1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11 // register allocator for LLVM. This allocator works by constructing a PBQP
12 // problem representing the register allocation problem under consideration,
13 // solving this using a PBQP solver, and mapping the solution back to a
14 // register assignment. If any variables are selected for spilling then spill
15 // code is inserted and the process repeated.
17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18 // for register allocation. For more information on PBQP for register
19 // allocation, see the following papers:
21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26 // architectures. In Proceedings of the Joint Conference on Languages,
27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
30 //===----------------------------------------------------------------------===//
32 #define DEBUG_TYPE "regalloc"
34 #include "PBQP/HeuristicSolver.h"
35 #include "PBQP/SimpleGraph.h"
36 #include "PBQP/Heuristics/Briggs.h"
37 #include "VirtRegMap.h"
38 #include "VirtRegRewriter.h"
39 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
40 #include "llvm/CodeGen/LiveStackAnalysis.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineLoopInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/RegAllocRegistry.h"
45 #include "llvm/CodeGen/RegisterCoalescer.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetInstrInfo.h"
49 #include "llvm/Target/TargetMachine.h"
58 static RegisterRegAlloc
59 registerPBQPRepAlloc("pbqp", "PBQP register allocator.",
60 llvm::createPBQPRegisterAllocator
);
65 /// PBQP based allocators solve the register allocation problem by mapping
66 /// register allocation problems to Partitioned Boolean Quadratic
67 /// Programming problems.
68 class VISIBILITY_HIDDEN PBQPRegAlloc
: public MachineFunctionPass
{
73 /// Construct a PBQP register allocator.
74 PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID
) {}
76 /// Return the pass name.
77 virtual const char* getPassName() const throw() {
78 return "PBQP Register Allocator";
81 /// PBQP analysis usage.
82 virtual void getAnalysisUsage(AnalysisUsage
&au
) const {
83 au
.addRequired
<LiveIntervals
>();
84 //au.addRequiredID(SplitCriticalEdgesID);
85 au
.addRequired
<LiveStacks
>();
86 au
.addPreserved
<LiveStacks
>();
87 au
.addRequired
<MachineLoopInfo
>();
88 au
.addPreserved
<MachineLoopInfo
>();
89 au
.addRequired
<VirtRegMap
>();
90 MachineFunctionPass::getAnalysisUsage(au
);
93 /// Perform register allocation
94 virtual bool runOnMachineFunction(MachineFunction
&MF
);
97 typedef std::map
<const LiveInterval
*, unsigned> LI2NodeMap
;
98 typedef std::vector
<const LiveInterval
*> Node2LIMap
;
99 typedef std::vector
<unsigned> AllowedSet
;
100 typedef std::vector
<AllowedSet
> AllowedSetMap
;
101 typedef std::set
<unsigned> RegSet
;
102 typedef std::pair
<unsigned, unsigned> RegPair
;
103 typedef std::map
<RegPair
, PBQP::PBQPNum
> CoalesceMap
;
105 typedef std::set
<LiveInterval
*> LiveIntervalSet
;
108 const TargetMachine
*tm
;
109 const TargetRegisterInfo
*tri
;
110 const TargetInstrInfo
*tii
;
111 const MachineLoopInfo
*loopInfo
;
112 MachineRegisterInfo
*mri
;
120 AllowedSetMap allowedSets
;
121 LiveIntervalSet vregIntervalsToAlloc
,
125 /// Builds a PBQP cost vector.
126 template <typename RegContainer
>
127 PBQP::Vector
buildCostVector(unsigned vReg
,
128 const RegContainer
&allowed
,
129 const CoalesceMap
&cealesces
,
130 PBQP::PBQPNum spillCost
) const;
132 /// \brief Builds a PBQP interference matrix.
134 /// @return Either a pointer to a non-zero PBQP matrix representing the
135 /// allocation option costs, or a null pointer for a zero matrix.
137 /// Expects allowed sets for two interfering LiveIntervals. These allowed
138 /// sets should contain only allocable registers from the LiveInterval's
139 /// register class, with any interfering pre-colored registers removed.
140 template <typename RegContainer
>
141 PBQP::Matrix
* buildInterferenceMatrix(const RegContainer
&allowed1
,
142 const RegContainer
&allowed2
) const;
145 /// Expects allowed sets for two potentially coalescable LiveIntervals,
146 /// and an estimated benefit due to coalescing. The allowed sets should
147 /// contain only allocable registers from the LiveInterval's register
148 /// classes, with any interfering pre-colored registers removed.
149 template <typename RegContainer
>
150 PBQP::Matrix
* buildCoalescingMatrix(const RegContainer
&allowed1
,
151 const RegContainer
&allowed2
,
152 PBQP::PBQPNum cBenefit
) const;
154 /// \brief Finds coalescing opportunities and returns them as a map.
156 /// Any entries in the map are guaranteed coalescable, even if their
157 /// corresponding live intervals overlap.
158 CoalesceMap
findCoalesces();
160 /// \brief Finds the initial set of vreg intervals to allocate.
161 void findVRegIntervalsToAlloc();
163 /// \brief Constructs a PBQP problem representation of the register
164 /// allocation problem for this function.
166 /// @return a PBQP solver object for the register allocation problem.
167 PBQP::SimpleGraph
constructPBQPProblem();
169 /// \brief Adds a stack interval if the given live interval has been
170 /// spilled. Used to support stack slot coloring.
171 void addStackInterval(const LiveInterval
*spilled
,MachineRegisterInfo
* mri
);
173 /// \brief Given a solved PBQP problem maps this solution back to a register
175 bool mapPBQPToRegAlloc(const PBQP::Solution
&solution
);
177 /// \brief Postprocessing before final spilling. Sets basic block "live in"
179 void finalizeAlloc() const;
183 char PBQPRegAlloc::ID
= 0;
187 template <typename RegContainer
>
188 PBQP::Vector
PBQPRegAlloc::buildCostVector(unsigned vReg
,
189 const RegContainer
&allowed
,
190 const CoalesceMap
&coalesces
,
191 PBQP::PBQPNum spillCost
) const {
193 typedef typename
RegContainer::const_iterator AllowedItr
;
195 // Allocate vector. Additional element (0th) used for spill option
196 PBQP::Vector
v(allowed
.size() + 1, 0);
200 // Iterate over the allowed registers inserting coalesce benefits if there
203 for (AllowedItr itr
= allowed
.begin(), end
= allowed
.end();
204 itr
!= end
; ++itr
, ++ai
) {
206 unsigned pReg
= *itr
;
208 CoalesceMap::const_iterator cmItr
=
209 coalesces
.find(RegPair(vReg
, pReg
));
211 // No coalesce - on to the next preg.
212 if (cmItr
== coalesces
.end())
215 // We have a coalesce - insert the benefit.
216 v
[ai
+ 1] = -cmItr
->second
;
222 template <typename RegContainer
>
223 PBQP::Matrix
* PBQPRegAlloc::buildInterferenceMatrix(
224 const RegContainer
&allowed1
, const RegContainer
&allowed2
) const {
226 typedef typename
RegContainer::const_iterator RegContainerIterator
;
228 // Construct a PBQP matrix representing the cost of allocation options. The
229 // rows and columns correspond to the allocation options for the two live
230 // intervals. Elements will be infinite where corresponding registers alias,
231 // since we cannot allocate aliasing registers to interfering live intervals.
232 // All other elements (non-aliasing combinations) will have zero cost. Note
233 // that the spill option (element 0,0) has zero cost, since we can allocate
234 // both intervals to memory safely (the cost for each individual allocation
235 // to memory is accounted for by the cost vectors for each live interval).
237 new PBQP::Matrix(allowed1
.size() + 1, allowed2
.size() + 1, 0);
239 // Assume this is a zero matrix until proven otherwise. Zero matrices occur
240 // between interfering live ranges with non-overlapping register sets (e.g.
241 // non-overlapping reg classes, or disjoint sets of allowed regs within the
242 // same class). The term "overlapping" is used advisedly: sets which do not
243 // intersect, but contain registers which alias, will have non-zero matrices.
244 // We optimize zero matrices away to improve solver speed.
245 bool isZeroMatrix
= true;
248 // Row index. Starts at 1, since the 0th row is for the spill option, which
252 // Iterate over allowed sets, insert infinities where required.
253 for (RegContainerIterator a1Itr
= allowed1
.begin(), a1End
= allowed1
.end();
254 a1Itr
!= a1End
; ++a1Itr
) {
256 // Column index, starts at 1 as for row index.
258 unsigned reg1
= *a1Itr
;
260 for (RegContainerIterator a2Itr
= allowed2
.begin(), a2End
= allowed2
.end();
261 a2Itr
!= a2End
; ++a2Itr
) {
263 unsigned reg2
= *a2Itr
;
265 // If the row/column regs are identical or alias insert an infinity.
266 if ((reg1
== reg2
) || tri
->areAliases(reg1
, reg2
)) {
267 (*m
)[ri
][ci
] = std::numeric_limits
<PBQP::PBQPNum
>::infinity();
268 isZeroMatrix
= false;
277 // If this turns out to be a zero matrix...
279 // free it and return null.
284 // ...otherwise return the cost matrix.
288 template <typename RegContainer
>
289 PBQP::Matrix
* PBQPRegAlloc::buildCoalescingMatrix(
290 const RegContainer
&allowed1
, const RegContainer
&allowed2
,
291 PBQP::PBQPNum cBenefit
) const {
293 typedef typename
RegContainer::const_iterator RegContainerIterator
;
295 // Construct a PBQP Matrix representing the benefits of coalescing. As with
296 // interference matrices the rows and columns represent allowed registers
297 // for the LiveIntervals which are (potentially) to be coalesced. The amount
298 // -cBenefit will be placed in any element representing the same register
299 // for both intervals.
301 new PBQP::Matrix(allowed1
.size() + 1, allowed2
.size() + 1, 0);
303 // Reset costs to zero.
306 // Assume the matrix is zero till proven otherwise. Zero matrices will be
307 // optimized away as in the interference case.
308 bool isZeroMatrix
= true;
310 // Row index. Starts at 1, since the 0th row is for the spill option, which
314 // Iterate over the allowed sets, insert coalescing benefits where
316 for (RegContainerIterator a1Itr
= allowed1
.begin(), a1End
= allowed1
.end();
317 a1Itr
!= a1End
; ++a1Itr
) {
319 // Column index, starts at 1 as for row index.
321 unsigned reg1
= *a1Itr
;
323 for (RegContainerIterator a2Itr
= allowed2
.begin(), a2End
= allowed2
.end();
324 a2Itr
!= a2End
; ++a2Itr
) {
326 // If the row and column represent the same register insert a beneficial
327 // cost to preference this allocation - it would allow us to eliminate a
329 if (reg1
== *a2Itr
) {
330 (*m
)[ri
][ci
] = -cBenefit
;
331 isZeroMatrix
= false;
340 // If this turns out to be a zero matrix...
342 // ...free it and return null.
350 PBQPRegAlloc::CoalesceMap
PBQPRegAlloc::findCoalesces() {
352 typedef MachineFunction::const_iterator MFIterator
;
353 typedef MachineBasicBlock::const_iterator MBBIterator
;
354 typedef LiveInterval::const_vni_iterator VNIIterator
;
356 CoalesceMap coalescesFound
;
358 // To find coalesces we need to iterate over the function looking for
359 // copy instructions.
360 for (MFIterator bbItr
= mf
->begin(), bbEnd
= mf
->end();
361 bbItr
!= bbEnd
; ++bbItr
) {
363 const MachineBasicBlock
*mbb
= &*bbItr
;
365 for (MBBIterator iItr
= mbb
->begin(), iEnd
= mbb
->end();
366 iItr
!= iEnd
; ++iItr
) {
368 const MachineInstr
*instr
= &*iItr
;
369 unsigned srcReg
, dstReg
, srcSubReg
, dstSubReg
;
371 // If this isn't a copy then continue to the next instruction.
372 if (!tii
->isMoveInstr(*instr
, srcReg
, dstReg
, srcSubReg
, dstSubReg
))
375 // If the registers are already the same our job is nice and easy.
376 if (dstReg
== srcReg
)
379 bool srcRegIsPhysical
= TargetRegisterInfo::isPhysicalRegister(srcReg
),
380 dstRegIsPhysical
= TargetRegisterInfo::isPhysicalRegister(dstReg
);
382 // If both registers are physical then we can't coalesce.
383 if (srcRegIsPhysical
&& dstRegIsPhysical
)
386 // If it's a copy that includes a virtual register but the source and
387 // destination classes differ then we can't coalesce, so continue with
388 // the next instruction.
389 const TargetRegisterClass
*srcRegClass
= srcRegIsPhysical
?
390 tri
->getPhysicalRegisterRegClass(srcReg
) : mri
->getRegClass(srcReg
);
392 const TargetRegisterClass
*dstRegClass
= dstRegIsPhysical
?
393 tri
->getPhysicalRegisterRegClass(dstReg
) : mri
->getRegClass(dstReg
);
395 if (srcRegClass
!= dstRegClass
)
398 // We also need any physical regs to be allocable, coalescing with
399 // a non-allocable register is invalid.
400 if (srcRegIsPhysical
) {
401 if (std::find(srcRegClass
->allocation_order_begin(*mf
),
402 srcRegClass
->allocation_order_end(*mf
), srcReg
) ==
403 srcRegClass
->allocation_order_end(*mf
))
407 if (dstRegIsPhysical
) {
408 if (std::find(dstRegClass
->allocation_order_begin(*mf
),
409 dstRegClass
->allocation_order_end(*mf
), dstReg
) ==
410 dstRegClass
->allocation_order_end(*mf
))
414 // If we've made it here we have a copy with compatible register classes.
415 // We can probably coalesce, but we need to consider overlap.
416 const LiveInterval
*srcLI
= &lis
->getInterval(srcReg
),
417 *dstLI
= &lis
->getInterval(dstReg
);
419 if (srcLI
->overlaps(*dstLI
)) {
420 // Even in the case of an overlap we might still be able to coalesce,
421 // but we need to make sure that no definition of either range occurs
422 // while the other range is live.
424 // Otherwise start by assuming we're ok.
427 // Test all defs of the source range.
429 vniItr
= srcLI
->vni_begin(), vniEnd
= srcLI
->vni_end();
430 vniItr
!= vniEnd
; ++vniItr
) {
432 // If we find a def that kills the coalescing opportunity then
433 // record it and break from the loop.
434 if (dstLI
->liveAt((*vniItr
)->def
)) {
440 // If we have a bad def give up, continue to the next instruction.
444 // Otherwise test definitions of the destination range.
446 vniItr
= dstLI
->vni_begin(), vniEnd
= dstLI
->vni_end();
447 vniItr
!= vniEnd
; ++vniItr
) {
449 // We want to make sure we skip the copy instruction itself.
450 if ((*vniItr
)->copy
== instr
)
453 if (srcLI
->liveAt((*vniItr
)->def
)) {
459 // As before a bad def we give up and continue to the next instr.
464 // If we make it to here then either the ranges didn't overlap, or they
465 // did, but none of their definitions would prevent us from coalescing.
466 // We're good to go with the coalesce.
468 float cBenefit
= powf(10.0f
, loopInfo
->getLoopDepth(mbb
)) / 5.0;
470 coalescesFound
[RegPair(srcReg
, dstReg
)] = cBenefit
;
471 coalescesFound
[RegPair(dstReg
, srcReg
)] = cBenefit
;
476 return coalescesFound
;
479 void PBQPRegAlloc::findVRegIntervalsToAlloc() {
481 // Iterate over all live ranges.
482 for (LiveIntervals::iterator itr
= lis
->begin(), end
= lis
->end();
485 // Ignore physical ones.
486 if (TargetRegisterInfo::isPhysicalRegister(itr
->first
))
489 LiveInterval
*li
= itr
->second
;
491 // If this live interval is non-empty we will use pbqp to allocate it.
492 // Empty intervals we allocate in a simple post-processing stage in
495 vregIntervalsToAlloc
.insert(li
);
498 emptyVRegIntervals
.insert(li
);
503 PBQP::SimpleGraph
PBQPRegAlloc::constructPBQPProblem() {
505 typedef std::vector
<const LiveInterval
*> LIVector
;
506 typedef std::vector
<unsigned> RegVector
;
507 typedef std::vector
<PBQP::SimpleGraph::NodeIterator
> NodeVector
;
509 // This will store the physical intervals for easy reference.
510 LIVector physIntervals
;
512 // Start by clearing the old node <-> live interval mappings & allowed sets
517 // Populate physIntervals, update preg use:
518 for (LiveIntervals::iterator itr
= lis
->begin(), end
= lis
->end();
521 if (TargetRegisterInfo::isPhysicalRegister(itr
->first
)) {
522 physIntervals
.push_back(itr
->second
);
523 mri
->setPhysRegUsed(itr
->second
->reg
);
527 // Iterate over vreg intervals, construct live interval <-> node number
529 for (LiveIntervalSet::const_iterator
530 itr
= vregIntervalsToAlloc
.begin(), end
= vregIntervalsToAlloc
.end();
532 const LiveInterval
*li
= *itr
;
534 li2Node
[li
] = node2LI
.size();
535 node2LI
.push_back(li
);
538 // Get the set of potential coalesces.
539 CoalesceMap coalesces
;//(findCoalesces());
541 // Construct a PBQP solver for this problem
542 PBQP::SimpleGraph problem
;
543 NodeVector
problemNodes(vregIntervalsToAlloc
.size());
545 // Resize allowedSets container appropriately.
546 allowedSets
.resize(vregIntervalsToAlloc
.size());
548 // Iterate over virtual register intervals to compute allowed sets...
549 for (unsigned node
= 0; node
< node2LI
.size(); ++node
) {
551 // Grab pointers to the interval and its register class.
552 const LiveInterval
*li
= node2LI
[node
];
553 const TargetRegisterClass
*liRC
= mri
->getRegClass(li
->reg
);
555 // Start by assuming all allocable registers in the class are allowed...
556 RegVector
liAllowed(liRC
->allocation_order_begin(*mf
),
557 liRC
->allocation_order_end(*mf
));
559 // Eliminate the physical registers which overlap with this range, along
560 // with all their aliases.
561 for (LIVector::iterator pItr
= physIntervals
.begin(),
562 pEnd
= physIntervals
.end(); pItr
!= pEnd
; ++pItr
) {
564 if (!li
->overlaps(**pItr
))
567 unsigned pReg
= (*pItr
)->reg
;
569 // If we get here then the live intervals overlap, but we're still ok
570 // if they're coalescable.
571 if (coalesces
.find(RegPair(li
->reg
, pReg
)) != coalesces
.end())
574 // If we get here then we have a genuine exclusion.
576 // Remove the overlapping reg...
577 RegVector::iterator eraseItr
=
578 std::find(liAllowed
.begin(), liAllowed
.end(), pReg
);
580 if (eraseItr
!= liAllowed
.end())
581 liAllowed
.erase(eraseItr
);
583 const unsigned *aliasItr
= tri
->getAliasSet(pReg
);
586 // ...and its aliases.
587 for (; *aliasItr
!= 0; ++aliasItr
) {
588 RegVector::iterator eraseItr
=
589 std::find(liAllowed
.begin(), liAllowed
.end(), *aliasItr
);
591 if (eraseItr
!= liAllowed
.end()) {
592 liAllowed
.erase(eraseItr
);
598 // Copy the allowed set into a member vector for use when constructing cost
599 // vectors & matrices, and mapping PBQP solutions back to assignments.
600 allowedSets
[node
] = AllowedSet(liAllowed
.begin(), liAllowed
.end());
602 // Set the spill cost to the interval weight, or epsilon if the
603 // interval weight is zero
604 PBQP::PBQPNum spillCost
= (li
->weight
!= 0.0) ?
605 li
->weight
: std::numeric_limits
<PBQP::PBQPNum
>::min();
607 // Build a cost vector for this interval.
610 buildCostVector(li
->reg
, allowedSets
[node
], coalesces
, spillCost
));
615 // Now add the cost matrices...
616 for (unsigned node1
= 0; node1
< node2LI
.size(); ++node1
) {
617 const LiveInterval
*li
= node2LI
[node1
];
619 // Test for live range overlaps and insert interference matrices.
620 for (unsigned node2
= node1
+ 1; node2
< node2LI
.size(); ++node2
) {
621 const LiveInterval
*li2
= node2LI
[node2
];
623 CoalesceMap::const_iterator cmItr
=
624 coalesces
.find(RegPair(li
->reg
, li2
->reg
));
628 if (cmItr
!= coalesces
.end()) {
629 m
= buildCoalescingMatrix(allowedSets
[node1
], allowedSets
[node2
],
632 else if (li
->overlaps(*li2
)) {
633 m
= buildInterferenceMatrix(allowedSets
[node1
], allowedSets
[node2
]);
637 problem
.addEdge(problemNodes
[node1
],
646 problem
.assignNodeIDs();
648 assert(problem
.getNumNodes() == allowedSets
.size());
649 for (unsigned i
= 0; i
< allowedSets
.size(); ++i
) {
650 assert(problem
.getNodeItr(i
) == problemNodes
[i
]);
653 std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
654 << problem.getNumEdges() << " edges.\n";
656 problem.printDot(std::cerr);
658 // We're done, PBQP problem constructed - return it.
662 void PBQPRegAlloc::addStackInterval(const LiveInterval
*spilled
,
663 MachineRegisterInfo
* mri
) {
664 int stackSlot
= vrm
->getStackSlot(spilled
->reg
);
666 if (stackSlot
== VirtRegMap::NO_STACK_SLOT
)
669 const TargetRegisterClass
*RC
= mri
->getRegClass(spilled
->reg
);
670 LiveInterval
&stackInterval
= lss
->getOrCreateInterval(stackSlot
, RC
);
673 if (stackInterval
.getNumValNums() != 0)
674 vni
= stackInterval
.getValNumInfo(0);
676 vni
= stackInterval
.getNextValue(0, 0, false, lss
->getVNInfoAllocator());
678 LiveInterval
&rhsInterval
= lis
->getInterval(spilled
->reg
);
679 stackInterval
.MergeRangesInAsValue(rhsInterval
, vni
);
682 bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution
&solution
) {
684 static unsigned round
= 0;
686 // Set to true if we have any spills
687 bool anotherRoundNeeded
= false;
689 // Clear the existing allocation.
692 CoalesceMap coalesces
;//(findCoalesces());
694 for (unsigned i
= 0; i
< node2LI
.size(); ++i
) {
695 if (solution
.getSelection(i
) == 0) {
699 unsigned iSel
= solution
.getSelection(i
);
700 unsigned iAlloc
= allowedSets
[i
][iSel
- 1];
702 for (unsigned j
= i
+ 1; j
< node2LI
.size(); ++j
) {
704 if (solution
.getSelection(j
) == 0) {
708 unsigned jSel
= solution
.getSelection(j
);
709 unsigned jAlloc
= allowedSets
[j
][jSel
- 1];
711 if ((iAlloc
!= jAlloc
) && !tri
->areAliases(iAlloc
, jAlloc
)) {
715 if (node2LI
[i
]->overlaps(*node2LI
[j
])) {
716 if (coalesces
.find(RegPair(node2LI
[i
]->reg
, node2LI
[j
]->reg
)) == coalesces
.end()) {
717 DEBUG(errs() << "In round " << ++round
<< ":\n"
718 << "Bogusness in " << mf
->getFunction()->getName() << "!\n"
719 << "Live interval " << i
<< " (reg" << node2LI
[i
]->reg
<< ") and\n"
720 << "Live interval " << j
<< " (reg" << node2LI
[j
]->reg
<< ")\n"
721 << " were allocated registers " << iAlloc
<< " (index " << iSel
<< ") and "
722 << jAlloc
<< "(index " << jSel
723 << ") respectively in a graph of " << solution
.numNodes() << " nodes.\n"
724 << "li[i]->empty() = " << node2LI
[i
]->empty() << "\n"
725 << "li[j]->empty() = " << node2LI
[j
]->empty() << "\n"
726 << "li[i]->overlaps(li[j]) = " << node2LI
[i
]->overlaps(*node2LI
[j
]) << "\n"
727 << "coalesce = " << (coalesces
.find(RegPair(node2LI
[i
]->reg
, node2LI
[j
]->reg
)) != coalesces
.end()) << "\n");
729 DEBUG(errs() << "solution.getCost() = " << solution
.getCost() << "\n");
737 // Iterate over the nodes mapping the PBQP solution to a register assignment.
738 for (unsigned node
= 0; node
< node2LI
.size(); ++node
) {
739 unsigned virtReg
= node2LI
[node
]->reg
,
740 allocSelection
= solution
.getSelection(node
);
743 // If the PBQP solution is non-zero it's a physical register...
744 if (allocSelection
!= 0) {
745 // Get the physical reg, subtracting 1 to account for the spill option.
746 unsigned physReg
= allowedSets
[node
][allocSelection
- 1];
748 DOUT
<< "VREG " << virtReg
<< " -> " << tri
->getName(physReg
) << "\n";
750 assert(physReg
!= 0);
752 // Add to the virt reg map and update the used phys regs.
753 vrm
->assignVirt2Phys(virtReg
, physReg
);
755 // ...Otherwise it's a spill.
758 // Make sure we ignore this virtual reg on the next round
760 vregIntervalsToAlloc
.erase(&lis
->getInterval(virtReg
));
762 // Insert spill ranges for this live range
763 const LiveInterval
*spillInterval
= node2LI
[node
];
764 double oldSpillWeight
= spillInterval
->weight
;
765 SmallVector
<LiveInterval
*, 8> spillIs
;
766 std::vector
<LiveInterval
*> newSpills
=
767 lis
->addIntervalsForSpills(*spillInterval
, spillIs
, loopInfo
, *vrm
);
768 addStackInterval(spillInterval
, mri
);
770 DOUT
<< "VREG " << virtReg
<< " -> SPILLED (Cost: "
771 << oldSpillWeight
<< ", New vregs: ";
773 // Copy any newly inserted live intervals into the list of regs to
775 for (std::vector
<LiveInterval
*>::const_iterator
776 itr
= newSpills
.begin(), end
= newSpills
.end();
779 assert(!(*itr
)->empty() && "Empty spill range.");
781 DOUT
<< (*itr
)->reg
<< " ";
783 vregIntervalsToAlloc
.insert(*itr
);
788 // We need another round if spill intervals were added.
789 anotherRoundNeeded
|= !newSpills
.empty();
793 return !anotherRoundNeeded
;
796 void PBQPRegAlloc::finalizeAlloc() const {
797 typedef LiveIntervals::iterator LIIterator
;
798 typedef LiveInterval::Ranges::const_iterator LRIterator
;
800 // First allocate registers for the empty intervals.
801 for (LiveIntervalSet::const_iterator
802 itr
= emptyVRegIntervals
.begin(), end
= emptyVRegIntervals
.end();
804 LiveInterval
*li
= *itr
;
806 unsigned physReg
= vrm
->getRegAllocPref(li
->reg
);
809 const TargetRegisterClass
*liRC
= mri
->getRegClass(li
->reg
);
810 physReg
= *liRC
->allocation_order_begin(*mf
);
813 vrm
->assignVirt2Phys(li
->reg
, physReg
);
816 // Finally iterate over the basic blocks to compute and set the live-in sets.
817 SmallVector
<MachineBasicBlock
*, 8> liveInMBBs
;
818 MachineBasicBlock
*entryMBB
= &*mf
->begin();
820 for (LIIterator liItr
= lis
->begin(), liEnd
= lis
->end();
821 liItr
!= liEnd
; ++liItr
) {
823 const LiveInterval
*li
= liItr
->second
;
826 // Get the physical register for this interval
827 if (TargetRegisterInfo::isPhysicalRegister(li
->reg
)) {
830 else if (vrm
->isAssignedReg(li
->reg
)) {
831 reg
= vrm
->getPhys(li
->reg
);
834 // Ranges which are assigned a stack slot only are ignored.
839 // Filter out zero regs - they're for intervals that were spilled.
843 // Iterate over the ranges of the current interval...
844 for (LRIterator lrItr
= li
->begin(), lrEnd
= li
->end();
845 lrItr
!= lrEnd
; ++lrItr
) {
847 // Find the set of basic blocks which this range is live into...
848 if (lis
->findLiveInMBBs(lrItr
->start
, lrItr
->end
, liveInMBBs
)) {
849 // And add the physreg for this interval to their live-in sets.
850 for (unsigned i
= 0; i
< liveInMBBs
.size(); ++i
) {
851 if (liveInMBBs
[i
] != entryMBB
) {
852 if (!liveInMBBs
[i
]->isLiveIn(reg
)) {
853 liveInMBBs
[i
]->addLiveIn(reg
);
864 bool PBQPRegAlloc::runOnMachineFunction(MachineFunction
&MF
) {
867 tm
= &mf
->getTarget();
868 tri
= tm
->getRegisterInfo();
869 tii
= tm
->getInstrInfo();
870 mri
= &mf
->getRegInfo();
872 lis
= &getAnalysis
<LiveIntervals
>();
873 lss
= &getAnalysis
<LiveStacks
>();
874 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
876 vrm
= &getAnalysis
<VirtRegMap
>();
878 DEBUG(errs() << "PBQP2 Register Allocating for " << mf
->getFunction()->getName() << "\n");
880 // Allocator main loop:
882 // * Map current regalloc problem to a PBQP problem
883 // * Solve the PBQP problem
884 // * Map the solution back to a register allocation
885 // * Spill if necessary
887 // This process is continued till no more spills are generated.
889 // Find the vreg intervals in need of allocation.
890 findVRegIntervalsToAlloc();
892 // If there aren't any then we're done here.
893 if (vregIntervalsToAlloc
.empty() && emptyVRegIntervals
.empty())
896 // If there are non-empty intervals allocate them using pbqp.
897 if (!vregIntervalsToAlloc
.empty()) {
899 bool pbqpAllocComplete
= false;
902 while (!pbqpAllocComplete
) {
903 DEBUG(errs() << " PBQP Regalloc round " << round
<< ":\n");
905 PBQP::SimpleGraph problem
= constructPBQPProblem();
906 PBQP::HeuristicSolver
<PBQP::Heuristics::Briggs
> solver
;
907 problem
.assignNodeIDs();
908 PBQP::Solution solution
= solver
.solve(problem
);
910 std::cerr << "Solution:\n";
911 for (unsigned i = 0; i < solution.numNodes(); ++i) {
912 std::cerr << " " << i << " -> " << solution.getSelection(i) << "\n";
915 pbqpAllocComplete
= mapPBQPToRegAlloc(solution
);
921 // Finalise allocation, allocate empty ranges.
924 vregIntervalsToAlloc
.clear();
925 emptyVRegIntervals
.clear();
930 DEBUG(errs() << "Post alloc VirtRegMap:\n" << *vrm
<< "\n");
933 std::auto_ptr
<VirtRegRewriter
> rewriter(createVirtRegRewriter());
935 rewriter
->runOnMachineFunction(*mf
, *vrm
, lis
);
940 FunctionPass
* llvm::createPBQPRegisterAllocator() {
941 return new PBQPRegAlloc();