1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements all of the non-inline methods for the LLVM instruction
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Constants.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Function.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/Operator.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/CallSite.h"
22 #include "llvm/Support/ConstantRange.h"
23 #include "llvm/Support/MathExtras.h"
26 //===----------------------------------------------------------------------===//
28 //===----------------------------------------------------------------------===//
30 #define CALLSITE_DELEGATE_GETTER(METHOD) \
31 Instruction *II(getInstruction()); \
33 ? cast<CallInst>(II)->METHOD \
34 : cast<InvokeInst>(II)->METHOD
36 #define CALLSITE_DELEGATE_SETTER(METHOD) \
37 Instruction *II(getInstruction()); \
39 cast<CallInst>(II)->METHOD; \
41 cast<InvokeInst>(II)->METHOD
43 CallSite::CallSite(Instruction
*C
) {
44 assert((isa
<CallInst
>(C
) || isa
<InvokeInst
>(C
)) && "Not a call!");
46 I
.setInt(isa
<CallInst
>(C
));
48 unsigned CallSite::getCallingConv() const {
49 CALLSITE_DELEGATE_GETTER(getCallingConv());
51 void CallSite::setCallingConv(unsigned CC
) {
52 CALLSITE_DELEGATE_SETTER(setCallingConv(CC
));
54 const AttrListPtr
&CallSite::getAttributes() const {
55 CALLSITE_DELEGATE_GETTER(getAttributes());
57 void CallSite::setAttributes(const AttrListPtr
&PAL
) {
58 CALLSITE_DELEGATE_SETTER(setAttributes(PAL
));
60 bool CallSite::paramHasAttr(uint16_t i
, Attributes attr
) const {
61 CALLSITE_DELEGATE_GETTER(paramHasAttr(i
, attr
));
63 uint16_t CallSite::getParamAlignment(uint16_t i
) const {
64 CALLSITE_DELEGATE_GETTER(getParamAlignment(i
));
66 bool CallSite::doesNotAccessMemory() const {
67 CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
69 void CallSite::setDoesNotAccessMemory(bool doesNotAccessMemory
) {
70 CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory(doesNotAccessMemory
));
72 bool CallSite::onlyReadsMemory() const {
73 CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
75 void CallSite::setOnlyReadsMemory(bool onlyReadsMemory
) {
76 CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory(onlyReadsMemory
));
78 bool CallSite::doesNotReturn() const {
79 CALLSITE_DELEGATE_GETTER(doesNotReturn());
81 void CallSite::setDoesNotReturn(bool doesNotReturn
) {
82 CALLSITE_DELEGATE_SETTER(setDoesNotReturn(doesNotReturn
));
84 bool CallSite::doesNotThrow() const {
85 CALLSITE_DELEGATE_GETTER(doesNotThrow());
87 void CallSite::setDoesNotThrow(bool doesNotThrow
) {
88 CALLSITE_DELEGATE_SETTER(setDoesNotThrow(doesNotThrow
));
91 bool CallSite::hasArgument(const Value
*Arg
) const {
92 for (arg_iterator AI
= this->arg_begin(), E
= this->arg_end(); AI
!= E
; ++AI
)
98 #undef CALLSITE_DELEGATE_GETTER
99 #undef CALLSITE_DELEGATE_SETTER
101 //===----------------------------------------------------------------------===//
102 // TerminatorInst Class
103 //===----------------------------------------------------------------------===//
105 // Out of line virtual method, so the vtable, etc has a home.
106 TerminatorInst::~TerminatorInst() {
109 //===----------------------------------------------------------------------===//
110 // UnaryInstruction Class
111 //===----------------------------------------------------------------------===//
113 // Out of line virtual method, so the vtable, etc has a home.
114 UnaryInstruction::~UnaryInstruction() {
117 //===----------------------------------------------------------------------===//
119 //===----------------------------------------------------------------------===//
121 /// areInvalidOperands - Return a string if the specified operands are invalid
122 /// for a select operation, otherwise return null.
123 const char *SelectInst::areInvalidOperands(Value
*Op0
, Value
*Op1
, Value
*Op2
) {
124 if (Op1
->getType() != Op2
->getType())
125 return "both values to select must have same type";
127 if (const VectorType
*VT
= dyn_cast
<VectorType
>(Op0
->getType())) {
129 if (VT
->getElementType() != Type::Int1Ty
)
130 return "vector select condition element type must be i1";
131 const VectorType
*ET
= dyn_cast
<VectorType
>(Op1
->getType());
133 return "selected values for vector select must be vectors";
134 if (ET
->getNumElements() != VT
->getNumElements())
135 return "vector select requires selected vectors to have "
136 "the same vector length as select condition";
137 } else if (Op0
->getType() != Type::Int1Ty
) {
138 return "select condition must be i1 or <n x i1>";
144 //===----------------------------------------------------------------------===//
146 //===----------------------------------------------------------------------===//
148 PHINode::PHINode(const PHINode
&PN
)
149 : Instruction(PN
.getType(), Instruction::PHI
,
150 allocHungoffUses(PN
.getNumOperands()), PN
.getNumOperands()),
151 ReservedSpace(PN
.getNumOperands()) {
152 Use
*OL
= OperandList
;
153 for (unsigned i
= 0, e
= PN
.getNumOperands(); i
!= e
; i
+=2) {
154 OL
[i
] = PN
.getOperand(i
);
155 OL
[i
+1] = PN
.getOperand(i
+1);
159 PHINode::~PHINode() {
161 dropHungoffUses(OperandList
);
164 // removeIncomingValue - Remove an incoming value. This is useful if a
165 // predecessor basic block is deleted.
166 Value
*PHINode::removeIncomingValue(unsigned Idx
, bool DeletePHIIfEmpty
) {
167 unsigned NumOps
= getNumOperands();
168 Use
*OL
= OperandList
;
169 assert(Idx
*2 < NumOps
&& "BB not in PHI node!");
170 Value
*Removed
= OL
[Idx
*2];
172 // Move everything after this operand down.
174 // FIXME: we could just swap with the end of the list, then erase. However,
175 // client might not expect this to happen. The code as it is thrashes the
176 // use/def lists, which is kinda lame.
177 for (unsigned i
= (Idx
+1)*2; i
!= NumOps
; i
+= 2) {
182 // Nuke the last value.
184 OL
[NumOps
-2+1].set(0);
185 NumOperands
= NumOps
-2;
187 // If the PHI node is dead, because it has zero entries, nuke it now.
188 if (NumOps
== 2 && DeletePHIIfEmpty
) {
189 // If anyone is using this PHI, make them use a dummy value instead...
190 replaceAllUsesWith(UndefValue::get(getType()));
196 /// resizeOperands - resize operands - This adjusts the length of the operands
197 /// list according to the following behavior:
198 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
199 /// of operation. This grows the number of ops by 1.5 times.
200 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
201 /// 3. If NumOps == NumOperands, trim the reserved space.
203 void PHINode::resizeOperands(unsigned NumOps
) {
204 unsigned e
= getNumOperands();
207 if (NumOps
< 4) NumOps
= 4; // 4 op PHI nodes are VERY common.
208 } else if (NumOps
*2 > NumOperands
) {
210 if (ReservedSpace
>= NumOps
) return;
211 } else if (NumOps
== NumOperands
) {
212 if (ReservedSpace
== NumOps
) return;
217 ReservedSpace
= NumOps
;
218 Use
*OldOps
= OperandList
;
219 Use
*NewOps
= allocHungoffUses(NumOps
);
220 std::copy(OldOps
, OldOps
+ e
, NewOps
);
221 OperandList
= NewOps
;
222 if (OldOps
) Use::zap(OldOps
, OldOps
+ e
, true);
225 /// hasConstantValue - If the specified PHI node always merges together the same
226 /// value, return the value, otherwise return null.
228 Value
*PHINode::hasConstantValue(bool AllowNonDominatingInstruction
) const {
229 // If the PHI node only has one incoming value, eliminate the PHI node...
230 if (getNumIncomingValues() == 1) {
231 if (getIncomingValue(0) != this) // not X = phi X
232 return getIncomingValue(0);
234 return UndefValue::get(getType()); // Self cycle is dead.
237 // Otherwise if all of the incoming values are the same for the PHI, replace
238 // the PHI node with the incoming value.
241 bool HasUndefInput
= false;
242 for (unsigned i
= 0, e
= getNumIncomingValues(); i
!= e
; ++i
)
243 if (isa
<UndefValue
>(getIncomingValue(i
))) {
244 HasUndefInput
= true;
245 } else if (getIncomingValue(i
) != this) { // Not the PHI node itself...
246 if (InVal
&& getIncomingValue(i
) != InVal
)
247 return 0; // Not the same, bail out.
249 InVal
= getIncomingValue(i
);
252 // The only case that could cause InVal to be null is if we have a PHI node
253 // that only has entries for itself. In this case, there is no entry into the
254 // loop, so kill the PHI.
256 if (InVal
== 0) InVal
= UndefValue::get(getType());
258 // If we have a PHI node like phi(X, undef, X), where X is defined by some
259 // instruction, we cannot always return X as the result of the PHI node. Only
260 // do this if X is not an instruction (thus it must dominate the PHI block),
261 // or if the client is prepared to deal with this possibility.
262 if (HasUndefInput
&& !AllowNonDominatingInstruction
)
263 if (Instruction
*IV
= dyn_cast
<Instruction
>(InVal
))
264 // If it's in the entry block, it dominates everything.
265 if (IV
->getParent() != &IV
->getParent()->getParent()->getEntryBlock() ||
267 return 0; // Cannot guarantee that InVal dominates this PHINode.
269 // All of the incoming values are the same, return the value now.
274 //===----------------------------------------------------------------------===//
275 // CallInst Implementation
276 //===----------------------------------------------------------------------===//
278 CallInst::~CallInst() {
281 void CallInst::init(Value
*Func
, Value
* const *Params
, unsigned NumParams
) {
282 assert(NumOperands
== NumParams
+1 && "NumOperands not set up?");
283 Use
*OL
= OperandList
;
286 const FunctionType
*FTy
=
287 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
288 FTy
= FTy
; // silence warning.
290 assert((NumParams
== FTy
->getNumParams() ||
291 (FTy
->isVarArg() && NumParams
> FTy
->getNumParams())) &&
292 "Calling a function with bad signature!");
293 for (unsigned i
= 0; i
!= NumParams
; ++i
) {
294 assert((i
>= FTy
->getNumParams() ||
295 FTy
->getParamType(i
) == Params
[i
]->getType()) &&
296 "Calling a function with a bad signature!");
301 void CallInst::init(Value
*Func
, Value
*Actual1
, Value
*Actual2
) {
302 assert(NumOperands
== 3 && "NumOperands not set up?");
303 Use
*OL
= OperandList
;
308 const FunctionType
*FTy
=
309 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
310 FTy
= FTy
; // silence warning.
312 assert((FTy
->getNumParams() == 2 ||
313 (FTy
->isVarArg() && FTy
->getNumParams() < 2)) &&
314 "Calling a function with bad signature");
315 assert((0 >= FTy
->getNumParams() ||
316 FTy
->getParamType(0) == Actual1
->getType()) &&
317 "Calling a function with a bad signature!");
318 assert((1 >= FTy
->getNumParams() ||
319 FTy
->getParamType(1) == Actual2
->getType()) &&
320 "Calling a function with a bad signature!");
323 void CallInst::init(Value
*Func
, Value
*Actual
) {
324 assert(NumOperands
== 2 && "NumOperands not set up?");
325 Use
*OL
= OperandList
;
329 const FunctionType
*FTy
=
330 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
331 FTy
= FTy
; // silence warning.
333 assert((FTy
->getNumParams() == 1 ||
334 (FTy
->isVarArg() && FTy
->getNumParams() == 0)) &&
335 "Calling a function with bad signature");
336 assert((0 == FTy
->getNumParams() ||
337 FTy
->getParamType(0) == Actual
->getType()) &&
338 "Calling a function with a bad signature!");
341 void CallInst::init(Value
*Func
) {
342 assert(NumOperands
== 1 && "NumOperands not set up?");
343 Use
*OL
= OperandList
;
346 const FunctionType
*FTy
=
347 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
348 FTy
= FTy
; // silence warning.
350 assert(FTy
->getNumParams() == 0 && "Calling a function with bad signature");
353 CallInst::CallInst(Value
*Func
, Value
* Actual
, const Twine
&Name
,
354 Instruction
*InsertBefore
)
355 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
356 ->getElementType())->getReturnType(),
358 OperandTraits
<CallInst
>::op_end(this) - 2,
364 CallInst::CallInst(Value
*Func
, Value
* Actual
, const Twine
&Name
,
365 BasicBlock
*InsertAtEnd
)
366 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
367 ->getElementType())->getReturnType(),
369 OperandTraits
<CallInst
>::op_end(this) - 2,
374 CallInst::CallInst(Value
*Func
, const Twine
&Name
,
375 Instruction
*InsertBefore
)
376 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
377 ->getElementType())->getReturnType(),
379 OperandTraits
<CallInst
>::op_end(this) - 1,
385 CallInst::CallInst(Value
*Func
, const Twine
&Name
,
386 BasicBlock
*InsertAtEnd
)
387 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
388 ->getElementType())->getReturnType(),
390 OperandTraits
<CallInst
>::op_end(this) - 1,
396 CallInst::CallInst(const CallInst
&CI
)
397 : Instruction(CI
.getType(), Instruction::Call
,
398 OperandTraits
<CallInst
>::op_end(this) - CI
.getNumOperands(),
399 CI
.getNumOperands()) {
400 setAttributes(CI
.getAttributes());
401 SubclassData
= CI
.SubclassData
;
402 Use
*OL
= OperandList
;
403 Use
*InOL
= CI
.OperandList
;
404 for (unsigned i
= 0, e
= CI
.getNumOperands(); i
!= e
; ++i
)
408 void CallInst::addAttribute(unsigned i
, Attributes attr
) {
409 AttrListPtr PAL
= getAttributes();
410 PAL
= PAL
.addAttr(i
, attr
);
414 void CallInst::removeAttribute(unsigned i
, Attributes attr
) {
415 AttrListPtr PAL
= getAttributes();
416 PAL
= PAL
.removeAttr(i
, attr
);
420 bool CallInst::paramHasAttr(unsigned i
, Attributes attr
) const {
421 if (AttributeList
.paramHasAttr(i
, attr
))
423 if (const Function
*F
= getCalledFunction())
424 return F
->paramHasAttr(i
, attr
);
429 //===----------------------------------------------------------------------===//
430 // InvokeInst Implementation
431 //===----------------------------------------------------------------------===//
433 void InvokeInst::init(Value
*Fn
, BasicBlock
*IfNormal
, BasicBlock
*IfException
,
434 Value
* const *Args
, unsigned NumArgs
) {
435 assert(NumOperands
== 3+NumArgs
&& "NumOperands not set up?");
436 Use
*OL
= OperandList
;
440 const FunctionType
*FTy
=
441 cast
<FunctionType
>(cast
<PointerType
>(Fn
->getType())->getElementType());
442 FTy
= FTy
; // silence warning.
444 assert(((NumArgs
== FTy
->getNumParams()) ||
445 (FTy
->isVarArg() && NumArgs
> FTy
->getNumParams())) &&
446 "Calling a function with bad signature");
448 for (unsigned i
= 0, e
= NumArgs
; i
!= e
; i
++) {
449 assert((i
>= FTy
->getNumParams() ||
450 FTy
->getParamType(i
) == Args
[i
]->getType()) &&
451 "Invoking a function with a bad signature!");
457 InvokeInst::InvokeInst(const InvokeInst
&II
)
458 : TerminatorInst(II
.getType(), Instruction::Invoke
,
459 OperandTraits
<InvokeInst
>::op_end(this)
460 - II
.getNumOperands(),
461 II
.getNumOperands()) {
462 setAttributes(II
.getAttributes());
463 SubclassData
= II
.SubclassData
;
464 Use
*OL
= OperandList
, *InOL
= II
.OperandList
;
465 for (unsigned i
= 0, e
= II
.getNumOperands(); i
!= e
; ++i
)
469 BasicBlock
*InvokeInst::getSuccessorV(unsigned idx
) const {
470 return getSuccessor(idx
);
472 unsigned InvokeInst::getNumSuccessorsV() const {
473 return getNumSuccessors();
475 void InvokeInst::setSuccessorV(unsigned idx
, BasicBlock
*B
) {
476 return setSuccessor(idx
, B
);
479 bool InvokeInst::paramHasAttr(unsigned i
, Attributes attr
) const {
480 if (AttributeList
.paramHasAttr(i
, attr
))
482 if (const Function
*F
= getCalledFunction())
483 return F
->paramHasAttr(i
, attr
);
487 void InvokeInst::addAttribute(unsigned i
, Attributes attr
) {
488 AttrListPtr PAL
= getAttributes();
489 PAL
= PAL
.addAttr(i
, attr
);
493 void InvokeInst::removeAttribute(unsigned i
, Attributes attr
) {
494 AttrListPtr PAL
= getAttributes();
495 PAL
= PAL
.removeAttr(i
, attr
);
500 //===----------------------------------------------------------------------===//
501 // ReturnInst Implementation
502 //===----------------------------------------------------------------------===//
504 ReturnInst::ReturnInst(const ReturnInst
&RI
)
505 : TerminatorInst(Type::VoidTy
, Instruction::Ret
,
506 OperandTraits
<ReturnInst
>::op_end(this) -
508 RI
.getNumOperands()) {
509 if (RI
.getNumOperands())
510 Op
<0>() = RI
.Op
<0>();
513 ReturnInst::ReturnInst(Value
*retVal
, Instruction
*InsertBefore
)
514 : TerminatorInst(Type::VoidTy
, Instruction::Ret
,
515 OperandTraits
<ReturnInst
>::op_end(this) - !!retVal
, !!retVal
,
520 ReturnInst::ReturnInst(Value
*retVal
, BasicBlock
*InsertAtEnd
)
521 : TerminatorInst(Type::VoidTy
, Instruction::Ret
,
522 OperandTraits
<ReturnInst
>::op_end(this) - !!retVal
, !!retVal
,
527 ReturnInst::ReturnInst(BasicBlock
*InsertAtEnd
)
528 : TerminatorInst(Type::VoidTy
, Instruction::Ret
,
529 OperandTraits
<ReturnInst
>::op_end(this), 0, InsertAtEnd
) {
532 unsigned ReturnInst::getNumSuccessorsV() const {
533 return getNumSuccessors();
536 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
537 /// emit the vtable for the class in this translation unit.
538 void ReturnInst::setSuccessorV(unsigned idx
, BasicBlock
*NewSucc
) {
539 llvm_unreachable("ReturnInst has no successors!");
542 BasicBlock
*ReturnInst::getSuccessorV(unsigned idx
) const {
543 llvm_unreachable("ReturnInst has no successors!");
547 ReturnInst::~ReturnInst() {
550 //===----------------------------------------------------------------------===//
551 // UnwindInst Implementation
552 //===----------------------------------------------------------------------===//
554 UnwindInst::UnwindInst(Instruction
*InsertBefore
)
555 : TerminatorInst(Type::VoidTy
, Instruction::Unwind
, 0, 0, InsertBefore
) {
557 UnwindInst::UnwindInst(BasicBlock
*InsertAtEnd
)
558 : TerminatorInst(Type::VoidTy
, Instruction::Unwind
, 0, 0, InsertAtEnd
) {
562 unsigned UnwindInst::getNumSuccessorsV() const {
563 return getNumSuccessors();
566 void UnwindInst::setSuccessorV(unsigned idx
, BasicBlock
*NewSucc
) {
567 llvm_unreachable("UnwindInst has no successors!");
570 BasicBlock
*UnwindInst::getSuccessorV(unsigned idx
) const {
571 llvm_unreachable("UnwindInst has no successors!");
575 //===----------------------------------------------------------------------===//
576 // UnreachableInst Implementation
577 //===----------------------------------------------------------------------===//
579 UnreachableInst::UnreachableInst(Instruction
*InsertBefore
)
580 : TerminatorInst(Type::VoidTy
, Instruction::Unreachable
, 0, 0, InsertBefore
) {
582 UnreachableInst::UnreachableInst(BasicBlock
*InsertAtEnd
)
583 : TerminatorInst(Type::VoidTy
, Instruction::Unreachable
, 0, 0, InsertAtEnd
) {
586 unsigned UnreachableInst::getNumSuccessorsV() const {
587 return getNumSuccessors();
590 void UnreachableInst::setSuccessorV(unsigned idx
, BasicBlock
*NewSucc
) {
591 llvm_unreachable("UnwindInst has no successors!");
594 BasicBlock
*UnreachableInst::getSuccessorV(unsigned idx
) const {
595 llvm_unreachable("UnwindInst has no successors!");
599 //===----------------------------------------------------------------------===//
600 // BranchInst Implementation
601 //===----------------------------------------------------------------------===//
603 void BranchInst::AssertOK() {
605 assert(getCondition()->getType() == Type::Int1Ty
&&
606 "May only branch on boolean predicates!");
609 BranchInst::BranchInst(BasicBlock
*IfTrue
, Instruction
*InsertBefore
)
610 : TerminatorInst(Type::VoidTy
, Instruction::Br
,
611 OperandTraits
<BranchInst
>::op_end(this) - 1,
613 assert(IfTrue
!= 0 && "Branch destination may not be null!");
616 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
617 Instruction
*InsertBefore
)
618 : TerminatorInst(Type::VoidTy
, Instruction::Br
,
619 OperandTraits
<BranchInst
>::op_end(this) - 3,
629 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*InsertAtEnd
)
630 : TerminatorInst(Type::VoidTy
, Instruction::Br
,
631 OperandTraits
<BranchInst
>::op_end(this) - 1,
633 assert(IfTrue
!= 0 && "Branch destination may not be null!");
637 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
638 BasicBlock
*InsertAtEnd
)
639 : TerminatorInst(Type::VoidTy
, Instruction::Br
,
640 OperandTraits
<BranchInst
>::op_end(this) - 3,
651 BranchInst::BranchInst(const BranchInst
&BI
) :
652 TerminatorInst(Type::VoidTy
, Instruction::Br
,
653 OperandTraits
<BranchInst
>::op_end(this) - BI
.getNumOperands(),
654 BI
.getNumOperands()) {
655 Op
<-1>() = BI
.Op
<-1>();
656 if (BI
.getNumOperands() != 1) {
657 assert(BI
.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
658 Op
<-3>() = BI
.Op
<-3>();
659 Op
<-2>() = BI
.Op
<-2>();
664 Use
* Use::getPrefix() {
665 PointerIntPair
<Use
**, 2, PrevPtrTag
> &PotentialPrefix(this[-1].Prev
);
666 if (PotentialPrefix
.getOpaqueValue())
669 return reinterpret_cast<Use
*>((char*)&PotentialPrefix
+ 1);
672 BranchInst::~BranchInst() {
673 if (NumOperands
== 1) {
674 if (Use
*Prefix
= OperandList
->getPrefix()) {
677 // mark OperandList to have a special value for scrutiny
678 // by baseclass destructors and operator delete
679 OperandList
= Prefix
;
682 OperandList
= op_begin();
688 BasicBlock
*BranchInst::getSuccessorV(unsigned idx
) const {
689 return getSuccessor(idx
);
691 unsigned BranchInst::getNumSuccessorsV() const {
692 return getNumSuccessors();
694 void BranchInst::setSuccessorV(unsigned idx
, BasicBlock
*B
) {
695 setSuccessor(idx
, B
);
699 //===----------------------------------------------------------------------===//
700 // AllocationInst Implementation
701 //===----------------------------------------------------------------------===//
703 static Value
*getAISize(LLVMContext
&Context
, Value
*Amt
) {
705 Amt
= ConstantInt::get(Type::Int32Ty
, 1);
707 assert(!isa
<BasicBlock
>(Amt
) &&
708 "Passed basic block into allocation size parameter! Use other ctor");
709 assert(Amt
->getType() == Type::Int32Ty
&&
710 "Malloc/Allocation array size is not a 32-bit integer!");
715 AllocationInst::AllocationInst(const Type
*Ty
, Value
*ArraySize
, unsigned iTy
,
716 unsigned Align
, const Twine
&Name
,
717 Instruction
*InsertBefore
)
718 : UnaryInstruction(PointerType::getUnqual(Ty
), iTy
,
719 getAISize(Ty
->getContext(), ArraySize
), InsertBefore
) {
721 assert(Ty
!= Type::VoidTy
&& "Cannot allocate void!");
725 AllocationInst::AllocationInst(const Type
*Ty
, Value
*ArraySize
, unsigned iTy
,
726 unsigned Align
, const Twine
&Name
,
727 BasicBlock
*InsertAtEnd
)
728 : UnaryInstruction(PointerType::getUnqual(Ty
), iTy
,
729 getAISize(Ty
->getContext(), ArraySize
), InsertAtEnd
) {
731 assert(Ty
!= Type::VoidTy
&& "Cannot allocate void!");
735 // Out of line virtual method, so the vtable, etc has a home.
736 AllocationInst::~AllocationInst() {
739 void AllocationInst::setAlignment(unsigned Align
) {
740 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
741 SubclassData
= Log2_32(Align
) + 1;
742 assert(getAlignment() == Align
&& "Alignment representation error!");
745 bool AllocationInst::isArrayAllocation() const {
746 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(getOperand(0)))
747 return CI
->getZExtValue() != 1;
751 const Type
*AllocationInst::getAllocatedType() const {
752 return getType()->getElementType();
755 AllocaInst::AllocaInst(const AllocaInst
&AI
)
756 : AllocationInst(AI
.getType()->getElementType(),
757 (Value
*)AI
.getOperand(0), Instruction::Alloca
,
761 /// isStaticAlloca - Return true if this alloca is in the entry block of the
762 /// function and is a constant size. If so, the code generator will fold it
763 /// into the prolog/epilog code, so it is basically free.
764 bool AllocaInst::isStaticAlloca() const {
765 // Must be constant size.
766 if (!isa
<ConstantInt
>(getArraySize())) return false;
768 // Must be in the entry block.
769 const BasicBlock
*Parent
= getParent();
770 return Parent
== &Parent
->getParent()->front();
773 MallocInst::MallocInst(const MallocInst
&MI
)
774 : AllocationInst(MI
.getType()->getElementType(),
775 (Value
*)MI
.getOperand(0), Instruction::Malloc
,
779 //===----------------------------------------------------------------------===//
780 // FreeInst Implementation
781 //===----------------------------------------------------------------------===//
783 void FreeInst::AssertOK() {
784 assert(isa
<PointerType
>(getOperand(0)->getType()) &&
785 "Can not free something of nonpointer type!");
788 FreeInst::FreeInst(Value
*Ptr
, Instruction
*InsertBefore
)
789 : UnaryInstruction(Type::VoidTy
, Free
, Ptr
, InsertBefore
) {
793 FreeInst::FreeInst(Value
*Ptr
, BasicBlock
*InsertAtEnd
)
794 : UnaryInstruction(Type::VoidTy
, Free
, Ptr
, InsertAtEnd
) {
799 //===----------------------------------------------------------------------===//
800 // LoadInst Implementation
801 //===----------------------------------------------------------------------===//
803 void LoadInst::AssertOK() {
804 assert(isa
<PointerType
>(getOperand(0)->getType()) &&
805 "Ptr must have pointer type.");
808 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, Instruction
*InsertBef
)
809 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
810 Load
, Ptr
, InsertBef
) {
817 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, BasicBlock
*InsertAE
)
818 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
819 Load
, Ptr
, InsertAE
) {
826 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
827 Instruction
*InsertBef
)
828 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
829 Load
, Ptr
, InsertBef
) {
830 setVolatile(isVolatile
);
836 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
837 unsigned Align
, Instruction
*InsertBef
)
838 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
839 Load
, Ptr
, InsertBef
) {
840 setVolatile(isVolatile
);
846 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
847 unsigned Align
, BasicBlock
*InsertAE
)
848 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
849 Load
, Ptr
, InsertAE
) {
850 setVolatile(isVolatile
);
856 LoadInst::LoadInst(Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
857 BasicBlock
*InsertAE
)
858 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
859 Load
, Ptr
, InsertAE
) {
860 setVolatile(isVolatile
);
868 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, Instruction
*InsertBef
)
869 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
870 Load
, Ptr
, InsertBef
) {
874 if (Name
&& Name
[0]) setName(Name
);
877 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, BasicBlock
*InsertAE
)
878 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
879 Load
, Ptr
, InsertAE
) {
883 if (Name
&& Name
[0]) setName(Name
);
886 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, bool isVolatile
,
887 Instruction
*InsertBef
)
888 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
889 Load
, Ptr
, InsertBef
) {
890 setVolatile(isVolatile
);
893 if (Name
&& Name
[0]) setName(Name
);
896 LoadInst::LoadInst(Value
*Ptr
, const char *Name
, bool isVolatile
,
897 BasicBlock
*InsertAE
)
898 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
899 Load
, Ptr
, InsertAE
) {
900 setVolatile(isVolatile
);
903 if (Name
&& Name
[0]) setName(Name
);
906 void LoadInst::setAlignment(unsigned Align
) {
907 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
908 SubclassData
= (SubclassData
& 1) | ((Log2_32(Align
)+1)<<1);
911 //===----------------------------------------------------------------------===//
912 // StoreInst Implementation
913 //===----------------------------------------------------------------------===//
915 void StoreInst::AssertOK() {
916 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
917 assert(isa
<PointerType
>(getOperand(1)->getType()) &&
918 "Ptr must have pointer type!");
919 assert(getOperand(0)->getType() ==
920 cast
<PointerType
>(getOperand(1)->getType())->getElementType()
921 && "Ptr must be a pointer to Val type!");
925 StoreInst::StoreInst(Value
*val
, Value
*addr
, Instruction
*InsertBefore
)
926 : Instruction(Type::VoidTy
, Store
,
927 OperandTraits
<StoreInst
>::op_begin(this),
928 OperandTraits
<StoreInst
>::operands(this),
937 StoreInst::StoreInst(Value
*val
, Value
*addr
, BasicBlock
*InsertAtEnd
)
938 : Instruction(Type::VoidTy
, Store
,
939 OperandTraits
<StoreInst
>::op_begin(this),
940 OperandTraits
<StoreInst
>::operands(this),
949 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
950 Instruction
*InsertBefore
)
951 : Instruction(Type::VoidTy
, Store
,
952 OperandTraits
<StoreInst
>::op_begin(this),
953 OperandTraits
<StoreInst
>::operands(this),
957 setVolatile(isVolatile
);
962 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
963 unsigned Align
, Instruction
*InsertBefore
)
964 : Instruction(Type::VoidTy
, Store
,
965 OperandTraits
<StoreInst
>::op_begin(this),
966 OperandTraits
<StoreInst
>::operands(this),
970 setVolatile(isVolatile
);
975 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
976 unsigned Align
, BasicBlock
*InsertAtEnd
)
977 : Instruction(Type::VoidTy
, Store
,
978 OperandTraits
<StoreInst
>::op_begin(this),
979 OperandTraits
<StoreInst
>::operands(this),
983 setVolatile(isVolatile
);
988 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
989 BasicBlock
*InsertAtEnd
)
990 : Instruction(Type::VoidTy
, Store
,
991 OperandTraits
<StoreInst
>::op_begin(this),
992 OperandTraits
<StoreInst
>::operands(this),
996 setVolatile(isVolatile
);
1001 void StoreInst::setAlignment(unsigned Align
) {
1002 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
1003 SubclassData
= (SubclassData
& 1) | ((Log2_32(Align
)+1)<<1);
1006 //===----------------------------------------------------------------------===//
1007 // GetElementPtrInst Implementation
1008 //===----------------------------------------------------------------------===//
1010 static unsigned retrieveAddrSpace(const Value
*Val
) {
1011 return cast
<PointerType
>(Val
->getType())->getAddressSpace();
1014 void GetElementPtrInst::init(Value
*Ptr
, Value
* const *Idx
, unsigned NumIdx
,
1015 const Twine
&Name
) {
1016 assert(NumOperands
== 1+NumIdx
&& "NumOperands not initialized?");
1017 Use
*OL
= OperandList
;
1020 for (unsigned i
= 0; i
!= NumIdx
; ++i
)
1026 void GetElementPtrInst::init(Value
*Ptr
, Value
*Idx
, const Twine
&Name
) {
1027 assert(NumOperands
== 2 && "NumOperands not initialized?");
1028 Use
*OL
= OperandList
;
1035 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst
&GEPI
)
1036 : Instruction(GEPI
.getType(), GetElementPtr
,
1037 OperandTraits
<GetElementPtrInst
>::op_end(this)
1038 - GEPI
.getNumOperands(),
1039 GEPI
.getNumOperands()) {
1040 Use
*OL
= OperandList
;
1041 Use
*GEPIOL
= GEPI
.OperandList
;
1042 for (unsigned i
= 0, E
= NumOperands
; i
!= E
; ++i
)
1046 GetElementPtrInst::GetElementPtrInst(Value
*Ptr
, Value
*Idx
,
1047 const Twine
&Name
, Instruction
*InBe
)
1048 : Instruction(PointerType::get(
1049 checkType(getIndexedType(Ptr
->getType(),Idx
)), retrieveAddrSpace(Ptr
)),
1051 OperandTraits
<GetElementPtrInst
>::op_end(this) - 2,
1053 init(Ptr
, Idx
, Name
);
1056 GetElementPtrInst::GetElementPtrInst(Value
*Ptr
, Value
*Idx
,
1057 const Twine
&Name
, BasicBlock
*IAE
)
1058 : Instruction(PointerType::get(
1059 checkType(getIndexedType(Ptr
->getType(),Idx
)),
1060 retrieveAddrSpace(Ptr
)),
1062 OperandTraits
<GetElementPtrInst
>::op_end(this) - 2,
1064 init(Ptr
, Idx
, Name
);
1067 /// getIndexedType - Returns the type of the element that would be accessed with
1068 /// a gep instruction with the specified parameters.
1070 /// The Idxs pointer should point to a continuous piece of memory containing the
1071 /// indices, either as Value* or uint64_t.
1073 /// A null type is returned if the indices are invalid for the specified
1076 template <typename IndexTy
>
1077 static const Type
* getIndexedTypeInternal(const Type
*Ptr
, IndexTy
const *Idxs
,
1079 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ptr
);
1080 if (!PTy
) return 0; // Type isn't a pointer type!
1081 const Type
*Agg
= PTy
->getElementType();
1083 // Handle the special case of the empty set index set, which is always valid.
1087 // If there is at least one index, the top level type must be sized, otherwise
1088 // it cannot be 'stepped over'. We explicitly allow abstract types (those
1089 // that contain opaque types) under the assumption that it will be resolved to
1090 // a sane type later.
1091 if (!Agg
->isSized() && !Agg
->isAbstract())
1094 unsigned CurIdx
= 1;
1095 for (; CurIdx
!= NumIdx
; ++CurIdx
) {
1096 const CompositeType
*CT
= dyn_cast
<CompositeType
>(Agg
);
1097 if (!CT
|| isa
<PointerType
>(CT
)) return 0;
1098 IndexTy Index
= Idxs
[CurIdx
];
1099 if (!CT
->indexValid(Index
)) return 0;
1100 Agg
= CT
->getTypeAtIndex(Index
);
1102 // If the new type forwards to another type, then it is in the middle
1103 // of being refined to another type (and hence, may have dropped all
1104 // references to what it was using before). So, use the new forwarded
1106 if (const Type
*Ty
= Agg
->getForwardedType())
1109 return CurIdx
== NumIdx
? Agg
: 0;
1112 const Type
* GetElementPtrInst::getIndexedType(const Type
*Ptr
,
1115 return getIndexedTypeInternal(Ptr
, Idxs
, NumIdx
);
1118 const Type
* GetElementPtrInst::getIndexedType(const Type
*Ptr
,
1119 uint64_t const *Idxs
,
1121 return getIndexedTypeInternal(Ptr
, Idxs
, NumIdx
);
1124 const Type
* GetElementPtrInst::getIndexedType(const Type
*Ptr
, Value
*Idx
) {
1125 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ptr
);
1126 if (!PTy
) return 0; // Type isn't a pointer type!
1128 // Check the pointer index.
1129 if (!PTy
->indexValid(Idx
)) return 0;
1131 return PTy
->getElementType();
1135 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1136 /// zeros. If so, the result pointer and the first operand have the same
1137 /// value, just potentially different types.
1138 bool GetElementPtrInst::hasAllZeroIndices() const {
1139 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
1140 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(getOperand(i
))) {
1141 if (!CI
->isZero()) return false;
1149 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1150 /// constant integers. If so, the result pointer and the first operand have
1151 /// a constant offset between them.
1152 bool GetElementPtrInst::hasAllConstantIndices() const {
1153 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
1154 if (!isa
<ConstantInt
>(getOperand(i
)))
1161 //===----------------------------------------------------------------------===//
1162 // ExtractElementInst Implementation
1163 //===----------------------------------------------------------------------===//
1165 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
1167 Instruction
*InsertBef
)
1168 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1170 OperandTraits
<ExtractElementInst
>::op_begin(this),
1172 assert(isValidOperands(Val
, Index
) &&
1173 "Invalid extractelement instruction operands!");
1179 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
1181 BasicBlock
*InsertAE
)
1182 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1184 OperandTraits
<ExtractElementInst
>::op_begin(this),
1186 assert(isValidOperands(Val
, Index
) &&
1187 "Invalid extractelement instruction operands!");
1195 bool ExtractElementInst::isValidOperands(const Value
*Val
, const Value
*Index
) {
1196 if (!isa
<VectorType
>(Val
->getType()) || Index
->getType() != Type::Int32Ty
)
1202 //===----------------------------------------------------------------------===//
1203 // InsertElementInst Implementation
1204 //===----------------------------------------------------------------------===//
1206 InsertElementInst::InsertElementInst(const InsertElementInst
&IE
)
1207 : Instruction(IE
.getType(), InsertElement
,
1208 OperandTraits
<InsertElementInst
>::op_begin(this), 3) {
1209 Op
<0>() = IE
.Op
<0>();
1210 Op
<1>() = IE
.Op
<1>();
1211 Op
<2>() = IE
.Op
<2>();
1213 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
1215 Instruction
*InsertBef
)
1216 : Instruction(Vec
->getType(), InsertElement
,
1217 OperandTraits
<InsertElementInst
>::op_begin(this),
1219 assert(isValidOperands(Vec
, Elt
, Index
) &&
1220 "Invalid insertelement instruction operands!");
1227 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
1229 BasicBlock
*InsertAE
)
1230 : Instruction(Vec
->getType(), InsertElement
,
1231 OperandTraits
<InsertElementInst
>::op_begin(this),
1233 assert(isValidOperands(Vec
, Elt
, Index
) &&
1234 "Invalid insertelement instruction operands!");
1242 bool InsertElementInst::isValidOperands(const Value
*Vec
, const Value
*Elt
,
1243 const Value
*Index
) {
1244 if (!isa
<VectorType
>(Vec
->getType()))
1245 return false; // First operand of insertelement must be vector type.
1247 if (Elt
->getType() != cast
<VectorType
>(Vec
->getType())->getElementType())
1248 return false;// Second operand of insertelement must be vector element type.
1250 if (Index
->getType() != Type::Int32Ty
)
1251 return false; // Third operand of insertelement must be i32.
1256 //===----------------------------------------------------------------------===//
1257 // ShuffleVectorInst Implementation
1258 //===----------------------------------------------------------------------===//
1260 ShuffleVectorInst::ShuffleVectorInst(const ShuffleVectorInst
&SV
)
1261 : Instruction(SV
.getType(), ShuffleVector
,
1262 OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1263 OperandTraits
<ShuffleVectorInst
>::operands(this)) {
1264 Op
<0>() = SV
.Op
<0>();
1265 Op
<1>() = SV
.Op
<1>();
1266 Op
<2>() = SV
.Op
<2>();
1269 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1271 Instruction
*InsertBefore
)
1272 : Instruction(VectorType::get(cast
<VectorType
>(V1
->getType())->getElementType(),
1273 cast
<VectorType
>(Mask
->getType())->getNumElements()),
1275 OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1276 OperandTraits
<ShuffleVectorInst
>::operands(this),
1278 assert(isValidOperands(V1
, V2
, Mask
) &&
1279 "Invalid shuffle vector instruction operands!");
1286 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1288 BasicBlock
*InsertAtEnd
)
1289 : Instruction(V1
->getType(), ShuffleVector
,
1290 OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1291 OperandTraits
<ShuffleVectorInst
>::operands(this),
1293 assert(isValidOperands(V1
, V2
, Mask
) &&
1294 "Invalid shuffle vector instruction operands!");
1302 bool ShuffleVectorInst::isValidOperands(const Value
*V1
, const Value
*V2
,
1303 const Value
*Mask
) {
1304 if (!isa
<VectorType
>(V1
->getType()) || V1
->getType() != V2
->getType())
1307 const VectorType
*MaskTy
= dyn_cast
<VectorType
>(Mask
->getType());
1308 if (!isa
<Constant
>(Mask
) || MaskTy
== 0 ||
1309 MaskTy
->getElementType() != Type::Int32Ty
)
1314 /// getMaskValue - Return the index from the shuffle mask for the specified
1315 /// output result. This is either -1 if the element is undef or a number less
1316 /// than 2*numelements.
1317 int ShuffleVectorInst::getMaskValue(unsigned i
) const {
1318 const Constant
*Mask
= cast
<Constant
>(getOperand(2));
1319 if (isa
<UndefValue
>(Mask
)) return -1;
1320 if (isa
<ConstantAggregateZero
>(Mask
)) return 0;
1321 const ConstantVector
*MaskCV
= cast
<ConstantVector
>(Mask
);
1322 assert(i
< MaskCV
->getNumOperands() && "Index out of range");
1324 if (isa
<UndefValue
>(MaskCV
->getOperand(i
)))
1326 return cast
<ConstantInt
>(MaskCV
->getOperand(i
))->getZExtValue();
1329 //===----------------------------------------------------------------------===//
1330 // InsertValueInst Class
1331 //===----------------------------------------------------------------------===//
1333 void InsertValueInst::init(Value
*Agg
, Value
*Val
, const unsigned *Idx
,
1334 unsigned NumIdx
, const Twine
&Name
) {
1335 assert(NumOperands
== 2 && "NumOperands not initialized?");
1339 Indices
.insert(Indices
.end(), Idx
, Idx
+ NumIdx
);
1343 void InsertValueInst::init(Value
*Agg
, Value
*Val
, unsigned Idx
,
1344 const Twine
&Name
) {
1345 assert(NumOperands
== 2 && "NumOperands not initialized?");
1349 Indices
.push_back(Idx
);
1353 InsertValueInst::InsertValueInst(const InsertValueInst
&IVI
)
1354 : Instruction(IVI
.getType(), InsertValue
,
1355 OperandTraits
<InsertValueInst
>::op_begin(this), 2),
1356 Indices(IVI
.Indices
) {
1357 Op
<0>() = IVI
.getOperand(0);
1358 Op
<1>() = IVI
.getOperand(1);
1361 InsertValueInst::InsertValueInst(Value
*Agg
,
1365 Instruction
*InsertBefore
)
1366 : Instruction(Agg
->getType(), InsertValue
,
1367 OperandTraits
<InsertValueInst
>::op_begin(this),
1369 init(Agg
, Val
, Idx
, Name
);
1372 InsertValueInst::InsertValueInst(Value
*Agg
,
1376 BasicBlock
*InsertAtEnd
)
1377 : Instruction(Agg
->getType(), InsertValue
,
1378 OperandTraits
<InsertValueInst
>::op_begin(this),
1380 init(Agg
, Val
, Idx
, Name
);
1383 //===----------------------------------------------------------------------===//
1384 // ExtractValueInst Class
1385 //===----------------------------------------------------------------------===//
1387 void ExtractValueInst::init(const unsigned *Idx
, unsigned NumIdx
,
1388 const Twine
&Name
) {
1389 assert(NumOperands
== 1 && "NumOperands not initialized?");
1391 Indices
.insert(Indices
.end(), Idx
, Idx
+ NumIdx
);
1395 void ExtractValueInst::init(unsigned Idx
, const Twine
&Name
) {
1396 assert(NumOperands
== 1 && "NumOperands not initialized?");
1398 Indices
.push_back(Idx
);
1402 ExtractValueInst::ExtractValueInst(const ExtractValueInst
&EVI
)
1403 : UnaryInstruction(EVI
.getType(), ExtractValue
, EVI
.getOperand(0)),
1404 Indices(EVI
.Indices
) {
1407 // getIndexedType - Returns the type of the element that would be extracted
1408 // with an extractvalue instruction with the specified parameters.
1410 // A null type is returned if the indices are invalid for the specified
1413 const Type
* ExtractValueInst::getIndexedType(const Type
*Agg
,
1414 const unsigned *Idxs
,
1416 unsigned CurIdx
= 0;
1417 for (; CurIdx
!= NumIdx
; ++CurIdx
) {
1418 const CompositeType
*CT
= dyn_cast
<CompositeType
>(Agg
);
1419 if (!CT
|| isa
<PointerType
>(CT
) || isa
<VectorType
>(CT
)) return 0;
1420 unsigned Index
= Idxs
[CurIdx
];
1421 if (!CT
->indexValid(Index
)) return 0;
1422 Agg
= CT
->getTypeAtIndex(Index
);
1424 // If the new type forwards to another type, then it is in the middle
1425 // of being refined to another type (and hence, may have dropped all
1426 // references to what it was using before). So, use the new forwarded
1428 if (const Type
*Ty
= Agg
->getForwardedType())
1431 return CurIdx
== NumIdx
? Agg
: 0;
1434 const Type
* ExtractValueInst::getIndexedType(const Type
*Agg
,
1436 return getIndexedType(Agg
, &Idx
, 1);
1439 //===----------------------------------------------------------------------===//
1440 // BinaryOperator Class
1441 //===----------------------------------------------------------------------===//
1443 /// AdjustIType - Map Add, Sub, and Mul to FAdd, FSub, and FMul when the
1444 /// type is floating-point, to help provide compatibility with an older API.
1446 static BinaryOperator::BinaryOps
AdjustIType(BinaryOperator::BinaryOps iType
,
1448 // API compatibility: Adjust integer opcodes to floating-point opcodes.
1449 if (Ty
->isFPOrFPVector()) {
1450 if (iType
== BinaryOperator::Add
) iType
= BinaryOperator::FAdd
;
1451 else if (iType
== BinaryOperator::Sub
) iType
= BinaryOperator::FSub
;
1452 else if (iType
== BinaryOperator::Mul
) iType
= BinaryOperator::FMul
;
1457 BinaryOperator::BinaryOperator(BinaryOps iType
, Value
*S1
, Value
*S2
,
1458 const Type
*Ty
, const Twine
&Name
,
1459 Instruction
*InsertBefore
)
1460 : Instruction(Ty
, AdjustIType(iType
, Ty
),
1461 OperandTraits
<BinaryOperator
>::op_begin(this),
1462 OperandTraits
<BinaryOperator
>::operands(this),
1466 init(AdjustIType(iType
, Ty
));
1470 BinaryOperator::BinaryOperator(BinaryOps iType
, Value
*S1
, Value
*S2
,
1471 const Type
*Ty
, const Twine
&Name
,
1472 BasicBlock
*InsertAtEnd
)
1473 : Instruction(Ty
, AdjustIType(iType
, Ty
),
1474 OperandTraits
<BinaryOperator
>::op_begin(this),
1475 OperandTraits
<BinaryOperator
>::operands(this),
1479 init(AdjustIType(iType
, Ty
));
1484 void BinaryOperator::init(BinaryOps iType
) {
1485 Value
*LHS
= getOperand(0), *RHS
= getOperand(1);
1486 LHS
= LHS
; RHS
= RHS
; // Silence warnings.
1487 assert(LHS
->getType() == RHS
->getType() &&
1488 "Binary operator operand types must match!");
1493 assert(getType() == LHS
->getType() &&
1494 "Arithmetic operation should return same type as operands!");
1495 assert(getType()->isIntOrIntVector() &&
1496 "Tried to create an integer operation on a non-integer type!");
1498 case FAdd
: case FSub
:
1500 assert(getType() == LHS
->getType() &&
1501 "Arithmetic operation should return same type as operands!");
1502 assert(getType()->isFPOrFPVector() &&
1503 "Tried to create a floating-point operation on a "
1504 "non-floating-point type!");
1508 assert(getType() == LHS
->getType() &&
1509 "Arithmetic operation should return same type as operands!");
1510 assert((getType()->isInteger() || (isa
<VectorType
>(getType()) &&
1511 cast
<VectorType
>(getType())->getElementType()->isInteger())) &&
1512 "Incorrect operand type (not integer) for S/UDIV");
1515 assert(getType() == LHS
->getType() &&
1516 "Arithmetic operation should return same type as operands!");
1517 assert(getType()->isFPOrFPVector() &&
1518 "Incorrect operand type (not floating point) for FDIV");
1522 assert(getType() == LHS
->getType() &&
1523 "Arithmetic operation should return same type as operands!");
1524 assert((getType()->isInteger() || (isa
<VectorType
>(getType()) &&
1525 cast
<VectorType
>(getType())->getElementType()->isInteger())) &&
1526 "Incorrect operand type (not integer) for S/UREM");
1529 assert(getType() == LHS
->getType() &&
1530 "Arithmetic operation should return same type as operands!");
1531 assert(getType()->isFPOrFPVector() &&
1532 "Incorrect operand type (not floating point) for FREM");
1537 assert(getType() == LHS
->getType() &&
1538 "Shift operation should return same type as operands!");
1539 assert((getType()->isInteger() ||
1540 (isa
<VectorType
>(getType()) &&
1541 cast
<VectorType
>(getType())->getElementType()->isInteger())) &&
1542 "Tried to create a shift operation on a non-integral type!");
1546 assert(getType() == LHS
->getType() &&
1547 "Logical operation should return same type as operands!");
1548 assert((getType()->isInteger() ||
1549 (isa
<VectorType
>(getType()) &&
1550 cast
<VectorType
>(getType())->getElementType()->isInteger())) &&
1551 "Tried to create a logical operation on a non-integral type!");
1559 BinaryOperator
*BinaryOperator::Create(BinaryOps Op
, Value
*S1
, Value
*S2
,
1561 Instruction
*InsertBefore
) {
1562 assert(S1
->getType() == S2
->getType() &&
1563 "Cannot create binary operator with two operands of differing type!");
1564 return new BinaryOperator(Op
, S1
, S2
, S1
->getType(), Name
, InsertBefore
);
1567 BinaryOperator
*BinaryOperator::Create(BinaryOps Op
, Value
*S1
, Value
*S2
,
1569 BasicBlock
*InsertAtEnd
) {
1570 BinaryOperator
*Res
= Create(Op
, S1
, S2
, Name
);
1571 InsertAtEnd
->getInstList().push_back(Res
);
1575 BinaryOperator
*BinaryOperator::CreateNeg(LLVMContext
&Context
,
1576 Value
*Op
, const Twine
&Name
,
1577 Instruction
*InsertBefore
) {
1578 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
1579 return new BinaryOperator(Instruction::Sub
,
1581 Op
->getType(), Name
, InsertBefore
);
1584 BinaryOperator
*BinaryOperator::CreateNeg(LLVMContext
&Context
,
1585 Value
*Op
, const Twine
&Name
,
1586 BasicBlock
*InsertAtEnd
) {
1587 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
1588 return new BinaryOperator(Instruction::Sub
,
1590 Op
->getType(), Name
, InsertAtEnd
);
1593 BinaryOperator
*BinaryOperator::CreateFNeg(LLVMContext
&Context
,
1594 Value
*Op
, const Twine
&Name
,
1595 Instruction
*InsertBefore
) {
1596 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
1597 return new BinaryOperator(Instruction::FSub
,
1599 Op
->getType(), Name
, InsertBefore
);
1602 BinaryOperator
*BinaryOperator::CreateFNeg(LLVMContext
&Context
,
1603 Value
*Op
, const Twine
&Name
,
1604 BasicBlock
*InsertAtEnd
) {
1605 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
1606 return new BinaryOperator(Instruction::FSub
,
1608 Op
->getType(), Name
, InsertAtEnd
);
1611 BinaryOperator
*BinaryOperator::CreateNot(LLVMContext
&Context
,
1612 Value
*Op
, const Twine
&Name
,
1613 Instruction
*InsertBefore
) {
1615 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(Op
->getType())) {
1616 C
= Constant::getAllOnesValue(PTy
->getElementType());
1617 C
= ConstantVector::get(
1618 std::vector
<Constant
*>(PTy
->getNumElements(), C
));
1620 C
= Constant::getAllOnesValue(Op
->getType());
1623 return new BinaryOperator(Instruction::Xor
, Op
, C
,
1624 Op
->getType(), Name
, InsertBefore
);
1627 BinaryOperator
*BinaryOperator::CreateNot(LLVMContext
&Context
,
1628 Value
*Op
, const Twine
&Name
,
1629 BasicBlock
*InsertAtEnd
) {
1631 if (const VectorType
*PTy
= dyn_cast
<VectorType
>(Op
->getType())) {
1632 // Create a vector of all ones values.
1633 Constant
*Elt
= Constant::getAllOnesValue(PTy
->getElementType());
1634 AllOnes
= ConstantVector::get(
1635 std::vector
<Constant
*>(PTy
->getNumElements(), Elt
));
1637 AllOnes
= Constant::getAllOnesValue(Op
->getType());
1640 return new BinaryOperator(Instruction::Xor
, Op
, AllOnes
,
1641 Op
->getType(), Name
, InsertAtEnd
);
1645 // isConstantAllOnes - Helper function for several functions below
1646 static inline bool isConstantAllOnes(const Value
*V
) {
1647 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
1648 return CI
->isAllOnesValue();
1649 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
))
1650 return CV
->isAllOnesValue();
1654 bool BinaryOperator::isNeg(const Value
*V
) {
1655 if (const BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(V
))
1656 if (Bop
->getOpcode() == Instruction::Sub
)
1657 if (Constant
* C
= dyn_cast
<Constant
>(Bop
->getOperand(0)))
1658 return C
->isNegativeZeroValue();
1662 bool BinaryOperator::isFNeg(const Value
*V
) {
1663 if (const BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(V
))
1664 if (Bop
->getOpcode() == Instruction::FSub
)
1665 if (Constant
* C
= dyn_cast
<Constant
>(Bop
->getOperand(0)))
1666 return C
->isNegativeZeroValue();
1670 bool BinaryOperator::isNot(const Value
*V
) {
1671 if (const BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(V
))
1672 return (Bop
->getOpcode() == Instruction::Xor
&&
1673 (isConstantAllOnes(Bop
->getOperand(1)) ||
1674 isConstantAllOnes(Bop
->getOperand(0))));
1678 Value
*BinaryOperator::getNegArgument(Value
*BinOp
) {
1679 return cast
<BinaryOperator
>(BinOp
)->getOperand(1);
1682 const Value
*BinaryOperator::getNegArgument(const Value
*BinOp
) {
1683 return getNegArgument(const_cast<Value
*>(BinOp
));
1686 Value
*BinaryOperator::getFNegArgument(Value
*BinOp
) {
1687 return cast
<BinaryOperator
>(BinOp
)->getOperand(1);
1690 const Value
*BinaryOperator::getFNegArgument(const Value
*BinOp
) {
1691 return getFNegArgument(const_cast<Value
*>(BinOp
));
1694 Value
*BinaryOperator::getNotArgument(Value
*BinOp
) {
1695 assert(isNot(BinOp
) && "getNotArgument on non-'not' instruction!");
1696 BinaryOperator
*BO
= cast
<BinaryOperator
>(BinOp
);
1697 Value
*Op0
= BO
->getOperand(0);
1698 Value
*Op1
= BO
->getOperand(1);
1699 if (isConstantAllOnes(Op0
)) return Op1
;
1701 assert(isConstantAllOnes(Op1
));
1705 const Value
*BinaryOperator::getNotArgument(const Value
*BinOp
) {
1706 return getNotArgument(const_cast<Value
*>(BinOp
));
1710 // swapOperands - Exchange the two operands to this instruction. This
1711 // instruction is safe to use on any binary instruction and does not
1712 // modify the semantics of the instruction. If the instruction is
1713 // order dependent (SetLT f.e.) the opcode is changed.
1715 bool BinaryOperator::swapOperands() {
1716 if (!isCommutative())
1717 return true; // Can't commute operands
1718 Op
<0>().swap(Op
<1>());
1722 //===----------------------------------------------------------------------===//
1724 //===----------------------------------------------------------------------===//
1726 // Just determine if this cast only deals with integral->integral conversion.
1727 bool CastInst::isIntegerCast() const {
1728 switch (getOpcode()) {
1729 default: return false;
1730 case Instruction::ZExt
:
1731 case Instruction::SExt
:
1732 case Instruction::Trunc
:
1734 case Instruction::BitCast
:
1735 return getOperand(0)->getType()->isInteger() && getType()->isInteger();
1739 bool CastInst::isLosslessCast() const {
1740 // Only BitCast can be lossless, exit fast if we're not BitCast
1741 if (getOpcode() != Instruction::BitCast
)
1744 // Identity cast is always lossless
1745 const Type
* SrcTy
= getOperand(0)->getType();
1746 const Type
* DstTy
= getType();
1750 // Pointer to pointer is always lossless.
1751 if (isa
<PointerType
>(SrcTy
))
1752 return isa
<PointerType
>(DstTy
);
1753 return false; // Other types have no identity values
1756 /// This function determines if the CastInst does not require any bits to be
1757 /// changed in order to effect the cast. Essentially, it identifies cases where
1758 /// no code gen is necessary for the cast, hence the name no-op cast. For
1759 /// example, the following are all no-op casts:
1760 /// # bitcast i32* %x to i8*
1761 /// # bitcast <2 x i32> %x to <4 x i16>
1762 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
1763 /// @brief Determine if a cast is a no-op.
1764 bool CastInst::isNoopCast(const Type
*IntPtrTy
) const {
1765 switch (getOpcode()) {
1767 assert(!"Invalid CastOp");
1768 case Instruction::Trunc
:
1769 case Instruction::ZExt
:
1770 case Instruction::SExt
:
1771 case Instruction::FPTrunc
:
1772 case Instruction::FPExt
:
1773 case Instruction::UIToFP
:
1774 case Instruction::SIToFP
:
1775 case Instruction::FPToUI
:
1776 case Instruction::FPToSI
:
1777 return false; // These always modify bits
1778 case Instruction::BitCast
:
1779 return true; // BitCast never modifies bits.
1780 case Instruction::PtrToInt
:
1781 return IntPtrTy
->getScalarSizeInBits() ==
1782 getType()->getScalarSizeInBits();
1783 case Instruction::IntToPtr
:
1784 return IntPtrTy
->getScalarSizeInBits() ==
1785 getOperand(0)->getType()->getScalarSizeInBits();
1789 /// This function determines if a pair of casts can be eliminated and what
1790 /// opcode should be used in the elimination. This assumes that there are two
1791 /// instructions like this:
1792 /// * %F = firstOpcode SrcTy %x to MidTy
1793 /// * %S = secondOpcode MidTy %F to DstTy
1794 /// The function returns a resultOpcode so these two casts can be replaced with:
1795 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
1796 /// If no such cast is permited, the function returns 0.
1797 unsigned CastInst::isEliminableCastPair(
1798 Instruction::CastOps firstOp
, Instruction::CastOps secondOp
,
1799 const Type
*SrcTy
, const Type
*MidTy
, const Type
*DstTy
, const Type
*IntPtrTy
)
1801 // Define the 144 possibilities for these two cast instructions. The values
1802 // in this matrix determine what to do in a given situation and select the
1803 // case in the switch below. The rows correspond to firstOp, the columns
1804 // correspond to secondOp. In looking at the table below, keep in mind
1805 // the following cast properties:
1807 // Size Compare Source Destination
1808 // Operator Src ? Size Type Sign Type Sign
1809 // -------- ------------ ------------------- ---------------------
1810 // TRUNC > Integer Any Integral Any
1811 // ZEXT < Integral Unsigned Integer Any
1812 // SEXT < Integral Signed Integer Any
1813 // FPTOUI n/a FloatPt n/a Integral Unsigned
1814 // FPTOSI n/a FloatPt n/a Integral Signed
1815 // UITOFP n/a Integral Unsigned FloatPt n/a
1816 // SITOFP n/a Integral Signed FloatPt n/a
1817 // FPTRUNC > FloatPt n/a FloatPt n/a
1818 // FPEXT < FloatPt n/a FloatPt n/a
1819 // PTRTOINT n/a Pointer n/a Integral Unsigned
1820 // INTTOPTR n/a Integral Unsigned Pointer n/a
1821 // BITCONVERT = FirstClass n/a FirstClass n/a
1823 // NOTE: some transforms are safe, but we consider them to be non-profitable.
1824 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
1825 // into "fptoui double to i64", but this loses information about the range
1826 // of the produced value (we no longer know the top-part is all zeros).
1827 // Further this conversion is often much more expensive for typical hardware,
1828 // and causes issues when building libgcc. We disallow fptosi+sext for the
1830 const unsigned numCastOps
=
1831 Instruction::CastOpsEnd
- Instruction::CastOpsBegin
;
1832 static const uint8_t CastResults
[numCastOps
][numCastOps
] = {
1833 // T F F U S F F P I B -+
1834 // R Z S P P I I T P 2 N T |
1835 // U E E 2 2 2 2 R E I T C +- secondOp
1836 // N X X U S F F N X N 2 V |
1837 // C T T I I P P C T T P T -+
1838 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
1839 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
1840 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
1841 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
1842 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
1843 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
1844 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
1845 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
1846 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
1847 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
1848 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
1849 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
1852 int ElimCase
= CastResults
[firstOp
-Instruction::CastOpsBegin
]
1853 [secondOp
-Instruction::CastOpsBegin
];
1856 // categorically disallowed
1859 // allowed, use first cast's opcode
1862 // allowed, use second cast's opcode
1865 // no-op cast in second op implies firstOp as long as the DestTy
1867 if (DstTy
->isInteger())
1871 // no-op cast in second op implies firstOp as long as the DestTy
1872 // is floating point
1873 if (DstTy
->isFloatingPoint())
1877 // no-op cast in first op implies secondOp as long as the SrcTy
1879 if (SrcTy
->isInteger())
1883 // no-op cast in first op implies secondOp as long as the SrcTy
1884 // is a floating point
1885 if (SrcTy
->isFloatingPoint())
1889 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
1892 unsigned PtrSize
= IntPtrTy
->getScalarSizeInBits();
1893 unsigned MidSize
= MidTy
->getScalarSizeInBits();
1894 if (MidSize
>= PtrSize
)
1895 return Instruction::BitCast
;
1899 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
1900 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
1901 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
1902 unsigned SrcSize
= SrcTy
->getScalarSizeInBits();
1903 unsigned DstSize
= DstTy
->getScalarSizeInBits();
1904 if (SrcSize
== DstSize
)
1905 return Instruction::BitCast
;
1906 else if (SrcSize
< DstSize
)
1910 case 9: // zext, sext -> zext, because sext can't sign extend after zext
1911 return Instruction::ZExt
;
1913 // fpext followed by ftrunc is allowed if the bit size returned to is
1914 // the same as the original, in which case its just a bitcast
1916 return Instruction::BitCast
;
1917 return 0; // If the types are not the same we can't eliminate it.
1919 // bitcast followed by ptrtoint is allowed as long as the bitcast
1920 // is a pointer to pointer cast.
1921 if (isa
<PointerType
>(SrcTy
) && isa
<PointerType
>(MidTy
))
1925 // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
1926 if (isa
<PointerType
>(MidTy
) && isa
<PointerType
>(DstTy
))
1930 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
1933 unsigned PtrSize
= IntPtrTy
->getScalarSizeInBits();
1934 unsigned SrcSize
= SrcTy
->getScalarSizeInBits();
1935 unsigned DstSize
= DstTy
->getScalarSizeInBits();
1936 if (SrcSize
<= PtrSize
&& SrcSize
== DstSize
)
1937 return Instruction::BitCast
;
1941 // cast combination can't happen (error in input). This is for all cases
1942 // where the MidTy is not the same for the two cast instructions.
1943 assert(!"Invalid Cast Combination");
1946 assert(!"Error in CastResults table!!!");
1952 CastInst
*CastInst::Create(Instruction::CastOps op
, Value
*S
, const Type
*Ty
,
1953 const Twine
&Name
, Instruction
*InsertBefore
) {
1954 // Construct and return the appropriate CastInst subclass
1956 case Trunc
: return new TruncInst (S
, Ty
, Name
, InsertBefore
);
1957 case ZExt
: return new ZExtInst (S
, Ty
, Name
, InsertBefore
);
1958 case SExt
: return new SExtInst (S
, Ty
, Name
, InsertBefore
);
1959 case FPTrunc
: return new FPTruncInst (S
, Ty
, Name
, InsertBefore
);
1960 case FPExt
: return new FPExtInst (S
, Ty
, Name
, InsertBefore
);
1961 case UIToFP
: return new UIToFPInst (S
, Ty
, Name
, InsertBefore
);
1962 case SIToFP
: return new SIToFPInst (S
, Ty
, Name
, InsertBefore
);
1963 case FPToUI
: return new FPToUIInst (S
, Ty
, Name
, InsertBefore
);
1964 case FPToSI
: return new FPToSIInst (S
, Ty
, Name
, InsertBefore
);
1965 case PtrToInt
: return new PtrToIntInst (S
, Ty
, Name
, InsertBefore
);
1966 case IntToPtr
: return new IntToPtrInst (S
, Ty
, Name
, InsertBefore
);
1967 case BitCast
: return new BitCastInst (S
, Ty
, Name
, InsertBefore
);
1969 assert(!"Invalid opcode provided");
1974 CastInst
*CastInst::Create(Instruction::CastOps op
, Value
*S
, const Type
*Ty
,
1975 const Twine
&Name
, BasicBlock
*InsertAtEnd
) {
1976 // Construct and return the appropriate CastInst subclass
1978 case Trunc
: return new TruncInst (S
, Ty
, Name
, InsertAtEnd
);
1979 case ZExt
: return new ZExtInst (S
, Ty
, Name
, InsertAtEnd
);
1980 case SExt
: return new SExtInst (S
, Ty
, Name
, InsertAtEnd
);
1981 case FPTrunc
: return new FPTruncInst (S
, Ty
, Name
, InsertAtEnd
);
1982 case FPExt
: return new FPExtInst (S
, Ty
, Name
, InsertAtEnd
);
1983 case UIToFP
: return new UIToFPInst (S
, Ty
, Name
, InsertAtEnd
);
1984 case SIToFP
: return new SIToFPInst (S
, Ty
, Name
, InsertAtEnd
);
1985 case FPToUI
: return new FPToUIInst (S
, Ty
, Name
, InsertAtEnd
);
1986 case FPToSI
: return new FPToSIInst (S
, Ty
, Name
, InsertAtEnd
);
1987 case PtrToInt
: return new PtrToIntInst (S
, Ty
, Name
, InsertAtEnd
);
1988 case IntToPtr
: return new IntToPtrInst (S
, Ty
, Name
, InsertAtEnd
);
1989 case BitCast
: return new BitCastInst (S
, Ty
, Name
, InsertAtEnd
);
1991 assert(!"Invalid opcode provided");
1996 CastInst
*CastInst::CreateZExtOrBitCast(Value
*S
, const Type
*Ty
,
1998 Instruction
*InsertBefore
) {
1999 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2000 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2001 return Create(Instruction::ZExt
, S
, Ty
, Name
, InsertBefore
);
2004 CastInst
*CastInst::CreateZExtOrBitCast(Value
*S
, const Type
*Ty
,
2006 BasicBlock
*InsertAtEnd
) {
2007 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2008 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2009 return Create(Instruction::ZExt
, S
, Ty
, Name
, InsertAtEnd
);
2012 CastInst
*CastInst::CreateSExtOrBitCast(Value
*S
, const Type
*Ty
,
2014 Instruction
*InsertBefore
) {
2015 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2016 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2017 return Create(Instruction::SExt
, S
, Ty
, Name
, InsertBefore
);
2020 CastInst
*CastInst::CreateSExtOrBitCast(Value
*S
, const Type
*Ty
,
2022 BasicBlock
*InsertAtEnd
) {
2023 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2024 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2025 return Create(Instruction::SExt
, S
, Ty
, Name
, InsertAtEnd
);
2028 CastInst
*CastInst::CreateTruncOrBitCast(Value
*S
, const Type
*Ty
,
2030 Instruction
*InsertBefore
) {
2031 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2032 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2033 return Create(Instruction::Trunc
, S
, Ty
, Name
, InsertBefore
);
2036 CastInst
*CastInst::CreateTruncOrBitCast(Value
*S
, const Type
*Ty
,
2038 BasicBlock
*InsertAtEnd
) {
2039 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2040 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2041 return Create(Instruction::Trunc
, S
, Ty
, Name
, InsertAtEnd
);
2044 CastInst
*CastInst::CreatePointerCast(Value
*S
, const Type
*Ty
,
2046 BasicBlock
*InsertAtEnd
) {
2047 assert(isa
<PointerType
>(S
->getType()) && "Invalid cast");
2048 assert((Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
2051 if (Ty
->isInteger())
2052 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertAtEnd
);
2053 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2056 /// @brief Create a BitCast or a PtrToInt cast instruction
2057 CastInst
*CastInst::CreatePointerCast(Value
*S
, const Type
*Ty
,
2059 Instruction
*InsertBefore
) {
2060 assert(isa
<PointerType
>(S
->getType()) && "Invalid cast");
2061 assert((Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
2064 if (Ty
->isInteger())
2065 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertBefore
);
2066 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2069 CastInst
*CastInst::CreateIntegerCast(Value
*C
, const Type
*Ty
,
2070 bool isSigned
, const Twine
&Name
,
2071 Instruction
*InsertBefore
) {
2072 assert(C
->getType()->isInteger() && Ty
->isInteger() && "Invalid cast");
2073 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2074 unsigned DstBits
= Ty
->getScalarSizeInBits();
2075 Instruction::CastOps opcode
=
2076 (SrcBits
== DstBits
? Instruction::BitCast
:
2077 (SrcBits
> DstBits
? Instruction::Trunc
:
2078 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
2079 return Create(opcode
, C
, Ty
, Name
, InsertBefore
);
2082 CastInst
*CastInst::CreateIntegerCast(Value
*C
, const Type
*Ty
,
2083 bool isSigned
, const Twine
&Name
,
2084 BasicBlock
*InsertAtEnd
) {
2085 assert(C
->getType()->isIntOrIntVector() && Ty
->isIntOrIntVector() &&
2087 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2088 unsigned DstBits
= Ty
->getScalarSizeInBits();
2089 Instruction::CastOps opcode
=
2090 (SrcBits
== DstBits
? Instruction::BitCast
:
2091 (SrcBits
> DstBits
? Instruction::Trunc
:
2092 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
2093 return Create(opcode
, C
, Ty
, Name
, InsertAtEnd
);
2096 CastInst
*CastInst::CreateFPCast(Value
*C
, const Type
*Ty
,
2098 Instruction
*InsertBefore
) {
2099 assert(C
->getType()->isFPOrFPVector() && Ty
->isFPOrFPVector() &&
2101 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2102 unsigned DstBits
= Ty
->getScalarSizeInBits();
2103 Instruction::CastOps opcode
=
2104 (SrcBits
== DstBits
? Instruction::BitCast
:
2105 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
));
2106 return Create(opcode
, C
, Ty
, Name
, InsertBefore
);
2109 CastInst
*CastInst::CreateFPCast(Value
*C
, const Type
*Ty
,
2111 BasicBlock
*InsertAtEnd
) {
2112 assert(C
->getType()->isFPOrFPVector() && Ty
->isFPOrFPVector() &&
2114 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2115 unsigned DstBits
= Ty
->getScalarSizeInBits();
2116 Instruction::CastOps opcode
=
2117 (SrcBits
== DstBits
? Instruction::BitCast
:
2118 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
));
2119 return Create(opcode
, C
, Ty
, Name
, InsertAtEnd
);
2122 // Check whether it is valid to call getCastOpcode for these types.
2123 // This routine must be kept in sync with getCastOpcode.
2124 bool CastInst::isCastable(const Type
*SrcTy
, const Type
*DestTy
) {
2125 if (!SrcTy
->isFirstClassType() || !DestTy
->isFirstClassType())
2128 if (SrcTy
== DestTy
)
2131 // Get the bit sizes, we'll need these
2132 unsigned SrcBits
= SrcTy
->getScalarSizeInBits(); // 0 for ptr
2133 unsigned DestBits
= DestTy
->getScalarSizeInBits(); // 0 for ptr
2135 // Run through the possibilities ...
2136 if (DestTy
->isInteger()) { // Casting to integral
2137 if (SrcTy
->isInteger()) { // Casting from integral
2139 } else if (SrcTy
->isFloatingPoint()) { // Casting from floating pt
2141 } else if (const VectorType
*PTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2142 // Casting from vector
2143 return DestBits
== PTy
->getBitWidth();
2144 } else { // Casting from something else
2145 return isa
<PointerType
>(SrcTy
);
2147 } else if (DestTy
->isFloatingPoint()) { // Casting to floating pt
2148 if (SrcTy
->isInteger()) { // Casting from integral
2150 } else if (SrcTy
->isFloatingPoint()) { // Casting from floating pt
2152 } else if (const VectorType
*PTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2153 // Casting from vector
2154 return DestBits
== PTy
->getBitWidth();
2155 } else { // Casting from something else
2158 } else if (const VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
2159 // Casting to vector
2160 if (const VectorType
*SrcPTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2161 // Casting from vector
2162 return DestPTy
->getBitWidth() == SrcPTy
->getBitWidth();
2163 } else { // Casting from something else
2164 return DestPTy
->getBitWidth() == SrcBits
;
2166 } else if (isa
<PointerType
>(DestTy
)) { // Casting to pointer
2167 if (isa
<PointerType
>(SrcTy
)) { // Casting from pointer
2169 } else if (SrcTy
->isInteger()) { // Casting from integral
2171 } else { // Casting from something else
2174 } else { // Casting to something else
2179 // Provide a way to get a "cast" where the cast opcode is inferred from the
2180 // types and size of the operand. This, basically, is a parallel of the
2181 // logic in the castIsValid function below. This axiom should hold:
2182 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2183 // should not assert in castIsValid. In other words, this produces a "correct"
2184 // casting opcode for the arguments passed to it.
2185 // This routine must be kept in sync with isCastable.
2186 Instruction::CastOps
2187 CastInst::getCastOpcode(
2188 const Value
*Src
, bool SrcIsSigned
, const Type
*DestTy
, bool DestIsSigned
) {
2189 // Get the bit sizes, we'll need these
2190 const Type
*SrcTy
= Src
->getType();
2191 unsigned SrcBits
= SrcTy
->getScalarSizeInBits(); // 0 for ptr
2192 unsigned DestBits
= DestTy
->getScalarSizeInBits(); // 0 for ptr
2194 assert(SrcTy
->isFirstClassType() && DestTy
->isFirstClassType() &&
2195 "Only first class types are castable!");
2197 // Run through the possibilities ...
2198 if (DestTy
->isInteger()) { // Casting to integral
2199 if (SrcTy
->isInteger()) { // Casting from integral
2200 if (DestBits
< SrcBits
)
2201 return Trunc
; // int -> smaller int
2202 else if (DestBits
> SrcBits
) { // its an extension
2204 return SExt
; // signed -> SEXT
2206 return ZExt
; // unsigned -> ZEXT
2208 return BitCast
; // Same size, No-op cast
2210 } else if (SrcTy
->isFloatingPoint()) { // Casting from floating pt
2212 return FPToSI
; // FP -> sint
2214 return FPToUI
; // FP -> uint
2215 } else if (const VectorType
*PTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2216 assert(DestBits
== PTy
->getBitWidth() &&
2217 "Casting vector to integer of different width");
2219 return BitCast
; // Same size, no-op cast
2221 assert(isa
<PointerType
>(SrcTy
) &&
2222 "Casting from a value that is not first-class type");
2223 return PtrToInt
; // ptr -> int
2225 } else if (DestTy
->isFloatingPoint()) { // Casting to floating pt
2226 if (SrcTy
->isInteger()) { // Casting from integral
2228 return SIToFP
; // sint -> FP
2230 return UIToFP
; // uint -> FP
2231 } else if (SrcTy
->isFloatingPoint()) { // Casting from floating pt
2232 if (DestBits
< SrcBits
) {
2233 return FPTrunc
; // FP -> smaller FP
2234 } else if (DestBits
> SrcBits
) {
2235 return FPExt
; // FP -> larger FP
2237 return BitCast
; // same size, no-op cast
2239 } else if (const VectorType
*PTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2240 assert(DestBits
== PTy
->getBitWidth() &&
2241 "Casting vector to floating point of different width");
2243 return BitCast
; // same size, no-op cast
2245 llvm_unreachable("Casting pointer or non-first class to float");
2247 } else if (const VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
2248 if (const VectorType
*SrcPTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2249 assert(DestPTy
->getBitWidth() == SrcPTy
->getBitWidth() &&
2250 "Casting vector to vector of different widths");
2252 return BitCast
; // vector -> vector
2253 } else if (DestPTy
->getBitWidth() == SrcBits
) {
2254 return BitCast
; // float/int -> vector
2256 assert(!"Illegal cast to vector (wrong type or size)");
2258 } else if (isa
<PointerType
>(DestTy
)) {
2259 if (isa
<PointerType
>(SrcTy
)) {
2260 return BitCast
; // ptr -> ptr
2261 } else if (SrcTy
->isInteger()) {
2262 return IntToPtr
; // int -> ptr
2264 assert(!"Casting pointer to other than pointer or int");
2267 assert(!"Casting to type that is not first-class");
2270 // If we fall through to here we probably hit an assertion cast above
2271 // and assertions are not turned on. Anything we return is an error, so
2272 // BitCast is as good a choice as any.
2276 //===----------------------------------------------------------------------===//
2277 // CastInst SubClass Constructors
2278 //===----------------------------------------------------------------------===//
2280 /// Check that the construction parameters for a CastInst are correct. This
2281 /// could be broken out into the separate constructors but it is useful to have
2282 /// it in one place and to eliminate the redundant code for getting the sizes
2283 /// of the types involved.
2285 CastInst::castIsValid(Instruction::CastOps op
, Value
*S
, const Type
*DstTy
) {
2287 // Check for type sanity on the arguments
2288 const Type
*SrcTy
= S
->getType();
2289 if (!SrcTy
->isFirstClassType() || !DstTy
->isFirstClassType())
2292 // Get the size of the types in bits, we'll need this later
2293 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2294 unsigned DstBitSize
= DstTy
->getScalarSizeInBits();
2296 // Switch on the opcode provided
2298 default: return false; // This is an input error
2299 case Instruction::Trunc
:
2300 return SrcTy
->isIntOrIntVector() &&
2301 DstTy
->isIntOrIntVector()&& SrcBitSize
> DstBitSize
;
2302 case Instruction::ZExt
:
2303 return SrcTy
->isIntOrIntVector() &&
2304 DstTy
->isIntOrIntVector()&& SrcBitSize
< DstBitSize
;
2305 case Instruction::SExt
:
2306 return SrcTy
->isIntOrIntVector() &&
2307 DstTy
->isIntOrIntVector()&& SrcBitSize
< DstBitSize
;
2308 case Instruction::FPTrunc
:
2309 return SrcTy
->isFPOrFPVector() &&
2310 DstTy
->isFPOrFPVector() &&
2311 SrcBitSize
> DstBitSize
;
2312 case Instruction::FPExt
:
2313 return SrcTy
->isFPOrFPVector() &&
2314 DstTy
->isFPOrFPVector() &&
2315 SrcBitSize
< DstBitSize
;
2316 case Instruction::UIToFP
:
2317 case Instruction::SIToFP
:
2318 if (const VectorType
*SVTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2319 if (const VectorType
*DVTy
= dyn_cast
<VectorType
>(DstTy
)) {
2320 return SVTy
->getElementType()->isIntOrIntVector() &&
2321 DVTy
->getElementType()->isFPOrFPVector() &&
2322 SVTy
->getNumElements() == DVTy
->getNumElements();
2325 return SrcTy
->isIntOrIntVector() && DstTy
->isFPOrFPVector();
2326 case Instruction::FPToUI
:
2327 case Instruction::FPToSI
:
2328 if (const VectorType
*SVTy
= dyn_cast
<VectorType
>(SrcTy
)) {
2329 if (const VectorType
*DVTy
= dyn_cast
<VectorType
>(DstTy
)) {
2330 return SVTy
->getElementType()->isFPOrFPVector() &&
2331 DVTy
->getElementType()->isIntOrIntVector() &&
2332 SVTy
->getNumElements() == DVTy
->getNumElements();
2335 return SrcTy
->isFPOrFPVector() && DstTy
->isIntOrIntVector();
2336 case Instruction::PtrToInt
:
2337 return isa
<PointerType
>(SrcTy
) && DstTy
->isInteger();
2338 case Instruction::IntToPtr
:
2339 return SrcTy
->isInteger() && isa
<PointerType
>(DstTy
);
2340 case Instruction::BitCast
:
2341 // BitCast implies a no-op cast of type only. No bits change.
2342 // However, you can't cast pointers to anything but pointers.
2343 if (isa
<PointerType
>(SrcTy
) != isa
<PointerType
>(DstTy
))
2346 // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2347 // these cases, the cast is okay if the source and destination bit widths
2349 return SrcTy
->getPrimitiveSizeInBits() == DstTy
->getPrimitiveSizeInBits();
2353 TruncInst::TruncInst(
2354 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2355 ) : CastInst(Ty
, Trunc
, S
, Name
, InsertBefore
) {
2356 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal Trunc");
2359 TruncInst::TruncInst(
2360 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2361 ) : CastInst(Ty
, Trunc
, S
, Name
, InsertAtEnd
) {
2362 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal Trunc");
2366 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2367 ) : CastInst(Ty
, ZExt
, S
, Name
, InsertBefore
) {
2368 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal ZExt");
2372 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2373 ) : CastInst(Ty
, ZExt
, S
, Name
, InsertAtEnd
) {
2374 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal ZExt");
2377 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2378 ) : CastInst(Ty
, SExt
, S
, Name
, InsertBefore
) {
2379 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SExt");
2383 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2384 ) : CastInst(Ty
, SExt
, S
, Name
, InsertAtEnd
) {
2385 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SExt");
2388 FPTruncInst::FPTruncInst(
2389 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2390 ) : CastInst(Ty
, FPTrunc
, S
, Name
, InsertBefore
) {
2391 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPTrunc");
2394 FPTruncInst::FPTruncInst(
2395 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2396 ) : CastInst(Ty
, FPTrunc
, S
, Name
, InsertAtEnd
) {
2397 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPTrunc");
2400 FPExtInst::FPExtInst(
2401 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2402 ) : CastInst(Ty
, FPExt
, S
, Name
, InsertBefore
) {
2403 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPExt");
2406 FPExtInst::FPExtInst(
2407 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2408 ) : CastInst(Ty
, FPExt
, S
, Name
, InsertAtEnd
) {
2409 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPExt");
2412 UIToFPInst::UIToFPInst(
2413 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2414 ) : CastInst(Ty
, UIToFP
, S
, Name
, InsertBefore
) {
2415 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal UIToFP");
2418 UIToFPInst::UIToFPInst(
2419 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2420 ) : CastInst(Ty
, UIToFP
, S
, Name
, InsertAtEnd
) {
2421 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal UIToFP");
2424 SIToFPInst::SIToFPInst(
2425 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2426 ) : CastInst(Ty
, SIToFP
, S
, Name
, InsertBefore
) {
2427 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SIToFP");
2430 SIToFPInst::SIToFPInst(
2431 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2432 ) : CastInst(Ty
, SIToFP
, S
, Name
, InsertAtEnd
) {
2433 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SIToFP");
2436 FPToUIInst::FPToUIInst(
2437 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2438 ) : CastInst(Ty
, FPToUI
, S
, Name
, InsertBefore
) {
2439 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToUI");
2442 FPToUIInst::FPToUIInst(
2443 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2444 ) : CastInst(Ty
, FPToUI
, S
, Name
, InsertAtEnd
) {
2445 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToUI");
2448 FPToSIInst::FPToSIInst(
2449 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2450 ) : CastInst(Ty
, FPToSI
, S
, Name
, InsertBefore
) {
2451 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToSI");
2454 FPToSIInst::FPToSIInst(
2455 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2456 ) : CastInst(Ty
, FPToSI
, S
, Name
, InsertAtEnd
) {
2457 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToSI");
2460 PtrToIntInst::PtrToIntInst(
2461 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2462 ) : CastInst(Ty
, PtrToInt
, S
, Name
, InsertBefore
) {
2463 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal PtrToInt");
2466 PtrToIntInst::PtrToIntInst(
2467 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2468 ) : CastInst(Ty
, PtrToInt
, S
, Name
, InsertAtEnd
) {
2469 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal PtrToInt");
2472 IntToPtrInst::IntToPtrInst(
2473 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2474 ) : CastInst(Ty
, IntToPtr
, S
, Name
, InsertBefore
) {
2475 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal IntToPtr");
2478 IntToPtrInst::IntToPtrInst(
2479 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2480 ) : CastInst(Ty
, IntToPtr
, S
, Name
, InsertAtEnd
) {
2481 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal IntToPtr");
2484 BitCastInst::BitCastInst(
2485 Value
*S
, const Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
2486 ) : CastInst(Ty
, BitCast
, S
, Name
, InsertBefore
) {
2487 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal BitCast");
2490 BitCastInst::BitCastInst(
2491 Value
*S
, const Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
2492 ) : CastInst(Ty
, BitCast
, S
, Name
, InsertAtEnd
) {
2493 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal BitCast");
2496 //===----------------------------------------------------------------------===//
2498 //===----------------------------------------------------------------------===//
2500 CmpInst::CmpInst(const Type
*ty
, OtherOps op
, unsigned short predicate
,
2501 Value
*LHS
, Value
*RHS
, const Twine
&Name
,
2502 Instruction
*InsertBefore
)
2503 : Instruction(ty
, op
,
2504 OperandTraits
<CmpInst
>::op_begin(this),
2505 OperandTraits
<CmpInst
>::operands(this),
2509 SubclassData
= predicate
;
2513 CmpInst::CmpInst(const Type
*ty
, OtherOps op
, unsigned short predicate
,
2514 Value
*LHS
, Value
*RHS
, const Twine
&Name
,
2515 BasicBlock
*InsertAtEnd
)
2516 : Instruction(ty
, op
,
2517 OperandTraits
<CmpInst
>::op_begin(this),
2518 OperandTraits
<CmpInst
>::operands(this),
2522 SubclassData
= predicate
;
2527 CmpInst::Create(LLVMContext
&Context
, OtherOps Op
, unsigned short predicate
,
2528 Value
*S1
, Value
*S2
,
2529 const Twine
&Name
, Instruction
*InsertBefore
) {
2530 if (Op
== Instruction::ICmp
) {
2532 return new ICmpInst(InsertBefore
, CmpInst::Predicate(predicate
),
2535 return new ICmpInst(Context
, CmpInst::Predicate(predicate
),
2540 return new FCmpInst(InsertBefore
, CmpInst::Predicate(predicate
),
2543 return new FCmpInst(Context
, CmpInst::Predicate(predicate
),
2548 CmpInst::Create(OtherOps Op
, unsigned short predicate
, Value
*S1
, Value
*S2
,
2549 const Twine
&Name
, BasicBlock
*InsertAtEnd
) {
2550 if (Op
== Instruction::ICmp
) {
2551 return new ICmpInst(*InsertAtEnd
, CmpInst::Predicate(predicate
),
2554 return new FCmpInst(*InsertAtEnd
, CmpInst::Predicate(predicate
),
2558 void CmpInst::swapOperands() {
2559 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
2562 cast
<FCmpInst
>(this)->swapOperands();
2565 bool CmpInst::isCommutative() {
2566 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
2567 return IC
->isCommutative();
2568 return cast
<FCmpInst
>(this)->isCommutative();
2571 bool CmpInst::isEquality() {
2572 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
2573 return IC
->isEquality();
2574 return cast
<FCmpInst
>(this)->isEquality();
2578 CmpInst::Predicate
CmpInst::getInversePredicate(Predicate pred
) {
2580 default: assert(!"Unknown cmp predicate!");
2581 case ICMP_EQ
: return ICMP_NE
;
2582 case ICMP_NE
: return ICMP_EQ
;
2583 case ICMP_UGT
: return ICMP_ULE
;
2584 case ICMP_ULT
: return ICMP_UGE
;
2585 case ICMP_UGE
: return ICMP_ULT
;
2586 case ICMP_ULE
: return ICMP_UGT
;
2587 case ICMP_SGT
: return ICMP_SLE
;
2588 case ICMP_SLT
: return ICMP_SGE
;
2589 case ICMP_SGE
: return ICMP_SLT
;
2590 case ICMP_SLE
: return ICMP_SGT
;
2592 case FCMP_OEQ
: return FCMP_UNE
;
2593 case FCMP_ONE
: return FCMP_UEQ
;
2594 case FCMP_OGT
: return FCMP_ULE
;
2595 case FCMP_OLT
: return FCMP_UGE
;
2596 case FCMP_OGE
: return FCMP_ULT
;
2597 case FCMP_OLE
: return FCMP_UGT
;
2598 case FCMP_UEQ
: return FCMP_ONE
;
2599 case FCMP_UNE
: return FCMP_OEQ
;
2600 case FCMP_UGT
: return FCMP_OLE
;
2601 case FCMP_ULT
: return FCMP_OGE
;
2602 case FCMP_UGE
: return FCMP_OLT
;
2603 case FCMP_ULE
: return FCMP_OGT
;
2604 case FCMP_ORD
: return FCMP_UNO
;
2605 case FCMP_UNO
: return FCMP_ORD
;
2606 case FCMP_TRUE
: return FCMP_FALSE
;
2607 case FCMP_FALSE
: return FCMP_TRUE
;
2611 ICmpInst::Predicate
ICmpInst::getSignedPredicate(Predicate pred
) {
2613 default: assert(! "Unknown icmp predicate!");
2614 case ICMP_EQ
: case ICMP_NE
:
2615 case ICMP_SGT
: case ICMP_SLT
: case ICMP_SGE
: case ICMP_SLE
:
2617 case ICMP_UGT
: return ICMP_SGT
;
2618 case ICMP_ULT
: return ICMP_SLT
;
2619 case ICMP_UGE
: return ICMP_SGE
;
2620 case ICMP_ULE
: return ICMP_SLE
;
2624 ICmpInst::Predicate
ICmpInst::getUnsignedPredicate(Predicate pred
) {
2626 default: assert(! "Unknown icmp predicate!");
2627 case ICMP_EQ
: case ICMP_NE
:
2628 case ICMP_UGT
: case ICMP_ULT
: case ICMP_UGE
: case ICMP_ULE
:
2630 case ICMP_SGT
: return ICMP_UGT
;
2631 case ICMP_SLT
: return ICMP_ULT
;
2632 case ICMP_SGE
: return ICMP_UGE
;
2633 case ICMP_SLE
: return ICMP_ULE
;
2637 bool ICmpInst::isSignedPredicate(Predicate pred
) {
2639 default: assert(! "Unknown icmp predicate!");
2640 case ICMP_SGT
: case ICMP_SLT
: case ICMP_SGE
: case ICMP_SLE
:
2642 case ICMP_EQ
: case ICMP_NE
: case ICMP_UGT
: case ICMP_ULT
:
2643 case ICMP_UGE
: case ICMP_ULE
:
2648 /// Initialize a set of values that all satisfy the condition with C.
2651 ICmpInst::makeConstantRange(Predicate pred
, const APInt
&C
) {
2654 uint32_t BitWidth
= C
.getBitWidth();
2656 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
2657 case ICmpInst::ICMP_EQ
: Upper
++; break;
2658 case ICmpInst::ICMP_NE
: Lower
++; break;
2659 case ICmpInst::ICMP_ULT
: Lower
= APInt::getMinValue(BitWidth
); break;
2660 case ICmpInst::ICMP_SLT
: Lower
= APInt::getSignedMinValue(BitWidth
); break;
2661 case ICmpInst::ICMP_UGT
:
2662 Lower
++; Upper
= APInt::getMinValue(BitWidth
); // Min = Next(Max)
2664 case ICmpInst::ICMP_SGT
:
2665 Lower
++; Upper
= APInt::getSignedMinValue(BitWidth
); // Min = Next(Max)
2667 case ICmpInst::ICMP_ULE
:
2668 Lower
= APInt::getMinValue(BitWidth
); Upper
++;
2670 case ICmpInst::ICMP_SLE
:
2671 Lower
= APInt::getSignedMinValue(BitWidth
); Upper
++;
2673 case ICmpInst::ICMP_UGE
:
2674 Upper
= APInt::getMinValue(BitWidth
); // Min = Next(Max)
2676 case ICmpInst::ICMP_SGE
:
2677 Upper
= APInt::getSignedMinValue(BitWidth
); // Min = Next(Max)
2680 return ConstantRange(Lower
, Upper
);
2683 CmpInst::Predicate
CmpInst::getSwappedPredicate(Predicate pred
) {
2685 default: assert(!"Unknown cmp predicate!");
2686 case ICMP_EQ
: case ICMP_NE
:
2688 case ICMP_SGT
: return ICMP_SLT
;
2689 case ICMP_SLT
: return ICMP_SGT
;
2690 case ICMP_SGE
: return ICMP_SLE
;
2691 case ICMP_SLE
: return ICMP_SGE
;
2692 case ICMP_UGT
: return ICMP_ULT
;
2693 case ICMP_ULT
: return ICMP_UGT
;
2694 case ICMP_UGE
: return ICMP_ULE
;
2695 case ICMP_ULE
: return ICMP_UGE
;
2697 case FCMP_FALSE
: case FCMP_TRUE
:
2698 case FCMP_OEQ
: case FCMP_ONE
:
2699 case FCMP_UEQ
: case FCMP_UNE
:
2700 case FCMP_ORD
: case FCMP_UNO
:
2702 case FCMP_OGT
: return FCMP_OLT
;
2703 case FCMP_OLT
: return FCMP_OGT
;
2704 case FCMP_OGE
: return FCMP_OLE
;
2705 case FCMP_OLE
: return FCMP_OGE
;
2706 case FCMP_UGT
: return FCMP_ULT
;
2707 case FCMP_ULT
: return FCMP_UGT
;
2708 case FCMP_UGE
: return FCMP_ULE
;
2709 case FCMP_ULE
: return FCMP_UGE
;
2713 bool CmpInst::isUnsigned(unsigned short predicate
) {
2714 switch (predicate
) {
2715 default: return false;
2716 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_ULE
: case ICmpInst::ICMP_UGT
:
2717 case ICmpInst::ICMP_UGE
: return true;
2721 bool CmpInst::isSigned(unsigned short predicate
){
2722 switch (predicate
) {
2723 default: return false;
2724 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_SLE
: case ICmpInst::ICMP_SGT
:
2725 case ICmpInst::ICMP_SGE
: return true;
2729 bool CmpInst::isOrdered(unsigned short predicate
) {
2730 switch (predicate
) {
2731 default: return false;
2732 case FCmpInst::FCMP_OEQ
: case FCmpInst::FCMP_ONE
: case FCmpInst::FCMP_OGT
:
2733 case FCmpInst::FCMP_OLT
: case FCmpInst::FCMP_OGE
: case FCmpInst::FCMP_OLE
:
2734 case FCmpInst::FCMP_ORD
: return true;
2738 bool CmpInst::isUnordered(unsigned short predicate
) {
2739 switch (predicate
) {
2740 default: return false;
2741 case FCmpInst::FCMP_UEQ
: case FCmpInst::FCMP_UNE
: case FCmpInst::FCMP_UGT
:
2742 case FCmpInst::FCMP_ULT
: case FCmpInst::FCMP_UGE
: case FCmpInst::FCMP_ULE
:
2743 case FCmpInst::FCMP_UNO
: return true;
2747 //===----------------------------------------------------------------------===//
2748 // SwitchInst Implementation
2749 //===----------------------------------------------------------------------===//
2751 void SwitchInst::init(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
) {
2752 assert(Value
&& Default
);
2753 ReservedSpace
= 2+NumCases
*2;
2755 OperandList
= allocHungoffUses(ReservedSpace
);
2757 OperandList
[0] = Value
;
2758 OperandList
[1] = Default
;
2761 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2762 /// switch on and a default destination. The number of additional cases can
2763 /// be specified here to make memory allocation more efficient. This
2764 /// constructor can also autoinsert before another instruction.
2765 SwitchInst::SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
2766 Instruction
*InsertBefore
)
2767 : TerminatorInst(Type::VoidTy
, Instruction::Switch
, 0, 0, InsertBefore
) {
2768 init(Value
, Default
, NumCases
);
2771 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2772 /// switch on and a default destination. The number of additional cases can
2773 /// be specified here to make memory allocation more efficient. This
2774 /// constructor also autoinserts at the end of the specified BasicBlock.
2775 SwitchInst::SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
2776 BasicBlock
*InsertAtEnd
)
2777 : TerminatorInst(Type::VoidTy
, Instruction::Switch
, 0, 0, InsertAtEnd
) {
2778 init(Value
, Default
, NumCases
);
2781 SwitchInst::SwitchInst(const SwitchInst
&SI
)
2782 : TerminatorInst(Type::VoidTy
, Instruction::Switch
,
2783 allocHungoffUses(SI
.getNumOperands()), SI
.getNumOperands()) {
2784 Use
*OL
= OperandList
, *InOL
= SI
.OperandList
;
2785 for (unsigned i
= 0, E
= SI
.getNumOperands(); i
!= E
; i
+=2) {
2787 OL
[i
+1] = InOL
[i
+1];
2791 SwitchInst::~SwitchInst() {
2792 dropHungoffUses(OperandList
);
2796 /// addCase - Add an entry to the switch instruction...
2798 void SwitchInst::addCase(ConstantInt
*OnVal
, BasicBlock
*Dest
) {
2799 unsigned OpNo
= NumOperands
;
2800 if (OpNo
+2 > ReservedSpace
)
2801 resizeOperands(0); // Get more space!
2802 // Initialize some new operands.
2803 assert(OpNo
+1 < ReservedSpace
&& "Growing didn't work!");
2804 NumOperands
= OpNo
+2;
2805 OperandList
[OpNo
] = OnVal
;
2806 OperandList
[OpNo
+1] = Dest
;
2809 /// removeCase - This method removes the specified successor from the switch
2810 /// instruction. Note that this cannot be used to remove the default
2811 /// destination (successor #0).
2813 void SwitchInst::removeCase(unsigned idx
) {
2814 assert(idx
!= 0 && "Cannot remove the default case!");
2815 assert(idx
*2 < getNumOperands() && "Successor index out of range!!!");
2817 unsigned NumOps
= getNumOperands();
2818 Use
*OL
= OperandList
;
2820 // Move everything after this operand down.
2822 // FIXME: we could just swap with the end of the list, then erase. However,
2823 // client might not expect this to happen. The code as it is thrashes the
2824 // use/def lists, which is kinda lame.
2825 for (unsigned i
= (idx
+1)*2; i
!= NumOps
; i
+= 2) {
2827 OL
[i
-2+1] = OL
[i
+1];
2830 // Nuke the last value.
2831 OL
[NumOps
-2].set(0);
2832 OL
[NumOps
-2+1].set(0);
2833 NumOperands
= NumOps
-2;
2836 /// resizeOperands - resize operands - This adjusts the length of the operands
2837 /// list according to the following behavior:
2838 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
2839 /// of operation. This grows the number of ops by 3 times.
2840 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
2841 /// 3. If NumOps == NumOperands, trim the reserved space.
2843 void SwitchInst::resizeOperands(unsigned NumOps
) {
2844 unsigned e
= getNumOperands();
2847 } else if (NumOps
*2 > NumOperands
) {
2848 // No resize needed.
2849 if (ReservedSpace
>= NumOps
) return;
2850 } else if (NumOps
== NumOperands
) {
2851 if (ReservedSpace
== NumOps
) return;
2856 ReservedSpace
= NumOps
;
2857 Use
*NewOps
= allocHungoffUses(NumOps
);
2858 Use
*OldOps
= OperandList
;
2859 for (unsigned i
= 0; i
!= e
; ++i
) {
2860 NewOps
[i
] = OldOps
[i
];
2862 OperandList
= NewOps
;
2863 if (OldOps
) Use::zap(OldOps
, OldOps
+ e
, true);
2867 BasicBlock
*SwitchInst::getSuccessorV(unsigned idx
) const {
2868 return getSuccessor(idx
);
2870 unsigned SwitchInst::getNumSuccessorsV() const {
2871 return getNumSuccessors();
2873 void SwitchInst::setSuccessorV(unsigned idx
, BasicBlock
*B
) {
2874 setSuccessor(idx
, B
);
2877 // Define these methods here so vtables don't get emitted into every translation
2878 // unit that uses these classes.
2880 GetElementPtrInst
*GetElementPtrInst::clone(LLVMContext
&) const {
2881 return new(getNumOperands()) GetElementPtrInst(*this);
2884 BinaryOperator
*BinaryOperator::clone(LLVMContext
&) const {
2885 return Create(getOpcode(), Op
<0>(), Op
<1>());
2888 FCmpInst
* FCmpInst::clone(LLVMContext
&Context
) const {
2889 return new FCmpInst(Context
, getPredicate(), Op
<0>(), Op
<1>());
2891 ICmpInst
* ICmpInst::clone(LLVMContext
&Context
) const {
2892 return new ICmpInst(Context
, getPredicate(), Op
<0>(), Op
<1>());
2895 ExtractValueInst
*ExtractValueInst::clone(LLVMContext
&) const {
2896 return new ExtractValueInst(*this);
2898 InsertValueInst
*InsertValueInst::clone(LLVMContext
&) const {
2899 return new InsertValueInst(*this);
2902 MallocInst
*MallocInst::clone(LLVMContext
&) const {
2903 return new MallocInst(*this);
2906 AllocaInst
*AllocaInst::clone(LLVMContext
&) const {
2907 return new AllocaInst(*this);
2910 FreeInst
*FreeInst::clone(LLVMContext
&) const {
2911 return new FreeInst(getOperand(0));
2914 LoadInst
*LoadInst::clone(LLVMContext
&) const {
2915 return new LoadInst(*this);
2918 StoreInst
*StoreInst::clone(LLVMContext
&) const {
2919 return new StoreInst(*this);
2922 CastInst
*TruncInst::clone(LLVMContext
&) const {
2923 return new TruncInst(*this);
2926 CastInst
*ZExtInst::clone(LLVMContext
&) const {
2927 return new ZExtInst(*this);
2930 CastInst
*SExtInst::clone(LLVMContext
&) const {
2931 return new SExtInst(*this);
2934 CastInst
*FPTruncInst::clone(LLVMContext
&) const {
2935 return new FPTruncInst(*this);
2938 CastInst
*FPExtInst::clone(LLVMContext
&) const {
2939 return new FPExtInst(*this);
2942 CastInst
*UIToFPInst::clone(LLVMContext
&) const {
2943 return new UIToFPInst(*this);
2946 CastInst
*SIToFPInst::clone(LLVMContext
&) const {
2947 return new SIToFPInst(*this);
2950 CastInst
*FPToUIInst::clone(LLVMContext
&) const {
2951 return new FPToUIInst(*this);
2954 CastInst
*FPToSIInst::clone(LLVMContext
&) const {
2955 return new FPToSIInst(*this);
2958 CastInst
*PtrToIntInst::clone(LLVMContext
&) const {
2959 return new PtrToIntInst(*this);
2962 CastInst
*IntToPtrInst::clone(LLVMContext
&) const {
2963 return new IntToPtrInst(*this);
2966 CastInst
*BitCastInst::clone(LLVMContext
&) const {
2967 return new BitCastInst(*this);
2970 CallInst
*CallInst::clone(LLVMContext
&) const {
2971 return new(getNumOperands()) CallInst(*this);
2974 SelectInst
*SelectInst::clone(LLVMContext
&) const {
2975 return new(getNumOperands()) SelectInst(*this);
2978 VAArgInst
*VAArgInst::clone(LLVMContext
&) const {
2979 return new VAArgInst(*this);
2982 ExtractElementInst
*ExtractElementInst::clone(LLVMContext
&) const {
2983 return ExtractElementInst::Create(*this);
2986 InsertElementInst
*InsertElementInst::clone(LLVMContext
&) const {
2987 return InsertElementInst::Create(*this);
2990 ShuffleVectorInst
*ShuffleVectorInst::clone(LLVMContext
&) const {
2991 return new ShuffleVectorInst(*this);
2994 PHINode
*PHINode::clone(LLVMContext
&) const {
2995 return new PHINode(*this);
2998 ReturnInst
*ReturnInst::clone(LLVMContext
&) const {
2999 return new(getNumOperands()) ReturnInst(*this);
3002 BranchInst
*BranchInst::clone(LLVMContext
&) const {
3003 unsigned Ops(getNumOperands());
3004 return new(Ops
, Ops
== 1) BranchInst(*this);
3007 SwitchInst
*SwitchInst::clone(LLVMContext
&) const {
3008 return new SwitchInst(*this);
3011 InvokeInst
*InvokeInst::clone(LLVMContext
&) const {
3012 return new(getNumOperands()) InvokeInst(*this);
3015 UnwindInst
*UnwindInst::clone(LLVMContext
&) const {
3016 return new UnwindInst();
3019 UnreachableInst
*UnreachableInst::clone(LLVMContext
&) const {
3020 return new UnreachableInst();