1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG. Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Analysis/Dominators.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/Support/CFG.h"
23 #include "llvm/Support/Streams.h"
24 #include "llvm/ADT/DepthFirstIterator.h"
25 #include "llvm/ADT/SmallPtrSet.h"
29 char LoopInfo::ID
= 0;
30 static RegisterPass
<LoopInfo
>
31 X("loops", "Natural Loop Information", true, true);
33 //===----------------------------------------------------------------------===//
34 // Loop implementation
37 /// isLoopInvariant - Return true if the specified value is loop invariant
39 bool Loop::isLoopInvariant(Value
*V
) const {
40 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
41 return isLoopInvariant(I
);
42 return true; // All non-instructions are loop invariant
45 /// isLoopInvariant - Return true if the specified instruction is
48 bool Loop::isLoopInvariant(Instruction
*I
) const {
49 return !contains(I
->getParent());
52 /// makeLoopInvariant - If the given value is an instruciton inside of the
53 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
54 /// Return true if the value after any hoisting is loop invariant. This
55 /// function can be used as a slightly more aggressive replacement for
58 /// If InsertPt is specified, it is the point to hoist instructions to.
59 /// If null, the terminator of the loop preheader is used.
61 bool Loop::makeLoopInvariant(Value
*V
, bool &Changed
,
62 Instruction
*InsertPt
) const {
63 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
64 return makeLoopInvariant(I
, Changed
, InsertPt
);
65 return true; // All non-instructions are loop-invariant.
68 /// makeLoopInvariant - If the given instruction is inside of the
69 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
70 /// Return true if the instruction after any hoisting is loop invariant. This
71 /// function can be used as a slightly more aggressive replacement for
74 /// If InsertPt is specified, it is the point to hoist instructions to.
75 /// If null, the terminator of the loop preheader is used.
77 bool Loop::makeLoopInvariant(Instruction
*I
, bool &Changed
,
78 Instruction
*InsertPt
) const {
79 // Test if the value is already loop-invariant.
80 if (isLoopInvariant(I
))
82 if (!I
->isSafeToSpeculativelyExecute())
84 if (I
->mayReadFromMemory())
86 // Determine the insertion point, unless one was given.
88 BasicBlock
*Preheader
= getLoopPreheader();
89 // Without a preheader, hoisting is not feasible.
92 InsertPt
= Preheader
->getTerminator();
94 // Don't hoist instructions with loop-variant operands.
95 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
96 if (!makeLoopInvariant(I
->getOperand(i
), Changed
, InsertPt
))
99 I
->moveBefore(InsertPt
);
104 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
105 /// induction variable: an integer recurrence that starts at 0 and increments
106 /// by one each time through the loop. If so, return the phi node that
107 /// corresponds to it.
109 /// The IndVarSimplify pass transforms loops to have a canonical induction
112 PHINode
*Loop::getCanonicalInductionVariable() const {
113 BasicBlock
*H
= getHeader();
115 BasicBlock
*Incoming
= 0, *Backedge
= 0;
116 typedef GraphTraits
<Inverse
<BasicBlock
*> > InvBlockTraits
;
117 InvBlockTraits::ChildIteratorType PI
= InvBlockTraits::child_begin(H
);
118 assert(PI
!= InvBlockTraits::child_end(H
) &&
119 "Loop must have at least one backedge!");
121 if (PI
== InvBlockTraits::child_end(H
)) return 0; // dead loop
123 if (PI
!= InvBlockTraits::child_end(H
)) return 0; // multiple backedges?
125 if (contains(Incoming
)) {
126 if (contains(Backedge
))
128 std::swap(Incoming
, Backedge
);
129 } else if (!contains(Backedge
))
132 // Loop over all of the PHI nodes, looking for a canonical indvar.
133 for (BasicBlock::iterator I
= H
->begin(); isa
<PHINode
>(I
); ++I
) {
134 PHINode
*PN
= cast
<PHINode
>(I
);
135 if (ConstantInt
*CI
=
136 dyn_cast
<ConstantInt
>(PN
->getIncomingValueForBlock(Incoming
)))
137 if (CI
->isNullValue())
138 if (Instruction
*Inc
=
139 dyn_cast
<Instruction
>(PN
->getIncomingValueForBlock(Backedge
)))
140 if (Inc
->getOpcode() == Instruction::Add
&&
141 Inc
->getOperand(0) == PN
)
142 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Inc
->getOperand(1)))
143 if (CI
->equalsInt(1))
149 /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
150 /// the canonical induction variable value for the "next" iteration of the
151 /// loop. This always succeeds if getCanonicalInductionVariable succeeds.
153 Instruction
*Loop::getCanonicalInductionVariableIncrement() const {
154 if (PHINode
*PN
= getCanonicalInductionVariable()) {
155 bool P1InLoop
= contains(PN
->getIncomingBlock(1));
156 return cast
<Instruction
>(PN
->getIncomingValue(P1InLoop
));
161 /// getTripCount - Return a loop-invariant LLVM value indicating the number of
162 /// times the loop will be executed. Note that this means that the backedge
163 /// of the loop executes N-1 times. If the trip-count cannot be determined,
164 /// this returns null.
166 /// The IndVarSimplify pass transforms loops to have a form that this
167 /// function easily understands.
169 Value
*Loop::getTripCount() const {
170 // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
171 // canonical induction variable and V is the trip count of the loop.
172 Instruction
*Inc
= getCanonicalInductionVariableIncrement();
173 if (Inc
== 0) return 0;
174 PHINode
*IV
= cast
<PHINode
>(Inc
->getOperand(0));
176 BasicBlock
*BackedgeBlock
=
177 IV
->getIncomingBlock(contains(IV
->getIncomingBlock(1)));
179 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BackedgeBlock
->getTerminator()))
180 if (BI
->isConditional()) {
181 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition())) {
182 if (ICI
->getOperand(0) == Inc
) {
183 if (BI
->getSuccessor(0) == getHeader()) {
184 if (ICI
->getPredicate() == ICmpInst::ICMP_NE
)
185 return ICI
->getOperand(1);
186 } else if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
) {
187 return ICI
->getOperand(1);
196 /// getSmallConstantTripCount - Returns the trip count of this loop as a
197 /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
198 /// of not constant. Will also return 0 if the trip count is very large
200 unsigned Loop::getSmallConstantTripCount() const {
201 Value
* TripCount
= this->getTripCount();
203 if (ConstantInt
*TripCountC
= dyn_cast
<ConstantInt
>(TripCount
)) {
204 // Guard against huge trip counts.
205 if (TripCountC
->getValue().getActiveBits() <= 32) {
206 return (unsigned)TripCountC
->getZExtValue();
213 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
214 /// trip count of this loop as a normal unsigned value, if possible. This
215 /// means that the actual trip count is always a multiple of the returned
216 /// value (don't forget the trip count could very well be zero as well!).
218 /// Returns 1 if the trip count is unknown or not guaranteed to be the
219 /// multiple of a constant (which is also the case if the trip count is simply
220 /// constant, use getSmallConstantTripCount for that case), Will also return 1
221 /// if the trip count is very large (>= 2^32).
222 unsigned Loop::getSmallConstantTripMultiple() const {
223 Value
* TripCount
= this->getTripCount();
224 // This will hold the ConstantInt result, if any
225 ConstantInt
*Result
= NULL
;
227 // See if the trip count is constant itself
228 Result
= dyn_cast
<ConstantInt
>(TripCount
);
229 // if not, see if it is a multiplication
231 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(TripCount
)) {
232 switch (BO
->getOpcode()) {
233 case BinaryOperator::Mul
:
234 Result
= dyn_cast
<ConstantInt
>(BO
->getOperand(1));
241 // Guard against huge trip counts.
242 if (Result
&& Result
->getValue().getActiveBits() <= 32) {
243 return (unsigned)Result
->getZExtValue();
249 /// isLCSSAForm - Return true if the Loop is in LCSSA form
250 bool Loop::isLCSSAForm() const {
251 // Sort the blocks vector so that we can use binary search to do quick
253 SmallPtrSet
<BasicBlock
*, 16> LoopBBs(block_begin(), block_end());
255 for (block_iterator BI
= block_begin(), E
= block_end(); BI
!= E
; ++BI
) {
256 BasicBlock
*BB
= *BI
;
257 for (BasicBlock ::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
;++I
)
258 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
;
260 BasicBlock
*UserBB
= cast
<Instruction
>(*UI
)->getParent();
261 if (PHINode
*P
= dyn_cast
<PHINode
>(*UI
)) {
262 UserBB
= P
->getIncomingBlock(UI
);
265 // Check the current block, as a fast-path. Most values are used in
266 // the same block they are defined in.
267 if (UserBB
!= BB
&& !LoopBBs
.count(UserBB
))
275 /// isLoopSimplifyForm - Return true if the Loop is in the form that
276 /// the LoopSimplify form transforms loops to, which is sometimes called
278 bool Loop::isLoopSimplifyForm() const {
279 // Normal-form loops have a preheader.
280 if (!getLoopPreheader())
282 // Normal-form loops have a single backedge.
285 // Each predecessor of each exit block of a normal loop is contained
287 SmallVector
<BasicBlock
*, 4> ExitBlocks
;
288 getExitBlocks(ExitBlocks
);
289 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
)
290 for (pred_iterator PI
= pred_begin(ExitBlocks
[i
]),
291 PE
= pred_end(ExitBlocks
[i
]); PI
!= PE
; ++PI
)
294 // All the requirements are met.
298 //===----------------------------------------------------------------------===//
299 // LoopInfo implementation
301 bool LoopInfo::runOnFunction(Function
&) {
303 LI
.Calculate(getAnalysis
<DominatorTree
>().getBase()); // Update
307 void LoopInfo::getAnalysisUsage(AnalysisUsage
&AU
) const {
308 AU
.setPreservesAll();
309 AU
.addRequired
<DominatorTree
>();