Indentation change.
[llvm/avr.git] / lib / CodeGen / SimpleRegisterCoalescing.cpp
blob2deece2481eeed67ff6ecd9e0ffdf0d6331222b5
1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/Value.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterCoalescer.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include <algorithm>
37 #include <cmath>
38 using namespace llvm;
40 STATISTIC(numJoins , "Number of interval joins performed");
41 STATISTIC(numCrossRCs , "Number of cross class joins performed");
42 STATISTIC(numCommutes , "Number of instruction commuting performed");
43 STATISTIC(numExtends , "Number of copies extended");
44 STATISTIC(NumReMats , "Number of instructions re-materialized");
45 STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
46 STATISTIC(numAborts , "Number of times interval joining aborted");
47 STATISTIC(numDeadValNo, "Number of valno def marked dead");
49 char SimpleRegisterCoalescing::ID = 0;
50 static cl::opt<bool>
51 EnableJoining("join-liveintervals",
52 cl::desc("Coalesce copies (default=true)"),
53 cl::init(true));
55 static cl::opt<bool>
56 NewHeuristic("new-coalescer-heuristic",
57 cl::desc("Use new coalescer heuristic"),
58 cl::init(false), cl::Hidden);
60 static cl::opt<bool>
61 DisableCrossClassJoin("disable-cross-class-join",
62 cl::desc("Avoid coalescing cross register class copies"),
63 cl::init(false), cl::Hidden);
65 static cl::opt<bool>
66 PhysJoinTweak("tweak-phys-join-heuristics",
67 cl::desc("Tweak heuristics for joining phys reg with vr"),
68 cl::init(false), cl::Hidden);
70 static RegisterPass<SimpleRegisterCoalescing>
71 X("simple-register-coalescing", "Simple Register Coalescing");
73 // Declare that we implement the RegisterCoalescer interface
74 static RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
76 const PassInfo *const llvm::SimpleRegisterCoalescingID = &X;
78 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
79 AU.setPreservesCFG();
80 AU.addRequired<LiveIntervals>();
81 AU.addPreserved<LiveIntervals>();
82 AU.addRequired<MachineLoopInfo>();
83 AU.addPreserved<MachineLoopInfo>();
84 AU.addPreservedID(MachineDominatorsID);
85 if (StrongPHIElim)
86 AU.addPreservedID(StrongPHIEliminationID);
87 else
88 AU.addPreservedID(PHIEliminationID);
89 AU.addPreservedID(TwoAddressInstructionPassID);
90 MachineFunctionPass::getAnalysisUsage(AU);
93 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
94 /// being the source and IntB being the dest, thus this defines a value number
95 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
96 /// see if we can merge these two pieces of B into a single value number,
97 /// eliminating a copy. For example:
98 ///
99 /// A3 = B0
100 /// ...
101 /// B1 = A3 <- this copy
103 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
104 /// value number to be replaced with B0 (which simplifies the B liveinterval).
106 /// This returns true if an interval was modified.
108 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
109 LiveInterval &IntB,
110 MachineInstr *CopyMI) {
111 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
113 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
114 // the example above.
115 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
116 assert(BLR != IntB.end() && "Live range not found!");
117 VNInfo *BValNo = BLR->valno;
119 // Get the location that B is defined at. Two options: either this value has
120 // an unknown definition point or it is defined at CopyIdx. If unknown, we
121 // can't process it.
122 if (!BValNo->getCopy()) return false;
123 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
125 // AValNo is the value number in A that defines the copy, A3 in the example.
126 unsigned CopyUseIdx = li_->getUseIndex(CopyIdx);
127 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
128 assert(ALR != IntA.end() && "Live range not found!");
129 VNInfo *AValNo = ALR->valno;
130 // If it's re-defined by an early clobber somewhere in the live range, then
131 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
132 // See PR3149:
133 // 172 %ECX<def> = MOV32rr %reg1039<kill>
134 // 180 INLINEASM <es:subl $5,$1
135 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
136 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
137 // 188 %EAX<def> = MOV32rr %EAX<kill>
138 // 196 %ECX<def> = MOV32rr %ECX<kill>
139 // 204 %ECX<def> = MOV32rr %ECX<kill>
140 // 212 %EAX<def> = MOV32rr %EAX<kill>
141 // 220 %EAX<def> = MOV32rr %EAX
142 // 228 %reg1039<def> = MOV32rr %ECX<kill>
143 // The early clobber operand ties ECX input to the ECX def.
145 // The live interval of ECX is represented as this:
146 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
147 // The coalescer has no idea there was a def in the middle of [174,230].
148 if (AValNo->hasRedefByEC())
149 return false;
151 // If AValNo is defined as a copy from IntB, we can potentially process this.
152 // Get the instruction that defines this value number.
153 unsigned SrcReg = li_->getVNInfoSourceReg(AValNo);
154 if (!SrcReg) return false; // Not defined by a copy.
156 // If the value number is not defined by a copy instruction, ignore it.
158 // If the source register comes from an interval other than IntB, we can't
159 // handle this.
160 if (SrcReg != IntB.reg) return false;
162 // Get the LiveRange in IntB that this value number starts with.
163 LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1);
164 assert(ValLR != IntB.end() && "Live range not found!");
166 // Make sure that the end of the live range is inside the same block as
167 // CopyMI.
168 MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1);
169 if (!ValLREndInst ||
170 ValLREndInst->getParent() != CopyMI->getParent()) return false;
172 // Okay, we now know that ValLR ends in the same block that the CopyMI
173 // live-range starts. If there are no intervening live ranges between them in
174 // IntB, we can merge them.
175 if (ValLR+1 != BLR) return false;
177 // If a live interval is a physical register, conservatively check if any
178 // of its sub-registers is overlapping the live interval of the virtual
179 // register. If so, do not coalesce.
180 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
181 *tri_->getSubRegisters(IntB.reg)) {
182 for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
183 if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
184 DOUT << "Interfere with sub-register ";
185 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
186 return false;
190 DOUT << "\nExtending: "; IntB.print(DOUT, tri_);
192 unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
193 // We are about to delete CopyMI, so need to remove it as the 'instruction
194 // that defines this value #'. Update the the valnum with the new defining
195 // instruction #.
196 BValNo->def = FillerStart;
197 BValNo->setCopy(0);
199 // Okay, we can merge them. We need to insert a new liverange:
200 // [ValLR.end, BLR.begin) of either value number, then we merge the
201 // two value numbers.
202 IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
204 // If the IntB live range is assigned to a physical register, and if that
205 // physreg has sub-registers, update their live intervals as well.
206 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
207 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
208 LiveInterval &SRLI = li_->getInterval(*SR);
209 SRLI.addRange(LiveRange(FillerStart, FillerEnd,
210 SRLI.getNextValue(FillerStart, 0, true,
211 li_->getVNInfoAllocator())));
215 // Okay, merge "B1" into the same value number as "B0".
216 if (BValNo != ValLR->valno) {
217 IntB.addKills(ValLR->valno, BValNo->kills);
218 IntB.MergeValueNumberInto(BValNo, ValLR->valno);
220 DOUT << " result = "; IntB.print(DOUT, tri_);
221 DOUT << "\n";
223 // If the source instruction was killing the source register before the
224 // merge, unset the isKill marker given the live range has been extended.
225 int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
226 if (UIdx != -1) {
227 ValLREndInst->getOperand(UIdx).setIsKill(false);
228 IntB.removeKill(ValLR->valno, FillerStart);
231 // If the copy instruction was killing the destination register before the
232 // merge, find the last use and trim the live range. That will also add the
233 // isKill marker.
234 if (CopyMI->killsRegister(IntA.reg))
235 TrimLiveIntervalToLastUse(CopyUseIdx, CopyMI->getParent(), IntA, ALR);
237 ++numExtends;
238 return true;
241 /// HasOtherReachingDefs - Return true if there are definitions of IntB
242 /// other than BValNo val# that can reach uses of AValno val# of IntA.
243 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
244 LiveInterval &IntB,
245 VNInfo *AValNo,
246 VNInfo *BValNo) {
247 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
248 AI != AE; ++AI) {
249 if (AI->valno != AValNo) continue;
250 LiveInterval::Ranges::iterator BI =
251 std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
252 if (BI != IntB.ranges.begin())
253 --BI;
254 for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
255 if (BI->valno == BValNo)
256 continue;
257 if (BI->start <= AI->start && BI->end > AI->start)
258 return true;
259 if (BI->start > AI->start && BI->start < AI->end)
260 return true;
263 return false;
266 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
267 /// being the source and IntB being the dest, thus this defines a value number
268 /// in IntB. If the source value number (in IntA) is defined by a commutable
269 /// instruction and its other operand is coalesced to the copy dest register,
270 /// see if we can transform the copy into a noop by commuting the definition. For
271 /// example,
273 /// A3 = op A2 B0<kill>
274 /// ...
275 /// B1 = A3 <- this copy
276 /// ...
277 /// = op A3 <- more uses
279 /// ==>
281 /// B2 = op B0 A2<kill>
282 /// ...
283 /// B1 = B2 <- now an identify copy
284 /// ...
285 /// = op B2 <- more uses
287 /// This returns true if an interval was modified.
289 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
290 LiveInterval &IntB,
291 MachineInstr *CopyMI) {
292 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
294 // FIXME: For now, only eliminate the copy by commuting its def when the
295 // source register is a virtual register. We want to guard against cases
296 // where the copy is a back edge copy and commuting the def lengthen the
297 // live interval of the source register to the entire loop.
298 if (TargetRegisterInfo::isPhysicalRegister(IntA.reg))
299 return false;
301 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
302 // the example above.
303 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
304 assert(BLR != IntB.end() && "Live range not found!");
305 VNInfo *BValNo = BLR->valno;
307 // Get the location that B is defined at. Two options: either this value has
308 // an unknown definition point or it is defined at CopyIdx. If unknown, we
309 // can't process it.
310 if (!BValNo->getCopy()) return false;
311 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
313 // AValNo is the value number in A that defines the copy, A3 in the example.
314 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1);
315 assert(ALR != IntA.end() && "Live range not found!");
316 VNInfo *AValNo = ALR->valno;
317 // If other defs can reach uses of this def, then it's not safe to perform
318 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
319 // tested?
320 if (AValNo->isPHIDef() || !AValNo->isDefAccurate() ||
321 AValNo->isUnused() || AValNo->hasPHIKill())
322 return false;
323 MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
324 const TargetInstrDesc &TID = DefMI->getDesc();
325 if (!TID.isCommutable())
326 return false;
327 // If DefMI is a two-address instruction then commuting it will change the
328 // destination register.
329 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
330 assert(DefIdx != -1);
331 unsigned UseOpIdx;
332 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
333 return false;
334 unsigned Op1, Op2, NewDstIdx;
335 if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
336 return false;
337 if (Op1 == UseOpIdx)
338 NewDstIdx = Op2;
339 else if (Op2 == UseOpIdx)
340 NewDstIdx = Op1;
341 else
342 return false;
344 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
345 unsigned NewReg = NewDstMO.getReg();
346 if (NewReg != IntB.reg || !NewDstMO.isKill())
347 return false;
349 // Make sure there are no other definitions of IntB that would reach the
350 // uses which the new definition can reach.
351 if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
352 return false;
354 // If some of the uses of IntA.reg is already coalesced away, return false.
355 // It's not possible to determine whether it's safe to perform the coalescing.
356 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
357 UE = mri_->use_end(); UI != UE; ++UI) {
358 MachineInstr *UseMI = &*UI;
359 unsigned UseIdx = li_->getInstructionIndex(UseMI);
360 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
361 if (ULR == IntA.end())
362 continue;
363 if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
364 return false;
367 // At this point we have decided that it is legal to do this
368 // transformation. Start by commuting the instruction.
369 MachineBasicBlock *MBB = DefMI->getParent();
370 MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
371 if (!NewMI)
372 return false;
373 if (NewMI != DefMI) {
374 li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
375 MBB->insert(DefMI, NewMI);
376 MBB->erase(DefMI);
378 unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
379 NewMI->getOperand(OpIdx).setIsKill();
381 bool BHasPHIKill = BValNo->hasPHIKill();
382 SmallVector<VNInfo*, 4> BDeadValNos;
383 VNInfo::KillSet BKills;
384 std::map<unsigned, unsigned> BExtend;
386 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
387 // A = or A, B
388 // ...
389 // B = A
390 // ...
391 // C = A<kill>
392 // ...
393 // = B
395 // then do not add kills of A to the newly created B interval.
396 bool Extended = BLR->end > ALR->end && ALR->end != ALR->start;
397 if (Extended)
398 BExtend[ALR->end] = BLR->end;
400 // Update uses of IntA of the specific Val# with IntB.
401 bool BHasSubRegs = false;
402 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
403 BHasSubRegs = *tri_->getSubRegisters(IntB.reg);
404 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
405 UE = mri_->use_end(); UI != UE;) {
406 MachineOperand &UseMO = UI.getOperand();
407 MachineInstr *UseMI = &*UI;
408 ++UI;
409 if (JoinedCopies.count(UseMI))
410 continue;
411 unsigned UseIdx = li_->getInstructionIndex(UseMI);
412 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
413 if (ULR == IntA.end() || ULR->valno != AValNo)
414 continue;
415 UseMO.setReg(NewReg);
416 if (UseMI == CopyMI)
417 continue;
418 if (UseMO.isKill()) {
419 if (Extended)
420 UseMO.setIsKill(false);
421 else
422 BKills.push_back(VNInfo::KillInfo(false, li_->getUseIndex(UseIdx)+1));
424 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
425 if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
426 continue;
427 if (DstReg == IntB.reg) {
428 // This copy will become a noop. If it's defining a new val#,
429 // remove that val# as well. However this live range is being
430 // extended to the end of the existing live range defined by the copy.
431 unsigned DefIdx = li_->getDefIndex(UseIdx);
432 const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
433 BHasPHIKill |= DLR->valno->hasPHIKill();
434 assert(DLR->valno->def == DefIdx);
435 BDeadValNos.push_back(DLR->valno);
436 BExtend[DLR->start] = DLR->end;
437 JoinedCopies.insert(UseMI);
438 // If this is a kill but it's going to be removed, the last use
439 // of the same val# is the new kill.
440 if (UseMO.isKill())
441 BKills.pop_back();
445 // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
446 // simply extend BLR if CopyMI doesn't end the range.
447 DOUT << "\nExtending: "; IntB.print(DOUT, tri_);
449 // Remove val#'s defined by copies that will be coalesced away.
450 for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) {
451 VNInfo *DeadVNI = BDeadValNos[i];
452 if (BHasSubRegs) {
453 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
454 LiveInterval &SRLI = li_->getInterval(*SR);
455 const LiveRange *SRLR = SRLI.getLiveRangeContaining(DeadVNI->def);
456 SRLI.removeValNo(SRLR->valno);
459 IntB.removeValNo(BDeadValNos[i]);
462 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
463 // is updated. Kills are also updated.
464 VNInfo *ValNo = BValNo;
465 ValNo->def = AValNo->def;
466 ValNo->setCopy(0);
467 for (unsigned j = 0, ee = ValNo->kills.size(); j != ee; ++j) {
468 unsigned Kill = ValNo->kills[j].killIdx;
469 if (Kill != BLR->end)
470 BKills.push_back(VNInfo::KillInfo(ValNo->kills[j].isPHIKill, Kill));
472 ValNo->kills.clear();
473 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
474 AI != AE; ++AI) {
475 if (AI->valno != AValNo) continue;
476 unsigned End = AI->end;
477 std::map<unsigned, unsigned>::iterator EI = BExtend.find(End);
478 if (EI != BExtend.end())
479 End = EI->second;
480 IntB.addRange(LiveRange(AI->start, End, ValNo));
482 // If the IntB live range is assigned to a physical register, and if that
483 // physreg has sub-registers, update their live intervals as well.
484 if (BHasSubRegs) {
485 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
486 LiveInterval &SRLI = li_->getInterval(*SR);
487 SRLI.MergeInClobberRange(AI->start, End, li_->getVNInfoAllocator());
491 IntB.addKills(ValNo, BKills);
492 ValNo->setHasPHIKill(BHasPHIKill);
494 DOUT << " result = "; IntB.print(DOUT, tri_);
495 DOUT << "\n";
497 DOUT << "\nShortening: "; IntA.print(DOUT, tri_);
498 IntA.removeValNo(AValNo);
499 DOUT << " result = "; IntA.print(DOUT, tri_);
500 DOUT << "\n";
502 ++numCommutes;
503 return true;
506 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
507 /// fallthoughs to SuccMBB.
508 static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
509 MachineBasicBlock *SuccMBB,
510 const TargetInstrInfo *tii_) {
511 if (MBB == SuccMBB)
512 return true;
513 MachineBasicBlock *TBB = 0, *FBB = 0;
514 SmallVector<MachineOperand, 4> Cond;
515 return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
516 MBB->isSuccessor(SuccMBB);
519 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
520 /// from a physical register live interval as well as from the live intervals
521 /// of its sub-registers.
522 static void removeRange(LiveInterval &li, unsigned Start, unsigned End,
523 LiveIntervals *li_, const TargetRegisterInfo *tri_) {
524 li.removeRange(Start, End, true);
525 if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
526 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
527 if (!li_->hasInterval(*SR))
528 continue;
529 LiveInterval &sli = li_->getInterval(*SR);
530 unsigned RemoveEnd = Start;
531 while (RemoveEnd != End) {
532 LiveInterval::iterator LR = sli.FindLiveRangeContaining(Start);
533 if (LR == sli.end())
534 break;
535 RemoveEnd = (LR->end < End) ? LR->end : End;
536 sli.removeRange(Start, RemoveEnd, true);
537 Start = RemoveEnd;
543 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
544 /// as the copy instruction, trim the live interval to the last use and return
545 /// true.
546 bool
547 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx,
548 MachineBasicBlock *CopyMBB,
549 LiveInterval &li,
550 const LiveRange *LR) {
551 unsigned MBBStart = li_->getMBBStartIdx(CopyMBB);
552 unsigned LastUseIdx;
553 MachineOperand *LastUse = lastRegisterUse(LR->start, CopyIdx-1, li.reg,
554 LastUseIdx);
555 if (LastUse) {
556 MachineInstr *LastUseMI = LastUse->getParent();
557 if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
558 // r1024 = op
559 // ...
560 // BB1:
561 // = r1024
563 // BB2:
564 // r1025<dead> = r1024<kill>
565 if (MBBStart < LR->end)
566 removeRange(li, MBBStart, LR->end, li_, tri_);
567 return true;
570 // There are uses before the copy, just shorten the live range to the end
571 // of last use.
572 LastUse->setIsKill();
573 removeRange(li, li_->getDefIndex(LastUseIdx), LR->end, li_, tri_);
574 li.addKill(LR->valno, LastUseIdx+1, false);
575 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
576 if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
577 DstReg == li.reg) {
578 // Last use is itself an identity code.
579 int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg, false, tri_);
580 LastUseMI->getOperand(DeadIdx).setIsDead();
582 return true;
585 // Is it livein?
586 if (LR->start <= MBBStart && LR->end > MBBStart) {
587 if (LR->start == 0) {
588 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
589 // Live-in to the function but dead. Remove it from entry live-in set.
590 mf_->begin()->removeLiveIn(li.reg);
592 // FIXME: Shorten intervals in BBs that reaches this BB.
595 return false;
598 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
599 /// computation, replace the copy by rematerialize the definition.
600 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
601 unsigned DstReg,
602 unsigned DstSubIdx,
603 MachineInstr *CopyMI) {
604 unsigned CopyIdx = li_->getUseIndex(li_->getInstructionIndex(CopyMI));
605 LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
606 assert(SrcLR != SrcInt.end() && "Live range not found!");
607 VNInfo *ValNo = SrcLR->valno;
608 // If other defs can reach uses of this def, then it's not safe to perform
609 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
610 // tested?
611 if (ValNo->isPHIDef() || !ValNo->isDefAccurate() ||
612 ValNo->isUnused() || ValNo->hasPHIKill())
613 return false;
614 MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
615 const TargetInstrDesc &TID = DefMI->getDesc();
616 if (!TID.isAsCheapAsAMove())
617 return false;
618 if (!DefMI->getDesc().isRematerializable() ||
619 !tii_->isTriviallyReMaterializable(DefMI))
620 return false;
621 bool SawStore = false;
622 if (!DefMI->isSafeToMove(tii_, SawStore))
623 return false;
624 if (TID.getNumDefs() != 1)
625 return false;
626 if (DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF) {
627 // Make sure the copy destination register class fits the instruction
628 // definition register class. The mismatch can happen as a result of earlier
629 // extract_subreg, insert_subreg, subreg_to_reg coalescing.
630 const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_);
631 if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
632 if (mri_->getRegClass(DstReg) != RC)
633 return false;
634 } else if (!RC->contains(DstReg))
635 return false;
638 unsigned DefIdx = li_->getDefIndex(CopyIdx);
639 const LiveRange *DLR= li_->getInterval(DstReg).getLiveRangeContaining(DefIdx);
640 DLR->valno->setCopy(0);
641 // Don't forget to update sub-register intervals.
642 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
643 for (const unsigned* SR = tri_->getSubRegisters(DstReg); *SR; ++SR) {
644 if (!li_->hasInterval(*SR))
645 continue;
646 DLR = li_->getInterval(*SR).getLiveRangeContaining(DefIdx);
647 if (DLR && DLR->valno->getCopy() == CopyMI)
648 DLR->valno->setCopy(0);
652 // If copy kills the source register, find the last use and propagate
653 // kill.
654 bool checkForDeadDef = false;
655 MachineBasicBlock *MBB = CopyMI->getParent();
656 if (CopyMI->killsRegister(SrcInt.reg))
657 if (!TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR)) {
658 checkForDeadDef = true;
661 MachineBasicBlock::iterator MII = next(MachineBasicBlock::iterator(CopyMI));
662 tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI);
663 MachineInstr *NewMI = prior(MII);
665 if (checkForDeadDef) {
666 // PR4090 fix: Trim interval failed because there was no use of the
667 // source interval in this MBB. If the def is in this MBB too then we
668 // should mark it dead:
669 if (DefMI->getParent() == MBB) {
670 DefMI->addRegisterDead(SrcInt.reg, tri_);
671 SrcLR->end = SrcLR->start + 1;
675 // CopyMI may have implicit operands, transfer them over to the newly
676 // rematerialized instruction. And update implicit def interval valnos.
677 for (unsigned i = CopyMI->getDesc().getNumOperands(),
678 e = CopyMI->getNumOperands(); i != e; ++i) {
679 MachineOperand &MO = CopyMI->getOperand(i);
680 if (MO.isReg() && MO.isImplicit())
681 NewMI->addOperand(MO);
682 if (MO.isDef() && li_->hasInterval(MO.getReg())) {
683 unsigned Reg = MO.getReg();
684 DLR = li_->getInterval(Reg).getLiveRangeContaining(DefIdx);
685 if (DLR && DLR->valno->getCopy() == CopyMI)
686 DLR->valno->setCopy(0);
690 li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
691 CopyMI->eraseFromParent();
692 ReMatCopies.insert(CopyMI);
693 ReMatDefs.insert(DefMI);
694 ++NumReMats;
695 return true;
698 /// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
700 bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr *CopyMI,
701 unsigned DstReg) const {
702 MachineBasicBlock *MBB = CopyMI->getParent();
703 const MachineLoop *L = loopInfo->getLoopFor(MBB);
704 if (!L)
705 return false;
706 if (MBB != L->getLoopLatch())
707 return false;
709 LiveInterval &LI = li_->getInterval(DstReg);
710 unsigned DefIdx = li_->getInstructionIndex(CopyMI);
711 LiveInterval::const_iterator DstLR =
712 LI.FindLiveRangeContaining(li_->getDefIndex(DefIdx));
713 if (DstLR == LI.end())
714 return false;
715 if (DstLR->valno->kills.size() == 1 && DstLR->valno->kills[0].isPHIKill)
716 return true;
717 return false;
720 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
721 /// update the subregister number if it is not zero. If DstReg is a
722 /// physical register and the existing subregister number of the def / use
723 /// being updated is not zero, make sure to set it to the correct physical
724 /// subregister.
725 void
726 SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg,
727 unsigned SubIdx) {
728 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
729 if (DstIsPhys && SubIdx) {
730 // Figure out the real physical register we are updating with.
731 DstReg = tri_->getSubReg(DstReg, SubIdx);
732 SubIdx = 0;
735 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
736 E = mri_->reg_end(); I != E; ) {
737 MachineOperand &O = I.getOperand();
738 MachineInstr *UseMI = &*I;
739 ++I;
740 unsigned OldSubIdx = O.getSubReg();
741 if (DstIsPhys) {
742 unsigned UseDstReg = DstReg;
743 if (OldSubIdx)
744 UseDstReg = tri_->getSubReg(DstReg, OldSubIdx);
746 unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
747 if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
748 CopySrcSubIdx, CopyDstSubIdx) &&
749 CopySrcReg != CopyDstReg &&
750 CopySrcReg == SrcReg && CopyDstReg != UseDstReg) {
751 // If the use is a copy and it won't be coalesced away, and its source
752 // is defined by a trivial computation, try to rematerialize it instead.
753 if (ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg,
754 CopyDstSubIdx, UseMI))
755 continue;
758 O.setReg(UseDstReg);
759 O.setSubReg(0);
760 continue;
763 // Sub-register indexes goes from small to large. e.g.
764 // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
765 // EAX: 1 -> AL, 2 -> AX
766 // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
767 // sub-register 2 is also AX.
768 if (SubIdx && OldSubIdx && SubIdx != OldSubIdx)
769 assert(OldSubIdx < SubIdx && "Conflicting sub-register index!");
770 else if (SubIdx)
771 O.setSubReg(SubIdx);
772 // Remove would-be duplicated kill marker.
773 if (O.isKill() && UseMI->killsRegister(DstReg))
774 O.setIsKill(false);
775 O.setReg(DstReg);
777 // After updating the operand, check if the machine instruction has
778 // become a copy. If so, update its val# information.
779 if (JoinedCopies.count(UseMI))
780 continue;
782 const TargetInstrDesc &TID = UseMI->getDesc();
783 unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
784 if (TID.getNumDefs() == 1 && TID.getNumOperands() > 2 &&
785 tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
786 CopySrcSubIdx, CopyDstSubIdx) &&
787 CopySrcReg != CopyDstReg &&
788 (TargetRegisterInfo::isVirtualRegister(CopyDstReg) ||
789 allocatableRegs_[CopyDstReg])) {
790 LiveInterval &LI = li_->getInterval(CopyDstReg);
791 unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(UseMI));
792 if (const LiveRange *DLR = LI.getLiveRangeContaining(DefIdx)) {
793 if (DLR->valno->def == DefIdx)
794 DLR->valno->setCopy(UseMI);
800 /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
801 /// due to live range lengthening as the result of coalescing.
802 void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg,
803 LiveInterval &LI) {
804 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(Reg),
805 UE = mri_->use_end(); UI != UE; ++UI) {
806 MachineOperand &UseMO = UI.getOperand();
807 if (!UseMO.isKill())
808 continue;
809 MachineInstr *UseMI = UseMO.getParent();
810 unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI));
811 const LiveRange *LR = LI.getLiveRangeContaining(UseIdx);
812 if (!LR || !LI.isKill(LR->valno, UseIdx+1)) {
813 if (LR->valno->def != UseIdx+1) {
814 // Interesting problem. After coalescing reg1027's def and kill are both
815 // at the same point: %reg1027,0.000000e+00 = [56,814:0) 0@70-(814)
817 // bb5:
818 // 60 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
819 // 68 %reg1027<def> = t2LDRi12 %reg1027<kill>, 8, 14, %reg0
820 // 76 t2CMPzri %reg1038<kill,undef>, 0, 14, %reg0, %CPSR<imp-def>
821 // 84 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
822 // 96 t2Bcc mbb<bb5,0x2030910>, 1, %CPSR<kill>
824 // Do not remove the kill marker on t2LDRi12.
825 UseMO.setIsKill(false);
831 /// removeIntervalIfEmpty - Check if the live interval of a physical register
832 /// is empty, if so remove it and also remove the empty intervals of its
833 /// sub-registers. Return true if live interval is removed.
834 static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
835 const TargetRegisterInfo *tri_) {
836 if (li.empty()) {
837 if (TargetRegisterInfo::isPhysicalRegister(li.reg))
838 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
839 if (!li_->hasInterval(*SR))
840 continue;
841 LiveInterval &sli = li_->getInterval(*SR);
842 if (sli.empty())
843 li_->removeInterval(*SR);
845 li_->removeInterval(li.reg);
846 return true;
848 return false;
851 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
852 /// Return true if live interval is removed.
853 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
854 MachineInstr *CopyMI) {
855 unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
856 LiveInterval::iterator MLR =
857 li.FindLiveRangeContaining(li_->getDefIndex(CopyIdx));
858 if (MLR == li.end())
859 return false; // Already removed by ShortenDeadCopySrcLiveRange.
860 unsigned RemoveStart = MLR->start;
861 unsigned RemoveEnd = MLR->end;
862 unsigned DefIdx = li_->getDefIndex(CopyIdx);
863 // Remove the liverange that's defined by this.
864 if (RemoveStart == DefIdx && RemoveEnd == DefIdx+1) {
865 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
866 return removeIntervalIfEmpty(li, li_, tri_);
868 return false;
871 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
872 /// the val# it defines. If the live interval becomes empty, remove it as well.
873 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
874 MachineInstr *DefMI) {
875 unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(DefMI));
876 LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
877 if (DefIdx != MLR->valno->def)
878 return false;
879 li.removeValNo(MLR->valno);
880 return removeIntervalIfEmpty(li, li_, tri_);
883 /// PropagateDeadness - Propagate the dead marker to the instruction which
884 /// defines the val#.
885 static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
886 unsigned &LRStart, LiveIntervals *li_,
887 const TargetRegisterInfo* tri_) {
888 MachineInstr *DefMI =
889 li_->getInstructionFromIndex(li_->getDefIndex(LRStart));
890 if (DefMI && DefMI != CopyMI) {
891 int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg, false);
892 if (DeadIdx != -1)
893 DefMI->getOperand(DeadIdx).setIsDead();
894 else
895 DefMI->addOperand(MachineOperand::CreateReg(li.reg,
896 true, true, false, true));
897 ++LRStart;
901 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
902 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
903 /// ends the live range there. If there isn't another use, then this live range
904 /// is dead. Return true if live interval is removed.
905 bool
906 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
907 MachineInstr *CopyMI) {
908 unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
909 if (CopyIdx == 0) {
910 // FIXME: special case: function live in. It can be a general case if the
911 // first instruction index starts at > 0 value.
912 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
913 // Live-in to the function but dead. Remove it from entry live-in set.
914 if (mf_->begin()->isLiveIn(li.reg))
915 mf_->begin()->removeLiveIn(li.reg);
916 const LiveRange *LR = li.getLiveRangeContaining(CopyIdx);
917 removeRange(li, LR->start, LR->end, li_, tri_);
918 return removeIntervalIfEmpty(li, li_, tri_);
921 LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx-1);
922 if (LR == li.end())
923 // Livein but defined by a phi.
924 return false;
926 unsigned RemoveStart = LR->start;
927 unsigned RemoveEnd = li_->getDefIndex(CopyIdx)+1;
928 if (LR->end > RemoveEnd)
929 // More uses past this copy? Nothing to do.
930 return false;
932 // If there is a last use in the same bb, we can't remove the live range.
933 // Shorten the live interval and return.
934 MachineBasicBlock *CopyMBB = CopyMI->getParent();
935 if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
936 return false;
938 // There are other kills of the val#. Nothing to do.
939 if (!li.isOnlyLROfValNo(LR))
940 return false;
942 MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
943 if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
944 // If the live range starts in another mbb and the copy mbb is not a fall
945 // through mbb, then we can only cut the range from the beginning of the
946 // copy mbb.
947 RemoveStart = li_->getMBBStartIdx(CopyMBB) + 1;
949 if (LR->valno->def == RemoveStart) {
950 // If the def MI defines the val# and this copy is the only kill of the
951 // val#, then propagate the dead marker.
952 PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
953 ++numDeadValNo;
955 if (li.isKill(LR->valno, RemoveEnd))
956 li.removeKill(LR->valno, RemoveEnd);
959 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
960 return removeIntervalIfEmpty(li, li_, tri_);
963 /// CanCoalesceWithImpDef - Returns true if the specified copy instruction
964 /// from an implicit def to another register can be coalesced away.
965 bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr *CopyMI,
966 LiveInterval &li,
967 LiveInterval &ImpLi) const{
968 if (!CopyMI->killsRegister(ImpLi.reg))
969 return false;
970 // Make sure this is the only use.
971 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(ImpLi.reg),
972 UE = mri_->use_end(); UI != UE;) {
973 MachineInstr *UseMI = &*UI;
974 ++UI;
975 if (CopyMI == UseMI || JoinedCopies.count(UseMI))
976 continue;
977 return false;
979 return true;
983 /// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
984 /// a virtual destination register with physical source register.
985 bool
986 SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI,
987 MachineBasicBlock *CopyMBB,
988 LiveInterval &DstInt,
989 LiveInterval &SrcInt) {
990 // If the virtual register live interval is long but it has low use desity,
991 // do not join them, instead mark the physical register as its allocation
992 // preference.
993 const TargetRegisterClass *RC = mri_->getRegClass(DstInt.reg);
994 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
995 unsigned Length = li_->getApproximateInstructionCount(DstInt);
996 if (Length > Threshold &&
997 (((float)std::distance(mri_->use_begin(DstInt.reg),
998 mri_->use_end()) / Length) < (1.0 / Threshold)))
999 return false;
1001 // If the virtual register live interval extends into a loop, turn down
1002 // aggressiveness.
1003 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1004 const MachineLoop *L = loopInfo->getLoopFor(CopyMBB);
1005 if (!L) {
1006 // Let's see if the virtual register live interval extends into the loop.
1007 LiveInterval::iterator DLR = DstInt.FindLiveRangeContaining(CopyIdx);
1008 assert(DLR != DstInt.end() && "Live range not found!");
1009 DLR = DstInt.FindLiveRangeContaining(DLR->end+1);
1010 if (DLR != DstInt.end()) {
1011 CopyMBB = li_->getMBBFromIndex(DLR->start);
1012 L = loopInfo->getLoopFor(CopyMBB);
1016 if (!L || Length <= Threshold)
1017 return true;
1019 unsigned UseIdx = li_->getUseIndex(CopyIdx);
1020 LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
1021 MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
1022 if (loopInfo->getLoopFor(SMBB) != L) {
1023 if (!loopInfo->isLoopHeader(CopyMBB))
1024 return false;
1025 // If vr's live interval extends pass the loop header, do not join.
1026 for (MachineBasicBlock::succ_iterator SI = CopyMBB->succ_begin(),
1027 SE = CopyMBB->succ_end(); SI != SE; ++SI) {
1028 MachineBasicBlock *SuccMBB = *SI;
1029 if (SuccMBB == CopyMBB)
1030 continue;
1031 if (DstInt.overlaps(li_->getMBBStartIdx(SuccMBB),
1032 li_->getMBBEndIdx(SuccMBB)+1))
1033 return false;
1036 return true;
1039 /// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
1040 /// copy from a virtual source register to a physical destination register.
1041 bool
1042 SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr *CopyMI,
1043 MachineBasicBlock *CopyMBB,
1044 LiveInterval &DstInt,
1045 LiveInterval &SrcInt) {
1046 // If the virtual register live interval is long but it has low use desity,
1047 // do not join them, instead mark the physical register as its allocation
1048 // preference.
1049 const TargetRegisterClass *RC = mri_->getRegClass(SrcInt.reg);
1050 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1051 unsigned Length = li_->getApproximateInstructionCount(SrcInt);
1052 if (Length > Threshold &&
1053 (((float)std::distance(mri_->use_begin(SrcInt.reg),
1054 mri_->use_end()) / Length) < (1.0 / Threshold)))
1055 return false;
1057 if (SrcInt.empty())
1058 // Must be implicit_def.
1059 return false;
1061 // If the virtual register live interval is defined or cross a loop, turn
1062 // down aggressiveness.
1063 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1064 unsigned UseIdx = li_->getUseIndex(CopyIdx);
1065 LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
1066 assert(SLR != SrcInt.end() && "Live range not found!");
1067 SLR = SrcInt.FindLiveRangeContaining(SLR->start-1);
1068 if (SLR == SrcInt.end())
1069 return true;
1070 MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
1071 const MachineLoop *L = loopInfo->getLoopFor(SMBB);
1073 if (!L || Length <= Threshold)
1074 return true;
1076 if (loopInfo->getLoopFor(CopyMBB) != L) {
1077 if (SMBB != L->getLoopLatch())
1078 return false;
1079 // If vr's live interval is extended from before the loop latch, do not
1080 // join.
1081 for (MachineBasicBlock::pred_iterator PI = SMBB->pred_begin(),
1082 PE = SMBB->pred_end(); PI != PE; ++PI) {
1083 MachineBasicBlock *PredMBB = *PI;
1084 if (PredMBB == SMBB)
1085 continue;
1086 if (SrcInt.overlaps(li_->getMBBStartIdx(PredMBB),
1087 li_->getMBBEndIdx(PredMBB)+1))
1088 return false;
1091 return true;
1094 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1095 /// two virtual registers from different register classes.
1096 bool
1097 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned LargeReg,
1098 unsigned SmallReg,
1099 unsigned Threshold) {
1100 // Then make sure the intervals are *short*.
1101 LiveInterval &LargeInt = li_->getInterval(LargeReg);
1102 LiveInterval &SmallInt = li_->getInterval(SmallReg);
1103 unsigned LargeSize = li_->getApproximateInstructionCount(LargeInt);
1104 unsigned SmallSize = li_->getApproximateInstructionCount(SmallInt);
1105 if (SmallSize > Threshold || LargeSize > Threshold)
1106 if ((float)std::distance(mri_->use_begin(SmallReg),
1107 mri_->use_end()) / SmallSize <
1108 (float)std::distance(mri_->use_begin(LargeReg),
1109 mri_->use_end()) / LargeSize)
1110 return false;
1111 return true;
1114 /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
1115 /// register with a physical register, check if any of the virtual register
1116 /// operand is a sub-register use or def. If so, make sure it won't result
1117 /// in an illegal extract_subreg or insert_subreg instruction. e.g.
1118 /// vr1024 = extract_subreg vr1025, 1
1119 /// ...
1120 /// vr1024 = mov8rr AH
1121 /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
1122 /// AH does not have a super-reg whose sub-register 1 is AH.
1123 bool
1124 SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr *CopyMI,
1125 unsigned VirtReg,
1126 unsigned PhysReg) {
1127 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(VirtReg),
1128 E = mri_->reg_end(); I != E; ++I) {
1129 MachineOperand &O = I.getOperand();
1130 MachineInstr *MI = &*I;
1131 if (MI == CopyMI || JoinedCopies.count(MI))
1132 continue;
1133 unsigned SubIdx = O.getSubReg();
1134 if (SubIdx && !tri_->getSubReg(PhysReg, SubIdx))
1135 return true;
1136 if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
1137 SubIdx = MI->getOperand(2).getImm();
1138 if (O.isUse() && !tri_->getSubReg(PhysReg, SubIdx))
1139 return true;
1140 if (O.isDef()) {
1141 unsigned SrcReg = MI->getOperand(1).getReg();
1142 const TargetRegisterClass *RC =
1143 TargetRegisterInfo::isPhysicalRegister(SrcReg)
1144 ? tri_->getPhysicalRegisterRegClass(SrcReg)
1145 : mri_->getRegClass(SrcReg);
1146 if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
1147 return true;
1150 if (MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
1151 MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
1152 SubIdx = MI->getOperand(3).getImm();
1153 if (VirtReg == MI->getOperand(0).getReg()) {
1154 if (!tri_->getSubReg(PhysReg, SubIdx))
1155 return true;
1156 } else {
1157 unsigned DstReg = MI->getOperand(0).getReg();
1158 const TargetRegisterClass *RC =
1159 TargetRegisterInfo::isPhysicalRegister(DstReg)
1160 ? tri_->getPhysicalRegisterRegClass(DstReg)
1161 : mri_->getRegClass(DstReg);
1162 if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
1163 return true;
1167 return false;
1171 /// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
1172 /// an extract_subreg where dst is a physical register, e.g.
1173 /// cl = EXTRACT_SUBREG reg1024, 1
1174 bool
1175 SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg,
1176 unsigned SrcReg, unsigned SubIdx,
1177 unsigned &RealDstReg) {
1178 const TargetRegisterClass *RC = mri_->getRegClass(SrcReg);
1179 RealDstReg = tri_->getMatchingSuperReg(DstReg, SubIdx, RC);
1180 assert(RealDstReg && "Invalid extract_subreg instruction!");
1182 // For this type of EXTRACT_SUBREG, conservatively
1183 // check if the live interval of the source register interfere with the
1184 // actual super physical register we are trying to coalesce with.
1185 LiveInterval &RHS = li_->getInterval(SrcReg);
1186 if (li_->hasInterval(RealDstReg) &&
1187 RHS.overlaps(li_->getInterval(RealDstReg))) {
1188 DOUT << "Interfere with register ";
1189 DEBUG(li_->getInterval(RealDstReg).print(DOUT, tri_));
1190 return false; // Not coalescable
1192 for (const unsigned* SR = tri_->getSubRegisters(RealDstReg); *SR; ++SR)
1193 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1194 DOUT << "Interfere with sub-register ";
1195 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
1196 return false; // Not coalescable
1198 return true;
1201 /// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
1202 /// an insert_subreg where src is a physical register, e.g.
1203 /// reg1024 = INSERT_SUBREG reg1024, c1, 0
1204 bool
1205 SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg,
1206 unsigned SrcReg, unsigned SubIdx,
1207 unsigned &RealSrcReg) {
1208 const TargetRegisterClass *RC = mri_->getRegClass(DstReg);
1209 RealSrcReg = tri_->getMatchingSuperReg(SrcReg, SubIdx, RC);
1210 assert(RealSrcReg && "Invalid extract_subreg instruction!");
1212 LiveInterval &RHS = li_->getInterval(DstReg);
1213 if (li_->hasInterval(RealSrcReg) &&
1214 RHS.overlaps(li_->getInterval(RealSrcReg))) {
1215 DOUT << "Interfere with register ";
1216 DEBUG(li_->getInterval(RealSrcReg).print(DOUT, tri_));
1217 return false; // Not coalescable
1219 for (const unsigned* SR = tri_->getSubRegisters(RealSrcReg); *SR; ++SR)
1220 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1221 DOUT << "Interfere with sub-register ";
1222 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
1223 return false; // Not coalescable
1225 return true;
1228 /// getRegAllocPreference - Return register allocation preference register.
1230 static unsigned getRegAllocPreference(unsigned Reg, MachineFunction &MF,
1231 MachineRegisterInfo *MRI,
1232 const TargetRegisterInfo *TRI) {
1233 if (TargetRegisterInfo::isPhysicalRegister(Reg))
1234 return 0;
1235 std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(Reg);
1236 return TRI->ResolveRegAllocHint(Hint.first, Hint.second, MF);
1239 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1240 /// which are the src/dst of the copy instruction CopyMI. This returns true
1241 /// if the copy was successfully coalesced away. If it is not currently
1242 /// possible to coalesce this interval, but it may be possible if other
1243 /// things get coalesced, then it returns true by reference in 'Again'.
1244 bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
1245 MachineInstr *CopyMI = TheCopy.MI;
1247 Again = false;
1248 if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
1249 return false; // Already done.
1251 DOUT << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI;
1253 unsigned SrcReg, DstReg, SrcSubIdx = 0, DstSubIdx = 0;
1254 bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG;
1255 bool isInsSubReg = CopyMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG;
1256 bool isSubRegToReg = CopyMI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG;
1257 unsigned SubIdx = 0;
1258 if (isExtSubReg) {
1259 DstReg = CopyMI->getOperand(0).getReg();
1260 DstSubIdx = CopyMI->getOperand(0).getSubReg();
1261 SrcReg = CopyMI->getOperand(1).getReg();
1262 SrcSubIdx = CopyMI->getOperand(2).getImm();
1263 } else if (isInsSubReg || isSubRegToReg) {
1264 DstReg = CopyMI->getOperand(0).getReg();
1265 DstSubIdx = CopyMI->getOperand(3).getImm();
1266 SrcReg = CopyMI->getOperand(2).getReg();
1267 SrcSubIdx = CopyMI->getOperand(2).getSubReg();
1268 if (SrcSubIdx && SrcSubIdx != DstSubIdx) {
1269 // r1025 = INSERT_SUBREG r1025, r1024<2>, 2 Then r1024 has already been
1270 // coalesced to a larger register so the subreg indices cancel out.
1271 DOUT << "\tSource of insert_subreg is already coalesced "
1272 << "to another register.\n";
1273 return false; // Not coalescable.
1275 } else if (!tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)){
1276 llvm_unreachable("Unrecognized copy instruction!");
1279 // If they are already joined we continue.
1280 if (SrcReg == DstReg) {
1281 DOUT << "\tCopy already coalesced.\n";
1282 return false; // Not coalescable.
1285 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
1286 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1288 // If they are both physical registers, we cannot join them.
1289 if (SrcIsPhys && DstIsPhys) {
1290 DOUT << "\tCan not coalesce physregs.\n";
1291 return false; // Not coalescable.
1294 // We only join virtual registers with allocatable physical registers.
1295 if (SrcIsPhys && !allocatableRegs_[SrcReg]) {
1296 DOUT << "\tSrc reg is unallocatable physreg.\n";
1297 return false; // Not coalescable.
1299 if (DstIsPhys && !allocatableRegs_[DstReg]) {
1300 DOUT << "\tDst reg is unallocatable physreg.\n";
1301 return false; // Not coalescable.
1304 // Check that a physical source register is compatible with dst regclass
1305 if (SrcIsPhys) {
1306 unsigned SrcSubReg = SrcSubIdx ?
1307 tri_->getSubReg(SrcReg, SrcSubIdx) : SrcReg;
1308 const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
1309 const TargetRegisterClass *DstSubRC = DstRC;
1310 if (DstSubIdx)
1311 DstSubRC = DstRC->getSubRegisterRegClass(DstSubIdx);
1312 assert(DstSubRC && "Illegal subregister index");
1313 if (!DstSubRC->contains(SrcSubReg)) {
1314 DEBUG(errs() << "\tIncompatible destination regclass: "
1315 << tri_->getName(SrcSubReg) << " not in " << DstSubRC->getName()
1316 << ".\n");
1317 return false; // Not coalescable.
1321 // Check that a physical dst register is compatible with source regclass
1322 if (DstIsPhys) {
1323 unsigned DstSubReg = DstSubIdx ?
1324 tri_->getSubReg(DstReg, DstSubIdx) : DstReg;
1325 const TargetRegisterClass *SrcRC = mri_->getRegClass(SrcReg);
1326 const TargetRegisterClass *SrcSubRC = SrcRC;
1327 if (SrcSubIdx)
1328 SrcSubRC = SrcRC->getSubRegisterRegClass(SrcSubIdx);
1329 assert(SrcSubRC && "Illegal subregister index");
1330 if (!SrcSubRC->contains(DstReg)) {
1331 DEBUG(errs() << "\tIncompatible source regclass: "
1332 << tri_->getName(DstSubReg) << " not in " << SrcSubRC->getName()
1333 << ".\n");
1334 (void)DstSubReg;
1335 return false; // Not coalescable.
1339 // Should be non-null only when coalescing to a sub-register class.
1340 bool CrossRC = false;
1341 const TargetRegisterClass *SrcRC= SrcIsPhys ? 0 : mri_->getRegClass(SrcReg);
1342 const TargetRegisterClass *DstRC= DstIsPhys ? 0 : mri_->getRegClass(DstReg);
1343 const TargetRegisterClass *NewRC = NULL;
1344 MachineBasicBlock *CopyMBB = CopyMI->getParent();
1345 unsigned RealDstReg = 0;
1346 unsigned RealSrcReg = 0;
1347 if (isExtSubReg || isInsSubReg || isSubRegToReg) {
1348 SubIdx = CopyMI->getOperand(isExtSubReg ? 2 : 3).getImm();
1349 if (SrcIsPhys && isExtSubReg) {
1350 // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
1351 // coalesced with AX.
1352 unsigned DstSubIdx = CopyMI->getOperand(0).getSubReg();
1353 if (DstSubIdx) {
1354 // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
1355 // coalesced to a larger register so the subreg indices cancel out.
1356 if (DstSubIdx != SubIdx) {
1357 DOUT << "\t Sub-register indices mismatch.\n";
1358 return false; // Not coalescable.
1360 } else
1361 SrcReg = tri_->getSubReg(SrcReg, SubIdx);
1362 SubIdx = 0;
1363 } else if (DstIsPhys && (isInsSubReg || isSubRegToReg)) {
1364 // EAX = INSERT_SUBREG EAX, r1024, 0
1365 unsigned SrcSubIdx = CopyMI->getOperand(2).getSubReg();
1366 if (SrcSubIdx) {
1367 // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
1368 // coalesced to a larger register so the subreg indices cancel out.
1369 if (SrcSubIdx != SubIdx) {
1370 DOUT << "\t Sub-register indices mismatch.\n";
1371 return false; // Not coalescable.
1373 } else
1374 DstReg = tri_->getSubReg(DstReg, SubIdx);
1375 SubIdx = 0;
1376 } else if ((DstIsPhys && isExtSubReg) ||
1377 (SrcIsPhys && (isInsSubReg || isSubRegToReg))) {
1378 if (!isSubRegToReg && CopyMI->getOperand(1).getSubReg()) {
1379 DOUT << "\tSrc of extract_subreg already coalesced with reg"
1380 << " of a super-class.\n";
1381 return false; // Not coalescable.
1384 if (isExtSubReg) {
1385 if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealDstReg))
1386 return false; // Not coalescable
1387 } else {
1388 if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
1389 return false; // Not coalescable
1391 SubIdx = 0;
1392 } else {
1393 unsigned OldSubIdx = isExtSubReg ? CopyMI->getOperand(0).getSubReg()
1394 : CopyMI->getOperand(2).getSubReg();
1395 if (OldSubIdx) {
1396 if (OldSubIdx == SubIdx && !differingRegisterClasses(SrcReg, DstReg))
1397 // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
1398 // coalesced to a larger register so the subreg indices cancel out.
1399 // Also check if the other larger register is of the same register
1400 // class as the would be resulting register.
1401 SubIdx = 0;
1402 else {
1403 DOUT << "\t Sub-register indices mismatch.\n";
1404 return false; // Not coalescable.
1407 if (SubIdx) {
1408 if (!DstIsPhys && !SrcIsPhys) {
1409 if (isInsSubReg || isSubRegToReg) {
1410 NewRC = tri_->getMatchingSuperRegClass(DstRC, SrcRC, SubIdx);
1411 } else // extract_subreg {
1412 NewRC = tri_->getMatchingSuperRegClass(SrcRC, DstRC, SubIdx);
1414 if (!NewRC) {
1415 DOUT << "\t Conflicting sub-register indices.\n";
1416 return false; // Not coalescable
1419 unsigned LargeReg = isExtSubReg ? SrcReg : DstReg;
1420 unsigned SmallReg = isExtSubReg ? DstReg : SrcReg;
1421 unsigned Limit= allocatableRCRegs_[mri_->getRegClass(SmallReg)].count();
1422 if (!isWinToJoinCrossClass(LargeReg, SmallReg, Limit)) {
1423 Again = true; // May be possible to coalesce later.
1424 return false;
1428 } else if (differingRegisterClasses(SrcReg, DstReg)) {
1429 if (DisableCrossClassJoin)
1430 return false;
1431 CrossRC = true;
1433 // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
1434 // with another? If it's the resulting destination register, then
1435 // the subidx must be propagated to uses (but only those defined
1436 // by the EXTRACT_SUBREG). If it's being coalesced into another
1437 // register, it should be safe because register is assumed to have
1438 // the register class of the super-register.
1440 // Process moves where one of the registers have a sub-register index.
1441 MachineOperand *DstMO = CopyMI->findRegisterDefOperand(DstReg);
1442 MachineOperand *SrcMO = CopyMI->findRegisterUseOperand(SrcReg);
1443 SubIdx = DstMO->getSubReg();
1444 if (SubIdx) {
1445 if (SrcMO->getSubReg())
1446 // FIXME: can we handle this?
1447 return false;
1448 // This is not an insert_subreg but it looks like one.
1449 // e.g. %reg1024:4 = MOV32rr %EAX
1450 isInsSubReg = true;
1451 if (SrcIsPhys) {
1452 if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
1453 return false; // Not coalescable
1454 SubIdx = 0;
1456 } else {
1457 SubIdx = SrcMO->getSubReg();
1458 if (SubIdx) {
1459 // This is not a extract_subreg but it looks like one.
1460 // e.g. %cl = MOV16rr %reg1024:1
1461 isExtSubReg = true;
1462 if (DstIsPhys) {
1463 if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx,RealDstReg))
1464 return false; // Not coalescable
1465 SubIdx = 0;
1470 unsigned LargeReg = SrcReg;
1471 unsigned SmallReg = DstReg;
1473 // Now determine the register class of the joined register.
1474 if (isExtSubReg) {
1475 if (SubIdx && DstRC && DstRC->isASubClass()) {
1476 // This is a move to a sub-register class. However, the source is a
1477 // sub-register of a larger register class. We don't know what should
1478 // the register class be. FIXME.
1479 Again = true;
1480 return false;
1482 if (!DstIsPhys && !SrcIsPhys)
1483 NewRC = SrcRC;
1484 } else if (!SrcIsPhys && !DstIsPhys) {
1485 NewRC = getCommonSubClass(SrcRC, DstRC);
1486 if (!NewRC) {
1487 DEBUG(errs() << "\tDisjoint regclasses: "
1488 << SrcRC->getName() << ", "
1489 << DstRC->getName() << ".\n");
1490 return false; // Not coalescable.
1492 if (DstRC->getSize() > SrcRC->getSize())
1493 std::swap(LargeReg, SmallReg);
1496 // If we are joining two virtual registers and the resulting register
1497 // class is more restrictive (fewer register, smaller size). Check if it's
1498 // worth doing the merge.
1499 if (!SrcIsPhys && !DstIsPhys &&
1500 (isExtSubReg || DstRC->isASubClass()) &&
1501 !isWinToJoinCrossClass(LargeReg, SmallReg,
1502 allocatableRCRegs_[NewRC].count())) {
1503 DOUT << "\tSrc/Dest are different register classes.\n";
1504 // Allow the coalescer to try again in case either side gets coalesced to
1505 // a physical register that's compatible with the other side. e.g.
1506 // r1024 = MOV32to32_ r1025
1507 // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
1508 Again = true; // May be possible to coalesce later.
1509 return false;
1513 // Will it create illegal extract_subreg / insert_subreg?
1514 if (SrcIsPhys && HasIncompatibleSubRegDefUse(CopyMI, DstReg, SrcReg))
1515 return false;
1516 if (DstIsPhys && HasIncompatibleSubRegDefUse(CopyMI, SrcReg, DstReg))
1517 return false;
1519 LiveInterval &SrcInt = li_->getInterval(SrcReg);
1520 LiveInterval &DstInt = li_->getInterval(DstReg);
1521 assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg &&
1522 "Register mapping is horribly broken!");
1524 DOUT << "\t\tInspecting "; SrcInt.print(DOUT, tri_);
1525 DOUT << " and "; DstInt.print(DOUT, tri_);
1526 DOUT << ": ";
1528 // Save a copy of the virtual register live interval. We'll manually
1529 // merge this into the "real" physical register live interval this is
1530 // coalesced with.
1531 LiveInterval *SavedLI = 0;
1532 if (RealDstReg)
1533 SavedLI = li_->dupInterval(&SrcInt);
1534 else if (RealSrcReg)
1535 SavedLI = li_->dupInterval(&DstInt);
1537 // Check if it is necessary to propagate "isDead" property.
1538 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg) {
1539 MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg, false);
1540 bool isDead = mopd->isDead();
1542 // We need to be careful about coalescing a source physical register with a
1543 // virtual register. Once the coalescing is done, it cannot be broken and
1544 // these are not spillable! If the destination interval uses are far away,
1545 // think twice about coalescing them!
1546 if (!isDead && (SrcIsPhys || DstIsPhys)) {
1547 // If the copy is in a loop, take care not to coalesce aggressively if the
1548 // src is coming in from outside the loop (or the dst is out of the loop).
1549 // If it's not in a loop, then determine whether to join them base purely
1550 // by the length of the interval.
1551 if (PhysJoinTweak) {
1552 if (SrcIsPhys) {
1553 if (!isWinToJoinVRWithSrcPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
1554 mri_->setRegAllocationHint(DstInt.reg, 0, SrcReg);
1555 ++numAborts;
1556 DOUT << "\tMay tie down a physical register, abort!\n";
1557 Again = true; // May be possible to coalesce later.
1558 return false;
1560 } else {
1561 if (!isWinToJoinVRWithDstPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
1562 mri_->setRegAllocationHint(SrcInt.reg, 0, DstReg);
1563 ++numAborts;
1564 DOUT << "\tMay tie down a physical register, abort!\n";
1565 Again = true; // May be possible to coalesce later.
1566 return false;
1569 } else {
1570 // If the virtual register live interval is long but it has low use desity,
1571 // do not join them, instead mark the physical register as its allocation
1572 // preference.
1573 LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
1574 unsigned JoinVReg = SrcIsPhys ? DstReg : SrcReg;
1575 unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg;
1576 const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg);
1577 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1578 if (TheCopy.isBackEdge)
1579 Threshold *= 2; // Favors back edge copies.
1581 unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
1582 float Ratio = 1.0 / Threshold;
1583 if (Length > Threshold &&
1584 (((float)std::distance(mri_->use_begin(JoinVReg),
1585 mri_->use_end()) / Length) < Ratio)) {
1586 mri_->setRegAllocationHint(JoinVInt.reg, 0, JoinPReg);
1587 ++numAborts;
1588 DOUT << "\tMay tie down a physical register, abort!\n";
1589 Again = true; // May be possible to coalesce later.
1590 return false;
1596 // Okay, attempt to join these two intervals. On failure, this returns false.
1597 // Otherwise, if one of the intervals being joined is a physreg, this method
1598 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1599 // been modified, so we can use this information below to update aliases.
1600 bool Swapped = false;
1601 // If SrcInt is implicitly defined, it's safe to coalesce.
1602 bool isEmpty = SrcInt.empty();
1603 if (isEmpty && !CanCoalesceWithImpDef(CopyMI, DstInt, SrcInt)) {
1604 // Only coalesce an empty interval (defined by implicit_def) with
1605 // another interval which has a valno defined by the CopyMI and the CopyMI
1606 // is a kill of the implicit def.
1607 DOUT << "Not profitable!\n";
1608 return false;
1611 if (!isEmpty && !JoinIntervals(DstInt, SrcInt, Swapped)) {
1612 // Coalescing failed.
1614 // If definition of source is defined by trivial computation, try
1615 // rematerializing it.
1616 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
1617 ReMaterializeTrivialDef(SrcInt, DstReg, DstSubIdx, CopyMI))
1618 return true;
1620 // If we can eliminate the copy without merging the live ranges, do so now.
1621 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
1622 (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) ||
1623 RemoveCopyByCommutingDef(SrcInt, DstInt, CopyMI))) {
1624 JoinedCopies.insert(CopyMI);
1625 return true;
1628 // Otherwise, we are unable to join the intervals.
1629 DOUT << "Interference!\n";
1630 Again = true; // May be possible to coalesce later.
1631 return false;
1634 LiveInterval *ResSrcInt = &SrcInt;
1635 LiveInterval *ResDstInt = &DstInt;
1636 if (Swapped) {
1637 std::swap(SrcReg, DstReg);
1638 std::swap(ResSrcInt, ResDstInt);
1640 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1641 "LiveInterval::join didn't work right!");
1643 // If we're about to merge live ranges into a physical register live interval,
1644 // we have to update any aliased register's live ranges to indicate that they
1645 // have clobbered values for this range.
1646 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
1647 // If this is a extract_subreg where dst is a physical register, e.g.
1648 // cl = EXTRACT_SUBREG reg1024, 1
1649 // then create and update the actual physical register allocated to RHS.
1650 if (RealDstReg || RealSrcReg) {
1651 LiveInterval &RealInt =
1652 li_->getOrCreateInterval(RealDstReg ? RealDstReg : RealSrcReg);
1653 for (LiveInterval::const_vni_iterator I = SavedLI->vni_begin(),
1654 E = SavedLI->vni_end(); I != E; ++I) {
1655 const VNInfo *ValNo = *I;
1656 VNInfo *NewValNo = RealInt.getNextValue(ValNo->def, ValNo->getCopy(),
1657 false, // updated at *
1658 li_->getVNInfoAllocator());
1659 NewValNo->setFlags(ValNo->getFlags()); // * updated here.
1660 RealInt.addKills(NewValNo, ValNo->kills);
1661 RealInt.MergeValueInAsValue(*SavedLI, ValNo, NewValNo);
1663 RealInt.weight += SavedLI->weight;
1664 DstReg = RealDstReg ? RealDstReg : RealSrcReg;
1667 // Update the liveintervals of sub-registers.
1668 for (const unsigned *AS = tri_->getSubRegisters(DstReg); *AS; ++AS)
1669 li_->getOrCreateInterval(*AS).MergeInClobberRanges(*ResSrcInt,
1670 li_->getVNInfoAllocator());
1673 // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
1674 // larger super-register.
1675 if ((isExtSubReg || isInsSubReg || isSubRegToReg) &&
1676 !SrcIsPhys && !DstIsPhys) {
1677 if ((isExtSubReg && !Swapped) ||
1678 ((isInsSubReg || isSubRegToReg) && Swapped)) {
1679 ResSrcInt->Copy(*ResDstInt, mri_, li_->getVNInfoAllocator());
1680 std::swap(SrcReg, DstReg);
1681 std::swap(ResSrcInt, ResDstInt);
1685 // Coalescing to a virtual register that is of a sub-register class of the
1686 // other. Make sure the resulting register is set to the right register class.
1687 if (CrossRC)
1688 ++numCrossRCs;
1690 // This may happen even if it's cross-rc coalescing. e.g.
1691 // %reg1026<def> = SUBREG_TO_REG 0, %reg1037<kill>, 4
1692 // reg1026 -> GR64, reg1037 -> GR32_ABCD. The resulting register will have to
1693 // be allocate a register from GR64_ABCD.
1694 if (NewRC)
1695 mri_->setRegClass(DstReg, NewRC);
1697 if (NewHeuristic) {
1698 // Add all copies that define val# in the source interval into the queue.
1699 for (LiveInterval::const_vni_iterator i = ResSrcInt->vni_begin(),
1700 e = ResSrcInt->vni_end(); i != e; ++i) {
1701 const VNInfo *vni = *i;
1702 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1703 if (!vni->def || vni->isUnused() || vni->isPHIDef() || !vni->isDefAccurate())
1704 continue;
1705 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
1706 unsigned NewSrcReg, NewDstReg, NewSrcSubIdx, NewDstSubIdx;
1707 if (CopyMI &&
1708 JoinedCopies.count(CopyMI) == 0 &&
1709 tii_->isMoveInstr(*CopyMI, NewSrcReg, NewDstReg,
1710 NewSrcSubIdx, NewDstSubIdx)) {
1711 unsigned LoopDepth = loopInfo->getLoopDepth(CopyMBB);
1712 JoinQueue->push(CopyRec(CopyMI, LoopDepth,
1713 isBackEdgeCopy(CopyMI, DstReg)));
1718 // Remember to delete the copy instruction.
1719 JoinedCopies.insert(CopyMI);
1721 // Some live range has been lengthened due to colaescing, eliminate the
1722 // unnecessary kills.
1723 RemoveUnnecessaryKills(SrcReg, *ResDstInt);
1724 if (TargetRegisterInfo::isVirtualRegister(DstReg))
1725 RemoveUnnecessaryKills(DstReg, *ResDstInt);
1727 UpdateRegDefsUses(SrcReg, DstReg, SubIdx);
1729 // SrcReg is guarateed to be the register whose live interval that is
1730 // being merged.
1731 li_->removeInterval(SrcReg);
1733 // Update regalloc hint.
1734 tri_->UpdateRegAllocHint(SrcReg, DstReg, *mf_);
1736 // Manually deleted the live interval copy.
1737 if (SavedLI) {
1738 SavedLI->clear();
1739 delete SavedLI;
1742 // If resulting interval has a preference that no longer fits because of subreg
1743 // coalescing, just clear the preference.
1744 unsigned Preference = getRegAllocPreference(ResDstInt->reg, *mf_, mri_, tri_);
1745 if (Preference && (isExtSubReg || isInsSubReg || isSubRegToReg) &&
1746 TargetRegisterInfo::isVirtualRegister(ResDstInt->reg)) {
1747 const TargetRegisterClass *RC = mri_->getRegClass(ResDstInt->reg);
1748 if (!RC->contains(Preference))
1749 mri_->setRegAllocationHint(ResDstInt->reg, 0, 0);
1752 DOUT << "\n\t\tJoined. Result = "; ResDstInt->print(DOUT, tri_);
1753 DOUT << "\n";
1755 ++numJoins;
1756 return true;
1759 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1760 /// compute what the resultant value numbers for each value in the input two
1761 /// ranges will be. This is complicated by copies between the two which can
1762 /// and will commonly cause multiple value numbers to be merged into one.
1764 /// VN is the value number that we're trying to resolve. InstDefiningValue
1765 /// keeps track of the new InstDefiningValue assignment for the result
1766 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1767 /// whether a value in this or other is a copy from the opposite set.
1768 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1769 /// already been assigned.
1771 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1772 /// contains the value number the copy is from.
1774 static unsigned ComputeUltimateVN(VNInfo *VNI,
1775 SmallVector<VNInfo*, 16> &NewVNInfo,
1776 DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1777 DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1778 SmallVector<int, 16> &ThisValNoAssignments,
1779 SmallVector<int, 16> &OtherValNoAssignments) {
1780 unsigned VN = VNI->id;
1782 // If the VN has already been computed, just return it.
1783 if (ThisValNoAssignments[VN] >= 0)
1784 return ThisValNoAssignments[VN];
1785 // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1787 // If this val is not a copy from the other val, then it must be a new value
1788 // number in the destination.
1789 DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1790 if (I == ThisFromOther.end()) {
1791 NewVNInfo.push_back(VNI);
1792 return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1794 VNInfo *OtherValNo = I->second;
1796 // Otherwise, this *is* a copy from the RHS. If the other side has already
1797 // been computed, return it.
1798 if (OtherValNoAssignments[OtherValNo->id] >= 0)
1799 return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1801 // Mark this value number as currently being computed, then ask what the
1802 // ultimate value # of the other value is.
1803 ThisValNoAssignments[VN] = -2;
1804 unsigned UltimateVN =
1805 ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1806 OtherValNoAssignments, ThisValNoAssignments);
1807 return ThisValNoAssignments[VN] = UltimateVN;
1810 static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) {
1811 return std::find(V.begin(), V.end(), Val) != V.end();
1814 /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
1815 /// the specified live interval is defined by a copy from the specified
1816 /// register.
1817 bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li,
1818 LiveRange *LR,
1819 unsigned Reg) {
1820 unsigned SrcReg = li_->getVNInfoSourceReg(LR->valno);
1821 if (SrcReg == Reg)
1822 return true;
1823 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1824 if ((LR->valno->isPHIDef() || !LR->valno->isDefAccurate()) &&
1825 TargetRegisterInfo::isPhysicalRegister(li.reg) &&
1826 *tri_->getSuperRegisters(li.reg)) {
1827 // It's a sub-register live interval, we may not have precise information.
1828 // Re-compute it.
1829 MachineInstr *DefMI = li_->getInstructionFromIndex(LR->start);
1830 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1831 if (DefMI &&
1832 tii_->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
1833 DstReg == li.reg && SrcReg == Reg) {
1834 // Cache computed info.
1835 LR->valno->def = LR->start;
1836 LR->valno->setCopy(DefMI);
1837 return true;
1840 return false;
1843 /// SimpleJoin - Attempt to joint the specified interval into this one. The
1844 /// caller of this method must guarantee that the RHS only contains a single
1845 /// value number and that the RHS is not defined by a copy from this
1846 /// interval. This returns false if the intervals are not joinable, or it
1847 /// joins them and returns true.
1848 bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
1849 assert(RHS.containsOneValue());
1851 // Some number (potentially more than one) value numbers in the current
1852 // interval may be defined as copies from the RHS. Scan the overlapping
1853 // portions of the LHS and RHS, keeping track of this and looking for
1854 // overlapping live ranges that are NOT defined as copies. If these exist, we
1855 // cannot coalesce.
1857 LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
1858 LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
1860 if (LHSIt->start < RHSIt->start) {
1861 LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
1862 if (LHSIt != LHS.begin()) --LHSIt;
1863 } else if (RHSIt->start < LHSIt->start) {
1864 RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
1865 if (RHSIt != RHS.begin()) --RHSIt;
1868 SmallVector<VNInfo*, 8> EliminatedLHSVals;
1870 while (1) {
1871 // Determine if these live intervals overlap.
1872 bool Overlaps = false;
1873 if (LHSIt->start <= RHSIt->start)
1874 Overlaps = LHSIt->end > RHSIt->start;
1875 else
1876 Overlaps = RHSIt->end > LHSIt->start;
1878 // If the live intervals overlap, there are two interesting cases: if the
1879 // LHS interval is defined by a copy from the RHS, it's ok and we record
1880 // that the LHS value # is the same as the RHS. If it's not, then we cannot
1881 // coalesce these live ranges and we bail out.
1882 if (Overlaps) {
1883 // If we haven't already recorded that this value # is safe, check it.
1884 if (!InVector(LHSIt->valno, EliminatedLHSVals)) {
1885 // Copy from the RHS?
1886 if (!RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg))
1887 return false; // Nope, bail out.
1889 if (LHSIt->contains(RHSIt->valno->def))
1890 // Here is an interesting situation:
1891 // BB1:
1892 // vr1025 = copy vr1024
1893 // ..
1894 // BB2:
1895 // vr1024 = op
1896 // = vr1025
1897 // Even though vr1025 is copied from vr1024, it's not safe to
1898 // coalesce them since the live range of vr1025 intersects the
1899 // def of vr1024. This happens because vr1025 is assigned the
1900 // value of the previous iteration of vr1024.
1901 return false;
1902 EliminatedLHSVals.push_back(LHSIt->valno);
1905 // We know this entire LHS live range is okay, so skip it now.
1906 if (++LHSIt == LHSEnd) break;
1907 continue;
1910 if (LHSIt->end < RHSIt->end) {
1911 if (++LHSIt == LHSEnd) break;
1912 } else {
1913 // One interesting case to check here. It's possible that we have
1914 // something like "X3 = Y" which defines a new value number in the LHS,
1915 // and is the last use of this liverange of the RHS. In this case, we
1916 // want to notice this copy (so that it gets coalesced away) even though
1917 // the live ranges don't actually overlap.
1918 if (LHSIt->start == RHSIt->end) {
1919 if (InVector(LHSIt->valno, EliminatedLHSVals)) {
1920 // We already know that this value number is going to be merged in
1921 // if coalescing succeeds. Just skip the liverange.
1922 if (++LHSIt == LHSEnd) break;
1923 } else {
1924 // Otherwise, if this is a copy from the RHS, mark it as being merged
1925 // in.
1926 if (RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) {
1927 if (LHSIt->contains(RHSIt->valno->def))
1928 // Here is an interesting situation:
1929 // BB1:
1930 // vr1025 = copy vr1024
1931 // ..
1932 // BB2:
1933 // vr1024 = op
1934 // = vr1025
1935 // Even though vr1025 is copied from vr1024, it's not safe to
1936 // coalesced them since live range of vr1025 intersects the
1937 // def of vr1024. This happens because vr1025 is assigned the
1938 // value of the previous iteration of vr1024.
1939 return false;
1940 EliminatedLHSVals.push_back(LHSIt->valno);
1942 // We know this entire LHS live range is okay, so skip it now.
1943 if (++LHSIt == LHSEnd) break;
1948 if (++RHSIt == RHSEnd) break;
1952 // If we got here, we know that the coalescing will be successful and that
1953 // the value numbers in EliminatedLHSVals will all be merged together. Since
1954 // the most common case is that EliminatedLHSVals has a single number, we
1955 // optimize for it: if there is more than one value, we merge them all into
1956 // the lowest numbered one, then handle the interval as if we were merging
1957 // with one value number.
1958 VNInfo *LHSValNo = NULL;
1959 if (EliminatedLHSVals.size() > 1) {
1960 // Loop through all the equal value numbers merging them into the smallest
1961 // one.
1962 VNInfo *Smallest = EliminatedLHSVals[0];
1963 for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
1964 if (EliminatedLHSVals[i]->id < Smallest->id) {
1965 // Merge the current notion of the smallest into the smaller one.
1966 LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
1967 Smallest = EliminatedLHSVals[i];
1968 } else {
1969 // Merge into the smallest.
1970 LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
1973 LHSValNo = Smallest;
1974 } else if (EliminatedLHSVals.empty()) {
1975 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
1976 *tri_->getSuperRegisters(LHS.reg))
1977 // Imprecise sub-register information. Can't handle it.
1978 return false;
1979 llvm_unreachable("No copies from the RHS?");
1980 } else {
1981 LHSValNo = EliminatedLHSVals[0];
1984 // Okay, now that there is a single LHS value number that we're merging the
1985 // RHS into, update the value number info for the LHS to indicate that the
1986 // value number is defined where the RHS value number was.
1987 const VNInfo *VNI = RHS.getValNumInfo(0);
1988 LHSValNo->def = VNI->def;
1989 LHSValNo->setCopy(VNI->getCopy());
1991 // Okay, the final step is to loop over the RHS live intervals, adding them to
1992 // the LHS.
1993 if (VNI->hasPHIKill())
1994 LHSValNo->setHasPHIKill(true);
1995 LHS.addKills(LHSValNo, VNI->kills);
1996 LHS.MergeRangesInAsValue(RHS, LHSValNo);
1998 LHS.ComputeJoinedWeight(RHS);
2000 // Update regalloc hint if both are virtual registers.
2001 if (TargetRegisterInfo::isVirtualRegister(LHS.reg) &&
2002 TargetRegisterInfo::isVirtualRegister(RHS.reg)) {
2003 std::pair<unsigned, unsigned> RHSPref = mri_->getRegAllocationHint(RHS.reg);
2004 std::pair<unsigned, unsigned> LHSPref = mri_->getRegAllocationHint(LHS.reg);
2005 if (RHSPref != LHSPref)
2006 mri_->setRegAllocationHint(LHS.reg, RHSPref.first, RHSPref.second);
2009 // Update the liveintervals of sub-registers.
2010 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg))
2011 for (const unsigned *AS = tri_->getSubRegisters(LHS.reg); *AS; ++AS)
2012 li_->getOrCreateInterval(*AS).MergeInClobberRanges(LHS,
2013 li_->getVNInfoAllocator());
2015 return true;
2018 /// JoinIntervals - Attempt to join these two intervals. On failure, this
2019 /// returns false. Otherwise, if one of the intervals being joined is a
2020 /// physreg, this method always canonicalizes LHS to be it. The output
2021 /// "RHS" will not have been modified, so we can use this information
2022 /// below to update aliases.
2023 bool
2024 SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
2025 bool &Swapped) {
2026 // Compute the final value assignment, assuming that the live ranges can be
2027 // coalesced.
2028 SmallVector<int, 16> LHSValNoAssignments;
2029 SmallVector<int, 16> RHSValNoAssignments;
2030 DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
2031 DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
2032 SmallVector<VNInfo*, 16> NewVNInfo;
2034 // If a live interval is a physical register, conservatively check if any
2035 // of its sub-registers is overlapping the live interval of the virtual
2036 // register. If so, do not coalesce.
2037 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
2038 *tri_->getSubRegisters(LHS.reg)) {
2039 // If it's coalescing a virtual register to a physical register, estimate
2040 // its live interval length. This is the *cost* of scanning an entire live
2041 // interval. If the cost is low, we'll do an exhaustive check instead.
2043 // If this is something like this:
2044 // BB1:
2045 // v1024 = op
2046 // ...
2047 // BB2:
2048 // ...
2049 // RAX = v1024
2051 // That is, the live interval of v1024 crosses a bb. Then we can't rely on
2052 // less conservative check. It's possible a sub-register is defined before
2053 // v1024 (or live in) and live out of BB1.
2054 if (RHS.containsOneValue() &&
2055 li_->intervalIsInOneMBB(RHS) &&
2056 li_->getApproximateInstructionCount(RHS) <= 10) {
2057 // Perform a more exhaustive check for some common cases.
2058 if (li_->conflictsWithPhysRegRef(RHS, LHS.reg, true, JoinedCopies))
2059 return false;
2060 } else {
2061 for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR)
2062 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
2063 DOUT << "Interfere with sub-register ";
2064 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
2065 return false;
2068 } else if (TargetRegisterInfo::isPhysicalRegister(RHS.reg) &&
2069 *tri_->getSubRegisters(RHS.reg)) {
2070 if (LHS.containsOneValue() &&
2071 li_->getApproximateInstructionCount(LHS) <= 10) {
2072 // Perform a more exhaustive check for some common cases.
2073 if (li_->conflictsWithPhysRegRef(LHS, RHS.reg, false, JoinedCopies))
2074 return false;
2075 } else {
2076 for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR)
2077 if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
2078 DOUT << "Interfere with sub-register ";
2079 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
2080 return false;
2085 // Compute ultimate value numbers for the LHS and RHS values.
2086 if (RHS.containsOneValue()) {
2087 // Copies from a liveinterval with a single value are simple to handle and
2088 // very common, handle the special case here. This is important, because
2089 // often RHS is small and LHS is large (e.g. a physreg).
2091 // Find out if the RHS is defined as a copy from some value in the LHS.
2092 int RHSVal0DefinedFromLHS = -1;
2093 int RHSValID = -1;
2094 VNInfo *RHSValNoInfo = NULL;
2095 VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0);
2096 unsigned RHSSrcReg = li_->getVNInfoSourceReg(RHSValNoInfo0);
2097 if (RHSSrcReg == 0 || RHSSrcReg != LHS.reg) {
2098 // If RHS is not defined as a copy from the LHS, we can use simpler and
2099 // faster checks to see if the live ranges are coalescable. This joiner
2100 // can't swap the LHS/RHS intervals though.
2101 if (!TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
2102 return SimpleJoin(LHS, RHS);
2103 } else {
2104 RHSValNoInfo = RHSValNoInfo0;
2106 } else {
2107 // It was defined as a copy from the LHS, find out what value # it is.
2108 RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno;
2109 RHSValID = RHSValNoInfo->id;
2110 RHSVal0DefinedFromLHS = RHSValID;
2113 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
2114 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
2115 NewVNInfo.resize(LHS.getNumValNums(), NULL);
2117 // Okay, *all* of the values in LHS that are defined as a copy from RHS
2118 // should now get updated.
2119 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2120 i != e; ++i) {
2121 VNInfo *VNI = *i;
2122 unsigned VN = VNI->id;
2123 if (unsigned LHSSrcReg = li_->getVNInfoSourceReg(VNI)) {
2124 if (LHSSrcReg != RHS.reg) {
2125 // If this is not a copy from the RHS, its value number will be
2126 // unmodified by the coalescing.
2127 NewVNInfo[VN] = VNI;
2128 LHSValNoAssignments[VN] = VN;
2129 } else if (RHSValID == -1) {
2130 // Otherwise, it is a copy from the RHS, and we don't already have a
2131 // value# for it. Keep the current value number, but remember it.
2132 LHSValNoAssignments[VN] = RHSValID = VN;
2133 NewVNInfo[VN] = RHSValNoInfo;
2134 LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
2135 } else {
2136 // Otherwise, use the specified value #.
2137 LHSValNoAssignments[VN] = RHSValID;
2138 if (VN == (unsigned)RHSValID) { // Else this val# is dead.
2139 NewVNInfo[VN] = RHSValNoInfo;
2140 LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
2143 } else {
2144 NewVNInfo[VN] = VNI;
2145 LHSValNoAssignments[VN] = VN;
2149 assert(RHSValID != -1 && "Didn't find value #?");
2150 RHSValNoAssignments[0] = RHSValID;
2151 if (RHSVal0DefinedFromLHS != -1) {
2152 // This path doesn't go through ComputeUltimateVN so just set
2153 // it to anything.
2154 RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1;
2156 } else {
2157 // Loop over the value numbers of the LHS, seeing if any are defined from
2158 // the RHS.
2159 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2160 i != e; ++i) {
2161 VNInfo *VNI = *i;
2162 if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy?
2163 continue;
2165 // DstReg is known to be a register in the LHS interval. If the src is
2166 // from the RHS interval, we can use its value #.
2167 if (li_->getVNInfoSourceReg(VNI) != RHS.reg)
2168 continue;
2170 // Figure out the value # from the RHS.
2171 LHSValsDefinedFromRHS[VNI]=RHS.getLiveRangeContaining(VNI->def-1)->valno;
2174 // Loop over the value numbers of the RHS, seeing if any are defined from
2175 // the LHS.
2176 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
2177 i != e; ++i) {
2178 VNInfo *VNI = *i;
2179 if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy?
2180 continue;
2182 // DstReg is known to be a register in the RHS interval. If the src is
2183 // from the LHS interval, we can use its value #.
2184 if (li_->getVNInfoSourceReg(VNI) != LHS.reg)
2185 continue;
2187 // Figure out the value # from the LHS.
2188 RHSValsDefinedFromLHS[VNI]=LHS.getLiveRangeContaining(VNI->def-1)->valno;
2191 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
2192 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
2193 NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
2195 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2196 i != e; ++i) {
2197 VNInfo *VNI = *i;
2198 unsigned VN = VNI->id;
2199 if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
2200 continue;
2201 ComputeUltimateVN(VNI, NewVNInfo,
2202 LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
2203 LHSValNoAssignments, RHSValNoAssignments);
2205 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
2206 i != e; ++i) {
2207 VNInfo *VNI = *i;
2208 unsigned VN = VNI->id;
2209 if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
2210 continue;
2211 // If this value number isn't a copy from the LHS, it's a new number.
2212 if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
2213 NewVNInfo.push_back(VNI);
2214 RHSValNoAssignments[VN] = NewVNInfo.size()-1;
2215 continue;
2218 ComputeUltimateVN(VNI, NewVNInfo,
2219 RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
2220 RHSValNoAssignments, LHSValNoAssignments);
2224 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
2225 // interval lists to see if these intervals are coalescable.
2226 LiveInterval::const_iterator I = LHS.begin();
2227 LiveInterval::const_iterator IE = LHS.end();
2228 LiveInterval::const_iterator J = RHS.begin();
2229 LiveInterval::const_iterator JE = RHS.end();
2231 // Skip ahead until the first place of potential sharing.
2232 if (I->start < J->start) {
2233 I = std::upper_bound(I, IE, J->start);
2234 if (I != LHS.begin()) --I;
2235 } else if (J->start < I->start) {
2236 J = std::upper_bound(J, JE, I->start);
2237 if (J != RHS.begin()) --J;
2240 while (1) {
2241 // Determine if these two live ranges overlap.
2242 bool Overlaps;
2243 if (I->start < J->start) {
2244 Overlaps = I->end > J->start;
2245 } else {
2246 Overlaps = J->end > I->start;
2249 // If so, check value # info to determine if they are really different.
2250 if (Overlaps) {
2251 // If the live range overlap will map to the same value number in the
2252 // result liverange, we can still coalesce them. If not, we can't.
2253 if (LHSValNoAssignments[I->valno->id] !=
2254 RHSValNoAssignments[J->valno->id])
2255 return false;
2258 if (I->end < J->end) {
2259 ++I;
2260 if (I == IE) break;
2261 } else {
2262 ++J;
2263 if (J == JE) break;
2267 // Update kill info. Some live ranges are extended due to copy coalescing.
2268 for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
2269 E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
2270 VNInfo *VNI = I->first;
2271 unsigned LHSValID = LHSValNoAssignments[VNI->id];
2272 LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def);
2273 if (VNI->hasPHIKill())
2274 NewVNInfo[LHSValID]->setHasPHIKill(true);
2275 RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
2278 // Update kill info. Some live ranges are extended due to copy coalescing.
2279 for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
2280 E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
2281 VNInfo *VNI = I->first;
2282 unsigned RHSValID = RHSValNoAssignments[VNI->id];
2283 LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def);
2284 if (VNI->hasPHIKill())
2285 NewVNInfo[RHSValID]->setHasPHIKill(true);
2286 LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
2289 // If we get here, we know that we can coalesce the live ranges. Ask the
2290 // intervals to coalesce themselves now.
2291 if ((RHS.ranges.size() > LHS.ranges.size() &&
2292 TargetRegisterInfo::isVirtualRegister(LHS.reg)) ||
2293 TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
2294 RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo,
2295 mri_);
2296 Swapped = true;
2297 } else {
2298 LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
2299 mri_);
2300 Swapped = false;
2302 return true;
2305 namespace {
2306 // DepthMBBCompare - Comparison predicate that sort first based on the loop
2307 // depth of the basic block (the unsigned), and then on the MBB number.
2308 struct DepthMBBCompare {
2309 typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
2310 bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
2311 if (LHS.first > RHS.first) return true; // Deeper loops first
2312 return LHS.first == RHS.first &&
2313 LHS.second->getNumber() < RHS.second->getNumber();
2318 /// getRepIntervalSize - Returns the size of the interval that represents the
2319 /// specified register.
2320 template<class SF>
2321 unsigned JoinPriorityQueue<SF>::getRepIntervalSize(unsigned Reg) {
2322 return Rc->getRepIntervalSize(Reg);
2325 /// CopyRecSort::operator - Join priority queue sorting function.
2327 bool CopyRecSort::operator()(CopyRec left, CopyRec right) const {
2328 // Inner loops first.
2329 if (left.LoopDepth > right.LoopDepth)
2330 return false;
2331 else if (left.LoopDepth == right.LoopDepth)
2332 if (left.isBackEdge && !right.isBackEdge)
2333 return false;
2334 return true;
2337 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
2338 std::vector<CopyRec> &TryAgain) {
2339 DEBUG(errs() << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
2341 std::vector<CopyRec> VirtCopies;
2342 std::vector<CopyRec> PhysCopies;
2343 std::vector<CopyRec> ImpDefCopies;
2344 unsigned LoopDepth = loopInfo->getLoopDepth(MBB);
2345 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2346 MII != E;) {
2347 MachineInstr *Inst = MII++;
2349 // If this isn't a copy nor a extract_subreg, we can't join intervals.
2350 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2351 if (Inst->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
2352 DstReg = Inst->getOperand(0).getReg();
2353 SrcReg = Inst->getOperand(1).getReg();
2354 } else if (Inst->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
2355 Inst->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
2356 DstReg = Inst->getOperand(0).getReg();
2357 SrcReg = Inst->getOperand(2).getReg();
2358 } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
2359 continue;
2361 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
2362 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
2363 if (NewHeuristic) {
2364 JoinQueue->push(CopyRec(Inst, LoopDepth, isBackEdgeCopy(Inst, DstReg)));
2365 } else {
2366 if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
2367 ImpDefCopies.push_back(CopyRec(Inst, 0, false));
2368 else if (SrcIsPhys || DstIsPhys)
2369 PhysCopies.push_back(CopyRec(Inst, 0, false));
2370 else
2371 VirtCopies.push_back(CopyRec(Inst, 0, false));
2375 if (NewHeuristic)
2376 return;
2378 // Try coalescing implicit copies first, followed by copies to / from
2379 // physical registers, then finally copies from virtual registers to
2380 // virtual registers.
2381 for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
2382 CopyRec &TheCopy = ImpDefCopies[i];
2383 bool Again = false;
2384 if (!JoinCopy(TheCopy, Again))
2385 if (Again)
2386 TryAgain.push_back(TheCopy);
2388 for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
2389 CopyRec &TheCopy = PhysCopies[i];
2390 bool Again = false;
2391 if (!JoinCopy(TheCopy, Again))
2392 if (Again)
2393 TryAgain.push_back(TheCopy);
2395 for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
2396 CopyRec &TheCopy = VirtCopies[i];
2397 bool Again = false;
2398 if (!JoinCopy(TheCopy, Again))
2399 if (Again)
2400 TryAgain.push_back(TheCopy);
2404 void SimpleRegisterCoalescing::joinIntervals() {
2405 DOUT << "********** JOINING INTERVALS ***********\n";
2407 if (NewHeuristic)
2408 JoinQueue = new JoinPriorityQueue<CopyRecSort>(this);
2410 std::vector<CopyRec> TryAgainList;
2411 if (loopInfo->empty()) {
2412 // If there are no loops in the function, join intervals in function order.
2413 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
2414 I != E; ++I)
2415 CopyCoalesceInMBB(I, TryAgainList);
2416 } else {
2417 // Otherwise, join intervals in inner loops before other intervals.
2418 // Unfortunately we can't just iterate over loop hierarchy here because
2419 // there may be more MBB's than BB's. Collect MBB's for sorting.
2421 // Join intervals in the function prolog first. We want to join physical
2422 // registers with virtual registers before the intervals got too long.
2423 std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
2424 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
2425 MachineBasicBlock *MBB = I;
2426 MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
2429 // Sort by loop depth.
2430 std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
2432 // Finally, join intervals in loop nest order.
2433 for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
2434 CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
2437 // Joining intervals can allow other intervals to be joined. Iteratively join
2438 // until we make no progress.
2439 if (NewHeuristic) {
2440 SmallVector<CopyRec, 16> TryAgain;
2441 bool ProgressMade = true;
2442 while (ProgressMade) {
2443 ProgressMade = false;
2444 while (!JoinQueue->empty()) {
2445 CopyRec R = JoinQueue->pop();
2446 bool Again = false;
2447 bool Success = JoinCopy(R, Again);
2448 if (Success)
2449 ProgressMade = true;
2450 else if (Again)
2451 TryAgain.push_back(R);
2454 if (ProgressMade) {
2455 while (!TryAgain.empty()) {
2456 JoinQueue->push(TryAgain.back());
2457 TryAgain.pop_back();
2461 } else {
2462 bool ProgressMade = true;
2463 while (ProgressMade) {
2464 ProgressMade = false;
2466 for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
2467 CopyRec &TheCopy = TryAgainList[i];
2468 if (TheCopy.MI) {
2469 bool Again = false;
2470 bool Success = JoinCopy(TheCopy, Again);
2471 if (Success || !Again) {
2472 TheCopy.MI = 0; // Mark this one as done.
2473 ProgressMade = true;
2480 if (NewHeuristic)
2481 delete JoinQueue;
2484 /// Return true if the two specified registers belong to different register
2485 /// classes. The registers may be either phys or virt regs.
2486 bool
2487 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
2488 unsigned RegB) const {
2489 // Get the register classes for the first reg.
2490 if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
2491 assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
2492 "Shouldn't consider two physregs!");
2493 return !mri_->getRegClass(RegB)->contains(RegA);
2496 // Compare against the regclass for the second reg.
2497 const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
2498 if (TargetRegisterInfo::isVirtualRegister(RegB)) {
2499 const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
2500 return RegClassA != RegClassB;
2502 return !RegClassA->contains(RegB);
2505 /// lastRegisterUse - Returns the last use of the specific register between
2506 /// cycles Start and End or NULL if there are no uses.
2507 MachineOperand *
2508 SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
2509 unsigned Reg, unsigned &UseIdx) const{
2510 UseIdx = 0;
2511 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2512 MachineOperand *LastUse = NULL;
2513 for (MachineRegisterInfo::use_iterator I = mri_->use_begin(Reg),
2514 E = mri_->use_end(); I != E; ++I) {
2515 MachineOperand &Use = I.getOperand();
2516 MachineInstr *UseMI = Use.getParent();
2517 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2518 if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
2519 SrcReg == DstReg)
2520 // Ignore identity copies.
2521 continue;
2522 unsigned Idx = li_->getInstructionIndex(UseMI);
2523 if (Idx >= Start && Idx < End && Idx >= UseIdx) {
2524 LastUse = &Use;
2525 UseIdx = li_->getUseIndex(Idx);
2528 return LastUse;
2531 int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
2532 int s = Start;
2533 while (e >= s) {
2534 // Skip deleted instructions
2535 MachineInstr *MI = li_->getInstructionFromIndex(e);
2536 while ((e - InstrSlots::NUM) >= s && !MI) {
2537 e -= InstrSlots::NUM;
2538 MI = li_->getInstructionFromIndex(e);
2540 if (e < s || MI == NULL)
2541 return NULL;
2543 // Ignore identity copies.
2544 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2545 if (!(tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
2546 SrcReg == DstReg))
2547 for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
2548 MachineOperand &Use = MI->getOperand(i);
2549 if (Use.isReg() && Use.isUse() && Use.getReg() &&
2550 tri_->regsOverlap(Use.getReg(), Reg)) {
2551 UseIdx = li_->getUseIndex(e);
2552 return &Use;
2556 e -= InstrSlots::NUM;
2559 return NULL;
2563 void SimpleRegisterCoalescing::printRegName(unsigned reg) const {
2564 if (TargetRegisterInfo::isPhysicalRegister(reg))
2565 cerr << tri_->getName(reg);
2566 else
2567 cerr << "%reg" << reg;
2570 void SimpleRegisterCoalescing::releaseMemory() {
2571 JoinedCopies.clear();
2572 ReMatCopies.clear();
2573 ReMatDefs.clear();
2576 static bool isZeroLengthInterval(LiveInterval *li) {
2577 for (LiveInterval::Ranges::const_iterator
2578 i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
2579 if (i->end - i->start > LiveInterval::InstrSlots::NUM)
2580 return false;
2581 return true;
2585 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
2586 mf_ = &fn;
2587 mri_ = &fn.getRegInfo();
2588 tm_ = &fn.getTarget();
2589 tri_ = tm_->getRegisterInfo();
2590 tii_ = tm_->getInstrInfo();
2591 li_ = &getAnalysis<LiveIntervals>();
2592 loopInfo = &getAnalysis<MachineLoopInfo>();
2594 DEBUG(errs() << "********** SIMPLE REGISTER COALESCING **********\n"
2595 << "********** Function: "
2596 << ((Value*)mf_->getFunction())->getName() << '\n');
2598 allocatableRegs_ = tri_->getAllocatableSet(fn);
2599 for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
2600 E = tri_->regclass_end(); I != E; ++I)
2601 allocatableRCRegs_.insert(std::make_pair(*I,
2602 tri_->getAllocatableSet(fn, *I)));
2604 // Join (coalesce) intervals if requested.
2605 if (EnableJoining) {
2606 joinIntervals();
2607 DEBUG({
2608 DOUT << "********** INTERVALS POST JOINING **********\n";
2609 for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I){
2610 I->second->print(DOUT, tri_);
2611 DOUT << "\n";
2616 // Perform a final pass over the instructions and compute spill weights
2617 // and remove identity moves.
2618 SmallVector<unsigned, 4> DeadDefs;
2619 for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
2620 mbbi != mbbe; ++mbbi) {
2621 MachineBasicBlock* mbb = mbbi;
2622 unsigned loopDepth = loopInfo->getLoopDepth(mbb);
2624 for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
2625 mii != mie; ) {
2626 MachineInstr *MI = mii;
2627 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2628 if (JoinedCopies.count(MI)) {
2629 // Delete all coalesced copies.
2630 if (!tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
2631 assert((MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
2632 MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
2633 MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
2634 "Unrecognized copy instruction");
2635 DstReg = MI->getOperand(0).getReg();
2637 if (MI->registerDefIsDead(DstReg)) {
2638 LiveInterval &li = li_->getInterval(DstReg);
2639 if (!ShortenDeadCopySrcLiveRange(li, MI))
2640 ShortenDeadCopyLiveRange(li, MI);
2642 li_->RemoveMachineInstrFromMaps(MI);
2643 mii = mbbi->erase(mii);
2644 ++numPeep;
2645 continue;
2648 // Now check if this is a remat'ed def instruction which is now dead.
2649 if (ReMatDefs.count(MI)) {
2650 bool isDead = true;
2651 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2652 const MachineOperand &MO = MI->getOperand(i);
2653 if (!MO.isReg())
2654 continue;
2655 unsigned Reg = MO.getReg();
2656 if (!Reg)
2657 continue;
2658 if (TargetRegisterInfo::isVirtualRegister(Reg))
2659 DeadDefs.push_back(Reg);
2660 if (MO.isDead())
2661 continue;
2662 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
2663 !mri_->use_empty(Reg)) {
2664 isDead = false;
2665 break;
2668 if (isDead) {
2669 while (!DeadDefs.empty()) {
2670 unsigned DeadDef = DeadDefs.back();
2671 DeadDefs.pop_back();
2672 RemoveDeadDef(li_->getInterval(DeadDef), MI);
2674 li_->RemoveMachineInstrFromMaps(mii);
2675 mii = mbbi->erase(mii);
2676 continue;
2677 } else
2678 DeadDefs.clear();
2681 // If the move will be an identity move delete it
2682 bool isMove= tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
2683 if (isMove && SrcReg == DstReg) {
2684 if (li_->hasInterval(SrcReg)) {
2685 LiveInterval &RegInt = li_->getInterval(SrcReg);
2686 // If def of this move instruction is dead, remove its live range
2687 // from the dstination register's live interval.
2688 if (MI->registerDefIsDead(DstReg)) {
2689 if (!ShortenDeadCopySrcLiveRange(RegInt, MI))
2690 ShortenDeadCopyLiveRange(RegInt, MI);
2693 li_->RemoveMachineInstrFromMaps(MI);
2694 mii = mbbi->erase(mii);
2695 ++numPeep;
2696 } else {
2697 SmallSet<unsigned, 4> UniqueUses;
2698 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2699 const MachineOperand &mop = MI->getOperand(i);
2700 if (mop.isReg() && mop.getReg() &&
2701 TargetRegisterInfo::isVirtualRegister(mop.getReg())) {
2702 unsigned reg = mop.getReg();
2703 // Multiple uses of reg by the same instruction. It should not
2704 // contribute to spill weight again.
2705 if (UniqueUses.count(reg) != 0)
2706 continue;
2707 LiveInterval &RegInt = li_->getInterval(reg);
2708 RegInt.weight +=
2709 li_->getSpillWeight(mop.isDef(), mop.isUse(), loopDepth);
2710 UniqueUses.insert(reg);
2713 ++mii;
2718 for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
2719 LiveInterval &LI = *I->second;
2720 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
2721 // If the live interval length is essentially zero, i.e. in every live
2722 // range the use follows def immediately, it doesn't make sense to spill
2723 // it and hope it will be easier to allocate for this li.
2724 if (isZeroLengthInterval(&LI))
2725 LI.weight = HUGE_VALF;
2726 else {
2727 bool isLoad = false;
2728 SmallVector<LiveInterval*, 4> SpillIs;
2729 if (li_->isReMaterializable(LI, SpillIs, isLoad)) {
2730 // If all of the definitions of the interval are re-materializable,
2731 // it is a preferred candidate for spilling. If non of the defs are
2732 // loads, then it's potentially very cheap to re-materialize.
2733 // FIXME: this gets much more complicated once we support non-trivial
2734 // re-materialization.
2735 if (isLoad)
2736 LI.weight *= 0.9F;
2737 else
2738 LI.weight *= 0.5F;
2742 // Slightly prefer live interval that has been assigned a preferred reg.
2743 std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(LI.reg);
2744 if (Hint.first || Hint.second)
2745 LI.weight *= 1.01F;
2747 // Divide the weight of the interval by its size. This encourages
2748 // spilling of intervals that are large and have few uses, and
2749 // discourages spilling of small intervals with many uses.
2750 LI.weight /= li_->getApproximateInstructionCount(LI) * InstrSlots::NUM;
2754 DEBUG(dump());
2755 return true;
2758 /// print - Implement the dump method.
2759 void SimpleRegisterCoalescing::print(std::ostream &O, const Module* m) const {
2760 li_->print(O, m);
2763 RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
2764 return new SimpleRegisterCoalescing();
2767 // Make sure that anything that uses RegisterCoalescer pulls in this file...
2768 DEFINING_FILE_FOR(SimpleRegisterCoalescing)