1 //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "pre-RA-sched"
16 #include "llvm/CodeGen/ScheduleDAG.h"
17 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
18 #include "llvm/Target/TargetMachine.h"
19 #include "llvm/Target/TargetInstrInfo.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
26 ScheduleDAG::ScheduleDAG(MachineFunction
&mf
)
28 TII(TM
.getInstrInfo()),
29 TRI(TM
.getRegisterInfo()),
30 TLI(TM
.getTargetLowering()),
31 MF(mf
), MRI(mf
.getRegInfo()),
32 ConstPool(MF
.getConstantPool()),
36 ScheduleDAG::~ScheduleDAG() {}
38 /// dump - dump the schedule.
39 void ScheduleDAG::dumpSchedule() const {
40 for (unsigned i
= 0, e
= Sequence
.size(); i
!= e
; i
++) {
41 if (SUnit
*SU
= Sequence
[i
])
44 errs() << "**** NOOP ****\n";
49 /// Run - perform scheduling.
51 void ScheduleDAG::Run(MachineBasicBlock
*bb
,
52 MachineBasicBlock::iterator insertPos
) {
54 InsertPos
= insertPos
;
63 DOUT
<< "*** Final schedule ***\n";
64 DEBUG(dumpSchedule());
68 /// addPred - This adds the specified edge as a pred of the current node if
69 /// not already. It also adds the current node as a successor of the
71 void SUnit::addPred(const SDep
&D
) {
72 // If this node already has this depenence, don't add a redundant one.
73 for (SmallVector
<SDep
, 4>::const_iterator I
= Preds
.begin(), E
= Preds
.end();
77 // Now add a corresponding succ to N.
80 SUnit
*N
= D
.getSUnit();
81 // Update the bookkeeping.
82 if (D
.getKind() == SDep::Data
) {
91 N
->Succs
.push_back(P
);
92 if (P
.getLatency() != 0) {
93 this->setDepthDirty();
98 /// removePred - This removes the specified edge as a pred of the current
99 /// node if it exists. It also removes the current node as a successor of
100 /// the specified node.
101 void SUnit::removePred(const SDep
&D
) {
102 // Find the matching predecessor.
103 for (SmallVector
<SDep
, 4>::iterator I
= Preds
.begin(), E
= Preds
.end();
106 bool FoundSucc
= false;
107 // Find the corresponding successor in N.
110 SUnit
*N
= D
.getSUnit();
111 for (SmallVector
<SDep
, 4>::iterator II
= N
->Succs
.begin(),
112 EE
= N
->Succs
.end(); II
!= EE
; ++II
)
118 assert(FoundSucc
&& "Mismatching preds / succs lists!");
120 // Update the bookkeeping.
121 if (P
.getKind() == SDep::Data
) {
129 if (P
.getLatency() != 0) {
130 this->setDepthDirty();
137 void SUnit::setDepthDirty() {
138 if (!isDepthCurrent
) return;
139 SmallVector
<SUnit
*, 8> WorkList
;
140 WorkList
.push_back(this);
142 SUnit
*SU
= WorkList
.pop_back_val();
143 SU
->isDepthCurrent
= false;
144 for (SUnit::const_succ_iterator I
= SU
->Succs
.begin(),
145 E
= SU
->Succs
.end(); I
!= E
; ++I
) {
146 SUnit
*SuccSU
= I
->getSUnit();
147 if (SuccSU
->isDepthCurrent
)
148 WorkList
.push_back(SuccSU
);
150 } while (!WorkList
.empty());
153 void SUnit::setHeightDirty() {
154 if (!isHeightCurrent
) return;
155 SmallVector
<SUnit
*, 8> WorkList
;
156 WorkList
.push_back(this);
158 SUnit
*SU
= WorkList
.pop_back_val();
159 SU
->isHeightCurrent
= false;
160 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(),
161 E
= SU
->Preds
.end(); I
!= E
; ++I
) {
162 SUnit
*PredSU
= I
->getSUnit();
163 if (PredSU
->isHeightCurrent
)
164 WorkList
.push_back(PredSU
);
166 } while (!WorkList
.empty());
169 /// setDepthToAtLeast - Update this node's successors to reflect the
170 /// fact that this node's depth just increased.
172 void SUnit::setDepthToAtLeast(unsigned NewDepth
) {
173 if (NewDepth
<= getDepth())
177 isDepthCurrent
= true;
180 /// setHeightToAtLeast - Update this node's predecessors to reflect the
181 /// fact that this node's height just increased.
183 void SUnit::setHeightToAtLeast(unsigned NewHeight
) {
184 if (NewHeight
<= getHeight())
188 isHeightCurrent
= true;
191 /// ComputeDepth - Calculate the maximal path from the node to the exit.
193 void SUnit::ComputeDepth() {
194 SmallVector
<SUnit
*, 8> WorkList
;
195 WorkList
.push_back(this);
197 SUnit
*Cur
= WorkList
.back();
200 unsigned MaxPredDepth
= 0;
201 for (SUnit::const_pred_iterator I
= Cur
->Preds
.begin(),
202 E
= Cur
->Preds
.end(); I
!= E
; ++I
) {
203 SUnit
*PredSU
= I
->getSUnit();
204 if (PredSU
->isDepthCurrent
)
205 MaxPredDepth
= std::max(MaxPredDepth
,
206 PredSU
->Depth
+ I
->getLatency());
209 WorkList
.push_back(PredSU
);
215 if (MaxPredDepth
!= Cur
->Depth
) {
216 Cur
->setDepthDirty();
217 Cur
->Depth
= MaxPredDepth
;
219 Cur
->isDepthCurrent
= true;
221 } while (!WorkList
.empty());
224 /// ComputeHeight - Calculate the maximal path from the node to the entry.
226 void SUnit::ComputeHeight() {
227 SmallVector
<SUnit
*, 8> WorkList
;
228 WorkList
.push_back(this);
230 SUnit
*Cur
= WorkList
.back();
233 unsigned MaxSuccHeight
= 0;
234 for (SUnit::const_succ_iterator I
= Cur
->Succs
.begin(),
235 E
= Cur
->Succs
.end(); I
!= E
; ++I
) {
236 SUnit
*SuccSU
= I
->getSUnit();
237 if (SuccSU
->isHeightCurrent
)
238 MaxSuccHeight
= std::max(MaxSuccHeight
,
239 SuccSU
->Height
+ I
->getLatency());
242 WorkList
.push_back(SuccSU
);
248 if (MaxSuccHeight
!= Cur
->Height
) {
249 Cur
->setHeightDirty();
250 Cur
->Height
= MaxSuccHeight
;
252 Cur
->isHeightCurrent
= true;
254 } while (!WorkList
.empty());
257 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
258 /// a group of nodes flagged together.
259 void SUnit::dump(const ScheduleDAG
*G
) const {
260 errs() << "SU(" << NodeNum
<< "): ";
264 void SUnit::dumpAll(const ScheduleDAG
*G
) const {
267 errs() << " # preds left : " << NumPredsLeft
<< "\n";
268 errs() << " # succs left : " << NumSuccsLeft
<< "\n";
269 errs() << " Latency : " << Latency
<< "\n";
270 errs() << " Depth : " << Depth
<< "\n";
271 errs() << " Height : " << Height
<< "\n";
273 if (Preds
.size() != 0) {
274 errs() << " Predecessors:\n";
275 for (SUnit::const_succ_iterator I
= Preds
.begin(), E
= Preds
.end();
278 switch (I
->getKind()) {
279 case SDep::Data
: errs() << "val "; break;
280 case SDep::Anti
: errs() << "anti"; break;
281 case SDep::Output
: errs() << "out "; break;
282 case SDep::Order
: errs() << "ch "; break;
285 errs() << I
->getSUnit() << " - SU(" << I
->getSUnit()->NodeNum
<< ")";
286 if (I
->isArtificial())
291 if (Succs
.size() != 0) {
292 errs() << " Successors:\n";
293 for (SUnit::const_succ_iterator I
= Succs
.begin(), E
= Succs
.end();
296 switch (I
->getKind()) {
297 case SDep::Data
: errs() << "val "; break;
298 case SDep::Anti
: errs() << "anti"; break;
299 case SDep::Output
: errs() << "out "; break;
300 case SDep::Order
: errs() << "ch "; break;
303 errs() << I
->getSUnit() << " - SU(" << I
->getSUnit()->NodeNum
<< ")";
304 if (I
->isArtificial())
313 /// VerifySchedule - Verify that all SUnits were scheduled and that
314 /// their state is consistent.
316 void ScheduleDAG::VerifySchedule(bool isBottomUp
) {
317 bool AnyNotSched
= false;
318 unsigned DeadNodes
= 0;
320 for (unsigned i
= 0, e
= SUnits
.size(); i
!= e
; ++i
) {
321 if (!SUnits
[i
].isScheduled
) {
322 if (SUnits
[i
].NumPreds
== 0 && SUnits
[i
].NumSuccs
== 0) {
327 errs() << "*** Scheduling failed! ***\n";
328 SUnits
[i
].dump(this);
329 errs() << "has not been scheduled!\n";
332 if (SUnits
[i
].isScheduled
&&
333 (isBottomUp
? SUnits
[i
].getHeight() : SUnits
[i
].getHeight()) >
336 errs() << "*** Scheduling failed! ***\n";
337 SUnits
[i
].dump(this);
338 errs() << "has an unexpected "
339 << (isBottomUp
? "Height" : "Depth") << " value!\n";
343 if (SUnits
[i
].NumSuccsLeft
!= 0) {
345 errs() << "*** Scheduling failed! ***\n";
346 SUnits
[i
].dump(this);
347 errs() << "has successors left!\n";
351 if (SUnits
[i
].NumPredsLeft
!= 0) {
353 errs() << "*** Scheduling failed! ***\n";
354 SUnits
[i
].dump(this);
355 errs() << "has predecessors left!\n";
360 for (unsigned i
= 0, e
= Sequence
.size(); i
!= e
; ++i
)
363 assert(!AnyNotSched
);
364 assert(Sequence
.size() + DeadNodes
- Noops
== SUnits
.size() &&
365 "The number of nodes scheduled doesn't match the expected number!");
369 /// InitDAGTopologicalSorting - create the initial topological
370 /// ordering from the DAG to be scheduled.
372 /// The idea of the algorithm is taken from
373 /// "Online algorithms for managing the topological order of
374 /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
375 /// This is the MNR algorithm, which was first introduced by
376 /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
377 /// "Maintaining a topological order under edge insertions".
379 /// Short description of the algorithm:
381 /// Topological ordering, ord, of a DAG maps each node to a topological
382 /// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
384 /// This means that if there is a path from the node X to the node Z,
385 /// then ord(X) < ord(Z).
387 /// This property can be used to check for reachability of nodes:
388 /// if Z is reachable from X, then an insertion of the edge Z->X would
391 /// The algorithm first computes a topological ordering for the DAG by
392 /// initializing the Index2Node and Node2Index arrays and then tries to keep
393 /// the ordering up-to-date after edge insertions by reordering the DAG.
395 /// On insertion of the edge X->Y, the algorithm first marks by calling DFS
396 /// the nodes reachable from Y, and then shifts them using Shift to lie
397 /// immediately after X in Index2Node.
398 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
399 unsigned DAGSize
= SUnits
.size();
400 std::vector
<SUnit
*> WorkList
;
401 WorkList
.reserve(DAGSize
);
403 Index2Node
.resize(DAGSize
);
404 Node2Index
.resize(DAGSize
);
406 // Initialize the data structures.
407 for (unsigned i
= 0, e
= DAGSize
; i
!= e
; ++i
) {
408 SUnit
*SU
= &SUnits
[i
];
409 int NodeNum
= SU
->NodeNum
;
410 unsigned Degree
= SU
->Succs
.size();
411 // Temporarily use the Node2Index array as scratch space for degree counts.
412 Node2Index
[NodeNum
] = Degree
;
414 // Is it a node without dependencies?
416 assert(SU
->Succs
.empty() && "SUnit should have no successors");
417 // Collect leaf nodes.
418 WorkList
.push_back(SU
);
423 while (!WorkList
.empty()) {
424 SUnit
*SU
= WorkList
.back();
426 Allocate(SU
->NodeNum
, --Id
);
427 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
429 SUnit
*SU
= I
->getSUnit();
430 if (!--Node2Index
[SU
->NodeNum
])
431 // If all dependencies of the node are processed already,
432 // then the node can be computed now.
433 WorkList
.push_back(SU
);
437 Visited
.resize(DAGSize
);
440 // Check correctness of the ordering
441 for (unsigned i
= 0, e
= DAGSize
; i
!= e
; ++i
) {
442 SUnit
*SU
= &SUnits
[i
];
443 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
445 assert(Node2Index
[SU
->NodeNum
] > Node2Index
[I
->getSUnit()->NodeNum
] &&
446 "Wrong topological sorting");
452 /// AddPred - Updates the topological ordering to accomodate an edge
453 /// to be added from SUnit X to SUnit Y.
454 void ScheduleDAGTopologicalSort::AddPred(SUnit
*Y
, SUnit
*X
) {
455 int UpperBound
, LowerBound
;
456 LowerBound
= Node2Index
[Y
->NodeNum
];
457 UpperBound
= Node2Index
[X
->NodeNum
];
458 bool HasLoop
= false;
459 // Is Ord(X) < Ord(Y) ?
460 if (LowerBound
< UpperBound
) {
461 // Update the topological order.
463 DFS(Y
, UpperBound
, HasLoop
);
464 assert(!HasLoop
&& "Inserted edge creates a loop!");
465 // Recompute topological indexes.
466 Shift(Visited
, LowerBound
, UpperBound
);
470 /// RemovePred - Updates the topological ordering to accomodate an
471 /// an edge to be removed from the specified node N from the predecessors
472 /// of the current node M.
473 void ScheduleDAGTopologicalSort::RemovePred(SUnit
*M
, SUnit
*N
) {
474 // InitDAGTopologicalSorting();
477 /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
478 /// all nodes affected by the edge insertion. These nodes will later get new
479 /// topological indexes by means of the Shift method.
480 void ScheduleDAGTopologicalSort::DFS(const SUnit
*SU
, int UpperBound
,
482 std::vector
<const SUnit
*> WorkList
;
483 WorkList
.reserve(SUnits
.size());
485 WorkList
.push_back(SU
);
487 SU
= WorkList
.back();
489 Visited
.set(SU
->NodeNum
);
490 for (int I
= SU
->Succs
.size()-1; I
>= 0; --I
) {
491 int s
= SU
->Succs
[I
].getSUnit()->NodeNum
;
492 if (Node2Index
[s
] == UpperBound
) {
496 // Visit successors if not already and in affected region.
497 if (!Visited
.test(s
) && Node2Index
[s
] < UpperBound
) {
498 WorkList
.push_back(SU
->Succs
[I
].getSUnit());
501 } while (!WorkList
.empty());
504 /// Shift - Renumber the nodes so that the topological ordering is
506 void ScheduleDAGTopologicalSort::Shift(BitVector
& Visited
, int LowerBound
,
512 for (i
= LowerBound
; i
<= UpperBound
; ++i
) {
513 // w is node at topological index i.
514 int w
= Index2Node
[i
];
515 if (Visited
.test(w
)) {
521 Allocate(w
, i
- shift
);
525 for (unsigned j
= 0; j
< L
.size(); ++j
) {
526 Allocate(L
[j
], i
- shift
);
532 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
534 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit
*SU
, SUnit
*TargetSU
) {
535 if (IsReachable(TargetSU
, SU
))
537 for (SUnit::pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
539 if (I
->isAssignedRegDep() &&
540 IsReachable(TargetSU
, I
->getSUnit()))
545 /// IsReachable - Checks if SU is reachable from TargetSU.
546 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit
*SU
,
547 const SUnit
*TargetSU
) {
548 // If insertion of the edge SU->TargetSU would create a cycle
549 // then there is a path from TargetSU to SU.
550 int UpperBound
, LowerBound
;
551 LowerBound
= Node2Index
[TargetSU
->NodeNum
];
552 UpperBound
= Node2Index
[SU
->NodeNum
];
553 bool HasLoop
= false;
554 // Is Ord(TargetSU) < Ord(SU) ?
555 if (LowerBound
< UpperBound
) {
557 // There may be a path from TargetSU to SU. Check for it.
558 DFS(TargetSU
, UpperBound
, HasLoop
);
563 /// Allocate - assign the topological index to the node n.
564 void ScheduleDAGTopologicalSort::Allocate(int n
, int index
) {
565 Node2Index
[n
] = index
;
566 Index2Node
[index
] = n
;
569 ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
570 std::vector
<SUnit
> &sunits
)
573 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}