It's not legal to fold a load from a narrower stack slot into a wider instruction...
[llvm/avr.git] / lib / CodeGen / SelectionDAG / FastISel.cpp
blob54544a4d1499eebf13fc44e4428f42f54909a196
1 ///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Function.h"
43 #include "llvm/GlobalVariable.h"
44 #include "llvm/Instructions.h"
45 #include "llvm/IntrinsicInst.h"
46 #include "llvm/CodeGen/FastISel.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineModuleInfo.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/DwarfWriter.h"
51 #include "llvm/Analysis/DebugInfo.h"
52 #include "llvm/Target/TargetData.h"
53 #include "llvm/Target/TargetInstrInfo.h"
54 #include "llvm/Target/TargetLowering.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "SelectionDAGBuild.h"
57 using namespace llvm;
59 unsigned FastISel::getRegForValue(Value *V) {
60 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
61 // Don't handle non-simple values in FastISel.
62 if (!RealVT.isSimple())
63 return 0;
65 // Ignore illegal types. We must do this before looking up the value
66 // in ValueMap because Arguments are given virtual registers regardless
67 // of whether FastISel can handle them.
68 MVT VT = RealVT.getSimpleVT();
69 if (!TLI.isTypeLegal(VT)) {
70 // Promote MVT::i1 to a legal type though, because it's common and easy.
71 if (VT == MVT::i1)
72 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
73 else
74 return 0;
77 // Look up the value to see if we already have a register for it. We
78 // cache values defined by Instructions across blocks, and other values
79 // only locally. This is because Instructions already have the SSA
80 // def-dominatess-use requirement enforced.
81 if (ValueMap.count(V))
82 return ValueMap[V];
83 unsigned Reg = LocalValueMap[V];
84 if (Reg != 0)
85 return Reg;
87 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
88 if (CI->getValue().getActiveBits() <= 64)
89 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
90 } else if (isa<AllocaInst>(V)) {
91 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
92 } else if (isa<ConstantPointerNull>(V)) {
93 // Translate this as an integer zero so that it can be
94 // local-CSE'd with actual integer zeros.
95 Reg =
96 getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
97 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
98 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
100 if (!Reg) {
101 const APFloat &Flt = CF->getValueAPF();
102 EVT IntVT = TLI.getPointerTy();
104 uint64_t x[2];
105 uint32_t IntBitWidth = IntVT.getSizeInBits();
106 bool isExact;
107 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
108 APFloat::rmTowardZero, &isExact);
109 if (isExact) {
110 APInt IntVal(IntBitWidth, 2, x);
112 unsigned IntegerReg =
113 getRegForValue(ConstantInt::get(V->getContext(), IntVal));
114 if (IntegerReg != 0)
115 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
118 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
119 if (!SelectOperator(CE, CE->getOpcode())) return 0;
120 Reg = LocalValueMap[CE];
121 } else if (isa<UndefValue>(V)) {
122 Reg = createResultReg(TLI.getRegClassFor(VT));
123 BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
126 // If target-independent code couldn't handle the value, give target-specific
127 // code a try.
128 if (!Reg && isa<Constant>(V))
129 Reg = TargetMaterializeConstant(cast<Constant>(V));
131 // Don't cache constant materializations in the general ValueMap.
132 // To do so would require tracking what uses they dominate.
133 if (Reg != 0)
134 LocalValueMap[V] = Reg;
135 return Reg;
138 unsigned FastISel::lookUpRegForValue(Value *V) {
139 // Look up the value to see if we already have a register for it. We
140 // cache values defined by Instructions across blocks, and other values
141 // only locally. This is because Instructions already have the SSA
142 // def-dominatess-use requirement enforced.
143 if (ValueMap.count(V))
144 return ValueMap[V];
145 return LocalValueMap[V];
148 /// UpdateValueMap - Update the value map to include the new mapping for this
149 /// instruction, or insert an extra copy to get the result in a previous
150 /// determined register.
151 /// NOTE: This is only necessary because we might select a block that uses
152 /// a value before we select the block that defines the value. It might be
153 /// possible to fix this by selecting blocks in reverse postorder.
154 unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
155 if (!isa<Instruction>(I)) {
156 LocalValueMap[I] = Reg;
157 return Reg;
160 unsigned &AssignedReg = ValueMap[I];
161 if (AssignedReg == 0)
162 AssignedReg = Reg;
163 else if (Reg != AssignedReg) {
164 const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
165 TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
166 Reg, RegClass, RegClass);
168 return AssignedReg;
171 unsigned FastISel::getRegForGEPIndex(Value *Idx) {
172 unsigned IdxN = getRegForValue(Idx);
173 if (IdxN == 0)
174 // Unhandled operand. Halt "fast" selection and bail.
175 return 0;
177 // If the index is smaller or larger than intptr_t, truncate or extend it.
178 MVT PtrVT = TLI.getPointerTy();
179 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
180 if (IdxVT.bitsLT(PtrVT))
181 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
182 else if (IdxVT.bitsGT(PtrVT))
183 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
184 return IdxN;
187 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
188 /// which has an opcode which directly corresponds to the given ISD opcode.
190 bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
191 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
192 if (VT == MVT::Other || !VT.isSimple())
193 // Unhandled type. Halt "fast" selection and bail.
194 return false;
196 // We only handle legal types. For example, on x86-32 the instruction
197 // selector contains all of the 64-bit instructions from x86-64,
198 // under the assumption that i64 won't be used if the target doesn't
199 // support it.
200 if (!TLI.isTypeLegal(VT)) {
201 // MVT::i1 is special. Allow AND, OR, or XOR because they
202 // don't require additional zeroing, which makes them easy.
203 if (VT == MVT::i1 &&
204 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
205 ISDOpcode == ISD::XOR))
206 VT = TLI.getTypeToTransformTo(I->getContext(), VT);
207 else
208 return false;
211 unsigned Op0 = getRegForValue(I->getOperand(0));
212 if (Op0 == 0)
213 // Unhandled operand. Halt "fast" selection and bail.
214 return false;
216 // Check if the second operand is a constant and handle it appropriately.
217 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
218 unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
219 ISDOpcode, Op0, CI->getZExtValue());
220 if (ResultReg != 0) {
221 // We successfully emitted code for the given LLVM Instruction.
222 UpdateValueMap(I, ResultReg);
223 return true;
227 // Check if the second operand is a constant float.
228 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
229 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
230 ISDOpcode, Op0, CF);
231 if (ResultReg != 0) {
232 // We successfully emitted code for the given LLVM Instruction.
233 UpdateValueMap(I, ResultReg);
234 return true;
238 unsigned Op1 = getRegForValue(I->getOperand(1));
239 if (Op1 == 0)
240 // Unhandled operand. Halt "fast" selection and bail.
241 return false;
243 // Now we have both operands in registers. Emit the instruction.
244 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
245 ISDOpcode, Op0, Op1);
246 if (ResultReg == 0)
247 // Target-specific code wasn't able to find a machine opcode for
248 // the given ISD opcode and type. Halt "fast" selection and bail.
249 return false;
251 // We successfully emitted code for the given LLVM Instruction.
252 UpdateValueMap(I, ResultReg);
253 return true;
256 bool FastISel::SelectGetElementPtr(User *I) {
257 unsigned N = getRegForValue(I->getOperand(0));
258 if (N == 0)
259 // Unhandled operand. Halt "fast" selection and bail.
260 return false;
262 const Type *Ty = I->getOperand(0)->getType();
263 MVT VT = TLI.getPointerTy();
264 for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
265 OI != E; ++OI) {
266 Value *Idx = *OI;
267 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
268 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
269 if (Field) {
270 // N = N + Offset
271 uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
272 // FIXME: This can be optimized by combining the add with a
273 // subsequent one.
274 N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
275 if (N == 0)
276 // Unhandled operand. Halt "fast" selection and bail.
277 return false;
279 Ty = StTy->getElementType(Field);
280 } else {
281 Ty = cast<SequentialType>(Ty)->getElementType();
283 // If this is a constant subscript, handle it quickly.
284 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
285 if (CI->getZExtValue() == 0) continue;
286 uint64_t Offs =
287 TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
288 N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
289 if (N == 0)
290 // Unhandled operand. Halt "fast" selection and bail.
291 return false;
292 continue;
295 // N = N + Idx * ElementSize;
296 uint64_t ElementSize = TD.getTypeAllocSize(Ty);
297 unsigned IdxN = getRegForGEPIndex(Idx);
298 if (IdxN == 0)
299 // Unhandled operand. Halt "fast" selection and bail.
300 return false;
302 if (ElementSize != 1) {
303 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
304 if (IdxN == 0)
305 // Unhandled operand. Halt "fast" selection and bail.
306 return false;
308 N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
309 if (N == 0)
310 // Unhandled operand. Halt "fast" selection and bail.
311 return false;
315 // We successfully emitted code for the given LLVM Instruction.
316 UpdateValueMap(I, N);
317 return true;
320 bool FastISel::SelectCall(User *I) {
321 Function *F = cast<CallInst>(I)->getCalledFunction();
322 if (!F) return false;
324 unsigned IID = F->getIntrinsicID();
325 switch (IID) {
326 default: break;
327 case Intrinsic::dbg_stoppoint: {
328 DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
329 if (isValidDebugInfoIntrinsic(*SPI, CodeGenOpt::None))
330 setCurDebugLoc(ExtractDebugLocation(*SPI, MF.getDebugLocInfo()));
331 return true;
333 case Intrinsic::dbg_region_start: {
334 DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
335 if (isValidDebugInfoIntrinsic(*RSI, CodeGenOpt::None) && DW
336 && DW->ShouldEmitDwarfDebug()) {
337 unsigned ID =
338 DW->RecordRegionStart(RSI->getContext());
339 const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
340 BuildMI(MBB, DL, II).addImm(ID);
342 return true;
344 case Intrinsic::dbg_region_end: {
345 DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
346 if (isValidDebugInfoIntrinsic(*REI, CodeGenOpt::None) && DW
347 && DW->ShouldEmitDwarfDebug()) {
348 unsigned ID = 0;
349 DISubprogram Subprogram(REI->getContext());
350 if (isInlinedFnEnd(*REI, MF.getFunction())) {
351 // This is end of an inlined function.
352 const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
353 ID = DW->RecordInlinedFnEnd(Subprogram);
354 if (ID)
355 // Returned ID is 0 if this is unbalanced "end of inlined
356 // scope". This could happen if optimizer eats dbg intrinsics
357 // or "beginning of inlined scope" is not recoginized due to
358 // missing location info. In such cases, ignore this region.end.
359 BuildMI(MBB, DL, II).addImm(ID);
360 } else {
361 const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
362 ID = DW->RecordRegionEnd(REI->getContext());
363 BuildMI(MBB, DL, II).addImm(ID);
366 return true;
368 case Intrinsic::dbg_func_start: {
369 DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
370 if (!isValidDebugInfoIntrinsic(*FSI, CodeGenOpt::None) || !DW
371 || !DW->ShouldEmitDwarfDebug())
372 return true;
374 if (isInlinedFnStart(*FSI, MF.getFunction())) {
375 // This is a beginning of an inlined function.
377 // If llvm.dbg.func.start is seen in a new block before any
378 // llvm.dbg.stoppoint intrinsic then the location info is unknown.
379 // FIXME : Why DebugLoc is reset at the beginning of each block ?
380 DebugLoc PrevLoc = DL;
381 if (PrevLoc.isUnknown())
382 return true;
383 // Record the source line.
384 setCurDebugLoc(ExtractDebugLocation(*FSI, MF.getDebugLocInfo()));
386 DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
387 DISubprogram SP(FSI->getSubprogram());
388 unsigned LabelID = DW->RecordInlinedFnStart(SP,
389 DICompileUnit(PrevLocTpl.CompileUnit),
390 PrevLocTpl.Line,
391 PrevLocTpl.Col);
392 const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
393 BuildMI(MBB, DL, II).addImm(LabelID);
394 return true;
397 // This is a beginning of a new function.
398 MF.setDefaultDebugLoc(ExtractDebugLocation(*FSI, MF.getDebugLocInfo()));
400 // llvm.dbg.func_start also defines beginning of function scope.
401 DW->RecordRegionStart(FSI->getSubprogram());
402 return true;
404 case Intrinsic::dbg_declare: {
405 DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
406 if (!isValidDebugInfoIntrinsic(*DI, CodeGenOpt::None) || !DW
407 || !DW->ShouldEmitDwarfDebug())
408 return true;
410 Value *Variable = DI->getVariable();
411 Value *Address = DI->getAddress();
412 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
413 Address = BCI->getOperand(0);
414 AllocaInst *AI = dyn_cast<AllocaInst>(Address);
415 // Don't handle byval struct arguments or VLAs, for example.
416 if (!AI) break;
417 DenseMap<const AllocaInst*, int>::iterator SI =
418 StaticAllocaMap.find(AI);
419 if (SI == StaticAllocaMap.end()) break; // VLAs.
420 int FI = SI->second;
422 DW->RecordVariable(cast<MDNode>(Variable), FI);
423 return true;
425 case Intrinsic::eh_exception: {
426 EVT VT = TLI.getValueType(I->getType());
427 switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
428 default: break;
429 case TargetLowering::Expand: {
430 assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
431 unsigned Reg = TLI.getExceptionAddressRegister();
432 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
433 unsigned ResultReg = createResultReg(RC);
434 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
435 Reg, RC, RC);
436 assert(InsertedCopy && "Can't copy address registers!");
437 InsertedCopy = InsertedCopy;
438 UpdateValueMap(I, ResultReg);
439 return true;
442 break;
444 case Intrinsic::eh_selector_i32:
445 case Intrinsic::eh_selector_i64: {
446 EVT VT = TLI.getValueType(I->getType());
447 switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
448 default: break;
449 case TargetLowering::Expand: {
450 EVT VT = (IID == Intrinsic::eh_selector_i32 ?
451 MVT::i32 : MVT::i64);
453 if (MMI) {
454 if (MBB->isLandingPad())
455 AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
456 else {
457 #ifndef NDEBUG
458 CatchInfoLost.insert(cast<CallInst>(I));
459 #endif
460 // FIXME: Mark exception selector register as live in. Hack for PR1508.
461 unsigned Reg = TLI.getExceptionSelectorRegister();
462 if (Reg) MBB->addLiveIn(Reg);
465 unsigned Reg = TLI.getExceptionSelectorRegister();
466 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
467 unsigned ResultReg = createResultReg(RC);
468 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
469 Reg, RC, RC);
470 assert(InsertedCopy && "Can't copy address registers!");
471 InsertedCopy = InsertedCopy;
472 UpdateValueMap(I, ResultReg);
473 } else {
474 unsigned ResultReg =
475 getRegForValue(Constant::getNullValue(I->getType()));
476 UpdateValueMap(I, ResultReg);
478 return true;
481 break;
484 return false;
487 bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
488 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
489 EVT DstVT = TLI.getValueType(I->getType());
491 if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
492 DstVT == MVT::Other || !DstVT.isSimple())
493 // Unhandled type. Halt "fast" selection and bail.
494 return false;
496 // Check if the destination type is legal. Or as a special case,
497 // it may be i1 if we're doing a truncate because that's
498 // easy and somewhat common.
499 if (!TLI.isTypeLegal(DstVT))
500 if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
501 // Unhandled type. Halt "fast" selection and bail.
502 return false;
504 // Check if the source operand is legal. Or as a special case,
505 // it may be i1 if we're doing zero-extension because that's
506 // easy and somewhat common.
507 if (!TLI.isTypeLegal(SrcVT))
508 if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
509 // Unhandled type. Halt "fast" selection and bail.
510 return false;
512 unsigned InputReg = getRegForValue(I->getOperand(0));
513 if (!InputReg)
514 // Unhandled operand. Halt "fast" selection and bail.
515 return false;
517 // If the operand is i1, arrange for the high bits in the register to be zero.
518 if (SrcVT == MVT::i1) {
519 SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
520 InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
521 if (!InputReg)
522 return false;
524 // If the result is i1, truncate to the target's type for i1 first.
525 if (DstVT == MVT::i1)
526 DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
528 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
529 DstVT.getSimpleVT(),
530 Opcode,
531 InputReg);
532 if (!ResultReg)
533 return false;
535 UpdateValueMap(I, ResultReg);
536 return true;
539 bool FastISel::SelectBitCast(User *I) {
540 // If the bitcast doesn't change the type, just use the operand value.
541 if (I->getType() == I->getOperand(0)->getType()) {
542 unsigned Reg = getRegForValue(I->getOperand(0));
543 if (Reg == 0)
544 return false;
545 UpdateValueMap(I, Reg);
546 return true;
549 // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
550 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
551 EVT DstVT = TLI.getValueType(I->getType());
553 if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
554 DstVT == MVT::Other || !DstVT.isSimple() ||
555 !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
556 // Unhandled type. Halt "fast" selection and bail.
557 return false;
559 unsigned Op0 = getRegForValue(I->getOperand(0));
560 if (Op0 == 0)
561 // Unhandled operand. Halt "fast" selection and bail.
562 return false;
564 // First, try to perform the bitcast by inserting a reg-reg copy.
565 unsigned ResultReg = 0;
566 if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
567 TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
568 TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
569 ResultReg = createResultReg(DstClass);
571 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
572 Op0, DstClass, SrcClass);
573 if (!InsertedCopy)
574 ResultReg = 0;
577 // If the reg-reg copy failed, select a BIT_CONVERT opcode.
578 if (!ResultReg)
579 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
580 ISD::BIT_CONVERT, Op0);
582 if (!ResultReg)
583 return false;
585 UpdateValueMap(I, ResultReg);
586 return true;
589 bool
590 FastISel::SelectInstruction(Instruction *I) {
591 return SelectOperator(I, I->getOpcode());
594 /// FastEmitBranch - Emit an unconditional branch to the given block,
595 /// unless it is the immediate (fall-through) successor, and update
596 /// the CFG.
597 void
598 FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
599 MachineFunction::iterator NextMBB =
600 next(MachineFunction::iterator(MBB));
602 if (MBB->isLayoutSuccessor(MSucc)) {
603 // The unconditional fall-through case, which needs no instructions.
604 } else {
605 // The unconditional branch case.
606 TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
608 MBB->addSuccessor(MSucc);
611 /// SelectFNeg - Emit an FNeg operation.
613 bool
614 FastISel::SelectFNeg(User *I) {
615 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
616 if (OpReg == 0) return false;
618 // If the target has ISD::FNEG, use it.
619 EVT VT = TLI.getValueType(I->getType());
620 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
621 ISD::FNEG, OpReg);
622 if (ResultReg != 0) {
623 UpdateValueMap(I, ResultReg);
624 return true;
627 // Bitcast the value to integer, twiddle the sign bit with xor,
628 // and then bitcast it back to floating-point.
629 if (VT.getSizeInBits() > 64) return false;
630 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
631 if (!TLI.isTypeLegal(IntVT))
632 return false;
634 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
635 ISD::BIT_CONVERT, OpReg);
636 if (IntReg == 0)
637 return false;
639 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, IntReg,
640 UINT64_C(1) << (VT.getSizeInBits()-1),
641 IntVT.getSimpleVT());
642 if (IntResultReg == 0)
643 return false;
645 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
646 ISD::BIT_CONVERT, IntResultReg);
647 if (ResultReg == 0)
648 return false;
650 UpdateValueMap(I, ResultReg);
651 return true;
654 bool
655 FastISel::SelectOperator(User *I, unsigned Opcode) {
656 switch (Opcode) {
657 case Instruction::Add:
658 return SelectBinaryOp(I, ISD::ADD);
659 case Instruction::FAdd:
660 return SelectBinaryOp(I, ISD::FADD);
661 case Instruction::Sub:
662 return SelectBinaryOp(I, ISD::SUB);
663 case Instruction::FSub:
664 // FNeg is currently represented in LLVM IR as a special case of FSub.
665 if (BinaryOperator::isFNeg(I))
666 return SelectFNeg(I);
667 return SelectBinaryOp(I, ISD::FSUB);
668 case Instruction::Mul:
669 return SelectBinaryOp(I, ISD::MUL);
670 case Instruction::FMul:
671 return SelectBinaryOp(I, ISD::FMUL);
672 case Instruction::SDiv:
673 return SelectBinaryOp(I, ISD::SDIV);
674 case Instruction::UDiv:
675 return SelectBinaryOp(I, ISD::UDIV);
676 case Instruction::FDiv:
677 return SelectBinaryOp(I, ISD::FDIV);
678 case Instruction::SRem:
679 return SelectBinaryOp(I, ISD::SREM);
680 case Instruction::URem:
681 return SelectBinaryOp(I, ISD::UREM);
682 case Instruction::FRem:
683 return SelectBinaryOp(I, ISD::FREM);
684 case Instruction::Shl:
685 return SelectBinaryOp(I, ISD::SHL);
686 case Instruction::LShr:
687 return SelectBinaryOp(I, ISD::SRL);
688 case Instruction::AShr:
689 return SelectBinaryOp(I, ISD::SRA);
690 case Instruction::And:
691 return SelectBinaryOp(I, ISD::AND);
692 case Instruction::Or:
693 return SelectBinaryOp(I, ISD::OR);
694 case Instruction::Xor:
695 return SelectBinaryOp(I, ISD::XOR);
697 case Instruction::GetElementPtr:
698 return SelectGetElementPtr(I);
700 case Instruction::Br: {
701 BranchInst *BI = cast<BranchInst>(I);
703 if (BI->isUnconditional()) {
704 BasicBlock *LLVMSucc = BI->getSuccessor(0);
705 MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
706 FastEmitBranch(MSucc);
707 return true;
710 // Conditional branches are not handed yet.
711 // Halt "fast" selection and bail.
712 return false;
715 case Instruction::Unreachable:
716 // Nothing to emit.
717 return true;
719 case Instruction::PHI:
720 // PHI nodes are already emitted.
721 return true;
723 case Instruction::Alloca:
724 // FunctionLowering has the static-sized case covered.
725 if (StaticAllocaMap.count(cast<AllocaInst>(I)))
726 return true;
728 // Dynamic-sized alloca is not handled yet.
729 return false;
731 case Instruction::Call:
732 return SelectCall(I);
734 case Instruction::BitCast:
735 return SelectBitCast(I);
737 case Instruction::FPToSI:
738 return SelectCast(I, ISD::FP_TO_SINT);
739 case Instruction::ZExt:
740 return SelectCast(I, ISD::ZERO_EXTEND);
741 case Instruction::SExt:
742 return SelectCast(I, ISD::SIGN_EXTEND);
743 case Instruction::Trunc:
744 return SelectCast(I, ISD::TRUNCATE);
745 case Instruction::SIToFP:
746 return SelectCast(I, ISD::SINT_TO_FP);
748 case Instruction::IntToPtr: // Deliberate fall-through.
749 case Instruction::PtrToInt: {
750 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
751 EVT DstVT = TLI.getValueType(I->getType());
752 if (DstVT.bitsGT(SrcVT))
753 return SelectCast(I, ISD::ZERO_EXTEND);
754 if (DstVT.bitsLT(SrcVT))
755 return SelectCast(I, ISD::TRUNCATE);
756 unsigned Reg = getRegForValue(I->getOperand(0));
757 if (Reg == 0) return false;
758 UpdateValueMap(I, Reg);
759 return true;
762 default:
763 // Unhandled instruction. Halt "fast" selection and bail.
764 return false;
768 FastISel::FastISel(MachineFunction &mf,
769 MachineModuleInfo *mmi,
770 DwarfWriter *dw,
771 DenseMap<const Value *, unsigned> &vm,
772 DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
773 DenseMap<const AllocaInst *, int> &am
774 #ifndef NDEBUG
775 , SmallSet<Instruction*, 8> &cil
776 #endif
778 : MBB(0),
779 ValueMap(vm),
780 MBBMap(bm),
781 StaticAllocaMap(am),
782 #ifndef NDEBUG
783 CatchInfoLost(cil),
784 #endif
785 MF(mf),
786 MMI(mmi),
787 DW(dw),
788 MRI(MF.getRegInfo()),
789 MFI(*MF.getFrameInfo()),
790 MCP(*MF.getConstantPool()),
791 TM(MF.getTarget()),
792 TD(*TM.getTargetData()),
793 TII(*TM.getInstrInfo()),
794 TLI(*TM.getTargetLowering()) {
797 FastISel::~FastISel() {}
799 unsigned FastISel::FastEmit_(MVT, MVT,
800 ISD::NodeType) {
801 return 0;
804 unsigned FastISel::FastEmit_r(MVT, MVT,
805 ISD::NodeType, unsigned /*Op0*/) {
806 return 0;
809 unsigned FastISel::FastEmit_rr(MVT, MVT,
810 ISD::NodeType, unsigned /*Op0*/,
811 unsigned /*Op0*/) {
812 return 0;
815 unsigned FastISel::FastEmit_i(MVT, MVT, ISD::NodeType, uint64_t /*Imm*/) {
816 return 0;
819 unsigned FastISel::FastEmit_f(MVT, MVT,
820 ISD::NodeType, ConstantFP * /*FPImm*/) {
821 return 0;
824 unsigned FastISel::FastEmit_ri(MVT, MVT,
825 ISD::NodeType, unsigned /*Op0*/,
826 uint64_t /*Imm*/) {
827 return 0;
830 unsigned FastISel::FastEmit_rf(MVT, MVT,
831 ISD::NodeType, unsigned /*Op0*/,
832 ConstantFP * /*FPImm*/) {
833 return 0;
836 unsigned FastISel::FastEmit_rri(MVT, MVT,
837 ISD::NodeType,
838 unsigned /*Op0*/, unsigned /*Op1*/,
839 uint64_t /*Imm*/) {
840 return 0;
843 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
844 /// to emit an instruction with an immediate operand using FastEmit_ri.
845 /// If that fails, it materializes the immediate into a register and try
846 /// FastEmit_rr instead.
847 unsigned FastISel::FastEmit_ri_(MVT VT, ISD::NodeType Opcode,
848 unsigned Op0, uint64_t Imm,
849 MVT ImmType) {
850 // First check if immediate type is legal. If not, we can't use the ri form.
851 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
852 if (ResultReg != 0)
853 return ResultReg;
854 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
855 if (MaterialReg == 0)
856 return 0;
857 return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
860 /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
861 /// to emit an instruction with a floating-point immediate operand using
862 /// FastEmit_rf. If that fails, it materializes the immediate into a register
863 /// and try FastEmit_rr instead.
864 unsigned FastISel::FastEmit_rf_(MVT VT, ISD::NodeType Opcode,
865 unsigned Op0, ConstantFP *FPImm,
866 MVT ImmType) {
867 // First check if immediate type is legal. If not, we can't use the rf form.
868 unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
869 if (ResultReg != 0)
870 return ResultReg;
872 // Materialize the constant in a register.
873 unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
874 if (MaterialReg == 0) {
875 // If the target doesn't have a way to directly enter a floating-point
876 // value into a register, use an alternate approach.
877 // TODO: The current approach only supports floating-point constants
878 // that can be constructed by conversion from integer values. This should
879 // be replaced by code that creates a load from a constant-pool entry,
880 // which will require some target-specific work.
881 const APFloat &Flt = FPImm->getValueAPF();
882 EVT IntVT = TLI.getPointerTy();
884 uint64_t x[2];
885 uint32_t IntBitWidth = IntVT.getSizeInBits();
886 bool isExact;
887 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
888 APFloat::rmTowardZero, &isExact);
889 if (!isExact)
890 return 0;
891 APInt IntVal(IntBitWidth, 2, x);
893 unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
894 ISD::Constant, IntVal.getZExtValue());
895 if (IntegerReg == 0)
896 return 0;
897 MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
898 ISD::SINT_TO_FP, IntegerReg);
899 if (MaterialReg == 0)
900 return 0;
902 return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
905 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
906 return MRI.createVirtualRegister(RC);
909 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
910 const TargetRegisterClass* RC) {
911 unsigned ResultReg = createResultReg(RC);
912 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
914 BuildMI(MBB, DL, II, ResultReg);
915 return ResultReg;
918 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
919 const TargetRegisterClass *RC,
920 unsigned Op0) {
921 unsigned ResultReg = createResultReg(RC);
922 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
924 if (II.getNumDefs() >= 1)
925 BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
926 else {
927 BuildMI(MBB, DL, II).addReg(Op0);
928 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
929 II.ImplicitDefs[0], RC, RC);
930 if (!InsertedCopy)
931 ResultReg = 0;
934 return ResultReg;
937 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
938 const TargetRegisterClass *RC,
939 unsigned Op0, unsigned Op1) {
940 unsigned ResultReg = createResultReg(RC);
941 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
943 if (II.getNumDefs() >= 1)
944 BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
945 else {
946 BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
947 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
948 II.ImplicitDefs[0], RC, RC);
949 if (!InsertedCopy)
950 ResultReg = 0;
952 return ResultReg;
955 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
956 const TargetRegisterClass *RC,
957 unsigned Op0, uint64_t Imm) {
958 unsigned ResultReg = createResultReg(RC);
959 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
961 if (II.getNumDefs() >= 1)
962 BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
963 else {
964 BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
965 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
966 II.ImplicitDefs[0], RC, RC);
967 if (!InsertedCopy)
968 ResultReg = 0;
970 return ResultReg;
973 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
974 const TargetRegisterClass *RC,
975 unsigned Op0, ConstantFP *FPImm) {
976 unsigned ResultReg = createResultReg(RC);
977 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
979 if (II.getNumDefs() >= 1)
980 BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
981 else {
982 BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
983 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
984 II.ImplicitDefs[0], RC, RC);
985 if (!InsertedCopy)
986 ResultReg = 0;
988 return ResultReg;
991 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
992 const TargetRegisterClass *RC,
993 unsigned Op0, unsigned Op1, uint64_t Imm) {
994 unsigned ResultReg = createResultReg(RC);
995 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
997 if (II.getNumDefs() >= 1)
998 BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
999 else {
1000 BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
1001 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1002 II.ImplicitDefs[0], RC, RC);
1003 if (!InsertedCopy)
1004 ResultReg = 0;
1006 return ResultReg;
1009 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1010 const TargetRegisterClass *RC,
1011 uint64_t Imm) {
1012 unsigned ResultReg = createResultReg(RC);
1013 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1015 if (II.getNumDefs() >= 1)
1016 BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
1017 else {
1018 BuildMI(MBB, DL, II).addImm(Imm);
1019 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1020 II.ImplicitDefs[0], RC, RC);
1021 if (!InsertedCopy)
1022 ResultReg = 0;
1024 return ResultReg;
1027 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1028 unsigned Op0, uint32_t Idx) {
1029 const TargetRegisterClass* RC = MRI.getRegClass(Op0);
1031 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1032 const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
1034 if (II.getNumDefs() >= 1)
1035 BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
1036 else {
1037 BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
1038 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1039 II.ImplicitDefs[0], RC, RC);
1040 if (!InsertedCopy)
1041 ResultReg = 0;
1043 return ResultReg;
1046 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1047 /// with all but the least significant bit set to zero.
1048 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op) {
1049 return FastEmit_ri(VT, VT, ISD::AND, Op, 1);