1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/Value.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterCoalescer.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
40 STATISTIC(numJoins
, "Number of interval joins performed");
41 STATISTIC(numCrossRCs
, "Number of cross class joins performed");
42 STATISTIC(numCommutes
, "Number of instruction commuting performed");
43 STATISTIC(numExtends
, "Number of copies extended");
44 STATISTIC(NumReMats
, "Number of instructions re-materialized");
45 STATISTIC(numPeep
, "Number of identity moves eliminated after coalescing");
46 STATISTIC(numAborts
, "Number of times interval joining aborted");
47 STATISTIC(numDeadValNo
, "Number of valno def marked dead");
49 char SimpleRegisterCoalescing::ID
= 0;
51 EnableJoining("join-liveintervals",
52 cl::desc("Coalesce copies (default=true)"),
56 NewHeuristic("new-coalescer-heuristic",
57 cl::desc("Use new coalescer heuristic"),
58 cl::init(false), cl::Hidden
);
61 DisableCrossClassJoin("disable-cross-class-join",
62 cl::desc("Avoid coalescing cross register class copies"),
63 cl::init(false), cl::Hidden
);
66 PhysJoinTweak("tweak-phys-join-heuristics",
67 cl::desc("Tweak heuristics for joining phys reg with vr"),
68 cl::init(false), cl::Hidden
);
70 static RegisterPass
<SimpleRegisterCoalescing
>
71 X("simple-register-coalescing", "Simple Register Coalescing");
73 // Declare that we implement the RegisterCoalescer interface
74 static RegisterAnalysisGroup
<RegisterCoalescer
, true/*The Default*/> V(X
);
76 const PassInfo
*const llvm::SimpleRegisterCoalescingID
= &X
;
78 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage
&AU
) const {
80 AU
.addRequired
<LiveIntervals
>();
81 AU
.addPreserved
<LiveIntervals
>();
82 AU
.addRequired
<MachineLoopInfo
>();
83 AU
.addPreserved
<MachineLoopInfo
>();
84 AU
.addPreservedID(MachineDominatorsID
);
86 AU
.addPreservedID(StrongPHIEliminationID
);
88 AU
.addPreservedID(PHIEliminationID
);
89 AU
.addPreservedID(TwoAddressInstructionPassID
);
90 MachineFunctionPass::getAnalysisUsage(AU
);
93 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
94 /// being the source and IntB being the dest, thus this defines a value number
95 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
96 /// see if we can merge these two pieces of B into a single value number,
97 /// eliminating a copy. For example:
101 /// B1 = A3 <- this copy
103 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
104 /// value number to be replaced with B0 (which simplifies the B liveinterval).
106 /// This returns true if an interval was modified.
108 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval
&IntA
,
110 MachineInstr
*CopyMI
) {
111 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
113 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
114 // the example above.
115 LiveInterval::iterator BLR
= IntB
.FindLiveRangeContaining(CopyIdx
);
116 assert(BLR
!= IntB
.end() && "Live range not found!");
117 VNInfo
*BValNo
= BLR
->valno
;
119 // Get the location that B is defined at. Two options: either this value has
120 // an unknown definition point or it is defined at CopyIdx. If unknown, we
122 if (!BValNo
->getCopy()) return false;
123 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
125 // AValNo is the value number in A that defines the copy, A3 in the example.
126 unsigned CopyUseIdx
= li_
->getUseIndex(CopyIdx
);
127 LiveInterval::iterator ALR
= IntA
.FindLiveRangeContaining(CopyUseIdx
);
128 assert(ALR
!= IntA
.end() && "Live range not found!");
129 VNInfo
*AValNo
= ALR
->valno
;
130 // If it's re-defined by an early clobber somewhere in the live range, then
131 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
133 // 172 %ECX<def> = MOV32rr %reg1039<kill>
134 // 180 INLINEASM <es:subl $5,$1
135 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
136 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
137 // 188 %EAX<def> = MOV32rr %EAX<kill>
138 // 196 %ECX<def> = MOV32rr %ECX<kill>
139 // 204 %ECX<def> = MOV32rr %ECX<kill>
140 // 212 %EAX<def> = MOV32rr %EAX<kill>
141 // 220 %EAX<def> = MOV32rr %EAX
142 // 228 %reg1039<def> = MOV32rr %ECX<kill>
143 // The early clobber operand ties ECX input to the ECX def.
145 // The live interval of ECX is represented as this:
146 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
147 // The coalescer has no idea there was a def in the middle of [174,230].
148 if (AValNo
->hasRedefByEC())
151 // If AValNo is defined as a copy from IntB, we can potentially process this.
152 // Get the instruction that defines this value number.
153 unsigned SrcReg
= li_
->getVNInfoSourceReg(AValNo
);
154 if (!SrcReg
) return false; // Not defined by a copy.
156 // If the value number is not defined by a copy instruction, ignore it.
158 // If the source register comes from an interval other than IntB, we can't
160 if (SrcReg
!= IntB
.reg
) return false;
162 // Get the LiveRange in IntB that this value number starts with.
163 LiveInterval::iterator ValLR
= IntB
.FindLiveRangeContaining(AValNo
->def
-1);
164 assert(ValLR
!= IntB
.end() && "Live range not found!");
166 // Make sure that the end of the live range is inside the same block as
168 MachineInstr
*ValLREndInst
= li_
->getInstructionFromIndex(ValLR
->end
-1);
170 ValLREndInst
->getParent() != CopyMI
->getParent()) return false;
172 // Okay, we now know that ValLR ends in the same block that the CopyMI
173 // live-range starts. If there are no intervening live ranges between them in
174 // IntB, we can merge them.
175 if (ValLR
+1 != BLR
) return false;
177 // If a live interval is a physical register, conservatively check if any
178 // of its sub-registers is overlapping the live interval of the virtual
179 // register. If so, do not coalesce.
180 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
) &&
181 *tri_
->getSubRegisters(IntB
.reg
)) {
182 for (const unsigned* SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
)
183 if (li_
->hasInterval(*SR
) && IntA
.overlaps(li_
->getInterval(*SR
))) {
184 DOUT
<< "Interfere with sub-register ";
185 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
190 DOUT
<< "\nExtending: "; IntB
.print(DOUT
, tri_
);
192 unsigned FillerStart
= ValLR
->end
, FillerEnd
= BLR
->start
;
193 // We are about to delete CopyMI, so need to remove it as the 'instruction
194 // that defines this value #'. Update the the valnum with the new defining
196 BValNo
->def
= FillerStart
;
199 // Okay, we can merge them. We need to insert a new liverange:
200 // [ValLR.end, BLR.begin) of either value number, then we merge the
201 // two value numbers.
202 IntB
.addRange(LiveRange(FillerStart
, FillerEnd
, BValNo
));
204 // If the IntB live range is assigned to a physical register, and if that
205 // physreg has sub-registers, update their live intervals as well.
206 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
)) {
207 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
208 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
209 SRLI
.addRange(LiveRange(FillerStart
, FillerEnd
,
210 SRLI
.getNextValue(FillerStart
, 0, true,
211 li_
->getVNInfoAllocator())));
215 // Okay, merge "B1" into the same value number as "B0".
216 if (BValNo
!= ValLR
->valno
) {
217 IntB
.addKills(ValLR
->valno
, BValNo
->kills
);
218 IntB
.MergeValueNumberInto(BValNo
, ValLR
->valno
);
220 DOUT
<< " result = "; IntB
.print(DOUT
, tri_
);
223 // If the source instruction was killing the source register before the
224 // merge, unset the isKill marker given the live range has been extended.
225 int UIdx
= ValLREndInst
->findRegisterUseOperandIdx(IntB
.reg
, true);
227 ValLREndInst
->getOperand(UIdx
).setIsKill(false);
228 IntB
.removeKill(ValLR
->valno
, FillerStart
);
231 // If the copy instruction was killing the destination register before the
232 // merge, find the last use and trim the live range. That will also add the
234 if (CopyMI
->killsRegister(IntA
.reg
))
235 TrimLiveIntervalToLastUse(CopyUseIdx
, CopyMI
->getParent(), IntA
, ALR
);
241 /// HasOtherReachingDefs - Return true if there are definitions of IntB
242 /// other than BValNo val# that can reach uses of AValno val# of IntA.
243 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval
&IntA
,
247 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
249 if (AI
->valno
!= AValNo
) continue;
250 LiveInterval::Ranges::iterator BI
=
251 std::upper_bound(IntB
.ranges
.begin(), IntB
.ranges
.end(), AI
->start
);
252 if (BI
!= IntB
.ranges
.begin())
254 for (; BI
!= IntB
.ranges
.end() && AI
->end
>= BI
->start
; ++BI
) {
255 if (BI
->valno
== BValNo
)
257 if (BI
->start
<= AI
->start
&& BI
->end
> AI
->start
)
259 if (BI
->start
> AI
->start
&& BI
->start
< AI
->end
)
266 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
267 /// being the source and IntB being the dest, thus this defines a value number
268 /// in IntB. If the source value number (in IntA) is defined by a commutable
269 /// instruction and its other operand is coalesced to the copy dest register,
270 /// see if we can transform the copy into a noop by commuting the definition. For
273 /// A3 = op A2 B0<kill>
275 /// B1 = A3 <- this copy
277 /// = op A3 <- more uses
281 /// B2 = op B0 A2<kill>
283 /// B1 = B2 <- now an identify copy
285 /// = op B2 <- more uses
287 /// This returns true if an interval was modified.
289 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval
&IntA
,
291 MachineInstr
*CopyMI
) {
292 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
294 // FIXME: For now, only eliminate the copy by commuting its def when the
295 // source register is a virtual register. We want to guard against cases
296 // where the copy is a back edge copy and commuting the def lengthen the
297 // live interval of the source register to the entire loop.
298 if (TargetRegisterInfo::isPhysicalRegister(IntA
.reg
))
301 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
302 // the example above.
303 LiveInterval::iterator BLR
= IntB
.FindLiveRangeContaining(CopyIdx
);
304 assert(BLR
!= IntB
.end() && "Live range not found!");
305 VNInfo
*BValNo
= BLR
->valno
;
307 // Get the location that B is defined at. Two options: either this value has
308 // an unknown definition point or it is defined at CopyIdx. If unknown, we
310 if (!BValNo
->getCopy()) return false;
311 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
313 // AValNo is the value number in A that defines the copy, A3 in the example.
314 LiveInterval::iterator ALR
= IntA
.FindLiveRangeContaining(CopyIdx
-1);
315 assert(ALR
!= IntA
.end() && "Live range not found!");
316 VNInfo
*AValNo
= ALR
->valno
;
317 // If other defs can reach uses of this def, then it's not safe to perform
318 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
320 if (AValNo
->isPHIDef() || !AValNo
->isDefAccurate() ||
321 AValNo
->isUnused() || AValNo
->hasPHIKill())
323 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(AValNo
->def
);
324 const TargetInstrDesc
&TID
= DefMI
->getDesc();
325 if (!TID
.isCommutable())
327 // If DefMI is a two-address instruction then commuting it will change the
328 // destination register.
329 int DefIdx
= DefMI
->findRegisterDefOperandIdx(IntA
.reg
);
330 assert(DefIdx
!= -1);
332 if (!DefMI
->isRegTiedToUseOperand(DefIdx
, &UseOpIdx
))
334 unsigned Op1
, Op2
, NewDstIdx
;
335 if (!tii_
->findCommutedOpIndices(DefMI
, Op1
, Op2
))
339 else if (Op2
== UseOpIdx
)
344 MachineOperand
&NewDstMO
= DefMI
->getOperand(NewDstIdx
);
345 unsigned NewReg
= NewDstMO
.getReg();
346 if (NewReg
!= IntB
.reg
|| !NewDstMO
.isKill())
349 // Make sure there are no other definitions of IntB that would reach the
350 // uses which the new definition can reach.
351 if (HasOtherReachingDefs(IntA
, IntB
, AValNo
, BValNo
))
354 // If some of the uses of IntA.reg is already coalesced away, return false.
355 // It's not possible to determine whether it's safe to perform the coalescing.
356 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(IntA
.reg
),
357 UE
= mri_
->use_end(); UI
!= UE
; ++UI
) {
358 MachineInstr
*UseMI
= &*UI
;
359 unsigned UseIdx
= li_
->getInstructionIndex(UseMI
);
360 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
361 if (ULR
== IntA
.end())
363 if (ULR
->valno
== AValNo
&& JoinedCopies
.count(UseMI
))
367 // At this point we have decided that it is legal to do this
368 // transformation. Start by commuting the instruction.
369 MachineBasicBlock
*MBB
= DefMI
->getParent();
370 MachineInstr
*NewMI
= tii_
->commuteInstruction(DefMI
);
373 if (NewMI
!= DefMI
) {
374 li_
->ReplaceMachineInstrInMaps(DefMI
, NewMI
);
375 MBB
->insert(DefMI
, NewMI
);
378 unsigned OpIdx
= NewMI
->findRegisterUseOperandIdx(IntA
.reg
, false);
379 NewMI
->getOperand(OpIdx
).setIsKill();
381 bool BHasPHIKill
= BValNo
->hasPHIKill();
382 SmallVector
<VNInfo
*, 4> BDeadValNos
;
383 VNInfo::KillSet BKills
;
384 std::map
<unsigned, unsigned> BExtend
;
386 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
395 // then do not add kills of A to the newly created B interval.
396 bool Extended
= BLR
->end
> ALR
->end
&& ALR
->end
!= ALR
->start
;
398 BExtend
[ALR
->end
] = BLR
->end
;
400 // Update uses of IntA of the specific Val# with IntB.
401 bool BHasSubRegs
= false;
402 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
))
403 BHasSubRegs
= *tri_
->getSubRegisters(IntB
.reg
);
404 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(IntA
.reg
),
405 UE
= mri_
->use_end(); UI
!= UE
;) {
406 MachineOperand
&UseMO
= UI
.getOperand();
407 MachineInstr
*UseMI
= &*UI
;
409 if (JoinedCopies
.count(UseMI
))
411 unsigned UseIdx
= li_
->getInstructionIndex(UseMI
);
412 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
413 if (ULR
== IntA
.end() || ULR
->valno
!= AValNo
)
415 UseMO
.setReg(NewReg
);
418 if (UseMO
.isKill()) {
420 UseMO
.setIsKill(false);
422 BKills
.push_back(VNInfo::KillInfo(false, li_
->getUseIndex(UseIdx
)+1));
424 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
425 if (!tii_
->isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
427 if (DstReg
== IntB
.reg
) {
428 // This copy will become a noop. If it's defining a new val#,
429 // remove that val# as well. However this live range is being
430 // extended to the end of the existing live range defined by the copy.
431 unsigned DefIdx
= li_
->getDefIndex(UseIdx
);
432 const LiveRange
*DLR
= IntB
.getLiveRangeContaining(DefIdx
);
433 BHasPHIKill
|= DLR
->valno
->hasPHIKill();
434 assert(DLR
->valno
->def
== DefIdx
);
435 BDeadValNos
.push_back(DLR
->valno
);
436 BExtend
[DLR
->start
] = DLR
->end
;
437 JoinedCopies
.insert(UseMI
);
438 // If this is a kill but it's going to be removed, the last use
439 // of the same val# is the new kill.
445 // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
446 // simply extend BLR if CopyMI doesn't end the range.
447 DOUT
<< "\nExtending: "; IntB
.print(DOUT
, tri_
);
449 // Remove val#'s defined by copies that will be coalesced away.
450 for (unsigned i
= 0, e
= BDeadValNos
.size(); i
!= e
; ++i
) {
451 VNInfo
*DeadVNI
= BDeadValNos
[i
];
453 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
454 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
455 const LiveRange
*SRLR
= SRLI
.getLiveRangeContaining(DeadVNI
->def
);
456 SRLI
.removeValNo(SRLR
->valno
);
459 IntB
.removeValNo(BDeadValNos
[i
]);
462 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
463 // is updated. Kills are also updated.
464 VNInfo
*ValNo
= BValNo
;
465 ValNo
->def
= AValNo
->def
;
467 for (unsigned j
= 0, ee
= ValNo
->kills
.size(); j
!= ee
; ++j
) {
468 unsigned Kill
= ValNo
->kills
[j
].killIdx
;
469 if (Kill
!= BLR
->end
)
470 BKills
.push_back(VNInfo::KillInfo(ValNo
->kills
[j
].isPHIKill
, Kill
));
472 ValNo
->kills
.clear();
473 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
475 if (AI
->valno
!= AValNo
) continue;
476 unsigned End
= AI
->end
;
477 std::map
<unsigned, unsigned>::iterator EI
= BExtend
.find(End
);
478 if (EI
!= BExtend
.end())
480 IntB
.addRange(LiveRange(AI
->start
, End
, ValNo
));
482 // If the IntB live range is assigned to a physical register, and if that
483 // physreg has sub-registers, update their live intervals as well.
485 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
486 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
487 SRLI
.MergeInClobberRange(AI
->start
, End
, li_
->getVNInfoAllocator());
491 IntB
.addKills(ValNo
, BKills
);
492 ValNo
->setHasPHIKill(BHasPHIKill
);
494 DOUT
<< " result = "; IntB
.print(DOUT
, tri_
);
497 DOUT
<< "\nShortening: "; IntA
.print(DOUT
, tri_
);
498 IntA
.removeValNo(AValNo
);
499 DOUT
<< " result = "; IntA
.print(DOUT
, tri_
);
506 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
507 /// fallthoughs to SuccMBB.
508 static bool isSameOrFallThroughBB(MachineBasicBlock
*MBB
,
509 MachineBasicBlock
*SuccMBB
,
510 const TargetInstrInfo
*tii_
) {
513 MachineBasicBlock
*TBB
= 0, *FBB
= 0;
514 SmallVector
<MachineOperand
, 4> Cond
;
515 return !tii_
->AnalyzeBranch(*MBB
, TBB
, FBB
, Cond
) && !TBB
&& !FBB
&&
516 MBB
->isSuccessor(SuccMBB
);
519 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
520 /// from a physical register live interval as well as from the live intervals
521 /// of its sub-registers.
522 static void removeRange(LiveInterval
&li
, unsigned Start
, unsigned End
,
523 LiveIntervals
*li_
, const TargetRegisterInfo
*tri_
) {
524 li
.removeRange(Start
, End
, true);
525 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
)) {
526 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
527 if (!li_
->hasInterval(*SR
))
529 LiveInterval
&sli
= li_
->getInterval(*SR
);
530 unsigned RemoveEnd
= Start
;
531 while (RemoveEnd
!= End
) {
532 LiveInterval::iterator LR
= sli
.FindLiveRangeContaining(Start
);
535 RemoveEnd
= (LR
->end
< End
) ? LR
->end
: End
;
536 sli
.removeRange(Start
, RemoveEnd
, true);
543 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
544 /// as the copy instruction, trim the live interval to the last use and return
547 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx
,
548 MachineBasicBlock
*CopyMBB
,
550 const LiveRange
*LR
) {
551 unsigned MBBStart
= li_
->getMBBStartIdx(CopyMBB
);
553 MachineOperand
*LastUse
= lastRegisterUse(LR
->start
, CopyIdx
-1, li
.reg
,
556 MachineInstr
*LastUseMI
= LastUse
->getParent();
557 if (!isSameOrFallThroughBB(LastUseMI
->getParent(), CopyMBB
, tii_
)) {
564 // r1025<dead> = r1024<kill>
565 if (MBBStart
< LR
->end
)
566 removeRange(li
, MBBStart
, LR
->end
, li_
, tri_
);
570 // There are uses before the copy, just shorten the live range to the end
572 LastUse
->setIsKill();
573 removeRange(li
, li_
->getDefIndex(LastUseIdx
), LR
->end
, li_
, tri_
);
574 li
.addKill(LR
->valno
, LastUseIdx
+1, false);
575 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
576 if (tii_
->isMoveInstr(*LastUseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
578 // Last use is itself an identity code.
579 int DeadIdx
= LastUseMI
->findRegisterDefOperandIdx(li
.reg
, false, tri_
);
580 LastUseMI
->getOperand(DeadIdx
).setIsDead();
586 if (LR
->start
<= MBBStart
&& LR
->end
> MBBStart
) {
587 if (LR
->start
== 0) {
588 assert(TargetRegisterInfo::isPhysicalRegister(li
.reg
));
589 // Live-in to the function but dead. Remove it from entry live-in set.
590 mf_
->begin()->removeLiveIn(li
.reg
);
592 // FIXME: Shorten intervals in BBs that reaches this BB.
598 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
599 /// computation, replace the copy by rematerialize the definition.
600 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval
&SrcInt
,
603 MachineInstr
*CopyMI
) {
604 unsigned CopyIdx
= li_
->getUseIndex(li_
->getInstructionIndex(CopyMI
));
605 LiveInterval::iterator SrcLR
= SrcInt
.FindLiveRangeContaining(CopyIdx
);
606 assert(SrcLR
!= SrcInt
.end() && "Live range not found!");
607 VNInfo
*ValNo
= SrcLR
->valno
;
608 // If other defs can reach uses of this def, then it's not safe to perform
609 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
611 if (ValNo
->isPHIDef() || !ValNo
->isDefAccurate() ||
612 ValNo
->isUnused() || ValNo
->hasPHIKill())
614 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(ValNo
->def
);
615 const TargetInstrDesc
&TID
= DefMI
->getDesc();
616 if (!TID
.isAsCheapAsAMove())
618 if (!DefMI
->getDesc().isRematerializable() ||
619 !tii_
->isTriviallyReMaterializable(DefMI
))
621 bool SawStore
= false;
622 if (!DefMI
->isSafeToMove(tii_
, SawStore
))
624 if (TID
.getNumDefs() != 1)
626 if (DefMI
->getOpcode() != TargetInstrInfo::IMPLICIT_DEF
) {
627 // Make sure the copy destination register class fits the instruction
628 // definition register class. The mismatch can happen as a result of earlier
629 // extract_subreg, insert_subreg, subreg_to_reg coalescing.
630 const TargetRegisterClass
*RC
= TID
.OpInfo
[0].getRegClass(tri_
);
631 if (TargetRegisterInfo::isVirtualRegister(DstReg
)) {
632 if (mri_
->getRegClass(DstReg
) != RC
)
634 } else if (!RC
->contains(DstReg
))
638 unsigned DefIdx
= li_
->getDefIndex(CopyIdx
);
639 const LiveRange
*DLR
= li_
->getInterval(DstReg
).getLiveRangeContaining(DefIdx
);
640 DLR
->valno
->setCopy(0);
641 // Don't forget to update sub-register intervals.
642 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
643 for (const unsigned* SR
= tri_
->getSubRegisters(DstReg
); *SR
; ++SR
) {
644 if (!li_
->hasInterval(*SR
))
646 DLR
= li_
->getInterval(*SR
).getLiveRangeContaining(DefIdx
);
647 if (DLR
&& DLR
->valno
->getCopy() == CopyMI
)
648 DLR
->valno
->setCopy(0);
652 // If copy kills the source register, find the last use and propagate
654 bool checkForDeadDef
= false;
655 MachineBasicBlock
*MBB
= CopyMI
->getParent();
656 if (CopyMI
->killsRegister(SrcInt
.reg
))
657 if (!TrimLiveIntervalToLastUse(CopyIdx
, MBB
, SrcInt
, SrcLR
)) {
658 checkForDeadDef
= true;
661 MachineBasicBlock::iterator MII
= next(MachineBasicBlock::iterator(CopyMI
));
662 tii_
->reMaterialize(*MBB
, MII
, DstReg
, DstSubIdx
, DefMI
);
663 MachineInstr
*NewMI
= prior(MII
);
665 if (checkForDeadDef
) {
666 // PR4090 fix: Trim interval failed because there was no use of the
667 // source interval in this MBB. If the def is in this MBB too then we
668 // should mark it dead:
669 if (DefMI
->getParent() == MBB
) {
670 DefMI
->addRegisterDead(SrcInt
.reg
, tri_
);
671 SrcLR
->end
= SrcLR
->start
+ 1;
675 // CopyMI may have implicit operands, transfer them over to the newly
676 // rematerialized instruction. And update implicit def interval valnos.
677 for (unsigned i
= CopyMI
->getDesc().getNumOperands(),
678 e
= CopyMI
->getNumOperands(); i
!= e
; ++i
) {
679 MachineOperand
&MO
= CopyMI
->getOperand(i
);
680 if (MO
.isReg() && MO
.isImplicit())
681 NewMI
->addOperand(MO
);
682 if (MO
.isDef() && li_
->hasInterval(MO
.getReg())) {
683 unsigned Reg
= MO
.getReg();
684 DLR
= li_
->getInterval(Reg
).getLiveRangeContaining(DefIdx
);
685 if (DLR
&& DLR
->valno
->getCopy() == CopyMI
)
686 DLR
->valno
->setCopy(0);
690 li_
->ReplaceMachineInstrInMaps(CopyMI
, NewMI
);
691 CopyMI
->eraseFromParent();
692 ReMatCopies
.insert(CopyMI
);
693 ReMatDefs
.insert(DefMI
);
698 /// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
700 bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr
*CopyMI
,
701 unsigned DstReg
) const {
702 MachineBasicBlock
*MBB
= CopyMI
->getParent();
703 const MachineLoop
*L
= loopInfo
->getLoopFor(MBB
);
706 if (MBB
!= L
->getLoopLatch())
709 LiveInterval
&LI
= li_
->getInterval(DstReg
);
710 unsigned DefIdx
= li_
->getInstructionIndex(CopyMI
);
711 LiveInterval::const_iterator DstLR
=
712 LI
.FindLiveRangeContaining(li_
->getDefIndex(DefIdx
));
713 if (DstLR
== LI
.end())
715 if (DstLR
->valno
->kills
.size() == 1 && DstLR
->valno
->kills
[0].isPHIKill
)
720 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
721 /// update the subregister number if it is not zero. If DstReg is a
722 /// physical register and the existing subregister number of the def / use
723 /// being updated is not zero, make sure to set it to the correct physical
726 SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg
, unsigned DstReg
,
728 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
729 if (DstIsPhys
&& SubIdx
) {
730 // Figure out the real physical register we are updating with.
731 DstReg
= tri_
->getSubReg(DstReg
, SubIdx
);
735 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(SrcReg
),
736 E
= mri_
->reg_end(); I
!= E
; ) {
737 MachineOperand
&O
= I
.getOperand();
738 MachineInstr
*UseMI
= &*I
;
740 unsigned OldSubIdx
= O
.getSubReg();
742 unsigned UseDstReg
= DstReg
;
744 UseDstReg
= tri_
->getSubReg(DstReg
, OldSubIdx
);
746 unsigned CopySrcReg
, CopyDstReg
, CopySrcSubIdx
, CopyDstSubIdx
;
747 if (tii_
->isMoveInstr(*UseMI
, CopySrcReg
, CopyDstReg
,
748 CopySrcSubIdx
, CopyDstSubIdx
) &&
749 CopySrcReg
!= CopyDstReg
&&
750 CopySrcReg
== SrcReg
&& CopyDstReg
!= UseDstReg
) {
751 // If the use is a copy and it won't be coalesced away, and its source
752 // is defined by a trivial computation, try to rematerialize it instead.
753 if (ReMaterializeTrivialDef(li_
->getInterval(SrcReg
), CopyDstReg
,
754 CopyDstSubIdx
, UseMI
))
763 // Sub-register indexes goes from small to large. e.g.
764 // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
765 // EAX: 1 -> AL, 2 -> AX
766 // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
767 // sub-register 2 is also AX.
768 if (SubIdx
&& OldSubIdx
&& SubIdx
!= OldSubIdx
)
769 assert(OldSubIdx
< SubIdx
&& "Conflicting sub-register index!");
772 // Remove would-be duplicated kill marker.
773 if (O
.isKill() && UseMI
->killsRegister(DstReg
))
777 // After updating the operand, check if the machine instruction has
778 // become a copy. If so, update its val# information.
779 if (JoinedCopies
.count(UseMI
))
782 const TargetInstrDesc
&TID
= UseMI
->getDesc();
783 unsigned CopySrcReg
, CopyDstReg
, CopySrcSubIdx
, CopyDstSubIdx
;
784 if (TID
.getNumDefs() == 1 && TID
.getNumOperands() > 2 &&
785 tii_
->isMoveInstr(*UseMI
, CopySrcReg
, CopyDstReg
,
786 CopySrcSubIdx
, CopyDstSubIdx
) &&
787 CopySrcReg
!= CopyDstReg
&&
788 (TargetRegisterInfo::isVirtualRegister(CopyDstReg
) ||
789 allocatableRegs_
[CopyDstReg
])) {
790 LiveInterval
&LI
= li_
->getInterval(CopyDstReg
);
791 unsigned DefIdx
= li_
->getDefIndex(li_
->getInstructionIndex(UseMI
));
792 if (const LiveRange
*DLR
= LI
.getLiveRangeContaining(DefIdx
)) {
793 if (DLR
->valno
->def
== DefIdx
)
794 DLR
->valno
->setCopy(UseMI
);
800 /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
801 /// due to live range lengthening as the result of coalescing.
802 void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg
,
804 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(Reg
),
805 UE
= mri_
->use_end(); UI
!= UE
; ++UI
) {
806 MachineOperand
&UseMO
= UI
.getOperand();
809 MachineInstr
*UseMI
= UseMO
.getParent();
810 unsigned UseIdx
= li_
->getUseIndex(li_
->getInstructionIndex(UseMI
));
811 const LiveRange
*LR
= LI
.getLiveRangeContaining(UseIdx
);
812 if (!LR
|| !LI
.isKill(LR
->valno
, UseIdx
+1)) {
813 if (LR
->valno
->def
!= UseIdx
+1) {
814 // Interesting problem. After coalescing reg1027's def and kill are both
815 // at the same point: %reg1027,0.000000e+00 = [56,814:0) 0@70-(814)
818 // 60 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
819 // 68 %reg1027<def> = t2LDRi12 %reg1027<kill>, 8, 14, %reg0
820 // 76 t2CMPzri %reg1038<kill,undef>, 0, 14, %reg0, %CPSR<imp-def>
821 // 84 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
822 // 96 t2Bcc mbb<bb5,0x2030910>, 1, %CPSR<kill>
824 // Do not remove the kill marker on t2LDRi12.
825 UseMO
.setIsKill(false);
831 /// removeIntervalIfEmpty - Check if the live interval of a physical register
832 /// is empty, if so remove it and also remove the empty intervals of its
833 /// sub-registers. Return true if live interval is removed.
834 static bool removeIntervalIfEmpty(LiveInterval
&li
, LiveIntervals
*li_
,
835 const TargetRegisterInfo
*tri_
) {
837 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
))
838 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
839 if (!li_
->hasInterval(*SR
))
841 LiveInterval
&sli
= li_
->getInterval(*SR
);
843 li_
->removeInterval(*SR
);
845 li_
->removeInterval(li
.reg
);
851 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
852 /// Return true if live interval is removed.
853 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval
&li
,
854 MachineInstr
*CopyMI
) {
855 unsigned CopyIdx
= li_
->getInstructionIndex(CopyMI
);
856 LiveInterval::iterator MLR
=
857 li
.FindLiveRangeContaining(li_
->getDefIndex(CopyIdx
));
859 return false; // Already removed by ShortenDeadCopySrcLiveRange.
860 unsigned RemoveStart
= MLR
->start
;
861 unsigned RemoveEnd
= MLR
->end
;
862 unsigned DefIdx
= li_
->getDefIndex(CopyIdx
);
863 // Remove the liverange that's defined by this.
864 if (RemoveStart
== DefIdx
&& RemoveEnd
== DefIdx
+1) {
865 removeRange(li
, RemoveStart
, RemoveEnd
, li_
, tri_
);
866 return removeIntervalIfEmpty(li
, li_
, tri_
);
871 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
872 /// the val# it defines. If the live interval becomes empty, remove it as well.
873 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval
&li
,
874 MachineInstr
*DefMI
) {
875 unsigned DefIdx
= li_
->getDefIndex(li_
->getInstructionIndex(DefMI
));
876 LiveInterval::iterator MLR
= li
.FindLiveRangeContaining(DefIdx
);
877 if (DefIdx
!= MLR
->valno
->def
)
879 li
.removeValNo(MLR
->valno
);
880 return removeIntervalIfEmpty(li
, li_
, tri_
);
883 /// PropagateDeadness - Propagate the dead marker to the instruction which
884 /// defines the val#.
885 static void PropagateDeadness(LiveInterval
&li
, MachineInstr
*CopyMI
,
886 unsigned &LRStart
, LiveIntervals
*li_
,
887 const TargetRegisterInfo
* tri_
) {
888 MachineInstr
*DefMI
=
889 li_
->getInstructionFromIndex(li_
->getDefIndex(LRStart
));
890 if (DefMI
&& DefMI
!= CopyMI
) {
891 int DeadIdx
= DefMI
->findRegisterDefOperandIdx(li
.reg
, false);
893 DefMI
->getOperand(DeadIdx
).setIsDead();
895 DefMI
->addOperand(MachineOperand::CreateReg(li
.reg
,
896 true, true, false, true));
901 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
902 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
903 /// ends the live range there. If there isn't another use, then this live range
904 /// is dead. Return true if live interval is removed.
906 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval
&li
,
907 MachineInstr
*CopyMI
) {
908 unsigned CopyIdx
= li_
->getInstructionIndex(CopyMI
);
910 // FIXME: special case: function live in. It can be a general case if the
911 // first instruction index starts at > 0 value.
912 assert(TargetRegisterInfo::isPhysicalRegister(li
.reg
));
913 // Live-in to the function but dead. Remove it from entry live-in set.
914 if (mf_
->begin()->isLiveIn(li
.reg
))
915 mf_
->begin()->removeLiveIn(li
.reg
);
916 const LiveRange
*LR
= li
.getLiveRangeContaining(CopyIdx
);
917 removeRange(li
, LR
->start
, LR
->end
, li_
, tri_
);
918 return removeIntervalIfEmpty(li
, li_
, tri_
);
921 LiveInterval::iterator LR
= li
.FindLiveRangeContaining(CopyIdx
-1);
923 // Livein but defined by a phi.
926 unsigned RemoveStart
= LR
->start
;
927 unsigned RemoveEnd
= li_
->getDefIndex(CopyIdx
)+1;
928 if (LR
->end
> RemoveEnd
)
929 // More uses past this copy? Nothing to do.
932 // If there is a last use in the same bb, we can't remove the live range.
933 // Shorten the live interval and return.
934 MachineBasicBlock
*CopyMBB
= CopyMI
->getParent();
935 if (TrimLiveIntervalToLastUse(CopyIdx
, CopyMBB
, li
, LR
))
938 // There are other kills of the val#. Nothing to do.
939 if (!li
.isOnlyLROfValNo(LR
))
942 MachineBasicBlock
*StartMBB
= li_
->getMBBFromIndex(RemoveStart
);
943 if (!isSameOrFallThroughBB(StartMBB
, CopyMBB
, tii_
))
944 // If the live range starts in another mbb and the copy mbb is not a fall
945 // through mbb, then we can only cut the range from the beginning of the
947 RemoveStart
= li_
->getMBBStartIdx(CopyMBB
) + 1;
949 if (LR
->valno
->def
== RemoveStart
) {
950 // If the def MI defines the val# and this copy is the only kill of the
951 // val#, then propagate the dead marker.
952 PropagateDeadness(li
, CopyMI
, RemoveStart
, li_
, tri_
);
955 if (li
.isKill(LR
->valno
, RemoveEnd
))
956 li
.removeKill(LR
->valno
, RemoveEnd
);
959 removeRange(li
, RemoveStart
, RemoveEnd
, li_
, tri_
);
960 return removeIntervalIfEmpty(li
, li_
, tri_
);
963 /// CanCoalesceWithImpDef - Returns true if the specified copy instruction
964 /// from an implicit def to another register can be coalesced away.
965 bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr
*CopyMI
,
967 LiveInterval
&ImpLi
) const{
968 if (!CopyMI
->killsRegister(ImpLi
.reg
))
970 // Make sure this is the only use.
971 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(ImpLi
.reg
),
972 UE
= mri_
->use_end(); UI
!= UE
;) {
973 MachineInstr
*UseMI
= &*UI
;
975 if (CopyMI
== UseMI
|| JoinedCopies
.count(UseMI
))
983 /// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
984 /// a virtual destination register with physical source register.
986 SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr
*CopyMI
,
987 MachineBasicBlock
*CopyMBB
,
988 LiveInterval
&DstInt
,
989 LiveInterval
&SrcInt
) {
990 // If the virtual register live interval is long but it has low use desity,
991 // do not join them, instead mark the physical register as its allocation
993 const TargetRegisterClass
*RC
= mri_
->getRegClass(DstInt
.reg
);
994 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
995 unsigned Length
= li_
->getApproximateInstructionCount(DstInt
);
996 if (Length
> Threshold
&&
997 (((float)std::distance(mri_
->use_begin(DstInt
.reg
),
998 mri_
->use_end()) / Length
) < (1.0 / Threshold
)))
1001 // If the virtual register live interval extends into a loop, turn down
1003 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
1004 const MachineLoop
*L
= loopInfo
->getLoopFor(CopyMBB
);
1006 // Let's see if the virtual register live interval extends into the loop.
1007 LiveInterval::iterator DLR
= DstInt
.FindLiveRangeContaining(CopyIdx
);
1008 assert(DLR
!= DstInt
.end() && "Live range not found!");
1009 DLR
= DstInt
.FindLiveRangeContaining(DLR
->end
+1);
1010 if (DLR
!= DstInt
.end()) {
1011 CopyMBB
= li_
->getMBBFromIndex(DLR
->start
);
1012 L
= loopInfo
->getLoopFor(CopyMBB
);
1016 if (!L
|| Length
<= Threshold
)
1019 unsigned UseIdx
= li_
->getUseIndex(CopyIdx
);
1020 LiveInterval::iterator SLR
= SrcInt
.FindLiveRangeContaining(UseIdx
);
1021 MachineBasicBlock
*SMBB
= li_
->getMBBFromIndex(SLR
->start
);
1022 if (loopInfo
->getLoopFor(SMBB
) != L
) {
1023 if (!loopInfo
->isLoopHeader(CopyMBB
))
1025 // If vr's live interval extends pass the loop header, do not join.
1026 for (MachineBasicBlock::succ_iterator SI
= CopyMBB
->succ_begin(),
1027 SE
= CopyMBB
->succ_end(); SI
!= SE
; ++SI
) {
1028 MachineBasicBlock
*SuccMBB
= *SI
;
1029 if (SuccMBB
== CopyMBB
)
1031 if (DstInt
.overlaps(li_
->getMBBStartIdx(SuccMBB
),
1032 li_
->getMBBEndIdx(SuccMBB
)+1))
1039 /// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
1040 /// copy from a virtual source register to a physical destination register.
1042 SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr
*CopyMI
,
1043 MachineBasicBlock
*CopyMBB
,
1044 LiveInterval
&DstInt
,
1045 LiveInterval
&SrcInt
) {
1046 // If the virtual register live interval is long but it has low use desity,
1047 // do not join them, instead mark the physical register as its allocation
1049 const TargetRegisterClass
*RC
= mri_
->getRegClass(SrcInt
.reg
);
1050 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1051 unsigned Length
= li_
->getApproximateInstructionCount(SrcInt
);
1052 if (Length
> Threshold
&&
1053 (((float)std::distance(mri_
->use_begin(SrcInt
.reg
),
1054 mri_
->use_end()) / Length
) < (1.0 / Threshold
)))
1058 // Must be implicit_def.
1061 // If the virtual register live interval is defined or cross a loop, turn
1062 // down aggressiveness.
1063 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
1064 unsigned UseIdx
= li_
->getUseIndex(CopyIdx
);
1065 LiveInterval::iterator SLR
= SrcInt
.FindLiveRangeContaining(UseIdx
);
1066 assert(SLR
!= SrcInt
.end() && "Live range not found!");
1067 SLR
= SrcInt
.FindLiveRangeContaining(SLR
->start
-1);
1068 if (SLR
== SrcInt
.end())
1070 MachineBasicBlock
*SMBB
= li_
->getMBBFromIndex(SLR
->start
);
1071 const MachineLoop
*L
= loopInfo
->getLoopFor(SMBB
);
1073 if (!L
|| Length
<= Threshold
)
1076 if (loopInfo
->getLoopFor(CopyMBB
) != L
) {
1077 if (SMBB
!= L
->getLoopLatch())
1079 // If vr's live interval is extended from before the loop latch, do not
1081 for (MachineBasicBlock::pred_iterator PI
= SMBB
->pred_begin(),
1082 PE
= SMBB
->pred_end(); PI
!= PE
; ++PI
) {
1083 MachineBasicBlock
*PredMBB
= *PI
;
1084 if (PredMBB
== SMBB
)
1086 if (SrcInt
.overlaps(li_
->getMBBStartIdx(PredMBB
),
1087 li_
->getMBBEndIdx(PredMBB
)+1))
1094 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1095 /// two virtual registers from different register classes.
1097 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned LargeReg
,
1099 unsigned Threshold
) {
1100 // Then make sure the intervals are *short*.
1101 LiveInterval
&LargeInt
= li_
->getInterval(LargeReg
);
1102 LiveInterval
&SmallInt
= li_
->getInterval(SmallReg
);
1103 unsigned LargeSize
= li_
->getApproximateInstructionCount(LargeInt
);
1104 unsigned SmallSize
= li_
->getApproximateInstructionCount(SmallInt
);
1105 if (SmallSize
> Threshold
|| LargeSize
> Threshold
)
1106 if ((float)std::distance(mri_
->use_begin(SmallReg
),
1107 mri_
->use_end()) / SmallSize
<
1108 (float)std::distance(mri_
->use_begin(LargeReg
),
1109 mri_
->use_end()) / LargeSize
)
1114 /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
1115 /// register with a physical register, check if any of the virtual register
1116 /// operand is a sub-register use or def. If so, make sure it won't result
1117 /// in an illegal extract_subreg or insert_subreg instruction. e.g.
1118 /// vr1024 = extract_subreg vr1025, 1
1120 /// vr1024 = mov8rr AH
1121 /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
1122 /// AH does not have a super-reg whose sub-register 1 is AH.
1124 SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr
*CopyMI
,
1127 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(VirtReg
),
1128 E
= mri_
->reg_end(); I
!= E
; ++I
) {
1129 MachineOperand
&O
= I
.getOperand();
1130 MachineInstr
*MI
= &*I
;
1131 if (MI
== CopyMI
|| JoinedCopies
.count(MI
))
1133 unsigned SubIdx
= O
.getSubReg();
1134 if (SubIdx
&& !tri_
->getSubReg(PhysReg
, SubIdx
))
1136 if (MI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
) {
1137 SubIdx
= MI
->getOperand(2).getImm();
1138 if (O
.isUse() && !tri_
->getSubReg(PhysReg
, SubIdx
))
1141 unsigned SrcReg
= MI
->getOperand(1).getReg();
1142 const TargetRegisterClass
*RC
=
1143 TargetRegisterInfo::isPhysicalRegister(SrcReg
)
1144 ? tri_
->getPhysicalRegisterRegClass(SrcReg
)
1145 : mri_
->getRegClass(SrcReg
);
1146 if (!tri_
->getMatchingSuperReg(PhysReg
, SubIdx
, RC
))
1150 if (MI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
1151 MI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) {
1152 SubIdx
= MI
->getOperand(3).getImm();
1153 if (VirtReg
== MI
->getOperand(0).getReg()) {
1154 if (!tri_
->getSubReg(PhysReg
, SubIdx
))
1157 unsigned DstReg
= MI
->getOperand(0).getReg();
1158 const TargetRegisterClass
*RC
=
1159 TargetRegisterInfo::isPhysicalRegister(DstReg
)
1160 ? tri_
->getPhysicalRegisterRegClass(DstReg
)
1161 : mri_
->getRegClass(DstReg
);
1162 if (!tri_
->getMatchingSuperReg(PhysReg
, SubIdx
, RC
))
1171 /// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
1172 /// an extract_subreg where dst is a physical register, e.g.
1173 /// cl = EXTRACT_SUBREG reg1024, 1
1175 SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg
,
1176 unsigned SrcReg
, unsigned SubIdx
,
1177 unsigned &RealDstReg
) {
1178 const TargetRegisterClass
*RC
= mri_
->getRegClass(SrcReg
);
1179 RealDstReg
= tri_
->getMatchingSuperReg(DstReg
, SubIdx
, RC
);
1180 assert(RealDstReg
&& "Invalid extract_subreg instruction!");
1182 // For this type of EXTRACT_SUBREG, conservatively
1183 // check if the live interval of the source register interfere with the
1184 // actual super physical register we are trying to coalesce with.
1185 LiveInterval
&RHS
= li_
->getInterval(SrcReg
);
1186 if (li_
->hasInterval(RealDstReg
) &&
1187 RHS
.overlaps(li_
->getInterval(RealDstReg
))) {
1188 DOUT
<< "Interfere with register ";
1189 DEBUG(li_
->getInterval(RealDstReg
).print(DOUT
, tri_
));
1190 return false; // Not coalescable
1192 for (const unsigned* SR
= tri_
->getSubRegisters(RealDstReg
); *SR
; ++SR
)
1193 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
1194 DOUT
<< "Interfere with sub-register ";
1195 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
1196 return false; // Not coalescable
1201 /// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
1202 /// an insert_subreg where src is a physical register, e.g.
1203 /// reg1024 = INSERT_SUBREG reg1024, c1, 0
1205 SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg
,
1206 unsigned SrcReg
, unsigned SubIdx
,
1207 unsigned &RealSrcReg
) {
1208 const TargetRegisterClass
*RC
= mri_
->getRegClass(DstReg
);
1209 RealSrcReg
= tri_
->getMatchingSuperReg(SrcReg
, SubIdx
, RC
);
1210 assert(RealSrcReg
&& "Invalid extract_subreg instruction!");
1212 LiveInterval
&RHS
= li_
->getInterval(DstReg
);
1213 if (li_
->hasInterval(RealSrcReg
) &&
1214 RHS
.overlaps(li_
->getInterval(RealSrcReg
))) {
1215 DOUT
<< "Interfere with register ";
1216 DEBUG(li_
->getInterval(RealSrcReg
).print(DOUT
, tri_
));
1217 return false; // Not coalescable
1219 for (const unsigned* SR
= tri_
->getSubRegisters(RealSrcReg
); *SR
; ++SR
)
1220 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
1221 DOUT
<< "Interfere with sub-register ";
1222 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
1223 return false; // Not coalescable
1228 /// getRegAllocPreference - Return register allocation preference register.
1230 static unsigned getRegAllocPreference(unsigned Reg
, MachineFunction
&MF
,
1231 MachineRegisterInfo
*MRI
,
1232 const TargetRegisterInfo
*TRI
) {
1233 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
1235 std::pair
<unsigned, unsigned> Hint
= MRI
->getRegAllocationHint(Reg
);
1236 return TRI
->ResolveRegAllocHint(Hint
.first
, Hint
.second
, MF
);
1239 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1240 /// which are the src/dst of the copy instruction CopyMI. This returns true
1241 /// if the copy was successfully coalesced away. If it is not currently
1242 /// possible to coalesce this interval, but it may be possible if other
1243 /// things get coalesced, then it returns true by reference in 'Again'.
1244 bool SimpleRegisterCoalescing::JoinCopy(CopyRec
&TheCopy
, bool &Again
) {
1245 MachineInstr
*CopyMI
= TheCopy
.MI
;
1248 if (JoinedCopies
.count(CopyMI
) || ReMatCopies
.count(CopyMI
))
1249 return false; // Already done.
1251 DOUT
<< li_
->getInstructionIndex(CopyMI
) << '\t' << *CopyMI
;
1253 unsigned SrcReg
, DstReg
, SrcSubIdx
= 0, DstSubIdx
= 0;
1254 bool isExtSubReg
= CopyMI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
;
1255 bool isInsSubReg
= CopyMI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
;
1256 bool isSubRegToReg
= CopyMI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
;
1257 unsigned SubIdx
= 0;
1259 DstReg
= CopyMI
->getOperand(0).getReg();
1260 DstSubIdx
= CopyMI
->getOperand(0).getSubReg();
1261 SrcReg
= CopyMI
->getOperand(1).getReg();
1262 SrcSubIdx
= CopyMI
->getOperand(2).getImm();
1263 } else if (isInsSubReg
|| isSubRegToReg
) {
1264 DstReg
= CopyMI
->getOperand(0).getReg();
1265 DstSubIdx
= CopyMI
->getOperand(3).getImm();
1266 SrcReg
= CopyMI
->getOperand(2).getReg();
1267 SrcSubIdx
= CopyMI
->getOperand(2).getSubReg();
1268 if (SrcSubIdx
&& SrcSubIdx
!= DstSubIdx
) {
1269 // r1025 = INSERT_SUBREG r1025, r1024<2>, 2 Then r1024 has already been
1270 // coalesced to a larger register so the subreg indices cancel out.
1271 DOUT
<< "\tSource of insert_subreg is already coalesced "
1272 << "to another register.\n";
1273 return false; // Not coalescable.
1275 } else if (!tii_
->isMoveInstr(*CopyMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
)){
1276 llvm_unreachable("Unrecognized copy instruction!");
1279 // If they are already joined we continue.
1280 if (SrcReg
== DstReg
) {
1281 DOUT
<< "\tCopy already coalesced.\n";
1282 return false; // Not coalescable.
1285 bool SrcIsPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
1286 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
1288 // If they are both physical registers, we cannot join them.
1289 if (SrcIsPhys
&& DstIsPhys
) {
1290 DOUT
<< "\tCan not coalesce physregs.\n";
1291 return false; // Not coalescable.
1294 // We only join virtual registers with allocatable physical registers.
1295 if (SrcIsPhys
&& !allocatableRegs_
[SrcReg
]) {
1296 DOUT
<< "\tSrc reg is unallocatable physreg.\n";
1297 return false; // Not coalescable.
1299 if (DstIsPhys
&& !allocatableRegs_
[DstReg
]) {
1300 DOUT
<< "\tDst reg is unallocatable physreg.\n";
1301 return false; // Not coalescable.
1304 // Check that a physical source register is compatible with dst regclass
1306 unsigned SrcSubReg
= SrcSubIdx
?
1307 tri_
->getSubReg(SrcReg
, SrcSubIdx
) : SrcReg
;
1308 const TargetRegisterClass
*DstRC
= mri_
->getRegClass(DstReg
);
1309 const TargetRegisterClass
*DstSubRC
= DstRC
;
1311 DstSubRC
= DstRC
->getSubRegisterRegClass(DstSubIdx
);
1312 assert(DstSubRC
&& "Illegal subregister index");
1313 if (!DstSubRC
->contains(SrcSubReg
)) {
1314 DEBUG(errs() << "\tIncompatible destination regclass: "
1315 << tri_
->getName(SrcSubReg
) << " not in " << DstSubRC
->getName()
1317 return false; // Not coalescable.
1321 // Check that a physical dst register is compatible with source regclass
1323 unsigned DstSubReg
= DstSubIdx
?
1324 tri_
->getSubReg(DstReg
, DstSubIdx
) : DstReg
;
1325 const TargetRegisterClass
*SrcRC
= mri_
->getRegClass(SrcReg
);
1326 const TargetRegisterClass
*SrcSubRC
= SrcRC
;
1328 SrcSubRC
= SrcRC
->getSubRegisterRegClass(SrcSubIdx
);
1329 assert(SrcSubRC
&& "Illegal subregister index");
1330 if (!SrcSubRC
->contains(DstReg
)) {
1331 DEBUG(errs() << "\tIncompatible source regclass: "
1332 << tri_
->getName(DstSubReg
) << " not in " << SrcSubRC
->getName()
1335 return false; // Not coalescable.
1339 // Should be non-null only when coalescing to a sub-register class.
1340 bool CrossRC
= false;
1341 const TargetRegisterClass
*SrcRC
= SrcIsPhys
? 0 : mri_
->getRegClass(SrcReg
);
1342 const TargetRegisterClass
*DstRC
= DstIsPhys
? 0 : mri_
->getRegClass(DstReg
);
1343 const TargetRegisterClass
*NewRC
= NULL
;
1344 MachineBasicBlock
*CopyMBB
= CopyMI
->getParent();
1345 unsigned RealDstReg
= 0;
1346 unsigned RealSrcReg
= 0;
1347 if (isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) {
1348 SubIdx
= CopyMI
->getOperand(isExtSubReg
? 2 : 3).getImm();
1349 if (SrcIsPhys
&& isExtSubReg
) {
1350 // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
1351 // coalesced with AX.
1352 unsigned DstSubIdx
= CopyMI
->getOperand(0).getSubReg();
1354 // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
1355 // coalesced to a larger register so the subreg indices cancel out.
1356 if (DstSubIdx
!= SubIdx
) {
1357 DOUT
<< "\t Sub-register indices mismatch.\n";
1358 return false; // Not coalescable.
1361 SrcReg
= tri_
->getSubReg(SrcReg
, SubIdx
);
1363 } else if (DstIsPhys
&& (isInsSubReg
|| isSubRegToReg
)) {
1364 // EAX = INSERT_SUBREG EAX, r1024, 0
1365 unsigned SrcSubIdx
= CopyMI
->getOperand(2).getSubReg();
1367 // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
1368 // coalesced to a larger register so the subreg indices cancel out.
1369 if (SrcSubIdx
!= SubIdx
) {
1370 DOUT
<< "\t Sub-register indices mismatch.\n";
1371 return false; // Not coalescable.
1374 DstReg
= tri_
->getSubReg(DstReg
, SubIdx
);
1376 } else if ((DstIsPhys
&& isExtSubReg
) ||
1377 (SrcIsPhys
&& (isInsSubReg
|| isSubRegToReg
))) {
1378 if (!isSubRegToReg
&& CopyMI
->getOperand(1).getSubReg()) {
1379 DOUT
<< "\tSrc of extract_subreg already coalesced with reg"
1380 << " of a super-class.\n";
1381 return false; // Not coalescable.
1385 if (!CanJoinExtractSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealDstReg
))
1386 return false; // Not coalescable
1388 if (!CanJoinInsertSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealSrcReg
))
1389 return false; // Not coalescable
1393 unsigned OldSubIdx
= isExtSubReg
? CopyMI
->getOperand(0).getSubReg()
1394 : CopyMI
->getOperand(2).getSubReg();
1396 if (OldSubIdx
== SubIdx
&& !differingRegisterClasses(SrcReg
, DstReg
))
1397 // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
1398 // coalesced to a larger register so the subreg indices cancel out.
1399 // Also check if the other larger register is of the same register
1400 // class as the would be resulting register.
1403 DOUT
<< "\t Sub-register indices mismatch.\n";
1404 return false; // Not coalescable.
1408 if (!DstIsPhys
&& !SrcIsPhys
) {
1409 if (isInsSubReg
|| isSubRegToReg
) {
1410 NewRC
= tri_
->getMatchingSuperRegClass(DstRC
, SrcRC
, SubIdx
);
1411 } else // extract_subreg {
1412 NewRC
= tri_
->getMatchingSuperRegClass(SrcRC
, DstRC
, SubIdx
);
1415 DOUT
<< "\t Conflicting sub-register indices.\n";
1416 return false; // Not coalescable
1419 unsigned LargeReg
= isExtSubReg
? SrcReg
: DstReg
;
1420 unsigned SmallReg
= isExtSubReg
? DstReg
: SrcReg
;
1421 unsigned Limit
= allocatableRCRegs_
[mri_
->getRegClass(SmallReg
)].count();
1422 if (!isWinToJoinCrossClass(LargeReg
, SmallReg
, Limit
)) {
1423 Again
= true; // May be possible to coalesce later.
1428 } else if (differingRegisterClasses(SrcReg
, DstReg
)) {
1429 if (DisableCrossClassJoin
)
1433 // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
1434 // with another? If it's the resulting destination register, then
1435 // the subidx must be propagated to uses (but only those defined
1436 // by the EXTRACT_SUBREG). If it's being coalesced into another
1437 // register, it should be safe because register is assumed to have
1438 // the register class of the super-register.
1440 // Process moves where one of the registers have a sub-register index.
1441 MachineOperand
*DstMO
= CopyMI
->findRegisterDefOperand(DstReg
);
1442 MachineOperand
*SrcMO
= CopyMI
->findRegisterUseOperand(SrcReg
);
1443 SubIdx
= DstMO
->getSubReg();
1445 if (SrcMO
->getSubReg())
1446 // FIXME: can we handle this?
1448 // This is not an insert_subreg but it looks like one.
1449 // e.g. %reg1024:4 = MOV32rr %EAX
1452 if (!CanJoinInsertSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealSrcReg
))
1453 return false; // Not coalescable
1457 SubIdx
= SrcMO
->getSubReg();
1459 // This is not a extract_subreg but it looks like one.
1460 // e.g. %cl = MOV16rr %reg1024:1
1463 if (!CanJoinExtractSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
,RealDstReg
))
1464 return false; // Not coalescable
1470 unsigned LargeReg
= SrcReg
;
1471 unsigned SmallReg
= DstReg
;
1473 // Now determine the register class of the joined register.
1475 if (SubIdx
&& DstRC
&& DstRC
->isASubClass()) {
1476 // This is a move to a sub-register class. However, the source is a
1477 // sub-register of a larger register class. We don't know what should
1478 // the register class be. FIXME.
1482 if (!DstIsPhys
&& !SrcIsPhys
)
1484 } else if (!SrcIsPhys
&& !DstIsPhys
) {
1485 NewRC
= getCommonSubClass(SrcRC
, DstRC
);
1487 DEBUG(errs() << "\tDisjoint regclasses: "
1488 << SrcRC
->getName() << ", "
1489 << DstRC
->getName() << ".\n");
1490 return false; // Not coalescable.
1492 if (DstRC
->getSize() > SrcRC
->getSize())
1493 std::swap(LargeReg
, SmallReg
);
1496 // If we are joining two virtual registers and the resulting register
1497 // class is more restrictive (fewer register, smaller size). Check if it's
1498 // worth doing the merge.
1499 if (!SrcIsPhys
&& !DstIsPhys
&&
1500 (isExtSubReg
|| DstRC
->isASubClass()) &&
1501 !isWinToJoinCrossClass(LargeReg
, SmallReg
,
1502 allocatableRCRegs_
[NewRC
].count())) {
1503 DOUT
<< "\tSrc/Dest are different register classes.\n";
1504 // Allow the coalescer to try again in case either side gets coalesced to
1505 // a physical register that's compatible with the other side. e.g.
1506 // r1024 = MOV32to32_ r1025
1507 // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
1508 Again
= true; // May be possible to coalesce later.
1513 // Will it create illegal extract_subreg / insert_subreg?
1514 if (SrcIsPhys
&& HasIncompatibleSubRegDefUse(CopyMI
, DstReg
, SrcReg
))
1516 if (DstIsPhys
&& HasIncompatibleSubRegDefUse(CopyMI
, SrcReg
, DstReg
))
1519 LiveInterval
&SrcInt
= li_
->getInterval(SrcReg
);
1520 LiveInterval
&DstInt
= li_
->getInterval(DstReg
);
1521 assert(SrcInt
.reg
== SrcReg
&& DstInt
.reg
== DstReg
&&
1522 "Register mapping is horribly broken!");
1524 DOUT
<< "\t\tInspecting "; SrcInt
.print(DOUT
, tri_
);
1525 DOUT
<< " and "; DstInt
.print(DOUT
, tri_
);
1528 // Save a copy of the virtual register live interval. We'll manually
1529 // merge this into the "real" physical register live interval this is
1531 LiveInterval
*SavedLI
= 0;
1533 SavedLI
= li_
->dupInterval(&SrcInt
);
1534 else if (RealSrcReg
)
1535 SavedLI
= li_
->dupInterval(&DstInt
);
1537 // Check if it is necessary to propagate "isDead" property.
1538 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
) {
1539 MachineOperand
*mopd
= CopyMI
->findRegisterDefOperand(DstReg
, false);
1540 bool isDead
= mopd
->isDead();
1542 // We need to be careful about coalescing a source physical register with a
1543 // virtual register. Once the coalescing is done, it cannot be broken and
1544 // these are not spillable! If the destination interval uses are far away,
1545 // think twice about coalescing them!
1546 if (!isDead
&& (SrcIsPhys
|| DstIsPhys
)) {
1547 // If the copy is in a loop, take care not to coalesce aggressively if the
1548 // src is coming in from outside the loop (or the dst is out of the loop).
1549 // If it's not in a loop, then determine whether to join them base purely
1550 // by the length of the interval.
1551 if (PhysJoinTweak
) {
1553 if (!isWinToJoinVRWithSrcPhysReg(CopyMI
, CopyMBB
, DstInt
, SrcInt
)) {
1554 mri_
->setRegAllocationHint(DstInt
.reg
, 0, SrcReg
);
1556 DOUT
<< "\tMay tie down a physical register, abort!\n";
1557 Again
= true; // May be possible to coalesce later.
1561 if (!isWinToJoinVRWithDstPhysReg(CopyMI
, CopyMBB
, DstInt
, SrcInt
)) {
1562 mri_
->setRegAllocationHint(SrcInt
.reg
, 0, DstReg
);
1564 DOUT
<< "\tMay tie down a physical register, abort!\n";
1565 Again
= true; // May be possible to coalesce later.
1570 // If the virtual register live interval is long but it has low use desity,
1571 // do not join them, instead mark the physical register as its allocation
1573 LiveInterval
&JoinVInt
= SrcIsPhys
? DstInt
: SrcInt
;
1574 unsigned JoinVReg
= SrcIsPhys
? DstReg
: SrcReg
;
1575 unsigned JoinPReg
= SrcIsPhys
? SrcReg
: DstReg
;
1576 const TargetRegisterClass
*RC
= mri_
->getRegClass(JoinVReg
);
1577 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1578 if (TheCopy
.isBackEdge
)
1579 Threshold
*= 2; // Favors back edge copies.
1581 unsigned Length
= li_
->getApproximateInstructionCount(JoinVInt
);
1582 float Ratio
= 1.0 / Threshold
;
1583 if (Length
> Threshold
&&
1584 (((float)std::distance(mri_
->use_begin(JoinVReg
),
1585 mri_
->use_end()) / Length
) < Ratio
)) {
1586 mri_
->setRegAllocationHint(JoinVInt
.reg
, 0, JoinPReg
);
1588 DOUT
<< "\tMay tie down a physical register, abort!\n";
1589 Again
= true; // May be possible to coalesce later.
1596 // Okay, attempt to join these two intervals. On failure, this returns false.
1597 // Otherwise, if one of the intervals being joined is a physreg, this method
1598 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1599 // been modified, so we can use this information below to update aliases.
1600 bool Swapped
= false;
1601 // If SrcInt is implicitly defined, it's safe to coalesce.
1602 bool isEmpty
= SrcInt
.empty();
1603 if (isEmpty
&& !CanCoalesceWithImpDef(CopyMI
, DstInt
, SrcInt
)) {
1604 // Only coalesce an empty interval (defined by implicit_def) with
1605 // another interval which has a valno defined by the CopyMI and the CopyMI
1606 // is a kill of the implicit def.
1607 DOUT
<< "Not profitable!\n";
1611 if (!isEmpty
&& !JoinIntervals(DstInt
, SrcInt
, Swapped
)) {
1612 // Coalescing failed.
1614 // If definition of source is defined by trivial computation, try
1615 // rematerializing it.
1616 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
&&
1617 ReMaterializeTrivialDef(SrcInt
, DstReg
, DstSubIdx
, CopyMI
))
1620 // If we can eliminate the copy without merging the live ranges, do so now.
1621 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
&&
1622 (AdjustCopiesBackFrom(SrcInt
, DstInt
, CopyMI
) ||
1623 RemoveCopyByCommutingDef(SrcInt
, DstInt
, CopyMI
))) {
1624 JoinedCopies
.insert(CopyMI
);
1628 // Otherwise, we are unable to join the intervals.
1629 DOUT
<< "Interference!\n";
1630 Again
= true; // May be possible to coalesce later.
1634 LiveInterval
*ResSrcInt
= &SrcInt
;
1635 LiveInterval
*ResDstInt
= &DstInt
;
1637 std::swap(SrcReg
, DstReg
);
1638 std::swap(ResSrcInt
, ResDstInt
);
1640 assert(TargetRegisterInfo::isVirtualRegister(SrcReg
) &&
1641 "LiveInterval::join didn't work right!");
1643 // If we're about to merge live ranges into a physical register live interval,
1644 // we have to update any aliased register's live ranges to indicate that they
1645 // have clobbered values for this range.
1646 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
1647 // If this is a extract_subreg where dst is a physical register, e.g.
1648 // cl = EXTRACT_SUBREG reg1024, 1
1649 // then create and update the actual physical register allocated to RHS.
1650 if (RealDstReg
|| RealSrcReg
) {
1651 LiveInterval
&RealInt
=
1652 li_
->getOrCreateInterval(RealDstReg
? RealDstReg
: RealSrcReg
);
1653 for (LiveInterval::const_vni_iterator I
= SavedLI
->vni_begin(),
1654 E
= SavedLI
->vni_end(); I
!= E
; ++I
) {
1655 const VNInfo
*ValNo
= *I
;
1656 VNInfo
*NewValNo
= RealInt
.getNextValue(ValNo
->def
, ValNo
->getCopy(),
1657 false, // updated at *
1658 li_
->getVNInfoAllocator());
1659 NewValNo
->setFlags(ValNo
->getFlags()); // * updated here.
1660 RealInt
.addKills(NewValNo
, ValNo
->kills
);
1661 RealInt
.MergeValueInAsValue(*SavedLI
, ValNo
, NewValNo
);
1663 RealInt
.weight
+= SavedLI
->weight
;
1664 DstReg
= RealDstReg
? RealDstReg
: RealSrcReg
;
1667 // Update the liveintervals of sub-registers.
1668 for (const unsigned *AS
= tri_
->getSubRegisters(DstReg
); *AS
; ++AS
)
1669 li_
->getOrCreateInterval(*AS
).MergeInClobberRanges(*ResSrcInt
,
1670 li_
->getVNInfoAllocator());
1673 // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
1674 // larger super-register.
1675 if ((isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) &&
1676 !SrcIsPhys
&& !DstIsPhys
) {
1677 if ((isExtSubReg
&& !Swapped
) ||
1678 ((isInsSubReg
|| isSubRegToReg
) && Swapped
)) {
1679 ResSrcInt
->Copy(*ResDstInt
, mri_
, li_
->getVNInfoAllocator());
1680 std::swap(SrcReg
, DstReg
);
1681 std::swap(ResSrcInt
, ResDstInt
);
1685 // Coalescing to a virtual register that is of a sub-register class of the
1686 // other. Make sure the resulting register is set to the right register class.
1690 // This may happen even if it's cross-rc coalescing. e.g.
1691 // %reg1026<def> = SUBREG_TO_REG 0, %reg1037<kill>, 4
1692 // reg1026 -> GR64, reg1037 -> GR32_ABCD. The resulting register will have to
1693 // be allocate a register from GR64_ABCD.
1695 mri_
->setRegClass(DstReg
, NewRC
);
1698 // Add all copies that define val# in the source interval into the queue.
1699 for (LiveInterval::const_vni_iterator i
= ResSrcInt
->vni_begin(),
1700 e
= ResSrcInt
->vni_end(); i
!= e
; ++i
) {
1701 const VNInfo
*vni
= *i
;
1702 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1703 if (!vni
->def
|| vni
->isUnused() || vni
->isPHIDef() || !vni
->isDefAccurate())
1705 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
1706 unsigned NewSrcReg
, NewDstReg
, NewSrcSubIdx
, NewDstSubIdx
;
1708 JoinedCopies
.count(CopyMI
) == 0 &&
1709 tii_
->isMoveInstr(*CopyMI
, NewSrcReg
, NewDstReg
,
1710 NewSrcSubIdx
, NewDstSubIdx
)) {
1711 unsigned LoopDepth
= loopInfo
->getLoopDepth(CopyMBB
);
1712 JoinQueue
->push(CopyRec(CopyMI
, LoopDepth
,
1713 isBackEdgeCopy(CopyMI
, DstReg
)));
1718 // Remember to delete the copy instruction.
1719 JoinedCopies
.insert(CopyMI
);
1721 // Some live range has been lengthened due to colaescing, eliminate the
1722 // unnecessary kills.
1723 RemoveUnnecessaryKills(SrcReg
, *ResDstInt
);
1724 if (TargetRegisterInfo::isVirtualRegister(DstReg
))
1725 RemoveUnnecessaryKills(DstReg
, *ResDstInt
);
1727 UpdateRegDefsUses(SrcReg
, DstReg
, SubIdx
);
1729 // SrcReg is guarateed to be the register whose live interval that is
1731 li_
->removeInterval(SrcReg
);
1733 // Update regalloc hint.
1734 tri_
->UpdateRegAllocHint(SrcReg
, DstReg
, *mf_
);
1736 // Manually deleted the live interval copy.
1742 // If resulting interval has a preference that no longer fits because of subreg
1743 // coalescing, just clear the preference.
1744 unsigned Preference
= getRegAllocPreference(ResDstInt
->reg
, *mf_
, mri_
, tri_
);
1745 if (Preference
&& (isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) &&
1746 TargetRegisterInfo::isVirtualRegister(ResDstInt
->reg
)) {
1747 const TargetRegisterClass
*RC
= mri_
->getRegClass(ResDstInt
->reg
);
1748 if (!RC
->contains(Preference
))
1749 mri_
->setRegAllocationHint(ResDstInt
->reg
, 0, 0);
1752 DOUT
<< "\n\t\tJoined. Result = "; ResDstInt
->print(DOUT
, tri_
);
1759 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1760 /// compute what the resultant value numbers for each value in the input two
1761 /// ranges will be. This is complicated by copies between the two which can
1762 /// and will commonly cause multiple value numbers to be merged into one.
1764 /// VN is the value number that we're trying to resolve. InstDefiningValue
1765 /// keeps track of the new InstDefiningValue assignment for the result
1766 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1767 /// whether a value in this or other is a copy from the opposite set.
1768 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1769 /// already been assigned.
1771 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1772 /// contains the value number the copy is from.
1774 static unsigned ComputeUltimateVN(VNInfo
*VNI
,
1775 SmallVector
<VNInfo
*, 16> &NewVNInfo
,
1776 DenseMap
<VNInfo
*, VNInfo
*> &ThisFromOther
,
1777 DenseMap
<VNInfo
*, VNInfo
*> &OtherFromThis
,
1778 SmallVector
<int, 16> &ThisValNoAssignments
,
1779 SmallVector
<int, 16> &OtherValNoAssignments
) {
1780 unsigned VN
= VNI
->id
;
1782 // If the VN has already been computed, just return it.
1783 if (ThisValNoAssignments
[VN
] >= 0)
1784 return ThisValNoAssignments
[VN
];
1785 // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1787 // If this val is not a copy from the other val, then it must be a new value
1788 // number in the destination.
1789 DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= ThisFromOther
.find(VNI
);
1790 if (I
== ThisFromOther
.end()) {
1791 NewVNInfo
.push_back(VNI
);
1792 return ThisValNoAssignments
[VN
] = NewVNInfo
.size()-1;
1794 VNInfo
*OtherValNo
= I
->second
;
1796 // Otherwise, this *is* a copy from the RHS. If the other side has already
1797 // been computed, return it.
1798 if (OtherValNoAssignments
[OtherValNo
->id
] >= 0)
1799 return ThisValNoAssignments
[VN
] = OtherValNoAssignments
[OtherValNo
->id
];
1801 // Mark this value number as currently being computed, then ask what the
1802 // ultimate value # of the other value is.
1803 ThisValNoAssignments
[VN
] = -2;
1804 unsigned UltimateVN
=
1805 ComputeUltimateVN(OtherValNo
, NewVNInfo
, OtherFromThis
, ThisFromOther
,
1806 OtherValNoAssignments
, ThisValNoAssignments
);
1807 return ThisValNoAssignments
[VN
] = UltimateVN
;
1810 static bool InVector(VNInfo
*Val
, const SmallVector
<VNInfo
*, 8> &V
) {
1811 return std::find(V
.begin(), V
.end(), Val
) != V
.end();
1814 /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
1815 /// the specified live interval is defined by a copy from the specified
1817 bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval
&li
,
1820 unsigned SrcReg
= li_
->getVNInfoSourceReg(LR
->valno
);
1823 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1824 if ((LR
->valno
->isPHIDef() || !LR
->valno
->isDefAccurate()) &&
1825 TargetRegisterInfo::isPhysicalRegister(li
.reg
) &&
1826 *tri_
->getSuperRegisters(li
.reg
)) {
1827 // It's a sub-register live interval, we may not have precise information.
1829 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(LR
->start
);
1830 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
1832 tii_
->isMoveInstr(*DefMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
1833 DstReg
== li
.reg
&& SrcReg
== Reg
) {
1834 // Cache computed info.
1835 LR
->valno
->def
= LR
->start
;
1836 LR
->valno
->setCopy(DefMI
);
1843 /// SimpleJoin - Attempt to joint the specified interval into this one. The
1844 /// caller of this method must guarantee that the RHS only contains a single
1845 /// value number and that the RHS is not defined by a copy from this
1846 /// interval. This returns false if the intervals are not joinable, or it
1847 /// joins them and returns true.
1848 bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval
&LHS
, LiveInterval
&RHS
){
1849 assert(RHS
.containsOneValue());
1851 // Some number (potentially more than one) value numbers in the current
1852 // interval may be defined as copies from the RHS. Scan the overlapping
1853 // portions of the LHS and RHS, keeping track of this and looking for
1854 // overlapping live ranges that are NOT defined as copies. If these exist, we
1857 LiveInterval::iterator LHSIt
= LHS
.begin(), LHSEnd
= LHS
.end();
1858 LiveInterval::iterator RHSIt
= RHS
.begin(), RHSEnd
= RHS
.end();
1860 if (LHSIt
->start
< RHSIt
->start
) {
1861 LHSIt
= std::upper_bound(LHSIt
, LHSEnd
, RHSIt
->start
);
1862 if (LHSIt
!= LHS
.begin()) --LHSIt
;
1863 } else if (RHSIt
->start
< LHSIt
->start
) {
1864 RHSIt
= std::upper_bound(RHSIt
, RHSEnd
, LHSIt
->start
);
1865 if (RHSIt
!= RHS
.begin()) --RHSIt
;
1868 SmallVector
<VNInfo
*, 8> EliminatedLHSVals
;
1871 // Determine if these live intervals overlap.
1872 bool Overlaps
= false;
1873 if (LHSIt
->start
<= RHSIt
->start
)
1874 Overlaps
= LHSIt
->end
> RHSIt
->start
;
1876 Overlaps
= RHSIt
->end
> LHSIt
->start
;
1878 // If the live intervals overlap, there are two interesting cases: if the
1879 // LHS interval is defined by a copy from the RHS, it's ok and we record
1880 // that the LHS value # is the same as the RHS. If it's not, then we cannot
1881 // coalesce these live ranges and we bail out.
1883 // If we haven't already recorded that this value # is safe, check it.
1884 if (!InVector(LHSIt
->valno
, EliminatedLHSVals
)) {
1885 // Copy from the RHS?
1886 if (!RangeIsDefinedByCopyFromReg(LHS
, LHSIt
, RHS
.reg
))
1887 return false; // Nope, bail out.
1889 if (LHSIt
->contains(RHSIt
->valno
->def
))
1890 // Here is an interesting situation:
1892 // vr1025 = copy vr1024
1897 // Even though vr1025 is copied from vr1024, it's not safe to
1898 // coalesce them since the live range of vr1025 intersects the
1899 // def of vr1024. This happens because vr1025 is assigned the
1900 // value of the previous iteration of vr1024.
1902 EliminatedLHSVals
.push_back(LHSIt
->valno
);
1905 // We know this entire LHS live range is okay, so skip it now.
1906 if (++LHSIt
== LHSEnd
) break;
1910 if (LHSIt
->end
< RHSIt
->end
) {
1911 if (++LHSIt
== LHSEnd
) break;
1913 // One interesting case to check here. It's possible that we have
1914 // something like "X3 = Y" which defines a new value number in the LHS,
1915 // and is the last use of this liverange of the RHS. In this case, we
1916 // want to notice this copy (so that it gets coalesced away) even though
1917 // the live ranges don't actually overlap.
1918 if (LHSIt
->start
== RHSIt
->end
) {
1919 if (InVector(LHSIt
->valno
, EliminatedLHSVals
)) {
1920 // We already know that this value number is going to be merged in
1921 // if coalescing succeeds. Just skip the liverange.
1922 if (++LHSIt
== LHSEnd
) break;
1924 // Otherwise, if this is a copy from the RHS, mark it as being merged
1926 if (RangeIsDefinedByCopyFromReg(LHS
, LHSIt
, RHS
.reg
)) {
1927 if (LHSIt
->contains(RHSIt
->valno
->def
))
1928 // Here is an interesting situation:
1930 // vr1025 = copy vr1024
1935 // Even though vr1025 is copied from vr1024, it's not safe to
1936 // coalesced them since live range of vr1025 intersects the
1937 // def of vr1024. This happens because vr1025 is assigned the
1938 // value of the previous iteration of vr1024.
1940 EliminatedLHSVals
.push_back(LHSIt
->valno
);
1942 // We know this entire LHS live range is okay, so skip it now.
1943 if (++LHSIt
== LHSEnd
) break;
1948 if (++RHSIt
== RHSEnd
) break;
1952 // If we got here, we know that the coalescing will be successful and that
1953 // the value numbers in EliminatedLHSVals will all be merged together. Since
1954 // the most common case is that EliminatedLHSVals has a single number, we
1955 // optimize for it: if there is more than one value, we merge them all into
1956 // the lowest numbered one, then handle the interval as if we were merging
1957 // with one value number.
1958 VNInfo
*LHSValNo
= NULL
;
1959 if (EliminatedLHSVals
.size() > 1) {
1960 // Loop through all the equal value numbers merging them into the smallest
1962 VNInfo
*Smallest
= EliminatedLHSVals
[0];
1963 for (unsigned i
= 1, e
= EliminatedLHSVals
.size(); i
!= e
; ++i
) {
1964 if (EliminatedLHSVals
[i
]->id
< Smallest
->id
) {
1965 // Merge the current notion of the smallest into the smaller one.
1966 LHS
.MergeValueNumberInto(Smallest
, EliminatedLHSVals
[i
]);
1967 Smallest
= EliminatedLHSVals
[i
];
1969 // Merge into the smallest.
1970 LHS
.MergeValueNumberInto(EliminatedLHSVals
[i
], Smallest
);
1973 LHSValNo
= Smallest
;
1974 } else if (EliminatedLHSVals
.empty()) {
1975 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
) &&
1976 *tri_
->getSuperRegisters(LHS
.reg
))
1977 // Imprecise sub-register information. Can't handle it.
1979 llvm_unreachable("No copies from the RHS?");
1981 LHSValNo
= EliminatedLHSVals
[0];
1984 // Okay, now that there is a single LHS value number that we're merging the
1985 // RHS into, update the value number info for the LHS to indicate that the
1986 // value number is defined where the RHS value number was.
1987 const VNInfo
*VNI
= RHS
.getValNumInfo(0);
1988 LHSValNo
->def
= VNI
->def
;
1989 LHSValNo
->setCopy(VNI
->getCopy());
1991 // Okay, the final step is to loop over the RHS live intervals, adding them to
1993 if (VNI
->hasPHIKill())
1994 LHSValNo
->setHasPHIKill(true);
1995 LHS
.addKills(LHSValNo
, VNI
->kills
);
1996 LHS
.MergeRangesInAsValue(RHS
, LHSValNo
);
1998 LHS
.ComputeJoinedWeight(RHS
);
2000 // Update regalloc hint if both are virtual registers.
2001 if (TargetRegisterInfo::isVirtualRegister(LHS
.reg
) &&
2002 TargetRegisterInfo::isVirtualRegister(RHS
.reg
)) {
2003 std::pair
<unsigned, unsigned> RHSPref
= mri_
->getRegAllocationHint(RHS
.reg
);
2004 std::pair
<unsigned, unsigned> LHSPref
= mri_
->getRegAllocationHint(LHS
.reg
);
2005 if (RHSPref
!= LHSPref
)
2006 mri_
->setRegAllocationHint(LHS
.reg
, RHSPref
.first
, RHSPref
.second
);
2009 // Update the liveintervals of sub-registers.
2010 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
))
2011 for (const unsigned *AS
= tri_
->getSubRegisters(LHS
.reg
); *AS
; ++AS
)
2012 li_
->getOrCreateInterval(*AS
).MergeInClobberRanges(LHS
,
2013 li_
->getVNInfoAllocator());
2018 /// JoinIntervals - Attempt to join these two intervals. On failure, this
2019 /// returns false. Otherwise, if one of the intervals being joined is a
2020 /// physreg, this method always canonicalizes LHS to be it. The output
2021 /// "RHS" will not have been modified, so we can use this information
2022 /// below to update aliases.
2024 SimpleRegisterCoalescing::JoinIntervals(LiveInterval
&LHS
, LiveInterval
&RHS
,
2026 // Compute the final value assignment, assuming that the live ranges can be
2028 SmallVector
<int, 16> LHSValNoAssignments
;
2029 SmallVector
<int, 16> RHSValNoAssignments
;
2030 DenseMap
<VNInfo
*, VNInfo
*> LHSValsDefinedFromRHS
;
2031 DenseMap
<VNInfo
*, VNInfo
*> RHSValsDefinedFromLHS
;
2032 SmallVector
<VNInfo
*, 16> NewVNInfo
;
2034 // If a live interval is a physical register, conservatively check if any
2035 // of its sub-registers is overlapping the live interval of the virtual
2036 // register. If so, do not coalesce.
2037 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
) &&
2038 *tri_
->getSubRegisters(LHS
.reg
)) {
2039 // If it's coalescing a virtual register to a physical register, estimate
2040 // its live interval length. This is the *cost* of scanning an entire live
2041 // interval. If the cost is low, we'll do an exhaustive check instead.
2043 // If this is something like this:
2051 // That is, the live interval of v1024 crosses a bb. Then we can't rely on
2052 // less conservative check. It's possible a sub-register is defined before
2053 // v1024 (or live in) and live out of BB1.
2054 if (RHS
.containsOneValue() &&
2055 li_
->intervalIsInOneMBB(RHS
) &&
2056 li_
->getApproximateInstructionCount(RHS
) <= 10) {
2057 // Perform a more exhaustive check for some common cases.
2058 if (li_
->conflictsWithPhysRegRef(RHS
, LHS
.reg
, true, JoinedCopies
))
2061 for (const unsigned* SR
= tri_
->getSubRegisters(LHS
.reg
); *SR
; ++SR
)
2062 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
2063 DOUT
<< "Interfere with sub-register ";
2064 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
2068 } else if (TargetRegisterInfo::isPhysicalRegister(RHS
.reg
) &&
2069 *tri_
->getSubRegisters(RHS
.reg
)) {
2070 if (LHS
.containsOneValue() &&
2071 li_
->getApproximateInstructionCount(LHS
) <= 10) {
2072 // Perform a more exhaustive check for some common cases.
2073 if (li_
->conflictsWithPhysRegRef(LHS
, RHS
.reg
, false, JoinedCopies
))
2076 for (const unsigned* SR
= tri_
->getSubRegisters(RHS
.reg
); *SR
; ++SR
)
2077 if (li_
->hasInterval(*SR
) && LHS
.overlaps(li_
->getInterval(*SR
))) {
2078 DOUT
<< "Interfere with sub-register ";
2079 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
2085 // Compute ultimate value numbers for the LHS and RHS values.
2086 if (RHS
.containsOneValue()) {
2087 // Copies from a liveinterval with a single value are simple to handle and
2088 // very common, handle the special case here. This is important, because
2089 // often RHS is small and LHS is large (e.g. a physreg).
2091 // Find out if the RHS is defined as a copy from some value in the LHS.
2092 int RHSVal0DefinedFromLHS
= -1;
2094 VNInfo
*RHSValNoInfo
= NULL
;
2095 VNInfo
*RHSValNoInfo0
= RHS
.getValNumInfo(0);
2096 unsigned RHSSrcReg
= li_
->getVNInfoSourceReg(RHSValNoInfo0
);
2097 if (RHSSrcReg
== 0 || RHSSrcReg
!= LHS
.reg
) {
2098 // If RHS is not defined as a copy from the LHS, we can use simpler and
2099 // faster checks to see if the live ranges are coalescable. This joiner
2100 // can't swap the LHS/RHS intervals though.
2101 if (!TargetRegisterInfo::isPhysicalRegister(RHS
.reg
)) {
2102 return SimpleJoin(LHS
, RHS
);
2104 RHSValNoInfo
= RHSValNoInfo0
;
2107 // It was defined as a copy from the LHS, find out what value # it is.
2108 RHSValNoInfo
= LHS
.getLiveRangeContaining(RHSValNoInfo0
->def
-1)->valno
;
2109 RHSValID
= RHSValNoInfo
->id
;
2110 RHSVal0DefinedFromLHS
= RHSValID
;
2113 LHSValNoAssignments
.resize(LHS
.getNumValNums(), -1);
2114 RHSValNoAssignments
.resize(RHS
.getNumValNums(), -1);
2115 NewVNInfo
.resize(LHS
.getNumValNums(), NULL
);
2117 // Okay, *all* of the values in LHS that are defined as a copy from RHS
2118 // should now get updated.
2119 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2122 unsigned VN
= VNI
->id
;
2123 if (unsigned LHSSrcReg
= li_
->getVNInfoSourceReg(VNI
)) {
2124 if (LHSSrcReg
!= RHS
.reg
) {
2125 // If this is not a copy from the RHS, its value number will be
2126 // unmodified by the coalescing.
2127 NewVNInfo
[VN
] = VNI
;
2128 LHSValNoAssignments
[VN
] = VN
;
2129 } else if (RHSValID
== -1) {
2130 // Otherwise, it is a copy from the RHS, and we don't already have a
2131 // value# for it. Keep the current value number, but remember it.
2132 LHSValNoAssignments
[VN
] = RHSValID
= VN
;
2133 NewVNInfo
[VN
] = RHSValNoInfo
;
2134 LHSValsDefinedFromRHS
[VNI
] = RHSValNoInfo0
;
2136 // Otherwise, use the specified value #.
2137 LHSValNoAssignments
[VN
] = RHSValID
;
2138 if (VN
== (unsigned)RHSValID
) { // Else this val# is dead.
2139 NewVNInfo
[VN
] = RHSValNoInfo
;
2140 LHSValsDefinedFromRHS
[VNI
] = RHSValNoInfo0
;
2144 NewVNInfo
[VN
] = VNI
;
2145 LHSValNoAssignments
[VN
] = VN
;
2149 assert(RHSValID
!= -1 && "Didn't find value #?");
2150 RHSValNoAssignments
[0] = RHSValID
;
2151 if (RHSVal0DefinedFromLHS
!= -1) {
2152 // This path doesn't go through ComputeUltimateVN so just set
2154 RHSValsDefinedFromLHS
[RHSValNoInfo0
] = (VNInfo
*)1;
2157 // Loop over the value numbers of the LHS, seeing if any are defined from
2159 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2162 if (VNI
->isUnused() || VNI
->getCopy() == 0) // Src not defined by a copy?
2165 // DstReg is known to be a register in the LHS interval. If the src is
2166 // from the RHS interval, we can use its value #.
2167 if (li_
->getVNInfoSourceReg(VNI
) != RHS
.reg
)
2170 // Figure out the value # from the RHS.
2171 LHSValsDefinedFromRHS
[VNI
]=RHS
.getLiveRangeContaining(VNI
->def
-1)->valno
;
2174 // Loop over the value numbers of the RHS, seeing if any are defined from
2176 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
2179 if (VNI
->isUnused() || VNI
->getCopy() == 0) // Src not defined by a copy?
2182 // DstReg is known to be a register in the RHS interval. If the src is
2183 // from the LHS interval, we can use its value #.
2184 if (li_
->getVNInfoSourceReg(VNI
) != LHS
.reg
)
2187 // Figure out the value # from the LHS.
2188 RHSValsDefinedFromLHS
[VNI
]=LHS
.getLiveRangeContaining(VNI
->def
-1)->valno
;
2191 LHSValNoAssignments
.resize(LHS
.getNumValNums(), -1);
2192 RHSValNoAssignments
.resize(RHS
.getNumValNums(), -1);
2193 NewVNInfo
.reserve(LHS
.getNumValNums() + RHS
.getNumValNums());
2195 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2198 unsigned VN
= VNI
->id
;
2199 if (LHSValNoAssignments
[VN
] >= 0 || VNI
->isUnused())
2201 ComputeUltimateVN(VNI
, NewVNInfo
,
2202 LHSValsDefinedFromRHS
, RHSValsDefinedFromLHS
,
2203 LHSValNoAssignments
, RHSValNoAssignments
);
2205 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
2208 unsigned VN
= VNI
->id
;
2209 if (RHSValNoAssignments
[VN
] >= 0 || VNI
->isUnused())
2211 // If this value number isn't a copy from the LHS, it's a new number.
2212 if (RHSValsDefinedFromLHS
.find(VNI
) == RHSValsDefinedFromLHS
.end()) {
2213 NewVNInfo
.push_back(VNI
);
2214 RHSValNoAssignments
[VN
] = NewVNInfo
.size()-1;
2218 ComputeUltimateVN(VNI
, NewVNInfo
,
2219 RHSValsDefinedFromLHS
, LHSValsDefinedFromRHS
,
2220 RHSValNoAssignments
, LHSValNoAssignments
);
2224 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
2225 // interval lists to see if these intervals are coalescable.
2226 LiveInterval::const_iterator I
= LHS
.begin();
2227 LiveInterval::const_iterator IE
= LHS
.end();
2228 LiveInterval::const_iterator J
= RHS
.begin();
2229 LiveInterval::const_iterator JE
= RHS
.end();
2231 // Skip ahead until the first place of potential sharing.
2232 if (I
->start
< J
->start
) {
2233 I
= std::upper_bound(I
, IE
, J
->start
);
2234 if (I
!= LHS
.begin()) --I
;
2235 } else if (J
->start
< I
->start
) {
2236 J
= std::upper_bound(J
, JE
, I
->start
);
2237 if (J
!= RHS
.begin()) --J
;
2241 // Determine if these two live ranges overlap.
2243 if (I
->start
< J
->start
) {
2244 Overlaps
= I
->end
> J
->start
;
2246 Overlaps
= J
->end
> I
->start
;
2249 // If so, check value # info to determine if they are really different.
2251 // If the live range overlap will map to the same value number in the
2252 // result liverange, we can still coalesce them. If not, we can't.
2253 if (LHSValNoAssignments
[I
->valno
->id
] !=
2254 RHSValNoAssignments
[J
->valno
->id
])
2258 if (I
->end
< J
->end
) {
2267 // Update kill info. Some live ranges are extended due to copy coalescing.
2268 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= LHSValsDefinedFromRHS
.begin(),
2269 E
= LHSValsDefinedFromRHS
.end(); I
!= E
; ++I
) {
2270 VNInfo
*VNI
= I
->first
;
2271 unsigned LHSValID
= LHSValNoAssignments
[VNI
->id
];
2272 LiveInterval::removeKill(NewVNInfo
[LHSValID
], VNI
->def
);
2273 if (VNI
->hasPHIKill())
2274 NewVNInfo
[LHSValID
]->setHasPHIKill(true);
2275 RHS
.addKills(NewVNInfo
[LHSValID
], VNI
->kills
);
2278 // Update kill info. Some live ranges are extended due to copy coalescing.
2279 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= RHSValsDefinedFromLHS
.begin(),
2280 E
= RHSValsDefinedFromLHS
.end(); I
!= E
; ++I
) {
2281 VNInfo
*VNI
= I
->first
;
2282 unsigned RHSValID
= RHSValNoAssignments
[VNI
->id
];
2283 LiveInterval::removeKill(NewVNInfo
[RHSValID
], VNI
->def
);
2284 if (VNI
->hasPHIKill())
2285 NewVNInfo
[RHSValID
]->setHasPHIKill(true);
2286 LHS
.addKills(NewVNInfo
[RHSValID
], VNI
->kills
);
2289 // If we get here, we know that we can coalesce the live ranges. Ask the
2290 // intervals to coalesce themselves now.
2291 if ((RHS
.ranges
.size() > LHS
.ranges
.size() &&
2292 TargetRegisterInfo::isVirtualRegister(LHS
.reg
)) ||
2293 TargetRegisterInfo::isPhysicalRegister(RHS
.reg
)) {
2294 RHS
.join(LHS
, &RHSValNoAssignments
[0], &LHSValNoAssignments
[0], NewVNInfo
,
2298 LHS
.join(RHS
, &LHSValNoAssignments
[0], &RHSValNoAssignments
[0], NewVNInfo
,
2306 // DepthMBBCompare - Comparison predicate that sort first based on the loop
2307 // depth of the basic block (the unsigned), and then on the MBB number.
2308 struct DepthMBBCompare
{
2309 typedef std::pair
<unsigned, MachineBasicBlock
*> DepthMBBPair
;
2310 bool operator()(const DepthMBBPair
&LHS
, const DepthMBBPair
&RHS
) const {
2311 if (LHS
.first
> RHS
.first
) return true; // Deeper loops first
2312 return LHS
.first
== RHS
.first
&&
2313 LHS
.second
->getNumber() < RHS
.second
->getNumber();
2318 /// getRepIntervalSize - Returns the size of the interval that represents the
2319 /// specified register.
2321 unsigned JoinPriorityQueue
<SF
>::getRepIntervalSize(unsigned Reg
) {
2322 return Rc
->getRepIntervalSize(Reg
);
2325 /// CopyRecSort::operator - Join priority queue sorting function.
2327 bool CopyRecSort::operator()(CopyRec left
, CopyRec right
) const {
2328 // Inner loops first.
2329 if (left
.LoopDepth
> right
.LoopDepth
)
2331 else if (left
.LoopDepth
== right
.LoopDepth
)
2332 if (left
.isBackEdge
&& !right
.isBackEdge
)
2337 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock
*MBB
,
2338 std::vector
<CopyRec
> &TryAgain
) {
2339 DEBUG(errs() << ((Value
*)MBB
->getBasicBlock())->getName() << ":\n");
2341 std::vector
<CopyRec
> VirtCopies
;
2342 std::vector
<CopyRec
> PhysCopies
;
2343 std::vector
<CopyRec
> ImpDefCopies
;
2344 unsigned LoopDepth
= loopInfo
->getLoopDepth(MBB
);
2345 for (MachineBasicBlock::iterator MII
= MBB
->begin(), E
= MBB
->end();
2347 MachineInstr
*Inst
= MII
++;
2349 // If this isn't a copy nor a extract_subreg, we can't join intervals.
2350 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2351 if (Inst
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
) {
2352 DstReg
= Inst
->getOperand(0).getReg();
2353 SrcReg
= Inst
->getOperand(1).getReg();
2354 } else if (Inst
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
2355 Inst
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) {
2356 DstReg
= Inst
->getOperand(0).getReg();
2357 SrcReg
= Inst
->getOperand(2).getReg();
2358 } else if (!tii_
->isMoveInstr(*Inst
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
2361 bool SrcIsPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
2362 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
2364 JoinQueue
->push(CopyRec(Inst
, LoopDepth
, isBackEdgeCopy(Inst
, DstReg
)));
2366 if (li_
->hasInterval(SrcReg
) && li_
->getInterval(SrcReg
).empty())
2367 ImpDefCopies
.push_back(CopyRec(Inst
, 0, false));
2368 else if (SrcIsPhys
|| DstIsPhys
)
2369 PhysCopies
.push_back(CopyRec(Inst
, 0, false));
2371 VirtCopies
.push_back(CopyRec(Inst
, 0, false));
2378 // Try coalescing implicit copies first, followed by copies to / from
2379 // physical registers, then finally copies from virtual registers to
2380 // virtual registers.
2381 for (unsigned i
= 0, e
= ImpDefCopies
.size(); i
!= e
; ++i
) {
2382 CopyRec
&TheCopy
= ImpDefCopies
[i
];
2384 if (!JoinCopy(TheCopy
, Again
))
2386 TryAgain
.push_back(TheCopy
);
2388 for (unsigned i
= 0, e
= PhysCopies
.size(); i
!= e
; ++i
) {
2389 CopyRec
&TheCopy
= PhysCopies
[i
];
2391 if (!JoinCopy(TheCopy
, Again
))
2393 TryAgain
.push_back(TheCopy
);
2395 for (unsigned i
= 0, e
= VirtCopies
.size(); i
!= e
; ++i
) {
2396 CopyRec
&TheCopy
= VirtCopies
[i
];
2398 if (!JoinCopy(TheCopy
, Again
))
2400 TryAgain
.push_back(TheCopy
);
2404 void SimpleRegisterCoalescing::joinIntervals() {
2405 DOUT
<< "********** JOINING INTERVALS ***********\n";
2408 JoinQueue
= new JoinPriorityQueue
<CopyRecSort
>(this);
2410 std::vector
<CopyRec
> TryAgainList
;
2411 if (loopInfo
->empty()) {
2412 // If there are no loops in the function, join intervals in function order.
2413 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();
2415 CopyCoalesceInMBB(I
, TryAgainList
);
2417 // Otherwise, join intervals in inner loops before other intervals.
2418 // Unfortunately we can't just iterate over loop hierarchy here because
2419 // there may be more MBB's than BB's. Collect MBB's for sorting.
2421 // Join intervals in the function prolog first. We want to join physical
2422 // registers with virtual registers before the intervals got too long.
2423 std::vector
<std::pair
<unsigned, MachineBasicBlock
*> > MBBs
;
2424 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();I
!= E
;++I
){
2425 MachineBasicBlock
*MBB
= I
;
2426 MBBs
.push_back(std::make_pair(loopInfo
->getLoopDepth(MBB
), I
));
2429 // Sort by loop depth.
2430 std::sort(MBBs
.begin(), MBBs
.end(), DepthMBBCompare());
2432 // Finally, join intervals in loop nest order.
2433 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
)
2434 CopyCoalesceInMBB(MBBs
[i
].second
, TryAgainList
);
2437 // Joining intervals can allow other intervals to be joined. Iteratively join
2438 // until we make no progress.
2440 SmallVector
<CopyRec
, 16> TryAgain
;
2441 bool ProgressMade
= true;
2442 while (ProgressMade
) {
2443 ProgressMade
= false;
2444 while (!JoinQueue
->empty()) {
2445 CopyRec R
= JoinQueue
->pop();
2447 bool Success
= JoinCopy(R
, Again
);
2449 ProgressMade
= true;
2451 TryAgain
.push_back(R
);
2455 while (!TryAgain
.empty()) {
2456 JoinQueue
->push(TryAgain
.back());
2457 TryAgain
.pop_back();
2462 bool ProgressMade
= true;
2463 while (ProgressMade
) {
2464 ProgressMade
= false;
2466 for (unsigned i
= 0, e
= TryAgainList
.size(); i
!= e
; ++i
) {
2467 CopyRec
&TheCopy
= TryAgainList
[i
];
2470 bool Success
= JoinCopy(TheCopy
, Again
);
2471 if (Success
|| !Again
) {
2472 TheCopy
.MI
= 0; // Mark this one as done.
2473 ProgressMade
= true;
2484 /// Return true if the two specified registers belong to different register
2485 /// classes. The registers may be either phys or virt regs.
2487 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA
,
2488 unsigned RegB
) const {
2489 // Get the register classes for the first reg.
2490 if (TargetRegisterInfo::isPhysicalRegister(RegA
)) {
2491 assert(TargetRegisterInfo::isVirtualRegister(RegB
) &&
2492 "Shouldn't consider two physregs!");
2493 return !mri_
->getRegClass(RegB
)->contains(RegA
);
2496 // Compare against the regclass for the second reg.
2497 const TargetRegisterClass
*RegClassA
= mri_
->getRegClass(RegA
);
2498 if (TargetRegisterInfo::isVirtualRegister(RegB
)) {
2499 const TargetRegisterClass
*RegClassB
= mri_
->getRegClass(RegB
);
2500 return RegClassA
!= RegClassB
;
2502 return !RegClassA
->contains(RegB
);
2505 /// lastRegisterUse - Returns the last use of the specific register between
2506 /// cycles Start and End or NULL if there are no uses.
2508 SimpleRegisterCoalescing::lastRegisterUse(unsigned Start
, unsigned End
,
2509 unsigned Reg
, unsigned &UseIdx
) const{
2511 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
2512 MachineOperand
*LastUse
= NULL
;
2513 for (MachineRegisterInfo::use_iterator I
= mri_
->use_begin(Reg
),
2514 E
= mri_
->use_end(); I
!= E
; ++I
) {
2515 MachineOperand
&Use
= I
.getOperand();
2516 MachineInstr
*UseMI
= Use
.getParent();
2517 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2518 if (tii_
->isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
2520 // Ignore identity copies.
2522 unsigned Idx
= li_
->getInstructionIndex(UseMI
);
2523 if (Idx
>= Start
&& Idx
< End
&& Idx
>= UseIdx
) {
2525 UseIdx
= li_
->getUseIndex(Idx
);
2531 int e
= (End
-1) / InstrSlots::NUM
* InstrSlots::NUM
;
2534 // Skip deleted instructions
2535 MachineInstr
*MI
= li_
->getInstructionFromIndex(e
);
2536 while ((e
- InstrSlots::NUM
) >= s
&& !MI
) {
2537 e
-= InstrSlots::NUM
;
2538 MI
= li_
->getInstructionFromIndex(e
);
2540 if (e
< s
|| MI
== NULL
)
2543 // Ignore identity copies.
2544 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2545 if (!(tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
2547 for (unsigned i
= 0, NumOps
= MI
->getNumOperands(); i
!= NumOps
; ++i
) {
2548 MachineOperand
&Use
= MI
->getOperand(i
);
2549 if (Use
.isReg() && Use
.isUse() && Use
.getReg() &&
2550 tri_
->regsOverlap(Use
.getReg(), Reg
)) {
2551 UseIdx
= li_
->getUseIndex(e
);
2556 e
-= InstrSlots::NUM
;
2563 void SimpleRegisterCoalescing::printRegName(unsigned reg
) const {
2564 if (TargetRegisterInfo::isPhysicalRegister(reg
))
2565 cerr
<< tri_
->getName(reg
);
2567 cerr
<< "%reg" << reg
;
2570 void SimpleRegisterCoalescing::releaseMemory() {
2571 JoinedCopies
.clear();
2572 ReMatCopies
.clear();
2576 static bool isZeroLengthInterval(LiveInterval
*li
) {
2577 for (LiveInterval::Ranges::const_iterator
2578 i
= li
->ranges
.begin(), e
= li
->ranges
.end(); i
!= e
; ++i
)
2579 if (i
->end
- i
->start
> LiveInterval::InstrSlots::NUM
)
2585 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction
&fn
) {
2587 mri_
= &fn
.getRegInfo();
2588 tm_
= &fn
.getTarget();
2589 tri_
= tm_
->getRegisterInfo();
2590 tii_
= tm_
->getInstrInfo();
2591 li_
= &getAnalysis
<LiveIntervals
>();
2592 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
2594 DEBUG(errs() << "********** SIMPLE REGISTER COALESCING **********\n"
2595 << "********** Function: "
2596 << ((Value
*)mf_
->getFunction())->getName() << '\n');
2598 allocatableRegs_
= tri_
->getAllocatableSet(fn
);
2599 for (TargetRegisterInfo::regclass_iterator I
= tri_
->regclass_begin(),
2600 E
= tri_
->regclass_end(); I
!= E
; ++I
)
2601 allocatableRCRegs_
.insert(std::make_pair(*I
,
2602 tri_
->getAllocatableSet(fn
, *I
)));
2604 // Join (coalesce) intervals if requested.
2605 if (EnableJoining
) {
2608 DOUT
<< "********** INTERVALS POST JOINING **********\n";
2609 for (LiveIntervals::iterator I
= li_
->begin(), E
= li_
->end(); I
!= E
; ++I
){
2610 I
->second
->print(DOUT
, tri_
);
2616 // Perform a final pass over the instructions and compute spill weights
2617 // and remove identity moves.
2618 SmallVector
<unsigned, 4> DeadDefs
;
2619 for (MachineFunction::iterator mbbi
= mf_
->begin(), mbbe
= mf_
->end();
2620 mbbi
!= mbbe
; ++mbbi
) {
2621 MachineBasicBlock
* mbb
= mbbi
;
2622 unsigned loopDepth
= loopInfo
->getLoopDepth(mbb
);
2624 for (MachineBasicBlock::iterator mii
= mbb
->begin(), mie
= mbb
->end();
2626 MachineInstr
*MI
= mii
;
2627 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2628 if (JoinedCopies
.count(MI
)) {
2629 // Delete all coalesced copies.
2630 if (!tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
)) {
2631 assert((MI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
||
2632 MI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
2633 MI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) &&
2634 "Unrecognized copy instruction");
2635 DstReg
= MI
->getOperand(0).getReg();
2637 if (MI
->registerDefIsDead(DstReg
)) {
2638 LiveInterval
&li
= li_
->getInterval(DstReg
);
2639 if (!ShortenDeadCopySrcLiveRange(li
, MI
))
2640 ShortenDeadCopyLiveRange(li
, MI
);
2642 li_
->RemoveMachineInstrFromMaps(MI
);
2643 mii
= mbbi
->erase(mii
);
2648 // Now check if this is a remat'ed def instruction which is now dead.
2649 if (ReMatDefs
.count(MI
)) {
2651 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2652 const MachineOperand
&MO
= MI
->getOperand(i
);
2655 unsigned Reg
= MO
.getReg();
2658 if (TargetRegisterInfo::isVirtualRegister(Reg
))
2659 DeadDefs
.push_back(Reg
);
2662 if (TargetRegisterInfo::isPhysicalRegister(Reg
) ||
2663 !mri_
->use_empty(Reg
)) {
2669 while (!DeadDefs
.empty()) {
2670 unsigned DeadDef
= DeadDefs
.back();
2671 DeadDefs
.pop_back();
2672 RemoveDeadDef(li_
->getInterval(DeadDef
), MI
);
2674 li_
->RemoveMachineInstrFromMaps(mii
);
2675 mii
= mbbi
->erase(mii
);
2681 // If the move will be an identity move delete it
2682 bool isMove
= tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
);
2683 if (isMove
&& SrcReg
== DstReg
) {
2684 if (li_
->hasInterval(SrcReg
)) {
2685 LiveInterval
&RegInt
= li_
->getInterval(SrcReg
);
2686 // If def of this move instruction is dead, remove its live range
2687 // from the dstination register's live interval.
2688 if (MI
->registerDefIsDead(DstReg
)) {
2689 if (!ShortenDeadCopySrcLiveRange(RegInt
, MI
))
2690 ShortenDeadCopyLiveRange(RegInt
, MI
);
2693 li_
->RemoveMachineInstrFromMaps(MI
);
2694 mii
= mbbi
->erase(mii
);
2697 SmallSet
<unsigned, 4> UniqueUses
;
2698 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2699 const MachineOperand
&mop
= MI
->getOperand(i
);
2700 if (mop
.isReg() && mop
.getReg() &&
2701 TargetRegisterInfo::isVirtualRegister(mop
.getReg())) {
2702 unsigned reg
= mop
.getReg();
2703 // Multiple uses of reg by the same instruction. It should not
2704 // contribute to spill weight again.
2705 if (UniqueUses
.count(reg
) != 0)
2707 LiveInterval
&RegInt
= li_
->getInterval(reg
);
2709 li_
->getSpillWeight(mop
.isDef(), mop
.isUse(), loopDepth
);
2710 UniqueUses
.insert(reg
);
2718 for (LiveIntervals::iterator I
= li_
->begin(), E
= li_
->end(); I
!= E
; ++I
) {
2719 LiveInterval
&LI
= *I
->second
;
2720 if (TargetRegisterInfo::isVirtualRegister(LI
.reg
)) {
2721 // If the live interval length is essentially zero, i.e. in every live
2722 // range the use follows def immediately, it doesn't make sense to spill
2723 // it and hope it will be easier to allocate for this li.
2724 if (isZeroLengthInterval(&LI
))
2725 LI
.weight
= HUGE_VALF
;
2727 bool isLoad
= false;
2728 SmallVector
<LiveInterval
*, 4> SpillIs
;
2729 if (li_
->isReMaterializable(LI
, SpillIs
, isLoad
)) {
2730 // If all of the definitions of the interval are re-materializable,
2731 // it is a preferred candidate for spilling. If non of the defs are
2732 // loads, then it's potentially very cheap to re-materialize.
2733 // FIXME: this gets much more complicated once we support non-trivial
2734 // re-materialization.
2742 // Slightly prefer live interval that has been assigned a preferred reg.
2743 std::pair
<unsigned, unsigned> Hint
= mri_
->getRegAllocationHint(LI
.reg
);
2744 if (Hint
.first
|| Hint
.second
)
2747 // Divide the weight of the interval by its size. This encourages
2748 // spilling of intervals that are large and have few uses, and
2749 // discourages spilling of small intervals with many uses.
2750 LI
.weight
/= li_
->getApproximateInstructionCount(LI
) * InstrSlots::NUM
;
2758 /// print - Implement the dump method.
2759 void SimpleRegisterCoalescing::print(std::ostream
&O
, const Module
* m
) const {
2763 RegisterCoalescer
* llvm::createSimpleRegisterCoalescer() {
2764 return new SimpleRegisterCoalescing();
2767 // Make sure that anything that uses RegisterCoalescer pulls in this file...
2768 DEFINING_FILE_FOR(SimpleRegisterCoalescing
)