It turns out most of the thumb2 instructions are not allowed to touch SP. The semanti...
[llvm/avr.git] / lib / VMCore / Instructions.cpp
blobe7983e07dc16e850284a0548dde2d4a8c01bff24
1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Constants.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Function.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/Operator.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/CallSite.h"
22 #include "llvm/Support/ConstantRange.h"
23 #include "llvm/Support/MathExtras.h"
24 using namespace llvm;
26 //===----------------------------------------------------------------------===//
27 // CallSite Class
28 //===----------------------------------------------------------------------===//
30 #define CALLSITE_DELEGATE_GETTER(METHOD) \
31 Instruction *II(getInstruction()); \
32 return isCall() \
33 ? cast<CallInst>(II)->METHOD \
34 : cast<InvokeInst>(II)->METHOD
36 #define CALLSITE_DELEGATE_SETTER(METHOD) \
37 Instruction *II(getInstruction()); \
38 if (isCall()) \
39 cast<CallInst>(II)->METHOD; \
40 else \
41 cast<InvokeInst>(II)->METHOD
43 CallSite::CallSite(Instruction *C) {
44 assert((isa<CallInst>(C) || isa<InvokeInst>(C)) && "Not a call!");
45 I.setPointer(C);
46 I.setInt(isa<CallInst>(C));
48 unsigned CallSite::getCallingConv() const {
49 CALLSITE_DELEGATE_GETTER(getCallingConv());
51 void CallSite::setCallingConv(unsigned CC) {
52 CALLSITE_DELEGATE_SETTER(setCallingConv(CC));
54 const AttrListPtr &CallSite::getAttributes() const {
55 CALLSITE_DELEGATE_GETTER(getAttributes());
57 void CallSite::setAttributes(const AttrListPtr &PAL) {
58 CALLSITE_DELEGATE_SETTER(setAttributes(PAL));
60 bool CallSite::paramHasAttr(uint16_t i, Attributes attr) const {
61 CALLSITE_DELEGATE_GETTER(paramHasAttr(i, attr));
63 uint16_t CallSite::getParamAlignment(uint16_t i) const {
64 CALLSITE_DELEGATE_GETTER(getParamAlignment(i));
66 bool CallSite::doesNotAccessMemory() const {
67 CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
69 void CallSite::setDoesNotAccessMemory(bool doesNotAccessMemory) {
70 CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory(doesNotAccessMemory));
72 bool CallSite::onlyReadsMemory() const {
73 CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
75 void CallSite::setOnlyReadsMemory(bool onlyReadsMemory) {
76 CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory(onlyReadsMemory));
78 bool CallSite::doesNotReturn() const {
79 CALLSITE_DELEGATE_GETTER(doesNotReturn());
81 void CallSite::setDoesNotReturn(bool doesNotReturn) {
82 CALLSITE_DELEGATE_SETTER(setDoesNotReturn(doesNotReturn));
84 bool CallSite::doesNotThrow() const {
85 CALLSITE_DELEGATE_GETTER(doesNotThrow());
87 void CallSite::setDoesNotThrow(bool doesNotThrow) {
88 CALLSITE_DELEGATE_SETTER(setDoesNotThrow(doesNotThrow));
91 bool CallSite::hasArgument(const Value *Arg) const {
92 for (arg_iterator AI = this->arg_begin(), E = this->arg_end(); AI != E; ++AI)
93 if (AI->get() == Arg)
94 return true;
95 return false;
98 #undef CALLSITE_DELEGATE_GETTER
99 #undef CALLSITE_DELEGATE_SETTER
101 //===----------------------------------------------------------------------===//
102 // TerminatorInst Class
103 //===----------------------------------------------------------------------===//
105 // Out of line virtual method, so the vtable, etc has a home.
106 TerminatorInst::~TerminatorInst() {
109 //===----------------------------------------------------------------------===//
110 // UnaryInstruction Class
111 //===----------------------------------------------------------------------===//
113 // Out of line virtual method, so the vtable, etc has a home.
114 UnaryInstruction::~UnaryInstruction() {
117 //===----------------------------------------------------------------------===//
118 // SelectInst Class
119 //===----------------------------------------------------------------------===//
121 /// areInvalidOperands - Return a string if the specified operands are invalid
122 /// for a select operation, otherwise return null.
123 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
124 if (Op1->getType() != Op2->getType())
125 return "both values to select must have same type";
127 if (const VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
128 // Vector select.
129 if (VT->getElementType() != Type::Int1Ty)
130 return "vector select condition element type must be i1";
131 const VectorType *ET = dyn_cast<VectorType>(Op1->getType());
132 if (ET == 0)
133 return "selected values for vector select must be vectors";
134 if (ET->getNumElements() != VT->getNumElements())
135 return "vector select requires selected vectors to have "
136 "the same vector length as select condition";
137 } else if (Op0->getType() != Type::Int1Ty) {
138 return "select condition must be i1 or <n x i1>";
140 return 0;
144 //===----------------------------------------------------------------------===//
145 // PHINode Class
146 //===----------------------------------------------------------------------===//
148 PHINode::PHINode(const PHINode &PN)
149 : Instruction(PN.getType(), Instruction::PHI,
150 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
151 ReservedSpace(PN.getNumOperands()) {
152 Use *OL = OperandList;
153 for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
154 OL[i] = PN.getOperand(i);
155 OL[i+1] = PN.getOperand(i+1);
159 PHINode::~PHINode() {
160 if (OperandList)
161 dropHungoffUses(OperandList);
164 // removeIncomingValue - Remove an incoming value. This is useful if a
165 // predecessor basic block is deleted.
166 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
167 unsigned NumOps = getNumOperands();
168 Use *OL = OperandList;
169 assert(Idx*2 < NumOps && "BB not in PHI node!");
170 Value *Removed = OL[Idx*2];
172 // Move everything after this operand down.
174 // FIXME: we could just swap with the end of the list, then erase. However,
175 // client might not expect this to happen. The code as it is thrashes the
176 // use/def lists, which is kinda lame.
177 for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
178 OL[i-2] = OL[i];
179 OL[i-2+1] = OL[i+1];
182 // Nuke the last value.
183 OL[NumOps-2].set(0);
184 OL[NumOps-2+1].set(0);
185 NumOperands = NumOps-2;
187 // If the PHI node is dead, because it has zero entries, nuke it now.
188 if (NumOps == 2 && DeletePHIIfEmpty) {
189 // If anyone is using this PHI, make them use a dummy value instead...
190 replaceAllUsesWith(UndefValue::get(getType()));
191 eraseFromParent();
193 return Removed;
196 /// resizeOperands - resize operands - This adjusts the length of the operands
197 /// list according to the following behavior:
198 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
199 /// of operation. This grows the number of ops by 1.5 times.
200 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
201 /// 3. If NumOps == NumOperands, trim the reserved space.
203 void PHINode::resizeOperands(unsigned NumOps) {
204 unsigned e = getNumOperands();
205 if (NumOps == 0) {
206 NumOps = e*3/2;
207 if (NumOps < 4) NumOps = 4; // 4 op PHI nodes are VERY common.
208 } else if (NumOps*2 > NumOperands) {
209 // No resize needed.
210 if (ReservedSpace >= NumOps) return;
211 } else if (NumOps == NumOperands) {
212 if (ReservedSpace == NumOps) return;
213 } else {
214 return;
217 ReservedSpace = NumOps;
218 Use *OldOps = OperandList;
219 Use *NewOps = allocHungoffUses(NumOps);
220 std::copy(OldOps, OldOps + e, NewOps);
221 OperandList = NewOps;
222 if (OldOps) Use::zap(OldOps, OldOps + e, true);
225 /// hasConstantValue - If the specified PHI node always merges together the same
226 /// value, return the value, otherwise return null.
228 Value *PHINode::hasConstantValue(bool AllowNonDominatingInstruction) const {
229 // If the PHI node only has one incoming value, eliminate the PHI node...
230 if (getNumIncomingValues() == 1) {
231 if (getIncomingValue(0) != this) // not X = phi X
232 return getIncomingValue(0);
233 else
234 return UndefValue::get(getType()); // Self cycle is dead.
237 // Otherwise if all of the incoming values are the same for the PHI, replace
238 // the PHI node with the incoming value.
240 Value *InVal = 0;
241 bool HasUndefInput = false;
242 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i)
243 if (isa<UndefValue>(getIncomingValue(i))) {
244 HasUndefInput = true;
245 } else if (getIncomingValue(i) != this) { // Not the PHI node itself...
246 if (InVal && getIncomingValue(i) != InVal)
247 return 0; // Not the same, bail out.
248 else
249 InVal = getIncomingValue(i);
252 // The only case that could cause InVal to be null is if we have a PHI node
253 // that only has entries for itself. In this case, there is no entry into the
254 // loop, so kill the PHI.
256 if (InVal == 0) InVal = UndefValue::get(getType());
258 // If we have a PHI node like phi(X, undef, X), where X is defined by some
259 // instruction, we cannot always return X as the result of the PHI node. Only
260 // do this if X is not an instruction (thus it must dominate the PHI block),
261 // or if the client is prepared to deal with this possibility.
262 if (HasUndefInput && !AllowNonDominatingInstruction)
263 if (Instruction *IV = dyn_cast<Instruction>(InVal))
264 // If it's in the entry block, it dominates everything.
265 if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() ||
266 isa<InvokeInst>(IV))
267 return 0; // Cannot guarantee that InVal dominates this PHINode.
269 // All of the incoming values are the same, return the value now.
270 return InVal;
274 //===----------------------------------------------------------------------===//
275 // CallInst Implementation
276 //===----------------------------------------------------------------------===//
278 CallInst::~CallInst() {
281 void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) {
282 assert(NumOperands == NumParams+1 && "NumOperands not set up?");
283 Use *OL = OperandList;
284 OL[0] = Func;
286 const FunctionType *FTy =
287 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
288 FTy = FTy; // silence warning.
290 assert((NumParams == FTy->getNumParams() ||
291 (FTy->isVarArg() && NumParams > FTy->getNumParams())) &&
292 "Calling a function with bad signature!");
293 for (unsigned i = 0; i != NumParams; ++i) {
294 assert((i >= FTy->getNumParams() ||
295 FTy->getParamType(i) == Params[i]->getType()) &&
296 "Calling a function with a bad signature!");
297 OL[i+1] = Params[i];
301 void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
302 assert(NumOperands == 3 && "NumOperands not set up?");
303 Use *OL = OperandList;
304 OL[0] = Func;
305 OL[1] = Actual1;
306 OL[2] = Actual2;
308 const FunctionType *FTy =
309 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
310 FTy = FTy; // silence warning.
312 assert((FTy->getNumParams() == 2 ||
313 (FTy->isVarArg() && FTy->getNumParams() < 2)) &&
314 "Calling a function with bad signature");
315 assert((0 >= FTy->getNumParams() ||
316 FTy->getParamType(0) == Actual1->getType()) &&
317 "Calling a function with a bad signature!");
318 assert((1 >= FTy->getNumParams() ||
319 FTy->getParamType(1) == Actual2->getType()) &&
320 "Calling a function with a bad signature!");
323 void CallInst::init(Value *Func, Value *Actual) {
324 assert(NumOperands == 2 && "NumOperands not set up?");
325 Use *OL = OperandList;
326 OL[0] = Func;
327 OL[1] = Actual;
329 const FunctionType *FTy =
330 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
331 FTy = FTy; // silence warning.
333 assert((FTy->getNumParams() == 1 ||
334 (FTy->isVarArg() && FTy->getNumParams() == 0)) &&
335 "Calling a function with bad signature");
336 assert((0 == FTy->getNumParams() ||
337 FTy->getParamType(0) == Actual->getType()) &&
338 "Calling a function with a bad signature!");
341 void CallInst::init(Value *Func) {
342 assert(NumOperands == 1 && "NumOperands not set up?");
343 Use *OL = OperandList;
344 OL[0] = Func;
346 const FunctionType *FTy =
347 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
348 FTy = FTy; // silence warning.
350 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
353 CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
354 Instruction *InsertBefore)
355 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
356 ->getElementType())->getReturnType(),
357 Instruction::Call,
358 OperandTraits<CallInst>::op_end(this) - 2,
359 2, InsertBefore) {
360 init(Func, Actual);
361 setName(Name);
364 CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
365 BasicBlock *InsertAtEnd)
366 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
367 ->getElementType())->getReturnType(),
368 Instruction::Call,
369 OperandTraits<CallInst>::op_end(this) - 2,
370 2, InsertAtEnd) {
371 init(Func, Actual);
372 setName(Name);
374 CallInst::CallInst(Value *Func, const Twine &Name,
375 Instruction *InsertBefore)
376 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
377 ->getElementType())->getReturnType(),
378 Instruction::Call,
379 OperandTraits<CallInst>::op_end(this) - 1,
380 1, InsertBefore) {
381 init(Func);
382 setName(Name);
385 CallInst::CallInst(Value *Func, const Twine &Name,
386 BasicBlock *InsertAtEnd)
387 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
388 ->getElementType())->getReturnType(),
389 Instruction::Call,
390 OperandTraits<CallInst>::op_end(this) - 1,
391 1, InsertAtEnd) {
392 init(Func);
393 setName(Name);
396 CallInst::CallInst(const CallInst &CI)
397 : Instruction(CI.getType(), Instruction::Call,
398 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
399 CI.getNumOperands()) {
400 setAttributes(CI.getAttributes());
401 SubclassData = CI.SubclassData;
402 Use *OL = OperandList;
403 Use *InOL = CI.OperandList;
404 for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
405 OL[i] = InOL[i];
408 void CallInst::addAttribute(unsigned i, Attributes attr) {
409 AttrListPtr PAL = getAttributes();
410 PAL = PAL.addAttr(i, attr);
411 setAttributes(PAL);
414 void CallInst::removeAttribute(unsigned i, Attributes attr) {
415 AttrListPtr PAL = getAttributes();
416 PAL = PAL.removeAttr(i, attr);
417 setAttributes(PAL);
420 bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
421 if (AttributeList.paramHasAttr(i, attr))
422 return true;
423 if (const Function *F = getCalledFunction())
424 return F->paramHasAttr(i, attr);
425 return false;
429 //===----------------------------------------------------------------------===//
430 // InvokeInst Implementation
431 //===----------------------------------------------------------------------===//
433 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
434 Value* const *Args, unsigned NumArgs) {
435 assert(NumOperands == 3+NumArgs && "NumOperands not set up?");
436 Use *OL = OperandList;
437 OL[0] = Fn;
438 OL[1] = IfNormal;
439 OL[2] = IfException;
440 const FunctionType *FTy =
441 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
442 FTy = FTy; // silence warning.
444 assert(((NumArgs == FTy->getNumParams()) ||
445 (FTy->isVarArg() && NumArgs > FTy->getNumParams())) &&
446 "Calling a function with bad signature");
448 for (unsigned i = 0, e = NumArgs; i != e; i++) {
449 assert((i >= FTy->getNumParams() ||
450 FTy->getParamType(i) == Args[i]->getType()) &&
451 "Invoking a function with a bad signature!");
453 OL[i+3] = Args[i];
457 InvokeInst::InvokeInst(const InvokeInst &II)
458 : TerminatorInst(II.getType(), Instruction::Invoke,
459 OperandTraits<InvokeInst>::op_end(this)
460 - II.getNumOperands(),
461 II.getNumOperands()) {
462 setAttributes(II.getAttributes());
463 SubclassData = II.SubclassData;
464 Use *OL = OperandList, *InOL = II.OperandList;
465 for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
466 OL[i] = InOL[i];
469 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
470 return getSuccessor(idx);
472 unsigned InvokeInst::getNumSuccessorsV() const {
473 return getNumSuccessors();
475 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
476 return setSuccessor(idx, B);
479 bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
480 if (AttributeList.paramHasAttr(i, attr))
481 return true;
482 if (const Function *F = getCalledFunction())
483 return F->paramHasAttr(i, attr);
484 return false;
487 void InvokeInst::addAttribute(unsigned i, Attributes attr) {
488 AttrListPtr PAL = getAttributes();
489 PAL = PAL.addAttr(i, attr);
490 setAttributes(PAL);
493 void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
494 AttrListPtr PAL = getAttributes();
495 PAL = PAL.removeAttr(i, attr);
496 setAttributes(PAL);
500 //===----------------------------------------------------------------------===//
501 // ReturnInst Implementation
502 //===----------------------------------------------------------------------===//
504 ReturnInst::ReturnInst(const ReturnInst &RI)
505 : TerminatorInst(Type::VoidTy, Instruction::Ret,
506 OperandTraits<ReturnInst>::op_end(this) -
507 RI.getNumOperands(),
508 RI.getNumOperands()) {
509 if (RI.getNumOperands())
510 Op<0>() = RI.Op<0>();
513 ReturnInst::ReturnInst(Value *retVal, Instruction *InsertBefore)
514 : TerminatorInst(Type::VoidTy, Instruction::Ret,
515 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
516 InsertBefore) {
517 if (retVal)
518 Op<0>() = retVal;
520 ReturnInst::ReturnInst(Value *retVal, BasicBlock *InsertAtEnd)
521 : TerminatorInst(Type::VoidTy, Instruction::Ret,
522 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
523 InsertAtEnd) {
524 if (retVal)
525 Op<0>() = retVal;
527 ReturnInst::ReturnInst(BasicBlock *InsertAtEnd)
528 : TerminatorInst(Type::VoidTy, Instruction::Ret,
529 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
532 unsigned ReturnInst::getNumSuccessorsV() const {
533 return getNumSuccessors();
536 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
537 /// emit the vtable for the class in this translation unit.
538 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
539 llvm_unreachable("ReturnInst has no successors!");
542 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
543 llvm_unreachable("ReturnInst has no successors!");
544 return 0;
547 ReturnInst::~ReturnInst() {
550 //===----------------------------------------------------------------------===//
551 // UnwindInst Implementation
552 //===----------------------------------------------------------------------===//
554 UnwindInst::UnwindInst(Instruction *InsertBefore)
555 : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertBefore) {
557 UnwindInst::UnwindInst(BasicBlock *InsertAtEnd)
558 : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertAtEnd) {
562 unsigned UnwindInst::getNumSuccessorsV() const {
563 return getNumSuccessors();
566 void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
567 llvm_unreachable("UnwindInst has no successors!");
570 BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
571 llvm_unreachable("UnwindInst has no successors!");
572 return 0;
575 //===----------------------------------------------------------------------===//
576 // UnreachableInst Implementation
577 //===----------------------------------------------------------------------===//
579 UnreachableInst::UnreachableInst(Instruction *InsertBefore)
580 : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertBefore) {
582 UnreachableInst::UnreachableInst(BasicBlock *InsertAtEnd)
583 : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertAtEnd) {
586 unsigned UnreachableInst::getNumSuccessorsV() const {
587 return getNumSuccessors();
590 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
591 llvm_unreachable("UnwindInst has no successors!");
594 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
595 llvm_unreachable("UnwindInst has no successors!");
596 return 0;
599 //===----------------------------------------------------------------------===//
600 // BranchInst Implementation
601 //===----------------------------------------------------------------------===//
603 void BranchInst::AssertOK() {
604 if (isConditional())
605 assert(getCondition()->getType() == Type::Int1Ty &&
606 "May only branch on boolean predicates!");
609 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
610 : TerminatorInst(Type::VoidTy, Instruction::Br,
611 OperandTraits<BranchInst>::op_end(this) - 1,
612 1, InsertBefore) {
613 assert(IfTrue != 0 && "Branch destination may not be null!");
614 Op<-1>() = IfTrue;
616 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
617 Instruction *InsertBefore)
618 : TerminatorInst(Type::VoidTy, Instruction::Br,
619 OperandTraits<BranchInst>::op_end(this) - 3,
620 3, InsertBefore) {
621 Op<-1>() = IfTrue;
622 Op<-2>() = IfFalse;
623 Op<-3>() = Cond;
624 #ifndef NDEBUG
625 AssertOK();
626 #endif
629 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
630 : TerminatorInst(Type::VoidTy, Instruction::Br,
631 OperandTraits<BranchInst>::op_end(this) - 1,
632 1, InsertAtEnd) {
633 assert(IfTrue != 0 && "Branch destination may not be null!");
634 Op<-1>() = IfTrue;
637 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
638 BasicBlock *InsertAtEnd)
639 : TerminatorInst(Type::VoidTy, Instruction::Br,
640 OperandTraits<BranchInst>::op_end(this) - 3,
641 3, InsertAtEnd) {
642 Op<-1>() = IfTrue;
643 Op<-2>() = IfFalse;
644 Op<-3>() = Cond;
645 #ifndef NDEBUG
646 AssertOK();
647 #endif
651 BranchInst::BranchInst(const BranchInst &BI) :
652 TerminatorInst(Type::VoidTy, Instruction::Br,
653 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
654 BI.getNumOperands()) {
655 Op<-1>() = BI.Op<-1>();
656 if (BI.getNumOperands() != 1) {
657 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
658 Op<-3>() = BI.Op<-3>();
659 Op<-2>() = BI.Op<-2>();
664 Use* Use::getPrefix() {
665 PointerIntPair<Use**, 2, PrevPtrTag> &PotentialPrefix(this[-1].Prev);
666 if (PotentialPrefix.getOpaqueValue())
667 return 0;
669 return reinterpret_cast<Use*>((char*)&PotentialPrefix + 1);
672 BranchInst::~BranchInst() {
673 if (NumOperands == 1) {
674 if (Use *Prefix = OperandList->getPrefix()) {
675 Op<-1>() = 0;
677 // mark OperandList to have a special value for scrutiny
678 // by baseclass destructors and operator delete
679 OperandList = Prefix;
680 } else {
681 NumOperands = 3;
682 OperandList = op_begin();
688 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
689 return getSuccessor(idx);
691 unsigned BranchInst::getNumSuccessorsV() const {
692 return getNumSuccessors();
694 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
695 setSuccessor(idx, B);
699 //===----------------------------------------------------------------------===//
700 // AllocationInst Implementation
701 //===----------------------------------------------------------------------===//
703 static Value *getAISize(LLVMContext &Context, Value *Amt) {
704 if (!Amt)
705 Amt = ConstantInt::get(Type::Int32Ty, 1);
706 else {
707 assert(!isa<BasicBlock>(Amt) &&
708 "Passed basic block into allocation size parameter! Use other ctor");
709 assert(Amt->getType() == Type::Int32Ty &&
710 "Malloc/Allocation array size is not a 32-bit integer!");
712 return Amt;
715 AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
716 unsigned Align, const Twine &Name,
717 Instruction *InsertBefore)
718 : UnaryInstruction(PointerType::getUnqual(Ty), iTy,
719 getAISize(Ty->getContext(), ArraySize), InsertBefore) {
720 setAlignment(Align);
721 assert(Ty != Type::VoidTy && "Cannot allocate void!");
722 setName(Name);
725 AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
726 unsigned Align, const Twine &Name,
727 BasicBlock *InsertAtEnd)
728 : UnaryInstruction(PointerType::getUnqual(Ty), iTy,
729 getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
730 setAlignment(Align);
731 assert(Ty != Type::VoidTy && "Cannot allocate void!");
732 setName(Name);
735 // Out of line virtual method, so the vtable, etc has a home.
736 AllocationInst::~AllocationInst() {
739 void AllocationInst::setAlignment(unsigned Align) {
740 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
741 SubclassData = Log2_32(Align) + 1;
742 assert(getAlignment() == Align && "Alignment representation error!");
745 bool AllocationInst::isArrayAllocation() const {
746 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
747 return CI->getZExtValue() != 1;
748 return true;
751 const Type *AllocationInst::getAllocatedType() const {
752 return getType()->getElementType();
755 AllocaInst::AllocaInst(const AllocaInst &AI)
756 : AllocationInst(AI.getType()->getElementType(),
757 (Value*)AI.getOperand(0), Instruction::Alloca,
758 AI.getAlignment()) {
761 /// isStaticAlloca - Return true if this alloca is in the entry block of the
762 /// function and is a constant size. If so, the code generator will fold it
763 /// into the prolog/epilog code, so it is basically free.
764 bool AllocaInst::isStaticAlloca() const {
765 // Must be constant size.
766 if (!isa<ConstantInt>(getArraySize())) return false;
768 // Must be in the entry block.
769 const BasicBlock *Parent = getParent();
770 return Parent == &Parent->getParent()->front();
773 MallocInst::MallocInst(const MallocInst &MI)
774 : AllocationInst(MI.getType()->getElementType(),
775 (Value*)MI.getOperand(0), Instruction::Malloc,
776 MI.getAlignment()) {
779 //===----------------------------------------------------------------------===//
780 // FreeInst Implementation
781 //===----------------------------------------------------------------------===//
783 void FreeInst::AssertOK() {
784 assert(isa<PointerType>(getOperand(0)->getType()) &&
785 "Can not free something of nonpointer type!");
788 FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
789 : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertBefore) {
790 AssertOK();
793 FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
794 : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertAtEnd) {
795 AssertOK();
799 //===----------------------------------------------------------------------===//
800 // LoadInst Implementation
801 //===----------------------------------------------------------------------===//
803 void LoadInst::AssertOK() {
804 assert(isa<PointerType>(getOperand(0)->getType()) &&
805 "Ptr must have pointer type.");
808 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
809 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
810 Load, Ptr, InsertBef) {
811 setVolatile(false);
812 setAlignment(0);
813 AssertOK();
814 setName(Name);
817 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
818 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
819 Load, Ptr, InsertAE) {
820 setVolatile(false);
821 setAlignment(0);
822 AssertOK();
823 setName(Name);
826 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
827 Instruction *InsertBef)
828 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
829 Load, Ptr, InsertBef) {
830 setVolatile(isVolatile);
831 setAlignment(0);
832 AssertOK();
833 setName(Name);
836 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
837 unsigned Align, Instruction *InsertBef)
838 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
839 Load, Ptr, InsertBef) {
840 setVolatile(isVolatile);
841 setAlignment(Align);
842 AssertOK();
843 setName(Name);
846 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
847 unsigned Align, BasicBlock *InsertAE)
848 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
849 Load, Ptr, InsertAE) {
850 setVolatile(isVolatile);
851 setAlignment(Align);
852 AssertOK();
853 setName(Name);
856 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
857 BasicBlock *InsertAE)
858 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
859 Load, Ptr, InsertAE) {
860 setVolatile(isVolatile);
861 setAlignment(0);
862 AssertOK();
863 setName(Name);
868 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
869 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
870 Load, Ptr, InsertBef) {
871 setVolatile(false);
872 setAlignment(0);
873 AssertOK();
874 if (Name && Name[0]) setName(Name);
877 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
878 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
879 Load, Ptr, InsertAE) {
880 setVolatile(false);
881 setAlignment(0);
882 AssertOK();
883 if (Name && Name[0]) setName(Name);
886 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
887 Instruction *InsertBef)
888 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
889 Load, Ptr, InsertBef) {
890 setVolatile(isVolatile);
891 setAlignment(0);
892 AssertOK();
893 if (Name && Name[0]) setName(Name);
896 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
897 BasicBlock *InsertAE)
898 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
899 Load, Ptr, InsertAE) {
900 setVolatile(isVolatile);
901 setAlignment(0);
902 AssertOK();
903 if (Name && Name[0]) setName(Name);
906 void LoadInst::setAlignment(unsigned Align) {
907 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
908 SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
911 //===----------------------------------------------------------------------===//
912 // StoreInst Implementation
913 //===----------------------------------------------------------------------===//
915 void StoreInst::AssertOK() {
916 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
917 assert(isa<PointerType>(getOperand(1)->getType()) &&
918 "Ptr must have pointer type!");
919 assert(getOperand(0)->getType() ==
920 cast<PointerType>(getOperand(1)->getType())->getElementType()
921 && "Ptr must be a pointer to Val type!");
925 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
926 : Instruction(Type::VoidTy, Store,
927 OperandTraits<StoreInst>::op_begin(this),
928 OperandTraits<StoreInst>::operands(this),
929 InsertBefore) {
930 Op<0>() = val;
931 Op<1>() = addr;
932 setVolatile(false);
933 setAlignment(0);
934 AssertOK();
937 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
938 : Instruction(Type::VoidTy, Store,
939 OperandTraits<StoreInst>::op_begin(this),
940 OperandTraits<StoreInst>::operands(this),
941 InsertAtEnd) {
942 Op<0>() = val;
943 Op<1>() = addr;
944 setVolatile(false);
945 setAlignment(0);
946 AssertOK();
949 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
950 Instruction *InsertBefore)
951 : Instruction(Type::VoidTy, Store,
952 OperandTraits<StoreInst>::op_begin(this),
953 OperandTraits<StoreInst>::operands(this),
954 InsertBefore) {
955 Op<0>() = val;
956 Op<1>() = addr;
957 setVolatile(isVolatile);
958 setAlignment(0);
959 AssertOK();
962 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
963 unsigned Align, Instruction *InsertBefore)
964 : Instruction(Type::VoidTy, Store,
965 OperandTraits<StoreInst>::op_begin(this),
966 OperandTraits<StoreInst>::operands(this),
967 InsertBefore) {
968 Op<0>() = val;
969 Op<1>() = addr;
970 setVolatile(isVolatile);
971 setAlignment(Align);
972 AssertOK();
975 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
976 unsigned Align, BasicBlock *InsertAtEnd)
977 : Instruction(Type::VoidTy, Store,
978 OperandTraits<StoreInst>::op_begin(this),
979 OperandTraits<StoreInst>::operands(this),
980 InsertAtEnd) {
981 Op<0>() = val;
982 Op<1>() = addr;
983 setVolatile(isVolatile);
984 setAlignment(Align);
985 AssertOK();
988 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
989 BasicBlock *InsertAtEnd)
990 : Instruction(Type::VoidTy, Store,
991 OperandTraits<StoreInst>::op_begin(this),
992 OperandTraits<StoreInst>::operands(this),
993 InsertAtEnd) {
994 Op<0>() = val;
995 Op<1>() = addr;
996 setVolatile(isVolatile);
997 setAlignment(0);
998 AssertOK();
1001 void StoreInst::setAlignment(unsigned Align) {
1002 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1003 SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
1006 //===----------------------------------------------------------------------===//
1007 // GetElementPtrInst Implementation
1008 //===----------------------------------------------------------------------===//
1010 static unsigned retrieveAddrSpace(const Value *Val) {
1011 return cast<PointerType>(Val->getType())->getAddressSpace();
1014 void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
1015 const Twine &Name) {
1016 assert(NumOperands == 1+NumIdx && "NumOperands not initialized?");
1017 Use *OL = OperandList;
1018 OL[0] = Ptr;
1020 for (unsigned i = 0; i != NumIdx; ++i)
1021 OL[i+1] = Idx[i];
1023 setName(Name);
1026 void GetElementPtrInst::init(Value *Ptr, Value *Idx, const Twine &Name) {
1027 assert(NumOperands == 2 && "NumOperands not initialized?");
1028 Use *OL = OperandList;
1029 OL[0] = Ptr;
1030 OL[1] = Idx;
1032 setName(Name);
1035 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1036 : Instruction(GEPI.getType(), GetElementPtr,
1037 OperandTraits<GetElementPtrInst>::op_end(this)
1038 - GEPI.getNumOperands(),
1039 GEPI.getNumOperands()) {
1040 Use *OL = OperandList;
1041 Use *GEPIOL = GEPI.OperandList;
1042 for (unsigned i = 0, E = NumOperands; i != E; ++i)
1043 OL[i] = GEPIOL[i];
1046 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1047 const Twine &Name, Instruction *InBe)
1048 : Instruction(PointerType::get(
1049 checkType(getIndexedType(Ptr->getType(),Idx)), retrieveAddrSpace(Ptr)),
1050 GetElementPtr,
1051 OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1052 2, InBe) {
1053 init(Ptr, Idx, Name);
1056 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1057 const Twine &Name, BasicBlock *IAE)
1058 : Instruction(PointerType::get(
1059 checkType(getIndexedType(Ptr->getType(),Idx)),
1060 retrieveAddrSpace(Ptr)),
1061 GetElementPtr,
1062 OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1063 2, IAE) {
1064 init(Ptr, Idx, Name);
1067 /// getIndexedType - Returns the type of the element that would be accessed with
1068 /// a gep instruction with the specified parameters.
1070 /// The Idxs pointer should point to a continuous piece of memory containing the
1071 /// indices, either as Value* or uint64_t.
1073 /// A null type is returned if the indices are invalid for the specified
1074 /// pointer type.
1076 template <typename IndexTy>
1077 static const Type* getIndexedTypeInternal(const Type *Ptr, IndexTy const *Idxs,
1078 unsigned NumIdx) {
1079 const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1080 if (!PTy) return 0; // Type isn't a pointer type!
1081 const Type *Agg = PTy->getElementType();
1083 // Handle the special case of the empty set index set, which is always valid.
1084 if (NumIdx == 0)
1085 return Agg;
1087 // If there is at least one index, the top level type must be sized, otherwise
1088 // it cannot be 'stepped over'. We explicitly allow abstract types (those
1089 // that contain opaque types) under the assumption that it will be resolved to
1090 // a sane type later.
1091 if (!Agg->isSized() && !Agg->isAbstract())
1092 return 0;
1094 unsigned CurIdx = 1;
1095 for (; CurIdx != NumIdx; ++CurIdx) {
1096 const CompositeType *CT = dyn_cast<CompositeType>(Agg);
1097 if (!CT || isa<PointerType>(CT)) return 0;
1098 IndexTy Index = Idxs[CurIdx];
1099 if (!CT->indexValid(Index)) return 0;
1100 Agg = CT->getTypeAtIndex(Index);
1102 // If the new type forwards to another type, then it is in the middle
1103 // of being refined to another type (and hence, may have dropped all
1104 // references to what it was using before). So, use the new forwarded
1105 // type.
1106 if (const Type *Ty = Agg->getForwardedType())
1107 Agg = Ty;
1109 return CurIdx == NumIdx ? Agg : 0;
1112 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1113 Value* const *Idxs,
1114 unsigned NumIdx) {
1115 return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1118 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1119 uint64_t const *Idxs,
1120 unsigned NumIdx) {
1121 return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1124 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
1125 const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1126 if (!PTy) return 0; // Type isn't a pointer type!
1128 // Check the pointer index.
1129 if (!PTy->indexValid(Idx)) return 0;
1131 return PTy->getElementType();
1135 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1136 /// zeros. If so, the result pointer and the first operand have the same
1137 /// value, just potentially different types.
1138 bool GetElementPtrInst::hasAllZeroIndices() const {
1139 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1140 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1141 if (!CI->isZero()) return false;
1142 } else {
1143 return false;
1146 return true;
1149 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1150 /// constant integers. If so, the result pointer and the first operand have
1151 /// a constant offset between them.
1152 bool GetElementPtrInst::hasAllConstantIndices() const {
1153 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1154 if (!isa<ConstantInt>(getOperand(i)))
1155 return false;
1157 return true;
1161 //===----------------------------------------------------------------------===//
1162 // ExtractElementInst Implementation
1163 //===----------------------------------------------------------------------===//
1165 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1166 const Twine &Name,
1167 Instruction *InsertBef)
1168 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1169 ExtractElement,
1170 OperandTraits<ExtractElementInst>::op_begin(this),
1171 2, InsertBef) {
1172 assert(isValidOperands(Val, Index) &&
1173 "Invalid extractelement instruction operands!");
1174 Op<0>() = Val;
1175 Op<1>() = Index;
1176 setName(Name);
1179 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1180 const Twine &Name,
1181 BasicBlock *InsertAE)
1182 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1183 ExtractElement,
1184 OperandTraits<ExtractElementInst>::op_begin(this),
1185 2, InsertAE) {
1186 assert(isValidOperands(Val, Index) &&
1187 "Invalid extractelement instruction operands!");
1189 Op<0>() = Val;
1190 Op<1>() = Index;
1191 setName(Name);
1195 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1196 if (!isa<VectorType>(Val->getType()) || Index->getType() != Type::Int32Ty)
1197 return false;
1198 return true;
1202 //===----------------------------------------------------------------------===//
1203 // InsertElementInst Implementation
1204 //===----------------------------------------------------------------------===//
1206 InsertElementInst::InsertElementInst(const InsertElementInst &IE)
1207 : Instruction(IE.getType(), InsertElement,
1208 OperandTraits<InsertElementInst>::op_begin(this), 3) {
1209 Op<0>() = IE.Op<0>();
1210 Op<1>() = IE.Op<1>();
1211 Op<2>() = IE.Op<2>();
1213 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1214 const Twine &Name,
1215 Instruction *InsertBef)
1216 : Instruction(Vec->getType(), InsertElement,
1217 OperandTraits<InsertElementInst>::op_begin(this),
1218 3, InsertBef) {
1219 assert(isValidOperands(Vec, Elt, Index) &&
1220 "Invalid insertelement instruction operands!");
1221 Op<0>() = Vec;
1222 Op<1>() = Elt;
1223 Op<2>() = Index;
1224 setName(Name);
1227 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1228 const Twine &Name,
1229 BasicBlock *InsertAE)
1230 : Instruction(Vec->getType(), InsertElement,
1231 OperandTraits<InsertElementInst>::op_begin(this),
1232 3, InsertAE) {
1233 assert(isValidOperands(Vec, Elt, Index) &&
1234 "Invalid insertelement instruction operands!");
1236 Op<0>() = Vec;
1237 Op<1>() = Elt;
1238 Op<2>() = Index;
1239 setName(Name);
1242 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1243 const Value *Index) {
1244 if (!isa<VectorType>(Vec->getType()))
1245 return false; // First operand of insertelement must be vector type.
1247 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1248 return false;// Second operand of insertelement must be vector element type.
1250 if (Index->getType() != Type::Int32Ty)
1251 return false; // Third operand of insertelement must be i32.
1252 return true;
1256 //===----------------------------------------------------------------------===//
1257 // ShuffleVectorInst Implementation
1258 //===----------------------------------------------------------------------===//
1260 ShuffleVectorInst::ShuffleVectorInst(const ShuffleVectorInst &SV)
1261 : Instruction(SV.getType(), ShuffleVector,
1262 OperandTraits<ShuffleVectorInst>::op_begin(this),
1263 OperandTraits<ShuffleVectorInst>::operands(this)) {
1264 Op<0>() = SV.Op<0>();
1265 Op<1>() = SV.Op<1>();
1266 Op<2>() = SV.Op<2>();
1269 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1270 const Twine &Name,
1271 Instruction *InsertBefore)
1272 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1273 cast<VectorType>(Mask->getType())->getNumElements()),
1274 ShuffleVector,
1275 OperandTraits<ShuffleVectorInst>::op_begin(this),
1276 OperandTraits<ShuffleVectorInst>::operands(this),
1277 InsertBefore) {
1278 assert(isValidOperands(V1, V2, Mask) &&
1279 "Invalid shuffle vector instruction operands!");
1280 Op<0>() = V1;
1281 Op<1>() = V2;
1282 Op<2>() = Mask;
1283 setName(Name);
1286 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1287 const Twine &Name,
1288 BasicBlock *InsertAtEnd)
1289 : Instruction(V1->getType(), ShuffleVector,
1290 OperandTraits<ShuffleVectorInst>::op_begin(this),
1291 OperandTraits<ShuffleVectorInst>::operands(this),
1292 InsertAtEnd) {
1293 assert(isValidOperands(V1, V2, Mask) &&
1294 "Invalid shuffle vector instruction operands!");
1296 Op<0>() = V1;
1297 Op<1>() = V2;
1298 Op<2>() = Mask;
1299 setName(Name);
1302 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1303 const Value *Mask) {
1304 if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
1305 return false;
1307 const VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1308 if (!isa<Constant>(Mask) || MaskTy == 0 ||
1309 MaskTy->getElementType() != Type::Int32Ty)
1310 return false;
1311 return true;
1314 /// getMaskValue - Return the index from the shuffle mask for the specified
1315 /// output result. This is either -1 if the element is undef or a number less
1316 /// than 2*numelements.
1317 int ShuffleVectorInst::getMaskValue(unsigned i) const {
1318 const Constant *Mask = cast<Constant>(getOperand(2));
1319 if (isa<UndefValue>(Mask)) return -1;
1320 if (isa<ConstantAggregateZero>(Mask)) return 0;
1321 const ConstantVector *MaskCV = cast<ConstantVector>(Mask);
1322 assert(i < MaskCV->getNumOperands() && "Index out of range");
1324 if (isa<UndefValue>(MaskCV->getOperand(i)))
1325 return -1;
1326 return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue();
1329 //===----------------------------------------------------------------------===//
1330 // InsertValueInst Class
1331 //===----------------------------------------------------------------------===//
1333 void InsertValueInst::init(Value *Agg, Value *Val, const unsigned *Idx,
1334 unsigned NumIdx, const Twine &Name) {
1335 assert(NumOperands == 2 && "NumOperands not initialized?");
1336 Op<0>() = Agg;
1337 Op<1>() = Val;
1339 Indices.insert(Indices.end(), Idx, Idx + NumIdx);
1340 setName(Name);
1343 void InsertValueInst::init(Value *Agg, Value *Val, unsigned Idx,
1344 const Twine &Name) {
1345 assert(NumOperands == 2 && "NumOperands not initialized?");
1346 Op<0>() = Agg;
1347 Op<1>() = Val;
1349 Indices.push_back(Idx);
1350 setName(Name);
1353 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1354 : Instruction(IVI.getType(), InsertValue,
1355 OperandTraits<InsertValueInst>::op_begin(this), 2),
1356 Indices(IVI.Indices) {
1357 Op<0>() = IVI.getOperand(0);
1358 Op<1>() = IVI.getOperand(1);
1361 InsertValueInst::InsertValueInst(Value *Agg,
1362 Value *Val,
1363 unsigned Idx,
1364 const Twine &Name,
1365 Instruction *InsertBefore)
1366 : Instruction(Agg->getType(), InsertValue,
1367 OperandTraits<InsertValueInst>::op_begin(this),
1368 2, InsertBefore) {
1369 init(Agg, Val, Idx, Name);
1372 InsertValueInst::InsertValueInst(Value *Agg,
1373 Value *Val,
1374 unsigned Idx,
1375 const Twine &Name,
1376 BasicBlock *InsertAtEnd)
1377 : Instruction(Agg->getType(), InsertValue,
1378 OperandTraits<InsertValueInst>::op_begin(this),
1379 2, InsertAtEnd) {
1380 init(Agg, Val, Idx, Name);
1383 //===----------------------------------------------------------------------===//
1384 // ExtractValueInst Class
1385 //===----------------------------------------------------------------------===//
1387 void ExtractValueInst::init(const unsigned *Idx, unsigned NumIdx,
1388 const Twine &Name) {
1389 assert(NumOperands == 1 && "NumOperands not initialized?");
1391 Indices.insert(Indices.end(), Idx, Idx + NumIdx);
1392 setName(Name);
1395 void ExtractValueInst::init(unsigned Idx, const Twine &Name) {
1396 assert(NumOperands == 1 && "NumOperands not initialized?");
1398 Indices.push_back(Idx);
1399 setName(Name);
1402 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1403 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1404 Indices(EVI.Indices) {
1407 // getIndexedType - Returns the type of the element that would be extracted
1408 // with an extractvalue instruction with the specified parameters.
1410 // A null type is returned if the indices are invalid for the specified
1411 // pointer type.
1413 const Type* ExtractValueInst::getIndexedType(const Type *Agg,
1414 const unsigned *Idxs,
1415 unsigned NumIdx) {
1416 unsigned CurIdx = 0;
1417 for (; CurIdx != NumIdx; ++CurIdx) {
1418 const CompositeType *CT = dyn_cast<CompositeType>(Agg);
1419 if (!CT || isa<PointerType>(CT) || isa<VectorType>(CT)) return 0;
1420 unsigned Index = Idxs[CurIdx];
1421 if (!CT->indexValid(Index)) return 0;
1422 Agg = CT->getTypeAtIndex(Index);
1424 // If the new type forwards to another type, then it is in the middle
1425 // of being refined to another type (and hence, may have dropped all
1426 // references to what it was using before). So, use the new forwarded
1427 // type.
1428 if (const Type *Ty = Agg->getForwardedType())
1429 Agg = Ty;
1431 return CurIdx == NumIdx ? Agg : 0;
1434 const Type* ExtractValueInst::getIndexedType(const Type *Agg,
1435 unsigned Idx) {
1436 return getIndexedType(Agg, &Idx, 1);
1439 //===----------------------------------------------------------------------===//
1440 // BinaryOperator Class
1441 //===----------------------------------------------------------------------===//
1443 /// AdjustIType - Map Add, Sub, and Mul to FAdd, FSub, and FMul when the
1444 /// type is floating-point, to help provide compatibility with an older API.
1446 static BinaryOperator::BinaryOps AdjustIType(BinaryOperator::BinaryOps iType,
1447 const Type *Ty) {
1448 // API compatibility: Adjust integer opcodes to floating-point opcodes.
1449 if (Ty->isFPOrFPVector()) {
1450 if (iType == BinaryOperator::Add) iType = BinaryOperator::FAdd;
1451 else if (iType == BinaryOperator::Sub) iType = BinaryOperator::FSub;
1452 else if (iType == BinaryOperator::Mul) iType = BinaryOperator::FMul;
1454 return iType;
1457 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1458 const Type *Ty, const Twine &Name,
1459 Instruction *InsertBefore)
1460 : Instruction(Ty, AdjustIType(iType, Ty),
1461 OperandTraits<BinaryOperator>::op_begin(this),
1462 OperandTraits<BinaryOperator>::operands(this),
1463 InsertBefore) {
1464 Op<0>() = S1;
1465 Op<1>() = S2;
1466 init(AdjustIType(iType, Ty));
1467 setName(Name);
1470 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1471 const Type *Ty, const Twine &Name,
1472 BasicBlock *InsertAtEnd)
1473 : Instruction(Ty, AdjustIType(iType, Ty),
1474 OperandTraits<BinaryOperator>::op_begin(this),
1475 OperandTraits<BinaryOperator>::operands(this),
1476 InsertAtEnd) {
1477 Op<0>() = S1;
1478 Op<1>() = S2;
1479 init(AdjustIType(iType, Ty));
1480 setName(Name);
1484 void BinaryOperator::init(BinaryOps iType) {
1485 Value *LHS = getOperand(0), *RHS = getOperand(1);
1486 LHS = LHS; RHS = RHS; // Silence warnings.
1487 assert(LHS->getType() == RHS->getType() &&
1488 "Binary operator operand types must match!");
1489 #ifndef NDEBUG
1490 switch (iType) {
1491 case Add: case Sub:
1492 case Mul:
1493 assert(getType() == LHS->getType() &&
1494 "Arithmetic operation should return same type as operands!");
1495 assert(getType()->isIntOrIntVector() &&
1496 "Tried to create an integer operation on a non-integer type!");
1497 break;
1498 case FAdd: case FSub:
1499 case FMul:
1500 assert(getType() == LHS->getType() &&
1501 "Arithmetic operation should return same type as operands!");
1502 assert(getType()->isFPOrFPVector() &&
1503 "Tried to create a floating-point operation on a "
1504 "non-floating-point type!");
1505 break;
1506 case UDiv:
1507 case SDiv:
1508 assert(getType() == LHS->getType() &&
1509 "Arithmetic operation should return same type as operands!");
1510 assert((getType()->isInteger() || (isa<VectorType>(getType()) &&
1511 cast<VectorType>(getType())->getElementType()->isInteger())) &&
1512 "Incorrect operand type (not integer) for S/UDIV");
1513 break;
1514 case FDiv:
1515 assert(getType() == LHS->getType() &&
1516 "Arithmetic operation should return same type as operands!");
1517 assert(getType()->isFPOrFPVector() &&
1518 "Incorrect operand type (not floating point) for FDIV");
1519 break;
1520 case URem:
1521 case SRem:
1522 assert(getType() == LHS->getType() &&
1523 "Arithmetic operation should return same type as operands!");
1524 assert((getType()->isInteger() || (isa<VectorType>(getType()) &&
1525 cast<VectorType>(getType())->getElementType()->isInteger())) &&
1526 "Incorrect operand type (not integer) for S/UREM");
1527 break;
1528 case FRem:
1529 assert(getType() == LHS->getType() &&
1530 "Arithmetic operation should return same type as operands!");
1531 assert(getType()->isFPOrFPVector() &&
1532 "Incorrect operand type (not floating point) for FREM");
1533 break;
1534 case Shl:
1535 case LShr:
1536 case AShr:
1537 assert(getType() == LHS->getType() &&
1538 "Shift operation should return same type as operands!");
1539 assert((getType()->isInteger() ||
1540 (isa<VectorType>(getType()) &&
1541 cast<VectorType>(getType())->getElementType()->isInteger())) &&
1542 "Tried to create a shift operation on a non-integral type!");
1543 break;
1544 case And: case Or:
1545 case Xor:
1546 assert(getType() == LHS->getType() &&
1547 "Logical operation should return same type as operands!");
1548 assert((getType()->isInteger() ||
1549 (isa<VectorType>(getType()) &&
1550 cast<VectorType>(getType())->getElementType()->isInteger())) &&
1551 "Tried to create a logical operation on a non-integral type!");
1552 break;
1553 default:
1554 break;
1556 #endif
1559 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1560 const Twine &Name,
1561 Instruction *InsertBefore) {
1562 assert(S1->getType() == S2->getType() &&
1563 "Cannot create binary operator with two operands of differing type!");
1564 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1567 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1568 const Twine &Name,
1569 BasicBlock *InsertAtEnd) {
1570 BinaryOperator *Res = Create(Op, S1, S2, Name);
1571 InsertAtEnd->getInstList().push_back(Res);
1572 return Res;
1575 BinaryOperator *BinaryOperator::CreateNeg(LLVMContext &Context,
1576 Value *Op, const Twine &Name,
1577 Instruction *InsertBefore) {
1578 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1579 return new BinaryOperator(Instruction::Sub,
1580 zero, Op,
1581 Op->getType(), Name, InsertBefore);
1584 BinaryOperator *BinaryOperator::CreateNeg(LLVMContext &Context,
1585 Value *Op, const Twine &Name,
1586 BasicBlock *InsertAtEnd) {
1587 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1588 return new BinaryOperator(Instruction::Sub,
1589 zero, Op,
1590 Op->getType(), Name, InsertAtEnd);
1593 BinaryOperator *BinaryOperator::CreateFNeg(LLVMContext &Context,
1594 Value *Op, const Twine &Name,
1595 Instruction *InsertBefore) {
1596 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1597 return new BinaryOperator(Instruction::FSub,
1598 zero, Op,
1599 Op->getType(), Name, InsertBefore);
1602 BinaryOperator *BinaryOperator::CreateFNeg(LLVMContext &Context,
1603 Value *Op, const Twine &Name,
1604 BasicBlock *InsertAtEnd) {
1605 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1606 return new BinaryOperator(Instruction::FSub,
1607 zero, Op,
1608 Op->getType(), Name, InsertAtEnd);
1611 BinaryOperator *BinaryOperator::CreateNot(LLVMContext &Context,
1612 Value *Op, const Twine &Name,
1613 Instruction *InsertBefore) {
1614 Constant *C;
1615 if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1616 C = Constant::getAllOnesValue(PTy->getElementType());
1617 C = ConstantVector::get(
1618 std::vector<Constant*>(PTy->getNumElements(), C));
1619 } else {
1620 C = Constant::getAllOnesValue(Op->getType());
1623 return new BinaryOperator(Instruction::Xor, Op, C,
1624 Op->getType(), Name, InsertBefore);
1627 BinaryOperator *BinaryOperator::CreateNot(LLVMContext &Context,
1628 Value *Op, const Twine &Name,
1629 BasicBlock *InsertAtEnd) {
1630 Constant *AllOnes;
1631 if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1632 // Create a vector of all ones values.
1633 Constant *Elt = Constant::getAllOnesValue(PTy->getElementType());
1634 AllOnes = ConstantVector::get(
1635 std::vector<Constant*>(PTy->getNumElements(), Elt));
1636 } else {
1637 AllOnes = Constant::getAllOnesValue(Op->getType());
1640 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1641 Op->getType(), Name, InsertAtEnd);
1645 // isConstantAllOnes - Helper function for several functions below
1646 static inline bool isConstantAllOnes(const Value *V) {
1647 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
1648 return CI->isAllOnesValue();
1649 if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
1650 return CV->isAllOnesValue();
1651 return false;
1654 bool BinaryOperator::isNeg(const Value *V) {
1655 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1656 if (Bop->getOpcode() == Instruction::Sub)
1657 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1658 return C->isNegativeZeroValue();
1659 return false;
1662 bool BinaryOperator::isFNeg(const Value *V) {
1663 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1664 if (Bop->getOpcode() == Instruction::FSub)
1665 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1666 return C->isNegativeZeroValue();
1667 return false;
1670 bool BinaryOperator::isNot(const Value *V) {
1671 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1672 return (Bop->getOpcode() == Instruction::Xor &&
1673 (isConstantAllOnes(Bop->getOperand(1)) ||
1674 isConstantAllOnes(Bop->getOperand(0))));
1675 return false;
1678 Value *BinaryOperator::getNegArgument(Value *BinOp) {
1679 return cast<BinaryOperator>(BinOp)->getOperand(1);
1682 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1683 return getNegArgument(const_cast<Value*>(BinOp));
1686 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1687 return cast<BinaryOperator>(BinOp)->getOperand(1);
1690 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1691 return getFNegArgument(const_cast<Value*>(BinOp));
1694 Value *BinaryOperator::getNotArgument(Value *BinOp) {
1695 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1696 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1697 Value *Op0 = BO->getOperand(0);
1698 Value *Op1 = BO->getOperand(1);
1699 if (isConstantAllOnes(Op0)) return Op1;
1701 assert(isConstantAllOnes(Op1));
1702 return Op0;
1705 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1706 return getNotArgument(const_cast<Value*>(BinOp));
1710 // swapOperands - Exchange the two operands to this instruction. This
1711 // instruction is safe to use on any binary instruction and does not
1712 // modify the semantics of the instruction. If the instruction is
1713 // order dependent (SetLT f.e.) the opcode is changed.
1715 bool BinaryOperator::swapOperands() {
1716 if (!isCommutative())
1717 return true; // Can't commute operands
1718 Op<0>().swap(Op<1>());
1719 return false;
1722 //===----------------------------------------------------------------------===//
1723 // CastInst Class
1724 //===----------------------------------------------------------------------===//
1726 // Just determine if this cast only deals with integral->integral conversion.
1727 bool CastInst::isIntegerCast() const {
1728 switch (getOpcode()) {
1729 default: return false;
1730 case Instruction::ZExt:
1731 case Instruction::SExt:
1732 case Instruction::Trunc:
1733 return true;
1734 case Instruction::BitCast:
1735 return getOperand(0)->getType()->isInteger() && getType()->isInteger();
1739 bool CastInst::isLosslessCast() const {
1740 // Only BitCast can be lossless, exit fast if we're not BitCast
1741 if (getOpcode() != Instruction::BitCast)
1742 return false;
1744 // Identity cast is always lossless
1745 const Type* SrcTy = getOperand(0)->getType();
1746 const Type* DstTy = getType();
1747 if (SrcTy == DstTy)
1748 return true;
1750 // Pointer to pointer is always lossless.
1751 if (isa<PointerType>(SrcTy))
1752 return isa<PointerType>(DstTy);
1753 return false; // Other types have no identity values
1756 /// This function determines if the CastInst does not require any bits to be
1757 /// changed in order to effect the cast. Essentially, it identifies cases where
1758 /// no code gen is necessary for the cast, hence the name no-op cast. For
1759 /// example, the following are all no-op casts:
1760 /// # bitcast i32* %x to i8*
1761 /// # bitcast <2 x i32> %x to <4 x i16>
1762 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
1763 /// @brief Determine if a cast is a no-op.
1764 bool CastInst::isNoopCast(const Type *IntPtrTy) const {
1765 switch (getOpcode()) {
1766 default:
1767 assert(!"Invalid CastOp");
1768 case Instruction::Trunc:
1769 case Instruction::ZExt:
1770 case Instruction::SExt:
1771 case Instruction::FPTrunc:
1772 case Instruction::FPExt:
1773 case Instruction::UIToFP:
1774 case Instruction::SIToFP:
1775 case Instruction::FPToUI:
1776 case Instruction::FPToSI:
1777 return false; // These always modify bits
1778 case Instruction::BitCast:
1779 return true; // BitCast never modifies bits.
1780 case Instruction::PtrToInt:
1781 return IntPtrTy->getScalarSizeInBits() ==
1782 getType()->getScalarSizeInBits();
1783 case Instruction::IntToPtr:
1784 return IntPtrTy->getScalarSizeInBits() ==
1785 getOperand(0)->getType()->getScalarSizeInBits();
1789 /// This function determines if a pair of casts can be eliminated and what
1790 /// opcode should be used in the elimination. This assumes that there are two
1791 /// instructions like this:
1792 /// * %F = firstOpcode SrcTy %x to MidTy
1793 /// * %S = secondOpcode MidTy %F to DstTy
1794 /// The function returns a resultOpcode so these two casts can be replaced with:
1795 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
1796 /// If no such cast is permited, the function returns 0.
1797 unsigned CastInst::isEliminableCastPair(
1798 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
1799 const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
1801 // Define the 144 possibilities for these two cast instructions. The values
1802 // in this matrix determine what to do in a given situation and select the
1803 // case in the switch below. The rows correspond to firstOp, the columns
1804 // correspond to secondOp. In looking at the table below, keep in mind
1805 // the following cast properties:
1807 // Size Compare Source Destination
1808 // Operator Src ? Size Type Sign Type Sign
1809 // -------- ------------ ------------------- ---------------------
1810 // TRUNC > Integer Any Integral Any
1811 // ZEXT < Integral Unsigned Integer Any
1812 // SEXT < Integral Signed Integer Any
1813 // FPTOUI n/a FloatPt n/a Integral Unsigned
1814 // FPTOSI n/a FloatPt n/a Integral Signed
1815 // UITOFP n/a Integral Unsigned FloatPt n/a
1816 // SITOFP n/a Integral Signed FloatPt n/a
1817 // FPTRUNC > FloatPt n/a FloatPt n/a
1818 // FPEXT < FloatPt n/a FloatPt n/a
1819 // PTRTOINT n/a Pointer n/a Integral Unsigned
1820 // INTTOPTR n/a Integral Unsigned Pointer n/a
1821 // BITCONVERT = FirstClass n/a FirstClass n/a
1823 // NOTE: some transforms are safe, but we consider them to be non-profitable.
1824 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
1825 // into "fptoui double to i64", but this loses information about the range
1826 // of the produced value (we no longer know the top-part is all zeros).
1827 // Further this conversion is often much more expensive for typical hardware,
1828 // and causes issues when building libgcc. We disallow fptosi+sext for the
1829 // same reason.
1830 const unsigned numCastOps =
1831 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
1832 static const uint8_t CastResults[numCastOps][numCastOps] = {
1833 // T F F U S F F P I B -+
1834 // R Z S P P I I T P 2 N T |
1835 // U E E 2 2 2 2 R E I T C +- secondOp
1836 // N X X U S F F N X N 2 V |
1837 // C T T I I P P C T T P T -+
1838 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+
1839 { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt |
1840 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt |
1841 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI |
1842 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI |
1843 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp
1844 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP |
1845 { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc |
1846 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt |
1847 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt |
1848 { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr |
1849 { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+
1852 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
1853 [secondOp-Instruction::CastOpsBegin];
1854 switch (ElimCase) {
1855 case 0:
1856 // categorically disallowed
1857 return 0;
1858 case 1:
1859 // allowed, use first cast's opcode
1860 return firstOp;
1861 case 2:
1862 // allowed, use second cast's opcode
1863 return secondOp;
1864 case 3:
1865 // no-op cast in second op implies firstOp as long as the DestTy
1866 // is integer
1867 if (DstTy->isInteger())
1868 return firstOp;
1869 return 0;
1870 case 4:
1871 // no-op cast in second op implies firstOp as long as the DestTy
1872 // is floating point
1873 if (DstTy->isFloatingPoint())
1874 return firstOp;
1875 return 0;
1876 case 5:
1877 // no-op cast in first op implies secondOp as long as the SrcTy
1878 // is an integer
1879 if (SrcTy->isInteger())
1880 return secondOp;
1881 return 0;
1882 case 6:
1883 // no-op cast in first op implies secondOp as long as the SrcTy
1884 // is a floating point
1885 if (SrcTy->isFloatingPoint())
1886 return secondOp;
1887 return 0;
1888 case 7: {
1889 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
1890 if (!IntPtrTy)
1891 return 0;
1892 unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
1893 unsigned MidSize = MidTy->getScalarSizeInBits();
1894 if (MidSize >= PtrSize)
1895 return Instruction::BitCast;
1896 return 0;
1898 case 8: {
1899 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
1900 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
1901 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
1902 unsigned SrcSize = SrcTy->getScalarSizeInBits();
1903 unsigned DstSize = DstTy->getScalarSizeInBits();
1904 if (SrcSize == DstSize)
1905 return Instruction::BitCast;
1906 else if (SrcSize < DstSize)
1907 return firstOp;
1908 return secondOp;
1910 case 9: // zext, sext -> zext, because sext can't sign extend after zext
1911 return Instruction::ZExt;
1912 case 10:
1913 // fpext followed by ftrunc is allowed if the bit size returned to is
1914 // the same as the original, in which case its just a bitcast
1915 if (SrcTy == DstTy)
1916 return Instruction::BitCast;
1917 return 0; // If the types are not the same we can't eliminate it.
1918 case 11:
1919 // bitcast followed by ptrtoint is allowed as long as the bitcast
1920 // is a pointer to pointer cast.
1921 if (isa<PointerType>(SrcTy) && isa<PointerType>(MidTy))
1922 return secondOp;
1923 return 0;
1924 case 12:
1925 // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast
1926 if (isa<PointerType>(MidTy) && isa<PointerType>(DstTy))
1927 return firstOp;
1928 return 0;
1929 case 13: {
1930 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
1931 if (!IntPtrTy)
1932 return 0;
1933 unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
1934 unsigned SrcSize = SrcTy->getScalarSizeInBits();
1935 unsigned DstSize = DstTy->getScalarSizeInBits();
1936 if (SrcSize <= PtrSize && SrcSize == DstSize)
1937 return Instruction::BitCast;
1938 return 0;
1940 case 99:
1941 // cast combination can't happen (error in input). This is for all cases
1942 // where the MidTy is not the same for the two cast instructions.
1943 assert(!"Invalid Cast Combination");
1944 return 0;
1945 default:
1946 assert(!"Error in CastResults table!!!");
1947 return 0;
1949 return 0;
1952 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
1953 const Twine &Name, Instruction *InsertBefore) {
1954 // Construct and return the appropriate CastInst subclass
1955 switch (op) {
1956 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
1957 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
1958 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
1959 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
1960 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
1961 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
1962 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
1963 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
1964 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
1965 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
1966 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
1967 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
1968 default:
1969 assert(!"Invalid opcode provided");
1971 return 0;
1974 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
1975 const Twine &Name, BasicBlock *InsertAtEnd) {
1976 // Construct and return the appropriate CastInst subclass
1977 switch (op) {
1978 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
1979 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
1980 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
1981 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
1982 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
1983 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
1984 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
1985 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
1986 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
1987 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
1988 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
1989 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
1990 default:
1991 assert(!"Invalid opcode provided");
1993 return 0;
1996 CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
1997 const Twine &Name,
1998 Instruction *InsertBefore) {
1999 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2000 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2001 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2004 CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
2005 const Twine &Name,
2006 BasicBlock *InsertAtEnd) {
2007 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2008 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2009 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2012 CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2013 const Twine &Name,
2014 Instruction *InsertBefore) {
2015 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2016 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2017 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2020 CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2021 const Twine &Name,
2022 BasicBlock *InsertAtEnd) {
2023 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2024 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2025 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2028 CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2029 const Twine &Name,
2030 Instruction *InsertBefore) {
2031 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2032 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2033 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2036 CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2037 const Twine &Name,
2038 BasicBlock *InsertAtEnd) {
2039 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2040 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2041 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2044 CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2045 const Twine &Name,
2046 BasicBlock *InsertAtEnd) {
2047 assert(isa<PointerType>(S->getType()) && "Invalid cast");
2048 assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
2049 "Invalid cast");
2051 if (Ty->isInteger())
2052 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2053 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2056 /// @brief Create a BitCast or a PtrToInt cast instruction
2057 CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2058 const Twine &Name,
2059 Instruction *InsertBefore) {
2060 assert(isa<PointerType>(S->getType()) && "Invalid cast");
2061 assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
2062 "Invalid cast");
2064 if (Ty->isInteger())
2065 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2066 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2069 CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2070 bool isSigned, const Twine &Name,
2071 Instruction *InsertBefore) {
2072 assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
2073 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2074 unsigned DstBits = Ty->getScalarSizeInBits();
2075 Instruction::CastOps opcode =
2076 (SrcBits == DstBits ? Instruction::BitCast :
2077 (SrcBits > DstBits ? Instruction::Trunc :
2078 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2079 return Create(opcode, C, Ty, Name, InsertBefore);
2082 CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2083 bool isSigned, const Twine &Name,
2084 BasicBlock *InsertAtEnd) {
2085 assert(C->getType()->isIntOrIntVector() && Ty->isIntOrIntVector() &&
2086 "Invalid cast");
2087 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2088 unsigned DstBits = Ty->getScalarSizeInBits();
2089 Instruction::CastOps opcode =
2090 (SrcBits == DstBits ? Instruction::BitCast :
2091 (SrcBits > DstBits ? Instruction::Trunc :
2092 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2093 return Create(opcode, C, Ty, Name, InsertAtEnd);
2096 CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2097 const Twine &Name,
2098 Instruction *InsertBefore) {
2099 assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
2100 "Invalid cast");
2101 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2102 unsigned DstBits = Ty->getScalarSizeInBits();
2103 Instruction::CastOps opcode =
2104 (SrcBits == DstBits ? Instruction::BitCast :
2105 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2106 return Create(opcode, C, Ty, Name, InsertBefore);
2109 CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2110 const Twine &Name,
2111 BasicBlock *InsertAtEnd) {
2112 assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
2113 "Invalid cast");
2114 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2115 unsigned DstBits = Ty->getScalarSizeInBits();
2116 Instruction::CastOps opcode =
2117 (SrcBits == DstBits ? Instruction::BitCast :
2118 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2119 return Create(opcode, C, Ty, Name, InsertAtEnd);
2122 // Check whether it is valid to call getCastOpcode for these types.
2123 // This routine must be kept in sync with getCastOpcode.
2124 bool CastInst::isCastable(const Type *SrcTy, const Type *DestTy) {
2125 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2126 return false;
2128 if (SrcTy == DestTy)
2129 return true;
2131 // Get the bit sizes, we'll need these
2132 unsigned SrcBits = SrcTy->getScalarSizeInBits(); // 0 for ptr
2133 unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
2135 // Run through the possibilities ...
2136 if (DestTy->isInteger()) { // Casting to integral
2137 if (SrcTy->isInteger()) { // Casting from integral
2138 return true;
2139 } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
2140 return true;
2141 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2142 // Casting from vector
2143 return DestBits == PTy->getBitWidth();
2144 } else { // Casting from something else
2145 return isa<PointerType>(SrcTy);
2147 } else if (DestTy->isFloatingPoint()) { // Casting to floating pt
2148 if (SrcTy->isInteger()) { // Casting from integral
2149 return true;
2150 } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
2151 return true;
2152 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2153 // Casting from vector
2154 return DestBits == PTy->getBitWidth();
2155 } else { // Casting from something else
2156 return false;
2158 } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2159 // Casting to vector
2160 if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2161 // Casting from vector
2162 return DestPTy->getBitWidth() == SrcPTy->getBitWidth();
2163 } else { // Casting from something else
2164 return DestPTy->getBitWidth() == SrcBits;
2166 } else if (isa<PointerType>(DestTy)) { // Casting to pointer
2167 if (isa<PointerType>(SrcTy)) { // Casting from pointer
2168 return true;
2169 } else if (SrcTy->isInteger()) { // Casting from integral
2170 return true;
2171 } else { // Casting from something else
2172 return false;
2174 } else { // Casting to something else
2175 return false;
2179 // Provide a way to get a "cast" where the cast opcode is inferred from the
2180 // types and size of the operand. This, basically, is a parallel of the
2181 // logic in the castIsValid function below. This axiom should hold:
2182 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2183 // should not assert in castIsValid. In other words, this produces a "correct"
2184 // casting opcode for the arguments passed to it.
2185 // This routine must be kept in sync with isCastable.
2186 Instruction::CastOps
2187 CastInst::getCastOpcode(
2188 const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) {
2189 // Get the bit sizes, we'll need these
2190 const Type *SrcTy = Src->getType();
2191 unsigned SrcBits = SrcTy->getScalarSizeInBits(); // 0 for ptr
2192 unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
2194 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2195 "Only first class types are castable!");
2197 // Run through the possibilities ...
2198 if (DestTy->isInteger()) { // Casting to integral
2199 if (SrcTy->isInteger()) { // Casting from integral
2200 if (DestBits < SrcBits)
2201 return Trunc; // int -> smaller int
2202 else if (DestBits > SrcBits) { // its an extension
2203 if (SrcIsSigned)
2204 return SExt; // signed -> SEXT
2205 else
2206 return ZExt; // unsigned -> ZEXT
2207 } else {
2208 return BitCast; // Same size, No-op cast
2210 } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
2211 if (DestIsSigned)
2212 return FPToSI; // FP -> sint
2213 else
2214 return FPToUI; // FP -> uint
2215 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2216 assert(DestBits == PTy->getBitWidth() &&
2217 "Casting vector to integer of different width");
2218 PTy = NULL;
2219 return BitCast; // Same size, no-op cast
2220 } else {
2221 assert(isa<PointerType>(SrcTy) &&
2222 "Casting from a value that is not first-class type");
2223 return PtrToInt; // ptr -> int
2225 } else if (DestTy->isFloatingPoint()) { // Casting to floating pt
2226 if (SrcTy->isInteger()) { // Casting from integral
2227 if (SrcIsSigned)
2228 return SIToFP; // sint -> FP
2229 else
2230 return UIToFP; // uint -> FP
2231 } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt
2232 if (DestBits < SrcBits) {
2233 return FPTrunc; // FP -> smaller FP
2234 } else if (DestBits > SrcBits) {
2235 return FPExt; // FP -> larger FP
2236 } else {
2237 return BitCast; // same size, no-op cast
2239 } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2240 assert(DestBits == PTy->getBitWidth() &&
2241 "Casting vector to floating point of different width");
2242 PTy = NULL;
2243 return BitCast; // same size, no-op cast
2244 } else {
2245 llvm_unreachable("Casting pointer or non-first class to float");
2247 } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2248 if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2249 assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() &&
2250 "Casting vector to vector of different widths");
2251 SrcPTy = NULL;
2252 return BitCast; // vector -> vector
2253 } else if (DestPTy->getBitWidth() == SrcBits) {
2254 return BitCast; // float/int -> vector
2255 } else {
2256 assert(!"Illegal cast to vector (wrong type or size)");
2258 } else if (isa<PointerType>(DestTy)) {
2259 if (isa<PointerType>(SrcTy)) {
2260 return BitCast; // ptr -> ptr
2261 } else if (SrcTy->isInteger()) {
2262 return IntToPtr; // int -> ptr
2263 } else {
2264 assert(!"Casting pointer to other than pointer or int");
2266 } else {
2267 assert(!"Casting to type that is not first-class");
2270 // If we fall through to here we probably hit an assertion cast above
2271 // and assertions are not turned on. Anything we return is an error, so
2272 // BitCast is as good a choice as any.
2273 return BitCast;
2276 //===----------------------------------------------------------------------===//
2277 // CastInst SubClass Constructors
2278 //===----------------------------------------------------------------------===//
2280 /// Check that the construction parameters for a CastInst are correct. This
2281 /// could be broken out into the separate constructors but it is useful to have
2282 /// it in one place and to eliminate the redundant code for getting the sizes
2283 /// of the types involved.
2284 bool
2285 CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
2287 // Check for type sanity on the arguments
2288 const Type *SrcTy = S->getType();
2289 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType())
2290 return false;
2292 // Get the size of the types in bits, we'll need this later
2293 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2294 unsigned DstBitSize = DstTy->getScalarSizeInBits();
2296 // Switch on the opcode provided
2297 switch (op) {
2298 default: return false; // This is an input error
2299 case Instruction::Trunc:
2300 return SrcTy->isIntOrIntVector() &&
2301 DstTy->isIntOrIntVector()&& SrcBitSize > DstBitSize;
2302 case Instruction::ZExt:
2303 return SrcTy->isIntOrIntVector() &&
2304 DstTy->isIntOrIntVector()&& SrcBitSize < DstBitSize;
2305 case Instruction::SExt:
2306 return SrcTy->isIntOrIntVector() &&
2307 DstTy->isIntOrIntVector()&& SrcBitSize < DstBitSize;
2308 case Instruction::FPTrunc:
2309 return SrcTy->isFPOrFPVector() &&
2310 DstTy->isFPOrFPVector() &&
2311 SrcBitSize > DstBitSize;
2312 case Instruction::FPExt:
2313 return SrcTy->isFPOrFPVector() &&
2314 DstTy->isFPOrFPVector() &&
2315 SrcBitSize < DstBitSize;
2316 case Instruction::UIToFP:
2317 case Instruction::SIToFP:
2318 if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2319 if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2320 return SVTy->getElementType()->isIntOrIntVector() &&
2321 DVTy->getElementType()->isFPOrFPVector() &&
2322 SVTy->getNumElements() == DVTy->getNumElements();
2325 return SrcTy->isIntOrIntVector() && DstTy->isFPOrFPVector();
2326 case Instruction::FPToUI:
2327 case Instruction::FPToSI:
2328 if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2329 if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2330 return SVTy->getElementType()->isFPOrFPVector() &&
2331 DVTy->getElementType()->isIntOrIntVector() &&
2332 SVTy->getNumElements() == DVTy->getNumElements();
2335 return SrcTy->isFPOrFPVector() && DstTy->isIntOrIntVector();
2336 case Instruction::PtrToInt:
2337 return isa<PointerType>(SrcTy) && DstTy->isInteger();
2338 case Instruction::IntToPtr:
2339 return SrcTy->isInteger() && isa<PointerType>(DstTy);
2340 case Instruction::BitCast:
2341 // BitCast implies a no-op cast of type only. No bits change.
2342 // However, you can't cast pointers to anything but pointers.
2343 if (isa<PointerType>(SrcTy) != isa<PointerType>(DstTy))
2344 return false;
2346 // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2347 // these cases, the cast is okay if the source and destination bit widths
2348 // are identical.
2349 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2353 TruncInst::TruncInst(
2354 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2355 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2356 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2359 TruncInst::TruncInst(
2360 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2361 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2362 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2365 ZExtInst::ZExtInst(
2366 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2367 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2368 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2371 ZExtInst::ZExtInst(
2372 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2373 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2374 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2376 SExtInst::SExtInst(
2377 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2378 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2379 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2382 SExtInst::SExtInst(
2383 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2384 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2385 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2388 FPTruncInst::FPTruncInst(
2389 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2390 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2391 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2394 FPTruncInst::FPTruncInst(
2395 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2396 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2397 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2400 FPExtInst::FPExtInst(
2401 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2402 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2403 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2406 FPExtInst::FPExtInst(
2407 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2408 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2409 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2412 UIToFPInst::UIToFPInst(
2413 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2414 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2415 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2418 UIToFPInst::UIToFPInst(
2419 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2420 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2421 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2424 SIToFPInst::SIToFPInst(
2425 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2426 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2427 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2430 SIToFPInst::SIToFPInst(
2431 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2432 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2433 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2436 FPToUIInst::FPToUIInst(
2437 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2438 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2439 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2442 FPToUIInst::FPToUIInst(
2443 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2444 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2445 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2448 FPToSIInst::FPToSIInst(
2449 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2450 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2451 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2454 FPToSIInst::FPToSIInst(
2455 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2456 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2457 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2460 PtrToIntInst::PtrToIntInst(
2461 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2462 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2463 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2466 PtrToIntInst::PtrToIntInst(
2467 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2468 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2469 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2472 IntToPtrInst::IntToPtrInst(
2473 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2474 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2475 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2478 IntToPtrInst::IntToPtrInst(
2479 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2480 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2481 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2484 BitCastInst::BitCastInst(
2485 Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2486 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2487 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2490 BitCastInst::BitCastInst(
2491 Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2492 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2493 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2496 //===----------------------------------------------------------------------===//
2497 // CmpInst Classes
2498 //===----------------------------------------------------------------------===//
2500 CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2501 Value *LHS, Value *RHS, const Twine &Name,
2502 Instruction *InsertBefore)
2503 : Instruction(ty, op,
2504 OperandTraits<CmpInst>::op_begin(this),
2505 OperandTraits<CmpInst>::operands(this),
2506 InsertBefore) {
2507 Op<0>() = LHS;
2508 Op<1>() = RHS;
2509 SubclassData = predicate;
2510 setName(Name);
2513 CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2514 Value *LHS, Value *RHS, const Twine &Name,
2515 BasicBlock *InsertAtEnd)
2516 : Instruction(ty, op,
2517 OperandTraits<CmpInst>::op_begin(this),
2518 OperandTraits<CmpInst>::operands(this),
2519 InsertAtEnd) {
2520 Op<0>() = LHS;
2521 Op<1>() = RHS;
2522 SubclassData = predicate;
2523 setName(Name);
2526 CmpInst *
2527 CmpInst::Create(LLVMContext &Context, OtherOps Op, unsigned short predicate,
2528 Value *S1, Value *S2,
2529 const Twine &Name, Instruction *InsertBefore) {
2530 if (Op == Instruction::ICmp) {
2531 if (InsertBefore)
2532 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
2533 S1, S2, Name);
2534 else
2535 return new ICmpInst(Context, CmpInst::Predicate(predicate),
2536 S1, S2, Name);
2539 if (InsertBefore)
2540 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
2541 S1, S2, Name);
2542 else
2543 return new FCmpInst(Context, CmpInst::Predicate(predicate),
2544 S1, S2, Name);
2547 CmpInst *
2548 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2549 const Twine &Name, BasicBlock *InsertAtEnd) {
2550 if (Op == Instruction::ICmp) {
2551 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2552 S1, S2, Name);
2554 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2555 S1, S2, Name);
2558 void CmpInst::swapOperands() {
2559 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2560 IC->swapOperands();
2561 else
2562 cast<FCmpInst>(this)->swapOperands();
2565 bool CmpInst::isCommutative() {
2566 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2567 return IC->isCommutative();
2568 return cast<FCmpInst>(this)->isCommutative();
2571 bool CmpInst::isEquality() {
2572 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2573 return IC->isEquality();
2574 return cast<FCmpInst>(this)->isEquality();
2578 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
2579 switch (pred) {
2580 default: assert(!"Unknown cmp predicate!");
2581 case ICMP_EQ: return ICMP_NE;
2582 case ICMP_NE: return ICMP_EQ;
2583 case ICMP_UGT: return ICMP_ULE;
2584 case ICMP_ULT: return ICMP_UGE;
2585 case ICMP_UGE: return ICMP_ULT;
2586 case ICMP_ULE: return ICMP_UGT;
2587 case ICMP_SGT: return ICMP_SLE;
2588 case ICMP_SLT: return ICMP_SGE;
2589 case ICMP_SGE: return ICMP_SLT;
2590 case ICMP_SLE: return ICMP_SGT;
2592 case FCMP_OEQ: return FCMP_UNE;
2593 case FCMP_ONE: return FCMP_UEQ;
2594 case FCMP_OGT: return FCMP_ULE;
2595 case FCMP_OLT: return FCMP_UGE;
2596 case FCMP_OGE: return FCMP_ULT;
2597 case FCMP_OLE: return FCMP_UGT;
2598 case FCMP_UEQ: return FCMP_ONE;
2599 case FCMP_UNE: return FCMP_OEQ;
2600 case FCMP_UGT: return FCMP_OLE;
2601 case FCMP_ULT: return FCMP_OGE;
2602 case FCMP_UGE: return FCMP_OLT;
2603 case FCMP_ULE: return FCMP_OGT;
2604 case FCMP_ORD: return FCMP_UNO;
2605 case FCMP_UNO: return FCMP_ORD;
2606 case FCMP_TRUE: return FCMP_FALSE;
2607 case FCMP_FALSE: return FCMP_TRUE;
2611 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2612 switch (pred) {
2613 default: assert(! "Unknown icmp predicate!");
2614 case ICMP_EQ: case ICMP_NE:
2615 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2616 return pred;
2617 case ICMP_UGT: return ICMP_SGT;
2618 case ICMP_ULT: return ICMP_SLT;
2619 case ICMP_UGE: return ICMP_SGE;
2620 case ICMP_ULE: return ICMP_SLE;
2624 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
2625 switch (pred) {
2626 default: assert(! "Unknown icmp predicate!");
2627 case ICMP_EQ: case ICMP_NE:
2628 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
2629 return pred;
2630 case ICMP_SGT: return ICMP_UGT;
2631 case ICMP_SLT: return ICMP_ULT;
2632 case ICMP_SGE: return ICMP_UGE;
2633 case ICMP_SLE: return ICMP_ULE;
2637 bool ICmpInst::isSignedPredicate(Predicate pred) {
2638 switch (pred) {
2639 default: assert(! "Unknown icmp predicate!");
2640 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2641 return true;
2642 case ICMP_EQ: case ICMP_NE: case ICMP_UGT: case ICMP_ULT:
2643 case ICMP_UGE: case ICMP_ULE:
2644 return false;
2648 /// Initialize a set of values that all satisfy the condition with C.
2650 ConstantRange
2651 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2652 APInt Lower(C);
2653 APInt Upper(C);
2654 uint32_t BitWidth = C.getBitWidth();
2655 switch (pred) {
2656 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
2657 case ICmpInst::ICMP_EQ: Upper++; break;
2658 case ICmpInst::ICMP_NE: Lower++; break;
2659 case ICmpInst::ICMP_ULT: Lower = APInt::getMinValue(BitWidth); break;
2660 case ICmpInst::ICMP_SLT: Lower = APInt::getSignedMinValue(BitWidth); break;
2661 case ICmpInst::ICMP_UGT:
2662 Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
2663 break;
2664 case ICmpInst::ICMP_SGT:
2665 Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
2666 break;
2667 case ICmpInst::ICMP_ULE:
2668 Lower = APInt::getMinValue(BitWidth); Upper++;
2669 break;
2670 case ICmpInst::ICMP_SLE:
2671 Lower = APInt::getSignedMinValue(BitWidth); Upper++;
2672 break;
2673 case ICmpInst::ICMP_UGE:
2674 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
2675 break;
2676 case ICmpInst::ICMP_SGE:
2677 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
2678 break;
2680 return ConstantRange(Lower, Upper);
2683 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
2684 switch (pred) {
2685 default: assert(!"Unknown cmp predicate!");
2686 case ICMP_EQ: case ICMP_NE:
2687 return pred;
2688 case ICMP_SGT: return ICMP_SLT;
2689 case ICMP_SLT: return ICMP_SGT;
2690 case ICMP_SGE: return ICMP_SLE;
2691 case ICMP_SLE: return ICMP_SGE;
2692 case ICMP_UGT: return ICMP_ULT;
2693 case ICMP_ULT: return ICMP_UGT;
2694 case ICMP_UGE: return ICMP_ULE;
2695 case ICMP_ULE: return ICMP_UGE;
2697 case FCMP_FALSE: case FCMP_TRUE:
2698 case FCMP_OEQ: case FCMP_ONE:
2699 case FCMP_UEQ: case FCMP_UNE:
2700 case FCMP_ORD: case FCMP_UNO:
2701 return pred;
2702 case FCMP_OGT: return FCMP_OLT;
2703 case FCMP_OLT: return FCMP_OGT;
2704 case FCMP_OGE: return FCMP_OLE;
2705 case FCMP_OLE: return FCMP_OGE;
2706 case FCMP_UGT: return FCMP_ULT;
2707 case FCMP_ULT: return FCMP_UGT;
2708 case FCMP_UGE: return FCMP_ULE;
2709 case FCMP_ULE: return FCMP_UGE;
2713 bool CmpInst::isUnsigned(unsigned short predicate) {
2714 switch (predicate) {
2715 default: return false;
2716 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
2717 case ICmpInst::ICMP_UGE: return true;
2721 bool CmpInst::isSigned(unsigned short predicate){
2722 switch (predicate) {
2723 default: return false;
2724 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
2725 case ICmpInst::ICMP_SGE: return true;
2729 bool CmpInst::isOrdered(unsigned short predicate) {
2730 switch (predicate) {
2731 default: return false;
2732 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
2733 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
2734 case FCmpInst::FCMP_ORD: return true;
2738 bool CmpInst::isUnordered(unsigned short predicate) {
2739 switch (predicate) {
2740 default: return false;
2741 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
2742 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
2743 case FCmpInst::FCMP_UNO: return true;
2747 //===----------------------------------------------------------------------===//
2748 // SwitchInst Implementation
2749 //===----------------------------------------------------------------------===//
2751 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
2752 assert(Value && Default);
2753 ReservedSpace = 2+NumCases*2;
2754 NumOperands = 2;
2755 OperandList = allocHungoffUses(ReservedSpace);
2757 OperandList[0] = Value;
2758 OperandList[1] = Default;
2761 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2762 /// switch on and a default destination. The number of additional cases can
2763 /// be specified here to make memory allocation more efficient. This
2764 /// constructor can also autoinsert before another instruction.
2765 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2766 Instruction *InsertBefore)
2767 : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertBefore) {
2768 init(Value, Default, NumCases);
2771 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2772 /// switch on and a default destination. The number of additional cases can
2773 /// be specified here to make memory allocation more efficient. This
2774 /// constructor also autoinserts at the end of the specified BasicBlock.
2775 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2776 BasicBlock *InsertAtEnd)
2777 : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertAtEnd) {
2778 init(Value, Default, NumCases);
2781 SwitchInst::SwitchInst(const SwitchInst &SI)
2782 : TerminatorInst(Type::VoidTy, Instruction::Switch,
2783 allocHungoffUses(SI.getNumOperands()), SI.getNumOperands()) {
2784 Use *OL = OperandList, *InOL = SI.OperandList;
2785 for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
2786 OL[i] = InOL[i];
2787 OL[i+1] = InOL[i+1];
2791 SwitchInst::~SwitchInst() {
2792 dropHungoffUses(OperandList);
2796 /// addCase - Add an entry to the switch instruction...
2798 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
2799 unsigned OpNo = NumOperands;
2800 if (OpNo+2 > ReservedSpace)
2801 resizeOperands(0); // Get more space!
2802 // Initialize some new operands.
2803 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
2804 NumOperands = OpNo+2;
2805 OperandList[OpNo] = OnVal;
2806 OperandList[OpNo+1] = Dest;
2809 /// removeCase - This method removes the specified successor from the switch
2810 /// instruction. Note that this cannot be used to remove the default
2811 /// destination (successor #0).
2813 void SwitchInst::removeCase(unsigned idx) {
2814 assert(idx != 0 && "Cannot remove the default case!");
2815 assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
2817 unsigned NumOps = getNumOperands();
2818 Use *OL = OperandList;
2820 // Move everything after this operand down.
2822 // FIXME: we could just swap with the end of the list, then erase. However,
2823 // client might not expect this to happen. The code as it is thrashes the
2824 // use/def lists, which is kinda lame.
2825 for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
2826 OL[i-2] = OL[i];
2827 OL[i-2+1] = OL[i+1];
2830 // Nuke the last value.
2831 OL[NumOps-2].set(0);
2832 OL[NumOps-2+1].set(0);
2833 NumOperands = NumOps-2;
2836 /// resizeOperands - resize operands - This adjusts the length of the operands
2837 /// list according to the following behavior:
2838 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
2839 /// of operation. This grows the number of ops by 3 times.
2840 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
2841 /// 3. If NumOps == NumOperands, trim the reserved space.
2843 void SwitchInst::resizeOperands(unsigned NumOps) {
2844 unsigned e = getNumOperands();
2845 if (NumOps == 0) {
2846 NumOps = e*3;
2847 } else if (NumOps*2 > NumOperands) {
2848 // No resize needed.
2849 if (ReservedSpace >= NumOps) return;
2850 } else if (NumOps == NumOperands) {
2851 if (ReservedSpace == NumOps) return;
2852 } else {
2853 return;
2856 ReservedSpace = NumOps;
2857 Use *NewOps = allocHungoffUses(NumOps);
2858 Use *OldOps = OperandList;
2859 for (unsigned i = 0; i != e; ++i) {
2860 NewOps[i] = OldOps[i];
2862 OperandList = NewOps;
2863 if (OldOps) Use::zap(OldOps, OldOps + e, true);
2867 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
2868 return getSuccessor(idx);
2870 unsigned SwitchInst::getNumSuccessorsV() const {
2871 return getNumSuccessors();
2873 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
2874 setSuccessor(idx, B);
2877 // Define these methods here so vtables don't get emitted into every translation
2878 // unit that uses these classes.
2880 GetElementPtrInst *GetElementPtrInst::clone(LLVMContext&) const {
2881 return new(getNumOperands()) GetElementPtrInst(*this);
2884 BinaryOperator *BinaryOperator::clone(LLVMContext&) const {
2885 return Create(getOpcode(), Op<0>(), Op<1>());
2888 FCmpInst* FCmpInst::clone(LLVMContext &Context) const {
2889 return new FCmpInst(Context, getPredicate(), Op<0>(), Op<1>());
2891 ICmpInst* ICmpInst::clone(LLVMContext &Context) const {
2892 return new ICmpInst(Context, getPredicate(), Op<0>(), Op<1>());
2895 ExtractValueInst *ExtractValueInst::clone(LLVMContext&) const {
2896 return new ExtractValueInst(*this);
2898 InsertValueInst *InsertValueInst::clone(LLVMContext&) const {
2899 return new InsertValueInst(*this);
2902 MallocInst *MallocInst::clone(LLVMContext&) const {
2903 return new MallocInst(*this);
2906 AllocaInst *AllocaInst::clone(LLVMContext&) const {
2907 return new AllocaInst(*this);
2910 FreeInst *FreeInst::clone(LLVMContext&) const {
2911 return new FreeInst(getOperand(0));
2914 LoadInst *LoadInst::clone(LLVMContext&) const {
2915 return new LoadInst(*this);
2918 StoreInst *StoreInst::clone(LLVMContext&) const {
2919 return new StoreInst(*this);
2922 CastInst *TruncInst::clone(LLVMContext&) const {
2923 return new TruncInst(*this);
2926 CastInst *ZExtInst::clone(LLVMContext&) const {
2927 return new ZExtInst(*this);
2930 CastInst *SExtInst::clone(LLVMContext&) const {
2931 return new SExtInst(*this);
2934 CastInst *FPTruncInst::clone(LLVMContext&) const {
2935 return new FPTruncInst(*this);
2938 CastInst *FPExtInst::clone(LLVMContext&) const {
2939 return new FPExtInst(*this);
2942 CastInst *UIToFPInst::clone(LLVMContext&) const {
2943 return new UIToFPInst(*this);
2946 CastInst *SIToFPInst::clone(LLVMContext&) const {
2947 return new SIToFPInst(*this);
2950 CastInst *FPToUIInst::clone(LLVMContext&) const {
2951 return new FPToUIInst(*this);
2954 CastInst *FPToSIInst::clone(LLVMContext&) const {
2955 return new FPToSIInst(*this);
2958 CastInst *PtrToIntInst::clone(LLVMContext&) const {
2959 return new PtrToIntInst(*this);
2962 CastInst *IntToPtrInst::clone(LLVMContext&) const {
2963 return new IntToPtrInst(*this);
2966 CastInst *BitCastInst::clone(LLVMContext&) const {
2967 return new BitCastInst(*this);
2970 CallInst *CallInst::clone(LLVMContext&) const {
2971 return new(getNumOperands()) CallInst(*this);
2974 SelectInst *SelectInst::clone(LLVMContext&) const {
2975 return new(getNumOperands()) SelectInst(*this);
2978 VAArgInst *VAArgInst::clone(LLVMContext&) const {
2979 return new VAArgInst(*this);
2982 ExtractElementInst *ExtractElementInst::clone(LLVMContext&) const {
2983 return ExtractElementInst::Create(*this);
2986 InsertElementInst *InsertElementInst::clone(LLVMContext&) const {
2987 return InsertElementInst::Create(*this);
2990 ShuffleVectorInst *ShuffleVectorInst::clone(LLVMContext&) const {
2991 return new ShuffleVectorInst(*this);
2994 PHINode *PHINode::clone(LLVMContext&) const {
2995 return new PHINode(*this);
2998 ReturnInst *ReturnInst::clone(LLVMContext&) const {
2999 return new(getNumOperands()) ReturnInst(*this);
3002 BranchInst *BranchInst::clone(LLVMContext&) const {
3003 unsigned Ops(getNumOperands());
3004 return new(Ops, Ops == 1) BranchInst(*this);
3007 SwitchInst *SwitchInst::clone(LLVMContext&) const {
3008 return new SwitchInst(*this);
3011 InvokeInst *InvokeInst::clone(LLVMContext&) const {
3012 return new(getNumOperands()) InvokeInst(*this);
3015 UnwindInst *UnwindInst::clone(LLVMContext&) const {
3016 return new UnwindInst();
3019 UnreachableInst *UnreachableInst::clone(LLVMContext&) const {
3020 return new UnreachableInst();