1 //===-- ShadowStackGC.cpp - GC support for uncooperative targets ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements lowering for the llvm.gc* intrinsics for targets that do
11 // not natively support them (which includes the C backend). Note that the code
12 // generated is not quite as efficient as algorithms which generate stack maps
15 // This pass implements the code transformation described in this paper:
16 // "Accurate Garbage Collection in an Uncooperative Environment"
17 // Fergus Henderson, ISMM, 2002
19 // In runtime/GC/SemiSpace.cpp is a prototype runtime which is compatible with
22 // In order to support this particular transformation, all stack roots are
23 // coallocated in the stack. This allows a fully target-independent stack map
24 // while introducing only minor runtime overhead.
26 //===----------------------------------------------------------------------===//
28 #define DEBUG_TYPE "shadowstackgc"
29 #include "llvm/CodeGen/GCs.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/IntrinsicInst.h"
33 #include "llvm/Module.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/IRBuilder.h"
41 class VISIBILITY_HIDDEN ShadowStackGC
: public GCStrategy
{
42 /// RootChain - This is the global linked-list that contains the chain of GC
46 /// StackEntryTy - Abstract type of a link in the shadow stack.
48 const StructType
*StackEntryTy
;
50 /// Roots - GC roots in the current function. Each is a pair of the
51 /// intrinsic call and its corresponding alloca.
52 std::vector
<std::pair
<CallInst
*,AllocaInst
*> > Roots
;
57 bool initializeCustomLowering(Module
&M
);
58 bool performCustomLowering(Function
&F
);
61 bool IsNullValue(Value
*V
);
62 Constant
*GetFrameMap(Function
&F
);
63 const Type
* GetConcreteStackEntryType(Function
&F
);
64 void CollectRoots(Function
&F
);
65 static GetElementPtrInst
*CreateGEP(LLVMContext
&Context
,
66 IRBuilder
<> &B
, Value
*BasePtr
,
67 int Idx1
, const char *Name
);
68 static GetElementPtrInst
*CreateGEP(LLVMContext
&Context
,
69 IRBuilder
<> &B
, Value
*BasePtr
,
70 int Idx1
, int Idx2
, const char *Name
);
75 static GCRegistry::Add
<ShadowStackGC
>
76 X("shadow-stack", "Very portable GC for uncooperative code generators");
79 /// EscapeEnumerator - This is a little algorithm to find all escape points
80 /// from a function so that "finally"-style code can be inserted. In addition
81 /// to finding the existing return and unwind instructions, it also (if
82 /// necessary) transforms any call instructions into invokes and sends them to
85 /// It's wrapped up in a state machine using the same transform C# uses for
86 /// 'yield return' enumerators, This transform allows it to be non-allocating.
87 class VISIBILITY_HIDDEN EscapeEnumerator
{
89 const char *CleanupBBName
;
93 Function::iterator StateBB
, StateE
;
97 EscapeEnumerator(Function
&F
, const char *N
= "cleanup")
98 : F(F
), CleanupBBName(N
), State(0), Builder(F
.getContext()) {}
100 IRBuilder
<> *Next() {
111 // Find all 'return' and 'unwind' instructions.
112 while (StateBB
!= StateE
) {
113 BasicBlock
*CurBB
= StateBB
++;
115 // Branches and invokes do not escape, only unwind and return do.
116 TerminatorInst
*TI
= CurBB
->getTerminator();
117 if (!isa
<UnwindInst
>(TI
) && !isa
<ReturnInst
>(TI
))
120 Builder
.SetInsertPoint(TI
->getParent(), TI
);
126 // Find all 'call' instructions.
127 SmallVector
<Instruction
*,16> Calls
;
128 for (Function::iterator BB
= F
.begin(),
129 E
= F
.end(); BB
!= E
; ++BB
)
130 for (BasicBlock::iterator II
= BB
->begin(),
131 EE
= BB
->end(); II
!= EE
; ++II
)
132 if (CallInst
*CI
= dyn_cast
<CallInst
>(II
))
133 if (!CI
->getCalledFunction() ||
134 !CI
->getCalledFunction()->getIntrinsicID())
140 // Create a cleanup block.
141 BasicBlock
*CleanupBB
= BasicBlock::Create(CleanupBBName
, &F
);
142 UnwindInst
*UI
= new UnwindInst(CleanupBB
);
144 // Transform the 'call' instructions into 'invoke's branching to the
145 // cleanup block. Go in reverse order to make prettier BB names.
146 SmallVector
<Value
*,16> Args
;
147 for (unsigned I
= Calls
.size(); I
!= 0; ) {
148 CallInst
*CI
= cast
<CallInst
>(Calls
[--I
]);
150 // Split the basic block containing the function call.
151 BasicBlock
*CallBB
= CI
->getParent();
153 CallBB
->splitBasicBlock(CI
, CallBB
->getName() + ".cont");
155 // Remove the unconditional branch inserted at the end of CallBB.
156 CallBB
->getInstList().pop_back();
157 NewBB
->getInstList().remove(CI
);
159 // Create a new invoke instruction.
161 Args
.append(CI
->op_begin() + 1, CI
->op_end());
163 InvokeInst
*II
= InvokeInst::Create(CI
->getOperand(0),
165 Args
.begin(), Args
.end(),
166 CI
->getName(), CallBB
);
167 II
->setCallingConv(CI
->getCallingConv());
168 II
->setAttributes(CI
->getAttributes());
169 CI
->replaceAllUsesWith(II
);
173 Builder
.SetInsertPoint(UI
->getParent(), UI
);
180 // -----------------------------------------------------------------------------
182 void llvm::linkShadowStackGC() { }
184 ShadowStackGC::ShadowStackGC() : Head(0), StackEntryTy(0) {
189 Constant
*ShadowStackGC::GetFrameMap(Function
&F
) {
190 // doInitialization creates the abstract type of this value.
191 Type
*VoidPtr
= PointerType::getUnqual(Type::Int8Ty
);
193 // Truncate the ShadowStackDescriptor if some metadata is null.
194 unsigned NumMeta
= 0;
195 SmallVector
<Constant
*,16> Metadata
;
196 for (unsigned I
= 0; I
!= Roots
.size(); ++I
) {
197 Constant
*C
= cast
<Constant
>(Roots
[I
].first
->getOperand(2));
198 if (!C
->isNullValue())
200 Metadata
.push_back(ConstantExpr::getBitCast(C
, VoidPtr
));
203 Constant
*BaseElts
[] = {
204 ConstantInt::get(Type::Int32Ty
, Roots
.size(), false),
205 ConstantInt::get(Type::Int32Ty
, NumMeta
, false),
208 Constant
*DescriptorElts
[] = {
209 ConstantStruct::get(F
.getContext(), BaseElts
, 2),
210 ConstantArray::get(ArrayType::get(VoidPtr
, NumMeta
),
211 Metadata
.begin(), NumMeta
)
214 Constant
*FrameMap
= ConstantStruct::get(F
.getContext(), DescriptorElts
, 2);
216 std::string
TypeName("gc_map.");
217 TypeName
+= utostr(NumMeta
);
218 F
.getParent()->addTypeName(TypeName
, FrameMap
->getType());
220 // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
221 // that, short of multithreaded LLVM, it should be safe; all that is
222 // necessary is that a simple Module::iterator loop not be invalidated.
223 // Appending to the GlobalVariable list is safe in that sense.
225 // All of the output passes emit globals last. The ExecutionEngine
226 // explicitly supports adding globals to the module after
229 // Still, if it isn't deemed acceptable, then this transformation needs
230 // to be a ModulePass (which means it cannot be in the 'llc' pipeline
231 // (which uses a FunctionPassManager (which segfaults (not asserts) if
232 // provided a ModulePass))).
233 Constant
*GV
= new GlobalVariable(*F
.getParent(), FrameMap
->getType(), true,
234 GlobalVariable::InternalLinkage
,
235 FrameMap
, "__gc_" + F
.getName());
237 Constant
*GEPIndices
[2] = { ConstantInt::get(Type::Int32Ty
, 0),
238 ConstantInt::get(Type::Int32Ty
, 0) };
239 return ConstantExpr::getGetElementPtr(GV
, GEPIndices
, 2);
242 const Type
* ShadowStackGC::GetConcreteStackEntryType(Function
&F
) {
243 // doInitialization creates the generic version of this type.
244 std::vector
<const Type
*> EltTys
;
245 EltTys
.push_back(StackEntryTy
);
246 for (size_t I
= 0; I
!= Roots
.size(); I
++)
247 EltTys
.push_back(Roots
[I
].second
->getAllocatedType());
248 Type
*Ty
= StructType::get(F
.getContext(), EltTys
);
250 std::string
TypeName("gc_stackentry.");
251 TypeName
+= F
.getName();
252 F
.getParent()->addTypeName(TypeName
, Ty
);
257 /// doInitialization - If this module uses the GC intrinsics, find them now. If
259 bool ShadowStackGC::initializeCustomLowering(Module
&M
) {
261 // int32_t NumRoots; // Number of roots in stack frame.
262 // int32_t NumMeta; // Number of metadata descriptors. May be < NumRoots.
263 // void *Meta[]; // May be absent for roots without metadata.
265 std::vector
<const Type
*> EltTys
;
266 EltTys
.push_back(Type::Int32Ty
); // 32 bits is ok up to a 32GB stack frame. :)
267 EltTys
.push_back(Type::Int32Ty
); // Specifies length of variable length array.
268 StructType
*FrameMapTy
= StructType::get(M
.getContext(), EltTys
);
269 M
.addTypeName("gc_map", FrameMapTy
);
270 PointerType
*FrameMapPtrTy
= PointerType::getUnqual(FrameMapTy
);
272 // struct StackEntry {
273 // ShadowStackEntry *Next; // Caller's stack entry.
274 // FrameMap *Map; // Pointer to constant FrameMap.
275 // void *Roots[]; // Stack roots (in-place array, so we pretend).
277 OpaqueType
*RecursiveTy
= OpaqueType::get();
280 EltTys
.push_back(PointerType::getUnqual(RecursiveTy
));
281 EltTys
.push_back(FrameMapPtrTy
);
282 PATypeHolder LinkTyH
= StructType::get(M
.getContext(), EltTys
);
284 RecursiveTy
->refineAbstractTypeTo(LinkTyH
.get());
285 StackEntryTy
= cast
<StructType
>(LinkTyH
.get());
286 const PointerType
*StackEntryPtrTy
= PointerType::getUnqual(StackEntryTy
);
287 M
.addTypeName("gc_stackentry", LinkTyH
.get()); // FIXME: Is this safe from
290 // Get the root chain if it already exists.
291 Head
= M
.getGlobalVariable("llvm_gc_root_chain");
293 // If the root chain does not exist, insert a new one with linkonce
295 Head
= new GlobalVariable(M
, StackEntryPtrTy
, false,
296 GlobalValue::LinkOnceAnyLinkage
,
297 Constant::getNullValue(StackEntryPtrTy
),
298 "llvm_gc_root_chain");
299 } else if (Head
->hasExternalLinkage() && Head
->isDeclaration()) {
300 Head
->setInitializer(Constant::getNullValue(StackEntryPtrTy
));
301 Head
->setLinkage(GlobalValue::LinkOnceAnyLinkage
);
307 bool ShadowStackGC::IsNullValue(Value
*V
) {
308 if (Constant
*C
= dyn_cast
<Constant
>(V
))
309 return C
->isNullValue();
313 void ShadowStackGC::CollectRoots(Function
&F
) {
314 // FIXME: Account for original alignment. Could fragment the root array.
315 // Approach 1: Null initialize empty slots at runtime. Yuck.
316 // Approach 2: Emit a map of the array instead of just a count.
318 assert(Roots
.empty() && "Not cleaned up?");
320 SmallVector
<std::pair
<CallInst
*,AllocaInst
*>,16> MetaRoots
;
322 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
323 for (BasicBlock::iterator II
= BB
->begin(), E
= BB
->end(); II
!= E
;)
324 if (IntrinsicInst
*CI
= dyn_cast
<IntrinsicInst
>(II
++))
325 if (Function
*F
= CI
->getCalledFunction())
326 if (F
->getIntrinsicID() == Intrinsic::gcroot
) {
327 std::pair
<CallInst
*,AllocaInst
*> Pair
= std::make_pair(
328 CI
, cast
<AllocaInst
>(CI
->getOperand(1)->stripPointerCasts()));
329 if (IsNullValue(CI
->getOperand(2)))
330 Roots
.push_back(Pair
);
332 MetaRoots
.push_back(Pair
);
335 // Number roots with metadata (usually empty) at the beginning, so that the
336 // FrameMap::Meta array can be elided.
337 Roots
.insert(Roots
.begin(), MetaRoots
.begin(), MetaRoots
.end());
341 ShadowStackGC::CreateGEP(LLVMContext
&Context
, IRBuilder
<> &B
, Value
*BasePtr
,
342 int Idx
, int Idx2
, const char *Name
) {
343 Value
*Indices
[] = { ConstantInt::get(Type::Int32Ty
, 0),
344 ConstantInt::get(Type::Int32Ty
, Idx
),
345 ConstantInt::get(Type::Int32Ty
, Idx2
) };
346 Value
* Val
= B
.CreateGEP(BasePtr
, Indices
, Indices
+ 3, Name
);
348 assert(isa
<GetElementPtrInst
>(Val
) && "Unexpected folded constant");
350 return dyn_cast
<GetElementPtrInst
>(Val
);
354 ShadowStackGC::CreateGEP(LLVMContext
&Context
, IRBuilder
<> &B
, Value
*BasePtr
,
355 int Idx
, const char *Name
) {
356 Value
*Indices
[] = { ConstantInt::get(Type::Int32Ty
, 0),
357 ConstantInt::get(Type::Int32Ty
, Idx
) };
358 Value
*Val
= B
.CreateGEP(BasePtr
, Indices
, Indices
+ 2, Name
);
360 assert(isa
<GetElementPtrInst
>(Val
) && "Unexpected folded constant");
362 return dyn_cast
<GetElementPtrInst
>(Val
);
365 /// runOnFunction - Insert code to maintain the shadow stack.
366 bool ShadowStackGC::performCustomLowering(Function
&F
) {
367 LLVMContext
&Context
= F
.getContext();
369 // Find calls to llvm.gcroot.
372 // If there are no roots in this function, then there is no need to add a
373 // stack map entry for it.
377 // Build the constant map and figure the type of the shadow stack entry.
378 Value
*FrameMap
= GetFrameMap(F
);
379 const Type
*ConcreteStackEntryTy
= GetConcreteStackEntryType(F
);
381 // Build the shadow stack entry at the very start of the function.
382 BasicBlock::iterator IP
= F
.getEntryBlock().begin();
383 IRBuilder
<> AtEntry(IP
->getParent(), IP
);
385 Instruction
*StackEntry
= AtEntry
.CreateAlloca(ConcreteStackEntryTy
, 0,
388 while (isa
<AllocaInst
>(IP
)) ++IP
;
389 AtEntry
.SetInsertPoint(IP
->getParent(), IP
);
391 // Initialize the map pointer and load the current head of the shadow stack.
392 Instruction
*CurrentHead
= AtEntry
.CreateLoad(Head
, "gc_currhead");
393 Instruction
*EntryMapPtr
= CreateGEP(Context
, AtEntry
, StackEntry
,
395 AtEntry
.CreateStore(FrameMap
, EntryMapPtr
);
397 // After all the allocas...
398 for (unsigned I
= 0, E
= Roots
.size(); I
!= E
; ++I
) {
399 // For each root, find the corresponding slot in the aggregate...
400 Value
*SlotPtr
= CreateGEP(Context
, AtEntry
, StackEntry
, 1 + I
, "gc_root");
402 // And use it in lieu of the alloca.
403 AllocaInst
*OriginalAlloca
= Roots
[I
].second
;
404 SlotPtr
->takeName(OriginalAlloca
);
405 OriginalAlloca
->replaceAllUsesWith(SlotPtr
);
408 // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
409 // really necessary (the collector would never see the intermediate state at
410 // runtime), but it's nicer not to push the half-initialized entry onto the
412 while (isa
<StoreInst
>(IP
)) ++IP
;
413 AtEntry
.SetInsertPoint(IP
->getParent(), IP
);
415 // Push the entry onto the shadow stack.
416 Instruction
*EntryNextPtr
= CreateGEP(Context
, AtEntry
,
417 StackEntry
,0,0,"gc_frame.next");
418 Instruction
*NewHeadVal
= CreateGEP(Context
, AtEntry
,
419 StackEntry
, 0, "gc_newhead");
420 AtEntry
.CreateStore(CurrentHead
, EntryNextPtr
);
421 AtEntry
.CreateStore(NewHeadVal
, Head
);
423 // For each instruction that escapes...
424 EscapeEnumerator
EE(F
, "gc_cleanup");
425 while (IRBuilder
<> *AtExit
= EE
.Next()) {
426 // Pop the entry from the shadow stack. Don't reuse CurrentHead from
427 // AtEntry, since that would make the value live for the entire function.
428 Instruction
*EntryNextPtr2
= CreateGEP(Context
, *AtExit
, StackEntry
, 0, 0,
430 Value
*SavedHead
= AtExit
->CreateLoad(EntryNextPtr2
, "gc_savedhead");
431 AtExit
->CreateStore(SavedHead
, Head
);
434 // Delete the original allocas (which are no longer used) and the intrinsic
435 // calls (which are no longer valid). Doing this last avoids invalidating
437 for (unsigned I
= 0, E
= Roots
.size(); I
!= E
; ++I
) {
438 Roots
[I
].first
->eraseFromParent();
439 Roots
[I
].second
->eraseFromParent();