1 //===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the target-independent ELF writer. This file writes out
11 // the ELF file in the following order:
14 // #2. '.text' section
15 // #3. '.data' section
16 // #4. '.bss' section (conceptual position in file)
18 // #X. '.shstrtab' section
21 // The entries in the section table are laid out as:
22 // #0. Null entry [required]
23 // #1. ".text" entry - the program code
24 // #2. ".data" entry - global variables with initializers. [ if needed ]
25 // #3. ".bss" entry - global variables without initializers. [ if needed ]
27 // #N. ".shstrtab" entry - String table for the section names.
29 //===----------------------------------------------------------------------===//
31 #define DEBUG_TYPE "elfwriter"
33 #include "ELFWriter.h"
34 #include "ELFCodeEmitter.h"
35 #include "llvm/Constants.h"
36 #include "llvm/Module.h"
37 #include "llvm/PassManager.h"
38 #include "llvm/DerivedTypes.h"
39 #include "llvm/CodeGen/BinaryObject.h"
40 #include "llvm/CodeGen/FileWriters.h"
41 #include "llvm/CodeGen/MachineCodeEmitter.h"
42 #include "llvm/CodeGen/ObjectCodeEmitter.h"
43 #include "llvm/CodeGen/MachineCodeEmitter.h"
44 #include "llvm/CodeGen/MachineConstantPool.h"
45 #include "llvm/MC/MCContext.h"
46 #include "llvm/MC/MCSection.h"
47 #include "llvm/Target/TargetAsmInfo.h"
48 #include "llvm/Target/TargetData.h"
49 #include "llvm/Target/TargetELFWriterInfo.h"
50 #include "llvm/Target/TargetLowering.h"
51 #include "llvm/Target/TargetLoweringObjectFile.h"
52 #include "llvm/Target/TargetMachine.h"
53 #include "llvm/Support/Mangler.h"
54 #include "llvm/Support/Streams.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
61 char ELFWriter::ID
= 0;
63 /// AddELFWriter - Add the ELF writer to the function pass manager
64 ObjectCodeEmitter
*llvm::AddELFWriter(PassManagerBase
&PM
,
67 ELFWriter
*EW
= new ELFWriter(O
, TM
);
69 return EW
->getObjectCodeEmitter();
72 //===----------------------------------------------------------------------===//
73 // ELFWriter Implementation
74 //===----------------------------------------------------------------------===//
76 ELFWriter::ELFWriter(raw_ostream
&o
, TargetMachine
&tm
)
77 : MachineFunctionPass(&ID
), O(o
), TM(tm
),
78 OutContext(*new MCContext()),
79 TLOF(TM
.getTargetLowering()->getObjFileLowering()),
80 is64Bit(TM
.getTargetData()->getPointerSizeInBits() == 64),
81 isLittleEndian(TM
.getTargetData()->isLittleEndian()),
82 ElfHdr(isLittleEndian
, is64Bit
) {
84 TAI
= TM
.getTargetAsmInfo();
85 TEW
= TM
.getELFWriterInfo();
87 // Create the object code emitter object for this target.
88 ElfCE
= new ELFCodeEmitter(*this);
90 // Inital number of sections
94 ELFWriter::~ELFWriter() {
99 // doInitialization - Emit the file header and all of the global variables for
100 // the module to the ELF file.
101 bool ELFWriter::doInitialization(Module
&M
) {
102 // Initialize TargetLoweringObjectFile.
103 const_cast<TargetLoweringObjectFile
&>(TLOF
).Initialize(OutContext
, TM
);
105 Mang
= new Mangler(M
);
109 // Fields e_shnum e_shstrndx are only known after all section have
110 // been emitted. They locations in the ouput buffer are recorded so
111 // to be patched up later.
115 // emitWord method behaves differently for ELF32 and ELF64, writing
116 // 4 bytes in the former and 8 in the last for *_off and *_addr elf types
118 ElfHdr
.emitByte(0x7f); // e_ident[EI_MAG0]
119 ElfHdr
.emitByte('E'); // e_ident[EI_MAG1]
120 ElfHdr
.emitByte('L'); // e_ident[EI_MAG2]
121 ElfHdr
.emitByte('F'); // e_ident[EI_MAG3]
123 ElfHdr
.emitByte(TEW
->getEIClass()); // e_ident[EI_CLASS]
124 ElfHdr
.emitByte(TEW
->getEIData()); // e_ident[EI_DATA]
125 ElfHdr
.emitByte(EV_CURRENT
); // e_ident[EI_VERSION]
126 ElfHdr
.emitAlignment(16); // e_ident[EI_NIDENT-EI_PAD]
128 ElfHdr
.emitWord16(ET_REL
); // e_type
129 ElfHdr
.emitWord16(TEW
->getEMachine()); // e_machine = target
130 ElfHdr
.emitWord32(EV_CURRENT
); // e_version
131 ElfHdr
.emitWord(0); // e_entry, no entry point in .o file
132 ElfHdr
.emitWord(0); // e_phoff, no program header for .o
133 ELFHdr_e_shoff_Offset
= ElfHdr
.size();
134 ElfHdr
.emitWord(0); // e_shoff = sec hdr table off in bytes
135 ElfHdr
.emitWord32(TEW
->getEFlags()); // e_flags = whatever the target wants
136 ElfHdr
.emitWord16(TEW
->getHdrSize()); // e_ehsize = ELF header size
137 ElfHdr
.emitWord16(0); // e_phentsize = prog header entry size
138 ElfHdr
.emitWord16(0); // e_phnum = # prog header entries = 0
140 // e_shentsize = Section header entry size
141 ElfHdr
.emitWord16(TEW
->getSHdrSize());
143 // e_shnum = # of section header ents
144 ELFHdr_e_shnum_Offset
= ElfHdr
.size();
145 ElfHdr
.emitWord16(0); // Placeholder
147 // e_shstrndx = Section # of '.shstrtab'
148 ELFHdr_e_shstrndx_Offset
= ElfHdr
.size();
149 ElfHdr
.emitWord16(0); // Placeholder
151 // Add the null section, which is required to be first in the file.
154 // The first entry in the symtab is the null symbol and the second
155 // is a local symbol containing the module/file name
156 SymbolList
.push_back(new ELFSym());
157 SymbolList
.push_back(ELFSym::getFileSym());
162 // addGlobalSymbol - Add a global to be processed and to the global symbol
163 // lookup, use a zero index because the table index will be determined later.
164 void ELFWriter::addGlobalSymbol(const GlobalValue
*GV
,
165 bool AddToLookup
/* = false */) {
166 PendingGlobals
.insert(GV
);
168 GblSymLookup
[GV
] = 0;
171 // addExternalSymbol - Add the external to be processed and to the
172 // external symbol lookup, use a zero index because the symbol
173 // table index will be determined later
174 void ELFWriter::addExternalSymbol(const char *External
) {
175 PendingExternals
.insert(External
);
176 ExtSymLookup
[External
] = 0;
179 // getCtorSection - Get the static constructor section
180 ELFSection
&ELFWriter::getCtorSection() {
181 const MCSection
*Ctor
= TLOF
.getStaticCtorSection();
182 return getSection(Ctor
->getName(), ELFSection::SHT_PROGBITS
,
183 getElfSectionFlags(Ctor
->getKind()));
186 // getDtorSection - Get the static destructor section
187 ELFSection
&ELFWriter::getDtorSection() {
188 const MCSection
*Dtor
= TLOF
.getStaticDtorSection();
189 return getSection(Dtor
->getName(), ELFSection::SHT_PROGBITS
,
190 getElfSectionFlags(Dtor
->getKind()));
193 // getTextSection - Get the text section for the specified function
194 ELFSection
&ELFWriter::getTextSection(Function
*F
) {
195 const MCSection
*Text
= TLOF
.SectionForGlobal(F
, Mang
, TM
);
196 return getSection(Text
->getName(), ELFSection::SHT_PROGBITS
,
197 getElfSectionFlags(Text
->getKind()));
200 // getJumpTableSection - Get a read only section for constants when
201 // emitting jump tables. TODO: add PIC support
202 ELFSection
&ELFWriter::getJumpTableSection() {
203 const MCSection
*JT
= TLOF
.getSectionForConstant(SectionKind::getReadOnly());
204 return getSection(JT
->getName(),
205 ELFSection::SHT_PROGBITS
,
206 getElfSectionFlags(JT
->getKind()),
207 TM
.getTargetData()->getPointerABIAlignment());
210 // getConstantPoolSection - Get a constant pool section based on the machine
211 // constant pool entry type and relocation info.
212 ELFSection
&ELFWriter::getConstantPoolSection(MachineConstantPoolEntry
&CPE
) {
214 switch (CPE
.getRelocationInfo()) {
215 default: llvm_unreachable("Unknown section kind");
216 case 2: Kind
= SectionKind::getReadOnlyWithRel(); break;
218 Kind
= SectionKind::getReadOnlyWithRelLocal();
221 switch (TM
.getTargetData()->getTypeAllocSize(CPE
.getType())) {
222 case 4: Kind
= SectionKind::getMergeableConst4(); break;
223 case 8: Kind
= SectionKind::getMergeableConst8(); break;
224 case 16: Kind
= SectionKind::getMergeableConst16(); break;
225 default: Kind
= SectionKind::getMergeableConst(); break;
229 return getSection(TLOF
.getSectionForConstant(Kind
)->getName(),
230 ELFSection::SHT_PROGBITS
,
231 getElfSectionFlags(Kind
),
235 // getRelocSection - Return the relocation section of section 'S'. 'RelA'
236 // is true if the relocation section contains entries with addends.
237 ELFSection
&ELFWriter::getRelocSection(ELFSection
&S
) {
238 unsigned SectionHeaderTy
= TEW
->hasRelocationAddend() ?
239 ELFSection::SHT_RELA
: ELFSection::SHT_REL
;
240 std::string
RelSName(".rel");
241 if (TEW
->hasRelocationAddend())
242 RelSName
.append("a");
243 RelSName
.append(S
.getName());
245 return getSection(RelSName
, SectionHeaderTy
, 0, TEW
->getPrefELFAlignment());
248 // getGlobalELFVisibility - Returns the ELF specific visibility type
249 unsigned ELFWriter::getGlobalELFVisibility(const GlobalValue
*GV
) {
250 switch (GV
->getVisibility()) {
252 llvm_unreachable("unknown visibility type");
253 case GlobalValue::DefaultVisibility
:
254 return ELFSym::STV_DEFAULT
;
255 case GlobalValue::HiddenVisibility
:
256 return ELFSym::STV_HIDDEN
;
257 case GlobalValue::ProtectedVisibility
:
258 return ELFSym::STV_PROTECTED
;
263 // getGlobalELFBinding - Returns the ELF specific binding type
264 unsigned ELFWriter::getGlobalELFBinding(const GlobalValue
*GV
) {
265 if (GV
->hasInternalLinkage())
266 return ELFSym::STB_LOCAL
;
268 if (GV
->isWeakForLinker())
269 return ELFSym::STB_WEAK
;
271 return ELFSym::STB_GLOBAL
;
274 // getGlobalELFType - Returns the ELF specific type for a global
275 unsigned ELFWriter::getGlobalELFType(const GlobalValue
*GV
) {
276 if (GV
->isDeclaration())
277 return ELFSym::STT_NOTYPE
;
279 if (isa
<Function
>(GV
))
280 return ELFSym::STT_FUNC
;
282 return ELFSym::STT_OBJECT
;
285 // getElfSectionFlags - Get the ELF Section Header flags based
286 // on the flags defined in SectionKind.h.
287 unsigned ELFWriter::getElfSectionFlags(SectionKind Kind
, bool IsAlloc
) {
288 unsigned ElfSectionFlags
= 0;
291 ElfSectionFlags
|= ELFSection::SHF_ALLOC
;
293 ElfSectionFlags
|= ELFSection::SHF_EXECINSTR
;
294 if (Kind
.isWriteable())
295 ElfSectionFlags
|= ELFSection::SHF_WRITE
;
296 if (Kind
.isMergeableConst())
297 ElfSectionFlags
|= ELFSection::SHF_MERGE
;
298 if (Kind
.isThreadLocal())
299 ElfSectionFlags
|= ELFSection::SHF_TLS
;
300 if (Kind
.isMergeableCString())
301 ElfSectionFlags
|= ELFSection::SHF_STRINGS
;
303 return ElfSectionFlags
;
306 // isELFUndefSym - the symbol has no section and must be placed in
307 // the symbol table with a reference to the null section.
308 static bool isELFUndefSym(const GlobalValue
*GV
) {
309 // Functions which make up until this point references are an undef symbol
310 return GV
->isDeclaration() || (isa
<Function
>(GV
));
313 // isELFBssSym - for an undef or null value, the symbol must go to a bss
314 // section if it's not weak for linker, otherwise it's a common sym.
315 static bool isELFBssSym(const GlobalVariable
*GV
) {
316 const Constant
*CV
= GV
->getInitializer();
317 return ((CV
->isNullValue() || isa
<UndefValue
>(CV
)) && !GV
->isWeakForLinker());
320 // isELFCommonSym - for an undef or null value, the symbol must go to a
321 // common section if it's weak for linker, otherwise bss.
322 static bool isELFCommonSym(const GlobalVariable
*GV
) {
323 const Constant
*CV
= GV
->getInitializer();
324 return ((CV
->isNullValue() || isa
<UndefValue
>(CV
)) && GV
->isWeakForLinker());
327 // isELFDataSym - if the symbol is an initialized but no null constant
328 // it must go to some kind of data section
329 static bool isELFDataSym(const Constant
*CV
) {
330 return (!(CV
->isNullValue() || isa
<UndefValue
>(CV
)));
333 // EmitGlobal - Choose the right section for global and emit it
334 void ELFWriter::EmitGlobal(const GlobalValue
*GV
) {
336 // Check if the referenced symbol is already emitted
337 if (GblSymLookup
.find(GV
) != GblSymLookup
.end())
340 // Handle ELF Bind, Visibility and Type for the current symbol
341 unsigned SymBind
= getGlobalELFBinding(GV
);
342 unsigned SymType
= getGlobalELFType(GV
);
344 // All undef symbols have the same binding, type and visibily and
345 // are classified regardless of their type.
346 ELFSym
*GblSym
= isELFUndefSym(GV
) ? ELFSym::getUndefGV(GV
)
347 : ELFSym::getGV(GV
, SymBind
, SymType
, getGlobalELFVisibility(GV
));
349 if (!isELFUndefSym(GV
)) {
350 assert(isa
<GlobalVariable
>(GV
) && "GV not a global variable!");
351 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
353 // Handle special llvm globals
354 if (EmitSpecialLLVMGlobal(GVar
))
357 // Get the ELF section where this global belongs from TLOF
358 const MCSection
*S
= TLOF
.SectionForGlobal(GV
, Mang
, TM
);
359 unsigned SectionFlags
= getElfSectionFlags(((MCSectionELF
*)S
)->getKind());
361 // The symbol align should update the section alignment if needed
362 const TargetData
*TD
= TM
.getTargetData();
363 unsigned Align
= TD
->getPreferredAlignment(GVar
);
364 unsigned Size
= TD
->getTypeAllocSize(GVar
->getInitializer()->getType());
367 if (isELFCommonSym(GVar
)) {
368 GblSym
->SectionIdx
= ELFSection::SHN_COMMON
;
369 getSection(S
->getName(), ELFSection::SHT_NOBITS
, SectionFlags
, 1);
371 // A new linkonce section is created for each global in the
372 // common section, the default alignment is 1 and the symbol
373 // value contains its alignment.
374 GblSym
->Value
= Align
;
376 } else if (isELFBssSym(GVar
)) {
378 getSection(S
->getName(), ELFSection::SHT_NOBITS
, SectionFlags
);
379 GblSym
->SectionIdx
= ES
.SectionIdx
;
381 // Update the size with alignment and the next object can
382 // start in the right offset in the section
383 if (Align
) ES
.Size
= (ES
.Size
+ Align
-1) & ~(Align
-1);
384 ES
.Align
= std::max(ES
.Align
, Align
);
386 // GblSym->Value should contain the virtual offset inside the section.
387 // Virtual because the BSS space is not allocated on ELF objects
388 GblSym
->Value
= ES
.Size
;
391 } else if (isELFDataSym(GV
)) {
393 getSection(S
->getName(), ELFSection::SHT_PROGBITS
, SectionFlags
);
394 GblSym
->SectionIdx
= ES
.SectionIdx
;
396 // GblSym->Value should contain the symbol offset inside the section,
397 // and all symbols should start on their required alignment boundary
398 ES
.Align
= std::max(ES
.Align
, Align
);
399 GblSym
->Value
= (ES
.size() + (Align
-1)) & (-Align
);
400 ES
.emitAlignment(ES
.Align
);
402 // Emit the global to the data section 'ES'
403 EmitGlobalConstant(GVar
->getInitializer(), ES
);
407 if (GV
->hasPrivateLinkage()) {
408 // For a private symbols, keep track of the index inside the
409 // private list since it will never go to the symbol table and
410 // won't be patched up later.
411 PrivateSyms
.push_back(GblSym
);
412 GblSymLookup
[GV
] = PrivateSyms
.size()-1;
414 // Non private symbol are left with zero indices until they are patched
415 // up during the symbol table emition (where the indicies are created).
416 SymbolList
.push_back(GblSym
);
417 GblSymLookup
[GV
] = 0;
421 void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct
*CVS
,
424 // Print the fields in successive locations. Pad to align if needed!
425 const TargetData
*TD
= TM
.getTargetData();
426 unsigned Size
= TD
->getTypeAllocSize(CVS
->getType());
427 const StructLayout
*cvsLayout
= TD
->getStructLayout(CVS
->getType());
428 uint64_t sizeSoFar
= 0;
429 for (unsigned i
= 0, e
= CVS
->getNumOperands(); i
!= e
; ++i
) {
430 const Constant
* field
= CVS
->getOperand(i
);
432 // Check if padding is needed and insert one or more 0s.
433 uint64_t fieldSize
= TD
->getTypeAllocSize(field
->getType());
434 uint64_t padSize
= ((i
== e
-1 ? Size
: cvsLayout
->getElementOffset(i
+1))
435 - cvsLayout
->getElementOffset(i
)) - fieldSize
;
436 sizeSoFar
+= fieldSize
+ padSize
;
438 // Now print the actual field value.
439 EmitGlobalConstant(field
, GblS
);
441 // Insert padding - this may include padding to increase the size of the
442 // current field up to the ABI size (if the struct is not packed) as well
443 // as padding to ensure that the next field starts at the right offset.
444 for (unsigned p
=0; p
< padSize
; p
++)
447 assert(sizeSoFar
== cvsLayout
->getSizeInBytes() &&
448 "Layout of constant struct may be incorrect!");
451 void ELFWriter::EmitGlobalConstant(const Constant
*CV
, ELFSection
&GblS
) {
452 const TargetData
*TD
= TM
.getTargetData();
453 unsigned Size
= TD
->getTypeAllocSize(CV
->getType());
455 if (const ConstantArray
*CVA
= dyn_cast
<ConstantArray
>(CV
)) {
456 if (CVA
->isString()) {
457 std::string GblStr
= CVA
->getAsString();
458 GblStr
.resize(GblStr
.size()-1);
459 GblS
.emitString(GblStr
);
460 } else { // Not a string. Print the values in successive locations
461 for (unsigned i
= 0, e
= CVA
->getNumOperands(); i
!= e
; ++i
)
462 EmitGlobalConstant(CVA
->getOperand(i
), GblS
);
465 } else if (const ConstantStruct
*CVS
= dyn_cast
<ConstantStruct
>(CV
)) {
466 EmitGlobalConstantStruct(CVS
, GblS
);
468 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
469 uint64_t Val
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
470 if (CFP
->getType() == Type::DoubleTy
)
471 GblS
.emitWord64(Val
);
472 else if (CFP
->getType() == Type::FloatTy
)
473 GblS
.emitWord32(Val
);
474 else if (CFP
->getType() == Type::X86_FP80Ty
) {
475 llvm_unreachable("X86_FP80Ty global emission not implemented");
476 } else if (CFP
->getType() == Type::PPC_FP128Ty
)
477 llvm_unreachable("PPC_FP128Ty global emission not implemented");
479 } else if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
481 GblS
.emitWord32(CI
->getZExtValue());
483 GblS
.emitWord64(CI
->getZExtValue());
485 llvm_unreachable("LargeInt global emission not implemented");
487 } else if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(CV
)) {
488 const VectorType
*PTy
= CP
->getType();
489 for (unsigned I
= 0, E
= PTy
->getNumElements(); I
< E
; ++I
)
490 EmitGlobalConstant(CP
->getOperand(I
), GblS
);
492 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
493 if (CE
->getOpcode() == Instruction::BitCast
) {
494 EmitGlobalConstant(CE
->getOperand(0), GblS
);
497 std::string
msg(CE
->getOpcodeName());
498 raw_string_ostream
ErrorMsg(msg
);
499 ErrorMsg
<< ": Unsupported ConstantExpr type";
500 llvm_report_error(ErrorMsg
.str());
501 } else if (CV
->getType()->getTypeID() == Type::PointerTyID
) {
502 // Fill the data entry with zeros or emit a relocation entry
503 if (isa
<ConstantPointerNull
>(CV
)) {
504 for (unsigned i
=0; i
< Size
; ++i
)
507 emitGlobalDataRelocation(cast
<const GlobalValue
>(CV
),
508 TD
->getPointerSize(), GblS
);
511 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
)) {
512 // This is a constant address for a global variable or function and
513 // therefore must be referenced using a relocation entry.
514 emitGlobalDataRelocation(GV
, Size
, GblS
);
519 raw_string_ostream
ErrorMsg(msg
);
520 ErrorMsg
<< "Constant unimp for type: " << *CV
->getType();
521 llvm_report_error(ErrorMsg
.str());
524 void ELFWriter::emitGlobalDataRelocation(const GlobalValue
*GV
, unsigned Size
,
526 // Create the relocation entry for the global value
527 MachineRelocation MR
=
528 MachineRelocation::getGV(GblS
.getCurrentPCOffset(),
529 TEW
->getAbsoluteLabelMachineRelTy(),
530 const_cast<GlobalValue
*>(GV
));
532 // Fill the data entry with zeros
533 for (unsigned i
=0; i
< Size
; ++i
)
536 // Add the relocation entry for the current data section
537 GblS
.addRelocation(MR
);
540 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
541 /// special global used by LLVM. If so, emit it and return true, otherwise
542 /// do nothing and return false.
543 bool ELFWriter::EmitSpecialLLVMGlobal(const GlobalVariable
*GV
) {
544 if (GV
->getName() == "llvm.used")
545 llvm_unreachable("not implemented yet");
547 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
548 if (GV
->getSection() == "llvm.metadata" ||
549 GV
->hasAvailableExternallyLinkage())
552 if (!GV
->hasAppendingLinkage()) return false;
554 assert(GV
->hasInitializer() && "Not a special LLVM global!");
556 const TargetData
*TD
= TM
.getTargetData();
557 unsigned Align
= TD
->getPointerPrefAlignment();
558 if (GV
->getName() == "llvm.global_ctors") {
559 ELFSection
&Ctor
= getCtorSection();
560 Ctor
.emitAlignment(Align
);
561 EmitXXStructorList(GV
->getInitializer(), Ctor
);
565 if (GV
->getName() == "llvm.global_dtors") {
566 ELFSection
&Dtor
= getDtorSection();
567 Dtor
.emitAlignment(Align
);
568 EmitXXStructorList(GV
->getInitializer(), Dtor
);
575 /// EmitXXStructorList - Emit the ctor or dtor list. This just emits out the
576 /// function pointers, ignoring the init priority.
577 void ELFWriter::EmitXXStructorList(Constant
*List
, ELFSection
&Xtor
) {
578 // Should be an array of '{ int, void ()* }' structs. The first value is the
579 // init priority, which we ignore.
580 if (!isa
<ConstantArray
>(List
)) return;
581 ConstantArray
*InitList
= cast
<ConstantArray
>(List
);
582 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
)
583 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(InitList
->getOperand(i
))){
584 if (CS
->getNumOperands() != 2) return; // Not array of 2-element structs.
586 if (CS
->getOperand(1)->isNullValue())
587 return; // Found a null terminator, exit printing.
588 // Emit the function pointer.
589 EmitGlobalConstant(CS
->getOperand(1), Xtor
);
593 bool ELFWriter::runOnMachineFunction(MachineFunction
&MF
) {
594 // Nothing to do here, this is all done through the ElfCE object above.
598 /// doFinalization - Now that the module has been completely processed, emit
599 /// the ELF file to 'O'.
600 bool ELFWriter::doFinalization(Module
&M
) {
601 // Emit .data section placeholder
604 // Emit .bss section placeholder
607 // Build and emit data, bss and "common" sections.
608 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
612 // Emit all pending globals
613 for (PendingGblsIter I
= PendingGlobals
.begin(), E
= PendingGlobals
.end();
617 // Emit all pending externals
618 for (PendingExtsIter I
= PendingExternals
.begin(), E
= PendingExternals
.end();
620 SymbolList
.push_back(ELFSym::getExtSym(*I
));
622 // Emit non-executable stack note
623 if (TAI
->getNonexecutableStackDirective())
624 getNonExecStackSection();
626 // Emit a symbol for each section created until now, skip null section
627 for (unsigned i
= 1, e
= SectionList
.size(); i
< e
; ++i
) {
628 ELFSection
&ES
= *SectionList
[i
];
629 ELFSym
*SectionSym
= ELFSym::getSectionSym();
630 SectionSym
->SectionIdx
= ES
.SectionIdx
;
631 SymbolList
.push_back(SectionSym
);
632 ES
.Sym
= SymbolList
.back();
636 EmitStringTable(M
.getModuleIdentifier());
638 // Emit the symbol table now, if non-empty.
641 // Emit the relocation sections.
644 // Emit the sections string table.
645 EmitSectionTableStringTable();
647 // Dump the sections and section table to the .o file.
648 OutputSectionsAndSectionTable();
650 // We are done with the abstract symbols.
655 // Release the name mangler object.
656 delete Mang
; Mang
= 0;
660 // RelocateField - Patch relocatable field with 'Offset' in 'BO'
661 // using a 'Value' of known 'Size'
662 void ELFWriter::RelocateField(BinaryObject
&BO
, uint32_t Offset
,
663 int64_t Value
, unsigned Size
) {
665 BO
.fixWord32(Value
, Offset
);
667 BO
.fixWord64(Value
, Offset
);
669 llvm_unreachable("don't know howto patch relocatable field");
672 /// EmitRelocations - Emit relocations
673 void ELFWriter::EmitRelocations() {
675 // True if the target uses the relocation entry to hold the addend,
676 // otherwise the addend is written directly to the relocatable field.
677 bool HasRelA
= TEW
->hasRelocationAddend();
679 // Create Relocation sections for each section which needs it.
680 for (unsigned i
=0, e
=SectionList
.size(); i
!= e
; ++i
) {
681 ELFSection
&S
= *SectionList
[i
];
683 // This section does not have relocations
684 if (!S
.hasRelocations()) continue;
685 ELFSection
&RelSec
= getRelocSection(S
);
687 // 'Link' - Section hdr idx of the associated symbol table
688 // 'Info' - Section hdr idx of the section to which the relocation applies
689 ELFSection
&SymTab
= getSymbolTableSection();
690 RelSec
.Link
= SymTab
.SectionIdx
;
691 RelSec
.Info
= S
.SectionIdx
;
692 RelSec
.EntSize
= TEW
->getRelocationEntrySize();
694 // Get the relocations from Section
695 std::vector
<MachineRelocation
> Relos
= S
.getRelocations();
696 for (std::vector
<MachineRelocation
>::iterator MRI
= Relos
.begin(),
697 MRE
= Relos
.end(); MRI
!= MRE
; ++MRI
) {
698 MachineRelocation
&MR
= *MRI
;
700 // Relocatable field offset from the section start
701 unsigned RelOffset
= MR
.getMachineCodeOffset();
703 // Symbol index in the symbol table
706 // Target specific relocation field type and size
707 unsigned RelType
= TEW
->getRelocationType(MR
.getRelocationType());
708 unsigned RelTySize
= TEW
->getRelocationTySize(RelType
);
711 // There are several machine relocations types, and each one of
712 // them needs a different approach to retrieve the symbol table index.
713 if (MR
.isGlobalValue()) {
714 const GlobalValue
*G
= MR
.getGlobalValue();
715 SymIdx
= GblSymLookup
[G
];
716 if (G
->hasPrivateLinkage()) {
717 // If the target uses a section offset in the relocation:
718 // SymIdx + Addend = section sym for global + section offset
719 unsigned SectionIdx
= PrivateSyms
[SymIdx
]->SectionIdx
;
720 Addend
= PrivateSyms
[SymIdx
]->Value
;
721 SymIdx
= SectionList
[SectionIdx
]->getSymbolTableIndex();
723 int64_t GlobalOffset
= MR
.getConstantVal();
724 Addend
= TEW
->getDefaultAddendForRelTy(RelType
, GlobalOffset
);
726 } else if (MR
.isExternalSymbol()) {
727 const char *ExtSym
= MR
.getExternalSymbol();
728 SymIdx
= ExtSymLookup
[ExtSym
];
729 Addend
= TEW
->getDefaultAddendForRelTy(RelType
);
731 // Get the symbol index for the section symbol
732 unsigned SectionIdx
= MR
.getConstantVal();
733 SymIdx
= SectionList
[SectionIdx
]->getSymbolTableIndex();
735 // The symbol offset inside the section
736 int64_t SymOffset
= (int64_t)MR
.getResultPointer();
738 // For pc relative relocations where symbols are defined in the same
739 // section they are referenced, ignore the relocation entry and patch
740 // the relocatable field with the symbol offset directly.
741 if (S
.SectionIdx
== SectionIdx
&& TEW
->isPCRelativeRel(RelType
)) {
742 int64_t Value
= TEW
->computeRelocation(SymOffset
, RelOffset
, RelType
);
743 RelocateField(S
, RelOffset
, Value
, RelTySize
);
747 Addend
= TEW
->getDefaultAddendForRelTy(RelType
, SymOffset
);
750 // The target without addend on the relocation symbol must be
751 // patched in the relocation place itself to contain the addend
752 // otherwise write zeros to make sure there is no garbage there
753 RelocateField(S
, RelOffset
, HasRelA
? 0 : Addend
, RelTySize
);
755 // Get the relocation entry and emit to the relocation section
756 ELFRelocation
Rel(RelOffset
, SymIdx
, RelType
, HasRelA
, Addend
);
757 EmitRelocation(RelSec
, Rel
, HasRelA
);
762 /// EmitRelocation - Write relocation 'Rel' to the relocation section 'Rel'
763 void ELFWriter::EmitRelocation(BinaryObject
&RelSec
, ELFRelocation
&Rel
,
765 RelSec
.emitWord(Rel
.getOffset());
766 RelSec
.emitWord(Rel
.getInfo(is64Bit
));
768 RelSec
.emitWord(Rel
.getAddend());
771 /// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable'
772 void ELFWriter::EmitSymbol(BinaryObject
&SymbolTable
, ELFSym
&Sym
) {
774 SymbolTable
.emitWord32(Sym
.NameIdx
);
775 SymbolTable
.emitByte(Sym
.Info
);
776 SymbolTable
.emitByte(Sym
.Other
);
777 SymbolTable
.emitWord16(Sym
.SectionIdx
);
778 SymbolTable
.emitWord64(Sym
.Value
);
779 SymbolTable
.emitWord64(Sym
.Size
);
781 SymbolTable
.emitWord32(Sym
.NameIdx
);
782 SymbolTable
.emitWord32(Sym
.Value
);
783 SymbolTable
.emitWord32(Sym
.Size
);
784 SymbolTable
.emitByte(Sym
.Info
);
785 SymbolTable
.emitByte(Sym
.Other
);
786 SymbolTable
.emitWord16(Sym
.SectionIdx
);
790 /// EmitSectionHeader - Write section 'Section' header in 'SHdrTab'
791 /// Section Header Table
792 void ELFWriter::EmitSectionHeader(BinaryObject
&SHdrTab
,
793 const ELFSection
&SHdr
) {
794 SHdrTab
.emitWord32(SHdr
.NameIdx
);
795 SHdrTab
.emitWord32(SHdr
.Type
);
797 SHdrTab
.emitWord64(SHdr
.Flags
);
798 SHdrTab
.emitWord(SHdr
.Addr
);
799 SHdrTab
.emitWord(SHdr
.Offset
);
800 SHdrTab
.emitWord64(SHdr
.Size
);
801 SHdrTab
.emitWord32(SHdr
.Link
);
802 SHdrTab
.emitWord32(SHdr
.Info
);
803 SHdrTab
.emitWord64(SHdr
.Align
);
804 SHdrTab
.emitWord64(SHdr
.EntSize
);
806 SHdrTab
.emitWord32(SHdr
.Flags
);
807 SHdrTab
.emitWord(SHdr
.Addr
);
808 SHdrTab
.emitWord(SHdr
.Offset
);
809 SHdrTab
.emitWord32(SHdr
.Size
);
810 SHdrTab
.emitWord32(SHdr
.Link
);
811 SHdrTab
.emitWord32(SHdr
.Info
);
812 SHdrTab
.emitWord32(SHdr
.Align
);
813 SHdrTab
.emitWord32(SHdr
.EntSize
);
817 /// EmitStringTable - If the current symbol table is non-empty, emit the string
819 void ELFWriter::EmitStringTable(const std::string
&ModuleName
) {
820 if (!SymbolList
.size()) return; // Empty symbol table.
821 ELFSection
&StrTab
= getStringTableSection();
823 // Set the zero'th symbol to a null byte, as required.
826 // Walk on the symbol list and write symbol names into the string table.
828 for (ELFSymIter I
=SymbolList
.begin(), E
=SymbolList
.end(); I
!= E
; ++I
) {
832 if (Sym
.isGlobalValue())
833 // Use the name mangler to uniquify the LLVM symbol.
834 Name
.append(Mang
->getMangledName(Sym
.getGlobalValue()));
835 else if (Sym
.isExternalSym())
836 Name
.append(Sym
.getExternalSymbol());
837 else if (Sym
.isFileType())
838 Name
.append(ModuleName
);
844 StrTab
.emitString(Name
);
846 // Keep track of the number of bytes emitted to this section.
847 Index
+= Name
.size()+1;
850 assert(Index
== StrTab
.size());
854 // SortSymbols - On the symbol table local symbols must come before
855 // all other symbols with non-local bindings. The return value is
856 // the position of the first non local symbol.
857 unsigned ELFWriter::SortSymbols() {
858 unsigned FirstNonLocalSymbol
;
859 std::vector
<ELFSym
*> LocalSyms
, OtherSyms
;
861 for (ELFSymIter I
=SymbolList
.begin(), E
=SymbolList
.end(); I
!= E
; ++I
) {
862 if ((*I
)->isLocalBind())
863 LocalSyms
.push_back(*I
);
865 OtherSyms
.push_back(*I
);
868 FirstNonLocalSymbol
= LocalSyms
.size();
870 for (unsigned i
= 0; i
< FirstNonLocalSymbol
; ++i
)
871 SymbolList
.push_back(LocalSyms
[i
]);
873 for (ELFSymIter I
=OtherSyms
.begin(), E
=OtherSyms
.end(); I
!= E
; ++I
)
874 SymbolList
.push_back(*I
);
879 return FirstNonLocalSymbol
;
882 /// EmitSymbolTable - Emit the symbol table itself.
883 void ELFWriter::EmitSymbolTable() {
884 if (!SymbolList
.size()) return; // Empty symbol table.
886 // Now that we have emitted the string table and know the offset into the
887 // string table of each symbol, emit the symbol table itself.
888 ELFSection
&SymTab
= getSymbolTableSection();
889 SymTab
.Align
= TEW
->getPrefELFAlignment();
891 // Section Index of .strtab.
892 SymTab
.Link
= getStringTableSection().SectionIdx
;
894 // Size of each symtab entry.
895 SymTab
.EntSize
= TEW
->getSymTabEntrySize();
897 // Reorder the symbol table with local symbols first!
898 unsigned FirstNonLocalSymbol
= SortSymbols();
900 // Emit all the symbols to the symbol table.
901 for (unsigned i
= 0, e
= SymbolList
.size(); i
< e
; ++i
) {
902 ELFSym
&Sym
= *SymbolList
[i
];
904 // Emit symbol to the symbol table
905 EmitSymbol(SymTab
, Sym
);
907 // Record the symbol table index for each symbol
908 if (Sym
.isGlobalValue())
909 GblSymLookup
[Sym
.getGlobalValue()] = i
;
910 else if (Sym
.isExternalSym())
911 ExtSymLookup
[Sym
.getExternalSymbol()] = i
;
913 // Keep track on the symbol index into the symbol table
917 // One greater than the symbol table index of the last local symbol
918 SymTab
.Info
= FirstNonLocalSymbol
;
919 SymTab
.Size
= SymTab
.size();
922 /// EmitSectionTableStringTable - This method adds and emits a section for the
923 /// ELF Section Table string table: the string table that holds all of the
925 void ELFWriter::EmitSectionTableStringTable() {
926 // First step: add the section for the string table to the list of sections:
927 ELFSection
&SHStrTab
= getSectionHeaderStringTableSection();
929 // Now that we know which section number is the .shstrtab section, update the
930 // e_shstrndx entry in the ELF header.
931 ElfHdr
.fixWord16(SHStrTab
.SectionIdx
, ELFHdr_e_shstrndx_Offset
);
933 // Set the NameIdx of each section in the string table and emit the bytes for
937 for (ELFSectionIter I
=SectionList
.begin(), E
=SectionList
.end(); I
!= E
; ++I
) {
938 ELFSection
&S
= *(*I
);
939 // Set the index into the table. Note if we have lots of entries with
940 // common suffixes, we could memoize them here if we cared.
942 SHStrTab
.emitString(S
.getName());
944 // Keep track of the number of bytes emitted to this section.
945 Index
+= S
.getName().size()+1;
948 // Set the size of .shstrtab now that we know what it is.
949 assert(Index
== SHStrTab
.size());
950 SHStrTab
.Size
= Index
;
953 /// OutputSectionsAndSectionTable - Now that we have constructed the file header
954 /// and all of the sections, emit these to the ostream destination and emit the
956 void ELFWriter::OutputSectionsAndSectionTable() {
957 // Pass #1: Compute the file offset for each section.
958 size_t FileOff
= ElfHdr
.size(); // File header first.
960 // Adjust alignment of all section if needed, skip the null section.
961 for (unsigned i
=1, e
=SectionList
.size(); i
< e
; ++i
) {
962 ELFSection
&ES
= *SectionList
[i
];
968 // Update Section size
972 // Align FileOff to whatever the alignment restrictions of the section are.
974 FileOff
= (FileOff
+ES
.Align
-1) & ~(ES
.Align
-1);
980 // Align Section Header.
981 unsigned TableAlign
= TEW
->getPrefELFAlignment();
982 FileOff
= (FileOff
+TableAlign
-1) & ~(TableAlign
-1);
984 // Now that we know where all of the sections will be emitted, set the e_shnum
985 // entry in the ELF header.
986 ElfHdr
.fixWord16(NumSections
, ELFHdr_e_shnum_Offset
);
988 // Now that we know the offset in the file of the section table, update the
989 // e_shoff address in the ELF header.
990 ElfHdr
.fixWord(FileOff
, ELFHdr_e_shoff_Offset
);
992 // Now that we know all of the data in the file header, emit it and all of the
994 O
.write((char *)&ElfHdr
.getData()[0], ElfHdr
.size());
995 FileOff
= ElfHdr
.size();
997 // Section Header Table blob
998 BinaryObject
SHdrTable(isLittleEndian
, is64Bit
);
1000 // Emit all of sections to the file and build the section header table.
1001 for (ELFSectionIter I
=SectionList
.begin(), E
=SectionList
.end(); I
!= E
; ++I
) {
1002 ELFSection
&S
= *(*I
);
1003 DOUT
<< "SectionIdx: " << S
.SectionIdx
<< ", Name: " << S
.getName()
1004 << ", Size: " << S
.Size
<< ", Offset: " << S
.Offset
1005 << ", SectionData Size: " << S
.size() << "\n";
1007 // Align FileOff to whatever the alignment restrictions of the section are.
1010 for (size_t NewFileOff
= (FileOff
+S
.Align
-1) & ~(S
.Align
-1);
1011 FileOff
!= NewFileOff
; ++FileOff
)
1014 O
.write((char *)&S
.getData()[0], S
.Size
);
1018 EmitSectionHeader(SHdrTable
, S
);
1021 // Align output for the section table.
1022 for (size_t NewFileOff
= (FileOff
+TableAlign
-1) & ~(TableAlign
-1);
1023 FileOff
!= NewFileOff
; ++FileOff
)
1026 // Emit the section table itself.
1027 O
.write((char *)&SHdrTable
.getData()[0], SHdrTable
.size());