1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "codegenprepare"
17 #include "llvm/Transforms/Scalar.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Function.h"
21 #include "llvm/InlineAsm.h"
22 #include "llvm/Instructions.h"
23 #include "llvm/IntrinsicInst.h"
24 #include "llvm/LLVMContext.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Target/TargetLowering.h"
28 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
29 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/Assembly/Writer.h"
34 #include "llvm/Support/CallSite.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/GetElementPtrTypeIterator.h"
38 #include "llvm/Support/PatternMatch.h"
39 #include "llvm/Support/raw_ostream.h"
41 using namespace llvm::PatternMatch
;
43 static cl::opt
<bool> FactorCommonPreds("split-critical-paths-tweak",
44 cl::init(false), cl::Hidden
);
47 class CodeGenPrepare
: public FunctionPass
{
48 /// TLI - Keep a pointer of a TargetLowering to consult for determining
49 /// transformation profitability.
50 const TargetLowering
*TLI
;
52 /// BackEdges - Keep a set of all the loop back edges.
54 SmallSet
<std::pair
<const BasicBlock
*, const BasicBlock
*>, 8> BackEdges
;
56 static char ID
; // Pass identification, replacement for typeid
57 explicit CodeGenPrepare(const TargetLowering
*tli
= 0)
58 : FunctionPass(&ID
), TLI(tli
) {}
59 bool runOnFunction(Function
&F
);
62 bool EliminateMostlyEmptyBlocks(Function
&F
);
63 bool CanMergeBlocks(const BasicBlock
*BB
, const BasicBlock
*DestBB
) const;
64 void EliminateMostlyEmptyBlock(BasicBlock
*BB
);
65 bool OptimizeBlock(BasicBlock
&BB
);
66 bool OptimizeMemoryInst(Instruction
*I
, Value
*Addr
, const Type
*AccessTy
,
67 DenseMap
<Value
*,Value
*> &SunkAddrs
);
68 bool OptimizeInlineAsmInst(Instruction
*I
, CallSite CS
,
69 DenseMap
<Value
*,Value
*> &SunkAddrs
);
70 bool OptimizeExtUses(Instruction
*I
);
71 void findLoopBackEdges(const Function
&F
);
75 char CodeGenPrepare::ID
= 0;
76 static RegisterPass
<CodeGenPrepare
> X("codegenprepare",
77 "Optimize for code generation");
79 FunctionPass
*llvm::createCodeGenPreparePass(const TargetLowering
*TLI
) {
80 return new CodeGenPrepare(TLI
);
83 /// findLoopBackEdges - Do a DFS walk to find loop back edges.
85 void CodeGenPrepare::findLoopBackEdges(const Function
&F
) {
86 SmallVector
<std::pair
<const BasicBlock
*,const BasicBlock
*>, 32> Edges
;
87 FindFunctionBackedges(F
, Edges
);
89 BackEdges
.insert(Edges
.begin(), Edges
.end());
93 bool CodeGenPrepare::runOnFunction(Function
&F
) {
94 bool EverMadeChange
= false;
96 // First pass, eliminate blocks that contain only PHI nodes and an
97 // unconditional branch.
98 EverMadeChange
|= EliminateMostlyEmptyBlocks(F
);
100 // Now find loop back edges.
101 findLoopBackEdges(F
);
103 bool MadeChange
= true;
106 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
107 MadeChange
|= OptimizeBlock(*BB
);
108 EverMadeChange
|= MadeChange
;
110 return EverMadeChange
;
113 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
114 /// debug info directives, and an unconditional branch. Passes before isel
115 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
116 /// isel. Start by eliminating these blocks so we can split them the way we
118 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function
&F
) {
119 bool MadeChange
= false;
120 // Note that this intentionally skips the entry block.
121 for (Function::iterator I
= ++F
.begin(), E
= F
.end(); I
!= E
; ) {
122 BasicBlock
*BB
= I
++;
124 // If this block doesn't end with an uncond branch, ignore it.
125 BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
126 if (!BI
|| !BI
->isUnconditional())
129 // If the instruction before the branch (skipping debug info) isn't a phi
130 // node, then other stuff is happening here.
131 BasicBlock::iterator BBI
= BI
;
132 if (BBI
!= BB
->begin()) {
134 while (isa
<DbgInfoIntrinsic
>(BBI
)) {
135 if (BBI
== BB
->begin())
139 if (!isa
<DbgInfoIntrinsic
>(BBI
) && !isa
<PHINode
>(BBI
))
143 // Do not break infinite loops.
144 BasicBlock
*DestBB
= BI
->getSuccessor(0);
148 if (!CanMergeBlocks(BB
, DestBB
))
151 EliminateMostlyEmptyBlock(BB
);
157 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
158 /// single uncond branch between them, and BB contains no other non-phi
160 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock
*BB
,
161 const BasicBlock
*DestBB
) const {
162 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
163 // the successor. If there are more complex condition (e.g. preheaders),
164 // don't mess around with them.
165 BasicBlock::const_iterator BBI
= BB
->begin();
166 while (const PHINode
*PN
= dyn_cast
<PHINode
>(BBI
++)) {
167 for (Value::use_const_iterator UI
= PN
->use_begin(), E
= PN
->use_end();
169 const Instruction
*User
= cast
<Instruction
>(*UI
);
170 if (User
->getParent() != DestBB
|| !isa
<PHINode
>(User
))
172 // If User is inside DestBB block and it is a PHINode then check
173 // incoming value. If incoming value is not from BB then this is
174 // a complex condition (e.g. preheaders) we want to avoid here.
175 if (User
->getParent() == DestBB
) {
176 if (const PHINode
*UPN
= dyn_cast
<PHINode
>(User
))
177 for (unsigned I
= 0, E
= UPN
->getNumIncomingValues(); I
!= E
; ++I
) {
178 Instruction
*Insn
= dyn_cast
<Instruction
>(UPN
->getIncomingValue(I
));
179 if (Insn
&& Insn
->getParent() == BB
&&
180 Insn
->getParent() != UPN
->getIncomingBlock(I
))
187 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
188 // and DestBB may have conflicting incoming values for the block. If so, we
189 // can't merge the block.
190 const PHINode
*DestBBPN
= dyn_cast
<PHINode
>(DestBB
->begin());
191 if (!DestBBPN
) return true; // no conflict.
193 // Collect the preds of BB.
194 SmallPtrSet
<const BasicBlock
*, 16> BBPreds
;
195 if (const PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
196 // It is faster to get preds from a PHI than with pred_iterator.
197 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
198 BBPreds
.insert(BBPN
->getIncomingBlock(i
));
200 BBPreds
.insert(pred_begin(BB
), pred_end(BB
));
203 // Walk the preds of DestBB.
204 for (unsigned i
= 0, e
= DestBBPN
->getNumIncomingValues(); i
!= e
; ++i
) {
205 BasicBlock
*Pred
= DestBBPN
->getIncomingBlock(i
);
206 if (BBPreds
.count(Pred
)) { // Common predecessor?
207 BBI
= DestBB
->begin();
208 while (const PHINode
*PN
= dyn_cast
<PHINode
>(BBI
++)) {
209 const Value
*V1
= PN
->getIncomingValueForBlock(Pred
);
210 const Value
*V2
= PN
->getIncomingValueForBlock(BB
);
212 // If V2 is a phi node in BB, look up what the mapped value will be.
213 if (const PHINode
*V2PN
= dyn_cast
<PHINode
>(V2
))
214 if (V2PN
->getParent() == BB
)
215 V2
= V2PN
->getIncomingValueForBlock(Pred
);
217 // If there is a conflict, bail out.
218 if (V1
!= V2
) return false;
227 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
228 /// an unconditional branch in it.
229 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock
*BB
) {
230 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
231 BasicBlock
*DestBB
= BI
->getSuccessor(0);
233 DEBUG(errs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB
<< *DestBB
);
235 // If the destination block has a single pred, then this is a trivial edge,
237 if (BasicBlock
*SinglePred
= DestBB
->getSinglePredecessor()) {
238 if (SinglePred
!= DestBB
) {
239 // Remember if SinglePred was the entry block of the function. If so, we
240 // will need to move BB back to the entry position.
241 bool isEntry
= SinglePred
== &SinglePred
->getParent()->getEntryBlock();
242 MergeBasicBlockIntoOnlyPred(DestBB
);
244 if (isEntry
&& BB
!= &BB
->getParent()->getEntryBlock())
245 BB
->moveBefore(&BB
->getParent()->getEntryBlock());
247 DEBUG(errs() << "AFTER:\n" << *DestBB
<< "\n\n\n");
252 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
253 // to handle the new incoming edges it is about to have.
255 for (BasicBlock::iterator BBI
= DestBB
->begin();
256 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
257 // Remove the incoming value for BB, and remember it.
258 Value
*InVal
= PN
->removeIncomingValue(BB
, false);
260 // Two options: either the InVal is a phi node defined in BB or it is some
261 // value that dominates BB.
262 PHINode
*InValPhi
= dyn_cast
<PHINode
>(InVal
);
263 if (InValPhi
&& InValPhi
->getParent() == BB
) {
264 // Add all of the input values of the input PHI as inputs of this phi.
265 for (unsigned i
= 0, e
= InValPhi
->getNumIncomingValues(); i
!= e
; ++i
)
266 PN
->addIncoming(InValPhi
->getIncomingValue(i
),
267 InValPhi
->getIncomingBlock(i
));
269 // Otherwise, add one instance of the dominating value for each edge that
270 // we will be adding.
271 if (PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
272 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
273 PN
->addIncoming(InVal
, BBPN
->getIncomingBlock(i
));
275 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
276 PN
->addIncoming(InVal
, *PI
);
281 // The PHIs are now updated, change everything that refers to BB to use
282 // DestBB and remove BB.
283 BB
->replaceAllUsesWith(DestBB
);
284 BB
->eraseFromParent();
286 DEBUG(errs() << "AFTER:\n" << *DestBB
<< "\n\n\n");
290 /// SplitEdgeNicely - Split the critical edge from TI to its specified
291 /// successor if it will improve codegen. We only do this if the successor has
292 /// phi nodes (otherwise critical edges are ok). If there is already another
293 /// predecessor of the succ that is empty (and thus has no phi nodes), use it
294 /// instead of introducing a new block.
295 static void SplitEdgeNicely(TerminatorInst
*TI
, unsigned SuccNum
,
296 SmallSet
<std::pair
<const BasicBlock
*,
297 const BasicBlock
*>, 8> &BackEdges
,
299 BasicBlock
*TIBB
= TI
->getParent();
300 BasicBlock
*Dest
= TI
->getSuccessor(SuccNum
);
301 assert(isa
<PHINode
>(Dest
->begin()) &&
302 "This should only be called if Dest has a PHI!");
304 // Do not split edges to EH landing pads.
305 if (InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(TI
)) {
306 if (Invoke
->getSuccessor(1) == Dest
)
310 // As a hack, never split backedges of loops. Even though the copy for any
311 // PHIs inserted on the backedge would be dead for exits from the loop, we
312 // assume that the cost of *splitting* the backedge would be too high.
313 if (BackEdges
.count(std::make_pair(TIBB
, Dest
)))
316 if (!FactorCommonPreds
) {
317 /// TIPHIValues - This array is lazily computed to determine the values of
318 /// PHIs in Dest that TI would provide.
319 SmallVector
<Value
*, 32> TIPHIValues
;
321 // Check to see if Dest has any blocks that can be used as a split edge for
323 for (pred_iterator PI
= pred_begin(Dest
), E
= pred_end(Dest
); PI
!= E
; ++PI
) {
324 BasicBlock
*Pred
= *PI
;
325 // To be usable, the pred has to end with an uncond branch to the dest.
326 BranchInst
*PredBr
= dyn_cast
<BranchInst
>(Pred
->getTerminator());
327 if (!PredBr
|| !PredBr
->isUnconditional())
329 // Must be empty other than the branch and debug info.
330 BasicBlock::iterator I
= Pred
->begin();
331 while (isa
<DbgInfoIntrinsic
>(I
))
333 if (dyn_cast
<Instruction
>(I
) != PredBr
)
335 // Cannot be the entry block; its label does not get emitted.
336 if (Pred
== &(Dest
->getParent()->getEntryBlock()))
339 // Finally, since we know that Dest has phi nodes in it, we have to make
340 // sure that jumping to Pred will have the same effect as going to Dest in
341 // terms of PHI values.
344 bool FoundMatch
= true;
345 for (BasicBlock::iterator I
= Dest
->begin();
346 (PN
= dyn_cast
<PHINode
>(I
)); ++I
, ++PHINo
) {
347 if (PHINo
== TIPHIValues
.size())
348 TIPHIValues
.push_back(PN
->getIncomingValueForBlock(TIBB
));
350 // If the PHI entry doesn't work, we can't use this pred.
351 if (TIPHIValues
[PHINo
] != PN
->getIncomingValueForBlock(Pred
)) {
357 // If we found a workable predecessor, change TI to branch to Succ.
359 Dest
->removePredecessor(TIBB
);
360 TI
->setSuccessor(SuccNum
, Pred
);
365 SplitCriticalEdge(TI
, SuccNum
, P
, true);
370 SmallVector
<Value
*, 8> TIPHIValues
;
371 for (BasicBlock::iterator I
= Dest
->begin();
372 (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
373 TIPHIValues
.push_back(PN
->getIncomingValueForBlock(TIBB
));
375 SmallVector
<BasicBlock
*, 8> IdenticalPreds
;
376 for (pred_iterator PI
= pred_begin(Dest
), E
= pred_end(Dest
); PI
!= E
; ++PI
) {
377 BasicBlock
*Pred
= *PI
;
378 if (BackEdges
.count(std::make_pair(Pred
, Dest
)))
381 IdenticalPreds
.push_back(Pred
);
383 bool Identical
= true;
385 for (BasicBlock::iterator I
= Dest
->begin();
386 (PN
= dyn_cast
<PHINode
>(I
)); ++I
, ++PHINo
)
387 if (TIPHIValues
[PHINo
] != PN
->getIncomingValueForBlock(Pred
)) {
392 IdenticalPreds
.push_back(Pred
);
396 assert(!IdenticalPreds
.empty());
397 SplitBlockPredecessors(Dest
, &IdenticalPreds
[0], IdenticalPreds
.size(),
402 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
403 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
404 /// sink it into user blocks to reduce the number of virtual
405 /// registers that must be created and coalesced.
407 /// Return true if any changes are made.
409 static bool OptimizeNoopCopyExpression(CastInst
*CI
, const TargetLowering
&TLI
){
410 // If this is a noop copy,
411 EVT SrcVT
= TLI
.getValueType(CI
->getOperand(0)->getType());
412 EVT DstVT
= TLI
.getValueType(CI
->getType());
414 // This is an fp<->int conversion?
415 if (SrcVT
.isInteger() != DstVT
.isInteger())
418 // If this is an extension, it will be a zero or sign extension, which
420 if (SrcVT
.bitsLT(DstVT
)) return false;
422 // If these values will be promoted, find out what they will be promoted
423 // to. This helps us consider truncates on PPC as noop copies when they
425 if (TLI
.getTypeAction(CI
->getContext(), SrcVT
) == TargetLowering::Promote
)
426 SrcVT
= TLI
.getTypeToTransformTo(CI
->getContext(), SrcVT
);
427 if (TLI
.getTypeAction(CI
->getContext(), DstVT
) == TargetLowering::Promote
)
428 DstVT
= TLI
.getTypeToTransformTo(CI
->getContext(), DstVT
);
430 // If, after promotion, these are the same types, this is a noop copy.
434 BasicBlock
*DefBB
= CI
->getParent();
436 /// InsertedCasts - Only insert a cast in each block once.
437 DenseMap
<BasicBlock
*, CastInst
*> InsertedCasts
;
439 bool MadeChange
= false;
440 for (Value::use_iterator UI
= CI
->use_begin(), E
= CI
->use_end();
442 Use
&TheUse
= UI
.getUse();
443 Instruction
*User
= cast
<Instruction
>(*UI
);
445 // Figure out which BB this cast is used in. For PHI's this is the
446 // appropriate predecessor block.
447 BasicBlock
*UserBB
= User
->getParent();
448 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
)) {
449 UserBB
= PN
->getIncomingBlock(UI
);
452 // Preincrement use iterator so we don't invalidate it.
455 // If this user is in the same block as the cast, don't change the cast.
456 if (UserBB
== DefBB
) continue;
458 // If we have already inserted a cast into this block, use it.
459 CastInst
*&InsertedCast
= InsertedCasts
[UserBB
];
462 BasicBlock::iterator InsertPt
= UserBB
->getFirstNonPHI();
465 CastInst::Create(CI
->getOpcode(), CI
->getOperand(0), CI
->getType(), "",
470 // Replace a use of the cast with a use of the new cast.
471 TheUse
= InsertedCast
;
474 // If we removed all uses, nuke the cast.
475 if (CI
->use_empty()) {
476 CI
->eraseFromParent();
483 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
484 /// the number of virtual registers that must be created and coalesced. This is
485 /// a clear win except on targets with multiple condition code registers
486 /// (PowerPC), where it might lose; some adjustment may be wanted there.
488 /// Return true if any changes are made.
489 static bool OptimizeCmpExpression(CmpInst
*CI
) {
490 BasicBlock
*DefBB
= CI
->getParent();
492 /// InsertedCmp - Only insert a cmp in each block once.
493 DenseMap
<BasicBlock
*, CmpInst
*> InsertedCmps
;
495 bool MadeChange
= false;
496 for (Value::use_iterator UI
= CI
->use_begin(), E
= CI
->use_end();
498 Use
&TheUse
= UI
.getUse();
499 Instruction
*User
= cast
<Instruction
>(*UI
);
501 // Preincrement use iterator so we don't invalidate it.
504 // Don't bother for PHI nodes.
505 if (isa
<PHINode
>(User
))
508 // Figure out which BB this cmp is used in.
509 BasicBlock
*UserBB
= User
->getParent();
511 // If this user is in the same block as the cmp, don't change the cmp.
512 if (UserBB
== DefBB
) continue;
514 // If we have already inserted a cmp into this block, use it.
515 CmpInst
*&InsertedCmp
= InsertedCmps
[UserBB
];
518 BasicBlock::iterator InsertPt
= UserBB
->getFirstNonPHI();
521 CmpInst::Create(CI
->getOpcode(),
522 CI
->getPredicate(), CI
->getOperand(0),
523 CI
->getOperand(1), "", InsertPt
);
527 // Replace a use of the cmp with a use of the new cmp.
528 TheUse
= InsertedCmp
;
531 // If we removed all uses, nuke the cmp.
533 CI
->eraseFromParent();
538 //===----------------------------------------------------------------------===//
539 // Memory Optimization
540 //===----------------------------------------------------------------------===//
542 /// IsNonLocalValue - Return true if the specified values are defined in a
543 /// different basic block than BB.
544 static bool IsNonLocalValue(Value
*V
, BasicBlock
*BB
) {
545 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
546 return I
->getParent() != BB
;
550 /// OptimizeMemoryInst - Load and Store Instructions have often have
551 /// addressing modes that can do significant amounts of computation. As such,
552 /// instruction selection will try to get the load or store to do as much
553 /// computation as possible for the program. The problem is that isel can only
554 /// see within a single block. As such, we sink as much legal addressing mode
555 /// stuff into the block as possible.
557 /// This method is used to optimize both load/store and inline asms with memory
559 bool CodeGenPrepare::OptimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
,
560 const Type
*AccessTy
,
561 DenseMap
<Value
*,Value
*> &SunkAddrs
) {
562 // Figure out what addressing mode will be built up for this operation.
563 SmallVector
<Instruction
*, 16> AddrModeInsts
;
564 ExtAddrMode AddrMode
= AddressingModeMatcher::Match(Addr
, AccessTy
,MemoryInst
,
565 AddrModeInsts
, *TLI
);
567 // Check to see if any of the instructions supersumed by this addr mode are
568 // non-local to I's BB.
569 bool AnyNonLocal
= false;
570 for (unsigned i
= 0, e
= AddrModeInsts
.size(); i
!= e
; ++i
) {
571 if (IsNonLocalValue(AddrModeInsts
[i
], MemoryInst
->getParent())) {
577 // If all the instructions matched are already in this BB, don't do anything.
579 DEBUG(errs() << "CGP: Found local addrmode: " << AddrMode
<< "\n");
583 // Insert this computation right after this user. Since our caller is
584 // scanning from the top of the BB to the bottom, reuse of the expr are
585 // guaranteed to happen later.
586 BasicBlock::iterator InsertPt
= MemoryInst
;
588 // Now that we determined the addressing expression we want to use and know
589 // that we have to sink it into this block. Check to see if we have already
590 // done this for some other load/store instr in this block. If so, reuse the
592 Value
*&SunkAddr
= SunkAddrs
[Addr
];
594 DEBUG(errs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
<< " for "
596 if (SunkAddr
->getType() != Addr
->getType())
597 SunkAddr
= new BitCastInst(SunkAddr
, Addr
->getType(), "tmp", InsertPt
);
599 DEBUG(errs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
<< " for "
601 const Type
*IntPtrTy
=
602 TLI
->getTargetData()->getIntPtrType(AccessTy
->getContext());
605 // Start with the scale value.
606 if (AddrMode
.Scale
) {
607 Value
*V
= AddrMode
.ScaledReg
;
608 if (V
->getType() == IntPtrTy
) {
610 } else if (isa
<PointerType
>(V
->getType())) {
611 V
= new PtrToIntInst(V
, IntPtrTy
, "sunkaddr", InsertPt
);
612 } else if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
613 cast
<IntegerType
>(V
->getType())->getBitWidth()) {
614 V
= new TruncInst(V
, IntPtrTy
, "sunkaddr", InsertPt
);
616 V
= new SExtInst(V
, IntPtrTy
, "sunkaddr", InsertPt
);
618 if (AddrMode
.Scale
!= 1)
619 V
= BinaryOperator::CreateMul(V
, ConstantInt::get(IntPtrTy
,
621 "sunkaddr", InsertPt
);
625 // Add in the base register.
626 if (AddrMode
.BaseReg
) {
627 Value
*V
= AddrMode
.BaseReg
;
628 if (isa
<PointerType
>(V
->getType()))
629 V
= new PtrToIntInst(V
, IntPtrTy
, "sunkaddr", InsertPt
);
630 if (V
->getType() != IntPtrTy
)
631 V
= CastInst::CreateIntegerCast(V
, IntPtrTy
, /*isSigned=*/true,
632 "sunkaddr", InsertPt
);
634 Result
= BinaryOperator::CreateAdd(Result
, V
, "sunkaddr", InsertPt
);
639 // Add in the BaseGV if present.
640 if (AddrMode
.BaseGV
) {
641 Value
*V
= new PtrToIntInst(AddrMode
.BaseGV
, IntPtrTy
, "sunkaddr",
644 Result
= BinaryOperator::CreateAdd(Result
, V
, "sunkaddr", InsertPt
);
649 // Add in the Base Offset if present.
650 if (AddrMode
.BaseOffs
) {
651 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
653 Result
= BinaryOperator::CreateAdd(Result
, V
, "sunkaddr", InsertPt
);
659 SunkAddr
= Constant::getNullValue(Addr
->getType());
661 SunkAddr
= new IntToPtrInst(Result
, Addr
->getType(), "sunkaddr",InsertPt
);
664 MemoryInst
->replaceUsesOfWith(Addr
, SunkAddr
);
666 if (Addr
->use_empty())
667 RecursivelyDeleteTriviallyDeadInstructions(Addr
);
671 /// OptimizeInlineAsmInst - If there are any memory operands, use
672 /// OptimizeMemoryInst to sink their address computing into the block when
673 /// possible / profitable.
674 bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction
*I
, CallSite CS
,
675 DenseMap
<Value
*,Value
*> &SunkAddrs
) {
676 bool MadeChange
= false;
677 InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
679 // Do a prepass over the constraints, canonicalizing them, and building up the
680 // ConstraintOperands list.
681 std::vector
<InlineAsm::ConstraintInfo
>
682 ConstraintInfos
= IA
->ParseConstraints();
684 /// ConstraintOperands - Information about all of the constraints.
685 std::vector
<TargetLowering::AsmOperandInfo
> ConstraintOperands
;
686 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
687 for (unsigned i
= 0, e
= ConstraintInfos
.size(); i
!= e
; ++i
) {
689 push_back(TargetLowering::AsmOperandInfo(ConstraintInfos
[i
]));
690 TargetLowering::AsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
692 // Compute the value type for each operand.
693 switch (OpInfo
.Type
) {
694 case InlineAsm::isOutput
:
695 if (OpInfo
.isIndirect
)
696 OpInfo
.CallOperandVal
= CS
.getArgument(ArgNo
++);
698 case InlineAsm::isInput
:
699 OpInfo
.CallOperandVal
= CS
.getArgument(ArgNo
++);
701 case InlineAsm::isClobber
:
706 // Compute the constraint code and ConstraintType to use.
707 TLI
->ComputeConstraintToUse(OpInfo
, SDValue(),
708 OpInfo
.ConstraintType
== TargetLowering::C_Memory
);
710 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
712 Value
*OpVal
= OpInfo
.CallOperandVal
;
713 MadeChange
|= OptimizeMemoryInst(I
, OpVal
, OpVal
->getType(), SunkAddrs
);
720 bool CodeGenPrepare::OptimizeExtUses(Instruction
*I
) {
721 BasicBlock
*DefBB
= I
->getParent();
723 // If both result of the {s|z}xt and its source are live out, rewrite all
724 // other uses of the source with result of extension.
725 Value
*Src
= I
->getOperand(0);
726 if (Src
->hasOneUse())
729 // Only do this xform if truncating is free.
730 if (TLI
&& !TLI
->isTruncateFree(I
->getType(), Src
->getType()))
733 // Only safe to perform the optimization if the source is also defined in
735 if (!isa
<Instruction
>(Src
) || DefBB
!= cast
<Instruction
>(Src
)->getParent())
738 bool DefIsLiveOut
= false;
739 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
741 Instruction
*User
= cast
<Instruction
>(*UI
);
743 // Figure out which BB this ext is used in.
744 BasicBlock
*UserBB
= User
->getParent();
745 if (UserBB
== DefBB
) continue;
752 // Make sure non of the uses are PHI nodes.
753 for (Value::use_iterator UI
= Src
->use_begin(), E
= Src
->use_end();
755 Instruction
*User
= cast
<Instruction
>(*UI
);
756 BasicBlock
*UserBB
= User
->getParent();
757 if (UserBB
== DefBB
) continue;
758 // Be conservative. We don't want this xform to end up introducing
759 // reloads just before load / store instructions.
760 if (isa
<PHINode
>(User
) || isa
<LoadInst
>(User
) || isa
<StoreInst
>(User
))
764 // InsertedTruncs - Only insert one trunc in each block once.
765 DenseMap
<BasicBlock
*, Instruction
*> InsertedTruncs
;
767 bool MadeChange
= false;
768 for (Value::use_iterator UI
= Src
->use_begin(), E
= Src
->use_end();
770 Use
&TheUse
= UI
.getUse();
771 Instruction
*User
= cast
<Instruction
>(*UI
);
773 // Figure out which BB this ext is used in.
774 BasicBlock
*UserBB
= User
->getParent();
775 if (UserBB
== DefBB
) continue;
777 // Both src and def are live in this block. Rewrite the use.
778 Instruction
*&InsertedTrunc
= InsertedTruncs
[UserBB
];
780 if (!InsertedTrunc
) {
781 BasicBlock::iterator InsertPt
= UserBB
->getFirstNonPHI();
783 InsertedTrunc
= new TruncInst(I
, Src
->getType(), "", InsertPt
);
786 // Replace a use of the {s|z}ext source with a use of the result.
787 TheUse
= InsertedTrunc
;
795 // In this pass we look for GEP and cast instructions that are used
796 // across basic blocks and rewrite them to improve basic-block-at-a-time
798 bool CodeGenPrepare::OptimizeBlock(BasicBlock
&BB
) {
799 bool MadeChange
= false;
801 // Split all critical edges where the dest block has a PHI.
802 TerminatorInst
*BBTI
= BB
.getTerminator();
803 if (BBTI
->getNumSuccessors() > 1) {
804 for (unsigned i
= 0, e
= BBTI
->getNumSuccessors(); i
!= e
; ++i
) {
805 BasicBlock
*SuccBB
= BBTI
->getSuccessor(i
);
806 if (isa
<PHINode
>(SuccBB
->begin()) && isCriticalEdge(BBTI
, i
, true))
807 SplitEdgeNicely(BBTI
, i
, BackEdges
, this);
811 // Keep track of non-local addresses that have been sunk into this block.
812 // This allows us to avoid inserting duplicate code for blocks with multiple
813 // load/stores of the same address.
814 DenseMap
<Value
*, Value
*> SunkAddrs
;
816 for (BasicBlock::iterator BBI
= BB
.begin(), E
= BB
.end(); BBI
!= E
; ) {
817 Instruction
*I
= BBI
++;
819 if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
820 // If the source of the cast is a constant, then this should have
821 // already been constant folded. The only reason NOT to constant fold
822 // it is if something (e.g. LSR) was careful to place the constant
823 // evaluation in a block other than then one that uses it (e.g. to hoist
824 // the address of globals out of a loop). If this is the case, we don't
825 // want to forward-subst the cast.
826 if (isa
<Constant
>(CI
->getOperand(0)))
831 Change
= OptimizeNoopCopyExpression(CI
, *TLI
);
832 MadeChange
|= Change
;
835 if (!Change
&& (isa
<ZExtInst
>(I
) || isa
<SExtInst
>(I
)))
836 MadeChange
|= OptimizeExtUses(I
);
837 } else if (CmpInst
*CI
= dyn_cast
<CmpInst
>(I
)) {
838 MadeChange
|= OptimizeCmpExpression(CI
);
839 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
841 MadeChange
|= OptimizeMemoryInst(I
, I
->getOperand(0), LI
->getType(),
843 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
845 MadeChange
|= OptimizeMemoryInst(I
, SI
->getOperand(1),
846 SI
->getOperand(0)->getType(),
848 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
849 if (GEPI
->hasAllZeroIndices()) {
850 /// The GEP operand must be a pointer, so must its result -> BitCast
851 Instruction
*NC
= new BitCastInst(GEPI
->getOperand(0), GEPI
->getType(),
852 GEPI
->getName(), GEPI
);
853 GEPI
->replaceAllUsesWith(NC
);
854 GEPI
->eraseFromParent();
858 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
859 // If we found an inline asm expession, and if the target knows how to
860 // lower it to normal LLVM code, do so now.
861 if (TLI
&& isa
<InlineAsm
>(CI
->getCalledValue())) {
862 if (TLI
->ExpandInlineAsm(CI
)) {
864 // Avoid processing instructions out of order, which could cause
865 // reuse before a value is defined.
868 // Sink address computing for memory operands into the block.
869 MadeChange
|= OptimizeInlineAsmInst(I
, &(*CI
), SunkAddrs
);