1 ///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the implementation of the FastISel class.
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Function.h"
43 #include "llvm/GlobalVariable.h"
44 #include "llvm/Instructions.h"
45 #include "llvm/IntrinsicInst.h"
46 #include "llvm/CodeGen/FastISel.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineModuleInfo.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/DwarfWriter.h"
51 #include "llvm/Analysis/DebugInfo.h"
52 #include "llvm/Target/TargetData.h"
53 #include "llvm/Target/TargetInstrInfo.h"
54 #include "llvm/Target/TargetLowering.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "SelectionDAGBuild.h"
59 unsigned FastISel::getRegForValue(Value
*V
) {
60 MVT RealVT
= TLI
.getValueType(V
->getType(), /*AllowUnknown=*/true);
61 // Don't handle non-simple values in FastISel.
62 if (!RealVT
.isSimple())
65 // Ignore illegal types. We must do this before looking up the value
66 // in ValueMap because Arguments are given virtual registers regardless
67 // of whether FastISel can handle them.
68 MVT::SimpleValueType VT
= RealVT
.getSimpleVT();
69 if (!TLI
.isTypeLegal(VT
)) {
70 // Promote MVT::i1 to a legal type though, because it's common and easy.
72 VT
= TLI
.getTypeToTransformTo(VT
).getSimpleVT();
77 // Look up the value to see if we already have a register for it. We
78 // cache values defined by Instructions across blocks, and other values
79 // only locally. This is because Instructions already have the SSA
80 // def-dominatess-use requirement enforced.
81 if (ValueMap
.count(V
))
83 unsigned Reg
= LocalValueMap
[V
];
87 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
88 if (CI
->getValue().getActiveBits() <= 64)
89 Reg
= FastEmit_i(VT
, VT
, ISD::Constant
, CI
->getZExtValue());
90 } else if (isa
<AllocaInst
>(V
)) {
91 Reg
= TargetMaterializeAlloca(cast
<AllocaInst
>(V
));
92 } else if (isa
<ConstantPointerNull
>(V
)) {
93 // Translate this as an integer zero so that it can be
94 // local-CSE'd with actual integer zeros.
95 Reg
= getRegForValue(Constant::getNullValue(TD
.getIntPtrType()));
96 } else if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(V
)) {
97 Reg
= FastEmit_f(VT
, VT
, ISD::ConstantFP
, CF
);
100 const APFloat
&Flt
= CF
->getValueAPF();
101 MVT IntVT
= TLI
.getPointerTy();
104 uint32_t IntBitWidth
= IntVT
.getSizeInBits();
106 (void) Flt
.convertToInteger(x
, IntBitWidth
, /*isSigned=*/true,
107 APFloat::rmTowardZero
, &isExact
);
109 APInt
IntVal(IntBitWidth
, 2, x
);
111 unsigned IntegerReg
=
112 getRegForValue(ConstantInt::get(V
->getContext(), IntVal
));
114 Reg
= FastEmit_r(IntVT
.getSimpleVT(), VT
, ISD::SINT_TO_FP
, IntegerReg
);
117 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
118 if (!SelectOperator(CE
, CE
->getOpcode())) return 0;
119 Reg
= LocalValueMap
[CE
];
120 } else if (isa
<UndefValue
>(V
)) {
121 Reg
= createResultReg(TLI
.getRegClassFor(VT
));
122 BuildMI(MBB
, DL
, TII
.get(TargetInstrInfo::IMPLICIT_DEF
), Reg
);
125 // If target-independent code couldn't handle the value, give target-specific
127 if (!Reg
&& isa
<Constant
>(V
))
128 Reg
= TargetMaterializeConstant(cast
<Constant
>(V
));
130 // Don't cache constant materializations in the general ValueMap.
131 // To do so would require tracking what uses they dominate.
133 LocalValueMap
[V
] = Reg
;
137 unsigned FastISel::lookUpRegForValue(Value
*V
) {
138 // Look up the value to see if we already have a register for it. We
139 // cache values defined by Instructions across blocks, and other values
140 // only locally. This is because Instructions already have the SSA
141 // def-dominatess-use requirement enforced.
142 if (ValueMap
.count(V
))
144 return LocalValueMap
[V
];
147 /// UpdateValueMap - Update the value map to include the new mapping for this
148 /// instruction, or insert an extra copy to get the result in a previous
149 /// determined register.
150 /// NOTE: This is only necessary because we might select a block that uses
151 /// a value before we select the block that defines the value. It might be
152 /// possible to fix this by selecting blocks in reverse postorder.
153 unsigned FastISel::UpdateValueMap(Value
* I
, unsigned Reg
) {
154 if (!isa
<Instruction
>(I
)) {
155 LocalValueMap
[I
] = Reg
;
159 unsigned &AssignedReg
= ValueMap
[I
];
160 if (AssignedReg
== 0)
162 else if (Reg
!= AssignedReg
) {
163 const TargetRegisterClass
*RegClass
= MRI
.getRegClass(Reg
);
164 TII
.copyRegToReg(*MBB
, MBB
->end(), AssignedReg
,
165 Reg
, RegClass
, RegClass
);
170 unsigned FastISel::getRegForGEPIndex(Value
*Idx
) {
171 unsigned IdxN
= getRegForValue(Idx
);
173 // Unhandled operand. Halt "fast" selection and bail.
176 // If the index is smaller or larger than intptr_t, truncate or extend it.
177 MVT PtrVT
= TLI
.getPointerTy();
178 MVT IdxVT
= MVT::getMVT(Idx
->getType(), /*HandleUnknown=*/false);
179 if (IdxVT
.bitsLT(PtrVT
))
180 IdxN
= FastEmit_r(IdxVT
.getSimpleVT(), PtrVT
.getSimpleVT(),
181 ISD::SIGN_EXTEND
, IdxN
);
182 else if (IdxVT
.bitsGT(PtrVT
))
183 IdxN
= FastEmit_r(IdxVT
.getSimpleVT(), PtrVT
.getSimpleVT(),
184 ISD::TRUNCATE
, IdxN
);
188 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
189 /// which has an opcode which directly corresponds to the given ISD opcode.
191 bool FastISel::SelectBinaryOp(User
*I
, ISD::NodeType ISDOpcode
) {
192 MVT VT
= MVT::getMVT(I
->getType(), /*HandleUnknown=*/true);
193 if (VT
== MVT::Other
|| !VT
.isSimple())
194 // Unhandled type. Halt "fast" selection and bail.
197 // We only handle legal types. For example, on x86-32 the instruction
198 // selector contains all of the 64-bit instructions from x86-64,
199 // under the assumption that i64 won't be used if the target doesn't
201 if (!TLI
.isTypeLegal(VT
)) {
202 // MVT::i1 is special. Allow AND, OR, or XOR because they
203 // don't require additional zeroing, which makes them easy.
205 (ISDOpcode
== ISD::AND
|| ISDOpcode
== ISD::OR
||
206 ISDOpcode
== ISD::XOR
))
207 VT
= TLI
.getTypeToTransformTo(VT
);
212 unsigned Op0
= getRegForValue(I
->getOperand(0));
214 // Unhandled operand. Halt "fast" selection and bail.
217 // Check if the second operand is a constant and handle it appropriately.
218 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
219 unsigned ResultReg
= FastEmit_ri(VT
.getSimpleVT(), VT
.getSimpleVT(),
220 ISDOpcode
, Op0
, CI
->getZExtValue());
221 if (ResultReg
!= 0) {
222 // We successfully emitted code for the given LLVM Instruction.
223 UpdateValueMap(I
, ResultReg
);
228 // Check if the second operand is a constant float.
229 if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(I
->getOperand(1))) {
230 unsigned ResultReg
= FastEmit_rf(VT
.getSimpleVT(), VT
.getSimpleVT(),
232 if (ResultReg
!= 0) {
233 // We successfully emitted code for the given LLVM Instruction.
234 UpdateValueMap(I
, ResultReg
);
239 unsigned Op1
= getRegForValue(I
->getOperand(1));
241 // Unhandled operand. Halt "fast" selection and bail.
244 // Now we have both operands in registers. Emit the instruction.
245 unsigned ResultReg
= FastEmit_rr(VT
.getSimpleVT(), VT
.getSimpleVT(),
246 ISDOpcode
, Op0
, Op1
);
248 // Target-specific code wasn't able to find a machine opcode for
249 // the given ISD opcode and type. Halt "fast" selection and bail.
252 // We successfully emitted code for the given LLVM Instruction.
253 UpdateValueMap(I
, ResultReg
);
257 bool FastISel::SelectGetElementPtr(User
*I
) {
258 unsigned N
= getRegForValue(I
->getOperand(0));
260 // Unhandled operand. Halt "fast" selection and bail.
263 const Type
*Ty
= I
->getOperand(0)->getType();
264 MVT::SimpleValueType VT
= TLI
.getPointerTy().getSimpleVT();
265 for (GetElementPtrInst::op_iterator OI
= I
->op_begin()+1, E
= I
->op_end();
268 if (const StructType
*StTy
= dyn_cast
<StructType
>(Ty
)) {
269 unsigned Field
= cast
<ConstantInt
>(Idx
)->getZExtValue();
272 uint64_t Offs
= TD
.getStructLayout(StTy
)->getElementOffset(Field
);
273 // FIXME: This can be optimized by combining the add with a
275 N
= FastEmit_ri_(VT
, ISD::ADD
, N
, Offs
, VT
);
277 // Unhandled operand. Halt "fast" selection and bail.
280 Ty
= StTy
->getElementType(Field
);
282 Ty
= cast
<SequentialType
>(Ty
)->getElementType();
284 // If this is a constant subscript, handle it quickly.
285 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx
)) {
286 if (CI
->getZExtValue() == 0) continue;
288 TD
.getTypeAllocSize(Ty
)*cast
<ConstantInt
>(CI
)->getSExtValue();
289 N
= FastEmit_ri_(VT
, ISD::ADD
, N
, Offs
, VT
);
291 // Unhandled operand. Halt "fast" selection and bail.
296 // N = N + Idx * ElementSize;
297 uint64_t ElementSize
= TD
.getTypeAllocSize(Ty
);
298 unsigned IdxN
= getRegForGEPIndex(Idx
);
300 // Unhandled operand. Halt "fast" selection and bail.
303 if (ElementSize
!= 1) {
304 IdxN
= FastEmit_ri_(VT
, ISD::MUL
, IdxN
, ElementSize
, VT
);
306 // Unhandled operand. Halt "fast" selection and bail.
309 N
= FastEmit_rr(VT
, VT
, ISD::ADD
, N
, IdxN
);
311 // Unhandled operand. Halt "fast" selection and bail.
316 // We successfully emitted code for the given LLVM Instruction.
317 UpdateValueMap(I
, N
);
321 bool FastISel::SelectCall(User
*I
) {
322 Function
*F
= cast
<CallInst
>(I
)->getCalledFunction();
323 if (!F
) return false;
325 unsigned IID
= F
->getIntrinsicID();
328 case Intrinsic::dbg_stoppoint
: {
329 DbgStopPointInst
*SPI
= cast
<DbgStopPointInst
>(I
);
330 if (isValidDebugInfoIntrinsic(*SPI
, CodeGenOpt::None
))
331 setCurDebugLoc(ExtractDebugLocation(*SPI
, MF
.getDebugLocInfo()));
334 case Intrinsic::dbg_region_start
: {
335 DbgRegionStartInst
*RSI
= cast
<DbgRegionStartInst
>(I
);
336 if (isValidDebugInfoIntrinsic(*RSI
, CodeGenOpt::None
) && DW
337 && DW
->ShouldEmitDwarfDebug()) {
339 DW
->RecordRegionStart(cast
<GlobalVariable
>(RSI
->getContext()));
340 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
341 BuildMI(MBB
, DL
, II
).addImm(ID
);
345 case Intrinsic::dbg_region_end
: {
346 DbgRegionEndInst
*REI
= cast
<DbgRegionEndInst
>(I
);
347 if (isValidDebugInfoIntrinsic(*REI
, CodeGenOpt::None
) && DW
348 && DW
->ShouldEmitDwarfDebug()) {
350 DISubprogram
Subprogram(cast
<GlobalVariable
>(REI
->getContext()));
351 if (isInlinedFnEnd(*REI
, MF
.getFunction())) {
352 // This is end of an inlined function.
353 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
354 ID
= DW
->RecordInlinedFnEnd(Subprogram
);
356 // Returned ID is 0 if this is unbalanced "end of inlined
357 // scope". This could happen if optimizer eats dbg intrinsics
358 // or "beginning of inlined scope" is not recoginized due to
359 // missing location info. In such cases, ignore this region.end.
360 BuildMI(MBB
, DL
, II
).addImm(ID
);
362 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
363 ID
= DW
->RecordRegionEnd(cast
<GlobalVariable
>(REI
->getContext()));
364 BuildMI(MBB
, DL
, II
).addImm(ID
);
369 case Intrinsic::dbg_func_start
: {
370 DbgFuncStartInst
*FSI
= cast
<DbgFuncStartInst
>(I
);
371 if (!isValidDebugInfoIntrinsic(*FSI
, CodeGenOpt::None
) || !DW
372 || !DW
->ShouldEmitDwarfDebug())
375 if (isInlinedFnStart(*FSI
, MF
.getFunction())) {
376 // This is a beginning of an inlined function.
378 // If llvm.dbg.func.start is seen in a new block before any
379 // llvm.dbg.stoppoint intrinsic then the location info is unknown.
380 // FIXME : Why DebugLoc is reset at the beginning of each block ?
381 DebugLoc PrevLoc
= DL
;
382 if (PrevLoc
.isUnknown())
384 // Record the source line.
385 setCurDebugLoc(ExtractDebugLocation(*FSI
, MF
.getDebugLocInfo()));
387 DebugLocTuple PrevLocTpl
= MF
.getDebugLocTuple(PrevLoc
);
388 DISubprogram
SP(cast
<GlobalVariable
>(FSI
->getSubprogram()));
389 unsigned LabelID
= DW
->RecordInlinedFnStart(SP
,
390 DICompileUnit(PrevLocTpl
.CompileUnit
),
393 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
394 BuildMI(MBB
, DL
, II
).addImm(LabelID
);
398 // This is a beginning of a new function.
399 MF
.setDefaultDebugLoc(ExtractDebugLocation(*FSI
, MF
.getDebugLocInfo()));
401 // llvm.dbg.func_start also defines beginning of function scope.
402 DW
->RecordRegionStart(cast
<GlobalVariable
>(FSI
->getSubprogram()));
405 case Intrinsic::dbg_declare
: {
406 DbgDeclareInst
*DI
= cast
<DbgDeclareInst
>(I
);
407 if (!isValidDebugInfoIntrinsic(*DI
, CodeGenOpt::None
) || !DW
408 || !DW
->ShouldEmitDwarfDebug())
411 Value
*Variable
= DI
->getVariable();
412 Value
*Address
= DI
->getAddress();
413 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Address
))
414 Address
= BCI
->getOperand(0);
415 AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Address
);
416 // Don't handle byval struct arguments or VLAs, for example.
418 DenseMap
<const AllocaInst
*, int>::iterator SI
=
419 StaticAllocaMap
.find(AI
);
420 if (SI
== StaticAllocaMap
.end()) break; // VLAs.
423 // Determine the debug globalvariable.
424 GlobalValue
*GV
= cast
<GlobalVariable
>(Variable
);
426 // Build the DECLARE instruction.
427 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DECLARE
);
428 MachineInstr
*DeclareMI
429 = BuildMI(MBB
, DL
, II
).addFrameIndex(FI
).addGlobalAddress(GV
);
430 DIVariable
DV(cast
<GlobalVariable
>(GV
));
431 DW
->RecordVariableScope(DV
, DeclareMI
);
434 case Intrinsic::eh_exception
: {
435 MVT VT
= TLI
.getValueType(I
->getType());
436 switch (TLI
.getOperationAction(ISD::EXCEPTIONADDR
, VT
)) {
438 case TargetLowering::Expand
: {
439 assert(MBB
->isLandingPad() && "Call to eh.exception not in landing pad!");
440 unsigned Reg
= TLI
.getExceptionAddressRegister();
441 const TargetRegisterClass
*RC
= TLI
.getRegClassFor(VT
);
442 unsigned ResultReg
= createResultReg(RC
);
443 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
445 assert(InsertedCopy
&& "Can't copy address registers!");
446 InsertedCopy
= InsertedCopy
;
447 UpdateValueMap(I
, ResultReg
);
453 case Intrinsic::eh_selector_i32
:
454 case Intrinsic::eh_selector_i64
: {
455 MVT VT
= TLI
.getValueType(I
->getType());
456 switch (TLI
.getOperationAction(ISD::EHSELECTION
, VT
)) {
458 case TargetLowering::Expand
: {
459 MVT VT
= (IID
== Intrinsic::eh_selector_i32
?
460 MVT::i32
: MVT::i64
);
463 if (MBB
->isLandingPad())
464 AddCatchInfo(*cast
<CallInst
>(I
), MMI
, MBB
);
467 CatchInfoLost
.insert(cast
<CallInst
>(I
));
469 // FIXME: Mark exception selector register as live in. Hack for PR1508.
470 unsigned Reg
= TLI
.getExceptionSelectorRegister();
471 if (Reg
) MBB
->addLiveIn(Reg
);
474 unsigned Reg
= TLI
.getExceptionSelectorRegister();
475 const TargetRegisterClass
*RC
= TLI
.getRegClassFor(VT
);
476 unsigned ResultReg
= createResultReg(RC
);
477 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
479 assert(InsertedCopy
&& "Can't copy address registers!");
480 InsertedCopy
= InsertedCopy
;
481 UpdateValueMap(I
, ResultReg
);
484 getRegForValue(Constant::getNullValue(I
->getType()));
485 UpdateValueMap(I
, ResultReg
);
496 bool FastISel::SelectCast(User
*I
, ISD::NodeType Opcode
) {
497 MVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
498 MVT DstVT
= TLI
.getValueType(I
->getType());
500 if (SrcVT
== MVT::Other
|| !SrcVT
.isSimple() ||
501 DstVT
== MVT::Other
|| !DstVT
.isSimple())
502 // Unhandled type. Halt "fast" selection and bail.
505 // Check if the destination type is legal. Or as a special case,
506 // it may be i1 if we're doing a truncate because that's
507 // easy and somewhat common.
508 if (!TLI
.isTypeLegal(DstVT
))
509 if (DstVT
!= MVT::i1
|| Opcode
!= ISD::TRUNCATE
)
510 // Unhandled type. Halt "fast" selection and bail.
513 // Check if the source operand is legal. Or as a special case,
514 // it may be i1 if we're doing zero-extension because that's
515 // easy and somewhat common.
516 if (!TLI
.isTypeLegal(SrcVT
))
517 if (SrcVT
!= MVT::i1
|| Opcode
!= ISD::ZERO_EXTEND
)
518 // Unhandled type. Halt "fast" selection and bail.
521 unsigned InputReg
= getRegForValue(I
->getOperand(0));
523 // Unhandled operand. Halt "fast" selection and bail.
526 // If the operand is i1, arrange for the high bits in the register to be zero.
527 if (SrcVT
== MVT::i1
) {
528 SrcVT
= TLI
.getTypeToTransformTo(SrcVT
);
529 InputReg
= FastEmitZExtFromI1(SrcVT
.getSimpleVT(), InputReg
);
533 // If the result is i1, truncate to the target's type for i1 first.
534 if (DstVT
== MVT::i1
)
535 DstVT
= TLI
.getTypeToTransformTo(DstVT
);
537 unsigned ResultReg
= FastEmit_r(SrcVT
.getSimpleVT(),
544 UpdateValueMap(I
, ResultReg
);
548 bool FastISel::SelectBitCast(User
*I
) {
549 // If the bitcast doesn't change the type, just use the operand value.
550 if (I
->getType() == I
->getOperand(0)->getType()) {
551 unsigned Reg
= getRegForValue(I
->getOperand(0));
554 UpdateValueMap(I
, Reg
);
558 // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
559 MVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
560 MVT DstVT
= TLI
.getValueType(I
->getType());
562 if (SrcVT
== MVT::Other
|| !SrcVT
.isSimple() ||
563 DstVT
== MVT::Other
|| !DstVT
.isSimple() ||
564 !TLI
.isTypeLegal(SrcVT
) || !TLI
.isTypeLegal(DstVT
))
565 // Unhandled type. Halt "fast" selection and bail.
568 unsigned Op0
= getRegForValue(I
->getOperand(0));
570 // Unhandled operand. Halt "fast" selection and bail.
573 // First, try to perform the bitcast by inserting a reg-reg copy.
574 unsigned ResultReg
= 0;
575 if (SrcVT
.getSimpleVT() == DstVT
.getSimpleVT()) {
576 TargetRegisterClass
* SrcClass
= TLI
.getRegClassFor(SrcVT
);
577 TargetRegisterClass
* DstClass
= TLI
.getRegClassFor(DstVT
);
578 ResultReg
= createResultReg(DstClass
);
580 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
581 Op0
, DstClass
, SrcClass
);
586 // If the reg-reg copy failed, select a BIT_CONVERT opcode.
588 ResultReg
= FastEmit_r(SrcVT
.getSimpleVT(), DstVT
.getSimpleVT(),
589 ISD::BIT_CONVERT
, Op0
);
594 UpdateValueMap(I
, ResultReg
);
599 FastISel::SelectInstruction(Instruction
*I
) {
600 return SelectOperator(I
, I
->getOpcode());
603 /// FastEmitBranch - Emit an unconditional branch to the given block,
604 /// unless it is the immediate (fall-through) successor, and update
607 FastISel::FastEmitBranch(MachineBasicBlock
*MSucc
) {
608 MachineFunction::iterator NextMBB
=
609 next(MachineFunction::iterator(MBB
));
611 if (MBB
->isLayoutSuccessor(MSucc
)) {
612 // The unconditional fall-through case, which needs no instructions.
614 // The unconditional branch case.
615 TII
.InsertBranch(*MBB
, MSucc
, NULL
, SmallVector
<MachineOperand
, 0>());
617 MBB
->addSuccessor(MSucc
);
621 FastISel::SelectOperator(User
*I
, unsigned Opcode
) {
623 case Instruction::Add
:
624 return SelectBinaryOp(I
, ISD::ADD
);
625 case Instruction::FAdd
:
626 return SelectBinaryOp(I
, ISD::FADD
);
627 case Instruction::Sub
:
628 return SelectBinaryOp(I
, ISD::SUB
);
629 case Instruction::FSub
:
630 return SelectBinaryOp(I
, ISD::FSUB
);
631 case Instruction::Mul
:
632 return SelectBinaryOp(I
, ISD::MUL
);
633 case Instruction::FMul
:
634 return SelectBinaryOp(I
, ISD::FMUL
);
635 case Instruction::SDiv
:
636 return SelectBinaryOp(I
, ISD::SDIV
);
637 case Instruction::UDiv
:
638 return SelectBinaryOp(I
, ISD::UDIV
);
639 case Instruction::FDiv
:
640 return SelectBinaryOp(I
, ISD::FDIV
);
641 case Instruction::SRem
:
642 return SelectBinaryOp(I
, ISD::SREM
);
643 case Instruction::URem
:
644 return SelectBinaryOp(I
, ISD::UREM
);
645 case Instruction::FRem
:
646 return SelectBinaryOp(I
, ISD::FREM
);
647 case Instruction::Shl
:
648 return SelectBinaryOp(I
, ISD::SHL
);
649 case Instruction::LShr
:
650 return SelectBinaryOp(I
, ISD::SRL
);
651 case Instruction::AShr
:
652 return SelectBinaryOp(I
, ISD::SRA
);
653 case Instruction::And
:
654 return SelectBinaryOp(I
, ISD::AND
);
655 case Instruction::Or
:
656 return SelectBinaryOp(I
, ISD::OR
);
657 case Instruction::Xor
:
658 return SelectBinaryOp(I
, ISD::XOR
);
660 case Instruction::GetElementPtr
:
661 return SelectGetElementPtr(I
);
663 case Instruction::Br
: {
664 BranchInst
*BI
= cast
<BranchInst
>(I
);
666 if (BI
->isUnconditional()) {
667 BasicBlock
*LLVMSucc
= BI
->getSuccessor(0);
668 MachineBasicBlock
*MSucc
= MBBMap
[LLVMSucc
];
669 FastEmitBranch(MSucc
);
673 // Conditional branches are not handed yet.
674 // Halt "fast" selection and bail.
678 case Instruction::Unreachable
:
682 case Instruction::PHI
:
683 // PHI nodes are already emitted.
686 case Instruction::Alloca
:
687 // FunctionLowering has the static-sized case covered.
688 if (StaticAllocaMap
.count(cast
<AllocaInst
>(I
)))
691 // Dynamic-sized alloca is not handled yet.
694 case Instruction::Call
:
695 return SelectCall(I
);
697 case Instruction::BitCast
:
698 return SelectBitCast(I
);
700 case Instruction::FPToSI
:
701 return SelectCast(I
, ISD::FP_TO_SINT
);
702 case Instruction::ZExt
:
703 return SelectCast(I
, ISD::ZERO_EXTEND
);
704 case Instruction::SExt
:
705 return SelectCast(I
, ISD::SIGN_EXTEND
);
706 case Instruction::Trunc
:
707 return SelectCast(I
, ISD::TRUNCATE
);
708 case Instruction::SIToFP
:
709 return SelectCast(I
, ISD::SINT_TO_FP
);
711 case Instruction::IntToPtr
: // Deliberate fall-through.
712 case Instruction::PtrToInt
: {
713 MVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
714 MVT DstVT
= TLI
.getValueType(I
->getType());
715 if (DstVT
.bitsGT(SrcVT
))
716 return SelectCast(I
, ISD::ZERO_EXTEND
);
717 if (DstVT
.bitsLT(SrcVT
))
718 return SelectCast(I
, ISD::TRUNCATE
);
719 unsigned Reg
= getRegForValue(I
->getOperand(0));
720 if (Reg
== 0) return false;
721 UpdateValueMap(I
, Reg
);
726 // Unhandled instruction. Halt "fast" selection and bail.
731 FastISel::FastISel(MachineFunction
&mf
,
732 MachineModuleInfo
*mmi
,
734 DenseMap
<const Value
*, unsigned> &vm
,
735 DenseMap
<const BasicBlock
*, MachineBasicBlock
*> &bm
,
736 DenseMap
<const AllocaInst
*, int> &am
738 , SmallSet
<Instruction
*, 8> &cil
751 MRI(MF
.getRegInfo()),
752 MFI(*MF
.getFrameInfo()),
753 MCP(*MF
.getConstantPool()),
755 TD(*TM
.getTargetData()),
756 TII(*TM
.getInstrInfo()),
757 TLI(*TM
.getTargetLowering()) {
760 FastISel::~FastISel() {}
762 unsigned FastISel::FastEmit_(MVT::SimpleValueType
, MVT::SimpleValueType
,
767 unsigned FastISel::FastEmit_r(MVT::SimpleValueType
, MVT::SimpleValueType
,
768 ISD::NodeType
, unsigned /*Op0*/) {
772 unsigned FastISel::FastEmit_rr(MVT::SimpleValueType
, MVT::SimpleValueType
,
773 ISD::NodeType
, unsigned /*Op0*/,
778 unsigned FastISel::FastEmit_i(MVT::SimpleValueType
, MVT::SimpleValueType
,
779 ISD::NodeType
, uint64_t /*Imm*/) {
783 unsigned FastISel::FastEmit_f(MVT::SimpleValueType
, MVT::SimpleValueType
,
784 ISD::NodeType
, ConstantFP
* /*FPImm*/) {
788 unsigned FastISel::FastEmit_ri(MVT::SimpleValueType
, MVT::SimpleValueType
,
789 ISD::NodeType
, unsigned /*Op0*/,
794 unsigned FastISel::FastEmit_rf(MVT::SimpleValueType
, MVT::SimpleValueType
,
795 ISD::NodeType
, unsigned /*Op0*/,
796 ConstantFP
* /*FPImm*/) {
800 unsigned FastISel::FastEmit_rri(MVT::SimpleValueType
, MVT::SimpleValueType
,
802 unsigned /*Op0*/, unsigned /*Op1*/,
807 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
808 /// to emit an instruction with an immediate operand using FastEmit_ri.
809 /// If that fails, it materializes the immediate into a register and try
810 /// FastEmit_rr instead.
811 unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT
, ISD::NodeType Opcode
,
812 unsigned Op0
, uint64_t Imm
,
813 MVT::SimpleValueType ImmType
) {
814 // First check if immediate type is legal. If not, we can't use the ri form.
815 unsigned ResultReg
= FastEmit_ri(VT
, VT
, Opcode
, Op0
, Imm
);
818 unsigned MaterialReg
= FastEmit_i(ImmType
, ImmType
, ISD::Constant
, Imm
);
819 if (MaterialReg
== 0)
821 return FastEmit_rr(VT
, VT
, Opcode
, Op0
, MaterialReg
);
824 /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
825 /// to emit an instruction with a floating-point immediate operand using
826 /// FastEmit_rf. If that fails, it materializes the immediate into a register
827 /// and try FastEmit_rr instead.
828 unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT
, ISD::NodeType Opcode
,
829 unsigned Op0
, ConstantFP
*FPImm
,
830 MVT::SimpleValueType ImmType
) {
831 // First check if immediate type is legal. If not, we can't use the rf form.
832 unsigned ResultReg
= FastEmit_rf(VT
, VT
, Opcode
, Op0
, FPImm
);
836 // Materialize the constant in a register.
837 unsigned MaterialReg
= FastEmit_f(ImmType
, ImmType
, ISD::ConstantFP
, FPImm
);
838 if (MaterialReg
== 0) {
839 // If the target doesn't have a way to directly enter a floating-point
840 // value into a register, use an alternate approach.
841 // TODO: The current approach only supports floating-point constants
842 // that can be constructed by conversion from integer values. This should
843 // be replaced by code that creates a load from a constant-pool entry,
844 // which will require some target-specific work.
845 const APFloat
&Flt
= FPImm
->getValueAPF();
846 MVT IntVT
= TLI
.getPointerTy();
849 uint32_t IntBitWidth
= IntVT
.getSizeInBits();
851 (void) Flt
.convertToInteger(x
, IntBitWidth
, /*isSigned=*/true,
852 APFloat::rmTowardZero
, &isExact
);
855 APInt
IntVal(IntBitWidth
, 2, x
);
857 unsigned IntegerReg
= FastEmit_i(IntVT
.getSimpleVT(), IntVT
.getSimpleVT(),
858 ISD::Constant
, IntVal
.getZExtValue());
861 MaterialReg
= FastEmit_r(IntVT
.getSimpleVT(), VT
,
862 ISD::SINT_TO_FP
, IntegerReg
);
863 if (MaterialReg
== 0)
866 return FastEmit_rr(VT
, VT
, Opcode
, Op0
, MaterialReg
);
869 unsigned FastISel::createResultReg(const TargetRegisterClass
* RC
) {
870 return MRI
.createVirtualRegister(RC
);
873 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode
,
874 const TargetRegisterClass
* RC
) {
875 unsigned ResultReg
= createResultReg(RC
);
876 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
878 BuildMI(MBB
, DL
, II
, ResultReg
);
882 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode
,
883 const TargetRegisterClass
*RC
,
885 unsigned ResultReg
= createResultReg(RC
);
886 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
888 if (II
.getNumDefs() >= 1)
889 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
);
891 BuildMI(MBB
, DL
, II
).addReg(Op0
);
892 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
893 II
.ImplicitDefs
[0], RC
, RC
);
901 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode
,
902 const TargetRegisterClass
*RC
,
903 unsigned Op0
, unsigned Op1
) {
904 unsigned ResultReg
= createResultReg(RC
);
905 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
907 if (II
.getNumDefs() >= 1)
908 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addReg(Op1
);
910 BuildMI(MBB
, DL
, II
).addReg(Op0
).addReg(Op1
);
911 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
912 II
.ImplicitDefs
[0], RC
, RC
);
919 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode
,
920 const TargetRegisterClass
*RC
,
921 unsigned Op0
, uint64_t Imm
) {
922 unsigned ResultReg
= createResultReg(RC
);
923 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
925 if (II
.getNumDefs() >= 1)
926 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addImm(Imm
);
928 BuildMI(MBB
, DL
, II
).addReg(Op0
).addImm(Imm
);
929 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
930 II
.ImplicitDefs
[0], RC
, RC
);
937 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode
,
938 const TargetRegisterClass
*RC
,
939 unsigned Op0
, ConstantFP
*FPImm
) {
940 unsigned ResultReg
= createResultReg(RC
);
941 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
943 if (II
.getNumDefs() >= 1)
944 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addFPImm(FPImm
);
946 BuildMI(MBB
, DL
, II
).addReg(Op0
).addFPImm(FPImm
);
947 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
948 II
.ImplicitDefs
[0], RC
, RC
);
955 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode
,
956 const TargetRegisterClass
*RC
,
957 unsigned Op0
, unsigned Op1
, uint64_t Imm
) {
958 unsigned ResultReg
= createResultReg(RC
);
959 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
961 if (II
.getNumDefs() >= 1)
962 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addReg(Op1
).addImm(Imm
);
964 BuildMI(MBB
, DL
, II
).addReg(Op0
).addReg(Op1
).addImm(Imm
);
965 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
966 II
.ImplicitDefs
[0], RC
, RC
);
973 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode
,
974 const TargetRegisterClass
*RC
,
976 unsigned ResultReg
= createResultReg(RC
);
977 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
979 if (II
.getNumDefs() >= 1)
980 BuildMI(MBB
, DL
, II
, ResultReg
).addImm(Imm
);
982 BuildMI(MBB
, DL
, II
).addImm(Imm
);
983 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
984 II
.ImplicitDefs
[0], RC
, RC
);
991 unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT
,
992 unsigned Op0
, uint32_t Idx
) {
993 const TargetRegisterClass
* RC
= MRI
.getRegClass(Op0
);
995 unsigned ResultReg
= createResultReg(TLI
.getRegClassFor(RetVT
));
996 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::EXTRACT_SUBREG
);
998 if (II
.getNumDefs() >= 1)
999 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addImm(Idx
);
1001 BuildMI(MBB
, DL
, II
).addReg(Op0
).addImm(Idx
);
1002 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
1003 II
.ImplicitDefs
[0], RC
, RC
);
1010 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1011 /// with all but the least significant bit set to zero.
1012 unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT
, unsigned Op
) {
1013 return FastEmit_ri(VT
, VT
, ISD::AND
, Op
, 1);