TargetInstrDesc
&TID
= MI
.getDesc();
999 // Part of binary is determined by TableGn.
1000 unsigned Binary
= getBinaryCodeForInstr(MI
);
1002 // Set the conditional execution predicate
1003 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1005 // Encode S bit if MI modifies CPSR.
1006 Binary
|= getAddrModeSBit(MI
, TID
);
1008 // 32x32->64bit operations have two destination registers. The number
1009 // of register definitions will tell us if that's what we're dealing with.
1011 if (TID
.getNumDefs() == 2)
1012 Binary
|= getMachineOpValue (MI
, OpIdx
++) << ARMII::RegRdLoShift
;
1015 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdHiShift
;
1018 Binary
|= getMachineOpValue(MI
, OpIdx
++);
1021 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRsShift
;
1023 // Many multiple instructions (e.g. MLA) have three src operands. Encode
1024 // it as Rn (for multiply, that's in the same offset as RdLo.
1025 if (TID
.getNumOperands() > OpIdx
&&
1026 !TID
.OpInfo
[OpIdx
].isPredicate() &&
1027 !TID
.OpInfo
[OpIdx
].isOptionalDef())
1028 Binary
|= getMachineOpValue(MI
, OpIdx
) << ARMII::RegRdLoShift
;
1033 template<class CodeEmitter
>
1034 void Emitter
<CodeEmitter
>::emitExtendInstruction(const MachineInstr
&MI
) {
1035 const TargetInstrDesc
&TID
= MI
.getDesc();
1037 // Part of binary is determined by TableGn.
1038 unsigned Binary
= getBinaryCodeForInstr(MI
);
1040 // Set the conditional execution predicate
1041 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1046 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
1048 const MachineOperand
&MO1
= MI
.getOperand(OpIdx
++);
1049 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
);
1051 // Two register operand form.
1053 Binary
|= getMachineOpValue(MI
, MO1
) << ARMII::RegRnShift
;
1056 Binary
|= getMachineOpValue(MI
, MO2
);
1059 Binary
|= getMachineOpValue(MI
, MO1
);
1062 // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1063 if (MI
.getOperand(OpIdx
).isImm() &&
1064 !TID
.OpInfo
[OpIdx
].isPredicate() &&
1065 !TID
.OpInfo
[OpIdx
].isOptionalDef())
1066 Binary
|= (getMachineOpValue(MI
, OpIdx
) / 8) << ARMII::ExtRotImmShift
;
1071 template<class CodeEmitter
>
1072 void Emitter
<CodeEmitter
>::emitMiscArithInstruction(const MachineInstr
&MI
) {
1073 const TargetInstrDesc
&TID
= MI
.getDesc();
1075 // Part of binary is determined by TableGn.
1076 unsigned Binary
= getBinaryCodeForInstr(MI
);
1078 // Set the conditional execution predicate
1079 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1084 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
1086 const MachineOperand
&MO
= MI
.getOperand(OpIdx
++);
1087 if (OpIdx
== TID
.getNumOperands() ||
1088 TID
.OpInfo
[OpIdx
].isPredicate() ||
1089 TID
.OpInfo
[OpIdx
].isOptionalDef()) {
1090 // Encode Rm and it's done.
1091 Binary
|= getMachineOpValue(MI
, MO
);
1097 Binary
|= getMachineOpValue(MI
, MO
) << ARMII::RegRnShift
;
1100 Binary
|= getMachineOpValue(MI
, OpIdx
++);
1102 // Encode shift_imm.
1103 unsigned ShiftAmt
= MI
.getOperand(OpIdx
).getImm();
1104 assert(ShiftAmt
< 32 && "shift_imm range is 0 to 31!");
1105 Binary
|= ShiftAmt
<< ARMII::ShiftShift
;
1110 template<class CodeEmitter
>
1111 void Emitter
<CodeEmitter
>::emitBranchInstruction(const MachineInstr
&MI
) {
1112 const TargetInstrDesc
&TID
= MI
.getDesc();
1114 if (TID
.Opcode
== ARM::TPsoft
) {
1115 llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1118 // Part of binary is determined by TableGn.
1119 unsigned Binary
= getBinaryCodeForInstr(MI
);
1121 // Set the conditional execution predicate
1122 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1124 // Set signed_immed_24 field
1125 Binary
|= getMachineOpValue(MI
, 0);
1130 template<class CodeEmitter
>
1131 void Emitter
<CodeEmitter
>::emitInlineJumpTable(unsigned JTIndex
) {
1132 // Remember the base address of the inline jump table.
1133 uintptr_t JTBase
= MCE
.getCurrentPCValue();
1134 JTI
->addJumpTableBaseAddr(JTIndex
, JTBase
);
1135 DEBUG(errs() << " ** Jump Table #" << JTIndex
<< " @ " << (void*)JTBase
1138 // Now emit the jump table entries.
1139 const std::vector
<MachineBasicBlock
*> &MBBs
= (*MJTEs
)[JTIndex
].MBBs
;
1140 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
) {
1142 // DestBB address - JT base.
1143 emitMachineBasicBlock(MBBs
[i
], ARM::reloc_arm_pic_jt
, JTBase
);
1145 // Absolute DestBB address.
1146 emitMachineBasicBlock(MBBs
[i
], ARM::reloc_arm_absolute
);
1151 template<class CodeEmitter
>
1152 void Emitter
<CodeEmitter
>::emitMiscBranchInstruction(const MachineInstr
&MI
) {
1153 const TargetInstrDesc
&TID
= MI
.getDesc();
1155 // Handle jump tables.
1156 if (TID
.Opcode
== ARM::BR_JTr
|| TID
.Opcode
== ARM::BR_JTadd
) {
1157 // First emit a ldr pc, [] instruction.
1158 emitDataProcessingInstruction(MI
, ARM::PC
);
1160 // Then emit the inline jump table.
1162 (TID
.Opcode
== ARM::BR_JTr
)
1163 ? MI
.getOperand(1).getIndex() : MI
.getOperand(2).getIndex();
1164 emitInlineJumpTable(JTIndex
);
1166 } else if (TID
.Opcode
== ARM::BR_JTm
) {
1167 // First emit a ldr pc, [] instruction.
1168 emitLoadStoreInstruction(MI
, ARM::PC
);
1170 // Then emit the inline jump table.
1171 emitInlineJumpTable(MI
.getOperand(3).getIndex());
1175 // Part of binary is determined by TableGn.
1176 unsigned Binary
= getBinaryCodeForInstr(MI
);
1178 // Set the conditional execution predicate
1179 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1181 if (TID
.Opcode
== ARM::BX_RET
)
1182 // The return register is LR.
1183 Binary
|= ARMRegisterInfo::getRegisterNumbering(ARM::LR
);
1185 // otherwise, set the return register
1186 Binary
|= getMachineOpValue(MI
, 0);
1191 static unsigned encodeVFPRd(const MachineInstr
&MI
, unsigned OpIdx
) {
1192 unsigned RegD
= MI
.getOperand(OpIdx
).getReg();
1193 unsigned Binary
= 0;
1194 bool isSPVFP
= false;
1195 RegD
= ARMRegisterInfo::getRegisterNumbering(RegD
, &isSPVFP
);
1197 Binary
|= RegD
<< ARMII::RegRdShift
;
1199 Binary
|= ((RegD
& 0x1E) >> 1) << ARMII::RegRdShift
;
1200 Binary
|= (RegD
& 0x01) << ARMII::D_BitShift
;
1205 static unsigned encodeVFPRn(const MachineInstr
&MI
, unsigned OpIdx
) {
1206 unsigned RegN
= MI
.getOperand(OpIdx
).getReg();
1207 unsigned Binary
= 0;
1208 bool isSPVFP
= false;
1209 RegN
= ARMRegisterInfo::getRegisterNumbering(RegN
, &isSPVFP
);
1211 Binary
|= RegN
<< ARMII::RegRnShift
;
1213 Binary
|= ((RegN
& 0x1E) >> 1) << ARMII::RegRnShift
;
1214 Binary
|= (RegN
& 0x01) << ARMII::N_BitShift
;
1219 static unsigned encodeVFPRm(const MachineInstr
&MI
, unsigned OpIdx
) {
1220 unsigned RegM
= MI
.getOperand(OpIdx
).getReg();
1221 unsigned Binary
= 0;
1222 bool isSPVFP
= false;
1223 RegM
= ARMRegisterInfo::getRegisterNumbering(RegM
, &isSPVFP
);
1227 Binary
|= ((RegM
& 0x1E) >> 1);
1228 Binary
|= (RegM
& 0x01) << ARMII::M_BitShift
;
1233 template<class CodeEmitter
>
1234 void Emitter
<CodeEmitter
>::emitVFPArithInstruction(const MachineInstr
&MI
) {
1235 const TargetInstrDesc
&TID
= MI
.getDesc();
1237 // Part of binary is determined by TableGn.
1238 unsigned Binary
= getBinaryCodeForInstr(MI
);
1240 // Set the conditional execution predicate
1241 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1244 assert((Binary
& ARMII::D_BitShift
) == 0 &&
1245 (Binary
& ARMII::N_BitShift
) == 0 &&
1246 (Binary
& ARMII::M_BitShift
) == 0 && "VFP encoding bug!");
1249 Binary
|= encodeVFPRd(MI
, OpIdx
++);
1251 // If this is a two-address operand, skip it, e.g. FMACD.
1252 if (TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
1256 if ((TID
.TSFlags
& ARMII::FormMask
) == ARMII::VFPBinaryFrm
)
1257 Binary
|= encodeVFPRn(MI
, OpIdx
++);
1259 if (OpIdx
== TID
.getNumOperands() ||
1260 TID
.OpInfo
[OpIdx
].isPredicate() ||
1261 TID
.OpInfo
[OpIdx
].isOptionalDef()) {
1262 // FCMPEZD etc. has only one operand.
1268 Binary
|= encodeVFPRm(MI
, OpIdx
);
1273 template<class CodeEmitter
>
1274 void Emitter
<CodeEmitter
>::emitVFPConversionInstruction(
1275 const MachineInstr
&MI
) {
1276 const TargetInstrDesc
&TID
= MI
.getDesc();
1277 unsigned Form
= TID
.TSFlags
& ARMII::FormMask
;
1279 // Part of binary is determined by TableGn.
1280 unsigned Binary
= getBinaryCodeForInstr(MI
);
1282 // Set the conditional execution predicate
1283 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1287 case ARMII::VFPConv1Frm
:
1288 case ARMII::VFPConv2Frm
:
1289 case ARMII::VFPConv3Frm
:
1291 Binary
|= encodeVFPRd(MI
, 0);
1293 case ARMII::VFPConv4Frm
:
1295 Binary
|= encodeVFPRn(MI
, 0);
1297 case ARMII::VFPConv5Frm
:
1299 Binary
|= encodeVFPRm(MI
, 0);
1305 case ARMII::VFPConv1Frm
:
1307 Binary
|= encodeVFPRm(MI
, 1);
1309 case ARMII::VFPConv2Frm
:
1310 case ARMII::VFPConv3Frm
:
1312 Binary
|= encodeVFPRn(MI
, 1);
1314 case ARMII::VFPConv4Frm
:
1315 case ARMII::VFPConv5Frm
:
1317 Binary
|= encodeVFPRd(MI
, 1);
1321 if (Form
== ARMII::VFPConv5Frm
)
1323 Binary
|= encodeVFPRn(MI
, 2);
1324 else if (Form
== ARMII::VFPConv3Frm
)
1326 Binary
|= encodeVFPRm(MI
, 2);
1331 template<class CodeEmitter
>
1332 void Emitter
<CodeEmitter
>::emitVFPLoadStoreInstruction(const MachineInstr
&MI
) {
1333 // Part of binary is determined by TableGn.
1334 unsigned Binary
= getBinaryCodeForInstr(MI
);
1336 // Set the conditional execution predicate
1337 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1342 Binary
|= encodeVFPRd(MI
, OpIdx
++);
1344 // Encode address base.
1345 const MachineOperand
&Base
= MI
.getOperand(OpIdx
++);
1346 Binary
|= getMachineOpValue(MI
, Base
) << ARMII::RegRnShift
;
1348 // If there is a non-zero immediate offset, encode it.
1350 const MachineOperand
&Offset
= MI
.getOperand(OpIdx
);
1351 if (unsigned ImmOffs
= ARM_AM::getAM5Offset(Offset
.getImm())) {
1352 if (ARM_AM::getAM5Op(Offset
.getImm()) == ARM_AM::add
)
1353 Binary
|= 1 << ARMII::U_BitShift
;
1360 // If immediate offset is omitted, default to +0.
1361 Binary
|= 1 << ARMII::U_BitShift
;
1366 template<class CodeEmitter
>
1367 void Emitter
<CodeEmitter
>::emitVFPLoadStoreMultipleInstruction(
1368 const MachineInstr
&MI
) {
1369 // Part of binary is determined by TableGn.
1370 unsigned Binary
= getBinaryCodeForInstr(MI
);
1372 // Set the conditional execution predicate
1373 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1375 // Set base address operand
1376 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRnShift
;
1378 // Set addressing mode by modifying bits U(23) and P(24)
1379 const MachineOperand
&MO
= MI
.getOperand(1);
1380 Binary
|= getAddrModeUPBits(ARM_AM::getAM5SubMode(MO
.getImm()));
1383 if (ARM_AM::getAM5WBFlag(MO
.getImm()))
1384 Binary
|= 0x1 << ARMII::W_BitShift
;
1386 // First register is encoded in Dd.
1387 Binary
|= encodeVFPRd(MI
, 4);
1389 // Number of registers are encoded in offset field.
1390 unsigned NumRegs
= 1;
1391 for (unsigned i
= 5, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1392 const MachineOperand
&MO
= MI
.getOperand(i
);
1393 if (!MO
.isReg() || MO
.isImplicit())
1397 Binary
|= NumRegs
* 2;
1402 template<class CodeEmitter
>
1403 void Emitter
<CodeEmitter
>::emitMiscInstruction(const MachineInstr
&MI
) {
1404 // Part of binary is determined by TableGn.
1405 unsigned Binary
= getBinaryCodeForInstr(MI
);
1407 // Set the conditional execution predicate
1408 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1413 #include "ARMGenCodeEmitter.inc"