1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11 // register allocator for LLVM. This allocator works by constructing a PBQP
12 // problem representing the register allocation problem under consideration,
13 // solving this using a PBQP solver, and mapping the solution back to a
14 // register assignment. If any variables are selected for spilling then spill
15 // code is inserted and the process repeated.
17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18 // for register allocation. For more information on PBQP for register
19 // allocation, see the following papers:
21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26 // architectures. In Proceedings of the Joint Conference on Languages,
27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
30 //===----------------------------------------------------------------------===//
32 #define DEBUG_TYPE "regalloc"
34 #include "PBQP/HeuristicSolver.h"
35 #include "PBQP/SimpleGraph.h"
36 #include "PBQP/Heuristics/Briggs.h"
37 #include "VirtRegMap.h"
38 #include "VirtRegRewriter.h"
39 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
40 #include "llvm/CodeGen/LiveStackAnalysis.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineLoopInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/RegAllocRegistry.h"
45 #include "llvm/CodeGen/RegisterCoalescer.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetInstrInfo.h"
49 #include "llvm/Target/TargetMachine.h"
58 static RegisterRegAlloc
59 registerPBQPRepAlloc("pbqp", "PBQP register allocator.",
60 llvm::createPBQPRegisterAllocator
);
65 /// PBQP based allocators solve the register allocation problem by mapping
66 /// register allocation problems to Partitioned Boolean Quadratic
67 /// Programming problems.
68 class VISIBILITY_HIDDEN PBQPRegAlloc
: public MachineFunctionPass
{
73 /// Construct a PBQP register allocator.
74 PBQPRegAlloc() : MachineFunctionPass(&ID
) {}
76 /// Return the pass name.
77 virtual const char* getPassName() const {
78 return "PBQP Register Allocator";
81 /// PBQP analysis usage.
82 virtual void getAnalysisUsage(AnalysisUsage
&au
) const {
83 au
.addRequired
<LiveIntervals
>();
84 //au.addRequiredID(SplitCriticalEdgesID);
85 au
.addRequired
<RegisterCoalescer
>();
86 au
.addRequired
<LiveStacks
>();
87 au
.addPreserved
<LiveStacks
>();
88 au
.addRequired
<MachineLoopInfo
>();
89 au
.addPreserved
<MachineLoopInfo
>();
90 au
.addRequired
<VirtRegMap
>();
91 MachineFunctionPass::getAnalysisUsage(au
);
94 /// Perform register allocation
95 virtual bool runOnMachineFunction(MachineFunction
&MF
);
98 typedef std::map
<const LiveInterval
*, unsigned> LI2NodeMap
;
99 typedef std::vector
<const LiveInterval
*> Node2LIMap
;
100 typedef std::vector
<unsigned> AllowedSet
;
101 typedef std::vector
<AllowedSet
> AllowedSetMap
;
102 typedef std::set
<unsigned> RegSet
;
103 typedef std::pair
<unsigned, unsigned> RegPair
;
104 typedef std::map
<RegPair
, PBQP::PBQPNum
> CoalesceMap
;
106 typedef std::set
<LiveInterval
*> LiveIntervalSet
;
109 const TargetMachine
*tm
;
110 const TargetRegisterInfo
*tri
;
111 const TargetInstrInfo
*tii
;
112 const MachineLoopInfo
*loopInfo
;
113 MachineRegisterInfo
*mri
;
121 AllowedSetMap allowedSets
;
122 LiveIntervalSet vregIntervalsToAlloc
,
126 /// Builds a PBQP cost vector.
127 template <typename RegContainer
>
128 PBQP::Vector
buildCostVector(unsigned vReg
,
129 const RegContainer
&allowed
,
130 const CoalesceMap
&cealesces
,
131 PBQP::PBQPNum spillCost
) const;
133 /// \brief Builds a PBQP interference matrix.
135 /// @return Either a pointer to a non-zero PBQP matrix representing the
136 /// allocation option costs, or a null pointer for a zero matrix.
138 /// Expects allowed sets for two interfering LiveIntervals. These allowed
139 /// sets should contain only allocable registers from the LiveInterval's
140 /// register class, with any interfering pre-colored registers removed.
141 template <typename RegContainer
>
142 PBQP::Matrix
* buildInterferenceMatrix(const RegContainer
&allowed1
,
143 const RegContainer
&allowed2
) const;
146 /// Expects allowed sets for two potentially coalescable LiveIntervals,
147 /// and an estimated benefit due to coalescing. The allowed sets should
148 /// contain only allocable registers from the LiveInterval's register
149 /// classes, with any interfering pre-colored registers removed.
150 template <typename RegContainer
>
151 PBQP::Matrix
* buildCoalescingMatrix(const RegContainer
&allowed1
,
152 const RegContainer
&allowed2
,
153 PBQP::PBQPNum cBenefit
) const;
155 /// \brief Finds coalescing opportunities and returns them as a map.
157 /// Any entries in the map are guaranteed coalescable, even if their
158 /// corresponding live intervals overlap.
159 CoalesceMap
findCoalesces();
161 /// \brief Finds the initial set of vreg intervals to allocate.
162 void findVRegIntervalsToAlloc();
164 /// \brief Constructs a PBQP problem representation of the register
165 /// allocation problem for this function.
167 /// @return a PBQP solver object for the register allocation problem.
168 PBQP::SimpleGraph
constructPBQPProblem();
170 /// \brief Adds a stack interval if the given live interval has been
171 /// spilled. Used to support stack slot coloring.
172 void addStackInterval(const LiveInterval
*spilled
,MachineRegisterInfo
* mri
);
174 /// \brief Given a solved PBQP problem maps this solution back to a register
176 bool mapPBQPToRegAlloc(const PBQP::Solution
&solution
);
178 /// \brief Postprocessing before final spilling. Sets basic block "live in"
180 void finalizeAlloc() const;
184 char PBQPRegAlloc::ID
= 0;
188 template <typename RegContainer
>
189 PBQP::Vector
PBQPRegAlloc::buildCostVector(unsigned vReg
,
190 const RegContainer
&allowed
,
191 const CoalesceMap
&coalesces
,
192 PBQP::PBQPNum spillCost
) const {
194 typedef typename
RegContainer::const_iterator AllowedItr
;
196 // Allocate vector. Additional element (0th) used for spill option
197 PBQP::Vector
v(allowed
.size() + 1, 0);
201 // Iterate over the allowed registers inserting coalesce benefits if there
204 for (AllowedItr itr
= allowed
.begin(), end
= allowed
.end();
205 itr
!= end
; ++itr
, ++ai
) {
207 unsigned pReg
= *itr
;
209 CoalesceMap::const_iterator cmItr
=
210 coalesces
.find(RegPair(vReg
, pReg
));
212 // No coalesce - on to the next preg.
213 if (cmItr
== coalesces
.end())
216 // We have a coalesce - insert the benefit.
217 v
[ai
+ 1] = -cmItr
->second
;
223 template <typename RegContainer
>
224 PBQP::Matrix
* PBQPRegAlloc::buildInterferenceMatrix(
225 const RegContainer
&allowed1
, const RegContainer
&allowed2
) const {
227 typedef typename
RegContainer::const_iterator RegContainerIterator
;
229 // Construct a PBQP matrix representing the cost of allocation options. The
230 // rows and columns correspond to the allocation options for the two live
231 // intervals. Elements will be infinite where corresponding registers alias,
232 // since we cannot allocate aliasing registers to interfering live intervals.
233 // All other elements (non-aliasing combinations) will have zero cost. Note
234 // that the spill option (element 0,0) has zero cost, since we can allocate
235 // both intervals to memory safely (the cost for each individual allocation
236 // to memory is accounted for by the cost vectors for each live interval).
238 new PBQP::Matrix(allowed1
.size() + 1, allowed2
.size() + 1, 0);
240 // Assume this is a zero matrix until proven otherwise. Zero matrices occur
241 // between interfering live ranges with non-overlapping register sets (e.g.
242 // non-overlapping reg classes, or disjoint sets of allowed regs within the
243 // same class). The term "overlapping" is used advisedly: sets which do not
244 // intersect, but contain registers which alias, will have non-zero matrices.
245 // We optimize zero matrices away to improve solver speed.
246 bool isZeroMatrix
= true;
249 // Row index. Starts at 1, since the 0th row is for the spill option, which
253 // Iterate over allowed sets, insert infinities where required.
254 for (RegContainerIterator a1Itr
= allowed1
.begin(), a1End
= allowed1
.end();
255 a1Itr
!= a1End
; ++a1Itr
) {
257 // Column index, starts at 1 as for row index.
259 unsigned reg1
= *a1Itr
;
261 for (RegContainerIterator a2Itr
= allowed2
.begin(), a2End
= allowed2
.end();
262 a2Itr
!= a2End
; ++a2Itr
) {
264 unsigned reg2
= *a2Itr
;
266 // If the row/column regs are identical or alias insert an infinity.
267 if ((reg1
== reg2
) || tri
->areAliases(reg1
, reg2
)) {
268 (*m
)[ri
][ci
] = std::numeric_limits
<PBQP::PBQPNum
>::infinity();
269 isZeroMatrix
= false;
278 // If this turns out to be a zero matrix...
280 // free it and return null.
285 // ...otherwise return the cost matrix.
289 template <typename RegContainer
>
290 PBQP::Matrix
* PBQPRegAlloc::buildCoalescingMatrix(
291 const RegContainer
&allowed1
, const RegContainer
&allowed2
,
292 PBQP::PBQPNum cBenefit
) const {
294 typedef typename
RegContainer::const_iterator RegContainerIterator
;
296 // Construct a PBQP Matrix representing the benefits of coalescing. As with
297 // interference matrices the rows and columns represent allowed registers
298 // for the LiveIntervals which are (potentially) to be coalesced. The amount
299 // -cBenefit will be placed in any element representing the same register
300 // for both intervals.
302 new PBQP::Matrix(allowed1
.size() + 1, allowed2
.size() + 1, 0);
304 // Reset costs to zero.
307 // Assume the matrix is zero till proven otherwise. Zero matrices will be
308 // optimized away as in the interference case.
309 bool isZeroMatrix
= true;
311 // Row index. Starts at 1, since the 0th row is for the spill option, which
315 // Iterate over the allowed sets, insert coalescing benefits where
317 for (RegContainerIterator a1Itr
= allowed1
.begin(), a1End
= allowed1
.end();
318 a1Itr
!= a1End
; ++a1Itr
) {
320 // Column index, starts at 1 as for row index.
322 unsigned reg1
= *a1Itr
;
324 for (RegContainerIterator a2Itr
= allowed2
.begin(), a2End
= allowed2
.end();
325 a2Itr
!= a2End
; ++a2Itr
) {
327 // If the row and column represent the same register insert a beneficial
328 // cost to preference this allocation - it would allow us to eliminate a
330 if (reg1
== *a2Itr
) {
331 (*m
)[ri
][ci
] = -cBenefit
;
332 isZeroMatrix
= false;
341 // If this turns out to be a zero matrix...
343 // ...free it and return null.
351 PBQPRegAlloc::CoalesceMap
PBQPRegAlloc::findCoalesces() {
353 typedef MachineFunction::const_iterator MFIterator
;
354 typedef MachineBasicBlock::const_iterator MBBIterator
;
355 typedef LiveInterval::const_vni_iterator VNIIterator
;
357 CoalesceMap coalescesFound
;
359 // To find coalesces we need to iterate over the function looking for
360 // copy instructions.
361 for (MFIterator bbItr
= mf
->begin(), bbEnd
= mf
->end();
362 bbItr
!= bbEnd
; ++bbItr
) {
364 const MachineBasicBlock
*mbb
= &*bbItr
;
366 for (MBBIterator iItr
= mbb
->begin(), iEnd
= mbb
->end();
367 iItr
!= iEnd
; ++iItr
) {
369 const MachineInstr
*instr
= &*iItr
;
370 unsigned srcReg
, dstReg
, srcSubReg
, dstSubReg
;
372 // If this isn't a copy then continue to the next instruction.
373 if (!tii
->isMoveInstr(*instr
, srcReg
, dstReg
, srcSubReg
, dstSubReg
))
376 // If the registers are already the same our job is nice and easy.
377 if (dstReg
== srcReg
)
380 bool srcRegIsPhysical
= TargetRegisterInfo::isPhysicalRegister(srcReg
),
381 dstRegIsPhysical
= TargetRegisterInfo::isPhysicalRegister(dstReg
);
383 // If both registers are physical then we can't coalesce.
384 if (srcRegIsPhysical
&& dstRegIsPhysical
)
387 // If it's a copy that includes a virtual register but the source and
388 // destination classes differ then we can't coalesce, so continue with
389 // the next instruction.
390 const TargetRegisterClass
*srcRegClass
= srcRegIsPhysical
?
391 tri
->getPhysicalRegisterRegClass(srcReg
) : mri
->getRegClass(srcReg
);
393 const TargetRegisterClass
*dstRegClass
= dstRegIsPhysical
?
394 tri
->getPhysicalRegisterRegClass(dstReg
) : mri
->getRegClass(dstReg
);
396 if (srcRegClass
!= dstRegClass
)
399 // We also need any physical regs to be allocable, coalescing with
400 // a non-allocable register is invalid.
401 if (srcRegIsPhysical
) {
402 if (std::find(srcRegClass
->allocation_order_begin(*mf
),
403 srcRegClass
->allocation_order_end(*mf
), srcReg
) ==
404 srcRegClass
->allocation_order_end(*mf
))
408 if (dstRegIsPhysical
) {
409 if (std::find(dstRegClass
->allocation_order_begin(*mf
),
410 dstRegClass
->allocation_order_end(*mf
), dstReg
) ==
411 dstRegClass
->allocation_order_end(*mf
))
415 // If we've made it here we have a copy with compatible register classes.
416 // We can probably coalesce, but we need to consider overlap.
417 const LiveInterval
*srcLI
= &lis
->getInterval(srcReg
),
418 *dstLI
= &lis
->getInterval(dstReg
);
420 if (srcLI
->overlaps(*dstLI
)) {
421 // Even in the case of an overlap we might still be able to coalesce,
422 // but we need to make sure that no definition of either range occurs
423 // while the other range is live.
425 // Otherwise start by assuming we're ok.
428 // Test all defs of the source range.
430 vniItr
= srcLI
->vni_begin(), vniEnd
= srcLI
->vni_end();
431 vniItr
!= vniEnd
; ++vniItr
) {
433 // If we find a def that kills the coalescing opportunity then
434 // record it and break from the loop.
435 if (dstLI
->liveAt((*vniItr
)->def
)) {
441 // If we have a bad def give up, continue to the next instruction.
445 // Otherwise test definitions of the destination range.
447 vniItr
= dstLI
->vni_begin(), vniEnd
= dstLI
->vni_end();
448 vniItr
!= vniEnd
; ++vniItr
) {
450 // We want to make sure we skip the copy instruction itself.
451 if ((*vniItr
)->getCopy() == instr
)
454 if (srcLI
->liveAt((*vniItr
)->def
)) {
460 // As before a bad def we give up and continue to the next instr.
465 // If we make it to here then either the ranges didn't overlap, or they
466 // did, but none of their definitions would prevent us from coalescing.
467 // We're good to go with the coalesce.
469 float cBenefit
= powf(10.0f
, loopInfo
->getLoopDepth(mbb
)) / 5.0;
471 coalescesFound
[RegPair(srcReg
, dstReg
)] = cBenefit
;
472 coalescesFound
[RegPair(dstReg
, srcReg
)] = cBenefit
;
477 return coalescesFound
;
480 void PBQPRegAlloc::findVRegIntervalsToAlloc() {
482 // Iterate over all live ranges.
483 for (LiveIntervals::iterator itr
= lis
->begin(), end
= lis
->end();
486 // Ignore physical ones.
487 if (TargetRegisterInfo::isPhysicalRegister(itr
->first
))
490 LiveInterval
*li
= itr
->second
;
492 // If this live interval is non-empty we will use pbqp to allocate it.
493 // Empty intervals we allocate in a simple post-processing stage in
496 vregIntervalsToAlloc
.insert(li
);
499 emptyVRegIntervals
.insert(li
);
504 PBQP::SimpleGraph
PBQPRegAlloc::constructPBQPProblem() {
506 typedef std::vector
<const LiveInterval
*> LIVector
;
507 typedef std::vector
<unsigned> RegVector
;
508 typedef std::vector
<PBQP::SimpleGraph::NodeIterator
> NodeVector
;
510 // This will store the physical intervals for easy reference.
511 LIVector physIntervals
;
513 // Start by clearing the old node <-> live interval mappings & allowed sets
518 // Populate physIntervals, update preg use:
519 for (LiveIntervals::iterator itr
= lis
->begin(), end
= lis
->end();
522 if (TargetRegisterInfo::isPhysicalRegister(itr
->first
)) {
523 physIntervals
.push_back(itr
->second
);
524 mri
->setPhysRegUsed(itr
->second
->reg
);
528 // Iterate over vreg intervals, construct live interval <-> node number
530 for (LiveIntervalSet::const_iterator
531 itr
= vregIntervalsToAlloc
.begin(), end
= vregIntervalsToAlloc
.end();
533 const LiveInterval
*li
= *itr
;
535 li2Node
[li
] = node2LI
.size();
536 node2LI
.push_back(li
);
539 // Get the set of potential coalesces.
540 CoalesceMap coalesces
;//(findCoalesces());
542 // Construct a PBQP solver for this problem
543 PBQP::SimpleGraph problem
;
544 NodeVector
problemNodes(vregIntervalsToAlloc
.size());
546 // Resize allowedSets container appropriately.
547 allowedSets
.resize(vregIntervalsToAlloc
.size());
549 // Iterate over virtual register intervals to compute allowed sets...
550 for (unsigned node
= 0; node
< node2LI
.size(); ++node
) {
552 // Grab pointers to the interval and its register class.
553 const LiveInterval
*li
= node2LI
[node
];
554 const TargetRegisterClass
*liRC
= mri
->getRegClass(li
->reg
);
556 // Start by assuming all allocable registers in the class are allowed...
557 RegVector
liAllowed(liRC
->allocation_order_begin(*mf
),
558 liRC
->allocation_order_end(*mf
));
560 // Eliminate the physical registers which overlap with this range, along
561 // with all their aliases.
562 for (LIVector::iterator pItr
= physIntervals
.begin(),
563 pEnd
= physIntervals
.end(); pItr
!= pEnd
; ++pItr
) {
565 if (!li
->overlaps(**pItr
))
568 unsigned pReg
= (*pItr
)->reg
;
570 // If we get here then the live intervals overlap, but we're still ok
571 // if they're coalescable.
572 if (coalesces
.find(RegPair(li
->reg
, pReg
)) != coalesces
.end())
575 // If we get here then we have a genuine exclusion.
577 // Remove the overlapping reg...
578 RegVector::iterator eraseItr
=
579 std::find(liAllowed
.begin(), liAllowed
.end(), pReg
);
581 if (eraseItr
!= liAllowed
.end())
582 liAllowed
.erase(eraseItr
);
584 const unsigned *aliasItr
= tri
->getAliasSet(pReg
);
587 // ...and its aliases.
588 for (; *aliasItr
!= 0; ++aliasItr
) {
589 RegVector::iterator eraseItr
=
590 std::find(liAllowed
.begin(), liAllowed
.end(), *aliasItr
);
592 if (eraseItr
!= liAllowed
.end()) {
593 liAllowed
.erase(eraseItr
);
599 // Copy the allowed set into a member vector for use when constructing cost
600 // vectors & matrices, and mapping PBQP solutions back to assignments.
601 allowedSets
[node
] = AllowedSet(liAllowed
.begin(), liAllowed
.end());
603 // Set the spill cost to the interval weight, or epsilon if the
604 // interval weight is zero
605 PBQP::PBQPNum spillCost
= (li
->weight
!= 0.0) ?
606 li
->weight
: std::numeric_limits
<PBQP::PBQPNum
>::min();
608 // Build a cost vector for this interval.
611 buildCostVector(li
->reg
, allowedSets
[node
], coalesces
, spillCost
));
616 // Now add the cost matrices...
617 for (unsigned node1
= 0; node1
< node2LI
.size(); ++node1
) {
618 const LiveInterval
*li
= node2LI
[node1
];
620 // Test for live range overlaps and insert interference matrices.
621 for (unsigned node2
= node1
+ 1; node2
< node2LI
.size(); ++node2
) {
622 const LiveInterval
*li2
= node2LI
[node2
];
624 CoalesceMap::const_iterator cmItr
=
625 coalesces
.find(RegPair(li
->reg
, li2
->reg
));
629 if (cmItr
!= coalesces
.end()) {
630 m
= buildCoalescingMatrix(allowedSets
[node1
], allowedSets
[node2
],
633 else if (li
->overlaps(*li2
)) {
634 m
= buildInterferenceMatrix(allowedSets
[node1
], allowedSets
[node2
]);
638 problem
.addEdge(problemNodes
[node1
],
647 problem
.assignNodeIDs();
649 assert(problem
.getNumNodes() == allowedSets
.size());
650 for (unsigned i
= 0; i
< allowedSets
.size(); ++i
) {
651 assert(problem
.getNodeItr(i
) == problemNodes
[i
]);
654 std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
655 << problem.getNumEdges() << " edges.\n";
657 problem.printDot(std::cerr);
659 // We're done, PBQP problem constructed - return it.
663 void PBQPRegAlloc::addStackInterval(const LiveInterval
*spilled
,
664 MachineRegisterInfo
* mri
) {
665 int stackSlot
= vrm
->getStackSlot(spilled
->reg
);
667 if (stackSlot
== VirtRegMap::NO_STACK_SLOT
)
670 const TargetRegisterClass
*RC
= mri
->getRegClass(spilled
->reg
);
671 LiveInterval
&stackInterval
= lss
->getOrCreateInterval(stackSlot
, RC
);
674 if (stackInterval
.getNumValNums() != 0)
675 vni
= stackInterval
.getValNumInfo(0);
677 vni
= stackInterval
.getNextValue(0, 0, false, lss
->getVNInfoAllocator());
679 LiveInterval
&rhsInterval
= lis
->getInterval(spilled
->reg
);
680 stackInterval
.MergeRangesInAsValue(rhsInterval
, vni
);
683 bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution
&solution
) {
685 static unsigned round
= 0;
688 // Set to true if we have any spills
689 bool anotherRoundNeeded
= false;
691 // Clear the existing allocation.
694 // Iterate over the nodes mapping the PBQP solution to a register assignment.
695 for (unsigned node
= 0; node
< node2LI
.size(); ++node
) {
696 unsigned virtReg
= node2LI
[node
]->reg
,
697 allocSelection
= solution
.getSelection(node
);
700 // If the PBQP solution is non-zero it's a physical register...
701 if (allocSelection
!= 0) {
702 // Get the physical reg, subtracting 1 to account for the spill option.
703 unsigned physReg
= allowedSets
[node
][allocSelection
- 1];
705 DOUT
<< "VREG " << virtReg
<< " -> " << tri
->getName(physReg
) << "\n";
707 assert(physReg
!= 0);
709 // Add to the virt reg map and update the used phys regs.
710 vrm
->assignVirt2Phys(virtReg
, physReg
);
712 // ...Otherwise it's a spill.
715 // Make sure we ignore this virtual reg on the next round
717 vregIntervalsToAlloc
.erase(&lis
->getInterval(virtReg
));
719 // Insert spill ranges for this live range
720 const LiveInterval
*spillInterval
= node2LI
[node
];
721 double oldSpillWeight
= spillInterval
->weight
;
722 SmallVector
<LiveInterval
*, 8> spillIs
;
723 std::vector
<LiveInterval
*> newSpills
=
724 lis
->addIntervalsForSpills(*spillInterval
, spillIs
, loopInfo
, *vrm
);
725 addStackInterval(spillInterval
, mri
);
727 DOUT
<< "VREG " << virtReg
<< " -> SPILLED (Cost: "
728 << oldSpillWeight
<< ", New vregs: ";
730 // Copy any newly inserted live intervals into the list of regs to
732 for (std::vector
<LiveInterval
*>::const_iterator
733 itr
= newSpills
.begin(), end
= newSpills
.end();
736 assert(!(*itr
)->empty() && "Empty spill range.");
738 DOUT
<< (*itr
)->reg
<< " ";
740 vregIntervalsToAlloc
.insert(*itr
);
745 // We need another round if spill intervals were added.
746 anotherRoundNeeded
|= !newSpills
.empty();
750 return !anotherRoundNeeded
;
753 void PBQPRegAlloc::finalizeAlloc() const {
754 typedef LiveIntervals::iterator LIIterator
;
755 typedef LiveInterval::Ranges::const_iterator LRIterator
;
757 // First allocate registers for the empty intervals.
758 for (LiveIntervalSet::const_iterator
759 itr
= emptyVRegIntervals
.begin(), end
= emptyVRegIntervals
.end();
761 LiveInterval
*li
= *itr
;
763 unsigned physReg
= vrm
->getRegAllocPref(li
->reg
);
766 const TargetRegisterClass
*liRC
= mri
->getRegClass(li
->reg
);
767 physReg
= *liRC
->allocation_order_begin(*mf
);
770 vrm
->assignVirt2Phys(li
->reg
, physReg
);
773 // Finally iterate over the basic blocks to compute and set the live-in sets.
774 SmallVector
<MachineBasicBlock
*, 8> liveInMBBs
;
775 MachineBasicBlock
*entryMBB
= &*mf
->begin();
777 for (LIIterator liItr
= lis
->begin(), liEnd
= lis
->end();
778 liItr
!= liEnd
; ++liItr
) {
780 const LiveInterval
*li
= liItr
->second
;
783 // Get the physical register for this interval
784 if (TargetRegisterInfo::isPhysicalRegister(li
->reg
)) {
787 else if (vrm
->isAssignedReg(li
->reg
)) {
788 reg
= vrm
->getPhys(li
->reg
);
791 // Ranges which are assigned a stack slot only are ignored.
796 // Filter out zero regs - they're for intervals that were spilled.
800 // Iterate over the ranges of the current interval...
801 for (LRIterator lrItr
= li
->begin(), lrEnd
= li
->end();
802 lrItr
!= lrEnd
; ++lrItr
) {
804 // Find the set of basic blocks which this range is live into...
805 if (lis
->findLiveInMBBs(lrItr
->start
, lrItr
->end
, liveInMBBs
)) {
806 // And add the physreg for this interval to their live-in sets.
807 for (unsigned i
= 0; i
< liveInMBBs
.size(); ++i
) {
808 if (liveInMBBs
[i
] != entryMBB
) {
809 if (!liveInMBBs
[i
]->isLiveIn(reg
)) {
810 liveInMBBs
[i
]->addLiveIn(reg
);
821 bool PBQPRegAlloc::runOnMachineFunction(MachineFunction
&MF
) {
824 tm
= &mf
->getTarget();
825 tri
= tm
->getRegisterInfo();
826 tii
= tm
->getInstrInfo();
827 mri
= &mf
->getRegInfo();
829 lis
= &getAnalysis
<LiveIntervals
>();
830 lss
= &getAnalysis
<LiveStacks
>();
831 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
833 vrm
= &getAnalysis
<VirtRegMap
>();
835 DEBUG(errs() << "PBQP2 Register Allocating for " << mf
->getFunction()->getName() << "\n");
837 // Allocator main loop:
839 // * Map current regalloc problem to a PBQP problem
840 // * Solve the PBQP problem
841 // * Map the solution back to a register allocation
842 // * Spill if necessary
844 // This process is continued till no more spills are generated.
846 // Find the vreg intervals in need of allocation.
847 findVRegIntervalsToAlloc();
849 // If there aren't any then we're done here.
850 if (vregIntervalsToAlloc
.empty() && emptyVRegIntervals
.empty())
853 // If there are non-empty intervals allocate them using pbqp.
854 if (!vregIntervalsToAlloc
.empty()) {
856 bool pbqpAllocComplete
= false;
859 while (!pbqpAllocComplete
) {
860 DEBUG(errs() << " PBQP Regalloc round " << round
<< ":\n");
862 PBQP::SimpleGraph problem
= constructPBQPProblem();
863 PBQP::HeuristicSolver
<PBQP::Heuristics::Briggs
> solver
;
864 problem
.assignNodeIDs();
865 PBQP::Solution solution
= solver
.solve(problem
);
867 std::cerr << "Solution:\n";
868 for (unsigned i = 0; i < solution.numNodes(); ++i) {
869 std::cerr << " " << i << " -> " << solution.getSelection(i) << "\n";
872 pbqpAllocComplete
= mapPBQPToRegAlloc(solution
);
878 // Finalise allocation, allocate empty ranges.
881 vregIntervalsToAlloc
.clear();
882 emptyVRegIntervals
.clear();
887 DEBUG(errs() << "Post alloc VirtRegMap:\n" << *vrm
<< "\n");
890 std::auto_ptr
<VirtRegRewriter
> rewriter(createVirtRegRewriter());
892 rewriter
->runOnMachineFunction(*mf
, *vrm
, lis
);
897 FunctionPass
* llvm::createPBQPRegisterAllocator() {
898 return new PBQPRegAlloc();