It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / Analysis / LoopInfo.cpp
blobbef6bef337013c9a19b10c8ef744e3a5058d3d19
1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG. Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Analysis/Dominators.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/Support/CFG.h"
23 #include "llvm/Support/Streams.h"
24 #include "llvm/ADT/DepthFirstIterator.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include <algorithm>
27 using namespace llvm;
29 char LoopInfo::ID = 0;
30 static RegisterPass<LoopInfo>
31 X("loops", "Natural Loop Information", true, true);
33 //===----------------------------------------------------------------------===//
34 // Loop implementation
37 /// isLoopInvariant - Return true if the specified value is loop invariant
38 ///
39 bool Loop::isLoopInvariant(Value *V) const {
40 if (Instruction *I = dyn_cast<Instruction>(V))
41 return isLoopInvariant(I);
42 return true; // All non-instructions are loop invariant
45 /// isLoopInvariant - Return true if the specified instruction is
46 /// loop-invariant.
47 ///
48 bool Loop::isLoopInvariant(Instruction *I) const {
49 return !contains(I->getParent());
52 /// makeLoopInvariant - If the given value is an instruciton inside of the
53 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
54 /// Return true if the value after any hoisting is loop invariant. This
55 /// function can be used as a slightly more aggressive replacement for
56 /// isLoopInvariant.
57 ///
58 /// If InsertPt is specified, it is the point to hoist instructions to.
59 /// If null, the terminator of the loop preheader is used.
60 ///
61 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
62 Instruction *InsertPt) const {
63 if (Instruction *I = dyn_cast<Instruction>(V))
64 return makeLoopInvariant(I, Changed, InsertPt);
65 return true; // All non-instructions are loop-invariant.
68 /// makeLoopInvariant - If the given instruction is inside of the
69 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
70 /// Return true if the instruction after any hoisting is loop invariant. This
71 /// function can be used as a slightly more aggressive replacement for
72 /// isLoopInvariant.
73 ///
74 /// If InsertPt is specified, it is the point to hoist instructions to.
75 /// If null, the terminator of the loop preheader is used.
76 ///
77 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
78 Instruction *InsertPt) const {
79 // Test if the value is already loop-invariant.
80 if (isLoopInvariant(I))
81 return true;
82 if (!I->isSafeToSpeculativelyExecute())
83 return false;
84 if (I->mayReadFromMemory())
85 return false;
86 // Determine the insertion point, unless one was given.
87 if (!InsertPt) {
88 BasicBlock *Preheader = getLoopPreheader();
89 // Without a preheader, hoisting is not feasible.
90 if (!Preheader)
91 return false;
92 InsertPt = Preheader->getTerminator();
94 // Don't hoist instructions with loop-variant operands.
95 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
96 if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
97 return false;
98 // Hoist.
99 I->moveBefore(InsertPt);
100 Changed = true;
101 return true;
104 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
105 /// induction variable: an integer recurrence that starts at 0 and increments
106 /// by one each time through the loop. If so, return the phi node that
107 /// corresponds to it.
109 /// The IndVarSimplify pass transforms loops to have a canonical induction
110 /// variable.
112 PHINode *Loop::getCanonicalInductionVariable() const {
113 BasicBlock *H = getHeader();
115 BasicBlock *Incoming = 0, *Backedge = 0;
116 typedef GraphTraits<Inverse<BasicBlock*> > InvBlockTraits;
117 InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(H);
118 assert(PI != InvBlockTraits::child_end(H) &&
119 "Loop must have at least one backedge!");
120 Backedge = *PI++;
121 if (PI == InvBlockTraits::child_end(H)) return 0; // dead loop
122 Incoming = *PI++;
123 if (PI != InvBlockTraits::child_end(H)) return 0; // multiple backedges?
125 if (contains(Incoming)) {
126 if (contains(Backedge))
127 return 0;
128 std::swap(Incoming, Backedge);
129 } else if (!contains(Backedge))
130 return 0;
132 // Loop over all of the PHI nodes, looking for a canonical indvar.
133 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
134 PHINode *PN = cast<PHINode>(I);
135 if (ConstantInt *CI =
136 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
137 if (CI->isNullValue())
138 if (Instruction *Inc =
139 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
140 if (Inc->getOpcode() == Instruction::Add &&
141 Inc->getOperand(0) == PN)
142 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
143 if (CI->equalsInt(1))
144 return PN;
146 return 0;
149 /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
150 /// the canonical induction variable value for the "next" iteration of the
151 /// loop. This always succeeds if getCanonicalInductionVariable succeeds.
153 Instruction *Loop::getCanonicalInductionVariableIncrement() const {
154 if (PHINode *PN = getCanonicalInductionVariable()) {
155 bool P1InLoop = contains(PN->getIncomingBlock(1));
156 return cast<Instruction>(PN->getIncomingValue(P1InLoop));
158 return 0;
161 /// getTripCount - Return a loop-invariant LLVM value indicating the number of
162 /// times the loop will be executed. Note that this means that the backedge
163 /// of the loop executes N-1 times. If the trip-count cannot be determined,
164 /// this returns null.
166 /// The IndVarSimplify pass transforms loops to have a form that this
167 /// function easily understands.
169 Value *Loop::getTripCount() const {
170 // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
171 // canonical induction variable and V is the trip count of the loop.
172 Instruction *Inc = getCanonicalInductionVariableIncrement();
173 if (Inc == 0) return 0;
174 PHINode *IV = cast<PHINode>(Inc->getOperand(0));
176 BasicBlock *BackedgeBlock =
177 IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
179 if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
180 if (BI->isConditional()) {
181 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
182 if (ICI->getOperand(0) == Inc) {
183 if (BI->getSuccessor(0) == getHeader()) {
184 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
185 return ICI->getOperand(1);
186 } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
187 return ICI->getOperand(1);
193 return 0;
196 /// getSmallConstantTripCount - Returns the trip count of this loop as a
197 /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
198 /// of not constant. Will also return 0 if the trip count is very large
199 /// (>= 2^32)
200 unsigned Loop::getSmallConstantTripCount() const {
201 Value* TripCount = this->getTripCount();
202 if (TripCount) {
203 if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
204 // Guard against huge trip counts.
205 if (TripCountC->getValue().getActiveBits() <= 32) {
206 return (unsigned)TripCountC->getZExtValue();
210 return 0;
213 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
214 /// trip count of this loop as a normal unsigned value, if possible. This
215 /// means that the actual trip count is always a multiple of the returned
216 /// value (don't forget the trip count could very well be zero as well!).
218 /// Returns 1 if the trip count is unknown or not guaranteed to be the
219 /// multiple of a constant (which is also the case if the trip count is simply
220 /// constant, use getSmallConstantTripCount for that case), Will also return 1
221 /// if the trip count is very large (>= 2^32).
222 unsigned Loop::getSmallConstantTripMultiple() const {
223 Value* TripCount = this->getTripCount();
224 // This will hold the ConstantInt result, if any
225 ConstantInt *Result = NULL;
226 if (TripCount) {
227 // See if the trip count is constant itself
228 Result = dyn_cast<ConstantInt>(TripCount);
229 // if not, see if it is a multiplication
230 if (!Result)
231 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
232 switch (BO->getOpcode()) {
233 case BinaryOperator::Mul:
234 Result = dyn_cast<ConstantInt>(BO->getOperand(1));
235 break;
236 default:
237 break;
241 // Guard against huge trip counts.
242 if (Result && Result->getValue().getActiveBits() <= 32) {
243 return (unsigned)Result->getZExtValue();
244 } else {
245 return 1;
249 /// isLCSSAForm - Return true if the Loop is in LCSSA form
250 bool Loop::isLCSSAForm() const {
251 // Sort the blocks vector so that we can use binary search to do quick
252 // lookups.
253 SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
255 for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
256 BasicBlock *BB = *BI;
257 for (BasicBlock ::iterator I = BB->begin(), E = BB->end(); I != E;++I)
258 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
259 ++UI) {
260 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
261 if (PHINode *P = dyn_cast<PHINode>(*UI)) {
262 UserBB = P->getIncomingBlock(UI);
265 // Check the current block, as a fast-path. Most values are used in
266 // the same block they are defined in.
267 if (UserBB != BB && !LoopBBs.count(UserBB))
268 return false;
272 return true;
275 /// isLoopSimplifyForm - Return true if the Loop is in the form that
276 /// the LoopSimplify form transforms loops to, which is sometimes called
277 /// normal form.
278 bool Loop::isLoopSimplifyForm() const {
279 // Normal-form loops have a preheader.
280 if (!getLoopPreheader())
281 return false;
282 // Normal-form loops have a single backedge.
283 if (!getLoopLatch())
284 return false;
285 // Each predecessor of each exit block of a normal loop is contained
286 // within the loop.
287 SmallVector<BasicBlock *, 4> ExitBlocks;
288 getExitBlocks(ExitBlocks);
289 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
290 for (pred_iterator PI = pred_begin(ExitBlocks[i]),
291 PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
292 if (!contains(*PI))
293 return false;
294 // All the requirements are met.
295 return true;
298 //===----------------------------------------------------------------------===//
299 // LoopInfo implementation
301 bool LoopInfo::runOnFunction(Function &) {
302 releaseMemory();
303 LI.Calculate(getAnalysis<DominatorTree>().getBase()); // Update
304 return false;
307 void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
308 AU.setPreservesAll();
309 AU.addRequired<DominatorTree>();