1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/Value.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterCoalescer.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
40 STATISTIC(numJoins
, "Number of interval joins performed");
41 STATISTIC(numCrossRCs
, "Number of cross class joins performed");
42 STATISTIC(numCommutes
, "Number of instruction commuting performed");
43 STATISTIC(numExtends
, "Number of copies extended");
44 STATISTIC(NumReMats
, "Number of instructions re-materialized");
45 STATISTIC(numPeep
, "Number of identity moves eliminated after coalescing");
46 STATISTIC(numAborts
, "Number of times interval joining aborted");
47 STATISTIC(numDeadValNo
, "Number of valno def marked dead");
49 char SimpleRegisterCoalescing::ID
= 0;
51 EnableJoining("join-liveintervals",
52 cl::desc("Coalesce copies (default=true)"),
56 NewHeuristic("new-coalescer-heuristic",
57 cl::desc("Use new coalescer heuristic"),
58 cl::init(false), cl::Hidden
);
61 DisableCrossClassJoin("disable-cross-class-join",
62 cl::desc("Avoid coalescing cross register class copies"),
63 cl::init(false), cl::Hidden
);
66 PhysJoinTweak("tweak-phys-join-heuristics",
67 cl::desc("Tweak heuristics for joining phys reg with vr"),
68 cl::init(false), cl::Hidden
);
70 static RegisterPass
<SimpleRegisterCoalescing
>
71 X("simple-register-coalescing", "Simple Register Coalescing");
73 // Declare that we implement the RegisterCoalescer interface
74 static RegisterAnalysisGroup
<RegisterCoalescer
, true/*The Default*/> V(X
);
76 const PassInfo
*const llvm::SimpleRegisterCoalescingID
= &X
;
78 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage
&AU
) const {
80 AU
.addRequired
<LiveIntervals
>();
81 AU
.addPreserved
<LiveIntervals
>();
82 AU
.addRequired
<MachineLoopInfo
>();
83 AU
.addPreserved
<MachineLoopInfo
>();
84 AU
.addPreservedID(MachineDominatorsID
);
86 AU
.addPreservedID(StrongPHIEliminationID
);
88 AU
.addPreservedID(PHIEliminationID
);
89 AU
.addPreservedID(TwoAddressInstructionPassID
);
90 MachineFunctionPass::getAnalysisUsage(AU
);
93 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
94 /// being the source and IntB being the dest, thus this defines a value number
95 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
96 /// see if we can merge these two pieces of B into a single value number,
97 /// eliminating a copy. For example:
101 /// B1 = A3 <- this copy
103 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
104 /// value number to be replaced with B0 (which simplifies the B liveinterval).
106 /// This returns true if an interval was modified.
108 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval
&IntA
,
110 MachineInstr
*CopyMI
) {
111 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
113 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
114 // the example above.
115 LiveInterval::iterator BLR
= IntB
.FindLiveRangeContaining(CopyIdx
);
116 assert(BLR
!= IntB
.end() && "Live range not found!");
117 VNInfo
*BValNo
= BLR
->valno
;
119 // Get the location that B is defined at. Two options: either this value has
120 // an unknown definition point or it is defined at CopyIdx. If unknown, we
122 if (!BValNo
->copy
) return false;
123 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
125 // AValNo is the value number in A that defines the copy, A3 in the example.
126 unsigned CopyUseIdx
= li_
->getUseIndex(CopyIdx
);
127 LiveInterval::iterator ALR
= IntA
.FindLiveRangeContaining(CopyUseIdx
);
128 assert(ALR
!= IntA
.end() && "Live range not found!");
129 VNInfo
*AValNo
= ALR
->valno
;
130 // If it's re-defined by an early clobber somewhere in the live range, then
131 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
133 // 172 %ECX<def> = MOV32rr %reg1039<kill>
134 // 180 INLINEASM <es:subl $5,$1
135 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
136 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
137 // 188 %EAX<def> = MOV32rr %EAX<kill>
138 // 196 %ECX<def> = MOV32rr %ECX<kill>
139 // 204 %ECX<def> = MOV32rr %ECX<kill>
140 // 212 %EAX<def> = MOV32rr %EAX<kill>
141 // 220 %EAX<def> = MOV32rr %EAX
142 // 228 %reg1039<def> = MOV32rr %ECX<kill>
143 // The early clobber operand ties ECX input to the ECX def.
145 // The live interval of ECX is represented as this:
146 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
147 // The coalescer has no idea there was a def in the middle of [174,230].
148 if (AValNo
->hasRedefByEC())
151 // If AValNo is defined as a copy from IntB, we can potentially process this.
152 // Get the instruction that defines this value number.
153 unsigned SrcReg
= li_
->getVNInfoSourceReg(AValNo
);
154 if (!SrcReg
) return false; // Not defined by a copy.
156 // If the value number is not defined by a copy instruction, ignore it.
158 // If the source register comes from an interval other than IntB, we can't
160 if (SrcReg
!= IntB
.reg
) return false;
162 // Get the LiveRange in IntB that this value number starts with.
163 LiveInterval::iterator ValLR
= IntB
.FindLiveRangeContaining(AValNo
->def
-1);
164 assert(ValLR
!= IntB
.end() && "Live range not found!");
166 // Make sure that the end of the live range is inside the same block as
168 MachineInstr
*ValLREndInst
= li_
->getInstructionFromIndex(ValLR
->end
-1);
170 ValLREndInst
->getParent() != CopyMI
->getParent()) return false;
172 // Okay, we now know that ValLR ends in the same block that the CopyMI
173 // live-range starts. If there are no intervening live ranges between them in
174 // IntB, we can merge them.
175 if (ValLR
+1 != BLR
) return false;
177 // If a live interval is a physical register, conservatively check if any
178 // of its sub-registers is overlapping the live interval of the virtual
179 // register. If so, do not coalesce.
180 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
) &&
181 *tri_
->getSubRegisters(IntB
.reg
)) {
182 for (const unsigned* SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
)
183 if (li_
->hasInterval(*SR
) && IntA
.overlaps(li_
->getInterval(*SR
))) {
184 DOUT
<< "Interfere with sub-register ";
185 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
190 DOUT
<< "\nExtending: "; IntB
.print(DOUT
, tri_
);
192 unsigned FillerStart
= ValLR
->end
, FillerEnd
= BLR
->start
;
193 // We are about to delete CopyMI, so need to remove it as the 'instruction
194 // that defines this value #'. Update the the valnum with the new defining
196 BValNo
->def
= FillerStart
;
199 // Okay, we can merge them. We need to insert a new liverange:
200 // [ValLR.end, BLR.begin) of either value number, then we merge the
201 // two value numbers.
202 IntB
.addRange(LiveRange(FillerStart
, FillerEnd
, BValNo
));
204 // If the IntB live range is assigned to a physical register, and if that
205 // physreg has sub-registers, update their live intervals as well.
206 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
)) {
207 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
208 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
209 SRLI
.addRange(LiveRange(FillerStart
, FillerEnd
,
210 SRLI
.getNextValue(FillerStart
, 0, true,
211 li_
->getVNInfoAllocator())));
215 // Okay, merge "B1" into the same value number as "B0".
216 if (BValNo
!= ValLR
->valno
) {
217 IntB
.addKills(ValLR
->valno
, BValNo
->kills
);
218 IntB
.MergeValueNumberInto(BValNo
, ValLR
->valno
);
220 DOUT
<< " result = "; IntB
.print(DOUT
, tri_
);
223 // If the source instruction was killing the source register before the
224 // merge, unset the isKill marker given the live range has been extended.
225 int UIdx
= ValLREndInst
->findRegisterUseOperandIdx(IntB
.reg
, true);
227 ValLREndInst
->getOperand(UIdx
).setIsKill(false);
228 IntB
.removeKill(ValLR
->valno
, FillerStart
);
231 // If the copy instruction was killing the destination register before the
232 // merge, find the last use and trim the live range. That will also add the
234 if (CopyMI
->killsRegister(IntA
.reg
))
235 TrimLiveIntervalToLastUse(CopyUseIdx
, CopyMI
->getParent(), IntA
, ALR
);
241 /// HasOtherReachingDefs - Return true if there are definitions of IntB
242 /// other than BValNo val# that can reach uses of AValno val# of IntA.
243 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval
&IntA
,
247 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
249 if (AI
->valno
!= AValNo
) continue;
250 LiveInterval::Ranges::iterator BI
=
251 std::upper_bound(IntB
.ranges
.begin(), IntB
.ranges
.end(), AI
->start
);
252 if (BI
!= IntB
.ranges
.begin())
254 for (; BI
!= IntB
.ranges
.end() && AI
->end
>= BI
->start
; ++BI
) {
255 if (BI
->valno
== BValNo
)
257 if (BI
->start
<= AI
->start
&& BI
->end
> AI
->start
)
259 if (BI
->start
> AI
->start
&& BI
->start
< AI
->end
)
266 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
267 /// being the source and IntB being the dest, thus this defines a value number
268 /// in IntB. If the source value number (in IntA) is defined by a commutable
269 /// instruction and its other operand is coalesced to the copy dest register,
270 /// see if we can transform the copy into a noop by commuting the definition. For
273 /// A3 = op A2 B0<kill>
275 /// B1 = A3 <- this copy
277 /// = op A3 <- more uses
281 /// B2 = op B0 A2<kill>
283 /// B1 = B2 <- now an identify copy
285 /// = op B2 <- more uses
287 /// This returns true if an interval was modified.
289 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval
&IntA
,
291 MachineInstr
*CopyMI
) {
292 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
294 // FIXME: For now, only eliminate the copy by commuting its def when the
295 // source register is a virtual register. We want to guard against cases
296 // where the copy is a back edge copy and commuting the def lengthen the
297 // live interval of the source register to the entire loop.
298 if (TargetRegisterInfo::isPhysicalRegister(IntA
.reg
))
301 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
302 // the example above.
303 LiveInterval::iterator BLR
= IntB
.FindLiveRangeContaining(CopyIdx
);
304 assert(BLR
!= IntB
.end() && "Live range not found!");
305 VNInfo
*BValNo
= BLR
->valno
;
307 // Get the location that B is defined at. Two options: either this value has
308 // an unknown definition point or it is defined at CopyIdx. If unknown, we
310 if (!BValNo
->copy
) return false;
311 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
313 // AValNo is the value number in A that defines the copy, A3 in the example.
314 LiveInterval::iterator ALR
= IntA
.FindLiveRangeContaining(CopyIdx
-1);
315 assert(ALR
!= IntA
.end() && "Live range not found!");
316 VNInfo
*AValNo
= ALR
->valno
;
317 // If other defs can reach uses of this def, then it's not safe to perform
318 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
320 if (AValNo
->isPHIDef() || !AValNo
->isDefAccurate() ||
321 AValNo
->isUnused() || AValNo
->hasPHIKill())
323 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(AValNo
->def
);
324 const TargetInstrDesc
&TID
= DefMI
->getDesc();
325 if (!TID
.isCommutable())
327 // If DefMI is a two-address instruction then commuting it will change the
328 // destination register.
329 int DefIdx
= DefMI
->findRegisterDefOperandIdx(IntA
.reg
);
330 assert(DefIdx
!= -1);
332 if (!DefMI
->isRegTiedToUseOperand(DefIdx
, &UseOpIdx
))
334 unsigned Op1
, Op2
, NewDstIdx
;
335 if (!tii_
->findCommutedOpIndices(DefMI
, Op1
, Op2
))
339 else if (Op2
== UseOpIdx
)
344 MachineOperand
&NewDstMO
= DefMI
->getOperand(NewDstIdx
);
345 unsigned NewReg
= NewDstMO
.getReg();
346 if (NewReg
!= IntB
.reg
|| !NewDstMO
.isKill())
349 // Make sure there are no other definitions of IntB that would reach the
350 // uses which the new definition can reach.
351 if (HasOtherReachingDefs(IntA
, IntB
, AValNo
, BValNo
))
354 // If some of the uses of IntA.reg is already coalesced away, return false.
355 // It's not possible to determine whether it's safe to perform the coalescing.
356 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(IntA
.reg
),
357 UE
= mri_
->use_end(); UI
!= UE
; ++UI
) {
358 MachineInstr
*UseMI
= &*UI
;
359 unsigned UseIdx
= li_
->getInstructionIndex(UseMI
);
360 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
361 if (ULR
== IntA
.end())
363 if (ULR
->valno
== AValNo
&& JoinedCopies
.count(UseMI
))
367 // At this point we have decided that it is legal to do this
368 // transformation. Start by commuting the instruction.
369 MachineBasicBlock
*MBB
= DefMI
->getParent();
370 MachineInstr
*NewMI
= tii_
->commuteInstruction(DefMI
);
373 if (NewMI
!= DefMI
) {
374 li_
->ReplaceMachineInstrInMaps(DefMI
, NewMI
);
375 MBB
->insert(DefMI
, NewMI
);
378 unsigned OpIdx
= NewMI
->findRegisterUseOperandIdx(IntA
.reg
, false);
379 NewMI
->getOperand(OpIdx
).setIsKill();
381 bool BHasPHIKill
= BValNo
->hasPHIKill();
382 SmallVector
<VNInfo
*, 4> BDeadValNos
;
383 VNInfo::KillSet BKills
;
384 std::map
<unsigned, unsigned> BExtend
;
386 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
395 // then do not add kills of A to the newly created B interval.
396 bool Extended
= BLR
->end
> ALR
->end
&& ALR
->end
!= ALR
->start
;
398 BExtend
[ALR
->end
] = BLR
->end
;
400 // Update uses of IntA of the specific Val# with IntB.
401 bool BHasSubRegs
= false;
402 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
))
403 BHasSubRegs
= *tri_
->getSubRegisters(IntB
.reg
);
404 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(IntA
.reg
),
405 UE
= mri_
->use_end(); UI
!= UE
;) {
406 MachineOperand
&UseMO
= UI
.getOperand();
407 MachineInstr
*UseMI
= &*UI
;
409 if (JoinedCopies
.count(UseMI
))
411 unsigned UseIdx
= li_
->getInstructionIndex(UseMI
);
412 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
413 if (ULR
== IntA
.end() || ULR
->valno
!= AValNo
)
415 UseMO
.setReg(NewReg
);
418 if (UseMO
.isKill()) {
420 UseMO
.setIsKill(false);
422 BKills
.push_back(VNInfo::KillInfo(false, li_
->getUseIndex(UseIdx
)+1));
424 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
425 if (!tii_
->isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
427 if (DstReg
== IntB
.reg
) {
428 // This copy will become a noop. If it's defining a new val#,
429 // remove that val# as well. However this live range is being
430 // extended to the end of the existing live range defined by the copy.
431 unsigned DefIdx
= li_
->getDefIndex(UseIdx
);
432 const LiveRange
*DLR
= IntB
.getLiveRangeContaining(DefIdx
);
433 BHasPHIKill
|= DLR
->valno
->hasPHIKill();
434 assert(DLR
->valno
->def
== DefIdx
);
435 BDeadValNos
.push_back(DLR
->valno
);
436 BExtend
[DLR
->start
] = DLR
->end
;
437 JoinedCopies
.insert(UseMI
);
438 // If this is a kill but it's going to be removed, the last use
439 // of the same val# is the new kill.
445 // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
446 // simply extend BLR if CopyMI doesn't end the range.
447 DOUT
<< "\nExtending: "; IntB
.print(DOUT
, tri_
);
449 // Remove val#'s defined by copies that will be coalesced away.
450 for (unsigned i
= 0, e
= BDeadValNos
.size(); i
!= e
; ++i
) {
451 VNInfo
*DeadVNI
= BDeadValNos
[i
];
453 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
454 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
455 const LiveRange
*SRLR
= SRLI
.getLiveRangeContaining(DeadVNI
->def
);
456 SRLI
.removeValNo(SRLR
->valno
);
459 IntB
.removeValNo(BDeadValNos
[i
]);
462 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
463 // is updated. Kills are also updated.
464 VNInfo
*ValNo
= BValNo
;
465 ValNo
->def
= AValNo
->def
;
467 for (unsigned j
= 0, ee
= ValNo
->kills
.size(); j
!= ee
; ++j
) {
468 unsigned Kill
= ValNo
->kills
[j
].killIdx
;
469 if (Kill
!= BLR
->end
)
470 BKills
.push_back(VNInfo::KillInfo(ValNo
->kills
[j
].isPHIKill
, Kill
));
472 ValNo
->kills
.clear();
473 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
475 if (AI
->valno
!= AValNo
) continue;
476 unsigned End
= AI
->end
;
477 std::map
<unsigned, unsigned>::iterator EI
= BExtend
.find(End
);
478 if (EI
!= BExtend
.end())
480 IntB
.addRange(LiveRange(AI
->start
, End
, ValNo
));
482 // If the IntB live range is assigned to a physical register, and if that
483 // physreg has sub-registers, update their live intervals as well.
485 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
486 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
487 SRLI
.MergeInClobberRange(AI
->start
, End
, li_
->getVNInfoAllocator());
491 IntB
.addKills(ValNo
, BKills
);
492 ValNo
->setHasPHIKill(BHasPHIKill
);
494 DOUT
<< " result = "; IntB
.print(DOUT
, tri_
);
497 DOUT
<< "\nShortening: "; IntA
.print(DOUT
, tri_
);
498 IntA
.removeValNo(AValNo
);
499 DOUT
<< " result = "; IntA
.print(DOUT
, tri_
);
506 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
507 /// fallthoughs to SuccMBB.
508 static bool isSameOrFallThroughBB(MachineBasicBlock
*MBB
,
509 MachineBasicBlock
*SuccMBB
,
510 const TargetInstrInfo
*tii_
) {
513 MachineBasicBlock
*TBB
= 0, *FBB
= 0;
514 SmallVector
<MachineOperand
, 4> Cond
;
515 return !tii_
->AnalyzeBranch(*MBB
, TBB
, FBB
, Cond
) && !TBB
&& !FBB
&&
516 MBB
->isSuccessor(SuccMBB
);
519 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
520 /// from a physical register live interval as well as from the live intervals
521 /// of its sub-registers.
522 static void removeRange(LiveInterval
&li
, unsigned Start
, unsigned End
,
523 LiveIntervals
*li_
, const TargetRegisterInfo
*tri_
) {
524 li
.removeRange(Start
, End
, true);
525 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
)) {
526 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
527 if (!li_
->hasInterval(*SR
))
529 LiveInterval
&sli
= li_
->getInterval(*SR
);
530 unsigned RemoveEnd
= Start
;
531 while (RemoveEnd
!= End
) {
532 LiveInterval::iterator LR
= sli
.FindLiveRangeContaining(Start
);
535 RemoveEnd
= (LR
->end
< End
) ? LR
->end
: End
;
536 sli
.removeRange(Start
, RemoveEnd
, true);
543 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
544 /// as the copy instruction, trim the live interval to the last use and return
547 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx
,
548 MachineBasicBlock
*CopyMBB
,
550 const LiveRange
*LR
) {
551 unsigned MBBStart
= li_
->getMBBStartIdx(CopyMBB
);
553 MachineOperand
*LastUse
= lastRegisterUse(LR
->start
, CopyIdx
-1, li
.reg
,
556 MachineInstr
*LastUseMI
= LastUse
->getParent();
557 if (!isSameOrFallThroughBB(LastUseMI
->getParent(), CopyMBB
, tii_
)) {
564 // r1025<dead> = r1024<kill>
565 if (MBBStart
< LR
->end
)
566 removeRange(li
, MBBStart
, LR
->end
, li_
, tri_
);
570 // There are uses before the copy, just shorten the live range to the end
572 LastUse
->setIsKill();
573 removeRange(li
, li_
->getDefIndex(LastUseIdx
), LR
->end
, li_
, tri_
);
574 li
.addKill(LR
->valno
, LastUseIdx
+1, false);
575 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
576 if (tii_
->isMoveInstr(*LastUseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
578 // Last use is itself an identity code.
579 int DeadIdx
= LastUseMI
->findRegisterDefOperandIdx(li
.reg
, false, tri_
);
580 LastUseMI
->getOperand(DeadIdx
).setIsDead();
586 if (LR
->start
<= MBBStart
&& LR
->end
> MBBStart
) {
587 if (LR
->start
== 0) {
588 assert(TargetRegisterInfo::isPhysicalRegister(li
.reg
));
589 // Live-in to the function but dead. Remove it from entry live-in set.
590 mf_
->begin()->removeLiveIn(li
.reg
);
592 // FIXME: Shorten intervals in BBs that reaches this BB.
598 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
599 /// computation, replace the copy by rematerialize the definition.
600 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval
&SrcInt
,
603 MachineInstr
*CopyMI
) {
604 unsigned CopyIdx
= li_
->getUseIndex(li_
->getInstructionIndex(CopyMI
));
605 LiveInterval::iterator SrcLR
= SrcInt
.FindLiveRangeContaining(CopyIdx
);
606 assert(SrcLR
!= SrcInt
.end() && "Live range not found!");
607 VNInfo
*ValNo
= SrcLR
->valno
;
608 // If other defs can reach uses of this def, then it's not safe to perform
609 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
611 if (ValNo
->isPHIDef() || !ValNo
->isDefAccurate() ||
612 ValNo
->isUnused() || ValNo
->hasPHIKill())
614 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(ValNo
->def
);
615 const TargetInstrDesc
&TID
= DefMI
->getDesc();
616 if (!TID
.isAsCheapAsAMove())
618 if (!DefMI
->getDesc().isRematerializable() ||
619 !tii_
->isTriviallyReMaterializable(DefMI
))
621 bool SawStore
= false;
622 if (!DefMI
->isSafeToMove(tii_
, SawStore
))
624 if (TID
.getNumDefs() != 1)
626 if (DefMI
->getOpcode() != TargetInstrInfo::IMPLICIT_DEF
) {
627 // Make sure the copy destination register class fits the instruction
628 // definition register class. The mismatch can happen as a result of earlier
629 // extract_subreg, insert_subreg, subreg_to_reg coalescing.
630 const TargetRegisterClass
*RC
= TID
.OpInfo
[0].getRegClass(tri_
);
631 if (TargetRegisterInfo::isVirtualRegister(DstReg
)) {
632 if (mri_
->getRegClass(DstReg
) != RC
)
634 } else if (!RC
->contains(DstReg
))
638 unsigned DefIdx
= li_
->getDefIndex(CopyIdx
);
639 const LiveRange
*DLR
= li_
->getInterval(DstReg
).getLiveRangeContaining(DefIdx
);
640 DLR
->valno
->copy
= NULL
;
641 // Don't forget to update sub-register intervals.
642 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
643 for (const unsigned* SR
= tri_
->getSubRegisters(DstReg
); *SR
; ++SR
) {
644 if (!li_
->hasInterval(*SR
))
646 DLR
= li_
->getInterval(*SR
).getLiveRangeContaining(DefIdx
);
647 if (DLR
&& DLR
->valno
->copy
== CopyMI
)
648 DLR
->valno
->copy
= NULL
;
652 // If copy kills the source register, find the last use and propagate
654 bool checkForDeadDef
= false;
655 MachineBasicBlock
*MBB
= CopyMI
->getParent();
656 if (CopyMI
->killsRegister(SrcInt
.reg
))
657 if (!TrimLiveIntervalToLastUse(CopyIdx
, MBB
, SrcInt
, SrcLR
)) {
658 checkForDeadDef
= true;
661 MachineBasicBlock::iterator MII
= next(MachineBasicBlock::iterator(CopyMI
));
662 tii_
->reMaterialize(*MBB
, MII
, DstReg
, DstSubIdx
, DefMI
);
663 MachineInstr
*NewMI
= prior(MII
);
665 if (checkForDeadDef
) {
666 // PR4090 fix: Trim interval failed because there was no use of the
667 // source interval in this MBB. If the def is in this MBB too then we
668 // should mark it dead:
669 if (DefMI
->getParent() == MBB
) {
670 DefMI
->addRegisterDead(SrcInt
.reg
, tri_
);
671 SrcLR
->end
= SrcLR
->start
+ 1;
675 // CopyMI may have implicit operands, transfer them over to the newly
676 // rematerialized instruction. And update implicit def interval valnos.
677 for (unsigned i
= CopyMI
->getDesc().getNumOperands(),
678 e
= CopyMI
->getNumOperands(); i
!= e
; ++i
) {
679 MachineOperand
&MO
= CopyMI
->getOperand(i
);
680 if (MO
.isReg() && MO
.isImplicit())
681 NewMI
->addOperand(MO
);
682 if (MO
.isDef() && li_
->hasInterval(MO
.getReg())) {
683 unsigned Reg
= MO
.getReg();
684 DLR
= li_
->getInterval(Reg
).getLiveRangeContaining(DefIdx
);
685 if (DLR
&& DLR
->valno
->copy
== CopyMI
)
686 DLR
->valno
->copy
= NULL
;
690 li_
->ReplaceMachineInstrInMaps(CopyMI
, NewMI
);
691 CopyMI
->eraseFromParent();
692 ReMatCopies
.insert(CopyMI
);
693 ReMatDefs
.insert(DefMI
);
698 /// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
700 bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr
*CopyMI
,
701 unsigned DstReg
) const {
702 MachineBasicBlock
*MBB
= CopyMI
->getParent();
703 const MachineLoop
*L
= loopInfo
->getLoopFor(MBB
);
706 if (MBB
!= L
->getLoopLatch())
709 LiveInterval
&LI
= li_
->getInterval(DstReg
);
710 unsigned DefIdx
= li_
->getInstructionIndex(CopyMI
);
711 LiveInterval::const_iterator DstLR
=
712 LI
.FindLiveRangeContaining(li_
->getDefIndex(DefIdx
));
713 if (DstLR
== LI
.end())
715 if (DstLR
->valno
->kills
.size() == 1 && DstLR
->valno
->kills
[0].isPHIKill
)
720 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
721 /// update the subregister number if it is not zero. If DstReg is a
722 /// physical register and the existing subregister number of the def / use
723 /// being updated is not zero, make sure to set it to the correct physical
726 SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg
, unsigned DstReg
,
728 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
729 if (DstIsPhys
&& SubIdx
) {
730 // Figure out the real physical register we are updating with.
731 DstReg
= tri_
->getSubReg(DstReg
, SubIdx
);
735 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(SrcReg
),
736 E
= mri_
->reg_end(); I
!= E
; ) {
737 MachineOperand
&O
= I
.getOperand();
738 MachineInstr
*UseMI
= &*I
;
740 unsigned OldSubIdx
= O
.getSubReg();
742 unsigned UseDstReg
= DstReg
;
744 UseDstReg
= tri_
->getSubReg(DstReg
, OldSubIdx
);
746 unsigned CopySrcReg
, CopyDstReg
, CopySrcSubIdx
, CopyDstSubIdx
;
747 if (tii_
->isMoveInstr(*UseMI
, CopySrcReg
, CopyDstReg
,
748 CopySrcSubIdx
, CopyDstSubIdx
) &&
749 CopySrcReg
!= CopyDstReg
&&
750 CopySrcReg
== SrcReg
&& CopyDstReg
!= UseDstReg
) {
751 // If the use is a copy and it won't be coalesced away, and its source
752 // is defined by a trivial computation, try to rematerialize it instead.
753 if (ReMaterializeTrivialDef(li_
->getInterval(SrcReg
), CopyDstReg
,
754 CopyDstSubIdx
, UseMI
))
763 // Sub-register indexes goes from small to large. e.g.
764 // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
765 // EAX: 1 -> AL, 2 -> AX
766 // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
767 // sub-register 2 is also AX.
768 if (SubIdx
&& OldSubIdx
&& SubIdx
!= OldSubIdx
)
769 assert(OldSubIdx
< SubIdx
&& "Conflicting sub-register index!");
772 // Remove would-be duplicated kill marker.
773 if (O
.isKill() && UseMI
->killsRegister(DstReg
))
777 // After updating the operand, check if the machine instruction has
778 // become a copy. If so, update its val# information.
779 if (JoinedCopies
.count(UseMI
))
782 const TargetInstrDesc
&TID
= UseMI
->getDesc();
783 unsigned CopySrcReg
, CopyDstReg
, CopySrcSubIdx
, CopyDstSubIdx
;
784 if (TID
.getNumDefs() == 1 && TID
.getNumOperands() > 2 &&
785 tii_
->isMoveInstr(*UseMI
, CopySrcReg
, CopyDstReg
,
786 CopySrcSubIdx
, CopyDstSubIdx
) &&
787 CopySrcReg
!= CopyDstReg
&&
788 (TargetRegisterInfo::isVirtualRegister(CopyDstReg
) ||
789 allocatableRegs_
[CopyDstReg
])) {
790 LiveInterval
&LI
= li_
->getInterval(CopyDstReg
);
791 unsigned DefIdx
= li_
->getDefIndex(li_
->getInstructionIndex(UseMI
));
792 if (const LiveRange
*DLR
= LI
.getLiveRangeContaining(DefIdx
)) {
793 if (DLR
->valno
->def
== DefIdx
)
794 DLR
->valno
->copy
= UseMI
;
800 /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
801 /// due to live range lengthening as the result of coalescing.
802 void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg
,
804 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(Reg
),
805 UE
= mri_
->use_end(); UI
!= UE
; ++UI
) {
806 MachineOperand
&UseMO
= UI
.getOperand();
809 MachineInstr
*UseMI
= UseMO
.getParent();
810 unsigned UseIdx
= li_
->getUseIndex(li_
->getInstructionIndex(UseMI
));
811 const LiveRange
*LR
= LI
.getLiveRangeContaining(UseIdx
);
812 if (!LR
|| !LI
.isKill(LR
->valno
, UseIdx
+1)) {
813 if (LR
->valno
->def
!= UseIdx
+1) {
814 // Interesting problem. After coalescing reg1027's def and kill are both
815 // at the same point: %reg1027,0.000000e+00 = [56,814:0) 0@70-(814)
818 // 60 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
819 // 68 %reg1027<def> = t2LDRi12 %reg1027<kill>, 8, 14, %reg0
820 // 76 t2CMPzri %reg1038<kill,undef>, 0, 14, %reg0, %CPSR<imp-def>
821 // 84 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
822 // 96 t2Bcc mbb<bb5,0x2030910>, 1, %CPSR<kill>
824 // Do not remove the kill marker on t2LDRi12.
825 UseMO
.setIsKill(false);
831 /// removeIntervalIfEmpty - Check if the live interval of a physical register
832 /// is empty, if so remove it and also remove the empty intervals of its
833 /// sub-registers. Return true if live interval is removed.
834 static bool removeIntervalIfEmpty(LiveInterval
&li
, LiveIntervals
*li_
,
835 const TargetRegisterInfo
*tri_
) {
837 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
))
838 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
839 if (!li_
->hasInterval(*SR
))
841 LiveInterval
&sli
= li_
->getInterval(*SR
);
843 li_
->removeInterval(*SR
);
845 li_
->removeInterval(li
.reg
);
851 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
852 /// Return true if live interval is removed.
853 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval
&li
,
854 MachineInstr
*CopyMI
) {
855 unsigned CopyIdx
= li_
->getInstructionIndex(CopyMI
);
856 LiveInterval::iterator MLR
=
857 li
.FindLiveRangeContaining(li_
->getDefIndex(CopyIdx
));
859 return false; // Already removed by ShortenDeadCopySrcLiveRange.
860 unsigned RemoveStart
= MLR
->start
;
861 unsigned RemoveEnd
= MLR
->end
;
862 unsigned DefIdx
= li_
->getDefIndex(CopyIdx
);
863 // Remove the liverange that's defined by this.
864 if (RemoveStart
== DefIdx
&& RemoveEnd
== DefIdx
+1) {
865 removeRange(li
, RemoveStart
, RemoveEnd
, li_
, tri_
);
866 return removeIntervalIfEmpty(li
, li_
, tri_
);
871 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
872 /// the val# it defines. If the live interval becomes empty, remove it as well.
873 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval
&li
,
874 MachineInstr
*DefMI
) {
875 unsigned DefIdx
= li_
->getDefIndex(li_
->getInstructionIndex(DefMI
));
876 LiveInterval::iterator MLR
= li
.FindLiveRangeContaining(DefIdx
);
877 if (DefIdx
!= MLR
->valno
->def
)
879 li
.removeValNo(MLR
->valno
);
880 return removeIntervalIfEmpty(li
, li_
, tri_
);
883 /// PropagateDeadness - Propagate the dead marker to the instruction which
884 /// defines the val#.
885 static void PropagateDeadness(LiveInterval
&li
, MachineInstr
*CopyMI
,
886 unsigned &LRStart
, LiveIntervals
*li_
,
887 const TargetRegisterInfo
* tri_
) {
888 MachineInstr
*DefMI
=
889 li_
->getInstructionFromIndex(li_
->getDefIndex(LRStart
));
890 if (DefMI
&& DefMI
!= CopyMI
) {
891 int DeadIdx
= DefMI
->findRegisterDefOperandIdx(li
.reg
, false, tri_
);
893 DefMI
->getOperand(DeadIdx
).setIsDead();
894 // A dead def should have a single cycle interval.
900 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
901 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
902 /// ends the live range there. If there isn't another use, then this live range
903 /// is dead. Return true if live interval is removed.
905 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval
&li
,
906 MachineInstr
*CopyMI
) {
907 unsigned CopyIdx
= li_
->getInstructionIndex(CopyMI
);
909 // FIXME: special case: function live in. It can be a general case if the
910 // first instruction index starts at > 0 value.
911 assert(TargetRegisterInfo::isPhysicalRegister(li
.reg
));
912 // Live-in to the function but dead. Remove it from entry live-in set.
913 if (mf_
->begin()->isLiveIn(li
.reg
))
914 mf_
->begin()->removeLiveIn(li
.reg
);
915 const LiveRange
*LR
= li
.getLiveRangeContaining(CopyIdx
);
916 removeRange(li
, LR
->start
, LR
->end
, li_
, tri_
);
917 return removeIntervalIfEmpty(li
, li_
, tri_
);
920 LiveInterval::iterator LR
= li
.FindLiveRangeContaining(CopyIdx
-1);
922 // Livein but defined by a phi.
925 unsigned RemoveStart
= LR
->start
;
926 unsigned RemoveEnd
= li_
->getDefIndex(CopyIdx
)+1;
927 if (LR
->end
> RemoveEnd
)
928 // More uses past this copy? Nothing to do.
931 // If there is a last use in the same bb, we can't remove the live range.
932 // Shorten the live interval and return.
933 MachineBasicBlock
*CopyMBB
= CopyMI
->getParent();
934 if (TrimLiveIntervalToLastUse(CopyIdx
, CopyMBB
, li
, LR
))
937 // There are other kills of the val#. Nothing to do.
938 if (!li
.isOnlyLROfValNo(LR
))
941 MachineBasicBlock
*StartMBB
= li_
->getMBBFromIndex(RemoveStart
);
942 if (!isSameOrFallThroughBB(StartMBB
, CopyMBB
, tii_
))
943 // If the live range starts in another mbb and the copy mbb is not a fall
944 // through mbb, then we can only cut the range from the beginning of the
946 RemoveStart
= li_
->getMBBStartIdx(CopyMBB
) + 1;
948 if (LR
->valno
->def
== RemoveStart
) {
949 // If the def MI defines the val# and this copy is the only kill of the
950 // val#, then propagate the dead marker.
951 PropagateDeadness(li
, CopyMI
, RemoveStart
, li_
, tri_
);
954 if (li
.isKill(LR
->valno
, RemoveEnd
))
955 li
.removeKill(LR
->valno
, RemoveEnd
);
958 removeRange(li
, RemoveStart
, RemoveEnd
, li_
, tri_
);
959 return removeIntervalIfEmpty(li
, li_
, tri_
);
962 /// CanCoalesceWithImpDef - Returns true if the specified copy instruction
963 /// from an implicit def to another register can be coalesced away.
964 bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr
*CopyMI
,
966 LiveInterval
&ImpLi
) const{
967 if (!CopyMI
->killsRegister(ImpLi
.reg
))
969 // Make sure this is the only use.
970 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(ImpLi
.reg
),
971 UE
= mri_
->use_end(); UI
!= UE
;) {
972 MachineInstr
*UseMI
= &*UI
;
974 if (CopyMI
== UseMI
|| JoinedCopies
.count(UseMI
))
982 /// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
983 /// a virtual destination register with physical source register.
985 SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr
*CopyMI
,
986 MachineBasicBlock
*CopyMBB
,
987 LiveInterval
&DstInt
,
988 LiveInterval
&SrcInt
) {
989 // If the virtual register live interval is long but it has low use desity,
990 // do not join them, instead mark the physical register as its allocation
992 const TargetRegisterClass
*RC
= mri_
->getRegClass(DstInt
.reg
);
993 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
994 unsigned Length
= li_
->getApproximateInstructionCount(DstInt
);
995 if (Length
> Threshold
&&
996 (((float)std::distance(mri_
->use_begin(DstInt
.reg
),
997 mri_
->use_end()) / Length
) < (1.0 / Threshold
)))
1000 // If the virtual register live interval extends into a loop, turn down
1002 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
1003 const MachineLoop
*L
= loopInfo
->getLoopFor(CopyMBB
);
1005 // Let's see if the virtual register live interval extends into the loop.
1006 LiveInterval::iterator DLR
= DstInt
.FindLiveRangeContaining(CopyIdx
);
1007 assert(DLR
!= DstInt
.end() && "Live range not found!");
1008 DLR
= DstInt
.FindLiveRangeContaining(DLR
->end
+1);
1009 if (DLR
!= DstInt
.end()) {
1010 CopyMBB
= li_
->getMBBFromIndex(DLR
->start
);
1011 L
= loopInfo
->getLoopFor(CopyMBB
);
1015 if (!L
|| Length
<= Threshold
)
1018 unsigned UseIdx
= li_
->getUseIndex(CopyIdx
);
1019 LiveInterval::iterator SLR
= SrcInt
.FindLiveRangeContaining(UseIdx
);
1020 MachineBasicBlock
*SMBB
= li_
->getMBBFromIndex(SLR
->start
);
1021 if (loopInfo
->getLoopFor(SMBB
) != L
) {
1022 if (!loopInfo
->isLoopHeader(CopyMBB
))
1024 // If vr's live interval extends pass the loop header, do not join.
1025 for (MachineBasicBlock::succ_iterator SI
= CopyMBB
->succ_begin(),
1026 SE
= CopyMBB
->succ_end(); SI
!= SE
; ++SI
) {
1027 MachineBasicBlock
*SuccMBB
= *SI
;
1028 if (SuccMBB
== CopyMBB
)
1030 if (DstInt
.overlaps(li_
->getMBBStartIdx(SuccMBB
),
1031 li_
->getMBBEndIdx(SuccMBB
)+1))
1038 /// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
1039 /// copy from a virtual source register to a physical destination register.
1041 SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr
*CopyMI
,
1042 MachineBasicBlock
*CopyMBB
,
1043 LiveInterval
&DstInt
,
1044 LiveInterval
&SrcInt
) {
1045 // If the virtual register live interval is long but it has low use desity,
1046 // do not join them, instead mark the physical register as its allocation
1048 const TargetRegisterClass
*RC
= mri_
->getRegClass(SrcInt
.reg
);
1049 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1050 unsigned Length
= li_
->getApproximateInstructionCount(SrcInt
);
1051 if (Length
> Threshold
&&
1052 (((float)std::distance(mri_
->use_begin(SrcInt
.reg
),
1053 mri_
->use_end()) / Length
) < (1.0 / Threshold
)))
1057 // Must be implicit_def.
1060 // If the virtual register live interval is defined or cross a loop, turn
1061 // down aggressiveness.
1062 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
1063 unsigned UseIdx
= li_
->getUseIndex(CopyIdx
);
1064 LiveInterval::iterator SLR
= SrcInt
.FindLiveRangeContaining(UseIdx
);
1065 assert(SLR
!= SrcInt
.end() && "Live range not found!");
1066 SLR
= SrcInt
.FindLiveRangeContaining(SLR
->start
-1);
1067 if (SLR
== SrcInt
.end())
1069 MachineBasicBlock
*SMBB
= li_
->getMBBFromIndex(SLR
->start
);
1070 const MachineLoop
*L
= loopInfo
->getLoopFor(SMBB
);
1072 if (!L
|| Length
<= Threshold
)
1075 if (loopInfo
->getLoopFor(CopyMBB
) != L
) {
1076 if (SMBB
!= L
->getLoopLatch())
1078 // If vr's live interval is extended from before the loop latch, do not
1080 for (MachineBasicBlock::pred_iterator PI
= SMBB
->pred_begin(),
1081 PE
= SMBB
->pred_end(); PI
!= PE
; ++PI
) {
1082 MachineBasicBlock
*PredMBB
= *PI
;
1083 if (PredMBB
== SMBB
)
1085 if (SrcInt
.overlaps(li_
->getMBBStartIdx(PredMBB
),
1086 li_
->getMBBEndIdx(PredMBB
)+1))
1093 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1094 /// two virtual registers from different register classes.
1096 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned LargeReg
,
1098 unsigned Threshold
) {
1099 // Then make sure the intervals are *short*.
1100 LiveInterval
&LargeInt
= li_
->getInterval(LargeReg
);
1101 LiveInterval
&SmallInt
= li_
->getInterval(SmallReg
);
1102 unsigned LargeSize
= li_
->getApproximateInstructionCount(LargeInt
);
1103 unsigned SmallSize
= li_
->getApproximateInstructionCount(SmallInt
);
1104 if (SmallSize
> Threshold
|| LargeSize
> Threshold
)
1105 if ((float)std::distance(mri_
->use_begin(SmallReg
),
1106 mri_
->use_end()) / SmallSize
<
1107 (float)std::distance(mri_
->use_begin(LargeReg
),
1108 mri_
->use_end()) / LargeSize
)
1113 /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
1114 /// register with a physical register, check if any of the virtual register
1115 /// operand is a sub-register use or def. If so, make sure it won't result
1116 /// in an illegal extract_subreg or insert_subreg instruction. e.g.
1117 /// vr1024 = extract_subreg vr1025, 1
1119 /// vr1024 = mov8rr AH
1120 /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
1121 /// AH does not have a super-reg whose sub-register 1 is AH.
1123 SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr
*CopyMI
,
1126 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(VirtReg
),
1127 E
= mri_
->reg_end(); I
!= E
; ++I
) {
1128 MachineOperand
&O
= I
.getOperand();
1129 MachineInstr
*MI
= &*I
;
1130 if (MI
== CopyMI
|| JoinedCopies
.count(MI
))
1132 unsigned SubIdx
= O
.getSubReg();
1133 if (SubIdx
&& !tri_
->getSubReg(PhysReg
, SubIdx
))
1135 if (MI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
) {
1136 SubIdx
= MI
->getOperand(2).getImm();
1137 if (O
.isUse() && !tri_
->getSubReg(PhysReg
, SubIdx
))
1140 unsigned SrcReg
= MI
->getOperand(1).getReg();
1141 const TargetRegisterClass
*RC
=
1142 TargetRegisterInfo::isPhysicalRegister(SrcReg
)
1143 ? tri_
->getPhysicalRegisterRegClass(SrcReg
)
1144 : mri_
->getRegClass(SrcReg
);
1145 if (!tri_
->getMatchingSuperReg(PhysReg
, SubIdx
, RC
))
1149 if (MI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
1150 MI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) {
1151 SubIdx
= MI
->getOperand(3).getImm();
1152 if (VirtReg
== MI
->getOperand(0).getReg()) {
1153 if (!tri_
->getSubReg(PhysReg
, SubIdx
))
1156 unsigned DstReg
= MI
->getOperand(0).getReg();
1157 const TargetRegisterClass
*RC
=
1158 TargetRegisterInfo::isPhysicalRegister(DstReg
)
1159 ? tri_
->getPhysicalRegisterRegClass(DstReg
)
1160 : mri_
->getRegClass(DstReg
);
1161 if (!tri_
->getMatchingSuperReg(PhysReg
, SubIdx
, RC
))
1170 /// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
1171 /// an extract_subreg where dst is a physical register, e.g.
1172 /// cl = EXTRACT_SUBREG reg1024, 1
1174 SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg
,
1175 unsigned SrcReg
, unsigned SubIdx
,
1176 unsigned &RealDstReg
) {
1177 const TargetRegisterClass
*RC
= mri_
->getRegClass(SrcReg
);
1178 RealDstReg
= tri_
->getMatchingSuperReg(DstReg
, SubIdx
, RC
);
1179 assert(RealDstReg
&& "Invalid extract_subreg instruction!");
1181 // For this type of EXTRACT_SUBREG, conservatively
1182 // check if the live interval of the source register interfere with the
1183 // actual super physical register we are trying to coalesce with.
1184 LiveInterval
&RHS
= li_
->getInterval(SrcReg
);
1185 if (li_
->hasInterval(RealDstReg
) &&
1186 RHS
.overlaps(li_
->getInterval(RealDstReg
))) {
1187 DOUT
<< "Interfere with register ";
1188 DEBUG(li_
->getInterval(RealDstReg
).print(DOUT
, tri_
));
1189 return false; // Not coalescable
1191 for (const unsigned* SR
= tri_
->getSubRegisters(RealDstReg
); *SR
; ++SR
)
1192 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
1193 DOUT
<< "Interfere with sub-register ";
1194 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
1195 return false; // Not coalescable
1200 /// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
1201 /// an insert_subreg where src is a physical register, e.g.
1202 /// reg1024 = INSERT_SUBREG reg1024, c1, 0
1204 SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg
,
1205 unsigned SrcReg
, unsigned SubIdx
,
1206 unsigned &RealSrcReg
) {
1207 const TargetRegisterClass
*RC
= mri_
->getRegClass(DstReg
);
1208 RealSrcReg
= tri_
->getMatchingSuperReg(SrcReg
, SubIdx
, RC
);
1209 assert(RealSrcReg
&& "Invalid extract_subreg instruction!");
1211 LiveInterval
&RHS
= li_
->getInterval(DstReg
);
1212 if (li_
->hasInterval(RealSrcReg
) &&
1213 RHS
.overlaps(li_
->getInterval(RealSrcReg
))) {
1214 DOUT
<< "Interfere with register ";
1215 DEBUG(li_
->getInterval(RealSrcReg
).print(DOUT
, tri_
));
1216 return false; // Not coalescable
1218 for (const unsigned* SR
= tri_
->getSubRegisters(RealSrcReg
); *SR
; ++SR
)
1219 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
1220 DOUT
<< "Interfere with sub-register ";
1221 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
1222 return false; // Not coalescable
1227 /// getRegAllocPreference - Return register allocation preference register.
1229 static unsigned getRegAllocPreference(unsigned Reg
, MachineFunction
&MF
,
1230 MachineRegisterInfo
*MRI
,
1231 const TargetRegisterInfo
*TRI
) {
1232 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
1234 std::pair
<unsigned, unsigned> Hint
= MRI
->getRegAllocationHint(Reg
);
1235 return TRI
->ResolveRegAllocHint(Hint
.first
, Hint
.second
, MF
);
1238 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1239 /// which are the src/dst of the copy instruction CopyMI. This returns true
1240 /// if the copy was successfully coalesced away. If it is not currently
1241 /// possible to coalesce this interval, but it may be possible if other
1242 /// things get coalesced, then it returns true by reference in 'Again'.
1243 bool SimpleRegisterCoalescing::JoinCopy(CopyRec
&TheCopy
, bool &Again
) {
1244 MachineInstr
*CopyMI
= TheCopy
.MI
;
1247 if (JoinedCopies
.count(CopyMI
) || ReMatCopies
.count(CopyMI
))
1248 return false; // Already done.
1250 DOUT
<< li_
->getInstructionIndex(CopyMI
) << '\t' << *CopyMI
;
1252 unsigned SrcReg
, DstReg
, SrcSubIdx
= 0, DstSubIdx
= 0;
1253 bool isExtSubReg
= CopyMI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
;
1254 bool isInsSubReg
= CopyMI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
;
1255 bool isSubRegToReg
= CopyMI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
;
1256 unsigned SubIdx
= 0;
1258 DstReg
= CopyMI
->getOperand(0).getReg();
1259 DstSubIdx
= CopyMI
->getOperand(0).getSubReg();
1260 SrcReg
= CopyMI
->getOperand(1).getReg();
1261 SrcSubIdx
= CopyMI
->getOperand(2).getImm();
1262 } else if (isInsSubReg
|| isSubRegToReg
) {
1263 DstReg
= CopyMI
->getOperand(0).getReg();
1264 DstSubIdx
= CopyMI
->getOperand(3).getImm();
1265 SrcReg
= CopyMI
->getOperand(2).getReg();
1266 SrcSubIdx
= CopyMI
->getOperand(2).getSubReg();
1267 if (SrcSubIdx
&& SrcSubIdx
!= DstSubIdx
) {
1268 // r1025 = INSERT_SUBREG r1025, r1024<2>, 2 Then r1024 has already been
1269 // coalesced to a larger register so the subreg indices cancel out.
1270 DOUT
<< "\tSource of insert_subreg is already coalesced "
1271 << "to another register.\n";
1272 return false; // Not coalescable.
1274 } else if (!tii_
->isMoveInstr(*CopyMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
)){
1275 llvm_unreachable("Unrecognized copy instruction!");
1278 // If they are already joined we continue.
1279 if (SrcReg
== DstReg
) {
1280 DOUT
<< "\tCopy already coalesced.\n";
1281 return false; // Not coalescable.
1284 bool SrcIsPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
1285 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
1287 // If they are both physical registers, we cannot join them.
1288 if (SrcIsPhys
&& DstIsPhys
) {
1289 DOUT
<< "\tCan not coalesce physregs.\n";
1290 return false; // Not coalescable.
1293 // We only join virtual registers with allocatable physical registers.
1294 if (SrcIsPhys
&& !allocatableRegs_
[SrcReg
]) {
1295 DOUT
<< "\tSrc reg is unallocatable physreg.\n";
1296 return false; // Not coalescable.
1298 if (DstIsPhys
&& !allocatableRegs_
[DstReg
]) {
1299 DOUT
<< "\tDst reg is unallocatable physreg.\n";
1300 return false; // Not coalescable.
1303 // Check that a physical source register is compatible with dst regclass
1305 unsigned SrcSubReg
= SrcSubIdx
?
1306 tri_
->getSubReg(SrcReg
, SrcSubIdx
) : SrcReg
;
1307 const TargetRegisterClass
*DstRC
= mri_
->getRegClass(DstReg
);
1308 const TargetRegisterClass
*DstSubRC
= DstRC
;
1310 DstSubRC
= DstRC
->getSubRegisterRegClass(DstSubIdx
);
1311 assert(DstSubRC
&& "Illegal subregister index");
1312 if (!DstSubRC
->contains(SrcSubReg
)) {
1313 DEBUG(errs() << "\tIncompatible destination regclass: "
1314 << tri_
->getName(SrcSubReg
) << " not in " << DstSubRC
->getName()
1316 return false; // Not coalescable.
1320 // Check that a physical dst register is compatible with source regclass
1322 unsigned DstSubReg
= DstSubIdx
?
1323 tri_
->getSubReg(DstReg
, DstSubIdx
) : DstReg
;
1324 const TargetRegisterClass
*SrcRC
= mri_
->getRegClass(SrcReg
);
1325 const TargetRegisterClass
*SrcSubRC
= SrcRC
;
1327 SrcSubRC
= SrcRC
->getSubRegisterRegClass(SrcSubIdx
);
1328 assert(SrcSubRC
&& "Illegal subregister index");
1329 if (!SrcSubRC
->contains(DstReg
)) {
1330 DEBUG(errs() << "\tIncompatible source regclass: "
1331 << tri_
->getName(DstSubReg
) << " not in " << SrcSubRC
->getName()
1334 return false; // Not coalescable.
1338 // Should be non-null only when coalescing to a sub-register class.
1339 bool CrossRC
= false;
1340 const TargetRegisterClass
*SrcRC
= SrcIsPhys
? 0 : mri_
->getRegClass(SrcReg
);
1341 const TargetRegisterClass
*DstRC
= DstIsPhys
? 0 : mri_
->getRegClass(DstReg
);
1342 const TargetRegisterClass
*NewRC
= NULL
;
1343 MachineBasicBlock
*CopyMBB
= CopyMI
->getParent();
1344 unsigned RealDstReg
= 0;
1345 unsigned RealSrcReg
= 0;
1346 if (isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) {
1347 SubIdx
= CopyMI
->getOperand(isExtSubReg
? 2 : 3).getImm();
1348 if (SrcIsPhys
&& isExtSubReg
) {
1349 // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
1350 // coalesced with AX.
1351 unsigned DstSubIdx
= CopyMI
->getOperand(0).getSubReg();
1353 // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
1354 // coalesced to a larger register so the subreg indices cancel out.
1355 if (DstSubIdx
!= SubIdx
) {
1356 DOUT
<< "\t Sub-register indices mismatch.\n";
1357 return false; // Not coalescable.
1360 SrcReg
= tri_
->getSubReg(SrcReg
, SubIdx
);
1362 } else if (DstIsPhys
&& (isInsSubReg
|| isSubRegToReg
)) {
1363 // EAX = INSERT_SUBREG EAX, r1024, 0
1364 unsigned SrcSubIdx
= CopyMI
->getOperand(2).getSubReg();
1366 // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
1367 // coalesced to a larger register so the subreg indices cancel out.
1368 if (SrcSubIdx
!= SubIdx
) {
1369 DOUT
<< "\t Sub-register indices mismatch.\n";
1370 return false; // Not coalescable.
1373 DstReg
= tri_
->getSubReg(DstReg
, SubIdx
);
1375 } else if ((DstIsPhys
&& isExtSubReg
) ||
1376 (SrcIsPhys
&& (isInsSubReg
|| isSubRegToReg
))) {
1377 if (!isSubRegToReg
&& CopyMI
->getOperand(1).getSubReg()) {
1378 DOUT
<< "\tSrc of extract_subreg already coalesced with reg"
1379 << " of a super-class.\n";
1380 return false; // Not coalescable.
1384 if (!CanJoinExtractSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealDstReg
))
1385 return false; // Not coalescable
1387 if (!CanJoinInsertSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealSrcReg
))
1388 return false; // Not coalescable
1392 unsigned OldSubIdx
= isExtSubReg
? CopyMI
->getOperand(0).getSubReg()
1393 : CopyMI
->getOperand(2).getSubReg();
1395 if (OldSubIdx
== SubIdx
&& !differingRegisterClasses(SrcReg
, DstReg
))
1396 // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
1397 // coalesced to a larger register so the subreg indices cancel out.
1398 // Also check if the other larger register is of the same register
1399 // class as the would be resulting register.
1402 DOUT
<< "\t Sub-register indices mismatch.\n";
1403 return false; // Not coalescable.
1407 if (!DstIsPhys
&& !SrcIsPhys
) {
1408 if (isInsSubReg
|| isSubRegToReg
) {
1409 NewRC
= tri_
->getMatchingSuperRegClass(DstRC
, SrcRC
, SubIdx
);
1410 } else // extract_subreg {
1411 NewRC
= tri_
->getMatchingSuperRegClass(SrcRC
, DstRC
, SubIdx
);
1414 DOUT
<< "\t Conflicting sub-register indices.\n";
1415 return false; // Not coalescable
1418 unsigned LargeReg
= isExtSubReg
? SrcReg
: DstReg
;
1419 unsigned SmallReg
= isExtSubReg
? DstReg
: SrcReg
;
1420 unsigned Limit
= allocatableRCRegs_
[mri_
->getRegClass(SmallReg
)].count();
1421 if (!isWinToJoinCrossClass(LargeReg
, SmallReg
, Limit
)) {
1422 Again
= true; // May be possible to coalesce later.
1427 } else if (differingRegisterClasses(SrcReg
, DstReg
)) {
1428 if (DisableCrossClassJoin
)
1432 // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
1433 // with another? If it's the resulting destination register, then
1434 // the subidx must be propagated to uses (but only those defined
1435 // by the EXTRACT_SUBREG). If it's being coalesced into another
1436 // register, it should be safe because register is assumed to have
1437 // the register class of the super-register.
1439 // Process moves where one of the registers have a sub-register index.
1440 MachineOperand
*DstMO
= CopyMI
->findRegisterDefOperand(DstReg
);
1441 MachineOperand
*SrcMO
= CopyMI
->findRegisterUseOperand(SrcReg
);
1442 SubIdx
= DstMO
->getSubReg();
1444 if (SrcMO
->getSubReg())
1445 // FIXME: can we handle this?
1447 // This is not an insert_subreg but it looks like one.
1448 // e.g. %reg1024:4 = MOV32rr %EAX
1451 if (!CanJoinInsertSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealSrcReg
))
1452 return false; // Not coalescable
1456 SubIdx
= SrcMO
->getSubReg();
1458 // This is not a extract_subreg but it looks like one.
1459 // e.g. %cl = MOV16rr %reg1024:1
1462 if (!CanJoinExtractSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
,RealDstReg
))
1463 return false; // Not coalescable
1469 unsigned LargeReg
= SrcReg
;
1470 unsigned SmallReg
= DstReg
;
1472 // Now determine the register class of the joined register.
1474 if (SubIdx
&& DstRC
&& DstRC
->isASubClass()) {
1475 // This is a move to a sub-register class. However, the source is a
1476 // sub-register of a larger register class. We don't know what should
1477 // the register class be. FIXME.
1481 if (!DstIsPhys
&& !SrcIsPhys
)
1483 } else if (!SrcIsPhys
&& !DstIsPhys
) {
1484 NewRC
= getCommonSubClass(SrcRC
, DstRC
);
1486 DEBUG(errs() << "\tDisjoint regclasses: "
1487 << SrcRC
->getName() << ", "
1488 << DstRC
->getName() << ".\n");
1489 return false; // Not coalescable.
1491 if (DstRC
->getSize() > SrcRC
->getSize())
1492 std::swap(LargeReg
, SmallReg
);
1495 // If we are joining two virtual registers and the resulting register
1496 // class is more restrictive (fewer register, smaller size). Check if it's
1497 // worth doing the merge.
1498 if (!SrcIsPhys
&& !DstIsPhys
&&
1499 (isExtSubReg
|| DstRC
->isASubClass()) &&
1500 !isWinToJoinCrossClass(LargeReg
, SmallReg
,
1501 allocatableRCRegs_
[NewRC
].count())) {
1502 DOUT
<< "\tSrc/Dest are different register classes.\n";
1503 // Allow the coalescer to try again in case either side gets coalesced to
1504 // a physical register that's compatible with the other side. e.g.
1505 // r1024 = MOV32to32_ r1025
1506 // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
1507 Again
= true; // May be possible to coalesce later.
1512 // Will it create illegal extract_subreg / insert_subreg?
1513 if (SrcIsPhys
&& HasIncompatibleSubRegDefUse(CopyMI
, DstReg
, SrcReg
))
1515 if (DstIsPhys
&& HasIncompatibleSubRegDefUse(CopyMI
, SrcReg
, DstReg
))
1518 LiveInterval
&SrcInt
= li_
->getInterval(SrcReg
);
1519 LiveInterval
&DstInt
= li_
->getInterval(DstReg
);
1520 assert(SrcInt
.reg
== SrcReg
&& DstInt
.reg
== DstReg
&&
1521 "Register mapping is horribly broken!");
1523 DOUT
<< "\t\tInspecting "; SrcInt
.print(DOUT
, tri_
);
1524 DOUT
<< " and "; DstInt
.print(DOUT
, tri_
);
1527 // Save a copy of the virtual register live interval. We'll manually
1528 // merge this into the "real" physical register live interval this is
1530 LiveInterval
*SavedLI
= 0;
1532 SavedLI
= li_
->dupInterval(&SrcInt
);
1533 else if (RealSrcReg
)
1534 SavedLI
= li_
->dupInterval(&DstInt
);
1536 // Check if it is necessary to propagate "isDead" property.
1537 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
) {
1538 MachineOperand
*mopd
= CopyMI
->findRegisterDefOperand(DstReg
, false);
1539 bool isDead
= mopd
->isDead();
1541 // We need to be careful about coalescing a source physical register with a
1542 // virtual register. Once the coalescing is done, it cannot be broken and
1543 // these are not spillable! If the destination interval uses are far away,
1544 // think twice about coalescing them!
1545 if (!isDead
&& (SrcIsPhys
|| DstIsPhys
)) {
1546 // If the copy is in a loop, take care not to coalesce aggressively if the
1547 // src is coming in from outside the loop (or the dst is out of the loop).
1548 // If it's not in a loop, then determine whether to join them base purely
1549 // by the length of the interval.
1550 if (PhysJoinTweak
) {
1552 if (!isWinToJoinVRWithSrcPhysReg(CopyMI
, CopyMBB
, DstInt
, SrcInt
)) {
1553 mri_
->setRegAllocationHint(DstInt
.reg
, 0, SrcReg
);
1555 DOUT
<< "\tMay tie down a physical register, abort!\n";
1556 Again
= true; // May be possible to coalesce later.
1560 if (!isWinToJoinVRWithDstPhysReg(CopyMI
, CopyMBB
, DstInt
, SrcInt
)) {
1561 mri_
->setRegAllocationHint(SrcInt
.reg
, 0, DstReg
);
1563 DOUT
<< "\tMay tie down a physical register, abort!\n";
1564 Again
= true; // May be possible to coalesce later.
1569 // If the virtual register live interval is long but it has low use desity,
1570 // do not join them, instead mark the physical register as its allocation
1572 LiveInterval
&JoinVInt
= SrcIsPhys
? DstInt
: SrcInt
;
1573 unsigned JoinVReg
= SrcIsPhys
? DstReg
: SrcReg
;
1574 unsigned JoinPReg
= SrcIsPhys
? SrcReg
: DstReg
;
1575 const TargetRegisterClass
*RC
= mri_
->getRegClass(JoinVReg
);
1576 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1577 if (TheCopy
.isBackEdge
)
1578 Threshold
*= 2; // Favors back edge copies.
1580 unsigned Length
= li_
->getApproximateInstructionCount(JoinVInt
);
1581 float Ratio
= 1.0 / Threshold
;
1582 if (Length
> Threshold
&&
1583 (((float)std::distance(mri_
->use_begin(JoinVReg
),
1584 mri_
->use_end()) / Length
) < Ratio
)) {
1585 mri_
->setRegAllocationHint(JoinVInt
.reg
, 0, JoinPReg
);
1587 DOUT
<< "\tMay tie down a physical register, abort!\n";
1588 Again
= true; // May be possible to coalesce later.
1595 // Okay, attempt to join these two intervals. On failure, this returns false.
1596 // Otherwise, if one of the intervals being joined is a physreg, this method
1597 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1598 // been modified, so we can use this information below to update aliases.
1599 bool Swapped
= false;
1600 // If SrcInt is implicitly defined, it's safe to coalesce.
1601 bool isEmpty
= SrcInt
.empty();
1602 if (isEmpty
&& !CanCoalesceWithImpDef(CopyMI
, DstInt
, SrcInt
)) {
1603 // Only coalesce an empty interval (defined by implicit_def) with
1604 // another interval which has a valno defined by the CopyMI and the CopyMI
1605 // is a kill of the implicit def.
1606 DOUT
<< "Not profitable!\n";
1610 if (!isEmpty
&& !JoinIntervals(DstInt
, SrcInt
, Swapped
)) {
1611 // Coalescing failed.
1613 // If definition of source is defined by trivial computation, try
1614 // rematerializing it.
1615 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
&&
1616 ReMaterializeTrivialDef(SrcInt
, DstReg
, DstSubIdx
, CopyMI
))
1619 // If we can eliminate the copy without merging the live ranges, do so now.
1620 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
&&
1621 (AdjustCopiesBackFrom(SrcInt
, DstInt
, CopyMI
) ||
1622 RemoveCopyByCommutingDef(SrcInt
, DstInt
, CopyMI
))) {
1623 JoinedCopies
.insert(CopyMI
);
1627 // Otherwise, we are unable to join the intervals.
1628 DOUT
<< "Interference!\n";
1629 Again
= true; // May be possible to coalesce later.
1633 LiveInterval
*ResSrcInt
= &SrcInt
;
1634 LiveInterval
*ResDstInt
= &DstInt
;
1636 std::swap(SrcReg
, DstReg
);
1637 std::swap(ResSrcInt
, ResDstInt
);
1639 assert(TargetRegisterInfo::isVirtualRegister(SrcReg
) &&
1640 "LiveInterval::join didn't work right!");
1642 // If we're about to merge live ranges into a physical register live interval,
1643 // we have to update any aliased register's live ranges to indicate that they
1644 // have clobbered values for this range.
1645 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
1646 // If this is a extract_subreg where dst is a physical register, e.g.
1647 // cl = EXTRACT_SUBREG reg1024, 1
1648 // then create and update the actual physical register allocated to RHS.
1649 if (RealDstReg
|| RealSrcReg
) {
1650 LiveInterval
&RealInt
=
1651 li_
->getOrCreateInterval(RealDstReg
? RealDstReg
: RealSrcReg
);
1652 for (LiveInterval::const_vni_iterator I
= SavedLI
->vni_begin(),
1653 E
= SavedLI
->vni_end(); I
!= E
; ++I
) {
1654 const VNInfo
*ValNo
= *I
;
1655 VNInfo
*NewValNo
= RealInt
.getNextValue(ValNo
->def
, ValNo
->copy
,
1656 false, // updated at *
1657 li_
->getVNInfoAllocator());
1658 NewValNo
->setFlags(ValNo
->getFlags()); // * updated here.
1659 RealInt
.addKills(NewValNo
, ValNo
->kills
);
1660 RealInt
.MergeValueInAsValue(*SavedLI
, ValNo
, NewValNo
);
1662 RealInt
.weight
+= SavedLI
->weight
;
1663 DstReg
= RealDstReg
? RealDstReg
: RealSrcReg
;
1666 // Update the liveintervals of sub-registers.
1667 for (const unsigned *AS
= tri_
->getSubRegisters(DstReg
); *AS
; ++AS
)
1668 li_
->getOrCreateInterval(*AS
).MergeInClobberRanges(*ResSrcInt
,
1669 li_
->getVNInfoAllocator());
1672 // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
1673 // larger super-register.
1674 if ((isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) &&
1675 !SrcIsPhys
&& !DstIsPhys
) {
1676 if ((isExtSubReg
&& !Swapped
) ||
1677 ((isInsSubReg
|| isSubRegToReg
) && Swapped
)) {
1678 ResSrcInt
->Copy(*ResDstInt
, mri_
, li_
->getVNInfoAllocator());
1679 std::swap(SrcReg
, DstReg
);
1680 std::swap(ResSrcInt
, ResDstInt
);
1684 // Coalescing to a virtual register that is of a sub-register class of the
1685 // other. Make sure the resulting register is set to the right register class.
1689 // This may happen even if it's cross-rc coalescing. e.g.
1690 // %reg1026<def> = SUBREG_TO_REG 0, %reg1037<kill>, 4
1691 // reg1026 -> GR64, reg1037 -> GR32_ABCD. The resulting register will have to
1692 // be allocate a register from GR64_ABCD.
1694 mri_
->setRegClass(DstReg
, NewRC
);
1697 // Add all copies that define val# in the source interval into the queue.
1698 for (LiveInterval::const_vni_iterator i
= ResSrcInt
->vni_begin(),
1699 e
= ResSrcInt
->vni_end(); i
!= e
; ++i
) {
1700 const VNInfo
*vni
= *i
;
1701 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1702 if (!vni
->def
|| vni
->isUnused() || vni
->isPHIDef() || !vni
->isDefAccurate())
1704 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
1705 unsigned NewSrcReg
, NewDstReg
, NewSrcSubIdx
, NewDstSubIdx
;
1707 JoinedCopies
.count(CopyMI
) == 0 &&
1708 tii_
->isMoveInstr(*CopyMI
, NewSrcReg
, NewDstReg
,
1709 NewSrcSubIdx
, NewDstSubIdx
)) {
1710 unsigned LoopDepth
= loopInfo
->getLoopDepth(CopyMBB
);
1711 JoinQueue
->push(CopyRec(CopyMI
, LoopDepth
,
1712 isBackEdgeCopy(CopyMI
, DstReg
)));
1717 // Remember to delete the copy instruction.
1718 JoinedCopies
.insert(CopyMI
);
1720 // Some live range has been lengthened due to colaescing, eliminate the
1721 // unnecessary kills.
1722 RemoveUnnecessaryKills(SrcReg
, *ResDstInt
);
1723 if (TargetRegisterInfo::isVirtualRegister(DstReg
))
1724 RemoveUnnecessaryKills(DstReg
, *ResDstInt
);
1726 UpdateRegDefsUses(SrcReg
, DstReg
, SubIdx
);
1728 // SrcReg is guarateed to be the register whose live interval that is
1730 li_
->removeInterval(SrcReg
);
1732 // Update regalloc hint.
1733 tri_
->UpdateRegAllocHint(SrcReg
, DstReg
, *mf_
);
1735 // Manually deleted the live interval copy.
1741 // If resulting interval has a preference that no longer fits because of subreg
1742 // coalescing, just clear the preference.
1743 unsigned Preference
= getRegAllocPreference(ResDstInt
->reg
, *mf_
, mri_
, tri_
);
1744 if (Preference
&& (isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) &&
1745 TargetRegisterInfo::isVirtualRegister(ResDstInt
->reg
)) {
1746 const TargetRegisterClass
*RC
= mri_
->getRegClass(ResDstInt
->reg
);
1747 if (!RC
->contains(Preference
))
1748 mri_
->setRegAllocationHint(ResDstInt
->reg
, 0, 0);
1751 DOUT
<< "\n\t\tJoined. Result = "; ResDstInt
->print(DOUT
, tri_
);
1758 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1759 /// compute what the resultant value numbers for each value in the input two
1760 /// ranges will be. This is complicated by copies between the two which can
1761 /// and will commonly cause multiple value numbers to be merged into one.
1763 /// VN is the value number that we're trying to resolve. InstDefiningValue
1764 /// keeps track of the new InstDefiningValue assignment for the result
1765 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1766 /// whether a value in this or other is a copy from the opposite set.
1767 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1768 /// already been assigned.
1770 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1771 /// contains the value number the copy is from.
1773 static unsigned ComputeUltimateVN(VNInfo
*VNI
,
1774 SmallVector
<VNInfo
*, 16> &NewVNInfo
,
1775 DenseMap
<VNInfo
*, VNInfo
*> &ThisFromOther
,
1776 DenseMap
<VNInfo
*, VNInfo
*> &OtherFromThis
,
1777 SmallVector
<int, 16> &ThisValNoAssignments
,
1778 SmallVector
<int, 16> &OtherValNoAssignments
) {
1779 unsigned VN
= VNI
->id
;
1781 // If the VN has already been computed, just return it.
1782 if (ThisValNoAssignments
[VN
] >= 0)
1783 return ThisValNoAssignments
[VN
];
1784 // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1786 // If this val is not a copy from the other val, then it must be a new value
1787 // number in the destination.
1788 DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= ThisFromOther
.find(VNI
);
1789 if (I
== ThisFromOther
.end()) {
1790 NewVNInfo
.push_back(VNI
);
1791 return ThisValNoAssignments
[VN
] = NewVNInfo
.size()-1;
1793 VNInfo
*OtherValNo
= I
->second
;
1795 // Otherwise, this *is* a copy from the RHS. If the other side has already
1796 // been computed, return it.
1797 if (OtherValNoAssignments
[OtherValNo
->id
] >= 0)
1798 return ThisValNoAssignments
[VN
] = OtherValNoAssignments
[OtherValNo
->id
];
1800 // Mark this value number as currently being computed, then ask what the
1801 // ultimate value # of the other value is.
1802 ThisValNoAssignments
[VN
] = -2;
1803 unsigned UltimateVN
=
1804 ComputeUltimateVN(OtherValNo
, NewVNInfo
, OtherFromThis
, ThisFromOther
,
1805 OtherValNoAssignments
, ThisValNoAssignments
);
1806 return ThisValNoAssignments
[VN
] = UltimateVN
;
1809 static bool InVector(VNInfo
*Val
, const SmallVector
<VNInfo
*, 8> &V
) {
1810 return std::find(V
.begin(), V
.end(), Val
) != V
.end();
1813 /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
1814 /// the specified live interval is defined by a copy from the specified
1816 bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval
&li
,
1819 unsigned SrcReg
= li_
->getVNInfoSourceReg(LR
->valno
);
1822 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1823 if ((LR
->valno
->isPHIDef() || !LR
->valno
->isDefAccurate()) &&
1824 TargetRegisterInfo::isPhysicalRegister(li
.reg
) &&
1825 *tri_
->getSuperRegisters(li
.reg
)) {
1826 // It's a sub-register live interval, we may not have precise information.
1828 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(LR
->start
);
1829 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
1831 tii_
->isMoveInstr(*DefMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
1832 DstReg
== li
.reg
&& SrcReg
== Reg
) {
1833 // Cache computed info.
1834 LR
->valno
->def
= LR
->start
;
1835 LR
->valno
->copy
= DefMI
;
1842 /// SimpleJoin - Attempt to joint the specified interval into this one. The
1843 /// caller of this method must guarantee that the RHS only contains a single
1844 /// value number and that the RHS is not defined by a copy from this
1845 /// interval. This returns false if the intervals are not joinable, or it
1846 /// joins them and returns true.
1847 bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval
&LHS
, LiveInterval
&RHS
){
1848 assert(RHS
.containsOneValue());
1850 // Some number (potentially more than one) value numbers in the current
1851 // interval may be defined as copies from the RHS. Scan the overlapping
1852 // portions of the LHS and RHS, keeping track of this and looking for
1853 // overlapping live ranges that are NOT defined as copies. If these exist, we
1856 LiveInterval::iterator LHSIt
= LHS
.begin(), LHSEnd
= LHS
.end();
1857 LiveInterval::iterator RHSIt
= RHS
.begin(), RHSEnd
= RHS
.end();
1859 if (LHSIt
->start
< RHSIt
->start
) {
1860 LHSIt
= std::upper_bound(LHSIt
, LHSEnd
, RHSIt
->start
);
1861 if (LHSIt
!= LHS
.begin()) --LHSIt
;
1862 } else if (RHSIt
->start
< LHSIt
->start
) {
1863 RHSIt
= std::upper_bound(RHSIt
, RHSEnd
, LHSIt
->start
);
1864 if (RHSIt
!= RHS
.begin()) --RHSIt
;
1867 SmallVector
<VNInfo
*, 8> EliminatedLHSVals
;
1870 // Determine if these live intervals overlap.
1871 bool Overlaps
= false;
1872 if (LHSIt
->start
<= RHSIt
->start
)
1873 Overlaps
= LHSIt
->end
> RHSIt
->start
;
1875 Overlaps
= RHSIt
->end
> LHSIt
->start
;
1877 // If the live intervals overlap, there are two interesting cases: if the
1878 // LHS interval is defined by a copy from the RHS, it's ok and we record
1879 // that the LHS value # is the same as the RHS. If it's not, then we cannot
1880 // coalesce these live ranges and we bail out.
1882 // If we haven't already recorded that this value # is safe, check it.
1883 if (!InVector(LHSIt
->valno
, EliminatedLHSVals
)) {
1884 // Copy from the RHS?
1885 if (!RangeIsDefinedByCopyFromReg(LHS
, LHSIt
, RHS
.reg
))
1886 return false; // Nope, bail out.
1888 if (LHSIt
->contains(RHSIt
->valno
->def
))
1889 // Here is an interesting situation:
1891 // vr1025 = copy vr1024
1896 // Even though vr1025 is copied from vr1024, it's not safe to
1897 // coalesce them since the live range of vr1025 intersects the
1898 // def of vr1024. This happens because vr1025 is assigned the
1899 // value of the previous iteration of vr1024.
1901 EliminatedLHSVals
.push_back(LHSIt
->valno
);
1904 // We know this entire LHS live range is okay, so skip it now.
1905 if (++LHSIt
== LHSEnd
) break;
1909 if (LHSIt
->end
< RHSIt
->end
) {
1910 if (++LHSIt
== LHSEnd
) break;
1912 // One interesting case to check here. It's possible that we have
1913 // something like "X3 = Y" which defines a new value number in the LHS,
1914 // and is the last use of this liverange of the RHS. In this case, we
1915 // want to notice this copy (so that it gets coalesced away) even though
1916 // the live ranges don't actually overlap.
1917 if (LHSIt
->start
== RHSIt
->end
) {
1918 if (InVector(LHSIt
->valno
, EliminatedLHSVals
)) {
1919 // We already know that this value number is going to be merged in
1920 // if coalescing succeeds. Just skip the liverange.
1921 if (++LHSIt
== LHSEnd
) break;
1923 // Otherwise, if this is a copy from the RHS, mark it as being merged
1925 if (RangeIsDefinedByCopyFromReg(LHS
, LHSIt
, RHS
.reg
)) {
1926 if (LHSIt
->contains(RHSIt
->valno
->def
))
1927 // Here is an interesting situation:
1929 // vr1025 = copy vr1024
1934 // Even though vr1025 is copied from vr1024, it's not safe to
1935 // coalesced them since live range of vr1025 intersects the
1936 // def of vr1024. This happens because vr1025 is assigned the
1937 // value of the previous iteration of vr1024.
1939 EliminatedLHSVals
.push_back(LHSIt
->valno
);
1941 // We know this entire LHS live range is okay, so skip it now.
1942 if (++LHSIt
== LHSEnd
) break;
1947 if (++RHSIt
== RHSEnd
) break;
1951 // If we got here, we know that the coalescing will be successful and that
1952 // the value numbers in EliminatedLHSVals will all be merged together. Since
1953 // the most common case is that EliminatedLHSVals has a single number, we
1954 // optimize for it: if there is more than one value, we merge them all into
1955 // the lowest numbered one, then handle the interval as if we were merging
1956 // with one value number.
1957 VNInfo
*LHSValNo
= NULL
;
1958 if (EliminatedLHSVals
.size() > 1) {
1959 // Loop through all the equal value numbers merging them into the smallest
1961 VNInfo
*Smallest
= EliminatedLHSVals
[0];
1962 for (unsigned i
= 1, e
= EliminatedLHSVals
.size(); i
!= e
; ++i
) {
1963 if (EliminatedLHSVals
[i
]->id
< Smallest
->id
) {
1964 // Merge the current notion of the smallest into the smaller one.
1965 LHS
.MergeValueNumberInto(Smallest
, EliminatedLHSVals
[i
]);
1966 Smallest
= EliminatedLHSVals
[i
];
1968 // Merge into the smallest.
1969 LHS
.MergeValueNumberInto(EliminatedLHSVals
[i
], Smallest
);
1972 LHSValNo
= Smallest
;
1973 } else if (EliminatedLHSVals
.empty()) {
1974 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
) &&
1975 *tri_
->getSuperRegisters(LHS
.reg
))
1976 // Imprecise sub-register information. Can't handle it.
1978 llvm_unreachable("No copies from the RHS?");
1980 LHSValNo
= EliminatedLHSVals
[0];
1983 // Okay, now that there is a single LHS value number that we're merging the
1984 // RHS into, update the value number info for the LHS to indicate that the
1985 // value number is defined where the RHS value number was.
1986 const VNInfo
*VNI
= RHS
.getValNumInfo(0);
1987 LHSValNo
->def
= VNI
->def
;
1988 LHSValNo
->copy
= VNI
->copy
;
1990 // Okay, the final step is to loop over the RHS live intervals, adding them to
1992 if (VNI
->hasPHIKill())
1993 LHSValNo
->setHasPHIKill(true);
1994 LHS
.addKills(LHSValNo
, VNI
->kills
);
1995 LHS
.MergeRangesInAsValue(RHS
, LHSValNo
);
1997 LHS
.ComputeJoinedWeight(RHS
);
1999 // Update regalloc hint if both are virtual registers.
2000 if (TargetRegisterInfo::isVirtualRegister(LHS
.reg
) &&
2001 TargetRegisterInfo::isVirtualRegister(RHS
.reg
)) {
2002 std::pair
<unsigned, unsigned> RHSPref
= mri_
->getRegAllocationHint(RHS
.reg
);
2003 std::pair
<unsigned, unsigned> LHSPref
= mri_
->getRegAllocationHint(LHS
.reg
);
2004 if (RHSPref
!= LHSPref
)
2005 mri_
->setRegAllocationHint(LHS
.reg
, RHSPref
.first
, RHSPref
.second
);
2008 // Update the liveintervals of sub-registers.
2009 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
))
2010 for (const unsigned *AS
= tri_
->getSubRegisters(LHS
.reg
); *AS
; ++AS
)
2011 li_
->getOrCreateInterval(*AS
).MergeInClobberRanges(LHS
,
2012 li_
->getVNInfoAllocator());
2017 /// JoinIntervals - Attempt to join these two intervals. On failure, this
2018 /// returns false. Otherwise, if one of the intervals being joined is a
2019 /// physreg, this method always canonicalizes LHS to be it. The output
2020 /// "RHS" will not have been modified, so we can use this information
2021 /// below to update aliases.
2023 SimpleRegisterCoalescing::JoinIntervals(LiveInterval
&LHS
, LiveInterval
&RHS
,
2025 // Compute the final value assignment, assuming that the live ranges can be
2027 SmallVector
<int, 16> LHSValNoAssignments
;
2028 SmallVector
<int, 16> RHSValNoAssignments
;
2029 DenseMap
<VNInfo
*, VNInfo
*> LHSValsDefinedFromRHS
;
2030 DenseMap
<VNInfo
*, VNInfo
*> RHSValsDefinedFromLHS
;
2031 SmallVector
<VNInfo
*, 16> NewVNInfo
;
2033 // If a live interval is a physical register, conservatively check if any
2034 // of its sub-registers is overlapping the live interval of the virtual
2035 // register. If so, do not coalesce.
2036 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
) &&
2037 *tri_
->getSubRegisters(LHS
.reg
)) {
2038 // If it's coalescing a virtual register to a physical register, estimate
2039 // its live interval length. This is the *cost* of scanning an entire live
2040 // interval. If the cost is low, we'll do an exhaustive check instead.
2042 // If this is something like this:
2050 // That is, the live interval of v1024 crosses a bb. Then we can't rely on
2051 // less conservative check. It's possible a sub-register is defined before
2052 // v1024 (or live in) and live out of BB1.
2053 if (RHS
.containsOneValue() &&
2054 li_
->intervalIsInOneMBB(RHS
) &&
2055 li_
->getApproximateInstructionCount(RHS
) <= 10) {
2056 // Perform a more exhaustive check for some common cases.
2057 if (li_
->conflictsWithPhysRegRef(RHS
, LHS
.reg
, true, JoinedCopies
))
2060 for (const unsigned* SR
= tri_
->getSubRegisters(LHS
.reg
); *SR
; ++SR
)
2061 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
2062 DOUT
<< "Interfere with sub-register ";
2063 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
2067 } else if (TargetRegisterInfo::isPhysicalRegister(RHS
.reg
) &&
2068 *tri_
->getSubRegisters(RHS
.reg
)) {
2069 if (LHS
.containsOneValue() &&
2070 li_
->getApproximateInstructionCount(LHS
) <= 10) {
2071 // Perform a more exhaustive check for some common cases.
2072 if (li_
->conflictsWithPhysRegRef(LHS
, RHS
.reg
, false, JoinedCopies
))
2075 for (const unsigned* SR
= tri_
->getSubRegisters(RHS
.reg
); *SR
; ++SR
)
2076 if (li_
->hasInterval(*SR
) && LHS
.overlaps(li_
->getInterval(*SR
))) {
2077 DOUT
<< "Interfere with sub-register ";
2078 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
2084 // Compute ultimate value numbers for the LHS and RHS values.
2085 if (RHS
.containsOneValue()) {
2086 // Copies from a liveinterval with a single value are simple to handle and
2087 // very common, handle the special case here. This is important, because
2088 // often RHS is small and LHS is large (e.g. a physreg).
2090 // Find out if the RHS is defined as a copy from some value in the LHS.
2091 int RHSVal0DefinedFromLHS
= -1;
2093 VNInfo
*RHSValNoInfo
= NULL
;
2094 VNInfo
*RHSValNoInfo0
= RHS
.getValNumInfo(0);
2095 unsigned RHSSrcReg
= li_
->getVNInfoSourceReg(RHSValNoInfo0
);
2096 if (RHSSrcReg
== 0 || RHSSrcReg
!= LHS
.reg
) {
2097 // If RHS is not defined as a copy from the LHS, we can use simpler and
2098 // faster checks to see if the live ranges are coalescable. This joiner
2099 // can't swap the LHS/RHS intervals though.
2100 if (!TargetRegisterInfo::isPhysicalRegister(RHS
.reg
)) {
2101 return SimpleJoin(LHS
, RHS
);
2103 RHSValNoInfo
= RHSValNoInfo0
;
2106 // It was defined as a copy from the LHS, find out what value # it is.
2107 RHSValNoInfo
= LHS
.getLiveRangeContaining(RHSValNoInfo0
->def
-1)->valno
;
2108 RHSValID
= RHSValNoInfo
->id
;
2109 RHSVal0DefinedFromLHS
= RHSValID
;
2112 LHSValNoAssignments
.resize(LHS
.getNumValNums(), -1);
2113 RHSValNoAssignments
.resize(RHS
.getNumValNums(), -1);
2114 NewVNInfo
.resize(LHS
.getNumValNums(), NULL
);
2116 // Okay, *all* of the values in LHS that are defined as a copy from RHS
2117 // should now get updated.
2118 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2121 unsigned VN
= VNI
->id
;
2122 if (unsigned LHSSrcReg
= li_
->getVNInfoSourceReg(VNI
)) {
2123 if (LHSSrcReg
!= RHS
.reg
) {
2124 // If this is not a copy from the RHS, its value number will be
2125 // unmodified by the coalescing.
2126 NewVNInfo
[VN
] = VNI
;
2127 LHSValNoAssignments
[VN
] = VN
;
2128 } else if (RHSValID
== -1) {
2129 // Otherwise, it is a copy from the RHS, and we don't already have a
2130 // value# for it. Keep the current value number, but remember it.
2131 LHSValNoAssignments
[VN
] = RHSValID
= VN
;
2132 NewVNInfo
[VN
] = RHSValNoInfo
;
2133 LHSValsDefinedFromRHS
[VNI
] = RHSValNoInfo0
;
2135 // Otherwise, use the specified value #.
2136 LHSValNoAssignments
[VN
] = RHSValID
;
2137 if (VN
== (unsigned)RHSValID
) { // Else this val# is dead.
2138 NewVNInfo
[VN
] = RHSValNoInfo
;
2139 LHSValsDefinedFromRHS
[VNI
] = RHSValNoInfo0
;
2143 NewVNInfo
[VN
] = VNI
;
2144 LHSValNoAssignments
[VN
] = VN
;
2148 assert(RHSValID
!= -1 && "Didn't find value #?");
2149 RHSValNoAssignments
[0] = RHSValID
;
2150 if (RHSVal0DefinedFromLHS
!= -1) {
2151 // This path doesn't go through ComputeUltimateVN so just set
2153 RHSValsDefinedFromLHS
[RHSValNoInfo0
] = (VNInfo
*)1;
2156 // Loop over the value numbers of the LHS, seeing if any are defined from
2158 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2161 if (VNI
->isUnused() || VNI
->copy
== 0) // Src not defined by a copy?
2164 // DstReg is known to be a register in the LHS interval. If the src is
2165 // from the RHS interval, we can use its value #.
2166 if (li_
->getVNInfoSourceReg(VNI
) != RHS
.reg
)
2169 // Figure out the value # from the RHS.
2170 LHSValsDefinedFromRHS
[VNI
]=RHS
.getLiveRangeContaining(VNI
->def
-1)->valno
;
2173 // Loop over the value numbers of the RHS, seeing if any are defined from
2175 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
2178 if (VNI
->isUnused() || VNI
->copy
== 0) // Src not defined by a copy?
2181 // DstReg is known to be a register in the RHS interval. If the src is
2182 // from the LHS interval, we can use its value #.
2183 if (li_
->getVNInfoSourceReg(VNI
) != LHS
.reg
)
2186 // Figure out the value # from the LHS.
2187 RHSValsDefinedFromLHS
[VNI
]=LHS
.getLiveRangeContaining(VNI
->def
-1)->valno
;
2190 LHSValNoAssignments
.resize(LHS
.getNumValNums(), -1);
2191 RHSValNoAssignments
.resize(RHS
.getNumValNums(), -1);
2192 NewVNInfo
.reserve(LHS
.getNumValNums() + RHS
.getNumValNums());
2194 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2197 unsigned VN
= VNI
->id
;
2198 if (LHSValNoAssignments
[VN
] >= 0 || VNI
->isUnused())
2200 ComputeUltimateVN(VNI
, NewVNInfo
,
2201 LHSValsDefinedFromRHS
, RHSValsDefinedFromLHS
,
2202 LHSValNoAssignments
, RHSValNoAssignments
);
2204 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
2207 unsigned VN
= VNI
->id
;
2208 if (RHSValNoAssignments
[VN
] >= 0 || VNI
->isUnused())
2210 // If this value number isn't a copy from the LHS, it's a new number.
2211 if (RHSValsDefinedFromLHS
.find(VNI
) == RHSValsDefinedFromLHS
.end()) {
2212 NewVNInfo
.push_back(VNI
);
2213 RHSValNoAssignments
[VN
] = NewVNInfo
.size()-1;
2217 ComputeUltimateVN(VNI
, NewVNInfo
,
2218 RHSValsDefinedFromLHS
, LHSValsDefinedFromRHS
,
2219 RHSValNoAssignments
, LHSValNoAssignments
);
2223 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
2224 // interval lists to see if these intervals are coalescable.
2225 LiveInterval::const_iterator I
= LHS
.begin();
2226 LiveInterval::const_iterator IE
= LHS
.end();
2227 LiveInterval::const_iterator J
= RHS
.begin();
2228 LiveInterval::const_iterator JE
= RHS
.end();
2230 // Skip ahead until the first place of potential sharing.
2231 if (I
->start
< J
->start
) {
2232 I
= std::upper_bound(I
, IE
, J
->start
);
2233 if (I
!= LHS
.begin()) --I
;
2234 } else if (J
->start
< I
->start
) {
2235 J
= std::upper_bound(J
, JE
, I
->start
);
2236 if (J
!= RHS
.begin()) --J
;
2240 // Determine if these two live ranges overlap.
2242 if (I
->start
< J
->start
) {
2243 Overlaps
= I
->end
> J
->start
;
2245 Overlaps
= J
->end
> I
->start
;
2248 // If so, check value # info to determine if they are really different.
2250 // If the live range overlap will map to the same value number in the
2251 // result liverange, we can still coalesce them. If not, we can't.
2252 if (LHSValNoAssignments
[I
->valno
->id
] !=
2253 RHSValNoAssignments
[J
->valno
->id
])
2257 if (I
->end
< J
->end
) {
2266 // Update kill info. Some live ranges are extended due to copy coalescing.
2267 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= LHSValsDefinedFromRHS
.begin(),
2268 E
= LHSValsDefinedFromRHS
.end(); I
!= E
; ++I
) {
2269 VNInfo
*VNI
= I
->first
;
2270 unsigned LHSValID
= LHSValNoAssignments
[VNI
->id
];
2271 LiveInterval::removeKill(NewVNInfo
[LHSValID
], VNI
->def
);
2272 if (VNI
->hasPHIKill())
2273 NewVNInfo
[LHSValID
]->setHasPHIKill(true);
2274 RHS
.addKills(NewVNInfo
[LHSValID
], VNI
->kills
);
2277 // Update kill info. Some live ranges are extended due to copy coalescing.
2278 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= RHSValsDefinedFromLHS
.begin(),
2279 E
= RHSValsDefinedFromLHS
.end(); I
!= E
; ++I
) {
2280 VNInfo
*VNI
= I
->first
;
2281 unsigned RHSValID
= RHSValNoAssignments
[VNI
->id
];
2282 LiveInterval::removeKill(NewVNInfo
[RHSValID
], VNI
->def
);
2283 if (VNI
->hasPHIKill())
2284 NewVNInfo
[RHSValID
]->setHasPHIKill(true);
2285 LHS
.addKills(NewVNInfo
[RHSValID
], VNI
->kills
);
2288 // If we get here, we know that we can coalesce the live ranges. Ask the
2289 // intervals to coalesce themselves now.
2290 if ((RHS
.ranges
.size() > LHS
.ranges
.size() &&
2291 TargetRegisterInfo::isVirtualRegister(LHS
.reg
)) ||
2292 TargetRegisterInfo::isPhysicalRegister(RHS
.reg
)) {
2293 RHS
.join(LHS
, &RHSValNoAssignments
[0], &LHSValNoAssignments
[0], NewVNInfo
,
2297 LHS
.join(RHS
, &LHSValNoAssignments
[0], &RHSValNoAssignments
[0], NewVNInfo
,
2305 // DepthMBBCompare - Comparison predicate that sort first based on the loop
2306 // depth of the basic block (the unsigned), and then on the MBB number.
2307 struct DepthMBBCompare
{
2308 typedef std::pair
<unsigned, MachineBasicBlock
*> DepthMBBPair
;
2309 bool operator()(const DepthMBBPair
&LHS
, const DepthMBBPair
&RHS
) const {
2310 if (LHS
.first
> RHS
.first
) return true; // Deeper loops first
2311 return LHS
.first
== RHS
.first
&&
2312 LHS
.second
->getNumber() < RHS
.second
->getNumber();
2317 /// getRepIntervalSize - Returns the size of the interval that represents the
2318 /// specified register.
2320 unsigned JoinPriorityQueue
<SF
>::getRepIntervalSize(unsigned Reg
) {
2321 return Rc
->getRepIntervalSize(Reg
);
2324 /// CopyRecSort::operator - Join priority queue sorting function.
2326 bool CopyRecSort::operator()(CopyRec left
, CopyRec right
) const {
2327 // Inner loops first.
2328 if (left
.LoopDepth
> right
.LoopDepth
)
2330 else if (left
.LoopDepth
== right
.LoopDepth
)
2331 if (left
.isBackEdge
&& !right
.isBackEdge
)
2336 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock
*MBB
,
2337 std::vector
<CopyRec
> &TryAgain
) {
2338 DEBUG(errs() << ((Value
*)MBB
->getBasicBlock())->getName() << ":\n");
2340 std::vector
<CopyRec
> VirtCopies
;
2341 std::vector
<CopyRec
> PhysCopies
;
2342 std::vector
<CopyRec
> ImpDefCopies
;
2343 unsigned LoopDepth
= loopInfo
->getLoopDepth(MBB
);
2344 for (MachineBasicBlock::iterator MII
= MBB
->begin(), E
= MBB
->end();
2346 MachineInstr
*Inst
= MII
++;
2348 // If this isn't a copy nor a extract_subreg, we can't join intervals.
2349 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2350 if (Inst
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
) {
2351 DstReg
= Inst
->getOperand(0).getReg();
2352 SrcReg
= Inst
->getOperand(1).getReg();
2353 } else if (Inst
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
2354 Inst
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) {
2355 DstReg
= Inst
->getOperand(0).getReg();
2356 SrcReg
= Inst
->getOperand(2).getReg();
2357 } else if (!tii_
->isMoveInstr(*Inst
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
2360 bool SrcIsPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
2361 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
2363 JoinQueue
->push(CopyRec(Inst
, LoopDepth
, isBackEdgeCopy(Inst
, DstReg
)));
2365 if (li_
->hasInterval(SrcReg
) && li_
->getInterval(SrcReg
).empty())
2366 ImpDefCopies
.push_back(CopyRec(Inst
, 0, false));
2367 else if (SrcIsPhys
|| DstIsPhys
)
2368 PhysCopies
.push_back(CopyRec(Inst
, 0, false));
2370 VirtCopies
.push_back(CopyRec(Inst
, 0, false));
2377 // Try coalescing implicit copies first, followed by copies to / from
2378 // physical registers, then finally copies from virtual registers to
2379 // virtual registers.
2380 for (unsigned i
= 0, e
= ImpDefCopies
.size(); i
!= e
; ++i
) {
2381 CopyRec
&TheCopy
= ImpDefCopies
[i
];
2383 if (!JoinCopy(TheCopy
, Again
))
2385 TryAgain
.push_back(TheCopy
);
2387 for (unsigned i
= 0, e
= PhysCopies
.size(); i
!= e
; ++i
) {
2388 CopyRec
&TheCopy
= PhysCopies
[i
];
2390 if (!JoinCopy(TheCopy
, Again
))
2392 TryAgain
.push_back(TheCopy
);
2394 for (unsigned i
= 0, e
= VirtCopies
.size(); i
!= e
; ++i
) {
2395 CopyRec
&TheCopy
= VirtCopies
[i
];
2397 if (!JoinCopy(TheCopy
, Again
))
2399 TryAgain
.push_back(TheCopy
);
2403 void SimpleRegisterCoalescing::joinIntervals() {
2404 DOUT
<< "********** JOINING INTERVALS ***********\n";
2407 JoinQueue
= new JoinPriorityQueue
<CopyRecSort
>(this);
2409 std::vector
<CopyRec
> TryAgainList
;
2410 if (loopInfo
->empty()) {
2411 // If there are no loops in the function, join intervals in function order.
2412 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();
2414 CopyCoalesceInMBB(I
, TryAgainList
);
2416 // Otherwise, join intervals in inner loops before other intervals.
2417 // Unfortunately we can't just iterate over loop hierarchy here because
2418 // there may be more MBB's than BB's. Collect MBB's for sorting.
2420 // Join intervals in the function prolog first. We want to join physical
2421 // registers with virtual registers before the intervals got too long.
2422 std::vector
<std::pair
<unsigned, MachineBasicBlock
*> > MBBs
;
2423 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();I
!= E
;++I
){
2424 MachineBasicBlock
*MBB
= I
;
2425 MBBs
.push_back(std::make_pair(loopInfo
->getLoopDepth(MBB
), I
));
2428 // Sort by loop depth.
2429 std::sort(MBBs
.begin(), MBBs
.end(), DepthMBBCompare());
2431 // Finally, join intervals in loop nest order.
2432 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
)
2433 CopyCoalesceInMBB(MBBs
[i
].second
, TryAgainList
);
2436 // Joining intervals can allow other intervals to be joined. Iteratively join
2437 // until we make no progress.
2439 SmallVector
<CopyRec
, 16> TryAgain
;
2440 bool ProgressMade
= true;
2441 while (ProgressMade
) {
2442 ProgressMade
= false;
2443 while (!JoinQueue
->empty()) {
2444 CopyRec R
= JoinQueue
->pop();
2446 bool Success
= JoinCopy(R
, Again
);
2448 ProgressMade
= true;
2450 TryAgain
.push_back(R
);
2454 while (!TryAgain
.empty()) {
2455 JoinQueue
->push(TryAgain
.back());
2456 TryAgain
.pop_back();
2461 bool ProgressMade
= true;
2462 while (ProgressMade
) {
2463 ProgressMade
= false;
2465 for (unsigned i
= 0, e
= TryAgainList
.size(); i
!= e
; ++i
) {
2466 CopyRec
&TheCopy
= TryAgainList
[i
];
2469 bool Success
= JoinCopy(TheCopy
, Again
);
2470 if (Success
|| !Again
) {
2471 TheCopy
.MI
= 0; // Mark this one as done.
2472 ProgressMade
= true;
2483 /// Return true if the two specified registers belong to different register
2484 /// classes. The registers may be either phys or virt regs.
2486 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA
,
2487 unsigned RegB
) const {
2488 // Get the register classes for the first reg.
2489 if (TargetRegisterInfo::isPhysicalRegister(RegA
)) {
2490 assert(TargetRegisterInfo::isVirtualRegister(RegB
) &&
2491 "Shouldn't consider two physregs!");
2492 return !mri_
->getRegClass(RegB
)->contains(RegA
);
2495 // Compare against the regclass for the second reg.
2496 const TargetRegisterClass
*RegClassA
= mri_
->getRegClass(RegA
);
2497 if (TargetRegisterInfo::isVirtualRegister(RegB
)) {
2498 const TargetRegisterClass
*RegClassB
= mri_
->getRegClass(RegB
);
2499 return RegClassA
!= RegClassB
;
2501 return !RegClassA
->contains(RegB
);
2504 /// lastRegisterUse - Returns the last use of the specific register between
2505 /// cycles Start and End or NULL if there are no uses.
2507 SimpleRegisterCoalescing::lastRegisterUse(unsigned Start
, unsigned End
,
2508 unsigned Reg
, unsigned &UseIdx
) const{
2510 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
2511 MachineOperand
*LastUse
= NULL
;
2512 for (MachineRegisterInfo::use_iterator I
= mri_
->use_begin(Reg
),
2513 E
= mri_
->use_end(); I
!= E
; ++I
) {
2514 MachineOperand
&Use
= I
.getOperand();
2515 MachineInstr
*UseMI
= Use
.getParent();
2516 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2517 if (tii_
->isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
2519 // Ignore identity copies.
2521 unsigned Idx
= li_
->getInstructionIndex(UseMI
);
2522 if (Idx
>= Start
&& Idx
< End
&& Idx
>= UseIdx
) {
2524 UseIdx
= li_
->getUseIndex(Idx
);
2530 int e
= (End
-1) / InstrSlots::NUM
* InstrSlots::NUM
;
2533 // Skip deleted instructions
2534 MachineInstr
*MI
= li_
->getInstructionFromIndex(e
);
2535 while ((e
- InstrSlots::NUM
) >= s
&& !MI
) {
2536 e
-= InstrSlots::NUM
;
2537 MI
= li_
->getInstructionFromIndex(e
);
2539 if (e
< s
|| MI
== NULL
)
2542 // Ignore identity copies.
2543 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2544 if (!(tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
2546 for (unsigned i
= 0, NumOps
= MI
->getNumOperands(); i
!= NumOps
; ++i
) {
2547 MachineOperand
&Use
= MI
->getOperand(i
);
2548 if (Use
.isReg() && Use
.isUse() && Use
.getReg() &&
2549 tri_
->regsOverlap(Use
.getReg(), Reg
)) {
2550 UseIdx
= li_
->getUseIndex(e
);
2555 e
-= InstrSlots::NUM
;
2562 void SimpleRegisterCoalescing::printRegName(unsigned reg
) const {
2563 if (TargetRegisterInfo::isPhysicalRegister(reg
))
2564 cerr
<< tri_
->getName(reg
);
2566 cerr
<< "%reg" << reg
;
2569 void SimpleRegisterCoalescing::releaseMemory() {
2570 JoinedCopies
.clear();
2571 ReMatCopies
.clear();
2575 static bool isZeroLengthInterval(LiveInterval
*li
) {
2576 for (LiveInterval::Ranges::const_iterator
2577 i
= li
->ranges
.begin(), e
= li
->ranges
.end(); i
!= e
; ++i
)
2578 if (i
->end
- i
->start
> LiveInterval::InstrSlots::NUM
)
2584 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction
&fn
) {
2586 mri_
= &fn
.getRegInfo();
2587 tm_
= &fn
.getTarget();
2588 tri_
= tm_
->getRegisterInfo();
2589 tii_
= tm_
->getInstrInfo();
2590 li_
= &getAnalysis
<LiveIntervals
>();
2591 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
2593 DEBUG(errs() << "********** SIMPLE REGISTER COALESCING **********\n"
2594 << "********** Function: "
2595 << ((Value
*)mf_
->getFunction())->getName() << '\n');
2597 allocatableRegs_
= tri_
->getAllocatableSet(fn
);
2598 for (TargetRegisterInfo::regclass_iterator I
= tri_
->regclass_begin(),
2599 E
= tri_
->regclass_end(); I
!= E
; ++I
)
2600 allocatableRCRegs_
.insert(std::make_pair(*I
,
2601 tri_
->getAllocatableSet(fn
, *I
)));
2603 // Join (coalesce) intervals if requested.
2604 if (EnableJoining
) {
2607 DOUT
<< "********** INTERVALS POST JOINING **********\n";
2608 for (LiveIntervals::iterator I
= li_
->begin(), E
= li_
->end(); I
!= E
; ++I
){
2609 I
->second
->print(DOUT
, tri_
);
2615 // Perform a final pass over the instructions and compute spill weights
2616 // and remove identity moves.
2617 SmallVector
<unsigned, 4> DeadDefs
;
2618 for (MachineFunction::iterator mbbi
= mf_
->begin(), mbbe
= mf_
->end();
2619 mbbi
!= mbbe
; ++mbbi
) {
2620 MachineBasicBlock
* mbb
= mbbi
;
2621 unsigned loopDepth
= loopInfo
->getLoopDepth(mbb
);
2623 for (MachineBasicBlock::iterator mii
= mbb
->begin(), mie
= mbb
->end();
2625 MachineInstr
*MI
= mii
;
2626 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2627 if (JoinedCopies
.count(MI
)) {
2628 // Delete all coalesced copies.
2629 if (!tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
)) {
2630 assert((MI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
||
2631 MI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
2632 MI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) &&
2633 "Unrecognized copy instruction");
2634 DstReg
= MI
->getOperand(0).getReg();
2636 if (MI
->registerDefIsDead(DstReg
)) {
2637 LiveInterval
&li
= li_
->getInterval(DstReg
);
2638 if (!ShortenDeadCopySrcLiveRange(li
, MI
))
2639 ShortenDeadCopyLiveRange(li
, MI
);
2641 li_
->RemoveMachineInstrFromMaps(MI
);
2642 mii
= mbbi
->erase(mii
);
2647 // Now check if this is a remat'ed def instruction which is now dead.
2648 if (ReMatDefs
.count(MI
)) {
2650 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2651 const MachineOperand
&MO
= MI
->getOperand(i
);
2654 unsigned Reg
= MO
.getReg();
2657 if (TargetRegisterInfo::isVirtualRegister(Reg
))
2658 DeadDefs
.push_back(Reg
);
2661 if (TargetRegisterInfo::isPhysicalRegister(Reg
) ||
2662 !mri_
->use_empty(Reg
)) {
2668 while (!DeadDefs
.empty()) {
2669 unsigned DeadDef
= DeadDefs
.back();
2670 DeadDefs
.pop_back();
2671 RemoveDeadDef(li_
->getInterval(DeadDef
), MI
);
2673 li_
->RemoveMachineInstrFromMaps(mii
);
2674 mii
= mbbi
->erase(mii
);
2680 // If the move will be an identity move delete it
2681 bool isMove
= tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
);
2682 if (isMove
&& SrcReg
== DstReg
) {
2683 if (li_
->hasInterval(SrcReg
)) {
2684 LiveInterval
&RegInt
= li_
->getInterval(SrcReg
);
2685 // If def of this move instruction is dead, remove its live range
2686 // from the dstination register's live interval.
2687 if (MI
->registerDefIsDead(DstReg
)) {
2688 if (!ShortenDeadCopySrcLiveRange(RegInt
, MI
))
2689 ShortenDeadCopyLiveRange(RegInt
, MI
);
2692 li_
->RemoveMachineInstrFromMaps(MI
);
2693 mii
= mbbi
->erase(mii
);
2696 SmallSet
<unsigned, 4> UniqueUses
;
2697 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2698 const MachineOperand
&mop
= MI
->getOperand(i
);
2699 if (mop
.isReg() && mop
.getReg() &&
2700 TargetRegisterInfo::isVirtualRegister(mop
.getReg())) {
2701 unsigned reg
= mop
.getReg();
2702 // Multiple uses of reg by the same instruction. It should not
2703 // contribute to spill weight again.
2704 if (UniqueUses
.count(reg
) != 0)
2706 LiveInterval
&RegInt
= li_
->getInterval(reg
);
2708 li_
->getSpillWeight(mop
.isDef(), mop
.isUse(), loopDepth
);
2709 UniqueUses
.insert(reg
);
2717 for (LiveIntervals::iterator I
= li_
->begin(), E
= li_
->end(); I
!= E
; ++I
) {
2718 LiveInterval
&LI
= *I
->second
;
2719 if (TargetRegisterInfo::isVirtualRegister(LI
.reg
)) {
2720 // If the live interval length is essentially zero, i.e. in every live
2721 // range the use follows def immediately, it doesn't make sense to spill
2722 // it and hope it will be easier to allocate for this li.
2723 if (isZeroLengthInterval(&LI
))
2724 LI
.weight
= HUGE_VALF
;
2726 bool isLoad
= false;
2727 SmallVector
<LiveInterval
*, 4> SpillIs
;
2728 if (li_
->isReMaterializable(LI
, SpillIs
, isLoad
)) {
2729 // If all of the definitions of the interval are re-materializable,
2730 // it is a preferred candidate for spilling. If non of the defs are
2731 // loads, then it's potentially very cheap to re-materialize.
2732 // FIXME: this gets much more complicated once we support non-trivial
2733 // re-materialization.
2741 // Slightly prefer live interval that has been assigned a preferred reg.
2742 std::pair
<unsigned, unsigned> Hint
= mri_
->getRegAllocationHint(LI
.reg
);
2743 if (Hint
.first
|| Hint
.second
)
2746 // Divide the weight of the interval by its size. This encourages
2747 // spilling of intervals that are large and have few uses, and
2748 // discourages spilling of small intervals with many uses.
2749 LI
.weight
/= li_
->getApproximateInstructionCount(LI
) * InstrSlots::NUM
;
2757 /// print - Implement the dump method.
2758 void SimpleRegisterCoalescing::print(std::ostream
&O
, const Module
* m
) const {
2762 RegisterCoalescer
* llvm::createSimpleRegisterCoalescer() {
2763 return new SimpleRegisterCoalescing();
2766 // Make sure that anything that uses RegisterCoalescer pulls in this file...
2767 DEFINING_FILE_FOR(SimpleRegisterCoalescing
)