It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / CodeGen / ELFWriter.cpp
blob93e84154162c76da8e31f982376aa2e80fe916da
1 //===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the target-independent ELF writer. This file writes out
11 // the ELF file in the following order:
13 // #1. ELF Header
14 // #2. '.text' section
15 // #3. '.data' section
16 // #4. '.bss' section (conceptual position in file)
17 // ...
18 // #X. '.shstrtab' section
19 // #Y. Section Table
21 // The entries in the section table are laid out as:
22 // #0. Null entry [required]
23 // #1. ".text" entry - the program code
24 // #2. ".data" entry - global variables with initializers. [ if needed ]
25 // #3. ".bss" entry - global variables without initializers. [ if needed ]
26 // ...
27 // #N. ".shstrtab" entry - String table for the section names.
29 //===----------------------------------------------------------------------===//
31 #define DEBUG_TYPE "elfwriter"
32 #include "ELF.h"
33 #include "ELFWriter.h"
34 #include "ELFCodeEmitter.h"
35 #include "llvm/Constants.h"
36 #include "llvm/Module.h"
37 #include "llvm/PassManager.h"
38 #include "llvm/DerivedTypes.h"
39 #include "llvm/CodeGen/BinaryObject.h"
40 #include "llvm/CodeGen/FileWriters.h"
41 #include "llvm/CodeGen/MachineCodeEmitter.h"
42 #include "llvm/CodeGen/ObjectCodeEmitter.h"
43 #include "llvm/CodeGen/MachineCodeEmitter.h"
44 #include "llvm/CodeGen/MachineConstantPool.h"
45 #include "llvm/MC/MCContext.h"
46 #include "llvm/MC/MCSection.h"
47 #include "llvm/Target/TargetAsmInfo.h"
48 #include "llvm/Target/TargetData.h"
49 #include "llvm/Target/TargetELFWriterInfo.h"
50 #include "llvm/Target/TargetLowering.h"
51 #include "llvm/Target/TargetLoweringObjectFile.h"
52 #include "llvm/Target/TargetMachine.h"
53 #include "llvm/Support/Mangler.h"
54 #include "llvm/Support/Streams.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
59 using namespace llvm;
61 char ELFWriter::ID = 0;
63 /// AddELFWriter - Add the ELF writer to the function pass manager
64 ObjectCodeEmitter *llvm::AddELFWriter(PassManagerBase &PM,
65 raw_ostream &O,
66 TargetMachine &TM) {
67 ELFWriter *EW = new ELFWriter(O, TM);
68 PM.add(EW);
69 return EW->getObjectCodeEmitter();
72 //===----------------------------------------------------------------------===//
73 // ELFWriter Implementation
74 //===----------------------------------------------------------------------===//
76 ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm)
77 : MachineFunctionPass(&ID), O(o), TM(tm),
78 OutContext(*new MCContext()),
79 TLOF(TM.getTargetLowering()->getObjFileLowering()),
80 is64Bit(TM.getTargetData()->getPointerSizeInBits() == 64),
81 isLittleEndian(TM.getTargetData()->isLittleEndian()),
82 ElfHdr(isLittleEndian, is64Bit) {
84 TAI = TM.getTargetAsmInfo();
85 TEW = TM.getELFWriterInfo();
87 // Create the object code emitter object for this target.
88 ElfCE = new ELFCodeEmitter(*this);
90 // Inital number of sections
91 NumSections = 0;
94 ELFWriter::~ELFWriter() {
95 delete ElfCE;
96 delete &OutContext;
99 // doInitialization - Emit the file header and all of the global variables for
100 // the module to the ELF file.
101 bool ELFWriter::doInitialization(Module &M) {
102 // Initialize TargetLoweringObjectFile.
103 const_cast<TargetLoweringObjectFile&>(TLOF).Initialize(OutContext, TM);
105 Mang = new Mangler(M);
107 // ELF Header
108 // ----------
109 // Fields e_shnum e_shstrndx are only known after all section have
110 // been emitted. They locations in the ouput buffer are recorded so
111 // to be patched up later.
113 // Note
114 // ----
115 // emitWord method behaves differently for ELF32 and ELF64, writing
116 // 4 bytes in the former and 8 in the last for *_off and *_addr elf types
118 ElfHdr.emitByte(0x7f); // e_ident[EI_MAG0]
119 ElfHdr.emitByte('E'); // e_ident[EI_MAG1]
120 ElfHdr.emitByte('L'); // e_ident[EI_MAG2]
121 ElfHdr.emitByte('F'); // e_ident[EI_MAG3]
123 ElfHdr.emitByte(TEW->getEIClass()); // e_ident[EI_CLASS]
124 ElfHdr.emitByte(TEW->getEIData()); // e_ident[EI_DATA]
125 ElfHdr.emitByte(EV_CURRENT); // e_ident[EI_VERSION]
126 ElfHdr.emitAlignment(16); // e_ident[EI_NIDENT-EI_PAD]
128 ElfHdr.emitWord16(ET_REL); // e_type
129 ElfHdr.emitWord16(TEW->getEMachine()); // e_machine = target
130 ElfHdr.emitWord32(EV_CURRENT); // e_version
131 ElfHdr.emitWord(0); // e_entry, no entry point in .o file
132 ElfHdr.emitWord(0); // e_phoff, no program header for .o
133 ELFHdr_e_shoff_Offset = ElfHdr.size();
134 ElfHdr.emitWord(0); // e_shoff = sec hdr table off in bytes
135 ElfHdr.emitWord32(TEW->getEFlags()); // e_flags = whatever the target wants
136 ElfHdr.emitWord16(TEW->getHdrSize()); // e_ehsize = ELF header size
137 ElfHdr.emitWord16(0); // e_phentsize = prog header entry size
138 ElfHdr.emitWord16(0); // e_phnum = # prog header entries = 0
140 // e_shentsize = Section header entry size
141 ElfHdr.emitWord16(TEW->getSHdrSize());
143 // e_shnum = # of section header ents
144 ELFHdr_e_shnum_Offset = ElfHdr.size();
145 ElfHdr.emitWord16(0); // Placeholder
147 // e_shstrndx = Section # of '.shstrtab'
148 ELFHdr_e_shstrndx_Offset = ElfHdr.size();
149 ElfHdr.emitWord16(0); // Placeholder
151 // Add the null section, which is required to be first in the file.
152 getNullSection();
154 // The first entry in the symtab is the null symbol and the second
155 // is a local symbol containing the module/file name
156 SymbolList.push_back(new ELFSym());
157 SymbolList.push_back(ELFSym::getFileSym());
159 return false;
162 // addGlobalSymbol - Add a global to be processed and to the global symbol
163 // lookup, use a zero index because the table index will be determined later.
164 void ELFWriter::addGlobalSymbol(const GlobalValue *GV,
165 bool AddToLookup /* = false */) {
166 PendingGlobals.insert(GV);
167 if (AddToLookup)
168 GblSymLookup[GV] = 0;
171 // addExternalSymbol - Add the external to be processed and to the
172 // external symbol lookup, use a zero index because the symbol
173 // table index will be determined later
174 void ELFWriter::addExternalSymbol(const char *External) {
175 PendingExternals.insert(External);
176 ExtSymLookup[External] = 0;
179 // getCtorSection - Get the static constructor section
180 ELFSection &ELFWriter::getCtorSection() {
181 const MCSection *Ctor = TLOF.getStaticCtorSection();
182 return getSection(Ctor->getName(), ELFSection::SHT_PROGBITS,
183 getElfSectionFlags(Ctor->getKind()));
186 // getDtorSection - Get the static destructor section
187 ELFSection &ELFWriter::getDtorSection() {
188 const MCSection *Dtor = TLOF.getStaticDtorSection();
189 return getSection(Dtor->getName(), ELFSection::SHT_PROGBITS,
190 getElfSectionFlags(Dtor->getKind()));
193 // getTextSection - Get the text section for the specified function
194 ELFSection &ELFWriter::getTextSection(Function *F) {
195 const MCSection *Text = TLOF.SectionForGlobal(F, Mang, TM);
196 return getSection(Text->getName(), ELFSection::SHT_PROGBITS,
197 getElfSectionFlags(Text->getKind()));
200 // getJumpTableSection - Get a read only section for constants when
201 // emitting jump tables. TODO: add PIC support
202 ELFSection &ELFWriter::getJumpTableSection() {
203 const MCSection *JT = TLOF.getSectionForConstant(SectionKind::getReadOnly());
204 return getSection(JT->getName(),
205 ELFSection::SHT_PROGBITS,
206 getElfSectionFlags(JT->getKind()),
207 TM.getTargetData()->getPointerABIAlignment());
210 // getConstantPoolSection - Get a constant pool section based on the machine
211 // constant pool entry type and relocation info.
212 ELFSection &ELFWriter::getConstantPoolSection(MachineConstantPoolEntry &CPE) {
213 SectionKind Kind;
214 switch (CPE.getRelocationInfo()) {
215 default: llvm_unreachable("Unknown section kind");
216 case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
217 case 1:
218 Kind = SectionKind::getReadOnlyWithRelLocal();
219 break;
220 case 0:
221 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
222 case 4: Kind = SectionKind::getMergeableConst4(); break;
223 case 8: Kind = SectionKind::getMergeableConst8(); break;
224 case 16: Kind = SectionKind::getMergeableConst16(); break;
225 default: Kind = SectionKind::getMergeableConst(); break;
229 return getSection(TLOF.getSectionForConstant(Kind)->getName(),
230 ELFSection::SHT_PROGBITS,
231 getElfSectionFlags(Kind),
232 CPE.getAlignment());
235 // getRelocSection - Return the relocation section of section 'S'. 'RelA'
236 // is true if the relocation section contains entries with addends.
237 ELFSection &ELFWriter::getRelocSection(ELFSection &S) {
238 unsigned SectionHeaderTy = TEW->hasRelocationAddend() ?
239 ELFSection::SHT_RELA : ELFSection::SHT_REL;
240 std::string RelSName(".rel");
241 if (TEW->hasRelocationAddend())
242 RelSName.append("a");
243 RelSName.append(S.getName());
245 return getSection(RelSName, SectionHeaderTy, 0, TEW->getPrefELFAlignment());
248 // getGlobalELFVisibility - Returns the ELF specific visibility type
249 unsigned ELFWriter::getGlobalELFVisibility(const GlobalValue *GV) {
250 switch (GV->getVisibility()) {
251 default:
252 llvm_unreachable("unknown visibility type");
253 case GlobalValue::DefaultVisibility:
254 return ELFSym::STV_DEFAULT;
255 case GlobalValue::HiddenVisibility:
256 return ELFSym::STV_HIDDEN;
257 case GlobalValue::ProtectedVisibility:
258 return ELFSym::STV_PROTECTED;
260 return 0;
263 // getGlobalELFBinding - Returns the ELF specific binding type
264 unsigned ELFWriter::getGlobalELFBinding(const GlobalValue *GV) {
265 if (GV->hasInternalLinkage())
266 return ELFSym::STB_LOCAL;
268 if (GV->isWeakForLinker())
269 return ELFSym::STB_WEAK;
271 return ELFSym::STB_GLOBAL;
274 // getGlobalELFType - Returns the ELF specific type for a global
275 unsigned ELFWriter::getGlobalELFType(const GlobalValue *GV) {
276 if (GV->isDeclaration())
277 return ELFSym::STT_NOTYPE;
279 if (isa<Function>(GV))
280 return ELFSym::STT_FUNC;
282 return ELFSym::STT_OBJECT;
285 // getElfSectionFlags - Get the ELF Section Header flags based
286 // on the flags defined in SectionKind.h.
287 unsigned ELFWriter::getElfSectionFlags(SectionKind Kind, bool IsAlloc) {
288 unsigned ElfSectionFlags = 0;
290 if (IsAlloc)
291 ElfSectionFlags |= ELFSection::SHF_ALLOC;
292 if (Kind.isText())
293 ElfSectionFlags |= ELFSection::SHF_EXECINSTR;
294 if (Kind.isWriteable())
295 ElfSectionFlags |= ELFSection::SHF_WRITE;
296 if (Kind.isMergeableConst())
297 ElfSectionFlags |= ELFSection::SHF_MERGE;
298 if (Kind.isThreadLocal())
299 ElfSectionFlags |= ELFSection::SHF_TLS;
300 if (Kind.isMergeableCString())
301 ElfSectionFlags |= ELFSection::SHF_STRINGS;
303 return ElfSectionFlags;
306 // isELFUndefSym - the symbol has no section and must be placed in
307 // the symbol table with a reference to the null section.
308 static bool isELFUndefSym(const GlobalValue *GV) {
309 // Functions which make up until this point references are an undef symbol
310 return GV->isDeclaration() || (isa<Function>(GV));
313 // isELFBssSym - for an undef or null value, the symbol must go to a bss
314 // section if it's not weak for linker, otherwise it's a common sym.
315 static bool isELFBssSym(const GlobalVariable *GV) {
316 const Constant *CV = GV->getInitializer();
317 return ((CV->isNullValue() || isa<UndefValue>(CV)) && !GV->isWeakForLinker());
320 // isELFCommonSym - for an undef or null value, the symbol must go to a
321 // common section if it's weak for linker, otherwise bss.
322 static bool isELFCommonSym(const GlobalVariable *GV) {
323 const Constant *CV = GV->getInitializer();
324 return ((CV->isNullValue() || isa<UndefValue>(CV)) && GV->isWeakForLinker());
327 // isELFDataSym - if the symbol is an initialized but no null constant
328 // it must go to some kind of data section
329 static bool isELFDataSym(const Constant *CV) {
330 return (!(CV->isNullValue() || isa<UndefValue>(CV)));
333 // EmitGlobal - Choose the right section for global and emit it
334 void ELFWriter::EmitGlobal(const GlobalValue *GV) {
336 // Check if the referenced symbol is already emitted
337 if (GblSymLookup.find(GV) != GblSymLookup.end())
338 return;
340 // Handle ELF Bind, Visibility and Type for the current symbol
341 unsigned SymBind = getGlobalELFBinding(GV);
342 unsigned SymType = getGlobalELFType(GV);
344 // All undef symbols have the same binding, type and visibily and
345 // are classified regardless of their type.
346 ELFSym *GblSym = isELFUndefSym(GV) ? ELFSym::getUndefGV(GV)
347 : ELFSym::getGV(GV, SymBind, SymType, getGlobalELFVisibility(GV));
349 if (!isELFUndefSym(GV)) {
350 assert(isa<GlobalVariable>(GV) && "GV not a global variable!");
351 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
353 // Handle special llvm globals
354 if (EmitSpecialLLVMGlobal(GVar))
355 return;
357 // Get the ELF section where this global belongs from TLOF
358 const MCSection *S = TLOF.SectionForGlobal(GV, Mang, TM);
359 unsigned SectionFlags = getElfSectionFlags(((MCSectionELF*)S)->getKind());
361 // The symbol align should update the section alignment if needed
362 const TargetData *TD = TM.getTargetData();
363 unsigned Align = TD->getPreferredAlignment(GVar);
364 unsigned Size = TD->getTypeAllocSize(GVar->getInitializer()->getType());
365 GblSym->Size = Size;
367 if (isELFCommonSym(GVar)) {
368 GblSym->SectionIdx = ELFSection::SHN_COMMON;
369 getSection(S->getName(), ELFSection::SHT_NOBITS, SectionFlags, 1);
371 // A new linkonce section is created for each global in the
372 // common section, the default alignment is 1 and the symbol
373 // value contains its alignment.
374 GblSym->Value = Align;
376 } else if (isELFBssSym(GVar)) {
377 ELFSection &ES =
378 getSection(S->getName(), ELFSection::SHT_NOBITS, SectionFlags);
379 GblSym->SectionIdx = ES.SectionIdx;
381 // Update the size with alignment and the next object can
382 // start in the right offset in the section
383 if (Align) ES.Size = (ES.Size + Align-1) & ~(Align-1);
384 ES.Align = std::max(ES.Align, Align);
386 // GblSym->Value should contain the virtual offset inside the section.
387 // Virtual because the BSS space is not allocated on ELF objects
388 GblSym->Value = ES.Size;
389 ES.Size += Size;
391 } else if (isELFDataSym(GV)) {
392 ELFSection &ES =
393 getSection(S->getName(), ELFSection::SHT_PROGBITS, SectionFlags);
394 GblSym->SectionIdx = ES.SectionIdx;
396 // GblSym->Value should contain the symbol offset inside the section,
397 // and all symbols should start on their required alignment boundary
398 ES.Align = std::max(ES.Align, Align);
399 GblSym->Value = (ES.size() + (Align-1)) & (-Align);
400 ES.emitAlignment(ES.Align);
402 // Emit the global to the data section 'ES'
403 EmitGlobalConstant(GVar->getInitializer(), ES);
407 if (GV->hasPrivateLinkage()) {
408 // For a private symbols, keep track of the index inside the
409 // private list since it will never go to the symbol table and
410 // won't be patched up later.
411 PrivateSyms.push_back(GblSym);
412 GblSymLookup[GV] = PrivateSyms.size()-1;
413 } else {
414 // Non private symbol are left with zero indices until they are patched
415 // up during the symbol table emition (where the indicies are created).
416 SymbolList.push_back(GblSym);
417 GblSymLookup[GV] = 0;
421 void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
422 ELFSection &GblS) {
424 // Print the fields in successive locations. Pad to align if needed!
425 const TargetData *TD = TM.getTargetData();
426 unsigned Size = TD->getTypeAllocSize(CVS->getType());
427 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
428 uint64_t sizeSoFar = 0;
429 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
430 const Constant* field = CVS->getOperand(i);
432 // Check if padding is needed and insert one or more 0s.
433 uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
434 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
435 - cvsLayout->getElementOffset(i)) - fieldSize;
436 sizeSoFar += fieldSize + padSize;
438 // Now print the actual field value.
439 EmitGlobalConstant(field, GblS);
441 // Insert padding - this may include padding to increase the size of the
442 // current field up to the ABI size (if the struct is not packed) as well
443 // as padding to ensure that the next field starts at the right offset.
444 for (unsigned p=0; p < padSize; p++)
445 GblS.emitByte(0);
447 assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
448 "Layout of constant struct may be incorrect!");
451 void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) {
452 const TargetData *TD = TM.getTargetData();
453 unsigned Size = TD->getTypeAllocSize(CV->getType());
455 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
456 if (CVA->isString()) {
457 std::string GblStr = CVA->getAsString();
458 GblStr.resize(GblStr.size()-1);
459 GblS.emitString(GblStr);
460 } else { // Not a string. Print the values in successive locations
461 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
462 EmitGlobalConstant(CVA->getOperand(i), GblS);
464 return;
465 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
466 EmitGlobalConstantStruct(CVS, GblS);
467 return;
468 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
469 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
470 if (CFP->getType() == Type::DoubleTy)
471 GblS.emitWord64(Val);
472 else if (CFP->getType() == Type::FloatTy)
473 GblS.emitWord32(Val);
474 else if (CFP->getType() == Type::X86_FP80Ty) {
475 llvm_unreachable("X86_FP80Ty global emission not implemented");
476 } else if (CFP->getType() == Type::PPC_FP128Ty)
477 llvm_unreachable("PPC_FP128Ty global emission not implemented");
478 return;
479 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
480 if (Size == 4)
481 GblS.emitWord32(CI->getZExtValue());
482 else if (Size == 8)
483 GblS.emitWord64(CI->getZExtValue());
484 else
485 llvm_unreachable("LargeInt global emission not implemented");
486 return;
487 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
488 const VectorType *PTy = CP->getType();
489 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
490 EmitGlobalConstant(CP->getOperand(I), GblS);
491 return;
492 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
493 if (CE->getOpcode() == Instruction::BitCast) {
494 EmitGlobalConstant(CE->getOperand(0), GblS);
495 return;
497 std::string msg(CE->getOpcodeName());
498 raw_string_ostream ErrorMsg(msg);
499 ErrorMsg << ": Unsupported ConstantExpr type";
500 llvm_report_error(ErrorMsg.str());
501 } else if (CV->getType()->getTypeID() == Type::PointerTyID) {
502 // Fill the data entry with zeros or emit a relocation entry
503 if (isa<ConstantPointerNull>(CV)) {
504 for (unsigned i=0; i < Size; ++i)
505 GblS.emitByte(0);
506 } else {
507 emitGlobalDataRelocation(cast<const GlobalValue>(CV),
508 TD->getPointerSize(), GblS);
510 return;
511 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
512 // This is a constant address for a global variable or function and
513 // therefore must be referenced using a relocation entry.
514 emitGlobalDataRelocation(GV, Size, GblS);
515 return;
518 std::string msg;
519 raw_string_ostream ErrorMsg(msg);
520 ErrorMsg << "Constant unimp for type: " << *CV->getType();
521 llvm_report_error(ErrorMsg.str());
524 void ELFWriter::emitGlobalDataRelocation(const GlobalValue *GV, unsigned Size,
525 ELFSection &GblS) {
526 // Create the relocation entry for the global value
527 MachineRelocation MR =
528 MachineRelocation::getGV(GblS.getCurrentPCOffset(),
529 TEW->getAbsoluteLabelMachineRelTy(),
530 const_cast<GlobalValue*>(GV));
532 // Fill the data entry with zeros
533 for (unsigned i=0; i < Size; ++i)
534 GblS.emitByte(0);
536 // Add the relocation entry for the current data section
537 GblS.addRelocation(MR);
540 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
541 /// special global used by LLVM. If so, emit it and return true, otherwise
542 /// do nothing and return false.
543 bool ELFWriter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
544 if (GV->getName() == "llvm.used")
545 llvm_unreachable("not implemented yet");
547 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
548 if (GV->getSection() == "llvm.metadata" ||
549 GV->hasAvailableExternallyLinkage())
550 return true;
552 if (!GV->hasAppendingLinkage()) return false;
554 assert(GV->hasInitializer() && "Not a special LLVM global!");
556 const TargetData *TD = TM.getTargetData();
557 unsigned Align = TD->getPointerPrefAlignment();
558 if (GV->getName() == "llvm.global_ctors") {
559 ELFSection &Ctor = getCtorSection();
560 Ctor.emitAlignment(Align);
561 EmitXXStructorList(GV->getInitializer(), Ctor);
562 return true;
565 if (GV->getName() == "llvm.global_dtors") {
566 ELFSection &Dtor = getDtorSection();
567 Dtor.emitAlignment(Align);
568 EmitXXStructorList(GV->getInitializer(), Dtor);
569 return true;
572 return false;
575 /// EmitXXStructorList - Emit the ctor or dtor list. This just emits out the
576 /// function pointers, ignoring the init priority.
577 void ELFWriter::EmitXXStructorList(Constant *List, ELFSection &Xtor) {
578 // Should be an array of '{ int, void ()* }' structs. The first value is the
579 // init priority, which we ignore.
580 if (!isa<ConstantArray>(List)) return;
581 ConstantArray *InitList = cast<ConstantArray>(List);
582 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
583 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
584 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
586 if (CS->getOperand(1)->isNullValue())
587 return; // Found a null terminator, exit printing.
588 // Emit the function pointer.
589 EmitGlobalConstant(CS->getOperand(1), Xtor);
593 bool ELFWriter::runOnMachineFunction(MachineFunction &MF) {
594 // Nothing to do here, this is all done through the ElfCE object above.
595 return false;
598 /// doFinalization - Now that the module has been completely processed, emit
599 /// the ELF file to 'O'.
600 bool ELFWriter::doFinalization(Module &M) {
601 // Emit .data section placeholder
602 getDataSection();
604 // Emit .bss section placeholder
605 getBSSSection();
607 // Build and emit data, bss and "common" sections.
608 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
609 I != E; ++I)
610 EmitGlobal(I);
612 // Emit all pending globals
613 for (PendingGblsIter I = PendingGlobals.begin(), E = PendingGlobals.end();
614 I != E; ++I)
615 EmitGlobal(*I);
617 // Emit all pending externals
618 for (PendingExtsIter I = PendingExternals.begin(), E = PendingExternals.end();
619 I != E; ++I)
620 SymbolList.push_back(ELFSym::getExtSym(*I));
622 // Emit non-executable stack note
623 if (TAI->getNonexecutableStackDirective())
624 getNonExecStackSection();
626 // Emit a symbol for each section created until now, skip null section
627 for (unsigned i = 1, e = SectionList.size(); i < e; ++i) {
628 ELFSection &ES = *SectionList[i];
629 ELFSym *SectionSym = ELFSym::getSectionSym();
630 SectionSym->SectionIdx = ES.SectionIdx;
631 SymbolList.push_back(SectionSym);
632 ES.Sym = SymbolList.back();
635 // Emit string table
636 EmitStringTable(M.getModuleIdentifier());
638 // Emit the symbol table now, if non-empty.
639 EmitSymbolTable();
641 // Emit the relocation sections.
642 EmitRelocations();
644 // Emit the sections string table.
645 EmitSectionTableStringTable();
647 // Dump the sections and section table to the .o file.
648 OutputSectionsAndSectionTable();
650 // We are done with the abstract symbols.
651 SymbolList.clear();
652 SectionList.clear();
653 NumSections = 0;
655 // Release the name mangler object.
656 delete Mang; Mang = 0;
657 return false;
660 // RelocateField - Patch relocatable field with 'Offset' in 'BO'
661 // using a 'Value' of known 'Size'
662 void ELFWriter::RelocateField(BinaryObject &BO, uint32_t Offset,
663 int64_t Value, unsigned Size) {
664 if (Size == 32)
665 BO.fixWord32(Value, Offset);
666 else if (Size == 64)
667 BO.fixWord64(Value, Offset);
668 else
669 llvm_unreachable("don't know howto patch relocatable field");
672 /// EmitRelocations - Emit relocations
673 void ELFWriter::EmitRelocations() {
675 // True if the target uses the relocation entry to hold the addend,
676 // otherwise the addend is written directly to the relocatable field.
677 bool HasRelA = TEW->hasRelocationAddend();
679 // Create Relocation sections for each section which needs it.
680 for (unsigned i=0, e=SectionList.size(); i != e; ++i) {
681 ELFSection &S = *SectionList[i];
683 // This section does not have relocations
684 if (!S.hasRelocations()) continue;
685 ELFSection &RelSec = getRelocSection(S);
687 // 'Link' - Section hdr idx of the associated symbol table
688 // 'Info' - Section hdr idx of the section to which the relocation applies
689 ELFSection &SymTab = getSymbolTableSection();
690 RelSec.Link = SymTab.SectionIdx;
691 RelSec.Info = S.SectionIdx;
692 RelSec.EntSize = TEW->getRelocationEntrySize();
694 // Get the relocations from Section
695 std::vector<MachineRelocation> Relos = S.getRelocations();
696 for (std::vector<MachineRelocation>::iterator MRI = Relos.begin(),
697 MRE = Relos.end(); MRI != MRE; ++MRI) {
698 MachineRelocation &MR = *MRI;
700 // Relocatable field offset from the section start
701 unsigned RelOffset = MR.getMachineCodeOffset();
703 // Symbol index in the symbol table
704 unsigned SymIdx = 0;
706 // Target specific relocation field type and size
707 unsigned RelType = TEW->getRelocationType(MR.getRelocationType());
708 unsigned RelTySize = TEW->getRelocationTySize(RelType);
709 int64_t Addend = 0;
711 // There are several machine relocations types, and each one of
712 // them needs a different approach to retrieve the symbol table index.
713 if (MR.isGlobalValue()) {
714 const GlobalValue *G = MR.getGlobalValue();
715 SymIdx = GblSymLookup[G];
716 if (G->hasPrivateLinkage()) {
717 // If the target uses a section offset in the relocation:
718 // SymIdx + Addend = section sym for global + section offset
719 unsigned SectionIdx = PrivateSyms[SymIdx]->SectionIdx;
720 Addend = PrivateSyms[SymIdx]->Value;
721 SymIdx = SectionList[SectionIdx]->getSymbolTableIndex();
722 } else {
723 int64_t GlobalOffset = MR.getConstantVal();
724 Addend = TEW->getDefaultAddendForRelTy(RelType, GlobalOffset);
726 } else if (MR.isExternalSymbol()) {
727 const char *ExtSym = MR.getExternalSymbol();
728 SymIdx = ExtSymLookup[ExtSym];
729 Addend = TEW->getDefaultAddendForRelTy(RelType);
730 } else {
731 // Get the symbol index for the section symbol
732 unsigned SectionIdx = MR.getConstantVal();
733 SymIdx = SectionList[SectionIdx]->getSymbolTableIndex();
735 // The symbol offset inside the section
736 int64_t SymOffset = (int64_t)MR.getResultPointer();
738 // For pc relative relocations where symbols are defined in the same
739 // section they are referenced, ignore the relocation entry and patch
740 // the relocatable field with the symbol offset directly.
741 if (S.SectionIdx == SectionIdx && TEW->isPCRelativeRel(RelType)) {
742 int64_t Value = TEW->computeRelocation(SymOffset, RelOffset, RelType);
743 RelocateField(S, RelOffset, Value, RelTySize);
744 continue;
747 Addend = TEW->getDefaultAddendForRelTy(RelType, SymOffset);
750 // The target without addend on the relocation symbol must be
751 // patched in the relocation place itself to contain the addend
752 // otherwise write zeros to make sure there is no garbage there
753 RelocateField(S, RelOffset, HasRelA ? 0 : Addend, RelTySize);
755 // Get the relocation entry and emit to the relocation section
756 ELFRelocation Rel(RelOffset, SymIdx, RelType, HasRelA, Addend);
757 EmitRelocation(RelSec, Rel, HasRelA);
762 /// EmitRelocation - Write relocation 'Rel' to the relocation section 'Rel'
763 void ELFWriter::EmitRelocation(BinaryObject &RelSec, ELFRelocation &Rel,
764 bool HasRelA) {
765 RelSec.emitWord(Rel.getOffset());
766 RelSec.emitWord(Rel.getInfo(is64Bit));
767 if (HasRelA)
768 RelSec.emitWord(Rel.getAddend());
771 /// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable'
772 void ELFWriter::EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym) {
773 if (is64Bit) {
774 SymbolTable.emitWord32(Sym.NameIdx);
775 SymbolTable.emitByte(Sym.Info);
776 SymbolTable.emitByte(Sym.Other);
777 SymbolTable.emitWord16(Sym.SectionIdx);
778 SymbolTable.emitWord64(Sym.Value);
779 SymbolTable.emitWord64(Sym.Size);
780 } else {
781 SymbolTable.emitWord32(Sym.NameIdx);
782 SymbolTable.emitWord32(Sym.Value);
783 SymbolTable.emitWord32(Sym.Size);
784 SymbolTable.emitByte(Sym.Info);
785 SymbolTable.emitByte(Sym.Other);
786 SymbolTable.emitWord16(Sym.SectionIdx);
790 /// EmitSectionHeader - Write section 'Section' header in 'SHdrTab'
791 /// Section Header Table
792 void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab,
793 const ELFSection &SHdr) {
794 SHdrTab.emitWord32(SHdr.NameIdx);
795 SHdrTab.emitWord32(SHdr.Type);
796 if (is64Bit) {
797 SHdrTab.emitWord64(SHdr.Flags);
798 SHdrTab.emitWord(SHdr.Addr);
799 SHdrTab.emitWord(SHdr.Offset);
800 SHdrTab.emitWord64(SHdr.Size);
801 SHdrTab.emitWord32(SHdr.Link);
802 SHdrTab.emitWord32(SHdr.Info);
803 SHdrTab.emitWord64(SHdr.Align);
804 SHdrTab.emitWord64(SHdr.EntSize);
805 } else {
806 SHdrTab.emitWord32(SHdr.Flags);
807 SHdrTab.emitWord(SHdr.Addr);
808 SHdrTab.emitWord(SHdr.Offset);
809 SHdrTab.emitWord32(SHdr.Size);
810 SHdrTab.emitWord32(SHdr.Link);
811 SHdrTab.emitWord32(SHdr.Info);
812 SHdrTab.emitWord32(SHdr.Align);
813 SHdrTab.emitWord32(SHdr.EntSize);
817 /// EmitStringTable - If the current symbol table is non-empty, emit the string
818 /// table for it
819 void ELFWriter::EmitStringTable(const std::string &ModuleName) {
820 if (!SymbolList.size()) return; // Empty symbol table.
821 ELFSection &StrTab = getStringTableSection();
823 // Set the zero'th symbol to a null byte, as required.
824 StrTab.emitByte(0);
826 // Walk on the symbol list and write symbol names into the string table.
827 unsigned Index = 1;
828 for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) {
829 ELFSym &Sym = *(*I);
831 std::string Name;
832 if (Sym.isGlobalValue())
833 // Use the name mangler to uniquify the LLVM symbol.
834 Name.append(Mang->getMangledName(Sym.getGlobalValue()));
835 else if (Sym.isExternalSym())
836 Name.append(Sym.getExternalSymbol());
837 else if (Sym.isFileType())
838 Name.append(ModuleName);
840 if (Name.empty()) {
841 Sym.NameIdx = 0;
842 } else {
843 Sym.NameIdx = Index;
844 StrTab.emitString(Name);
846 // Keep track of the number of bytes emitted to this section.
847 Index += Name.size()+1;
850 assert(Index == StrTab.size());
851 StrTab.Size = Index;
854 // SortSymbols - On the symbol table local symbols must come before
855 // all other symbols with non-local bindings. The return value is
856 // the position of the first non local symbol.
857 unsigned ELFWriter::SortSymbols() {
858 unsigned FirstNonLocalSymbol;
859 std::vector<ELFSym*> LocalSyms, OtherSyms;
861 for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) {
862 if ((*I)->isLocalBind())
863 LocalSyms.push_back(*I);
864 else
865 OtherSyms.push_back(*I);
867 SymbolList.clear();
868 FirstNonLocalSymbol = LocalSyms.size();
870 for (unsigned i = 0; i < FirstNonLocalSymbol; ++i)
871 SymbolList.push_back(LocalSyms[i]);
873 for (ELFSymIter I=OtherSyms.begin(), E=OtherSyms.end(); I != E; ++I)
874 SymbolList.push_back(*I);
876 LocalSyms.clear();
877 OtherSyms.clear();
879 return FirstNonLocalSymbol;
882 /// EmitSymbolTable - Emit the symbol table itself.
883 void ELFWriter::EmitSymbolTable() {
884 if (!SymbolList.size()) return; // Empty symbol table.
886 // Now that we have emitted the string table and know the offset into the
887 // string table of each symbol, emit the symbol table itself.
888 ELFSection &SymTab = getSymbolTableSection();
889 SymTab.Align = TEW->getPrefELFAlignment();
891 // Section Index of .strtab.
892 SymTab.Link = getStringTableSection().SectionIdx;
894 // Size of each symtab entry.
895 SymTab.EntSize = TEW->getSymTabEntrySize();
897 // Reorder the symbol table with local symbols first!
898 unsigned FirstNonLocalSymbol = SortSymbols();
900 // Emit all the symbols to the symbol table.
901 for (unsigned i = 0, e = SymbolList.size(); i < e; ++i) {
902 ELFSym &Sym = *SymbolList[i];
904 // Emit symbol to the symbol table
905 EmitSymbol(SymTab, Sym);
907 // Record the symbol table index for each symbol
908 if (Sym.isGlobalValue())
909 GblSymLookup[Sym.getGlobalValue()] = i;
910 else if (Sym.isExternalSym())
911 ExtSymLookup[Sym.getExternalSymbol()] = i;
913 // Keep track on the symbol index into the symbol table
914 Sym.SymTabIdx = i;
917 // One greater than the symbol table index of the last local symbol
918 SymTab.Info = FirstNonLocalSymbol;
919 SymTab.Size = SymTab.size();
922 /// EmitSectionTableStringTable - This method adds and emits a section for the
923 /// ELF Section Table string table: the string table that holds all of the
924 /// section names.
925 void ELFWriter::EmitSectionTableStringTable() {
926 // First step: add the section for the string table to the list of sections:
927 ELFSection &SHStrTab = getSectionHeaderStringTableSection();
929 // Now that we know which section number is the .shstrtab section, update the
930 // e_shstrndx entry in the ELF header.
931 ElfHdr.fixWord16(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);
933 // Set the NameIdx of each section in the string table and emit the bytes for
934 // the string table.
935 unsigned Index = 0;
937 for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
938 ELFSection &S = *(*I);
939 // Set the index into the table. Note if we have lots of entries with
940 // common suffixes, we could memoize them here if we cared.
941 S.NameIdx = Index;
942 SHStrTab.emitString(S.getName());
944 // Keep track of the number of bytes emitted to this section.
945 Index += S.getName().size()+1;
948 // Set the size of .shstrtab now that we know what it is.
949 assert(Index == SHStrTab.size());
950 SHStrTab.Size = Index;
953 /// OutputSectionsAndSectionTable - Now that we have constructed the file header
954 /// and all of the sections, emit these to the ostream destination and emit the
955 /// SectionTable.
956 void ELFWriter::OutputSectionsAndSectionTable() {
957 // Pass #1: Compute the file offset for each section.
958 size_t FileOff = ElfHdr.size(); // File header first.
960 // Adjust alignment of all section if needed, skip the null section.
961 for (unsigned i=1, e=SectionList.size(); i < e; ++i) {
962 ELFSection &ES = *SectionList[i];
963 if (!ES.size()) {
964 ES.Offset = FileOff;
965 continue;
968 // Update Section size
969 if (!ES.Size)
970 ES.Size = ES.size();
972 // Align FileOff to whatever the alignment restrictions of the section are.
973 if (ES.Align)
974 FileOff = (FileOff+ES.Align-1) & ~(ES.Align-1);
976 ES.Offset = FileOff;
977 FileOff += ES.Size;
980 // Align Section Header.
981 unsigned TableAlign = TEW->getPrefELFAlignment();
982 FileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
984 // Now that we know where all of the sections will be emitted, set the e_shnum
985 // entry in the ELF header.
986 ElfHdr.fixWord16(NumSections, ELFHdr_e_shnum_Offset);
988 // Now that we know the offset in the file of the section table, update the
989 // e_shoff address in the ELF header.
990 ElfHdr.fixWord(FileOff, ELFHdr_e_shoff_Offset);
992 // Now that we know all of the data in the file header, emit it and all of the
993 // sections!
994 O.write((char *)&ElfHdr.getData()[0], ElfHdr.size());
995 FileOff = ElfHdr.size();
997 // Section Header Table blob
998 BinaryObject SHdrTable(isLittleEndian, is64Bit);
1000 // Emit all of sections to the file and build the section header table.
1001 for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
1002 ELFSection &S = *(*I);
1003 DOUT << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName()
1004 << ", Size: " << S.Size << ", Offset: " << S.Offset
1005 << ", SectionData Size: " << S.size() << "\n";
1007 // Align FileOff to whatever the alignment restrictions of the section are.
1008 if (S.size()) {
1009 if (S.Align) {
1010 for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1);
1011 FileOff != NewFileOff; ++FileOff)
1012 O << (char)0xAB;
1014 O.write((char *)&S.getData()[0], S.Size);
1015 FileOff += S.Size;
1018 EmitSectionHeader(SHdrTable, S);
1021 // Align output for the section table.
1022 for (size_t NewFileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
1023 FileOff != NewFileOff; ++FileOff)
1024 O << (char)0xAB;
1026 // Emit the section table itself.
1027 O.write((char *)&SHdrTable.getData()[0], SHdrTable.size());