It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / CodeGen / SimpleRegisterCoalescing.cpp
blobb57bbc2ca5ebd15fd9a4393e487e326060552a06
1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/Value.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterCoalescer.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include <algorithm>
37 #include <cmath>
38 using namespace llvm;
40 STATISTIC(numJoins , "Number of interval joins performed");
41 STATISTIC(numCrossRCs , "Number of cross class joins performed");
42 STATISTIC(numCommutes , "Number of instruction commuting performed");
43 STATISTIC(numExtends , "Number of copies extended");
44 STATISTIC(NumReMats , "Number of instructions re-materialized");
45 STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
46 STATISTIC(numAborts , "Number of times interval joining aborted");
47 STATISTIC(numDeadValNo, "Number of valno def marked dead");
49 char SimpleRegisterCoalescing::ID = 0;
50 static cl::opt<bool>
51 EnableJoining("join-liveintervals",
52 cl::desc("Coalesce copies (default=true)"),
53 cl::init(true));
55 static cl::opt<bool>
56 NewHeuristic("new-coalescer-heuristic",
57 cl::desc("Use new coalescer heuristic"),
58 cl::init(false), cl::Hidden);
60 static cl::opt<bool>
61 DisableCrossClassJoin("disable-cross-class-join",
62 cl::desc("Avoid coalescing cross register class copies"),
63 cl::init(false), cl::Hidden);
65 static cl::opt<bool>
66 PhysJoinTweak("tweak-phys-join-heuristics",
67 cl::desc("Tweak heuristics for joining phys reg with vr"),
68 cl::init(false), cl::Hidden);
70 static RegisterPass<SimpleRegisterCoalescing>
71 X("simple-register-coalescing", "Simple Register Coalescing");
73 // Declare that we implement the RegisterCoalescer interface
74 static RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
76 const PassInfo *const llvm::SimpleRegisterCoalescingID = &X;
78 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
79 AU.setPreservesCFG();
80 AU.addRequired<LiveIntervals>();
81 AU.addPreserved<LiveIntervals>();
82 AU.addRequired<MachineLoopInfo>();
83 AU.addPreserved<MachineLoopInfo>();
84 AU.addPreservedID(MachineDominatorsID);
85 if (StrongPHIElim)
86 AU.addPreservedID(StrongPHIEliminationID);
87 else
88 AU.addPreservedID(PHIEliminationID);
89 AU.addPreservedID(TwoAddressInstructionPassID);
90 MachineFunctionPass::getAnalysisUsage(AU);
93 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
94 /// being the source and IntB being the dest, thus this defines a value number
95 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
96 /// see if we can merge these two pieces of B into a single value number,
97 /// eliminating a copy. For example:
98 ///
99 /// A3 = B0
100 /// ...
101 /// B1 = A3 <- this copy
103 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
104 /// value number to be replaced with B0 (which simplifies the B liveinterval).
106 /// This returns true if an interval was modified.
108 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
109 LiveInterval &IntB,
110 MachineInstr *CopyMI) {
111 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
113 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
114 // the example above.
115 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
116 assert(BLR != IntB.end() && "Live range not found!");
117 VNInfo *BValNo = BLR->valno;
119 // Get the location that B is defined at. Two options: either this value has
120 // an unknown definition point or it is defined at CopyIdx. If unknown, we
121 // can't process it.
122 if (!BValNo->copy) return false;
123 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
125 // AValNo is the value number in A that defines the copy, A3 in the example.
126 unsigned CopyUseIdx = li_->getUseIndex(CopyIdx);
127 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
128 assert(ALR != IntA.end() && "Live range not found!");
129 VNInfo *AValNo = ALR->valno;
130 // If it's re-defined by an early clobber somewhere in the live range, then
131 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
132 // See PR3149:
133 // 172 %ECX<def> = MOV32rr %reg1039<kill>
134 // 180 INLINEASM <es:subl $5,$1
135 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
136 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
137 // 188 %EAX<def> = MOV32rr %EAX<kill>
138 // 196 %ECX<def> = MOV32rr %ECX<kill>
139 // 204 %ECX<def> = MOV32rr %ECX<kill>
140 // 212 %EAX<def> = MOV32rr %EAX<kill>
141 // 220 %EAX<def> = MOV32rr %EAX
142 // 228 %reg1039<def> = MOV32rr %ECX<kill>
143 // The early clobber operand ties ECX input to the ECX def.
145 // The live interval of ECX is represented as this:
146 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
147 // The coalescer has no idea there was a def in the middle of [174,230].
148 if (AValNo->hasRedefByEC())
149 return false;
151 // If AValNo is defined as a copy from IntB, we can potentially process this.
152 // Get the instruction that defines this value number.
153 unsigned SrcReg = li_->getVNInfoSourceReg(AValNo);
154 if (!SrcReg) return false; // Not defined by a copy.
156 // If the value number is not defined by a copy instruction, ignore it.
158 // If the source register comes from an interval other than IntB, we can't
159 // handle this.
160 if (SrcReg != IntB.reg) return false;
162 // Get the LiveRange in IntB that this value number starts with.
163 LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1);
164 assert(ValLR != IntB.end() && "Live range not found!");
166 // Make sure that the end of the live range is inside the same block as
167 // CopyMI.
168 MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1);
169 if (!ValLREndInst ||
170 ValLREndInst->getParent() != CopyMI->getParent()) return false;
172 // Okay, we now know that ValLR ends in the same block that the CopyMI
173 // live-range starts. If there are no intervening live ranges between them in
174 // IntB, we can merge them.
175 if (ValLR+1 != BLR) return false;
177 // If a live interval is a physical register, conservatively check if any
178 // of its sub-registers is overlapping the live interval of the virtual
179 // register. If so, do not coalesce.
180 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
181 *tri_->getSubRegisters(IntB.reg)) {
182 for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
183 if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
184 DOUT << "Interfere with sub-register ";
185 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
186 return false;
190 DOUT << "\nExtending: "; IntB.print(DOUT, tri_);
192 unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
193 // We are about to delete CopyMI, so need to remove it as the 'instruction
194 // that defines this value #'. Update the the valnum with the new defining
195 // instruction #.
196 BValNo->def = FillerStart;
197 BValNo->copy = NULL;
199 // Okay, we can merge them. We need to insert a new liverange:
200 // [ValLR.end, BLR.begin) of either value number, then we merge the
201 // two value numbers.
202 IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
204 // If the IntB live range is assigned to a physical register, and if that
205 // physreg has sub-registers, update their live intervals as well.
206 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
207 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
208 LiveInterval &SRLI = li_->getInterval(*SR);
209 SRLI.addRange(LiveRange(FillerStart, FillerEnd,
210 SRLI.getNextValue(FillerStart, 0, true,
211 li_->getVNInfoAllocator())));
215 // Okay, merge "B1" into the same value number as "B0".
216 if (BValNo != ValLR->valno) {
217 IntB.addKills(ValLR->valno, BValNo->kills);
218 IntB.MergeValueNumberInto(BValNo, ValLR->valno);
220 DOUT << " result = "; IntB.print(DOUT, tri_);
221 DOUT << "\n";
223 // If the source instruction was killing the source register before the
224 // merge, unset the isKill marker given the live range has been extended.
225 int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
226 if (UIdx != -1) {
227 ValLREndInst->getOperand(UIdx).setIsKill(false);
228 IntB.removeKill(ValLR->valno, FillerStart);
231 // If the copy instruction was killing the destination register before the
232 // merge, find the last use and trim the live range. That will also add the
233 // isKill marker.
234 if (CopyMI->killsRegister(IntA.reg))
235 TrimLiveIntervalToLastUse(CopyUseIdx, CopyMI->getParent(), IntA, ALR);
237 ++numExtends;
238 return true;
241 /// HasOtherReachingDefs - Return true if there are definitions of IntB
242 /// other than BValNo val# that can reach uses of AValno val# of IntA.
243 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
244 LiveInterval &IntB,
245 VNInfo *AValNo,
246 VNInfo *BValNo) {
247 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
248 AI != AE; ++AI) {
249 if (AI->valno != AValNo) continue;
250 LiveInterval::Ranges::iterator BI =
251 std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
252 if (BI != IntB.ranges.begin())
253 --BI;
254 for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
255 if (BI->valno == BValNo)
256 continue;
257 if (BI->start <= AI->start && BI->end > AI->start)
258 return true;
259 if (BI->start > AI->start && BI->start < AI->end)
260 return true;
263 return false;
266 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
267 /// being the source and IntB being the dest, thus this defines a value number
268 /// in IntB. If the source value number (in IntA) is defined by a commutable
269 /// instruction and its other operand is coalesced to the copy dest register,
270 /// see if we can transform the copy into a noop by commuting the definition. For
271 /// example,
273 /// A3 = op A2 B0<kill>
274 /// ...
275 /// B1 = A3 <- this copy
276 /// ...
277 /// = op A3 <- more uses
279 /// ==>
281 /// B2 = op B0 A2<kill>
282 /// ...
283 /// B1 = B2 <- now an identify copy
284 /// ...
285 /// = op B2 <- more uses
287 /// This returns true if an interval was modified.
289 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
290 LiveInterval &IntB,
291 MachineInstr *CopyMI) {
292 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
294 // FIXME: For now, only eliminate the copy by commuting its def when the
295 // source register is a virtual register. We want to guard against cases
296 // where the copy is a back edge copy and commuting the def lengthen the
297 // live interval of the source register to the entire loop.
298 if (TargetRegisterInfo::isPhysicalRegister(IntA.reg))
299 return false;
301 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
302 // the example above.
303 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
304 assert(BLR != IntB.end() && "Live range not found!");
305 VNInfo *BValNo = BLR->valno;
307 // Get the location that B is defined at. Two options: either this value has
308 // an unknown definition point or it is defined at CopyIdx. If unknown, we
309 // can't process it.
310 if (!BValNo->copy) return false;
311 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
313 // AValNo is the value number in A that defines the copy, A3 in the example.
314 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1);
315 assert(ALR != IntA.end() && "Live range not found!");
316 VNInfo *AValNo = ALR->valno;
317 // If other defs can reach uses of this def, then it's not safe to perform
318 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
319 // tested?
320 if (AValNo->isPHIDef() || !AValNo->isDefAccurate() ||
321 AValNo->isUnused() || AValNo->hasPHIKill())
322 return false;
323 MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
324 const TargetInstrDesc &TID = DefMI->getDesc();
325 if (!TID.isCommutable())
326 return false;
327 // If DefMI is a two-address instruction then commuting it will change the
328 // destination register.
329 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
330 assert(DefIdx != -1);
331 unsigned UseOpIdx;
332 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
333 return false;
334 unsigned Op1, Op2, NewDstIdx;
335 if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
336 return false;
337 if (Op1 == UseOpIdx)
338 NewDstIdx = Op2;
339 else if (Op2 == UseOpIdx)
340 NewDstIdx = Op1;
341 else
342 return false;
344 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
345 unsigned NewReg = NewDstMO.getReg();
346 if (NewReg != IntB.reg || !NewDstMO.isKill())
347 return false;
349 // Make sure there are no other definitions of IntB that would reach the
350 // uses which the new definition can reach.
351 if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
352 return false;
354 // If some of the uses of IntA.reg is already coalesced away, return false.
355 // It's not possible to determine whether it's safe to perform the coalescing.
356 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
357 UE = mri_->use_end(); UI != UE; ++UI) {
358 MachineInstr *UseMI = &*UI;
359 unsigned UseIdx = li_->getInstructionIndex(UseMI);
360 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
361 if (ULR == IntA.end())
362 continue;
363 if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
364 return false;
367 // At this point we have decided that it is legal to do this
368 // transformation. Start by commuting the instruction.
369 MachineBasicBlock *MBB = DefMI->getParent();
370 MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
371 if (!NewMI)
372 return false;
373 if (NewMI != DefMI) {
374 li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
375 MBB->insert(DefMI, NewMI);
376 MBB->erase(DefMI);
378 unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
379 NewMI->getOperand(OpIdx).setIsKill();
381 bool BHasPHIKill = BValNo->hasPHIKill();
382 SmallVector<VNInfo*, 4> BDeadValNos;
383 VNInfo::KillSet BKills;
384 std::map<unsigned, unsigned> BExtend;
386 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
387 // A = or A, B
388 // ...
389 // B = A
390 // ...
391 // C = A<kill>
392 // ...
393 // = B
395 // then do not add kills of A to the newly created B interval.
396 bool Extended = BLR->end > ALR->end && ALR->end != ALR->start;
397 if (Extended)
398 BExtend[ALR->end] = BLR->end;
400 // Update uses of IntA of the specific Val# with IntB.
401 bool BHasSubRegs = false;
402 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
403 BHasSubRegs = *tri_->getSubRegisters(IntB.reg);
404 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
405 UE = mri_->use_end(); UI != UE;) {
406 MachineOperand &UseMO = UI.getOperand();
407 MachineInstr *UseMI = &*UI;
408 ++UI;
409 if (JoinedCopies.count(UseMI))
410 continue;
411 unsigned UseIdx = li_->getInstructionIndex(UseMI);
412 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
413 if (ULR == IntA.end() || ULR->valno != AValNo)
414 continue;
415 UseMO.setReg(NewReg);
416 if (UseMI == CopyMI)
417 continue;
418 if (UseMO.isKill()) {
419 if (Extended)
420 UseMO.setIsKill(false);
421 else
422 BKills.push_back(VNInfo::KillInfo(false, li_->getUseIndex(UseIdx)+1));
424 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
425 if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
426 continue;
427 if (DstReg == IntB.reg) {
428 // This copy will become a noop. If it's defining a new val#,
429 // remove that val# as well. However this live range is being
430 // extended to the end of the existing live range defined by the copy.
431 unsigned DefIdx = li_->getDefIndex(UseIdx);
432 const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
433 BHasPHIKill |= DLR->valno->hasPHIKill();
434 assert(DLR->valno->def == DefIdx);
435 BDeadValNos.push_back(DLR->valno);
436 BExtend[DLR->start] = DLR->end;
437 JoinedCopies.insert(UseMI);
438 // If this is a kill but it's going to be removed, the last use
439 // of the same val# is the new kill.
440 if (UseMO.isKill())
441 BKills.pop_back();
445 // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
446 // simply extend BLR if CopyMI doesn't end the range.
447 DOUT << "\nExtending: "; IntB.print(DOUT, tri_);
449 // Remove val#'s defined by copies that will be coalesced away.
450 for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) {
451 VNInfo *DeadVNI = BDeadValNos[i];
452 if (BHasSubRegs) {
453 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
454 LiveInterval &SRLI = li_->getInterval(*SR);
455 const LiveRange *SRLR = SRLI.getLiveRangeContaining(DeadVNI->def);
456 SRLI.removeValNo(SRLR->valno);
459 IntB.removeValNo(BDeadValNos[i]);
462 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
463 // is updated. Kills are also updated.
464 VNInfo *ValNo = BValNo;
465 ValNo->def = AValNo->def;
466 ValNo->copy = NULL;
467 for (unsigned j = 0, ee = ValNo->kills.size(); j != ee; ++j) {
468 unsigned Kill = ValNo->kills[j].killIdx;
469 if (Kill != BLR->end)
470 BKills.push_back(VNInfo::KillInfo(ValNo->kills[j].isPHIKill, Kill));
472 ValNo->kills.clear();
473 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
474 AI != AE; ++AI) {
475 if (AI->valno != AValNo) continue;
476 unsigned End = AI->end;
477 std::map<unsigned, unsigned>::iterator EI = BExtend.find(End);
478 if (EI != BExtend.end())
479 End = EI->second;
480 IntB.addRange(LiveRange(AI->start, End, ValNo));
482 // If the IntB live range is assigned to a physical register, and if that
483 // physreg has sub-registers, update their live intervals as well.
484 if (BHasSubRegs) {
485 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
486 LiveInterval &SRLI = li_->getInterval(*SR);
487 SRLI.MergeInClobberRange(AI->start, End, li_->getVNInfoAllocator());
491 IntB.addKills(ValNo, BKills);
492 ValNo->setHasPHIKill(BHasPHIKill);
494 DOUT << " result = "; IntB.print(DOUT, tri_);
495 DOUT << "\n";
497 DOUT << "\nShortening: "; IntA.print(DOUT, tri_);
498 IntA.removeValNo(AValNo);
499 DOUT << " result = "; IntA.print(DOUT, tri_);
500 DOUT << "\n";
502 ++numCommutes;
503 return true;
506 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
507 /// fallthoughs to SuccMBB.
508 static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
509 MachineBasicBlock *SuccMBB,
510 const TargetInstrInfo *tii_) {
511 if (MBB == SuccMBB)
512 return true;
513 MachineBasicBlock *TBB = 0, *FBB = 0;
514 SmallVector<MachineOperand, 4> Cond;
515 return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
516 MBB->isSuccessor(SuccMBB);
519 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
520 /// from a physical register live interval as well as from the live intervals
521 /// of its sub-registers.
522 static void removeRange(LiveInterval &li, unsigned Start, unsigned End,
523 LiveIntervals *li_, const TargetRegisterInfo *tri_) {
524 li.removeRange(Start, End, true);
525 if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
526 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
527 if (!li_->hasInterval(*SR))
528 continue;
529 LiveInterval &sli = li_->getInterval(*SR);
530 unsigned RemoveEnd = Start;
531 while (RemoveEnd != End) {
532 LiveInterval::iterator LR = sli.FindLiveRangeContaining(Start);
533 if (LR == sli.end())
534 break;
535 RemoveEnd = (LR->end < End) ? LR->end : End;
536 sli.removeRange(Start, RemoveEnd, true);
537 Start = RemoveEnd;
543 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
544 /// as the copy instruction, trim the live interval to the last use and return
545 /// true.
546 bool
547 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx,
548 MachineBasicBlock *CopyMBB,
549 LiveInterval &li,
550 const LiveRange *LR) {
551 unsigned MBBStart = li_->getMBBStartIdx(CopyMBB);
552 unsigned LastUseIdx;
553 MachineOperand *LastUse = lastRegisterUse(LR->start, CopyIdx-1, li.reg,
554 LastUseIdx);
555 if (LastUse) {
556 MachineInstr *LastUseMI = LastUse->getParent();
557 if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
558 // r1024 = op
559 // ...
560 // BB1:
561 // = r1024
563 // BB2:
564 // r1025<dead> = r1024<kill>
565 if (MBBStart < LR->end)
566 removeRange(li, MBBStart, LR->end, li_, tri_);
567 return true;
570 // There are uses before the copy, just shorten the live range to the end
571 // of last use.
572 LastUse->setIsKill();
573 removeRange(li, li_->getDefIndex(LastUseIdx), LR->end, li_, tri_);
574 li.addKill(LR->valno, LastUseIdx+1, false);
575 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
576 if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
577 DstReg == li.reg) {
578 // Last use is itself an identity code.
579 int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg, false, tri_);
580 LastUseMI->getOperand(DeadIdx).setIsDead();
582 return true;
585 // Is it livein?
586 if (LR->start <= MBBStart && LR->end > MBBStart) {
587 if (LR->start == 0) {
588 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
589 // Live-in to the function but dead. Remove it from entry live-in set.
590 mf_->begin()->removeLiveIn(li.reg);
592 // FIXME: Shorten intervals in BBs that reaches this BB.
595 return false;
598 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
599 /// computation, replace the copy by rematerialize the definition.
600 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
601 unsigned DstReg,
602 unsigned DstSubIdx,
603 MachineInstr *CopyMI) {
604 unsigned CopyIdx = li_->getUseIndex(li_->getInstructionIndex(CopyMI));
605 LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
606 assert(SrcLR != SrcInt.end() && "Live range not found!");
607 VNInfo *ValNo = SrcLR->valno;
608 // If other defs can reach uses of this def, then it's not safe to perform
609 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
610 // tested?
611 if (ValNo->isPHIDef() || !ValNo->isDefAccurate() ||
612 ValNo->isUnused() || ValNo->hasPHIKill())
613 return false;
614 MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
615 const TargetInstrDesc &TID = DefMI->getDesc();
616 if (!TID.isAsCheapAsAMove())
617 return false;
618 if (!DefMI->getDesc().isRematerializable() ||
619 !tii_->isTriviallyReMaterializable(DefMI))
620 return false;
621 bool SawStore = false;
622 if (!DefMI->isSafeToMove(tii_, SawStore))
623 return false;
624 if (TID.getNumDefs() != 1)
625 return false;
626 if (DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF) {
627 // Make sure the copy destination register class fits the instruction
628 // definition register class. The mismatch can happen as a result of earlier
629 // extract_subreg, insert_subreg, subreg_to_reg coalescing.
630 const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_);
631 if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
632 if (mri_->getRegClass(DstReg) != RC)
633 return false;
634 } else if (!RC->contains(DstReg))
635 return false;
638 unsigned DefIdx = li_->getDefIndex(CopyIdx);
639 const LiveRange *DLR= li_->getInterval(DstReg).getLiveRangeContaining(DefIdx);
640 DLR->valno->copy = NULL;
641 // Don't forget to update sub-register intervals.
642 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
643 for (const unsigned* SR = tri_->getSubRegisters(DstReg); *SR; ++SR) {
644 if (!li_->hasInterval(*SR))
645 continue;
646 DLR = li_->getInterval(*SR).getLiveRangeContaining(DefIdx);
647 if (DLR && DLR->valno->copy == CopyMI)
648 DLR->valno->copy = NULL;
652 // If copy kills the source register, find the last use and propagate
653 // kill.
654 bool checkForDeadDef = false;
655 MachineBasicBlock *MBB = CopyMI->getParent();
656 if (CopyMI->killsRegister(SrcInt.reg))
657 if (!TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR)) {
658 checkForDeadDef = true;
661 MachineBasicBlock::iterator MII = next(MachineBasicBlock::iterator(CopyMI));
662 tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI);
663 MachineInstr *NewMI = prior(MII);
665 if (checkForDeadDef) {
666 // PR4090 fix: Trim interval failed because there was no use of the
667 // source interval in this MBB. If the def is in this MBB too then we
668 // should mark it dead:
669 if (DefMI->getParent() == MBB) {
670 DefMI->addRegisterDead(SrcInt.reg, tri_);
671 SrcLR->end = SrcLR->start + 1;
675 // CopyMI may have implicit operands, transfer them over to the newly
676 // rematerialized instruction. And update implicit def interval valnos.
677 for (unsigned i = CopyMI->getDesc().getNumOperands(),
678 e = CopyMI->getNumOperands(); i != e; ++i) {
679 MachineOperand &MO = CopyMI->getOperand(i);
680 if (MO.isReg() && MO.isImplicit())
681 NewMI->addOperand(MO);
682 if (MO.isDef() && li_->hasInterval(MO.getReg())) {
683 unsigned Reg = MO.getReg();
684 DLR = li_->getInterval(Reg).getLiveRangeContaining(DefIdx);
685 if (DLR && DLR->valno->copy == CopyMI)
686 DLR->valno->copy = NULL;
690 li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
691 CopyMI->eraseFromParent();
692 ReMatCopies.insert(CopyMI);
693 ReMatDefs.insert(DefMI);
694 ++NumReMats;
695 return true;
698 /// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
700 bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr *CopyMI,
701 unsigned DstReg) const {
702 MachineBasicBlock *MBB = CopyMI->getParent();
703 const MachineLoop *L = loopInfo->getLoopFor(MBB);
704 if (!L)
705 return false;
706 if (MBB != L->getLoopLatch())
707 return false;
709 LiveInterval &LI = li_->getInterval(DstReg);
710 unsigned DefIdx = li_->getInstructionIndex(CopyMI);
711 LiveInterval::const_iterator DstLR =
712 LI.FindLiveRangeContaining(li_->getDefIndex(DefIdx));
713 if (DstLR == LI.end())
714 return false;
715 if (DstLR->valno->kills.size() == 1 && DstLR->valno->kills[0].isPHIKill)
716 return true;
717 return false;
720 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
721 /// update the subregister number if it is not zero. If DstReg is a
722 /// physical register and the existing subregister number of the def / use
723 /// being updated is not zero, make sure to set it to the correct physical
724 /// subregister.
725 void
726 SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg,
727 unsigned SubIdx) {
728 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
729 if (DstIsPhys && SubIdx) {
730 // Figure out the real physical register we are updating with.
731 DstReg = tri_->getSubReg(DstReg, SubIdx);
732 SubIdx = 0;
735 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
736 E = mri_->reg_end(); I != E; ) {
737 MachineOperand &O = I.getOperand();
738 MachineInstr *UseMI = &*I;
739 ++I;
740 unsigned OldSubIdx = O.getSubReg();
741 if (DstIsPhys) {
742 unsigned UseDstReg = DstReg;
743 if (OldSubIdx)
744 UseDstReg = tri_->getSubReg(DstReg, OldSubIdx);
746 unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
747 if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
748 CopySrcSubIdx, CopyDstSubIdx) &&
749 CopySrcReg != CopyDstReg &&
750 CopySrcReg == SrcReg && CopyDstReg != UseDstReg) {
751 // If the use is a copy and it won't be coalesced away, and its source
752 // is defined by a trivial computation, try to rematerialize it instead.
753 if (ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg,
754 CopyDstSubIdx, UseMI))
755 continue;
758 O.setReg(UseDstReg);
759 O.setSubReg(0);
760 continue;
763 // Sub-register indexes goes from small to large. e.g.
764 // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
765 // EAX: 1 -> AL, 2 -> AX
766 // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
767 // sub-register 2 is also AX.
768 if (SubIdx && OldSubIdx && SubIdx != OldSubIdx)
769 assert(OldSubIdx < SubIdx && "Conflicting sub-register index!");
770 else if (SubIdx)
771 O.setSubReg(SubIdx);
772 // Remove would-be duplicated kill marker.
773 if (O.isKill() && UseMI->killsRegister(DstReg))
774 O.setIsKill(false);
775 O.setReg(DstReg);
777 // After updating the operand, check if the machine instruction has
778 // become a copy. If so, update its val# information.
779 if (JoinedCopies.count(UseMI))
780 continue;
782 const TargetInstrDesc &TID = UseMI->getDesc();
783 unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
784 if (TID.getNumDefs() == 1 && TID.getNumOperands() > 2 &&
785 tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
786 CopySrcSubIdx, CopyDstSubIdx) &&
787 CopySrcReg != CopyDstReg &&
788 (TargetRegisterInfo::isVirtualRegister(CopyDstReg) ||
789 allocatableRegs_[CopyDstReg])) {
790 LiveInterval &LI = li_->getInterval(CopyDstReg);
791 unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(UseMI));
792 if (const LiveRange *DLR = LI.getLiveRangeContaining(DefIdx)) {
793 if (DLR->valno->def == DefIdx)
794 DLR->valno->copy = UseMI;
800 /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
801 /// due to live range lengthening as the result of coalescing.
802 void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg,
803 LiveInterval &LI) {
804 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(Reg),
805 UE = mri_->use_end(); UI != UE; ++UI) {
806 MachineOperand &UseMO = UI.getOperand();
807 if (!UseMO.isKill())
808 continue;
809 MachineInstr *UseMI = UseMO.getParent();
810 unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI));
811 const LiveRange *LR = LI.getLiveRangeContaining(UseIdx);
812 if (!LR || !LI.isKill(LR->valno, UseIdx+1)) {
813 if (LR->valno->def != UseIdx+1) {
814 // Interesting problem. After coalescing reg1027's def and kill are both
815 // at the same point: %reg1027,0.000000e+00 = [56,814:0) 0@70-(814)
817 // bb5:
818 // 60 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
819 // 68 %reg1027<def> = t2LDRi12 %reg1027<kill>, 8, 14, %reg0
820 // 76 t2CMPzri %reg1038<kill,undef>, 0, 14, %reg0, %CPSR<imp-def>
821 // 84 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
822 // 96 t2Bcc mbb<bb5,0x2030910>, 1, %CPSR<kill>
824 // Do not remove the kill marker on t2LDRi12.
825 UseMO.setIsKill(false);
831 /// removeIntervalIfEmpty - Check if the live interval of a physical register
832 /// is empty, if so remove it and also remove the empty intervals of its
833 /// sub-registers. Return true if live interval is removed.
834 static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
835 const TargetRegisterInfo *tri_) {
836 if (li.empty()) {
837 if (TargetRegisterInfo::isPhysicalRegister(li.reg))
838 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
839 if (!li_->hasInterval(*SR))
840 continue;
841 LiveInterval &sli = li_->getInterval(*SR);
842 if (sli.empty())
843 li_->removeInterval(*SR);
845 li_->removeInterval(li.reg);
846 return true;
848 return false;
851 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
852 /// Return true if live interval is removed.
853 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
854 MachineInstr *CopyMI) {
855 unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
856 LiveInterval::iterator MLR =
857 li.FindLiveRangeContaining(li_->getDefIndex(CopyIdx));
858 if (MLR == li.end())
859 return false; // Already removed by ShortenDeadCopySrcLiveRange.
860 unsigned RemoveStart = MLR->start;
861 unsigned RemoveEnd = MLR->end;
862 unsigned DefIdx = li_->getDefIndex(CopyIdx);
863 // Remove the liverange that's defined by this.
864 if (RemoveStart == DefIdx && RemoveEnd == DefIdx+1) {
865 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
866 return removeIntervalIfEmpty(li, li_, tri_);
868 return false;
871 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
872 /// the val# it defines. If the live interval becomes empty, remove it as well.
873 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
874 MachineInstr *DefMI) {
875 unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(DefMI));
876 LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
877 if (DefIdx != MLR->valno->def)
878 return false;
879 li.removeValNo(MLR->valno);
880 return removeIntervalIfEmpty(li, li_, tri_);
883 /// PropagateDeadness - Propagate the dead marker to the instruction which
884 /// defines the val#.
885 static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
886 unsigned &LRStart, LiveIntervals *li_,
887 const TargetRegisterInfo* tri_) {
888 MachineInstr *DefMI =
889 li_->getInstructionFromIndex(li_->getDefIndex(LRStart));
890 if (DefMI && DefMI != CopyMI) {
891 int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg, false, tri_);
892 if (DeadIdx != -1) {
893 DefMI->getOperand(DeadIdx).setIsDead();
894 // A dead def should have a single cycle interval.
895 ++LRStart;
900 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
901 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
902 /// ends the live range there. If there isn't another use, then this live range
903 /// is dead. Return true if live interval is removed.
904 bool
905 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
906 MachineInstr *CopyMI) {
907 unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
908 if (CopyIdx == 0) {
909 // FIXME: special case: function live in. It can be a general case if the
910 // first instruction index starts at > 0 value.
911 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
912 // Live-in to the function but dead. Remove it from entry live-in set.
913 if (mf_->begin()->isLiveIn(li.reg))
914 mf_->begin()->removeLiveIn(li.reg);
915 const LiveRange *LR = li.getLiveRangeContaining(CopyIdx);
916 removeRange(li, LR->start, LR->end, li_, tri_);
917 return removeIntervalIfEmpty(li, li_, tri_);
920 LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx-1);
921 if (LR == li.end())
922 // Livein but defined by a phi.
923 return false;
925 unsigned RemoveStart = LR->start;
926 unsigned RemoveEnd = li_->getDefIndex(CopyIdx)+1;
927 if (LR->end > RemoveEnd)
928 // More uses past this copy? Nothing to do.
929 return false;
931 // If there is a last use in the same bb, we can't remove the live range.
932 // Shorten the live interval and return.
933 MachineBasicBlock *CopyMBB = CopyMI->getParent();
934 if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
935 return false;
937 // There are other kills of the val#. Nothing to do.
938 if (!li.isOnlyLROfValNo(LR))
939 return false;
941 MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
942 if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
943 // If the live range starts in another mbb and the copy mbb is not a fall
944 // through mbb, then we can only cut the range from the beginning of the
945 // copy mbb.
946 RemoveStart = li_->getMBBStartIdx(CopyMBB) + 1;
948 if (LR->valno->def == RemoveStart) {
949 // If the def MI defines the val# and this copy is the only kill of the
950 // val#, then propagate the dead marker.
951 PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
952 ++numDeadValNo;
954 if (li.isKill(LR->valno, RemoveEnd))
955 li.removeKill(LR->valno, RemoveEnd);
958 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
959 return removeIntervalIfEmpty(li, li_, tri_);
962 /// CanCoalesceWithImpDef - Returns true if the specified copy instruction
963 /// from an implicit def to another register can be coalesced away.
964 bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr *CopyMI,
965 LiveInterval &li,
966 LiveInterval &ImpLi) const{
967 if (!CopyMI->killsRegister(ImpLi.reg))
968 return false;
969 // Make sure this is the only use.
970 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(ImpLi.reg),
971 UE = mri_->use_end(); UI != UE;) {
972 MachineInstr *UseMI = &*UI;
973 ++UI;
974 if (CopyMI == UseMI || JoinedCopies.count(UseMI))
975 continue;
976 return false;
978 return true;
982 /// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
983 /// a virtual destination register with physical source register.
984 bool
985 SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI,
986 MachineBasicBlock *CopyMBB,
987 LiveInterval &DstInt,
988 LiveInterval &SrcInt) {
989 // If the virtual register live interval is long but it has low use desity,
990 // do not join them, instead mark the physical register as its allocation
991 // preference.
992 const TargetRegisterClass *RC = mri_->getRegClass(DstInt.reg);
993 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
994 unsigned Length = li_->getApproximateInstructionCount(DstInt);
995 if (Length > Threshold &&
996 (((float)std::distance(mri_->use_begin(DstInt.reg),
997 mri_->use_end()) / Length) < (1.0 / Threshold)))
998 return false;
1000 // If the virtual register live interval extends into a loop, turn down
1001 // aggressiveness.
1002 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1003 const MachineLoop *L = loopInfo->getLoopFor(CopyMBB);
1004 if (!L) {
1005 // Let's see if the virtual register live interval extends into the loop.
1006 LiveInterval::iterator DLR = DstInt.FindLiveRangeContaining(CopyIdx);
1007 assert(DLR != DstInt.end() && "Live range not found!");
1008 DLR = DstInt.FindLiveRangeContaining(DLR->end+1);
1009 if (DLR != DstInt.end()) {
1010 CopyMBB = li_->getMBBFromIndex(DLR->start);
1011 L = loopInfo->getLoopFor(CopyMBB);
1015 if (!L || Length <= Threshold)
1016 return true;
1018 unsigned UseIdx = li_->getUseIndex(CopyIdx);
1019 LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
1020 MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
1021 if (loopInfo->getLoopFor(SMBB) != L) {
1022 if (!loopInfo->isLoopHeader(CopyMBB))
1023 return false;
1024 // If vr's live interval extends pass the loop header, do not join.
1025 for (MachineBasicBlock::succ_iterator SI = CopyMBB->succ_begin(),
1026 SE = CopyMBB->succ_end(); SI != SE; ++SI) {
1027 MachineBasicBlock *SuccMBB = *SI;
1028 if (SuccMBB == CopyMBB)
1029 continue;
1030 if (DstInt.overlaps(li_->getMBBStartIdx(SuccMBB),
1031 li_->getMBBEndIdx(SuccMBB)+1))
1032 return false;
1035 return true;
1038 /// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
1039 /// copy from a virtual source register to a physical destination register.
1040 bool
1041 SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr *CopyMI,
1042 MachineBasicBlock *CopyMBB,
1043 LiveInterval &DstInt,
1044 LiveInterval &SrcInt) {
1045 // If the virtual register live interval is long but it has low use desity,
1046 // do not join them, instead mark the physical register as its allocation
1047 // preference.
1048 const TargetRegisterClass *RC = mri_->getRegClass(SrcInt.reg);
1049 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1050 unsigned Length = li_->getApproximateInstructionCount(SrcInt);
1051 if (Length > Threshold &&
1052 (((float)std::distance(mri_->use_begin(SrcInt.reg),
1053 mri_->use_end()) / Length) < (1.0 / Threshold)))
1054 return false;
1056 if (SrcInt.empty())
1057 // Must be implicit_def.
1058 return false;
1060 // If the virtual register live interval is defined or cross a loop, turn
1061 // down aggressiveness.
1062 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1063 unsigned UseIdx = li_->getUseIndex(CopyIdx);
1064 LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
1065 assert(SLR != SrcInt.end() && "Live range not found!");
1066 SLR = SrcInt.FindLiveRangeContaining(SLR->start-1);
1067 if (SLR == SrcInt.end())
1068 return true;
1069 MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
1070 const MachineLoop *L = loopInfo->getLoopFor(SMBB);
1072 if (!L || Length <= Threshold)
1073 return true;
1075 if (loopInfo->getLoopFor(CopyMBB) != L) {
1076 if (SMBB != L->getLoopLatch())
1077 return false;
1078 // If vr's live interval is extended from before the loop latch, do not
1079 // join.
1080 for (MachineBasicBlock::pred_iterator PI = SMBB->pred_begin(),
1081 PE = SMBB->pred_end(); PI != PE; ++PI) {
1082 MachineBasicBlock *PredMBB = *PI;
1083 if (PredMBB == SMBB)
1084 continue;
1085 if (SrcInt.overlaps(li_->getMBBStartIdx(PredMBB),
1086 li_->getMBBEndIdx(PredMBB)+1))
1087 return false;
1090 return true;
1093 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1094 /// two virtual registers from different register classes.
1095 bool
1096 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned LargeReg,
1097 unsigned SmallReg,
1098 unsigned Threshold) {
1099 // Then make sure the intervals are *short*.
1100 LiveInterval &LargeInt = li_->getInterval(LargeReg);
1101 LiveInterval &SmallInt = li_->getInterval(SmallReg);
1102 unsigned LargeSize = li_->getApproximateInstructionCount(LargeInt);
1103 unsigned SmallSize = li_->getApproximateInstructionCount(SmallInt);
1104 if (SmallSize > Threshold || LargeSize > Threshold)
1105 if ((float)std::distance(mri_->use_begin(SmallReg),
1106 mri_->use_end()) / SmallSize <
1107 (float)std::distance(mri_->use_begin(LargeReg),
1108 mri_->use_end()) / LargeSize)
1109 return false;
1110 return true;
1113 /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
1114 /// register with a physical register, check if any of the virtual register
1115 /// operand is a sub-register use or def. If so, make sure it won't result
1116 /// in an illegal extract_subreg or insert_subreg instruction. e.g.
1117 /// vr1024 = extract_subreg vr1025, 1
1118 /// ...
1119 /// vr1024 = mov8rr AH
1120 /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
1121 /// AH does not have a super-reg whose sub-register 1 is AH.
1122 bool
1123 SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr *CopyMI,
1124 unsigned VirtReg,
1125 unsigned PhysReg) {
1126 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(VirtReg),
1127 E = mri_->reg_end(); I != E; ++I) {
1128 MachineOperand &O = I.getOperand();
1129 MachineInstr *MI = &*I;
1130 if (MI == CopyMI || JoinedCopies.count(MI))
1131 continue;
1132 unsigned SubIdx = O.getSubReg();
1133 if (SubIdx && !tri_->getSubReg(PhysReg, SubIdx))
1134 return true;
1135 if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
1136 SubIdx = MI->getOperand(2).getImm();
1137 if (O.isUse() && !tri_->getSubReg(PhysReg, SubIdx))
1138 return true;
1139 if (O.isDef()) {
1140 unsigned SrcReg = MI->getOperand(1).getReg();
1141 const TargetRegisterClass *RC =
1142 TargetRegisterInfo::isPhysicalRegister(SrcReg)
1143 ? tri_->getPhysicalRegisterRegClass(SrcReg)
1144 : mri_->getRegClass(SrcReg);
1145 if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
1146 return true;
1149 if (MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
1150 MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
1151 SubIdx = MI->getOperand(3).getImm();
1152 if (VirtReg == MI->getOperand(0).getReg()) {
1153 if (!tri_->getSubReg(PhysReg, SubIdx))
1154 return true;
1155 } else {
1156 unsigned DstReg = MI->getOperand(0).getReg();
1157 const TargetRegisterClass *RC =
1158 TargetRegisterInfo::isPhysicalRegister(DstReg)
1159 ? tri_->getPhysicalRegisterRegClass(DstReg)
1160 : mri_->getRegClass(DstReg);
1161 if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
1162 return true;
1166 return false;
1170 /// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
1171 /// an extract_subreg where dst is a physical register, e.g.
1172 /// cl = EXTRACT_SUBREG reg1024, 1
1173 bool
1174 SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg,
1175 unsigned SrcReg, unsigned SubIdx,
1176 unsigned &RealDstReg) {
1177 const TargetRegisterClass *RC = mri_->getRegClass(SrcReg);
1178 RealDstReg = tri_->getMatchingSuperReg(DstReg, SubIdx, RC);
1179 assert(RealDstReg && "Invalid extract_subreg instruction!");
1181 // For this type of EXTRACT_SUBREG, conservatively
1182 // check if the live interval of the source register interfere with the
1183 // actual super physical register we are trying to coalesce with.
1184 LiveInterval &RHS = li_->getInterval(SrcReg);
1185 if (li_->hasInterval(RealDstReg) &&
1186 RHS.overlaps(li_->getInterval(RealDstReg))) {
1187 DOUT << "Interfere with register ";
1188 DEBUG(li_->getInterval(RealDstReg).print(DOUT, tri_));
1189 return false; // Not coalescable
1191 for (const unsigned* SR = tri_->getSubRegisters(RealDstReg); *SR; ++SR)
1192 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1193 DOUT << "Interfere with sub-register ";
1194 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
1195 return false; // Not coalescable
1197 return true;
1200 /// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
1201 /// an insert_subreg where src is a physical register, e.g.
1202 /// reg1024 = INSERT_SUBREG reg1024, c1, 0
1203 bool
1204 SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg,
1205 unsigned SrcReg, unsigned SubIdx,
1206 unsigned &RealSrcReg) {
1207 const TargetRegisterClass *RC = mri_->getRegClass(DstReg);
1208 RealSrcReg = tri_->getMatchingSuperReg(SrcReg, SubIdx, RC);
1209 assert(RealSrcReg && "Invalid extract_subreg instruction!");
1211 LiveInterval &RHS = li_->getInterval(DstReg);
1212 if (li_->hasInterval(RealSrcReg) &&
1213 RHS.overlaps(li_->getInterval(RealSrcReg))) {
1214 DOUT << "Interfere with register ";
1215 DEBUG(li_->getInterval(RealSrcReg).print(DOUT, tri_));
1216 return false; // Not coalescable
1218 for (const unsigned* SR = tri_->getSubRegisters(RealSrcReg); *SR; ++SR)
1219 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1220 DOUT << "Interfere with sub-register ";
1221 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
1222 return false; // Not coalescable
1224 return true;
1227 /// getRegAllocPreference - Return register allocation preference register.
1229 static unsigned getRegAllocPreference(unsigned Reg, MachineFunction &MF,
1230 MachineRegisterInfo *MRI,
1231 const TargetRegisterInfo *TRI) {
1232 if (TargetRegisterInfo::isPhysicalRegister(Reg))
1233 return 0;
1234 std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(Reg);
1235 return TRI->ResolveRegAllocHint(Hint.first, Hint.second, MF);
1238 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1239 /// which are the src/dst of the copy instruction CopyMI. This returns true
1240 /// if the copy was successfully coalesced away. If it is not currently
1241 /// possible to coalesce this interval, but it may be possible if other
1242 /// things get coalesced, then it returns true by reference in 'Again'.
1243 bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
1244 MachineInstr *CopyMI = TheCopy.MI;
1246 Again = false;
1247 if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
1248 return false; // Already done.
1250 DOUT << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI;
1252 unsigned SrcReg, DstReg, SrcSubIdx = 0, DstSubIdx = 0;
1253 bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG;
1254 bool isInsSubReg = CopyMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG;
1255 bool isSubRegToReg = CopyMI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG;
1256 unsigned SubIdx = 0;
1257 if (isExtSubReg) {
1258 DstReg = CopyMI->getOperand(0).getReg();
1259 DstSubIdx = CopyMI->getOperand(0).getSubReg();
1260 SrcReg = CopyMI->getOperand(1).getReg();
1261 SrcSubIdx = CopyMI->getOperand(2).getImm();
1262 } else if (isInsSubReg || isSubRegToReg) {
1263 DstReg = CopyMI->getOperand(0).getReg();
1264 DstSubIdx = CopyMI->getOperand(3).getImm();
1265 SrcReg = CopyMI->getOperand(2).getReg();
1266 SrcSubIdx = CopyMI->getOperand(2).getSubReg();
1267 if (SrcSubIdx && SrcSubIdx != DstSubIdx) {
1268 // r1025 = INSERT_SUBREG r1025, r1024<2>, 2 Then r1024 has already been
1269 // coalesced to a larger register so the subreg indices cancel out.
1270 DOUT << "\tSource of insert_subreg is already coalesced "
1271 << "to another register.\n";
1272 return false; // Not coalescable.
1274 } else if (!tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)){
1275 llvm_unreachable("Unrecognized copy instruction!");
1278 // If they are already joined we continue.
1279 if (SrcReg == DstReg) {
1280 DOUT << "\tCopy already coalesced.\n";
1281 return false; // Not coalescable.
1284 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
1285 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1287 // If they are both physical registers, we cannot join them.
1288 if (SrcIsPhys && DstIsPhys) {
1289 DOUT << "\tCan not coalesce physregs.\n";
1290 return false; // Not coalescable.
1293 // We only join virtual registers with allocatable physical registers.
1294 if (SrcIsPhys && !allocatableRegs_[SrcReg]) {
1295 DOUT << "\tSrc reg is unallocatable physreg.\n";
1296 return false; // Not coalescable.
1298 if (DstIsPhys && !allocatableRegs_[DstReg]) {
1299 DOUT << "\tDst reg is unallocatable physreg.\n";
1300 return false; // Not coalescable.
1303 // Check that a physical source register is compatible with dst regclass
1304 if (SrcIsPhys) {
1305 unsigned SrcSubReg = SrcSubIdx ?
1306 tri_->getSubReg(SrcReg, SrcSubIdx) : SrcReg;
1307 const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
1308 const TargetRegisterClass *DstSubRC = DstRC;
1309 if (DstSubIdx)
1310 DstSubRC = DstRC->getSubRegisterRegClass(DstSubIdx);
1311 assert(DstSubRC && "Illegal subregister index");
1312 if (!DstSubRC->contains(SrcSubReg)) {
1313 DEBUG(errs() << "\tIncompatible destination regclass: "
1314 << tri_->getName(SrcSubReg) << " not in " << DstSubRC->getName()
1315 << ".\n");
1316 return false; // Not coalescable.
1320 // Check that a physical dst register is compatible with source regclass
1321 if (DstIsPhys) {
1322 unsigned DstSubReg = DstSubIdx ?
1323 tri_->getSubReg(DstReg, DstSubIdx) : DstReg;
1324 const TargetRegisterClass *SrcRC = mri_->getRegClass(SrcReg);
1325 const TargetRegisterClass *SrcSubRC = SrcRC;
1326 if (SrcSubIdx)
1327 SrcSubRC = SrcRC->getSubRegisterRegClass(SrcSubIdx);
1328 assert(SrcSubRC && "Illegal subregister index");
1329 if (!SrcSubRC->contains(DstReg)) {
1330 DEBUG(errs() << "\tIncompatible source regclass: "
1331 << tri_->getName(DstSubReg) << " not in " << SrcSubRC->getName()
1332 << ".\n");
1333 (void)DstSubReg;
1334 return false; // Not coalescable.
1338 // Should be non-null only when coalescing to a sub-register class.
1339 bool CrossRC = false;
1340 const TargetRegisterClass *SrcRC= SrcIsPhys ? 0 : mri_->getRegClass(SrcReg);
1341 const TargetRegisterClass *DstRC= DstIsPhys ? 0 : mri_->getRegClass(DstReg);
1342 const TargetRegisterClass *NewRC = NULL;
1343 MachineBasicBlock *CopyMBB = CopyMI->getParent();
1344 unsigned RealDstReg = 0;
1345 unsigned RealSrcReg = 0;
1346 if (isExtSubReg || isInsSubReg || isSubRegToReg) {
1347 SubIdx = CopyMI->getOperand(isExtSubReg ? 2 : 3).getImm();
1348 if (SrcIsPhys && isExtSubReg) {
1349 // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
1350 // coalesced with AX.
1351 unsigned DstSubIdx = CopyMI->getOperand(0).getSubReg();
1352 if (DstSubIdx) {
1353 // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
1354 // coalesced to a larger register so the subreg indices cancel out.
1355 if (DstSubIdx != SubIdx) {
1356 DOUT << "\t Sub-register indices mismatch.\n";
1357 return false; // Not coalescable.
1359 } else
1360 SrcReg = tri_->getSubReg(SrcReg, SubIdx);
1361 SubIdx = 0;
1362 } else if (DstIsPhys && (isInsSubReg || isSubRegToReg)) {
1363 // EAX = INSERT_SUBREG EAX, r1024, 0
1364 unsigned SrcSubIdx = CopyMI->getOperand(2).getSubReg();
1365 if (SrcSubIdx) {
1366 // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
1367 // coalesced to a larger register so the subreg indices cancel out.
1368 if (SrcSubIdx != SubIdx) {
1369 DOUT << "\t Sub-register indices mismatch.\n";
1370 return false; // Not coalescable.
1372 } else
1373 DstReg = tri_->getSubReg(DstReg, SubIdx);
1374 SubIdx = 0;
1375 } else if ((DstIsPhys && isExtSubReg) ||
1376 (SrcIsPhys && (isInsSubReg || isSubRegToReg))) {
1377 if (!isSubRegToReg && CopyMI->getOperand(1).getSubReg()) {
1378 DOUT << "\tSrc of extract_subreg already coalesced with reg"
1379 << " of a super-class.\n";
1380 return false; // Not coalescable.
1383 if (isExtSubReg) {
1384 if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealDstReg))
1385 return false; // Not coalescable
1386 } else {
1387 if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
1388 return false; // Not coalescable
1390 SubIdx = 0;
1391 } else {
1392 unsigned OldSubIdx = isExtSubReg ? CopyMI->getOperand(0).getSubReg()
1393 : CopyMI->getOperand(2).getSubReg();
1394 if (OldSubIdx) {
1395 if (OldSubIdx == SubIdx && !differingRegisterClasses(SrcReg, DstReg))
1396 // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
1397 // coalesced to a larger register so the subreg indices cancel out.
1398 // Also check if the other larger register is of the same register
1399 // class as the would be resulting register.
1400 SubIdx = 0;
1401 else {
1402 DOUT << "\t Sub-register indices mismatch.\n";
1403 return false; // Not coalescable.
1406 if (SubIdx) {
1407 if (!DstIsPhys && !SrcIsPhys) {
1408 if (isInsSubReg || isSubRegToReg) {
1409 NewRC = tri_->getMatchingSuperRegClass(DstRC, SrcRC, SubIdx);
1410 } else // extract_subreg {
1411 NewRC = tri_->getMatchingSuperRegClass(SrcRC, DstRC, SubIdx);
1413 if (!NewRC) {
1414 DOUT << "\t Conflicting sub-register indices.\n";
1415 return false; // Not coalescable
1418 unsigned LargeReg = isExtSubReg ? SrcReg : DstReg;
1419 unsigned SmallReg = isExtSubReg ? DstReg : SrcReg;
1420 unsigned Limit= allocatableRCRegs_[mri_->getRegClass(SmallReg)].count();
1421 if (!isWinToJoinCrossClass(LargeReg, SmallReg, Limit)) {
1422 Again = true; // May be possible to coalesce later.
1423 return false;
1427 } else if (differingRegisterClasses(SrcReg, DstReg)) {
1428 if (DisableCrossClassJoin)
1429 return false;
1430 CrossRC = true;
1432 // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
1433 // with another? If it's the resulting destination register, then
1434 // the subidx must be propagated to uses (but only those defined
1435 // by the EXTRACT_SUBREG). If it's being coalesced into another
1436 // register, it should be safe because register is assumed to have
1437 // the register class of the super-register.
1439 // Process moves where one of the registers have a sub-register index.
1440 MachineOperand *DstMO = CopyMI->findRegisterDefOperand(DstReg);
1441 MachineOperand *SrcMO = CopyMI->findRegisterUseOperand(SrcReg);
1442 SubIdx = DstMO->getSubReg();
1443 if (SubIdx) {
1444 if (SrcMO->getSubReg())
1445 // FIXME: can we handle this?
1446 return false;
1447 // This is not an insert_subreg but it looks like one.
1448 // e.g. %reg1024:4 = MOV32rr %EAX
1449 isInsSubReg = true;
1450 if (SrcIsPhys) {
1451 if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
1452 return false; // Not coalescable
1453 SubIdx = 0;
1455 } else {
1456 SubIdx = SrcMO->getSubReg();
1457 if (SubIdx) {
1458 // This is not a extract_subreg but it looks like one.
1459 // e.g. %cl = MOV16rr %reg1024:1
1460 isExtSubReg = true;
1461 if (DstIsPhys) {
1462 if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx,RealDstReg))
1463 return false; // Not coalescable
1464 SubIdx = 0;
1469 unsigned LargeReg = SrcReg;
1470 unsigned SmallReg = DstReg;
1472 // Now determine the register class of the joined register.
1473 if (isExtSubReg) {
1474 if (SubIdx && DstRC && DstRC->isASubClass()) {
1475 // This is a move to a sub-register class. However, the source is a
1476 // sub-register of a larger register class. We don't know what should
1477 // the register class be. FIXME.
1478 Again = true;
1479 return false;
1481 if (!DstIsPhys && !SrcIsPhys)
1482 NewRC = SrcRC;
1483 } else if (!SrcIsPhys && !DstIsPhys) {
1484 NewRC = getCommonSubClass(SrcRC, DstRC);
1485 if (!NewRC) {
1486 DEBUG(errs() << "\tDisjoint regclasses: "
1487 << SrcRC->getName() << ", "
1488 << DstRC->getName() << ".\n");
1489 return false; // Not coalescable.
1491 if (DstRC->getSize() > SrcRC->getSize())
1492 std::swap(LargeReg, SmallReg);
1495 // If we are joining two virtual registers and the resulting register
1496 // class is more restrictive (fewer register, smaller size). Check if it's
1497 // worth doing the merge.
1498 if (!SrcIsPhys && !DstIsPhys &&
1499 (isExtSubReg || DstRC->isASubClass()) &&
1500 !isWinToJoinCrossClass(LargeReg, SmallReg,
1501 allocatableRCRegs_[NewRC].count())) {
1502 DOUT << "\tSrc/Dest are different register classes.\n";
1503 // Allow the coalescer to try again in case either side gets coalesced to
1504 // a physical register that's compatible with the other side. e.g.
1505 // r1024 = MOV32to32_ r1025
1506 // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
1507 Again = true; // May be possible to coalesce later.
1508 return false;
1512 // Will it create illegal extract_subreg / insert_subreg?
1513 if (SrcIsPhys && HasIncompatibleSubRegDefUse(CopyMI, DstReg, SrcReg))
1514 return false;
1515 if (DstIsPhys && HasIncompatibleSubRegDefUse(CopyMI, SrcReg, DstReg))
1516 return false;
1518 LiveInterval &SrcInt = li_->getInterval(SrcReg);
1519 LiveInterval &DstInt = li_->getInterval(DstReg);
1520 assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg &&
1521 "Register mapping is horribly broken!");
1523 DOUT << "\t\tInspecting "; SrcInt.print(DOUT, tri_);
1524 DOUT << " and "; DstInt.print(DOUT, tri_);
1525 DOUT << ": ";
1527 // Save a copy of the virtual register live interval. We'll manually
1528 // merge this into the "real" physical register live interval this is
1529 // coalesced with.
1530 LiveInterval *SavedLI = 0;
1531 if (RealDstReg)
1532 SavedLI = li_->dupInterval(&SrcInt);
1533 else if (RealSrcReg)
1534 SavedLI = li_->dupInterval(&DstInt);
1536 // Check if it is necessary to propagate "isDead" property.
1537 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg) {
1538 MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg, false);
1539 bool isDead = mopd->isDead();
1541 // We need to be careful about coalescing a source physical register with a
1542 // virtual register. Once the coalescing is done, it cannot be broken and
1543 // these are not spillable! If the destination interval uses are far away,
1544 // think twice about coalescing them!
1545 if (!isDead && (SrcIsPhys || DstIsPhys)) {
1546 // If the copy is in a loop, take care not to coalesce aggressively if the
1547 // src is coming in from outside the loop (or the dst is out of the loop).
1548 // If it's not in a loop, then determine whether to join them base purely
1549 // by the length of the interval.
1550 if (PhysJoinTweak) {
1551 if (SrcIsPhys) {
1552 if (!isWinToJoinVRWithSrcPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
1553 mri_->setRegAllocationHint(DstInt.reg, 0, SrcReg);
1554 ++numAborts;
1555 DOUT << "\tMay tie down a physical register, abort!\n";
1556 Again = true; // May be possible to coalesce later.
1557 return false;
1559 } else {
1560 if (!isWinToJoinVRWithDstPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
1561 mri_->setRegAllocationHint(SrcInt.reg, 0, DstReg);
1562 ++numAborts;
1563 DOUT << "\tMay tie down a physical register, abort!\n";
1564 Again = true; // May be possible to coalesce later.
1565 return false;
1568 } else {
1569 // If the virtual register live interval is long but it has low use desity,
1570 // do not join them, instead mark the physical register as its allocation
1571 // preference.
1572 LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
1573 unsigned JoinVReg = SrcIsPhys ? DstReg : SrcReg;
1574 unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg;
1575 const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg);
1576 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1577 if (TheCopy.isBackEdge)
1578 Threshold *= 2; // Favors back edge copies.
1580 unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
1581 float Ratio = 1.0 / Threshold;
1582 if (Length > Threshold &&
1583 (((float)std::distance(mri_->use_begin(JoinVReg),
1584 mri_->use_end()) / Length) < Ratio)) {
1585 mri_->setRegAllocationHint(JoinVInt.reg, 0, JoinPReg);
1586 ++numAborts;
1587 DOUT << "\tMay tie down a physical register, abort!\n";
1588 Again = true; // May be possible to coalesce later.
1589 return false;
1595 // Okay, attempt to join these two intervals. On failure, this returns false.
1596 // Otherwise, if one of the intervals being joined is a physreg, this method
1597 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1598 // been modified, so we can use this information below to update aliases.
1599 bool Swapped = false;
1600 // If SrcInt is implicitly defined, it's safe to coalesce.
1601 bool isEmpty = SrcInt.empty();
1602 if (isEmpty && !CanCoalesceWithImpDef(CopyMI, DstInt, SrcInt)) {
1603 // Only coalesce an empty interval (defined by implicit_def) with
1604 // another interval which has a valno defined by the CopyMI and the CopyMI
1605 // is a kill of the implicit def.
1606 DOUT << "Not profitable!\n";
1607 return false;
1610 if (!isEmpty && !JoinIntervals(DstInt, SrcInt, Swapped)) {
1611 // Coalescing failed.
1613 // If definition of source is defined by trivial computation, try
1614 // rematerializing it.
1615 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
1616 ReMaterializeTrivialDef(SrcInt, DstReg, DstSubIdx, CopyMI))
1617 return true;
1619 // If we can eliminate the copy without merging the live ranges, do so now.
1620 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
1621 (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) ||
1622 RemoveCopyByCommutingDef(SrcInt, DstInt, CopyMI))) {
1623 JoinedCopies.insert(CopyMI);
1624 return true;
1627 // Otherwise, we are unable to join the intervals.
1628 DOUT << "Interference!\n";
1629 Again = true; // May be possible to coalesce later.
1630 return false;
1633 LiveInterval *ResSrcInt = &SrcInt;
1634 LiveInterval *ResDstInt = &DstInt;
1635 if (Swapped) {
1636 std::swap(SrcReg, DstReg);
1637 std::swap(ResSrcInt, ResDstInt);
1639 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1640 "LiveInterval::join didn't work right!");
1642 // If we're about to merge live ranges into a physical register live interval,
1643 // we have to update any aliased register's live ranges to indicate that they
1644 // have clobbered values for this range.
1645 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
1646 // If this is a extract_subreg where dst is a physical register, e.g.
1647 // cl = EXTRACT_SUBREG reg1024, 1
1648 // then create and update the actual physical register allocated to RHS.
1649 if (RealDstReg || RealSrcReg) {
1650 LiveInterval &RealInt =
1651 li_->getOrCreateInterval(RealDstReg ? RealDstReg : RealSrcReg);
1652 for (LiveInterval::const_vni_iterator I = SavedLI->vni_begin(),
1653 E = SavedLI->vni_end(); I != E; ++I) {
1654 const VNInfo *ValNo = *I;
1655 VNInfo *NewValNo = RealInt.getNextValue(ValNo->def, ValNo->copy,
1656 false, // updated at *
1657 li_->getVNInfoAllocator());
1658 NewValNo->setFlags(ValNo->getFlags()); // * updated here.
1659 RealInt.addKills(NewValNo, ValNo->kills);
1660 RealInt.MergeValueInAsValue(*SavedLI, ValNo, NewValNo);
1662 RealInt.weight += SavedLI->weight;
1663 DstReg = RealDstReg ? RealDstReg : RealSrcReg;
1666 // Update the liveintervals of sub-registers.
1667 for (const unsigned *AS = tri_->getSubRegisters(DstReg); *AS; ++AS)
1668 li_->getOrCreateInterval(*AS).MergeInClobberRanges(*ResSrcInt,
1669 li_->getVNInfoAllocator());
1672 // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
1673 // larger super-register.
1674 if ((isExtSubReg || isInsSubReg || isSubRegToReg) &&
1675 !SrcIsPhys && !DstIsPhys) {
1676 if ((isExtSubReg && !Swapped) ||
1677 ((isInsSubReg || isSubRegToReg) && Swapped)) {
1678 ResSrcInt->Copy(*ResDstInt, mri_, li_->getVNInfoAllocator());
1679 std::swap(SrcReg, DstReg);
1680 std::swap(ResSrcInt, ResDstInt);
1684 // Coalescing to a virtual register that is of a sub-register class of the
1685 // other. Make sure the resulting register is set to the right register class.
1686 if (CrossRC)
1687 ++numCrossRCs;
1689 // This may happen even if it's cross-rc coalescing. e.g.
1690 // %reg1026<def> = SUBREG_TO_REG 0, %reg1037<kill>, 4
1691 // reg1026 -> GR64, reg1037 -> GR32_ABCD. The resulting register will have to
1692 // be allocate a register from GR64_ABCD.
1693 if (NewRC)
1694 mri_->setRegClass(DstReg, NewRC);
1696 if (NewHeuristic) {
1697 // Add all copies that define val# in the source interval into the queue.
1698 for (LiveInterval::const_vni_iterator i = ResSrcInt->vni_begin(),
1699 e = ResSrcInt->vni_end(); i != e; ++i) {
1700 const VNInfo *vni = *i;
1701 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1702 if (!vni->def || vni->isUnused() || vni->isPHIDef() || !vni->isDefAccurate())
1703 continue;
1704 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
1705 unsigned NewSrcReg, NewDstReg, NewSrcSubIdx, NewDstSubIdx;
1706 if (CopyMI &&
1707 JoinedCopies.count(CopyMI) == 0 &&
1708 tii_->isMoveInstr(*CopyMI, NewSrcReg, NewDstReg,
1709 NewSrcSubIdx, NewDstSubIdx)) {
1710 unsigned LoopDepth = loopInfo->getLoopDepth(CopyMBB);
1711 JoinQueue->push(CopyRec(CopyMI, LoopDepth,
1712 isBackEdgeCopy(CopyMI, DstReg)));
1717 // Remember to delete the copy instruction.
1718 JoinedCopies.insert(CopyMI);
1720 // Some live range has been lengthened due to colaescing, eliminate the
1721 // unnecessary kills.
1722 RemoveUnnecessaryKills(SrcReg, *ResDstInt);
1723 if (TargetRegisterInfo::isVirtualRegister(DstReg))
1724 RemoveUnnecessaryKills(DstReg, *ResDstInt);
1726 UpdateRegDefsUses(SrcReg, DstReg, SubIdx);
1728 // SrcReg is guarateed to be the register whose live interval that is
1729 // being merged.
1730 li_->removeInterval(SrcReg);
1732 // Update regalloc hint.
1733 tri_->UpdateRegAllocHint(SrcReg, DstReg, *mf_);
1735 // Manually deleted the live interval copy.
1736 if (SavedLI) {
1737 SavedLI->clear();
1738 delete SavedLI;
1741 // If resulting interval has a preference that no longer fits because of subreg
1742 // coalescing, just clear the preference.
1743 unsigned Preference = getRegAllocPreference(ResDstInt->reg, *mf_, mri_, tri_);
1744 if (Preference && (isExtSubReg || isInsSubReg || isSubRegToReg) &&
1745 TargetRegisterInfo::isVirtualRegister(ResDstInt->reg)) {
1746 const TargetRegisterClass *RC = mri_->getRegClass(ResDstInt->reg);
1747 if (!RC->contains(Preference))
1748 mri_->setRegAllocationHint(ResDstInt->reg, 0, 0);
1751 DOUT << "\n\t\tJoined. Result = "; ResDstInt->print(DOUT, tri_);
1752 DOUT << "\n";
1754 ++numJoins;
1755 return true;
1758 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1759 /// compute what the resultant value numbers for each value in the input two
1760 /// ranges will be. This is complicated by copies between the two which can
1761 /// and will commonly cause multiple value numbers to be merged into one.
1763 /// VN is the value number that we're trying to resolve. InstDefiningValue
1764 /// keeps track of the new InstDefiningValue assignment for the result
1765 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1766 /// whether a value in this or other is a copy from the opposite set.
1767 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1768 /// already been assigned.
1770 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1771 /// contains the value number the copy is from.
1773 static unsigned ComputeUltimateVN(VNInfo *VNI,
1774 SmallVector<VNInfo*, 16> &NewVNInfo,
1775 DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1776 DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1777 SmallVector<int, 16> &ThisValNoAssignments,
1778 SmallVector<int, 16> &OtherValNoAssignments) {
1779 unsigned VN = VNI->id;
1781 // If the VN has already been computed, just return it.
1782 if (ThisValNoAssignments[VN] >= 0)
1783 return ThisValNoAssignments[VN];
1784 // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1786 // If this val is not a copy from the other val, then it must be a new value
1787 // number in the destination.
1788 DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1789 if (I == ThisFromOther.end()) {
1790 NewVNInfo.push_back(VNI);
1791 return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1793 VNInfo *OtherValNo = I->second;
1795 // Otherwise, this *is* a copy from the RHS. If the other side has already
1796 // been computed, return it.
1797 if (OtherValNoAssignments[OtherValNo->id] >= 0)
1798 return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1800 // Mark this value number as currently being computed, then ask what the
1801 // ultimate value # of the other value is.
1802 ThisValNoAssignments[VN] = -2;
1803 unsigned UltimateVN =
1804 ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1805 OtherValNoAssignments, ThisValNoAssignments);
1806 return ThisValNoAssignments[VN] = UltimateVN;
1809 static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) {
1810 return std::find(V.begin(), V.end(), Val) != V.end();
1813 /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
1814 /// the specified live interval is defined by a copy from the specified
1815 /// register.
1816 bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li,
1817 LiveRange *LR,
1818 unsigned Reg) {
1819 unsigned SrcReg = li_->getVNInfoSourceReg(LR->valno);
1820 if (SrcReg == Reg)
1821 return true;
1822 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1823 if ((LR->valno->isPHIDef() || !LR->valno->isDefAccurate()) &&
1824 TargetRegisterInfo::isPhysicalRegister(li.reg) &&
1825 *tri_->getSuperRegisters(li.reg)) {
1826 // It's a sub-register live interval, we may not have precise information.
1827 // Re-compute it.
1828 MachineInstr *DefMI = li_->getInstructionFromIndex(LR->start);
1829 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1830 if (DefMI &&
1831 tii_->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
1832 DstReg == li.reg && SrcReg == Reg) {
1833 // Cache computed info.
1834 LR->valno->def = LR->start;
1835 LR->valno->copy = DefMI;
1836 return true;
1839 return false;
1842 /// SimpleJoin - Attempt to joint the specified interval into this one. The
1843 /// caller of this method must guarantee that the RHS only contains a single
1844 /// value number and that the RHS is not defined by a copy from this
1845 /// interval. This returns false if the intervals are not joinable, or it
1846 /// joins them and returns true.
1847 bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
1848 assert(RHS.containsOneValue());
1850 // Some number (potentially more than one) value numbers in the current
1851 // interval may be defined as copies from the RHS. Scan the overlapping
1852 // portions of the LHS and RHS, keeping track of this and looking for
1853 // overlapping live ranges that are NOT defined as copies. If these exist, we
1854 // cannot coalesce.
1856 LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
1857 LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
1859 if (LHSIt->start < RHSIt->start) {
1860 LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
1861 if (LHSIt != LHS.begin()) --LHSIt;
1862 } else if (RHSIt->start < LHSIt->start) {
1863 RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
1864 if (RHSIt != RHS.begin()) --RHSIt;
1867 SmallVector<VNInfo*, 8> EliminatedLHSVals;
1869 while (1) {
1870 // Determine if these live intervals overlap.
1871 bool Overlaps = false;
1872 if (LHSIt->start <= RHSIt->start)
1873 Overlaps = LHSIt->end > RHSIt->start;
1874 else
1875 Overlaps = RHSIt->end > LHSIt->start;
1877 // If the live intervals overlap, there are two interesting cases: if the
1878 // LHS interval is defined by a copy from the RHS, it's ok and we record
1879 // that the LHS value # is the same as the RHS. If it's not, then we cannot
1880 // coalesce these live ranges and we bail out.
1881 if (Overlaps) {
1882 // If we haven't already recorded that this value # is safe, check it.
1883 if (!InVector(LHSIt->valno, EliminatedLHSVals)) {
1884 // Copy from the RHS?
1885 if (!RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg))
1886 return false; // Nope, bail out.
1888 if (LHSIt->contains(RHSIt->valno->def))
1889 // Here is an interesting situation:
1890 // BB1:
1891 // vr1025 = copy vr1024
1892 // ..
1893 // BB2:
1894 // vr1024 = op
1895 // = vr1025
1896 // Even though vr1025 is copied from vr1024, it's not safe to
1897 // coalesce them since the live range of vr1025 intersects the
1898 // def of vr1024. This happens because vr1025 is assigned the
1899 // value of the previous iteration of vr1024.
1900 return false;
1901 EliminatedLHSVals.push_back(LHSIt->valno);
1904 // We know this entire LHS live range is okay, so skip it now.
1905 if (++LHSIt == LHSEnd) break;
1906 continue;
1909 if (LHSIt->end < RHSIt->end) {
1910 if (++LHSIt == LHSEnd) break;
1911 } else {
1912 // One interesting case to check here. It's possible that we have
1913 // something like "X3 = Y" which defines a new value number in the LHS,
1914 // and is the last use of this liverange of the RHS. In this case, we
1915 // want to notice this copy (so that it gets coalesced away) even though
1916 // the live ranges don't actually overlap.
1917 if (LHSIt->start == RHSIt->end) {
1918 if (InVector(LHSIt->valno, EliminatedLHSVals)) {
1919 // We already know that this value number is going to be merged in
1920 // if coalescing succeeds. Just skip the liverange.
1921 if (++LHSIt == LHSEnd) break;
1922 } else {
1923 // Otherwise, if this is a copy from the RHS, mark it as being merged
1924 // in.
1925 if (RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) {
1926 if (LHSIt->contains(RHSIt->valno->def))
1927 // Here is an interesting situation:
1928 // BB1:
1929 // vr1025 = copy vr1024
1930 // ..
1931 // BB2:
1932 // vr1024 = op
1933 // = vr1025
1934 // Even though vr1025 is copied from vr1024, it's not safe to
1935 // coalesced them since live range of vr1025 intersects the
1936 // def of vr1024. This happens because vr1025 is assigned the
1937 // value of the previous iteration of vr1024.
1938 return false;
1939 EliminatedLHSVals.push_back(LHSIt->valno);
1941 // We know this entire LHS live range is okay, so skip it now.
1942 if (++LHSIt == LHSEnd) break;
1947 if (++RHSIt == RHSEnd) break;
1951 // If we got here, we know that the coalescing will be successful and that
1952 // the value numbers in EliminatedLHSVals will all be merged together. Since
1953 // the most common case is that EliminatedLHSVals has a single number, we
1954 // optimize for it: if there is more than one value, we merge them all into
1955 // the lowest numbered one, then handle the interval as if we were merging
1956 // with one value number.
1957 VNInfo *LHSValNo = NULL;
1958 if (EliminatedLHSVals.size() > 1) {
1959 // Loop through all the equal value numbers merging them into the smallest
1960 // one.
1961 VNInfo *Smallest = EliminatedLHSVals[0];
1962 for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
1963 if (EliminatedLHSVals[i]->id < Smallest->id) {
1964 // Merge the current notion of the smallest into the smaller one.
1965 LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
1966 Smallest = EliminatedLHSVals[i];
1967 } else {
1968 // Merge into the smallest.
1969 LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
1972 LHSValNo = Smallest;
1973 } else if (EliminatedLHSVals.empty()) {
1974 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
1975 *tri_->getSuperRegisters(LHS.reg))
1976 // Imprecise sub-register information. Can't handle it.
1977 return false;
1978 llvm_unreachable("No copies from the RHS?");
1979 } else {
1980 LHSValNo = EliminatedLHSVals[0];
1983 // Okay, now that there is a single LHS value number that we're merging the
1984 // RHS into, update the value number info for the LHS to indicate that the
1985 // value number is defined where the RHS value number was.
1986 const VNInfo *VNI = RHS.getValNumInfo(0);
1987 LHSValNo->def = VNI->def;
1988 LHSValNo->copy = VNI->copy;
1990 // Okay, the final step is to loop over the RHS live intervals, adding them to
1991 // the LHS.
1992 if (VNI->hasPHIKill())
1993 LHSValNo->setHasPHIKill(true);
1994 LHS.addKills(LHSValNo, VNI->kills);
1995 LHS.MergeRangesInAsValue(RHS, LHSValNo);
1997 LHS.ComputeJoinedWeight(RHS);
1999 // Update regalloc hint if both are virtual registers.
2000 if (TargetRegisterInfo::isVirtualRegister(LHS.reg) &&
2001 TargetRegisterInfo::isVirtualRegister(RHS.reg)) {
2002 std::pair<unsigned, unsigned> RHSPref = mri_->getRegAllocationHint(RHS.reg);
2003 std::pair<unsigned, unsigned> LHSPref = mri_->getRegAllocationHint(LHS.reg);
2004 if (RHSPref != LHSPref)
2005 mri_->setRegAllocationHint(LHS.reg, RHSPref.first, RHSPref.second);
2008 // Update the liveintervals of sub-registers.
2009 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg))
2010 for (const unsigned *AS = tri_->getSubRegisters(LHS.reg); *AS; ++AS)
2011 li_->getOrCreateInterval(*AS).MergeInClobberRanges(LHS,
2012 li_->getVNInfoAllocator());
2014 return true;
2017 /// JoinIntervals - Attempt to join these two intervals. On failure, this
2018 /// returns false. Otherwise, if one of the intervals being joined is a
2019 /// physreg, this method always canonicalizes LHS to be it. The output
2020 /// "RHS" will not have been modified, so we can use this information
2021 /// below to update aliases.
2022 bool
2023 SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
2024 bool &Swapped) {
2025 // Compute the final value assignment, assuming that the live ranges can be
2026 // coalesced.
2027 SmallVector<int, 16> LHSValNoAssignments;
2028 SmallVector<int, 16> RHSValNoAssignments;
2029 DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
2030 DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
2031 SmallVector<VNInfo*, 16> NewVNInfo;
2033 // If a live interval is a physical register, conservatively check if any
2034 // of its sub-registers is overlapping the live interval of the virtual
2035 // register. If so, do not coalesce.
2036 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
2037 *tri_->getSubRegisters(LHS.reg)) {
2038 // If it's coalescing a virtual register to a physical register, estimate
2039 // its live interval length. This is the *cost* of scanning an entire live
2040 // interval. If the cost is low, we'll do an exhaustive check instead.
2042 // If this is something like this:
2043 // BB1:
2044 // v1024 = op
2045 // ...
2046 // BB2:
2047 // ...
2048 // RAX = v1024
2050 // That is, the live interval of v1024 crosses a bb. Then we can't rely on
2051 // less conservative check. It's possible a sub-register is defined before
2052 // v1024 (or live in) and live out of BB1.
2053 if (RHS.containsOneValue() &&
2054 li_->intervalIsInOneMBB(RHS) &&
2055 li_->getApproximateInstructionCount(RHS) <= 10) {
2056 // Perform a more exhaustive check for some common cases.
2057 if (li_->conflictsWithPhysRegRef(RHS, LHS.reg, true, JoinedCopies))
2058 return false;
2059 } else {
2060 for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR)
2061 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
2062 DOUT << "Interfere with sub-register ";
2063 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
2064 return false;
2067 } else if (TargetRegisterInfo::isPhysicalRegister(RHS.reg) &&
2068 *tri_->getSubRegisters(RHS.reg)) {
2069 if (LHS.containsOneValue() &&
2070 li_->getApproximateInstructionCount(LHS) <= 10) {
2071 // Perform a more exhaustive check for some common cases.
2072 if (li_->conflictsWithPhysRegRef(LHS, RHS.reg, false, JoinedCopies))
2073 return false;
2074 } else {
2075 for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR)
2076 if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
2077 DOUT << "Interfere with sub-register ";
2078 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
2079 return false;
2084 // Compute ultimate value numbers for the LHS and RHS values.
2085 if (RHS.containsOneValue()) {
2086 // Copies from a liveinterval with a single value are simple to handle and
2087 // very common, handle the special case here. This is important, because
2088 // often RHS is small and LHS is large (e.g. a physreg).
2090 // Find out if the RHS is defined as a copy from some value in the LHS.
2091 int RHSVal0DefinedFromLHS = -1;
2092 int RHSValID = -1;
2093 VNInfo *RHSValNoInfo = NULL;
2094 VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0);
2095 unsigned RHSSrcReg = li_->getVNInfoSourceReg(RHSValNoInfo0);
2096 if (RHSSrcReg == 0 || RHSSrcReg != LHS.reg) {
2097 // If RHS is not defined as a copy from the LHS, we can use simpler and
2098 // faster checks to see if the live ranges are coalescable. This joiner
2099 // can't swap the LHS/RHS intervals though.
2100 if (!TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
2101 return SimpleJoin(LHS, RHS);
2102 } else {
2103 RHSValNoInfo = RHSValNoInfo0;
2105 } else {
2106 // It was defined as a copy from the LHS, find out what value # it is.
2107 RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno;
2108 RHSValID = RHSValNoInfo->id;
2109 RHSVal0DefinedFromLHS = RHSValID;
2112 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
2113 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
2114 NewVNInfo.resize(LHS.getNumValNums(), NULL);
2116 // Okay, *all* of the values in LHS that are defined as a copy from RHS
2117 // should now get updated.
2118 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2119 i != e; ++i) {
2120 VNInfo *VNI = *i;
2121 unsigned VN = VNI->id;
2122 if (unsigned LHSSrcReg = li_->getVNInfoSourceReg(VNI)) {
2123 if (LHSSrcReg != RHS.reg) {
2124 // If this is not a copy from the RHS, its value number will be
2125 // unmodified by the coalescing.
2126 NewVNInfo[VN] = VNI;
2127 LHSValNoAssignments[VN] = VN;
2128 } else if (RHSValID == -1) {
2129 // Otherwise, it is a copy from the RHS, and we don't already have a
2130 // value# for it. Keep the current value number, but remember it.
2131 LHSValNoAssignments[VN] = RHSValID = VN;
2132 NewVNInfo[VN] = RHSValNoInfo;
2133 LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
2134 } else {
2135 // Otherwise, use the specified value #.
2136 LHSValNoAssignments[VN] = RHSValID;
2137 if (VN == (unsigned)RHSValID) { // Else this val# is dead.
2138 NewVNInfo[VN] = RHSValNoInfo;
2139 LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
2142 } else {
2143 NewVNInfo[VN] = VNI;
2144 LHSValNoAssignments[VN] = VN;
2148 assert(RHSValID != -1 && "Didn't find value #?");
2149 RHSValNoAssignments[0] = RHSValID;
2150 if (RHSVal0DefinedFromLHS != -1) {
2151 // This path doesn't go through ComputeUltimateVN so just set
2152 // it to anything.
2153 RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1;
2155 } else {
2156 // Loop over the value numbers of the LHS, seeing if any are defined from
2157 // the RHS.
2158 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2159 i != e; ++i) {
2160 VNInfo *VNI = *i;
2161 if (VNI->isUnused() || VNI->copy == 0) // Src not defined by a copy?
2162 continue;
2164 // DstReg is known to be a register in the LHS interval. If the src is
2165 // from the RHS interval, we can use its value #.
2166 if (li_->getVNInfoSourceReg(VNI) != RHS.reg)
2167 continue;
2169 // Figure out the value # from the RHS.
2170 LHSValsDefinedFromRHS[VNI]=RHS.getLiveRangeContaining(VNI->def-1)->valno;
2173 // Loop over the value numbers of the RHS, seeing if any are defined from
2174 // the LHS.
2175 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
2176 i != e; ++i) {
2177 VNInfo *VNI = *i;
2178 if (VNI->isUnused() || VNI->copy == 0) // Src not defined by a copy?
2179 continue;
2181 // DstReg is known to be a register in the RHS interval. If the src is
2182 // from the LHS interval, we can use its value #.
2183 if (li_->getVNInfoSourceReg(VNI) != LHS.reg)
2184 continue;
2186 // Figure out the value # from the LHS.
2187 RHSValsDefinedFromLHS[VNI]=LHS.getLiveRangeContaining(VNI->def-1)->valno;
2190 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
2191 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
2192 NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
2194 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2195 i != e; ++i) {
2196 VNInfo *VNI = *i;
2197 unsigned VN = VNI->id;
2198 if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
2199 continue;
2200 ComputeUltimateVN(VNI, NewVNInfo,
2201 LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
2202 LHSValNoAssignments, RHSValNoAssignments);
2204 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
2205 i != e; ++i) {
2206 VNInfo *VNI = *i;
2207 unsigned VN = VNI->id;
2208 if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
2209 continue;
2210 // If this value number isn't a copy from the LHS, it's a new number.
2211 if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
2212 NewVNInfo.push_back(VNI);
2213 RHSValNoAssignments[VN] = NewVNInfo.size()-1;
2214 continue;
2217 ComputeUltimateVN(VNI, NewVNInfo,
2218 RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
2219 RHSValNoAssignments, LHSValNoAssignments);
2223 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
2224 // interval lists to see if these intervals are coalescable.
2225 LiveInterval::const_iterator I = LHS.begin();
2226 LiveInterval::const_iterator IE = LHS.end();
2227 LiveInterval::const_iterator J = RHS.begin();
2228 LiveInterval::const_iterator JE = RHS.end();
2230 // Skip ahead until the first place of potential sharing.
2231 if (I->start < J->start) {
2232 I = std::upper_bound(I, IE, J->start);
2233 if (I != LHS.begin()) --I;
2234 } else if (J->start < I->start) {
2235 J = std::upper_bound(J, JE, I->start);
2236 if (J != RHS.begin()) --J;
2239 while (1) {
2240 // Determine if these two live ranges overlap.
2241 bool Overlaps;
2242 if (I->start < J->start) {
2243 Overlaps = I->end > J->start;
2244 } else {
2245 Overlaps = J->end > I->start;
2248 // If so, check value # info to determine if they are really different.
2249 if (Overlaps) {
2250 // If the live range overlap will map to the same value number in the
2251 // result liverange, we can still coalesce them. If not, we can't.
2252 if (LHSValNoAssignments[I->valno->id] !=
2253 RHSValNoAssignments[J->valno->id])
2254 return false;
2257 if (I->end < J->end) {
2258 ++I;
2259 if (I == IE) break;
2260 } else {
2261 ++J;
2262 if (J == JE) break;
2266 // Update kill info. Some live ranges are extended due to copy coalescing.
2267 for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
2268 E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
2269 VNInfo *VNI = I->first;
2270 unsigned LHSValID = LHSValNoAssignments[VNI->id];
2271 LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def);
2272 if (VNI->hasPHIKill())
2273 NewVNInfo[LHSValID]->setHasPHIKill(true);
2274 RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
2277 // Update kill info. Some live ranges are extended due to copy coalescing.
2278 for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
2279 E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
2280 VNInfo *VNI = I->first;
2281 unsigned RHSValID = RHSValNoAssignments[VNI->id];
2282 LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def);
2283 if (VNI->hasPHIKill())
2284 NewVNInfo[RHSValID]->setHasPHIKill(true);
2285 LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
2288 // If we get here, we know that we can coalesce the live ranges. Ask the
2289 // intervals to coalesce themselves now.
2290 if ((RHS.ranges.size() > LHS.ranges.size() &&
2291 TargetRegisterInfo::isVirtualRegister(LHS.reg)) ||
2292 TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
2293 RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo,
2294 mri_);
2295 Swapped = true;
2296 } else {
2297 LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
2298 mri_);
2299 Swapped = false;
2301 return true;
2304 namespace {
2305 // DepthMBBCompare - Comparison predicate that sort first based on the loop
2306 // depth of the basic block (the unsigned), and then on the MBB number.
2307 struct DepthMBBCompare {
2308 typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
2309 bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
2310 if (LHS.first > RHS.first) return true; // Deeper loops first
2311 return LHS.first == RHS.first &&
2312 LHS.second->getNumber() < RHS.second->getNumber();
2317 /// getRepIntervalSize - Returns the size of the interval that represents the
2318 /// specified register.
2319 template<class SF>
2320 unsigned JoinPriorityQueue<SF>::getRepIntervalSize(unsigned Reg) {
2321 return Rc->getRepIntervalSize(Reg);
2324 /// CopyRecSort::operator - Join priority queue sorting function.
2326 bool CopyRecSort::operator()(CopyRec left, CopyRec right) const {
2327 // Inner loops first.
2328 if (left.LoopDepth > right.LoopDepth)
2329 return false;
2330 else if (left.LoopDepth == right.LoopDepth)
2331 if (left.isBackEdge && !right.isBackEdge)
2332 return false;
2333 return true;
2336 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
2337 std::vector<CopyRec> &TryAgain) {
2338 DEBUG(errs() << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
2340 std::vector<CopyRec> VirtCopies;
2341 std::vector<CopyRec> PhysCopies;
2342 std::vector<CopyRec> ImpDefCopies;
2343 unsigned LoopDepth = loopInfo->getLoopDepth(MBB);
2344 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2345 MII != E;) {
2346 MachineInstr *Inst = MII++;
2348 // If this isn't a copy nor a extract_subreg, we can't join intervals.
2349 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2350 if (Inst->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
2351 DstReg = Inst->getOperand(0).getReg();
2352 SrcReg = Inst->getOperand(1).getReg();
2353 } else if (Inst->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
2354 Inst->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
2355 DstReg = Inst->getOperand(0).getReg();
2356 SrcReg = Inst->getOperand(2).getReg();
2357 } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
2358 continue;
2360 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
2361 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
2362 if (NewHeuristic) {
2363 JoinQueue->push(CopyRec(Inst, LoopDepth, isBackEdgeCopy(Inst, DstReg)));
2364 } else {
2365 if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
2366 ImpDefCopies.push_back(CopyRec(Inst, 0, false));
2367 else if (SrcIsPhys || DstIsPhys)
2368 PhysCopies.push_back(CopyRec(Inst, 0, false));
2369 else
2370 VirtCopies.push_back(CopyRec(Inst, 0, false));
2374 if (NewHeuristic)
2375 return;
2377 // Try coalescing implicit copies first, followed by copies to / from
2378 // physical registers, then finally copies from virtual registers to
2379 // virtual registers.
2380 for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
2381 CopyRec &TheCopy = ImpDefCopies[i];
2382 bool Again = false;
2383 if (!JoinCopy(TheCopy, Again))
2384 if (Again)
2385 TryAgain.push_back(TheCopy);
2387 for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
2388 CopyRec &TheCopy = PhysCopies[i];
2389 bool Again = false;
2390 if (!JoinCopy(TheCopy, Again))
2391 if (Again)
2392 TryAgain.push_back(TheCopy);
2394 for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
2395 CopyRec &TheCopy = VirtCopies[i];
2396 bool Again = false;
2397 if (!JoinCopy(TheCopy, Again))
2398 if (Again)
2399 TryAgain.push_back(TheCopy);
2403 void SimpleRegisterCoalescing::joinIntervals() {
2404 DOUT << "********** JOINING INTERVALS ***********\n";
2406 if (NewHeuristic)
2407 JoinQueue = new JoinPriorityQueue<CopyRecSort>(this);
2409 std::vector<CopyRec> TryAgainList;
2410 if (loopInfo->empty()) {
2411 // If there are no loops in the function, join intervals in function order.
2412 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
2413 I != E; ++I)
2414 CopyCoalesceInMBB(I, TryAgainList);
2415 } else {
2416 // Otherwise, join intervals in inner loops before other intervals.
2417 // Unfortunately we can't just iterate over loop hierarchy here because
2418 // there may be more MBB's than BB's. Collect MBB's for sorting.
2420 // Join intervals in the function prolog first. We want to join physical
2421 // registers with virtual registers before the intervals got too long.
2422 std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
2423 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
2424 MachineBasicBlock *MBB = I;
2425 MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
2428 // Sort by loop depth.
2429 std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
2431 // Finally, join intervals in loop nest order.
2432 for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
2433 CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
2436 // Joining intervals can allow other intervals to be joined. Iteratively join
2437 // until we make no progress.
2438 if (NewHeuristic) {
2439 SmallVector<CopyRec, 16> TryAgain;
2440 bool ProgressMade = true;
2441 while (ProgressMade) {
2442 ProgressMade = false;
2443 while (!JoinQueue->empty()) {
2444 CopyRec R = JoinQueue->pop();
2445 bool Again = false;
2446 bool Success = JoinCopy(R, Again);
2447 if (Success)
2448 ProgressMade = true;
2449 else if (Again)
2450 TryAgain.push_back(R);
2453 if (ProgressMade) {
2454 while (!TryAgain.empty()) {
2455 JoinQueue->push(TryAgain.back());
2456 TryAgain.pop_back();
2460 } else {
2461 bool ProgressMade = true;
2462 while (ProgressMade) {
2463 ProgressMade = false;
2465 for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
2466 CopyRec &TheCopy = TryAgainList[i];
2467 if (TheCopy.MI) {
2468 bool Again = false;
2469 bool Success = JoinCopy(TheCopy, Again);
2470 if (Success || !Again) {
2471 TheCopy.MI = 0; // Mark this one as done.
2472 ProgressMade = true;
2479 if (NewHeuristic)
2480 delete JoinQueue;
2483 /// Return true if the two specified registers belong to different register
2484 /// classes. The registers may be either phys or virt regs.
2485 bool
2486 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
2487 unsigned RegB) const {
2488 // Get the register classes for the first reg.
2489 if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
2490 assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
2491 "Shouldn't consider two physregs!");
2492 return !mri_->getRegClass(RegB)->contains(RegA);
2495 // Compare against the regclass for the second reg.
2496 const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
2497 if (TargetRegisterInfo::isVirtualRegister(RegB)) {
2498 const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
2499 return RegClassA != RegClassB;
2501 return !RegClassA->contains(RegB);
2504 /// lastRegisterUse - Returns the last use of the specific register between
2505 /// cycles Start and End or NULL if there are no uses.
2506 MachineOperand *
2507 SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
2508 unsigned Reg, unsigned &UseIdx) const{
2509 UseIdx = 0;
2510 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2511 MachineOperand *LastUse = NULL;
2512 for (MachineRegisterInfo::use_iterator I = mri_->use_begin(Reg),
2513 E = mri_->use_end(); I != E; ++I) {
2514 MachineOperand &Use = I.getOperand();
2515 MachineInstr *UseMI = Use.getParent();
2516 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2517 if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
2518 SrcReg == DstReg)
2519 // Ignore identity copies.
2520 continue;
2521 unsigned Idx = li_->getInstructionIndex(UseMI);
2522 if (Idx >= Start && Idx < End && Idx >= UseIdx) {
2523 LastUse = &Use;
2524 UseIdx = li_->getUseIndex(Idx);
2527 return LastUse;
2530 int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
2531 int s = Start;
2532 while (e >= s) {
2533 // Skip deleted instructions
2534 MachineInstr *MI = li_->getInstructionFromIndex(e);
2535 while ((e - InstrSlots::NUM) >= s && !MI) {
2536 e -= InstrSlots::NUM;
2537 MI = li_->getInstructionFromIndex(e);
2539 if (e < s || MI == NULL)
2540 return NULL;
2542 // Ignore identity copies.
2543 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2544 if (!(tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
2545 SrcReg == DstReg))
2546 for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
2547 MachineOperand &Use = MI->getOperand(i);
2548 if (Use.isReg() && Use.isUse() && Use.getReg() &&
2549 tri_->regsOverlap(Use.getReg(), Reg)) {
2550 UseIdx = li_->getUseIndex(e);
2551 return &Use;
2555 e -= InstrSlots::NUM;
2558 return NULL;
2562 void SimpleRegisterCoalescing::printRegName(unsigned reg) const {
2563 if (TargetRegisterInfo::isPhysicalRegister(reg))
2564 cerr << tri_->getName(reg);
2565 else
2566 cerr << "%reg" << reg;
2569 void SimpleRegisterCoalescing::releaseMemory() {
2570 JoinedCopies.clear();
2571 ReMatCopies.clear();
2572 ReMatDefs.clear();
2575 static bool isZeroLengthInterval(LiveInterval *li) {
2576 for (LiveInterval::Ranges::const_iterator
2577 i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
2578 if (i->end - i->start > LiveInterval::InstrSlots::NUM)
2579 return false;
2580 return true;
2584 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
2585 mf_ = &fn;
2586 mri_ = &fn.getRegInfo();
2587 tm_ = &fn.getTarget();
2588 tri_ = tm_->getRegisterInfo();
2589 tii_ = tm_->getInstrInfo();
2590 li_ = &getAnalysis<LiveIntervals>();
2591 loopInfo = &getAnalysis<MachineLoopInfo>();
2593 DEBUG(errs() << "********** SIMPLE REGISTER COALESCING **********\n"
2594 << "********** Function: "
2595 << ((Value*)mf_->getFunction())->getName() << '\n');
2597 allocatableRegs_ = tri_->getAllocatableSet(fn);
2598 for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
2599 E = tri_->regclass_end(); I != E; ++I)
2600 allocatableRCRegs_.insert(std::make_pair(*I,
2601 tri_->getAllocatableSet(fn, *I)));
2603 // Join (coalesce) intervals if requested.
2604 if (EnableJoining) {
2605 joinIntervals();
2606 DEBUG({
2607 DOUT << "********** INTERVALS POST JOINING **********\n";
2608 for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I){
2609 I->second->print(DOUT, tri_);
2610 DOUT << "\n";
2615 // Perform a final pass over the instructions and compute spill weights
2616 // and remove identity moves.
2617 SmallVector<unsigned, 4> DeadDefs;
2618 for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
2619 mbbi != mbbe; ++mbbi) {
2620 MachineBasicBlock* mbb = mbbi;
2621 unsigned loopDepth = loopInfo->getLoopDepth(mbb);
2623 for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
2624 mii != mie; ) {
2625 MachineInstr *MI = mii;
2626 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2627 if (JoinedCopies.count(MI)) {
2628 // Delete all coalesced copies.
2629 if (!tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
2630 assert((MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
2631 MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
2632 MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
2633 "Unrecognized copy instruction");
2634 DstReg = MI->getOperand(0).getReg();
2636 if (MI->registerDefIsDead(DstReg)) {
2637 LiveInterval &li = li_->getInterval(DstReg);
2638 if (!ShortenDeadCopySrcLiveRange(li, MI))
2639 ShortenDeadCopyLiveRange(li, MI);
2641 li_->RemoveMachineInstrFromMaps(MI);
2642 mii = mbbi->erase(mii);
2643 ++numPeep;
2644 continue;
2647 // Now check if this is a remat'ed def instruction which is now dead.
2648 if (ReMatDefs.count(MI)) {
2649 bool isDead = true;
2650 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2651 const MachineOperand &MO = MI->getOperand(i);
2652 if (!MO.isReg())
2653 continue;
2654 unsigned Reg = MO.getReg();
2655 if (!Reg)
2656 continue;
2657 if (TargetRegisterInfo::isVirtualRegister(Reg))
2658 DeadDefs.push_back(Reg);
2659 if (MO.isDead())
2660 continue;
2661 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
2662 !mri_->use_empty(Reg)) {
2663 isDead = false;
2664 break;
2667 if (isDead) {
2668 while (!DeadDefs.empty()) {
2669 unsigned DeadDef = DeadDefs.back();
2670 DeadDefs.pop_back();
2671 RemoveDeadDef(li_->getInterval(DeadDef), MI);
2673 li_->RemoveMachineInstrFromMaps(mii);
2674 mii = mbbi->erase(mii);
2675 continue;
2676 } else
2677 DeadDefs.clear();
2680 // If the move will be an identity move delete it
2681 bool isMove= tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
2682 if (isMove && SrcReg == DstReg) {
2683 if (li_->hasInterval(SrcReg)) {
2684 LiveInterval &RegInt = li_->getInterval(SrcReg);
2685 // If def of this move instruction is dead, remove its live range
2686 // from the dstination register's live interval.
2687 if (MI->registerDefIsDead(DstReg)) {
2688 if (!ShortenDeadCopySrcLiveRange(RegInt, MI))
2689 ShortenDeadCopyLiveRange(RegInt, MI);
2692 li_->RemoveMachineInstrFromMaps(MI);
2693 mii = mbbi->erase(mii);
2694 ++numPeep;
2695 } else {
2696 SmallSet<unsigned, 4> UniqueUses;
2697 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2698 const MachineOperand &mop = MI->getOperand(i);
2699 if (mop.isReg() && mop.getReg() &&
2700 TargetRegisterInfo::isVirtualRegister(mop.getReg())) {
2701 unsigned reg = mop.getReg();
2702 // Multiple uses of reg by the same instruction. It should not
2703 // contribute to spill weight again.
2704 if (UniqueUses.count(reg) != 0)
2705 continue;
2706 LiveInterval &RegInt = li_->getInterval(reg);
2707 RegInt.weight +=
2708 li_->getSpillWeight(mop.isDef(), mop.isUse(), loopDepth);
2709 UniqueUses.insert(reg);
2712 ++mii;
2717 for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
2718 LiveInterval &LI = *I->second;
2719 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
2720 // If the live interval length is essentially zero, i.e. in every live
2721 // range the use follows def immediately, it doesn't make sense to spill
2722 // it and hope it will be easier to allocate for this li.
2723 if (isZeroLengthInterval(&LI))
2724 LI.weight = HUGE_VALF;
2725 else {
2726 bool isLoad = false;
2727 SmallVector<LiveInterval*, 4> SpillIs;
2728 if (li_->isReMaterializable(LI, SpillIs, isLoad)) {
2729 // If all of the definitions of the interval are re-materializable,
2730 // it is a preferred candidate for spilling. If non of the defs are
2731 // loads, then it's potentially very cheap to re-materialize.
2732 // FIXME: this gets much more complicated once we support non-trivial
2733 // re-materialization.
2734 if (isLoad)
2735 LI.weight *= 0.9F;
2736 else
2737 LI.weight *= 0.5F;
2741 // Slightly prefer live interval that has been assigned a preferred reg.
2742 std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(LI.reg);
2743 if (Hint.first || Hint.second)
2744 LI.weight *= 1.01F;
2746 // Divide the weight of the interval by its size. This encourages
2747 // spilling of intervals that are large and have few uses, and
2748 // discourages spilling of small intervals with many uses.
2749 LI.weight /= li_->getApproximateInstructionCount(LI) * InstrSlots::NUM;
2753 DEBUG(dump());
2754 return true;
2757 /// print - Implement the dump method.
2758 void SimpleRegisterCoalescing::print(std::ostream &O, const Module* m) const {
2759 li_->print(O, m);
2762 RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
2763 return new SimpleRegisterCoalescing();
2766 // Make sure that anything that uses RegisterCoalescer pulls in this file...
2767 DEFINING_FILE_FOR(SimpleRegisterCoalescing)