It's not legal to fold a load from a narrower stack slot into a wider instruction...
[llvm/avr.git] / lib / CodeGen / RegAllocPBQP.cpp
blobb62d4def7e4ee810a007d3c840e05b7126527980
1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11 // register allocator for LLVM. This allocator works by constructing a PBQP
12 // problem representing the register allocation problem under consideration,
13 // solving this using a PBQP solver, and mapping the solution back to a
14 // register assignment. If any variables are selected for spilling then spill
15 // code is inserted and the process repeated.
17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18 // for register allocation. For more information on PBQP for register
19 // allocation, see the following papers:
21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26 // architectures. In Proceedings of the Joint Conference on Languages,
27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28 // NY, USA, 139-148.
30 //===----------------------------------------------------------------------===//
32 #define DEBUG_TYPE "regalloc"
34 #include "PBQP/HeuristicSolver.h"
35 #include "PBQP/SimpleGraph.h"
36 #include "PBQP/Heuristics/Briggs.h"
37 #include "VirtRegMap.h"
38 #include "VirtRegRewriter.h"
39 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
40 #include "llvm/CodeGen/LiveStackAnalysis.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineLoopInfo.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/RegAllocRegistry.h"
45 #include "llvm/CodeGen/RegisterCoalescer.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetInstrInfo.h"
49 #include "llvm/Target/TargetMachine.h"
50 #include <limits>
51 #include <map>
52 #include <memory>
53 #include <set>
54 #include <vector>
56 using namespace llvm;
58 static RegisterRegAlloc
59 registerPBQPRepAlloc("pbqp", "PBQP register allocator.",
60 llvm::createPBQPRegisterAllocator);
62 static cl::opt<bool>
63 pbqpCoalescing("pbqp-coalescing",
64 cl::desc("Attempt coalescing during PBQP register allocation."),
65 cl::init(false), cl::Hidden);
67 namespace {
69 ///
70 /// PBQP based allocators solve the register allocation problem by mapping
71 /// register allocation problems to Partitioned Boolean Quadratic
72 /// Programming problems.
73 class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
74 public:
76 static char ID;
78 /// Construct a PBQP register allocator.
79 PBQPRegAlloc() : MachineFunctionPass(&ID) {}
81 /// Return the pass name.
82 virtual const char* getPassName() const {
83 return "PBQP Register Allocator";
86 /// PBQP analysis usage.
87 virtual void getAnalysisUsage(AnalysisUsage &au) const {
88 au.addRequired<LiveIntervals>();
89 //au.addRequiredID(SplitCriticalEdgesID);
90 au.addRequired<RegisterCoalescer>();
91 au.addRequired<LiveStacks>();
92 au.addPreserved<LiveStacks>();
93 au.addRequired<MachineLoopInfo>();
94 au.addPreserved<MachineLoopInfo>();
95 au.addRequired<VirtRegMap>();
96 MachineFunctionPass::getAnalysisUsage(au);
99 /// Perform register allocation
100 virtual bool runOnMachineFunction(MachineFunction &MF);
102 private:
103 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
104 typedef std::vector<const LiveInterval*> Node2LIMap;
105 typedef std::vector<unsigned> AllowedSet;
106 typedef std::vector<AllowedSet> AllowedSetMap;
107 typedef std::set<unsigned> RegSet;
108 typedef std::pair<unsigned, unsigned> RegPair;
109 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
111 typedef std::set<LiveInterval*> LiveIntervalSet;
113 MachineFunction *mf;
114 const TargetMachine *tm;
115 const TargetRegisterInfo *tri;
116 const TargetInstrInfo *tii;
117 const MachineLoopInfo *loopInfo;
118 MachineRegisterInfo *mri;
120 LiveIntervals *lis;
121 LiveStacks *lss;
122 VirtRegMap *vrm;
124 LI2NodeMap li2Node;
125 Node2LIMap node2LI;
126 AllowedSetMap allowedSets;
127 LiveIntervalSet vregIntervalsToAlloc,
128 emptyVRegIntervals;
131 /// Builds a PBQP cost vector.
132 template <typename RegContainer>
133 PBQP::Vector buildCostVector(unsigned vReg,
134 const RegContainer &allowed,
135 const CoalesceMap &cealesces,
136 PBQP::PBQPNum spillCost) const;
138 /// \brief Builds a PBQP interference matrix.
140 /// @return Either a pointer to a non-zero PBQP matrix representing the
141 /// allocation option costs, or a null pointer for a zero matrix.
143 /// Expects allowed sets for two interfering LiveIntervals. These allowed
144 /// sets should contain only allocable registers from the LiveInterval's
145 /// register class, with any interfering pre-colored registers removed.
146 template <typename RegContainer>
147 PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
148 const RegContainer &allowed2) const;
151 /// Expects allowed sets for two potentially coalescable LiveIntervals,
152 /// and an estimated benefit due to coalescing. The allowed sets should
153 /// contain only allocable registers from the LiveInterval's register
154 /// classes, with any interfering pre-colored registers removed.
155 template <typename RegContainer>
156 PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
157 const RegContainer &allowed2,
158 PBQP::PBQPNum cBenefit) const;
160 /// \brief Finds coalescing opportunities and returns them as a map.
162 /// Any entries in the map are guaranteed coalescable, even if their
163 /// corresponding live intervals overlap.
164 CoalesceMap findCoalesces();
166 /// \brief Finds the initial set of vreg intervals to allocate.
167 void findVRegIntervalsToAlloc();
169 /// \brief Constructs a PBQP problem representation of the register
170 /// allocation problem for this function.
172 /// @return a PBQP solver object for the register allocation problem.
173 PBQP::SimpleGraph constructPBQPProblem();
175 /// \brief Adds a stack interval if the given live interval has been
176 /// spilled. Used to support stack slot coloring.
177 void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
179 /// \brief Given a solved PBQP problem maps this solution back to a register
180 /// assignment.
181 bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
183 /// \brief Postprocessing before final spilling. Sets basic block "live in"
184 /// variables.
185 void finalizeAlloc() const;
189 char PBQPRegAlloc::ID = 0;
193 template <typename RegContainer>
194 PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
195 const RegContainer &allowed,
196 const CoalesceMap &coalesces,
197 PBQP::PBQPNum spillCost) const {
199 typedef typename RegContainer::const_iterator AllowedItr;
201 // Allocate vector. Additional element (0th) used for spill option
202 PBQP::Vector v(allowed.size() + 1, 0);
204 v[0] = spillCost;
206 // Iterate over the allowed registers inserting coalesce benefits if there
207 // are any.
208 unsigned ai = 0;
209 for (AllowedItr itr = allowed.begin(), end = allowed.end();
210 itr != end; ++itr, ++ai) {
212 unsigned pReg = *itr;
214 CoalesceMap::const_iterator cmItr =
215 coalesces.find(RegPair(vReg, pReg));
217 // No coalesce - on to the next preg.
218 if (cmItr == coalesces.end())
219 continue;
221 // We have a coalesce - insert the benefit.
222 v[ai + 1] = -cmItr->second;
225 return v;
228 template <typename RegContainer>
229 PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
230 const RegContainer &allowed1, const RegContainer &allowed2) const {
232 typedef typename RegContainer::const_iterator RegContainerIterator;
234 // Construct a PBQP matrix representing the cost of allocation options. The
235 // rows and columns correspond to the allocation options for the two live
236 // intervals. Elements will be infinite where corresponding registers alias,
237 // since we cannot allocate aliasing registers to interfering live intervals.
238 // All other elements (non-aliasing combinations) will have zero cost. Note
239 // that the spill option (element 0,0) has zero cost, since we can allocate
240 // both intervals to memory safely (the cost for each individual allocation
241 // to memory is accounted for by the cost vectors for each live interval).
242 PBQP::Matrix *m =
243 new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
245 // Assume this is a zero matrix until proven otherwise. Zero matrices occur
246 // between interfering live ranges with non-overlapping register sets (e.g.
247 // non-overlapping reg classes, or disjoint sets of allowed regs within the
248 // same class). The term "overlapping" is used advisedly: sets which do not
249 // intersect, but contain registers which alias, will have non-zero matrices.
250 // We optimize zero matrices away to improve solver speed.
251 bool isZeroMatrix = true;
254 // Row index. Starts at 1, since the 0th row is for the spill option, which
255 // is always zero.
256 unsigned ri = 1;
258 // Iterate over allowed sets, insert infinities where required.
259 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
260 a1Itr != a1End; ++a1Itr) {
262 // Column index, starts at 1 as for row index.
263 unsigned ci = 1;
264 unsigned reg1 = *a1Itr;
266 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
267 a2Itr != a2End; ++a2Itr) {
269 unsigned reg2 = *a2Itr;
271 // If the row/column regs are identical or alias insert an infinity.
272 if (tri->regsOverlap(reg1, reg2)) {
273 (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
274 isZeroMatrix = false;
277 ++ci;
280 ++ri;
283 // If this turns out to be a zero matrix...
284 if (isZeroMatrix) {
285 // free it and return null.
286 delete m;
287 return 0;
290 // ...otherwise return the cost matrix.
291 return m;
294 template <typename RegContainer>
295 PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
296 const RegContainer &allowed1, const RegContainer &allowed2,
297 PBQP::PBQPNum cBenefit) const {
299 typedef typename RegContainer::const_iterator RegContainerIterator;
301 // Construct a PBQP Matrix representing the benefits of coalescing. As with
302 // interference matrices the rows and columns represent allowed registers
303 // for the LiveIntervals which are (potentially) to be coalesced. The amount
304 // -cBenefit will be placed in any element representing the same register
305 // for both intervals.
306 PBQP::Matrix *m =
307 new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
309 // Reset costs to zero.
310 m->reset(0);
312 // Assume the matrix is zero till proven otherwise. Zero matrices will be
313 // optimized away as in the interference case.
314 bool isZeroMatrix = true;
316 // Row index. Starts at 1, since the 0th row is for the spill option, which
317 // is always zero.
318 unsigned ri = 1;
320 // Iterate over the allowed sets, insert coalescing benefits where
321 // appropriate.
322 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
323 a1Itr != a1End; ++a1Itr) {
325 // Column index, starts at 1 as for row index.
326 unsigned ci = 1;
327 unsigned reg1 = *a1Itr;
329 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
330 a2Itr != a2End; ++a2Itr) {
332 // If the row and column represent the same register insert a beneficial
333 // cost to preference this allocation - it would allow us to eliminate a
334 // move instruction.
335 if (reg1 == *a2Itr) {
336 (*m)[ri][ci] = -cBenefit;
337 isZeroMatrix = false;
340 ++ci;
343 ++ri;
346 // If this turns out to be a zero matrix...
347 if (isZeroMatrix) {
348 // ...free it and return null.
349 delete m;
350 return 0;
353 return m;
356 PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
358 typedef MachineFunction::const_iterator MFIterator;
359 typedef MachineBasicBlock::const_iterator MBBIterator;
360 typedef LiveInterval::const_vni_iterator VNIIterator;
362 CoalesceMap coalescesFound;
364 // To find coalesces we need to iterate over the function looking for
365 // copy instructions.
366 for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
367 bbItr != bbEnd; ++bbItr) {
369 const MachineBasicBlock *mbb = &*bbItr;
371 for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
372 iItr != iEnd; ++iItr) {
374 const MachineInstr *instr = &*iItr;
375 unsigned srcReg, dstReg, srcSubReg, dstSubReg;
377 // If this isn't a copy then continue to the next instruction.
378 if (!tii->isMoveInstr(*instr, srcReg, dstReg, srcSubReg, dstSubReg))
379 continue;
381 // If the registers are already the same our job is nice and easy.
382 if (dstReg == srcReg)
383 continue;
385 bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
386 dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
388 // If both registers are physical then we can't coalesce.
389 if (srcRegIsPhysical && dstRegIsPhysical)
390 continue;
392 // If it's a copy that includes a virtual register but the source and
393 // destination classes differ then we can't coalesce, so continue with
394 // the next instruction.
395 const TargetRegisterClass *srcRegClass = srcRegIsPhysical ?
396 tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg);
398 const TargetRegisterClass *dstRegClass = dstRegIsPhysical ?
399 tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg);
401 if (srcRegClass != dstRegClass)
402 continue;
404 // We also need any physical regs to be allocable, coalescing with
405 // a non-allocable register is invalid.
406 if (srcRegIsPhysical) {
407 if (std::find(srcRegClass->allocation_order_begin(*mf),
408 srcRegClass->allocation_order_end(*mf), srcReg) ==
409 srcRegClass->allocation_order_end(*mf))
410 continue;
413 if (dstRegIsPhysical) {
414 if (std::find(dstRegClass->allocation_order_begin(*mf),
415 dstRegClass->allocation_order_end(*mf), dstReg) ==
416 dstRegClass->allocation_order_end(*mf))
417 continue;
420 // If we've made it here we have a copy with compatible register classes.
421 // We can probably coalesce, but we need to consider overlap.
422 const LiveInterval *srcLI = &lis->getInterval(srcReg),
423 *dstLI = &lis->getInterval(dstReg);
425 if (srcLI->overlaps(*dstLI)) {
426 // Even in the case of an overlap we might still be able to coalesce,
427 // but we need to make sure that no definition of either range occurs
428 // while the other range is live.
430 // Otherwise start by assuming we're ok.
431 bool badDef = false;
433 // Test all defs of the source range.
434 for (VNIIterator
435 vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
436 vniItr != vniEnd; ++vniItr) {
438 // If we find a def that kills the coalescing opportunity then
439 // record it and break from the loop.
440 if (dstLI->liveAt((*vniItr)->def)) {
441 badDef = true;
442 break;
446 // If we have a bad def give up, continue to the next instruction.
447 if (badDef)
448 continue;
450 // Otherwise test definitions of the destination range.
451 for (VNIIterator
452 vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
453 vniItr != vniEnd; ++vniItr) {
455 // We want to make sure we skip the copy instruction itself.
456 if ((*vniItr)->getCopy() == instr)
457 continue;
459 if (srcLI->liveAt((*vniItr)->def)) {
460 badDef = true;
461 break;
465 // As before a bad def we give up and continue to the next instr.
466 if (badDef)
467 continue;
470 // If we make it to here then either the ranges didn't overlap, or they
471 // did, but none of their definitions would prevent us from coalescing.
472 // We're good to go with the coalesce.
474 float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0;
476 coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
477 coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
482 return coalescesFound;
485 void PBQPRegAlloc::findVRegIntervalsToAlloc() {
487 // Iterate over all live ranges.
488 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
489 itr != end; ++itr) {
491 // Ignore physical ones.
492 if (TargetRegisterInfo::isPhysicalRegister(itr->first))
493 continue;
495 LiveInterval *li = itr->second;
497 // If this live interval is non-empty we will use pbqp to allocate it.
498 // Empty intervals we allocate in a simple post-processing stage in
499 // finalizeAlloc.
500 if (!li->empty()) {
501 vregIntervalsToAlloc.insert(li);
503 else {
504 emptyVRegIntervals.insert(li);
509 PBQP::SimpleGraph PBQPRegAlloc::constructPBQPProblem() {
511 typedef std::vector<const LiveInterval*> LIVector;
512 typedef std::vector<unsigned> RegVector;
513 typedef std::vector<PBQP::SimpleGraph::NodeIterator> NodeVector;
515 // This will store the physical intervals for easy reference.
516 LIVector physIntervals;
518 // Start by clearing the old node <-> live interval mappings & allowed sets
519 li2Node.clear();
520 node2LI.clear();
521 allowedSets.clear();
523 // Populate physIntervals, update preg use:
524 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
525 itr != end; ++itr) {
527 if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
528 physIntervals.push_back(itr->second);
529 mri->setPhysRegUsed(itr->second->reg);
533 // Iterate over vreg intervals, construct live interval <-> node number
534 // mappings.
535 for (LiveIntervalSet::const_iterator
536 itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
537 itr != end; ++itr) {
538 const LiveInterval *li = *itr;
540 li2Node[li] = node2LI.size();
541 node2LI.push_back(li);
544 // Get the set of potential coalesces.
545 CoalesceMap coalesces;
547 if (pbqpCoalescing) {
548 coalesces = findCoalesces();
551 // Construct a PBQP solver for this problem
552 PBQP::SimpleGraph problem;
553 NodeVector problemNodes(vregIntervalsToAlloc.size());
555 // Resize allowedSets container appropriately.
556 allowedSets.resize(vregIntervalsToAlloc.size());
558 // Iterate over virtual register intervals to compute allowed sets...
559 for (unsigned node = 0; node < node2LI.size(); ++node) {
561 // Grab pointers to the interval and its register class.
562 const LiveInterval *li = node2LI[node];
563 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
565 // Start by assuming all allocable registers in the class are allowed...
566 RegVector liAllowed(liRC->allocation_order_begin(*mf),
567 liRC->allocation_order_end(*mf));
569 // Eliminate the physical registers which overlap with this range, along
570 // with all their aliases.
571 for (LIVector::iterator pItr = physIntervals.begin(),
572 pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
574 if (!li->overlaps(**pItr))
575 continue;
577 unsigned pReg = (*pItr)->reg;
579 // If we get here then the live intervals overlap, but we're still ok
580 // if they're coalescable.
581 if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
582 continue;
584 // If we get here then we have a genuine exclusion.
586 // Remove the overlapping reg...
587 RegVector::iterator eraseItr =
588 std::find(liAllowed.begin(), liAllowed.end(), pReg);
590 if (eraseItr != liAllowed.end())
591 liAllowed.erase(eraseItr);
593 const unsigned *aliasItr = tri->getAliasSet(pReg);
595 if (aliasItr != 0) {
596 // ...and its aliases.
597 for (; *aliasItr != 0; ++aliasItr) {
598 RegVector::iterator eraseItr =
599 std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
601 if (eraseItr != liAllowed.end()) {
602 liAllowed.erase(eraseItr);
608 // Copy the allowed set into a member vector for use when constructing cost
609 // vectors & matrices, and mapping PBQP solutions back to assignments.
610 allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
612 // Set the spill cost to the interval weight, or epsilon if the
613 // interval weight is zero
614 PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
615 li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
617 // Build a cost vector for this interval.
618 problemNodes[node] =
619 problem.addNode(
620 buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
625 // Now add the cost matrices...
626 for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
627 const LiveInterval *li = node2LI[node1];
629 // Test for live range overlaps and insert interference matrices.
630 for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
631 const LiveInterval *li2 = node2LI[node2];
633 CoalesceMap::const_iterator cmItr =
634 coalesces.find(RegPair(li->reg, li2->reg));
636 PBQP::Matrix *m = 0;
638 if (cmItr != coalesces.end()) {
639 m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
640 cmItr->second);
642 else if (li->overlaps(*li2)) {
643 m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
646 if (m != 0) {
647 problem.addEdge(problemNodes[node1],
648 problemNodes[node2],
649 *m);
651 delete m;
656 problem.assignNodeIDs();
658 assert(problem.getNumNodes() == allowedSets.size());
659 for (unsigned i = 0; i < allowedSets.size(); ++i) {
660 assert(problem.getNodeItr(i) == problemNodes[i]);
663 std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
664 << problem.getNumEdges() << " edges.\n";
666 problem.printDot(std::cerr);
668 // We're done, PBQP problem constructed - return it.
669 return problem;
672 void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
673 MachineRegisterInfo* mri) {
674 int stackSlot = vrm->getStackSlot(spilled->reg);
676 if (stackSlot == VirtRegMap::NO_STACK_SLOT)
677 return;
679 const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
680 LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
682 VNInfo *vni;
683 if (stackInterval.getNumValNums() != 0)
684 vni = stackInterval.getValNumInfo(0);
685 else
686 vni = stackInterval.getNextValue(
687 MachineInstrIndex(), 0, false, lss->getVNInfoAllocator());
689 LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
690 stackInterval.MergeRangesInAsValue(rhsInterval, vni);
693 bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
694 // Set to true if we have any spills
695 bool anotherRoundNeeded = false;
697 // Clear the existing allocation.
698 vrm->clearAllVirt();
700 // Iterate over the nodes mapping the PBQP solution to a register assignment.
701 for (unsigned node = 0; node < node2LI.size(); ++node) {
702 unsigned virtReg = node2LI[node]->reg,
703 allocSelection = solution.getSelection(node);
706 // If the PBQP solution is non-zero it's a physical register...
707 if (allocSelection != 0) {
708 // Get the physical reg, subtracting 1 to account for the spill option.
709 unsigned physReg = allowedSets[node][allocSelection - 1];
711 DEBUG(errs() << "VREG " << virtReg << " -> "
712 << tri->getName(physReg) << "\n");
714 assert(physReg != 0);
716 // Add to the virt reg map and update the used phys regs.
717 vrm->assignVirt2Phys(virtReg, physReg);
719 // ...Otherwise it's a spill.
720 else {
722 // Make sure we ignore this virtual reg on the next round
723 // of allocation
724 vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
726 // Insert spill ranges for this live range
727 const LiveInterval *spillInterval = node2LI[node];
728 double oldSpillWeight = spillInterval->weight;
729 SmallVector<LiveInterval*, 8> spillIs;
730 std::vector<LiveInterval*> newSpills =
731 lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
732 addStackInterval(spillInterval, mri);
734 (void) oldSpillWeight;
735 DEBUG(errs() << "VREG " << virtReg << " -> SPILLED (Cost: "
736 << oldSpillWeight << ", New vregs: ");
738 // Copy any newly inserted live intervals into the list of regs to
739 // allocate.
740 for (std::vector<LiveInterval*>::const_iterator
741 itr = newSpills.begin(), end = newSpills.end();
742 itr != end; ++itr) {
744 assert(!(*itr)->empty() && "Empty spill range.");
746 DEBUG(errs() << (*itr)->reg << " ");
748 vregIntervalsToAlloc.insert(*itr);
751 DEBUG(errs() << ")\n");
753 // We need another round if spill intervals were added.
754 anotherRoundNeeded |= !newSpills.empty();
758 return !anotherRoundNeeded;
761 void PBQPRegAlloc::finalizeAlloc() const {
762 typedef LiveIntervals::iterator LIIterator;
763 typedef LiveInterval::Ranges::const_iterator LRIterator;
765 // First allocate registers for the empty intervals.
766 for (LiveIntervalSet::const_iterator
767 itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
768 itr != end; ++itr) {
769 LiveInterval *li = *itr;
771 unsigned physReg = vrm->getRegAllocPref(li->reg);
773 if (physReg == 0) {
774 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
775 physReg = *liRC->allocation_order_begin(*mf);
778 vrm->assignVirt2Phys(li->reg, physReg);
781 // Finally iterate over the basic blocks to compute and set the live-in sets.
782 SmallVector<MachineBasicBlock*, 8> liveInMBBs;
783 MachineBasicBlock *entryMBB = &*mf->begin();
785 for (LIIterator liItr = lis->begin(), liEnd = lis->end();
786 liItr != liEnd; ++liItr) {
788 const LiveInterval *li = liItr->second;
789 unsigned reg = 0;
791 // Get the physical register for this interval
792 if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
793 reg = li->reg;
795 else if (vrm->isAssignedReg(li->reg)) {
796 reg = vrm->getPhys(li->reg);
798 else {
799 // Ranges which are assigned a stack slot only are ignored.
800 continue;
803 if (reg == 0) {
804 // Filter out zero regs - they're for intervals that were spilled.
805 continue;
808 // Iterate over the ranges of the current interval...
809 for (LRIterator lrItr = li->begin(), lrEnd = li->end();
810 lrItr != lrEnd; ++lrItr) {
812 // Find the set of basic blocks which this range is live into...
813 if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
814 // And add the physreg for this interval to their live-in sets.
815 for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
816 if (liveInMBBs[i] != entryMBB) {
817 if (!liveInMBBs[i]->isLiveIn(reg)) {
818 liveInMBBs[i]->addLiveIn(reg);
822 liveInMBBs.clear();
829 bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
831 mf = &MF;
832 tm = &mf->getTarget();
833 tri = tm->getRegisterInfo();
834 tii = tm->getInstrInfo();
835 mri = &mf->getRegInfo();
837 lis = &getAnalysis<LiveIntervals>();
838 lss = &getAnalysis<LiveStacks>();
839 loopInfo = &getAnalysis<MachineLoopInfo>();
841 vrm = &getAnalysis<VirtRegMap>();
843 DEBUG(errs() << "PBQP2 Register Allocating for " << mf->getFunction()->getName() << "\n");
845 // Allocator main loop:
847 // * Map current regalloc problem to a PBQP problem
848 // * Solve the PBQP problem
849 // * Map the solution back to a register allocation
850 // * Spill if necessary
852 // This process is continued till no more spills are generated.
854 // Find the vreg intervals in need of allocation.
855 findVRegIntervalsToAlloc();
857 // If there aren't any then we're done here.
858 if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty())
859 return true;
861 // If there are non-empty intervals allocate them using pbqp.
862 if (!vregIntervalsToAlloc.empty()) {
864 bool pbqpAllocComplete = false;
865 unsigned round = 0;
867 while (!pbqpAllocComplete) {
868 DEBUG(errs() << " PBQP Regalloc round " << round << ":\n");
870 PBQP::SimpleGraph problem = constructPBQPProblem();
871 PBQP::HeuristicSolver<PBQP::Heuristics::Briggs> solver;
872 problem.assignNodeIDs();
873 PBQP::Solution solution = solver.solve(problem);
875 pbqpAllocComplete = mapPBQPToRegAlloc(solution);
877 ++round;
881 // Finalise allocation, allocate empty ranges.
882 finalizeAlloc();
884 vregIntervalsToAlloc.clear();
885 emptyVRegIntervals.clear();
886 li2Node.clear();
887 node2LI.clear();
888 allowedSets.clear();
890 DEBUG(errs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
892 // Run rewriter
893 std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
895 rewriter->runOnMachineFunction(*mf, *vrm, lis);
897 return true;
900 FunctionPass* llvm::createPBQPRegisterAllocator() {
901 return new PBQPRegAlloc();
905 #undef DEBUG_TYPE