1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/Value.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterCoalescer.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
40 STATISTIC(numJoins
, "Number of interval joins performed");
41 STATISTIC(numCrossRCs
, "Number of cross class joins performed");
42 STATISTIC(numCommutes
, "Number of instruction commuting performed");
43 STATISTIC(numExtends
, "Number of copies extended");
44 STATISTIC(NumReMats
, "Number of instructions re-materialized");
45 STATISTIC(numPeep
, "Number of identity moves eliminated after coalescing");
46 STATISTIC(numAborts
, "Number of times interval joining aborted");
47 STATISTIC(numDeadValNo
, "Number of valno def marked dead");
49 char SimpleRegisterCoalescing::ID
= 0;
51 EnableJoining("join-liveintervals",
52 cl::desc("Coalesce copies (default=true)"),
56 NewHeuristic("new-coalescer-heuristic",
57 cl::desc("Use new coalescer heuristic"),
58 cl::init(false), cl::Hidden
);
61 DisableCrossClassJoin("disable-cross-class-join",
62 cl::desc("Avoid coalescing cross register class copies"),
63 cl::init(false), cl::Hidden
);
66 PhysJoinTweak("tweak-phys-join-heuristics",
67 cl::desc("Tweak heuristics for joining phys reg with vr"),
68 cl::init(false), cl::Hidden
);
70 static RegisterPass
<SimpleRegisterCoalescing
>
71 X("simple-register-coalescing", "Simple Register Coalescing");
73 // Declare that we implement the RegisterCoalescer interface
74 static RegisterAnalysisGroup
<RegisterCoalescer
, true/*The Default*/> V(X
);
76 const PassInfo
*const llvm::SimpleRegisterCoalescingID
= &X
;
78 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage
&AU
) const {
80 AU
.addRequired
<LiveIntervals
>();
81 AU
.addPreserved
<LiveIntervals
>();
82 AU
.addRequired
<MachineLoopInfo
>();
83 AU
.addPreserved
<MachineLoopInfo
>();
84 AU
.addPreservedID(MachineDominatorsID
);
86 AU
.addPreservedID(StrongPHIEliminationID
);
88 AU
.addPreservedID(PHIEliminationID
);
89 AU
.addPreservedID(TwoAddressInstructionPassID
);
90 MachineFunctionPass::getAnalysisUsage(AU
);
93 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
94 /// being the source and IntB being the dest, thus this defines a value number
95 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
96 /// see if we can merge these two pieces of B into a single value number,
97 /// eliminating a copy. For example:
101 /// B1 = A3 <- this copy
103 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
104 /// value number to be replaced with B0 (which simplifies the B liveinterval).
106 /// This returns true if an interval was modified.
108 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval
&IntA
,
110 MachineInstr
*CopyMI
) {
111 MachineInstrIndex CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
113 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
114 // the example above.
115 LiveInterval::iterator BLR
= IntB
.FindLiveRangeContaining(CopyIdx
);
116 assert(BLR
!= IntB
.end() && "Live range not found!");
117 VNInfo
*BValNo
= BLR
->valno
;
119 // Get the location that B is defined at. Two options: either this value has
120 // an unknown definition point or it is defined at CopyIdx. If unknown, we
122 if (!BValNo
->getCopy()) return false;
123 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
125 // AValNo is the value number in A that defines the copy, A3 in the example.
126 MachineInstrIndex CopyUseIdx
= li_
->getUseIndex(CopyIdx
);
127 LiveInterval::iterator ALR
= IntA
.FindLiveRangeContaining(CopyUseIdx
);
128 assert(ALR
!= IntA
.end() && "Live range not found!");
129 VNInfo
*AValNo
= ALR
->valno
;
130 // If it's re-defined by an early clobber somewhere in the live range, then
131 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
133 // 172 %ECX<def> = MOV32rr %reg1039<kill>
134 // 180 INLINEASM <es:subl $5,$1
135 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
136 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
137 // 188 %EAX<def> = MOV32rr %EAX<kill>
138 // 196 %ECX<def> = MOV32rr %ECX<kill>
139 // 204 %ECX<def> = MOV32rr %ECX<kill>
140 // 212 %EAX<def> = MOV32rr %EAX<kill>
141 // 220 %EAX<def> = MOV32rr %EAX
142 // 228 %reg1039<def> = MOV32rr %ECX<kill>
143 // The early clobber operand ties ECX input to the ECX def.
145 // The live interval of ECX is represented as this:
146 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
147 // The coalescer has no idea there was a def in the middle of [174,230].
148 if (AValNo
->hasRedefByEC())
151 // If AValNo is defined as a copy from IntB, we can potentially process this.
152 // Get the instruction that defines this value number.
153 unsigned SrcReg
= li_
->getVNInfoSourceReg(AValNo
);
154 if (!SrcReg
) return false; // Not defined by a copy.
156 // If the value number is not defined by a copy instruction, ignore it.
158 // If the source register comes from an interval other than IntB, we can't
160 if (SrcReg
!= IntB
.reg
) return false;
162 // Get the LiveRange in IntB that this value number starts with.
163 LiveInterval::iterator ValLR
=
164 IntB
.FindLiveRangeContaining(li_
->getPrevSlot(AValNo
->def
));
165 assert(ValLR
!= IntB
.end() && "Live range not found!");
167 // Make sure that the end of the live range is inside the same block as
169 MachineInstr
*ValLREndInst
=
170 li_
->getInstructionFromIndex(li_
->getPrevSlot(ValLR
->end
));
172 ValLREndInst
->getParent() != CopyMI
->getParent()) return false;
174 // Okay, we now know that ValLR ends in the same block that the CopyMI
175 // live-range starts. If there are no intervening live ranges between them in
176 // IntB, we can merge them.
177 if (ValLR
+1 != BLR
) return false;
179 // If a live interval is a physical register, conservatively check if any
180 // of its sub-registers is overlapping the live interval of the virtual
181 // register. If so, do not coalesce.
182 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
) &&
183 *tri_
->getSubRegisters(IntB
.reg
)) {
184 for (const unsigned* SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
)
185 if (li_
->hasInterval(*SR
) && IntA
.overlaps(li_
->getInterval(*SR
))) {
187 errs() << "Interfere with sub-register ";
188 li_
->getInterval(*SR
).print(errs(), tri_
);
195 errs() << "\nExtending: ";
196 IntB
.print(errs(), tri_
);
199 MachineInstrIndex FillerStart
= ValLR
->end
, FillerEnd
= BLR
->start
;
200 // We are about to delete CopyMI, so need to remove it as the 'instruction
201 // that defines this value #'. Update the the valnum with the new defining
203 BValNo
->def
= FillerStart
;
206 // Okay, we can merge them. We need to insert a new liverange:
207 // [ValLR.end, BLR.begin) of either value number, then we merge the
208 // two value numbers.
209 IntB
.addRange(LiveRange(FillerStart
, FillerEnd
, BValNo
));
211 // If the IntB live range is assigned to a physical register, and if that
212 // physreg has sub-registers, update their live intervals as well.
213 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
)) {
214 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
215 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
216 SRLI
.addRange(LiveRange(FillerStart
, FillerEnd
,
217 SRLI
.getNextValue(FillerStart
, 0, true,
218 li_
->getVNInfoAllocator())));
222 // Okay, merge "B1" into the same value number as "B0".
223 if (BValNo
!= ValLR
->valno
) {
224 IntB
.addKills(ValLR
->valno
, BValNo
->kills
);
225 IntB
.MergeValueNumberInto(BValNo
, ValLR
->valno
);
228 errs() << " result = ";
229 IntB
.print(errs(), tri_
);
233 // If the source instruction was killing the source register before the
234 // merge, unset the isKill marker given the live range has been extended.
235 int UIdx
= ValLREndInst
->findRegisterUseOperandIdx(IntB
.reg
, true);
237 ValLREndInst
->getOperand(UIdx
).setIsKill(false);
238 ValLR
->valno
->removeKill(FillerStart
);
241 // If the copy instruction was killing the destination register before the
242 // merge, find the last use and trim the live range. That will also add the
244 if (CopyMI
->killsRegister(IntA
.reg
))
245 TrimLiveIntervalToLastUse(CopyUseIdx
, CopyMI
->getParent(), IntA
, ALR
);
251 /// HasOtherReachingDefs - Return true if there are definitions of IntB
252 /// other than BValNo val# that can reach uses of AValno val# of IntA.
253 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval
&IntA
,
257 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
259 if (AI
->valno
!= AValNo
) continue;
260 LiveInterval::Ranges::iterator BI
=
261 std::upper_bound(IntB
.ranges
.begin(), IntB
.ranges
.end(), AI
->start
);
262 if (BI
!= IntB
.ranges
.begin())
264 for (; BI
!= IntB
.ranges
.end() && AI
->end
>= BI
->start
; ++BI
) {
265 if (BI
->valno
== BValNo
)
267 if (BI
->start
<= AI
->start
&& BI
->end
> AI
->start
)
269 if (BI
->start
> AI
->start
&& BI
->start
< AI
->end
)
276 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
277 /// being the source and IntB being the dest, thus this defines a value number
278 /// in IntB. If the source value number (in IntA) is defined by a commutable
279 /// instruction and its other operand is coalesced to the copy dest register,
280 /// see if we can transform the copy into a noop by commuting the definition. For
283 /// A3 = op A2 B0<kill>
285 /// B1 = A3 <- this copy
287 /// = op A3 <- more uses
291 /// B2 = op B0 A2<kill>
293 /// B1 = B2 <- now an identify copy
295 /// = op B2 <- more uses
297 /// This returns true if an interval was modified.
299 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval
&IntA
,
301 MachineInstr
*CopyMI
) {
302 MachineInstrIndex CopyIdx
=
303 li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
305 // FIXME: For now, only eliminate the copy by commuting its def when the
306 // source register is a virtual register. We want to guard against cases
307 // where the copy is a back edge copy and commuting the def lengthen the
308 // live interval of the source register to the entire loop.
309 if (TargetRegisterInfo::isPhysicalRegister(IntA
.reg
))
312 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
313 // the example above.
314 LiveInterval::iterator BLR
= IntB
.FindLiveRangeContaining(CopyIdx
);
315 assert(BLR
!= IntB
.end() && "Live range not found!");
316 VNInfo
*BValNo
= BLR
->valno
;
318 // Get the location that B is defined at. Two options: either this value has
319 // an unknown definition point or it is defined at CopyIdx. If unknown, we
321 if (!BValNo
->getCopy()) return false;
322 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
324 // AValNo is the value number in A that defines the copy, A3 in the example.
325 LiveInterval::iterator ALR
=
326 IntA
.FindLiveRangeContaining(li_
->getPrevSlot(CopyIdx
));
328 assert(ALR
!= IntA
.end() && "Live range not found!");
329 VNInfo
*AValNo
= ALR
->valno
;
330 // If other defs can reach uses of this def, then it's not safe to perform
331 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
333 if (AValNo
->isPHIDef() || !AValNo
->isDefAccurate() ||
334 AValNo
->isUnused() || AValNo
->hasPHIKill())
336 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(AValNo
->def
);
337 const TargetInstrDesc
&TID
= DefMI
->getDesc();
338 if (!TID
.isCommutable())
340 // If DefMI is a two-address instruction then commuting it will change the
341 // destination register.
342 int DefIdx
= DefMI
->findRegisterDefOperandIdx(IntA
.reg
);
343 assert(DefIdx
!= -1);
345 if (!DefMI
->isRegTiedToUseOperand(DefIdx
, &UseOpIdx
))
347 unsigned Op1
, Op2
, NewDstIdx
;
348 if (!tii_
->findCommutedOpIndices(DefMI
, Op1
, Op2
))
352 else if (Op2
== UseOpIdx
)
357 MachineOperand
&NewDstMO
= DefMI
->getOperand(NewDstIdx
);
358 unsigned NewReg
= NewDstMO
.getReg();
359 if (NewReg
!= IntB
.reg
|| !NewDstMO
.isKill())
362 // Make sure there are no other definitions of IntB that would reach the
363 // uses which the new definition can reach.
364 if (HasOtherReachingDefs(IntA
, IntB
, AValNo
, BValNo
))
367 // If some of the uses of IntA.reg is already coalesced away, return false.
368 // It's not possible to determine whether it's safe to perform the coalescing.
369 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(IntA
.reg
),
370 UE
= mri_
->use_end(); UI
!= UE
; ++UI
) {
371 MachineInstr
*UseMI
= &*UI
;
372 MachineInstrIndex UseIdx
= li_
->getInstructionIndex(UseMI
);
373 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
374 if (ULR
== IntA
.end())
376 if (ULR
->valno
== AValNo
&& JoinedCopies
.count(UseMI
))
380 // At this point we have decided that it is legal to do this
381 // transformation. Start by commuting the instruction.
382 MachineBasicBlock
*MBB
= DefMI
->getParent();
383 MachineInstr
*NewMI
= tii_
->commuteInstruction(DefMI
);
386 if (NewMI
!= DefMI
) {
387 li_
->ReplaceMachineInstrInMaps(DefMI
, NewMI
);
388 MBB
->insert(DefMI
, NewMI
);
391 unsigned OpIdx
= NewMI
->findRegisterUseOperandIdx(IntA
.reg
, false);
392 NewMI
->getOperand(OpIdx
).setIsKill();
394 bool BHasPHIKill
= BValNo
->hasPHIKill();
395 SmallVector
<VNInfo
*, 4> BDeadValNos
;
396 VNInfo::KillSet BKills
;
397 std::map
<MachineInstrIndex
, MachineInstrIndex
> BExtend
;
399 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
408 // then do not add kills of A to the newly created B interval.
409 bool Extended
= BLR
->end
> ALR
->end
&& ALR
->end
!= ALR
->start
;
411 BExtend
[ALR
->end
] = BLR
->end
;
413 // Update uses of IntA of the specific Val# with IntB.
414 bool BHasSubRegs
= false;
415 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
))
416 BHasSubRegs
= *tri_
->getSubRegisters(IntB
.reg
);
417 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(IntA
.reg
),
418 UE
= mri_
->use_end(); UI
!= UE
;) {
419 MachineOperand
&UseMO
= UI
.getOperand();
420 MachineInstr
*UseMI
= &*UI
;
422 if (JoinedCopies
.count(UseMI
))
424 MachineInstrIndex UseIdx
= li_
->getInstructionIndex(UseMI
);
425 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
426 if (ULR
== IntA
.end() || ULR
->valno
!= AValNo
)
428 UseMO
.setReg(NewReg
);
431 if (UseMO
.isKill()) {
433 UseMO
.setIsKill(false);
435 BKills
.push_back(li_
->getNextSlot(li_
->getUseIndex(UseIdx
)));
437 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
438 if (!tii_
->isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
440 if (DstReg
== IntB
.reg
) {
441 // This copy will become a noop. If it's defining a new val#,
442 // remove that val# as well. However this live range is being
443 // extended to the end of the existing live range defined by the copy.
444 MachineInstrIndex DefIdx
= li_
->getDefIndex(UseIdx
);
445 const LiveRange
*DLR
= IntB
.getLiveRangeContaining(DefIdx
);
446 BHasPHIKill
|= DLR
->valno
->hasPHIKill();
447 assert(DLR
->valno
->def
== DefIdx
);
448 BDeadValNos
.push_back(DLR
->valno
);
449 BExtend
[DLR
->start
] = DLR
->end
;
450 JoinedCopies
.insert(UseMI
);
451 // If this is a kill but it's going to be removed, the last use
452 // of the same val# is the new kill.
458 // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
459 // simply extend BLR if CopyMI doesn't end the range.
461 errs() << "\nExtending: ";
462 IntB
.print(errs(), tri_
);
465 // Remove val#'s defined by copies that will be coalesced away.
466 for (unsigned i
= 0, e
= BDeadValNos
.size(); i
!= e
; ++i
) {
467 VNInfo
*DeadVNI
= BDeadValNos
[i
];
469 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
470 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
471 const LiveRange
*SRLR
= SRLI
.getLiveRangeContaining(DeadVNI
->def
);
472 SRLI
.removeValNo(SRLR
->valno
);
475 IntB
.removeValNo(BDeadValNos
[i
]);
478 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
479 // is updated. Kills are also updated.
480 VNInfo
*ValNo
= BValNo
;
481 ValNo
->def
= AValNo
->def
;
483 for (unsigned j
= 0, ee
= ValNo
->kills
.size(); j
!= ee
; ++j
) {
484 if (ValNo
->kills
[j
] != BLR
->end
)
485 BKills
.push_back(ValNo
->kills
[j
]);
487 ValNo
->kills
.clear();
488 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
490 if (AI
->valno
!= AValNo
) continue;
491 MachineInstrIndex End
= AI
->end
;
492 std::map
<MachineInstrIndex
, MachineInstrIndex
>::iterator
493 EI
= BExtend
.find(End
);
494 if (EI
!= BExtend
.end())
496 IntB
.addRange(LiveRange(AI
->start
, End
, ValNo
));
498 // If the IntB live range is assigned to a physical register, and if that
499 // physreg has sub-registers, update their live intervals as well.
501 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
502 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
503 SRLI
.MergeInClobberRange(AI
->start
, End
, li_
->getVNInfoAllocator());
507 IntB
.addKills(ValNo
, BKills
);
508 ValNo
->setHasPHIKill(BHasPHIKill
);
511 errs() << " result = ";
512 IntB
.print(errs(), tri_
);
514 errs() << "\nShortening: ";
515 IntA
.print(errs(), tri_
);
518 IntA
.removeValNo(AValNo
);
521 errs() << " result = ";
522 IntA
.print(errs(), tri_
);
530 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
531 /// fallthoughs to SuccMBB.
532 static bool isSameOrFallThroughBB(MachineBasicBlock
*MBB
,
533 MachineBasicBlock
*SuccMBB
,
534 const TargetInstrInfo
*tii_
) {
537 MachineBasicBlock
*TBB
= 0, *FBB
= 0;
538 SmallVector
<MachineOperand
, 4> Cond
;
539 return !tii_
->AnalyzeBranch(*MBB
, TBB
, FBB
, Cond
) && !TBB
&& !FBB
&&
540 MBB
->isSuccessor(SuccMBB
);
543 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
544 /// from a physical register live interval as well as from the live intervals
545 /// of its sub-registers.
546 static void removeRange(LiveInterval
&li
,
547 MachineInstrIndex Start
, MachineInstrIndex End
,
548 LiveIntervals
*li_
, const TargetRegisterInfo
*tri_
) {
549 li
.removeRange(Start
, End
, true);
550 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
)) {
551 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
552 if (!li_
->hasInterval(*SR
))
554 LiveInterval
&sli
= li_
->getInterval(*SR
);
555 MachineInstrIndex RemoveEnd
= Start
;
556 while (RemoveEnd
!= End
) {
557 LiveInterval::iterator LR
= sli
.FindLiveRangeContaining(Start
);
560 RemoveEnd
= (LR
->end
< End
) ? LR
->end
: End
;
561 sli
.removeRange(Start
, RemoveEnd
, true);
568 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
569 /// as the copy instruction, trim the live interval to the last use and return
572 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(MachineInstrIndex CopyIdx
,
573 MachineBasicBlock
*CopyMBB
,
575 const LiveRange
*LR
) {
576 MachineInstrIndex MBBStart
= li_
->getMBBStartIdx(CopyMBB
);
577 MachineInstrIndex LastUseIdx
;
578 MachineOperand
*LastUse
=
579 lastRegisterUse(LR
->start
, li_
->getPrevSlot(CopyIdx
), li
.reg
, LastUseIdx
);
581 MachineInstr
*LastUseMI
= LastUse
->getParent();
582 if (!isSameOrFallThroughBB(LastUseMI
->getParent(), CopyMBB
, tii_
)) {
589 // r1025<dead> = r1024<kill>
590 if (MBBStart
< LR
->end
)
591 removeRange(li
, MBBStart
, LR
->end
, li_
, tri_
);
595 // There are uses before the copy, just shorten the live range to the end
597 LastUse
->setIsKill();
598 removeRange(li
, li_
->getDefIndex(LastUseIdx
), LR
->end
, li_
, tri_
);
599 LR
->valno
->addKill(li_
->getNextSlot(LastUseIdx
));
600 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
601 if (tii_
->isMoveInstr(*LastUseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
603 // Last use is itself an identity code.
604 int DeadIdx
= LastUseMI
->findRegisterDefOperandIdx(li
.reg
, false, tri_
);
605 LastUseMI
->getOperand(DeadIdx
).setIsDead();
611 if (LR
->start
<= MBBStart
&& LR
->end
> MBBStart
) {
612 if (LR
->start
== MachineInstrIndex()) {
613 assert(TargetRegisterInfo::isPhysicalRegister(li
.reg
));
614 // Live-in to the function but dead. Remove it from entry live-in set.
615 mf_
->begin()->removeLiveIn(li
.reg
);
617 // FIXME: Shorten intervals in BBs that reaches this BB.
623 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
624 /// computation, replace the copy by rematerialize the definition.
625 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval
&SrcInt
,
628 MachineInstr
*CopyMI
) {
629 MachineInstrIndex CopyIdx
= li_
->getUseIndex(li_
->getInstructionIndex(CopyMI
));
630 LiveInterval::iterator SrcLR
= SrcInt
.FindLiveRangeContaining(CopyIdx
);
631 assert(SrcLR
!= SrcInt
.end() && "Live range not found!");
632 VNInfo
*ValNo
= SrcLR
->valno
;
633 // If other defs can reach uses of this def, then it's not safe to perform
634 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
636 if (ValNo
->isPHIDef() || !ValNo
->isDefAccurate() ||
637 ValNo
->isUnused() || ValNo
->hasPHIKill())
639 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(ValNo
->def
);
640 const TargetInstrDesc
&TID
= DefMI
->getDesc();
641 if (!TID
.isAsCheapAsAMove())
643 if (!DefMI
->getDesc().isRematerializable() ||
644 !tii_
->isTriviallyReMaterializable(DefMI
))
646 bool SawStore
= false;
647 if (!DefMI
->isSafeToMove(tii_
, SawStore
))
649 if (TID
.getNumDefs() != 1)
651 if (DefMI
->getOpcode() != TargetInstrInfo::IMPLICIT_DEF
) {
652 // Make sure the copy destination register class fits the instruction
653 // definition register class. The mismatch can happen as a result of earlier
654 // extract_subreg, insert_subreg, subreg_to_reg coalescing.
655 const TargetRegisterClass
*RC
= TID
.OpInfo
[0].getRegClass(tri_
);
656 if (TargetRegisterInfo::isVirtualRegister(DstReg
)) {
657 if (mri_
->getRegClass(DstReg
) != RC
)
659 } else if (!RC
->contains(DstReg
))
663 // If destination register has a sub-register index on it, make sure it mtches
664 // the instruction register class.
666 const TargetInstrDesc
&TID
= DefMI
->getDesc();
667 if (TID
.getNumDefs() != 1)
669 const TargetRegisterClass
*DstRC
= mri_
->getRegClass(DstReg
);
670 const TargetRegisterClass
*DstSubRC
=
671 DstRC
->getSubRegisterRegClass(DstSubIdx
);
672 const TargetRegisterClass
*DefRC
= TID
.OpInfo
[0].getRegClass(tri_
);
675 else if (DefRC
!= DstSubRC
)
679 MachineInstrIndex DefIdx
= li_
->getDefIndex(CopyIdx
);
680 const LiveRange
*DLR
= li_
->getInterval(DstReg
).getLiveRangeContaining(DefIdx
);
681 DLR
->valno
->setCopy(0);
682 // Don't forget to update sub-register intervals.
683 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
684 for (const unsigned* SR
= tri_
->getSubRegisters(DstReg
); *SR
; ++SR
) {
685 if (!li_
->hasInterval(*SR
))
687 DLR
= li_
->getInterval(*SR
).getLiveRangeContaining(DefIdx
);
688 if (DLR
&& DLR
->valno
->getCopy() == CopyMI
)
689 DLR
->valno
->setCopy(0);
693 // If copy kills the source register, find the last use and propagate
695 bool checkForDeadDef
= false;
696 MachineBasicBlock
*MBB
= CopyMI
->getParent();
697 if (CopyMI
->killsRegister(SrcInt
.reg
))
698 if (!TrimLiveIntervalToLastUse(CopyIdx
, MBB
, SrcInt
, SrcLR
)) {
699 checkForDeadDef
= true;
702 MachineBasicBlock::iterator MII
= next(MachineBasicBlock::iterator(CopyMI
));
703 tii_
->reMaterialize(*MBB
, MII
, DstReg
, DstSubIdx
, DefMI
);
704 MachineInstr
*NewMI
= prior(MII
);
706 if (checkForDeadDef
) {
707 // PR4090 fix: Trim interval failed because there was no use of the
708 // source interval in this MBB. If the def is in this MBB too then we
709 // should mark it dead:
710 if (DefMI
->getParent() == MBB
) {
711 DefMI
->addRegisterDead(SrcInt
.reg
, tri_
);
712 SrcLR
->end
= li_
->getNextSlot(SrcLR
->start
);
716 // CopyMI may have implicit operands, transfer them over to the newly
717 // rematerialized instruction. And update implicit def interval valnos.
718 for (unsigned i
= CopyMI
->getDesc().getNumOperands(),
719 e
= CopyMI
->getNumOperands(); i
!= e
; ++i
) {
720 MachineOperand
&MO
= CopyMI
->getOperand(i
);
721 if (MO
.isReg() && MO
.isImplicit())
722 NewMI
->addOperand(MO
);
723 if (MO
.isDef() && li_
->hasInterval(MO
.getReg())) {
724 unsigned Reg
= MO
.getReg();
725 DLR
= li_
->getInterval(Reg
).getLiveRangeContaining(DefIdx
);
726 if (DLR
&& DLR
->valno
->getCopy() == CopyMI
)
727 DLR
->valno
->setCopy(0);
731 li_
->ReplaceMachineInstrInMaps(CopyMI
, NewMI
);
732 CopyMI
->eraseFromParent();
733 ReMatCopies
.insert(CopyMI
);
734 ReMatDefs
.insert(DefMI
);
739 /// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
741 bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr
*CopyMI
,
742 unsigned DstReg
) const {
743 MachineBasicBlock
*MBB
= CopyMI
->getParent();
744 const MachineLoop
*L
= loopInfo
->getLoopFor(MBB
);
747 if (MBB
!= L
->getLoopLatch())
750 LiveInterval
&LI
= li_
->getInterval(DstReg
);
751 MachineInstrIndex DefIdx
= li_
->getInstructionIndex(CopyMI
);
752 LiveInterval::const_iterator DstLR
=
753 LI
.FindLiveRangeContaining(li_
->getDefIndex(DefIdx
));
754 if (DstLR
== LI
.end())
756 if (DstLR
->valno
->kills
.size() == 1 && DstLR
->valno
->kills
[0].isPHIIndex())
761 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
762 /// update the subregister number if it is not zero. If DstReg is a
763 /// physical register and the existing subregister number of the def / use
764 /// being updated is not zero, make sure to set it to the correct physical
767 SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg
, unsigned DstReg
,
769 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
770 if (DstIsPhys
&& SubIdx
) {
771 // Figure out the real physical register we are updating with.
772 DstReg
= tri_
->getSubReg(DstReg
, SubIdx
);
776 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(SrcReg
),
777 E
= mri_
->reg_end(); I
!= E
; ) {
778 MachineOperand
&O
= I
.getOperand();
779 MachineInstr
*UseMI
= &*I
;
781 unsigned OldSubIdx
= O
.getSubReg();
783 unsigned UseDstReg
= DstReg
;
785 UseDstReg
= tri_
->getSubReg(DstReg
, OldSubIdx
);
787 unsigned CopySrcReg
, CopyDstReg
, CopySrcSubIdx
, CopyDstSubIdx
;
788 if (tii_
->isMoveInstr(*UseMI
, CopySrcReg
, CopyDstReg
,
789 CopySrcSubIdx
, CopyDstSubIdx
) &&
790 CopySrcReg
!= CopyDstReg
&&
791 CopySrcReg
== SrcReg
&& CopyDstReg
!= UseDstReg
) {
792 // If the use is a copy and it won't be coalesced away, and its source
793 // is defined by a trivial computation, try to rematerialize it instead.
794 if (ReMaterializeTrivialDef(li_
->getInterval(SrcReg
), CopyDstReg
,
795 CopyDstSubIdx
, UseMI
))
804 // Sub-register indexes goes from small to large. e.g.
805 // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
806 // EAX: 1 -> AL, 2 -> AX
807 // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
808 // sub-register 2 is also AX.
809 if (SubIdx
&& OldSubIdx
&& SubIdx
!= OldSubIdx
)
810 assert(OldSubIdx
< SubIdx
&& "Conflicting sub-register index!");
813 // Remove would-be duplicated kill marker.
814 if (O
.isKill() && UseMI
->killsRegister(DstReg
))
818 // After updating the operand, check if the machine instruction has
819 // become a copy. If so, update its val# information.
820 if (JoinedCopies
.count(UseMI
))
823 const TargetInstrDesc
&TID
= UseMI
->getDesc();
824 unsigned CopySrcReg
, CopyDstReg
, CopySrcSubIdx
, CopyDstSubIdx
;
825 if (TID
.getNumDefs() == 1 && TID
.getNumOperands() > 2 &&
826 tii_
->isMoveInstr(*UseMI
, CopySrcReg
, CopyDstReg
,
827 CopySrcSubIdx
, CopyDstSubIdx
) &&
828 CopySrcReg
!= CopyDstReg
&&
829 (TargetRegisterInfo::isVirtualRegister(CopyDstReg
) ||
830 allocatableRegs_
[CopyDstReg
])) {
831 LiveInterval
&LI
= li_
->getInterval(CopyDstReg
);
832 MachineInstrIndex DefIdx
=
833 li_
->getDefIndex(li_
->getInstructionIndex(UseMI
));
834 if (const LiveRange
*DLR
= LI
.getLiveRangeContaining(DefIdx
)) {
835 if (DLR
->valno
->def
== DefIdx
)
836 DLR
->valno
->setCopy(UseMI
);
842 /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
843 /// due to live range lengthening as the result of coalescing.
844 void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg
,
846 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(Reg
),
847 UE
= mri_
->use_end(); UI
!= UE
; ++UI
) {
848 MachineOperand
&UseMO
= UI
.getOperand();
851 MachineInstr
*UseMI
= UseMO
.getParent();
852 MachineInstrIndex UseIdx
=
853 li_
->getUseIndex(li_
->getInstructionIndex(UseMI
));
854 const LiveRange
*LR
= LI
.getLiveRangeContaining(UseIdx
);
855 if (!LR
|| !LR
->valno
->isKill(li_
->getNextSlot(UseIdx
))) {
856 if (LR
->valno
->def
!= li_
->getNextSlot(UseIdx
)) {
857 // Interesting problem. After coalescing reg1027's def and kill are both
858 // at the same point: %reg1027,0.000000e+00 = [56,814:0) 0@70-(814)
861 // 60 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
862 // 68 %reg1027<def> = t2LDRi12 %reg1027<kill>, 8, 14, %reg0
863 // 76 t2CMPzri %reg1038<kill,undef>, 0, 14, %reg0, %CPSR<imp-def>
864 // 84 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
865 // 96 t2Bcc mbb<bb5,0x2030910>, 1, %CPSR<kill>
867 // Do not remove the kill marker on t2LDRi12.
868 UseMO
.setIsKill(false);
874 /// removeIntervalIfEmpty - Check if the live interval of a physical register
875 /// is empty, if so remove it and also remove the empty intervals of its
876 /// sub-registers. Return true if live interval is removed.
877 static bool removeIntervalIfEmpty(LiveInterval
&li
, LiveIntervals
*li_
,
878 const TargetRegisterInfo
*tri_
) {
880 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
))
881 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
882 if (!li_
->hasInterval(*SR
))
884 LiveInterval
&sli
= li_
->getInterval(*SR
);
886 li_
->removeInterval(*SR
);
888 li_
->removeInterval(li
.reg
);
894 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
895 /// Return true if live interval is removed.
896 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval
&li
,
897 MachineInstr
*CopyMI
) {
898 MachineInstrIndex CopyIdx
= li_
->getInstructionIndex(CopyMI
);
899 LiveInterval::iterator MLR
=
900 li
.FindLiveRangeContaining(li_
->getDefIndex(CopyIdx
));
902 return false; // Already removed by ShortenDeadCopySrcLiveRange.
903 MachineInstrIndex RemoveStart
= MLR
->start
;
904 MachineInstrIndex RemoveEnd
= MLR
->end
;
905 MachineInstrIndex DefIdx
= li_
->getDefIndex(CopyIdx
);
906 // Remove the liverange that's defined by this.
907 if (RemoveStart
== DefIdx
&& RemoveEnd
== li_
->getNextSlot(DefIdx
)) {
908 removeRange(li
, RemoveStart
, RemoveEnd
, li_
, tri_
);
909 return removeIntervalIfEmpty(li
, li_
, tri_
);
914 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
915 /// the val# it defines. If the live interval becomes empty, remove it as well.
916 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval
&li
,
917 MachineInstr
*DefMI
) {
918 MachineInstrIndex DefIdx
= li_
->getDefIndex(li_
->getInstructionIndex(DefMI
));
919 LiveInterval::iterator MLR
= li
.FindLiveRangeContaining(DefIdx
);
920 if (DefIdx
!= MLR
->valno
->def
)
922 li
.removeValNo(MLR
->valno
);
923 return removeIntervalIfEmpty(li
, li_
, tri_
);
926 /// PropagateDeadness - Propagate the dead marker to the instruction which
927 /// defines the val#.
928 static void PropagateDeadness(LiveInterval
&li
, MachineInstr
*CopyMI
,
929 MachineInstrIndex
&LRStart
, LiveIntervals
*li_
,
930 const TargetRegisterInfo
* tri_
) {
931 MachineInstr
*DefMI
=
932 li_
->getInstructionFromIndex(li_
->getDefIndex(LRStart
));
933 if (DefMI
&& DefMI
!= CopyMI
) {
934 int DeadIdx
= DefMI
->findRegisterDefOperandIdx(li
.reg
, false);
936 DefMI
->getOperand(DeadIdx
).setIsDead();
938 DefMI
->addOperand(MachineOperand::CreateReg(li
.reg
,
939 true, true, false, true));
940 LRStart
= li_
->getNextSlot(LRStart
);
944 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
945 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
946 /// ends the live range there. If there isn't another use, then this live range
947 /// is dead. Return true if live interval is removed.
949 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval
&li
,
950 MachineInstr
*CopyMI
) {
951 MachineInstrIndex CopyIdx
= li_
->getInstructionIndex(CopyMI
);
952 if (CopyIdx
== MachineInstrIndex()) {
953 // FIXME: special case: function live in. It can be a general case if the
954 // first instruction index starts at > 0 value.
955 assert(TargetRegisterInfo::isPhysicalRegister(li
.reg
));
956 // Live-in to the function but dead. Remove it from entry live-in set.
957 if (mf_
->begin()->isLiveIn(li
.reg
))
958 mf_
->begin()->removeLiveIn(li
.reg
);
959 const LiveRange
*LR
= li
.getLiveRangeContaining(CopyIdx
);
960 removeRange(li
, LR
->start
, LR
->end
, li_
, tri_
);
961 return removeIntervalIfEmpty(li
, li_
, tri_
);
964 LiveInterval::iterator LR
=
965 li
.FindLiveRangeContaining(li_
->getPrevSlot(CopyIdx
));
967 // Livein but defined by a phi.
970 MachineInstrIndex RemoveStart
= LR
->start
;
971 MachineInstrIndex RemoveEnd
= li_
->getNextSlot(li_
->getDefIndex(CopyIdx
));
972 if (LR
->end
> RemoveEnd
)
973 // More uses past this copy? Nothing to do.
976 // If there is a last use in the same bb, we can't remove the live range.
977 // Shorten the live interval and return.
978 MachineBasicBlock
*CopyMBB
= CopyMI
->getParent();
979 if (TrimLiveIntervalToLastUse(CopyIdx
, CopyMBB
, li
, LR
))
982 // There are other kills of the val#. Nothing to do.
983 if (!li
.isOnlyLROfValNo(LR
))
986 MachineBasicBlock
*StartMBB
= li_
->getMBBFromIndex(RemoveStart
);
987 if (!isSameOrFallThroughBB(StartMBB
, CopyMBB
, tii_
))
988 // If the live range starts in another mbb and the copy mbb is not a fall
989 // through mbb, then we can only cut the range from the beginning of the
991 RemoveStart
= li_
->getNextSlot(li_
->getMBBStartIdx(CopyMBB
));
993 if (LR
->valno
->def
== RemoveStart
) {
994 // If the def MI defines the val# and this copy is the only kill of the
995 // val#, then propagate the dead marker.
996 PropagateDeadness(li
, CopyMI
, RemoveStart
, li_
, tri_
);
999 if (LR
->valno
->isKill(RemoveEnd
))
1000 LR
->valno
->removeKill(RemoveEnd
);
1003 removeRange(li
, RemoveStart
, RemoveEnd
, li_
, tri_
);
1004 return removeIntervalIfEmpty(li
, li_
, tri_
);
1007 /// CanCoalesceWithImpDef - Returns true if the specified copy instruction
1008 /// from an implicit def to another register can be coalesced away.
1009 bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr
*CopyMI
,
1011 LiveInterval
&ImpLi
) const{
1012 if (!CopyMI
->killsRegister(ImpLi
.reg
))
1014 // Make sure this is the only use.
1015 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(ImpLi
.reg
),
1016 UE
= mri_
->use_end(); UI
!= UE
;) {
1017 MachineInstr
*UseMI
= &*UI
;
1019 if (CopyMI
== UseMI
|| JoinedCopies
.count(UseMI
))
1027 /// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
1028 /// a virtual destination register with physical source register.
1030 SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr
*CopyMI
,
1031 MachineBasicBlock
*CopyMBB
,
1032 LiveInterval
&DstInt
,
1033 LiveInterval
&SrcInt
) {
1034 // If the virtual register live interval is long but it has low use desity,
1035 // do not join them, instead mark the physical register as its allocation
1037 const TargetRegisterClass
*RC
= mri_
->getRegClass(DstInt
.reg
);
1038 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1039 unsigned Length
= li_
->getApproximateInstructionCount(DstInt
);
1040 if (Length
> Threshold
&&
1041 (((float)std::distance(mri_
->use_begin(DstInt
.reg
),
1042 mri_
->use_end()) / Length
) < (1.0 / Threshold
)))
1045 // If the virtual register live interval extends into a loop, turn down
1047 MachineInstrIndex CopyIdx
=
1048 li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
1049 const MachineLoop
*L
= loopInfo
->getLoopFor(CopyMBB
);
1051 // Let's see if the virtual register live interval extends into the loop.
1052 LiveInterval::iterator DLR
= DstInt
.FindLiveRangeContaining(CopyIdx
);
1053 assert(DLR
!= DstInt
.end() && "Live range not found!");
1054 DLR
= DstInt
.FindLiveRangeContaining(li_
->getNextSlot(DLR
->end
));
1055 if (DLR
!= DstInt
.end()) {
1056 CopyMBB
= li_
->getMBBFromIndex(DLR
->start
);
1057 L
= loopInfo
->getLoopFor(CopyMBB
);
1061 if (!L
|| Length
<= Threshold
)
1064 MachineInstrIndex UseIdx
= li_
->getUseIndex(CopyIdx
);
1065 LiveInterval::iterator SLR
= SrcInt
.FindLiveRangeContaining(UseIdx
);
1066 MachineBasicBlock
*SMBB
= li_
->getMBBFromIndex(SLR
->start
);
1067 if (loopInfo
->getLoopFor(SMBB
) != L
) {
1068 if (!loopInfo
->isLoopHeader(CopyMBB
))
1070 // If vr's live interval extends pass the loop header, do not join.
1071 for (MachineBasicBlock::succ_iterator SI
= CopyMBB
->succ_begin(),
1072 SE
= CopyMBB
->succ_end(); SI
!= SE
; ++SI
) {
1073 MachineBasicBlock
*SuccMBB
= *SI
;
1074 if (SuccMBB
== CopyMBB
)
1076 if (DstInt
.overlaps(li_
->getMBBStartIdx(SuccMBB
),
1077 li_
->getNextSlot(li_
->getMBBEndIdx(SuccMBB
))))
1084 /// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
1085 /// copy from a virtual source register to a physical destination register.
1087 SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr
*CopyMI
,
1088 MachineBasicBlock
*CopyMBB
,
1089 LiveInterval
&DstInt
,
1090 LiveInterval
&SrcInt
) {
1091 // If the virtual register live interval is long but it has low use desity,
1092 // do not join them, instead mark the physical register as its allocation
1094 const TargetRegisterClass
*RC
= mri_
->getRegClass(SrcInt
.reg
);
1095 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1096 unsigned Length
= li_
->getApproximateInstructionCount(SrcInt
);
1097 if (Length
> Threshold
&&
1098 (((float)std::distance(mri_
->use_begin(SrcInt
.reg
),
1099 mri_
->use_end()) / Length
) < (1.0 / Threshold
)))
1103 // Must be implicit_def.
1106 // If the virtual register live interval is defined or cross a loop, turn
1107 // down aggressiveness.
1108 MachineInstrIndex CopyIdx
=
1109 li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
1110 MachineInstrIndex UseIdx
= li_
->getUseIndex(CopyIdx
);
1111 LiveInterval::iterator SLR
= SrcInt
.FindLiveRangeContaining(UseIdx
);
1112 assert(SLR
!= SrcInt
.end() && "Live range not found!");
1113 SLR
= SrcInt
.FindLiveRangeContaining(li_
->getPrevSlot(SLR
->start
));
1114 if (SLR
== SrcInt
.end())
1116 MachineBasicBlock
*SMBB
= li_
->getMBBFromIndex(SLR
->start
);
1117 const MachineLoop
*L
= loopInfo
->getLoopFor(SMBB
);
1119 if (!L
|| Length
<= Threshold
)
1122 if (loopInfo
->getLoopFor(CopyMBB
) != L
) {
1123 if (SMBB
!= L
->getLoopLatch())
1125 // If vr's live interval is extended from before the loop latch, do not
1127 for (MachineBasicBlock::pred_iterator PI
= SMBB
->pred_begin(),
1128 PE
= SMBB
->pred_end(); PI
!= PE
; ++PI
) {
1129 MachineBasicBlock
*PredMBB
= *PI
;
1130 if (PredMBB
== SMBB
)
1132 if (SrcInt
.overlaps(li_
->getMBBStartIdx(PredMBB
),
1133 li_
->getNextSlot(li_
->getMBBEndIdx(PredMBB
))))
1140 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1141 /// two virtual registers from different register classes.
1143 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned LargeReg
,
1145 unsigned Threshold
) {
1146 // Then make sure the intervals are *short*.
1147 LiveInterval
&LargeInt
= li_
->getInterval(LargeReg
);
1148 LiveInterval
&SmallInt
= li_
->getInterval(SmallReg
);
1149 unsigned LargeSize
= li_
->getApproximateInstructionCount(LargeInt
);
1150 unsigned SmallSize
= li_
->getApproximateInstructionCount(SmallInt
);
1151 if (SmallSize
> Threshold
|| LargeSize
> Threshold
)
1152 if ((float)std::distance(mri_
->use_begin(SmallReg
),
1153 mri_
->use_end()) / SmallSize
<
1154 (float)std::distance(mri_
->use_begin(LargeReg
),
1155 mri_
->use_end()) / LargeSize
)
1160 /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
1161 /// register with a physical register, check if any of the virtual register
1162 /// operand is a sub-register use or def. If so, make sure it won't result
1163 /// in an illegal extract_subreg or insert_subreg instruction. e.g.
1164 /// vr1024 = extract_subreg vr1025, 1
1166 /// vr1024 = mov8rr AH
1167 /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
1168 /// AH does not have a super-reg whose sub-register 1 is AH.
1170 SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr
*CopyMI
,
1173 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(VirtReg
),
1174 E
= mri_
->reg_end(); I
!= E
; ++I
) {
1175 MachineOperand
&O
= I
.getOperand();
1176 MachineInstr
*MI
= &*I
;
1177 if (MI
== CopyMI
|| JoinedCopies
.count(MI
))
1179 unsigned SubIdx
= O
.getSubReg();
1180 if (SubIdx
&& !tri_
->getSubReg(PhysReg
, SubIdx
))
1182 if (MI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
) {
1183 SubIdx
= MI
->getOperand(2).getImm();
1184 if (O
.isUse() && !tri_
->getSubReg(PhysReg
, SubIdx
))
1187 unsigned SrcReg
= MI
->getOperand(1).getReg();
1188 const TargetRegisterClass
*RC
=
1189 TargetRegisterInfo::isPhysicalRegister(SrcReg
)
1190 ? tri_
->getPhysicalRegisterRegClass(SrcReg
)
1191 : mri_
->getRegClass(SrcReg
);
1192 if (!tri_
->getMatchingSuperReg(PhysReg
, SubIdx
, RC
))
1196 if (MI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
1197 MI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) {
1198 SubIdx
= MI
->getOperand(3).getImm();
1199 if (VirtReg
== MI
->getOperand(0).getReg()) {
1200 if (!tri_
->getSubReg(PhysReg
, SubIdx
))
1203 unsigned DstReg
= MI
->getOperand(0).getReg();
1204 const TargetRegisterClass
*RC
=
1205 TargetRegisterInfo::isPhysicalRegister(DstReg
)
1206 ? tri_
->getPhysicalRegisterRegClass(DstReg
)
1207 : mri_
->getRegClass(DstReg
);
1208 if (!tri_
->getMatchingSuperReg(PhysReg
, SubIdx
, RC
))
1217 /// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
1218 /// an extract_subreg where dst is a physical register, e.g.
1219 /// cl = EXTRACT_SUBREG reg1024, 1
1221 SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg
,
1222 unsigned SrcReg
, unsigned SubIdx
,
1223 unsigned &RealDstReg
) {
1224 const TargetRegisterClass
*RC
= mri_
->getRegClass(SrcReg
);
1225 RealDstReg
= tri_
->getMatchingSuperReg(DstReg
, SubIdx
, RC
);
1226 assert(RealDstReg
&& "Invalid extract_subreg instruction!");
1228 // For this type of EXTRACT_SUBREG, conservatively
1229 // check if the live interval of the source register interfere with the
1230 // actual super physical register we are trying to coalesce with.
1231 LiveInterval
&RHS
= li_
->getInterval(SrcReg
);
1232 if (li_
->hasInterval(RealDstReg
) &&
1233 RHS
.overlaps(li_
->getInterval(RealDstReg
))) {
1235 errs() << "Interfere with register ";
1236 li_
->getInterval(RealDstReg
).print(errs(), tri_
);
1238 return false; // Not coalescable
1240 for (const unsigned* SR
= tri_
->getSubRegisters(RealDstReg
); *SR
; ++SR
)
1241 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
1243 errs() << "Interfere with sub-register ";
1244 li_
->getInterval(*SR
).print(errs(), tri_
);
1246 return false; // Not coalescable
1251 /// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
1252 /// an insert_subreg where src is a physical register, e.g.
1253 /// reg1024 = INSERT_SUBREG reg1024, c1, 0
1255 SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg
,
1256 unsigned SrcReg
, unsigned SubIdx
,
1257 unsigned &RealSrcReg
) {
1258 const TargetRegisterClass
*RC
= mri_
->getRegClass(DstReg
);
1259 RealSrcReg
= tri_
->getMatchingSuperReg(SrcReg
, SubIdx
, RC
);
1260 assert(RealSrcReg
&& "Invalid extract_subreg instruction!");
1262 LiveInterval
&RHS
= li_
->getInterval(DstReg
);
1263 if (li_
->hasInterval(RealSrcReg
) &&
1264 RHS
.overlaps(li_
->getInterval(RealSrcReg
))) {
1266 errs() << "Interfere with register ";
1267 li_
->getInterval(RealSrcReg
).print(errs(), tri_
);
1269 return false; // Not coalescable
1271 for (const unsigned* SR
= tri_
->getSubRegisters(RealSrcReg
); *SR
; ++SR
)
1272 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
1274 errs() << "Interfere with sub-register ";
1275 li_
->getInterval(*SR
).print(errs(), tri_
);
1277 return false; // Not coalescable
1282 /// getRegAllocPreference - Return register allocation preference register.
1284 static unsigned getRegAllocPreference(unsigned Reg
, MachineFunction
&MF
,
1285 MachineRegisterInfo
*MRI
,
1286 const TargetRegisterInfo
*TRI
) {
1287 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
1289 std::pair
<unsigned, unsigned> Hint
= MRI
->getRegAllocationHint(Reg
);
1290 return TRI
->ResolveRegAllocHint(Hint
.first
, Hint
.second
, MF
);
1293 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1294 /// which are the src/dst of the copy instruction CopyMI. This returns true
1295 /// if the copy was successfully coalesced away. If it is not currently
1296 /// possible to coalesce this interval, but it may be possible if other
1297 /// things get coalesced, then it returns true by reference in 'Again'.
1298 bool SimpleRegisterCoalescing::JoinCopy(CopyRec
&TheCopy
, bool &Again
) {
1299 MachineInstr
*CopyMI
= TheCopy
.MI
;
1302 if (JoinedCopies
.count(CopyMI
) || ReMatCopies
.count(CopyMI
))
1303 return false; // Already done.
1305 DEBUG(errs() << li_
->getInstructionIndex(CopyMI
) << '\t' << *CopyMI
);
1307 unsigned SrcReg
, DstReg
, SrcSubIdx
= 0, DstSubIdx
= 0;
1308 bool isExtSubReg
= CopyMI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
;
1309 bool isInsSubReg
= CopyMI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
;
1310 bool isSubRegToReg
= CopyMI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
;
1311 unsigned SubIdx
= 0;
1313 DstReg
= CopyMI
->getOperand(0).getReg();
1314 DstSubIdx
= CopyMI
->getOperand(0).getSubReg();
1315 SrcReg
= CopyMI
->getOperand(1).getReg();
1316 SrcSubIdx
= CopyMI
->getOperand(2).getImm();
1317 } else if (isInsSubReg
|| isSubRegToReg
) {
1318 DstReg
= CopyMI
->getOperand(0).getReg();
1319 DstSubIdx
= CopyMI
->getOperand(3).getImm();
1320 SrcReg
= CopyMI
->getOperand(2).getReg();
1321 SrcSubIdx
= CopyMI
->getOperand(2).getSubReg();
1322 if (SrcSubIdx
&& SrcSubIdx
!= DstSubIdx
) {
1323 // r1025 = INSERT_SUBREG r1025, r1024<2>, 2 Then r1024 has already been
1324 // coalesced to a larger register so the subreg indices cancel out.
1325 DEBUG(errs() << "\tSource of insert_subreg is already coalesced "
1326 << "to another register.\n");
1327 return false; // Not coalescable.
1329 } else if (!tii_
->isMoveInstr(*CopyMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
)){
1330 llvm_unreachable("Unrecognized copy instruction!");
1333 // If they are already joined we continue.
1334 if (SrcReg
== DstReg
) {
1335 DEBUG(errs() << "\tCopy already coalesced.\n");
1336 return false; // Not coalescable.
1339 bool SrcIsPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
1340 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
1342 // If they are both physical registers, we cannot join them.
1343 if (SrcIsPhys
&& DstIsPhys
) {
1344 DEBUG(errs() << "\tCan not coalesce physregs.\n");
1345 return false; // Not coalescable.
1348 // We only join virtual registers with allocatable physical registers.
1349 if (SrcIsPhys
&& !allocatableRegs_
[SrcReg
]) {
1350 DEBUG(errs() << "\tSrc reg is unallocatable physreg.\n");
1351 return false; // Not coalescable.
1353 if (DstIsPhys
&& !allocatableRegs_
[DstReg
]) {
1354 DEBUG(errs() << "\tDst reg is unallocatable physreg.\n");
1355 return false; // Not coalescable.
1358 // Check that a physical source register is compatible with dst regclass
1360 unsigned SrcSubReg
= SrcSubIdx
?
1361 tri_
->getSubReg(SrcReg
, SrcSubIdx
) : SrcReg
;
1362 const TargetRegisterClass
*DstRC
= mri_
->getRegClass(DstReg
);
1363 const TargetRegisterClass
*DstSubRC
= DstRC
;
1365 DstSubRC
= DstRC
->getSubRegisterRegClass(DstSubIdx
);
1366 assert(DstSubRC
&& "Illegal subregister index");
1367 if (!DstSubRC
->contains(SrcSubReg
)) {
1368 DEBUG(errs() << "\tIncompatible destination regclass: "
1369 << tri_
->getName(SrcSubReg
) << " not in "
1370 << DstSubRC
->getName() << ".\n");
1371 return false; // Not coalescable.
1375 // Check that a physical dst register is compatible with source regclass
1377 unsigned DstSubReg
= DstSubIdx
?
1378 tri_
->getSubReg(DstReg
, DstSubIdx
) : DstReg
;
1379 const TargetRegisterClass
*SrcRC
= mri_
->getRegClass(SrcReg
);
1380 const TargetRegisterClass
*SrcSubRC
= SrcRC
;
1382 SrcSubRC
= SrcRC
->getSubRegisterRegClass(SrcSubIdx
);
1383 assert(SrcSubRC
&& "Illegal subregister index");
1384 if (!SrcSubRC
->contains(DstReg
)) {
1385 DEBUG(errs() << "\tIncompatible source regclass: "
1386 << tri_
->getName(DstSubReg
) << " not in "
1387 << SrcSubRC
->getName() << ".\n");
1389 return false; // Not coalescable.
1393 // Should be non-null only when coalescing to a sub-register class.
1394 bool CrossRC
= false;
1395 const TargetRegisterClass
*SrcRC
= SrcIsPhys
? 0 : mri_
->getRegClass(SrcReg
);
1396 const TargetRegisterClass
*DstRC
= DstIsPhys
? 0 : mri_
->getRegClass(DstReg
);
1397 const TargetRegisterClass
*NewRC
= NULL
;
1398 MachineBasicBlock
*CopyMBB
= CopyMI
->getParent();
1399 unsigned RealDstReg
= 0;
1400 unsigned RealSrcReg
= 0;
1401 if (isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) {
1402 SubIdx
= CopyMI
->getOperand(isExtSubReg
? 2 : 3).getImm();
1403 if (SrcIsPhys
&& isExtSubReg
) {
1404 // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
1405 // coalesced with AX.
1406 unsigned DstSubIdx
= CopyMI
->getOperand(0).getSubReg();
1408 // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
1409 // coalesced to a larger register so the subreg indices cancel out.
1410 if (DstSubIdx
!= SubIdx
) {
1411 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1412 return false; // Not coalescable.
1415 SrcReg
= tri_
->getSubReg(SrcReg
, SubIdx
);
1417 } else if (DstIsPhys
&& (isInsSubReg
|| isSubRegToReg
)) {
1418 // EAX = INSERT_SUBREG EAX, r1024, 0
1419 unsigned SrcSubIdx
= CopyMI
->getOperand(2).getSubReg();
1421 // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
1422 // coalesced to a larger register so the subreg indices cancel out.
1423 if (SrcSubIdx
!= SubIdx
) {
1424 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1425 return false; // Not coalescable.
1428 DstReg
= tri_
->getSubReg(DstReg
, SubIdx
);
1430 } else if ((DstIsPhys
&& isExtSubReg
) ||
1431 (SrcIsPhys
&& (isInsSubReg
|| isSubRegToReg
))) {
1432 if (!isSubRegToReg
&& CopyMI
->getOperand(1).getSubReg()) {
1433 DEBUG(errs() << "\tSrc of extract_subreg already coalesced with reg"
1434 << " of a super-class.\n");
1435 return false; // Not coalescable.
1439 if (!CanJoinExtractSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealDstReg
))
1440 return false; // Not coalescable
1442 if (!CanJoinInsertSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealSrcReg
))
1443 return false; // Not coalescable
1447 unsigned OldSubIdx
= isExtSubReg
? CopyMI
->getOperand(0).getSubReg()
1448 : CopyMI
->getOperand(2).getSubReg();
1450 if (OldSubIdx
== SubIdx
&& !differingRegisterClasses(SrcReg
, DstReg
))
1451 // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
1452 // coalesced to a larger register so the subreg indices cancel out.
1453 // Also check if the other larger register is of the same register
1454 // class as the would be resulting register.
1457 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1458 return false; // Not coalescable.
1462 if (!DstIsPhys
&& !SrcIsPhys
) {
1463 if (isInsSubReg
|| isSubRegToReg
) {
1464 NewRC
= tri_
->getMatchingSuperRegClass(DstRC
, SrcRC
, SubIdx
);
1465 } else // extract_subreg {
1466 NewRC
= tri_
->getMatchingSuperRegClass(SrcRC
, DstRC
, SubIdx
);
1469 DEBUG(errs() << "\t Conflicting sub-register indices.\n");
1470 return false; // Not coalescable
1473 unsigned LargeReg
= isExtSubReg
? SrcReg
: DstReg
;
1474 unsigned SmallReg
= isExtSubReg
? DstReg
: SrcReg
;
1475 unsigned Limit
= allocatableRCRegs_
[mri_
->getRegClass(SmallReg
)].count();
1476 if (!isWinToJoinCrossClass(LargeReg
, SmallReg
, Limit
)) {
1477 Again
= true; // May be possible to coalesce later.
1482 } else if (differingRegisterClasses(SrcReg
, DstReg
)) {
1483 if (DisableCrossClassJoin
)
1487 // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
1488 // with another? If it's the resulting destination register, then
1489 // the subidx must be propagated to uses (but only those defined
1490 // by the EXTRACT_SUBREG). If it's being coalesced into another
1491 // register, it should be safe because register is assumed to have
1492 // the register class of the super-register.
1494 // Process moves where one of the registers have a sub-register index.
1495 MachineOperand
*DstMO
= CopyMI
->findRegisterDefOperand(DstReg
);
1496 MachineOperand
*SrcMO
= CopyMI
->findRegisterUseOperand(SrcReg
);
1497 SubIdx
= DstMO
->getSubReg();
1499 if (SrcMO
->getSubReg())
1500 // FIXME: can we handle this?
1502 // This is not an insert_subreg but it looks like one.
1503 // e.g. %reg1024:4 = MOV32rr %EAX
1506 if (!CanJoinInsertSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealSrcReg
))
1507 return false; // Not coalescable
1511 SubIdx
= SrcMO
->getSubReg();
1513 // This is not a extract_subreg but it looks like one.
1514 // e.g. %cl = MOV16rr %reg1024:1
1517 if (!CanJoinExtractSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
,RealDstReg
))
1518 return false; // Not coalescable
1524 unsigned LargeReg
= SrcReg
;
1525 unsigned SmallReg
= DstReg
;
1527 // Now determine the register class of the joined register.
1529 if (SubIdx
&& DstRC
&& DstRC
->isASubClass()) {
1530 // This is a move to a sub-register class. However, the source is a
1531 // sub-register of a larger register class. We don't know what should
1532 // the register class be. FIXME.
1536 if (!DstIsPhys
&& !SrcIsPhys
)
1538 } else if (!SrcIsPhys
&& !DstIsPhys
) {
1539 NewRC
= getCommonSubClass(SrcRC
, DstRC
);
1541 DEBUG(errs() << "\tDisjoint regclasses: "
1542 << SrcRC
->getName() << ", "
1543 << DstRC
->getName() << ".\n");
1544 return false; // Not coalescable.
1546 if (DstRC
->getSize() > SrcRC
->getSize())
1547 std::swap(LargeReg
, SmallReg
);
1550 // If we are joining two virtual registers and the resulting register
1551 // class is more restrictive (fewer register, smaller size). Check if it's
1552 // worth doing the merge.
1553 if (!SrcIsPhys
&& !DstIsPhys
&&
1554 (isExtSubReg
|| DstRC
->isASubClass()) &&
1555 !isWinToJoinCrossClass(LargeReg
, SmallReg
,
1556 allocatableRCRegs_
[NewRC
].count())) {
1557 DEBUG(errs() << "\tSrc/Dest are different register classes.\n");
1558 // Allow the coalescer to try again in case either side gets coalesced to
1559 // a physical register that's compatible with the other side. e.g.
1560 // r1024 = MOV32to32_ r1025
1561 // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
1562 Again
= true; // May be possible to coalesce later.
1567 // Will it create illegal extract_subreg / insert_subreg?
1568 if (SrcIsPhys
&& HasIncompatibleSubRegDefUse(CopyMI
, DstReg
, SrcReg
))
1570 if (DstIsPhys
&& HasIncompatibleSubRegDefUse(CopyMI
, SrcReg
, DstReg
))
1573 LiveInterval
&SrcInt
= li_
->getInterval(SrcReg
);
1574 LiveInterval
&DstInt
= li_
->getInterval(DstReg
);
1575 assert(SrcInt
.reg
== SrcReg
&& DstInt
.reg
== DstReg
&&
1576 "Register mapping is horribly broken!");
1579 errs() << "\t\tInspecting "; SrcInt
.print(errs(), tri_
);
1580 errs() << " and "; DstInt
.print(errs(), tri_
);
1584 // Save a copy of the virtual register live interval. We'll manually
1585 // merge this into the "real" physical register live interval this is
1587 LiveInterval
*SavedLI
= 0;
1589 SavedLI
= li_
->dupInterval(&SrcInt
);
1590 else if (RealSrcReg
)
1591 SavedLI
= li_
->dupInterval(&DstInt
);
1593 // Check if it is necessary to propagate "isDead" property.
1594 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
) {
1595 MachineOperand
*mopd
= CopyMI
->findRegisterDefOperand(DstReg
, false);
1596 bool isDead
= mopd
->isDead();
1598 // We need to be careful about coalescing a source physical register with a
1599 // virtual register. Once the coalescing is done, it cannot be broken and
1600 // these are not spillable! If the destination interval uses are far away,
1601 // think twice about coalescing them!
1602 if (!isDead
&& (SrcIsPhys
|| DstIsPhys
)) {
1603 // If the copy is in a loop, take care not to coalesce aggressively if the
1604 // src is coming in from outside the loop (or the dst is out of the loop).
1605 // If it's not in a loop, then determine whether to join them base purely
1606 // by the length of the interval.
1607 if (PhysJoinTweak
) {
1609 if (!isWinToJoinVRWithSrcPhysReg(CopyMI
, CopyMBB
, DstInt
, SrcInt
)) {
1610 mri_
->setRegAllocationHint(DstInt
.reg
, 0, SrcReg
);
1612 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1613 Again
= true; // May be possible to coalesce later.
1617 if (!isWinToJoinVRWithDstPhysReg(CopyMI
, CopyMBB
, DstInt
, SrcInt
)) {
1618 mri_
->setRegAllocationHint(SrcInt
.reg
, 0, DstReg
);
1620 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1621 Again
= true; // May be possible to coalesce later.
1626 // If the virtual register live interval is long but it has low use desity,
1627 // do not join them, instead mark the physical register as its allocation
1629 LiveInterval
&JoinVInt
= SrcIsPhys
? DstInt
: SrcInt
;
1630 unsigned JoinVReg
= SrcIsPhys
? DstReg
: SrcReg
;
1631 unsigned JoinPReg
= SrcIsPhys
? SrcReg
: DstReg
;
1632 const TargetRegisterClass
*RC
= mri_
->getRegClass(JoinVReg
);
1633 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1634 if (TheCopy
.isBackEdge
)
1635 Threshold
*= 2; // Favors back edge copies.
1637 unsigned Length
= li_
->getApproximateInstructionCount(JoinVInt
);
1638 float Ratio
= 1.0 / Threshold
;
1639 if (Length
> Threshold
&&
1640 (((float)std::distance(mri_
->use_begin(JoinVReg
),
1641 mri_
->use_end()) / Length
) < Ratio
)) {
1642 mri_
->setRegAllocationHint(JoinVInt
.reg
, 0, JoinPReg
);
1644 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1645 Again
= true; // May be possible to coalesce later.
1652 // Okay, attempt to join these two intervals. On failure, this returns false.
1653 // Otherwise, if one of the intervals being joined is a physreg, this method
1654 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1655 // been modified, so we can use this information below to update aliases.
1656 bool Swapped
= false;
1657 // If SrcInt is implicitly defined, it's safe to coalesce.
1658 bool isEmpty
= SrcInt
.empty();
1659 if (isEmpty
&& !CanCoalesceWithImpDef(CopyMI
, DstInt
, SrcInt
)) {
1660 // Only coalesce an empty interval (defined by implicit_def) with
1661 // another interval which has a valno defined by the CopyMI and the CopyMI
1662 // is a kill of the implicit def.
1663 DEBUG(errs() << "Not profitable!\n");
1667 if (!isEmpty
&& !JoinIntervals(DstInt
, SrcInt
, Swapped
)) {
1668 // Coalescing failed.
1670 // If definition of source is defined by trivial computation, try
1671 // rematerializing it.
1672 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
&&
1673 ReMaterializeTrivialDef(SrcInt
, DstReg
, DstSubIdx
, CopyMI
))
1676 // If we can eliminate the copy without merging the live ranges, do so now.
1677 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
&&
1678 (AdjustCopiesBackFrom(SrcInt
, DstInt
, CopyMI
) ||
1679 RemoveCopyByCommutingDef(SrcInt
, DstInt
, CopyMI
))) {
1680 JoinedCopies
.insert(CopyMI
);
1684 // Otherwise, we are unable to join the intervals.
1685 DEBUG(errs() << "Interference!\n");
1686 Again
= true; // May be possible to coalesce later.
1690 LiveInterval
*ResSrcInt
= &SrcInt
;
1691 LiveInterval
*ResDstInt
= &DstInt
;
1693 std::swap(SrcReg
, DstReg
);
1694 std::swap(ResSrcInt
, ResDstInt
);
1696 assert(TargetRegisterInfo::isVirtualRegister(SrcReg
) &&
1697 "LiveInterval::join didn't work right!");
1699 // If we're about to merge live ranges into a physical register live interval,
1700 // we have to update any aliased register's live ranges to indicate that they
1701 // have clobbered values for this range.
1702 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
1703 // If this is a extract_subreg where dst is a physical register, e.g.
1704 // cl = EXTRACT_SUBREG reg1024, 1
1705 // then create and update the actual physical register allocated to RHS.
1706 if (RealDstReg
|| RealSrcReg
) {
1707 LiveInterval
&RealInt
=
1708 li_
->getOrCreateInterval(RealDstReg
? RealDstReg
: RealSrcReg
);
1709 for (LiveInterval::const_vni_iterator I
= SavedLI
->vni_begin(),
1710 E
= SavedLI
->vni_end(); I
!= E
; ++I
) {
1711 const VNInfo
*ValNo
= *I
;
1712 VNInfo
*NewValNo
= RealInt
.getNextValue(ValNo
->def
, ValNo
->getCopy(),
1713 false, // updated at *
1714 li_
->getVNInfoAllocator());
1715 NewValNo
->setFlags(ValNo
->getFlags()); // * updated here.
1716 RealInt
.addKills(NewValNo
, ValNo
->kills
);
1717 RealInt
.MergeValueInAsValue(*SavedLI
, ValNo
, NewValNo
);
1719 RealInt
.weight
+= SavedLI
->weight
;
1720 DstReg
= RealDstReg
? RealDstReg
: RealSrcReg
;
1723 // Update the liveintervals of sub-registers.
1724 for (const unsigned *AS
= tri_
->getSubRegisters(DstReg
); *AS
; ++AS
)
1725 li_
->getOrCreateInterval(*AS
).MergeInClobberRanges(*ResSrcInt
,
1726 li_
->getVNInfoAllocator());
1729 // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
1730 // larger super-register.
1731 if ((isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) &&
1732 !SrcIsPhys
&& !DstIsPhys
) {
1733 if ((isExtSubReg
&& !Swapped
) ||
1734 ((isInsSubReg
|| isSubRegToReg
) && Swapped
)) {
1735 ResSrcInt
->Copy(*ResDstInt
, mri_
, li_
->getVNInfoAllocator());
1736 std::swap(SrcReg
, DstReg
);
1737 std::swap(ResSrcInt
, ResDstInt
);
1741 // Coalescing to a virtual register that is of a sub-register class of the
1742 // other. Make sure the resulting register is set to the right register class.
1746 // This may happen even if it's cross-rc coalescing. e.g.
1747 // %reg1026<def> = SUBREG_TO_REG 0, %reg1037<kill>, 4
1748 // reg1026 -> GR64, reg1037 -> GR32_ABCD. The resulting register will have to
1749 // be allocate a register from GR64_ABCD.
1751 mri_
->setRegClass(DstReg
, NewRC
);
1754 // Add all copies that define val# in the source interval into the queue.
1755 for (LiveInterval::const_vni_iterator i
= ResSrcInt
->vni_begin(),
1756 e
= ResSrcInt
->vni_end(); i
!= e
; ++i
) {
1757 const VNInfo
*vni
= *i
;
1758 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1759 if (vni
->def
== MachineInstrIndex() || vni
->isUnused() || vni
->isPHIDef() ||
1760 !vni
->isDefAccurate())
1762 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
1763 unsigned NewSrcReg
, NewDstReg
, NewSrcSubIdx
, NewDstSubIdx
;
1765 JoinedCopies
.count(CopyMI
) == 0 &&
1766 tii_
->isMoveInstr(*CopyMI
, NewSrcReg
, NewDstReg
,
1767 NewSrcSubIdx
, NewDstSubIdx
)) {
1768 unsigned LoopDepth
= loopInfo
->getLoopDepth(CopyMBB
);
1769 JoinQueue
->push(CopyRec(CopyMI
, LoopDepth
,
1770 isBackEdgeCopy(CopyMI
, DstReg
)));
1775 // Remember to delete the copy instruction.
1776 JoinedCopies
.insert(CopyMI
);
1778 // Some live range has been lengthened due to colaescing, eliminate the
1779 // unnecessary kills.
1780 RemoveUnnecessaryKills(SrcReg
, *ResDstInt
);
1781 if (TargetRegisterInfo::isVirtualRegister(DstReg
))
1782 RemoveUnnecessaryKills(DstReg
, *ResDstInt
);
1784 UpdateRegDefsUses(SrcReg
, DstReg
, SubIdx
);
1786 // SrcReg is guarateed to be the register whose live interval that is
1788 li_
->removeInterval(SrcReg
);
1790 // Update regalloc hint.
1791 tri_
->UpdateRegAllocHint(SrcReg
, DstReg
, *mf_
);
1793 // Manually deleted the live interval copy.
1799 // If resulting interval has a preference that no longer fits because of subreg
1800 // coalescing, just clear the preference.
1801 unsigned Preference
= getRegAllocPreference(ResDstInt
->reg
, *mf_
, mri_
, tri_
);
1802 if (Preference
&& (isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) &&
1803 TargetRegisterInfo::isVirtualRegister(ResDstInt
->reg
)) {
1804 const TargetRegisterClass
*RC
= mri_
->getRegClass(ResDstInt
->reg
);
1805 if (!RC
->contains(Preference
))
1806 mri_
->setRegAllocationHint(ResDstInt
->reg
, 0, 0);
1810 errs() << "\n\t\tJoined. Result = ";
1811 ResDstInt
->print(errs(), tri_
);
1819 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1820 /// compute what the resultant value numbers for each value in the input two
1821 /// ranges will be. This is complicated by copies between the two which can
1822 /// and will commonly cause multiple value numbers to be merged into one.
1824 /// VN is the value number that we're trying to resolve. InstDefiningValue
1825 /// keeps track of the new InstDefiningValue assignment for the result
1826 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1827 /// whether a value in this or other is a copy from the opposite set.
1828 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1829 /// already been assigned.
1831 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1832 /// contains the value number the copy is from.
1834 static unsigned ComputeUltimateVN(VNInfo
*VNI
,
1835 SmallVector
<VNInfo
*, 16> &NewVNInfo
,
1836 DenseMap
<VNInfo
*, VNInfo
*> &ThisFromOther
,
1837 DenseMap
<VNInfo
*, VNInfo
*> &OtherFromThis
,
1838 SmallVector
<int, 16> &ThisValNoAssignments
,
1839 SmallVector
<int, 16> &OtherValNoAssignments
) {
1840 unsigned VN
= VNI
->id
;
1842 // If the VN has already been computed, just return it.
1843 if (ThisValNoAssignments
[VN
] >= 0)
1844 return ThisValNoAssignments
[VN
];
1845 // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1847 // If this val is not a copy from the other val, then it must be a new value
1848 // number in the destination.
1849 DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= ThisFromOther
.find(VNI
);
1850 if (I
== ThisFromOther
.end()) {
1851 NewVNInfo
.push_back(VNI
);
1852 return ThisValNoAssignments
[VN
] = NewVNInfo
.size()-1;
1854 VNInfo
*OtherValNo
= I
->second
;
1856 // Otherwise, this *is* a copy from the RHS. If the other side has already
1857 // been computed, return it.
1858 if (OtherValNoAssignments
[OtherValNo
->id
] >= 0)
1859 return ThisValNoAssignments
[VN
] = OtherValNoAssignments
[OtherValNo
->id
];
1861 // Mark this value number as currently being computed, then ask what the
1862 // ultimate value # of the other value is.
1863 ThisValNoAssignments
[VN
] = -2;
1864 unsigned UltimateVN
=
1865 ComputeUltimateVN(OtherValNo
, NewVNInfo
, OtherFromThis
, ThisFromOther
,
1866 OtherValNoAssignments
, ThisValNoAssignments
);
1867 return ThisValNoAssignments
[VN
] = UltimateVN
;
1870 static bool InVector(VNInfo
*Val
, const SmallVector
<VNInfo
*, 8> &V
) {
1871 return std::find(V
.begin(), V
.end(), Val
) != V
.end();
1874 /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
1875 /// the specified live interval is defined by a copy from the specified
1877 bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval
&li
,
1880 unsigned SrcReg
= li_
->getVNInfoSourceReg(LR
->valno
);
1883 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1884 if ((LR
->valno
->isPHIDef() || !LR
->valno
->isDefAccurate()) &&
1885 TargetRegisterInfo::isPhysicalRegister(li
.reg
) &&
1886 *tri_
->getSuperRegisters(li
.reg
)) {
1887 // It's a sub-register live interval, we may not have precise information.
1889 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(LR
->start
);
1890 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
1892 tii_
->isMoveInstr(*DefMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
1893 DstReg
== li
.reg
&& SrcReg
== Reg
) {
1894 // Cache computed info.
1895 LR
->valno
->def
= LR
->start
;
1896 LR
->valno
->setCopy(DefMI
);
1903 /// SimpleJoin - Attempt to joint the specified interval into this one. The
1904 /// caller of this method must guarantee that the RHS only contains a single
1905 /// value number and that the RHS is not defined by a copy from this
1906 /// interval. This returns false if the intervals are not joinable, or it
1907 /// joins them and returns true.
1908 bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval
&LHS
, LiveInterval
&RHS
){
1909 assert(RHS
.containsOneValue());
1911 // Some number (potentially more than one) value numbers in the current
1912 // interval may be defined as copies from the RHS. Scan the overlapping
1913 // portions of the LHS and RHS, keeping track of this and looking for
1914 // overlapping live ranges that are NOT defined as copies. If these exist, we
1917 LiveInterval::iterator LHSIt
= LHS
.begin(), LHSEnd
= LHS
.end();
1918 LiveInterval::iterator RHSIt
= RHS
.begin(), RHSEnd
= RHS
.end();
1920 if (LHSIt
->start
< RHSIt
->start
) {
1921 LHSIt
= std::upper_bound(LHSIt
, LHSEnd
, RHSIt
->start
);
1922 if (LHSIt
!= LHS
.begin()) --LHSIt
;
1923 } else if (RHSIt
->start
< LHSIt
->start
) {
1924 RHSIt
= std::upper_bound(RHSIt
, RHSEnd
, LHSIt
->start
);
1925 if (RHSIt
!= RHS
.begin()) --RHSIt
;
1928 SmallVector
<VNInfo
*, 8> EliminatedLHSVals
;
1931 // Determine if these live intervals overlap.
1932 bool Overlaps
= false;
1933 if (LHSIt
->start
<= RHSIt
->start
)
1934 Overlaps
= LHSIt
->end
> RHSIt
->start
;
1936 Overlaps
= RHSIt
->end
> LHSIt
->start
;
1938 // If the live intervals overlap, there are two interesting cases: if the
1939 // LHS interval is defined by a copy from the RHS, it's ok and we record
1940 // that the LHS value # is the same as the RHS. If it's not, then we cannot
1941 // coalesce these live ranges and we bail out.
1943 // If we haven't already recorded that this value # is safe, check it.
1944 if (!InVector(LHSIt
->valno
, EliminatedLHSVals
)) {
1945 // Copy from the RHS?
1946 if (!RangeIsDefinedByCopyFromReg(LHS
, LHSIt
, RHS
.reg
))
1947 return false; // Nope, bail out.
1949 if (LHSIt
->contains(RHSIt
->valno
->def
))
1950 // Here is an interesting situation:
1952 // vr1025 = copy vr1024
1957 // Even though vr1025 is copied from vr1024, it's not safe to
1958 // coalesce them since the live range of vr1025 intersects the
1959 // def of vr1024. This happens because vr1025 is assigned the
1960 // value of the previous iteration of vr1024.
1962 EliminatedLHSVals
.push_back(LHSIt
->valno
);
1965 // We know this entire LHS live range is okay, so skip it now.
1966 if (++LHSIt
== LHSEnd
) break;
1970 if (LHSIt
->end
< RHSIt
->end
) {
1971 if (++LHSIt
== LHSEnd
) break;
1973 // One interesting case to check here. It's possible that we have
1974 // something like "X3 = Y" which defines a new value number in the LHS,
1975 // and is the last use of this liverange of the RHS. In this case, we
1976 // want to notice this copy (so that it gets coalesced away) even though
1977 // the live ranges don't actually overlap.
1978 if (LHSIt
->start
== RHSIt
->end
) {
1979 if (InVector(LHSIt
->valno
, EliminatedLHSVals
)) {
1980 // We already know that this value number is going to be merged in
1981 // if coalescing succeeds. Just skip the liverange.
1982 if (++LHSIt
== LHSEnd
) break;
1984 // Otherwise, if this is a copy from the RHS, mark it as being merged
1986 if (RangeIsDefinedByCopyFromReg(LHS
, LHSIt
, RHS
.reg
)) {
1987 if (LHSIt
->contains(RHSIt
->valno
->def
))
1988 // Here is an interesting situation:
1990 // vr1025 = copy vr1024
1995 // Even though vr1025 is copied from vr1024, it's not safe to
1996 // coalesced them since live range of vr1025 intersects the
1997 // def of vr1024. This happens because vr1025 is assigned the
1998 // value of the previous iteration of vr1024.
2000 EliminatedLHSVals
.push_back(LHSIt
->valno
);
2002 // We know this entire LHS live range is okay, so skip it now.
2003 if (++LHSIt
== LHSEnd
) break;
2008 if (++RHSIt
== RHSEnd
) break;
2012 // If we got here, we know that the coalescing will be successful and that
2013 // the value numbers in EliminatedLHSVals will all be merged together. Since
2014 // the most common case is that EliminatedLHSVals has a single number, we
2015 // optimize for it: if there is more than one value, we merge them all into
2016 // the lowest numbered one, then handle the interval as if we were merging
2017 // with one value number.
2018 VNInfo
*LHSValNo
= NULL
;
2019 if (EliminatedLHSVals
.size() > 1) {
2020 // Loop through all the equal value numbers merging them into the smallest
2022 VNInfo
*Smallest
= EliminatedLHSVals
[0];
2023 for (unsigned i
= 1, e
= EliminatedLHSVals
.size(); i
!= e
; ++i
) {
2024 if (EliminatedLHSVals
[i
]->id
< Smallest
->id
) {
2025 // Merge the current notion of the smallest into the smaller one.
2026 LHS
.MergeValueNumberInto(Smallest
, EliminatedLHSVals
[i
]);
2027 Smallest
= EliminatedLHSVals
[i
];
2029 // Merge into the smallest.
2030 LHS
.MergeValueNumberInto(EliminatedLHSVals
[i
], Smallest
);
2033 LHSValNo
= Smallest
;
2034 } else if (EliminatedLHSVals
.empty()) {
2035 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
) &&
2036 *tri_
->getSuperRegisters(LHS
.reg
))
2037 // Imprecise sub-register information. Can't handle it.
2039 llvm_unreachable("No copies from the RHS?");
2041 LHSValNo
= EliminatedLHSVals
[0];
2044 // Okay, now that there is a single LHS value number that we're merging the
2045 // RHS into, update the value number info for the LHS to indicate that the
2046 // value number is defined where the RHS value number was.
2047 const VNInfo
*VNI
= RHS
.getValNumInfo(0);
2048 LHSValNo
->def
= VNI
->def
;
2049 LHSValNo
->setCopy(VNI
->getCopy());
2051 // Okay, the final step is to loop over the RHS live intervals, adding them to
2053 if (VNI
->hasPHIKill())
2054 LHSValNo
->setHasPHIKill(true);
2055 LHS
.addKills(LHSValNo
, VNI
->kills
);
2056 LHS
.MergeRangesInAsValue(RHS
, LHSValNo
);
2058 LHS
.ComputeJoinedWeight(RHS
);
2060 // Update regalloc hint if both are virtual registers.
2061 if (TargetRegisterInfo::isVirtualRegister(LHS
.reg
) &&
2062 TargetRegisterInfo::isVirtualRegister(RHS
.reg
)) {
2063 std::pair
<unsigned, unsigned> RHSPref
= mri_
->getRegAllocationHint(RHS
.reg
);
2064 std::pair
<unsigned, unsigned> LHSPref
= mri_
->getRegAllocationHint(LHS
.reg
);
2065 if (RHSPref
!= LHSPref
)
2066 mri_
->setRegAllocationHint(LHS
.reg
, RHSPref
.first
, RHSPref
.second
);
2069 // Update the liveintervals of sub-registers.
2070 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
))
2071 for (const unsigned *AS
= tri_
->getSubRegisters(LHS
.reg
); *AS
; ++AS
)
2072 li_
->getOrCreateInterval(*AS
).MergeInClobberRanges(LHS
,
2073 li_
->getVNInfoAllocator());
2078 /// JoinIntervals - Attempt to join these two intervals. On failure, this
2079 /// returns false. Otherwise, if one of the intervals being joined is a
2080 /// physreg, this method always canonicalizes LHS to be it. The output
2081 /// "RHS" will not have been modified, so we can use this information
2082 /// below to update aliases.
2084 SimpleRegisterCoalescing::JoinIntervals(LiveInterval
&LHS
, LiveInterval
&RHS
,
2086 // Compute the final value assignment, assuming that the live ranges can be
2088 SmallVector
<int, 16> LHSValNoAssignments
;
2089 SmallVector
<int, 16> RHSValNoAssignments
;
2090 DenseMap
<VNInfo
*, VNInfo
*> LHSValsDefinedFromRHS
;
2091 DenseMap
<VNInfo
*, VNInfo
*> RHSValsDefinedFromLHS
;
2092 SmallVector
<VNInfo
*, 16> NewVNInfo
;
2094 // If a live interval is a physical register, conservatively check if any
2095 // of its sub-registers is overlapping the live interval of the virtual
2096 // register. If so, do not coalesce.
2097 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
) &&
2098 *tri_
->getSubRegisters(LHS
.reg
)) {
2099 // If it's coalescing a virtual register to a physical register, estimate
2100 // its live interval length. This is the *cost* of scanning an entire live
2101 // interval. If the cost is low, we'll do an exhaustive check instead.
2103 // If this is something like this:
2111 // That is, the live interval of v1024 crosses a bb. Then we can't rely on
2112 // less conservative check. It's possible a sub-register is defined before
2113 // v1024 (or live in) and live out of BB1.
2114 if (RHS
.containsOneValue() &&
2115 li_
->intervalIsInOneMBB(RHS
) &&
2116 li_
->getApproximateInstructionCount(RHS
) <= 10) {
2117 // Perform a more exhaustive check for some common cases.
2118 if (li_
->conflictsWithPhysRegRef(RHS
, LHS
.reg
, true, JoinedCopies
))
2121 for (const unsigned* SR
= tri_
->getSubRegisters(LHS
.reg
); *SR
; ++SR
)
2122 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
2124 errs() << "Interfere with sub-register ";
2125 li_
->getInterval(*SR
).print(errs(), tri_
);
2130 } else if (TargetRegisterInfo::isPhysicalRegister(RHS
.reg
) &&
2131 *tri_
->getSubRegisters(RHS
.reg
)) {
2132 if (LHS
.containsOneValue() &&
2133 li_
->getApproximateInstructionCount(LHS
) <= 10) {
2134 // Perform a more exhaustive check for some common cases.
2135 if (li_
->conflictsWithPhysRegRef(LHS
, RHS
.reg
, false, JoinedCopies
))
2138 for (const unsigned* SR
= tri_
->getSubRegisters(RHS
.reg
); *SR
; ++SR
)
2139 if (li_
->hasInterval(*SR
) && LHS
.overlaps(li_
->getInterval(*SR
))) {
2141 errs() << "Interfere with sub-register ";
2142 li_
->getInterval(*SR
).print(errs(), tri_
);
2149 // Compute ultimate value numbers for the LHS and RHS values.
2150 if (RHS
.containsOneValue()) {
2151 // Copies from a liveinterval with a single value are simple to handle and
2152 // very common, handle the special case here. This is important, because
2153 // often RHS is small and LHS is large (e.g. a physreg).
2155 // Find out if the RHS is defined as a copy from some value in the LHS.
2156 int RHSVal0DefinedFromLHS
= -1;
2158 VNInfo
*RHSValNoInfo
= NULL
;
2159 VNInfo
*RHSValNoInfo0
= RHS
.getValNumInfo(0);
2160 unsigned RHSSrcReg
= li_
->getVNInfoSourceReg(RHSValNoInfo0
);
2161 if (RHSSrcReg
== 0 || RHSSrcReg
!= LHS
.reg
) {
2162 // If RHS is not defined as a copy from the LHS, we can use simpler and
2163 // faster checks to see if the live ranges are coalescable. This joiner
2164 // can't swap the LHS/RHS intervals though.
2165 if (!TargetRegisterInfo::isPhysicalRegister(RHS
.reg
)) {
2166 return SimpleJoin(LHS
, RHS
);
2168 RHSValNoInfo
= RHSValNoInfo0
;
2171 // It was defined as a copy from the LHS, find out what value # it is.
2173 LHS
.getLiveRangeContaining(li_
->getPrevSlot(RHSValNoInfo0
->def
))->valno
;
2174 RHSValID
= RHSValNoInfo
->id
;
2175 RHSVal0DefinedFromLHS
= RHSValID
;
2178 LHSValNoAssignments
.resize(LHS
.getNumValNums(), -1);
2179 RHSValNoAssignments
.resize(RHS
.getNumValNums(), -1);
2180 NewVNInfo
.resize(LHS
.getNumValNums(), NULL
);
2182 // Okay, *all* of the values in LHS that are defined as a copy from RHS
2183 // should now get updated.
2184 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2187 unsigned VN
= VNI
->id
;
2188 if (unsigned LHSSrcReg
= li_
->getVNInfoSourceReg(VNI
)) {
2189 if (LHSSrcReg
!= RHS
.reg
) {
2190 // If this is not a copy from the RHS, its value number will be
2191 // unmodified by the coalescing.
2192 NewVNInfo
[VN
] = VNI
;
2193 LHSValNoAssignments
[VN
] = VN
;
2194 } else if (RHSValID
== -1) {
2195 // Otherwise, it is a copy from the RHS, and we don't already have a
2196 // value# for it. Keep the current value number, but remember it.
2197 LHSValNoAssignments
[VN
] = RHSValID
= VN
;
2198 NewVNInfo
[VN
] = RHSValNoInfo
;
2199 LHSValsDefinedFromRHS
[VNI
] = RHSValNoInfo0
;
2201 // Otherwise, use the specified value #.
2202 LHSValNoAssignments
[VN
] = RHSValID
;
2203 if (VN
== (unsigned)RHSValID
) { // Else this val# is dead.
2204 NewVNInfo
[VN
] = RHSValNoInfo
;
2205 LHSValsDefinedFromRHS
[VNI
] = RHSValNoInfo0
;
2209 NewVNInfo
[VN
] = VNI
;
2210 LHSValNoAssignments
[VN
] = VN
;
2214 assert(RHSValID
!= -1 && "Didn't find value #?");
2215 RHSValNoAssignments
[0] = RHSValID
;
2216 if (RHSVal0DefinedFromLHS
!= -1) {
2217 // This path doesn't go through ComputeUltimateVN so just set
2219 RHSValsDefinedFromLHS
[RHSValNoInfo0
] = (VNInfo
*)1;
2222 // Loop over the value numbers of the LHS, seeing if any are defined from
2224 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2227 if (VNI
->isUnused() || VNI
->getCopy() == 0) // Src not defined by a copy?
2230 // DstReg is known to be a register in the LHS interval. If the src is
2231 // from the RHS interval, we can use its value #.
2232 if (li_
->getVNInfoSourceReg(VNI
) != RHS
.reg
)
2235 // Figure out the value # from the RHS.
2236 LHSValsDefinedFromRHS
[VNI
]=
2237 RHS
.getLiveRangeContaining(li_
->getPrevSlot(VNI
->def
))->valno
;
2240 // Loop over the value numbers of the RHS, seeing if any are defined from
2242 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
2245 if (VNI
->isUnused() || VNI
->getCopy() == 0) // Src not defined by a copy?
2248 // DstReg is known to be a register in the RHS interval. If the src is
2249 // from the LHS interval, we can use its value #.
2250 if (li_
->getVNInfoSourceReg(VNI
) != LHS
.reg
)
2253 // Figure out the value # from the LHS.
2254 RHSValsDefinedFromLHS
[VNI
]=
2255 LHS
.getLiveRangeContaining(li_
->getPrevSlot(VNI
->def
))->valno
;
2258 LHSValNoAssignments
.resize(LHS
.getNumValNums(), -1);
2259 RHSValNoAssignments
.resize(RHS
.getNumValNums(), -1);
2260 NewVNInfo
.reserve(LHS
.getNumValNums() + RHS
.getNumValNums());
2262 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2265 unsigned VN
= VNI
->id
;
2266 if (LHSValNoAssignments
[VN
] >= 0 || VNI
->isUnused())
2268 ComputeUltimateVN(VNI
, NewVNInfo
,
2269 LHSValsDefinedFromRHS
, RHSValsDefinedFromLHS
,
2270 LHSValNoAssignments
, RHSValNoAssignments
);
2272 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
2275 unsigned VN
= VNI
->id
;
2276 if (RHSValNoAssignments
[VN
] >= 0 || VNI
->isUnused())
2278 // If this value number isn't a copy from the LHS, it's a new number.
2279 if (RHSValsDefinedFromLHS
.find(VNI
) == RHSValsDefinedFromLHS
.end()) {
2280 NewVNInfo
.push_back(VNI
);
2281 RHSValNoAssignments
[VN
] = NewVNInfo
.size()-1;
2285 ComputeUltimateVN(VNI
, NewVNInfo
,
2286 RHSValsDefinedFromLHS
, LHSValsDefinedFromRHS
,
2287 RHSValNoAssignments
, LHSValNoAssignments
);
2291 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
2292 // interval lists to see if these intervals are coalescable.
2293 LiveInterval::const_iterator I
= LHS
.begin();
2294 LiveInterval::const_iterator IE
= LHS
.end();
2295 LiveInterval::const_iterator J
= RHS
.begin();
2296 LiveInterval::const_iterator JE
= RHS
.end();
2298 // Skip ahead until the first place of potential sharing.
2299 if (I
->start
< J
->start
) {
2300 I
= std::upper_bound(I
, IE
, J
->start
);
2301 if (I
!= LHS
.begin()) --I
;
2302 } else if (J
->start
< I
->start
) {
2303 J
= std::upper_bound(J
, JE
, I
->start
);
2304 if (J
!= RHS
.begin()) --J
;
2308 // Determine if these two live ranges overlap.
2310 if (I
->start
< J
->start
) {
2311 Overlaps
= I
->end
> J
->start
;
2313 Overlaps
= J
->end
> I
->start
;
2316 // If so, check value # info to determine if they are really different.
2318 // If the live range overlap will map to the same value number in the
2319 // result liverange, we can still coalesce them. If not, we can't.
2320 if (LHSValNoAssignments
[I
->valno
->id
] !=
2321 RHSValNoAssignments
[J
->valno
->id
])
2325 if (I
->end
< J
->end
) {
2334 // Update kill info. Some live ranges are extended due to copy coalescing.
2335 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= LHSValsDefinedFromRHS
.begin(),
2336 E
= LHSValsDefinedFromRHS
.end(); I
!= E
; ++I
) {
2337 VNInfo
*VNI
= I
->first
;
2338 unsigned LHSValID
= LHSValNoAssignments
[VNI
->id
];
2339 NewVNInfo
[LHSValID
]->removeKill(VNI
->def
);
2340 if (VNI
->hasPHIKill())
2341 NewVNInfo
[LHSValID
]->setHasPHIKill(true);
2342 RHS
.addKills(NewVNInfo
[LHSValID
], VNI
->kills
);
2345 // Update kill info. Some live ranges are extended due to copy coalescing.
2346 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= RHSValsDefinedFromLHS
.begin(),
2347 E
= RHSValsDefinedFromLHS
.end(); I
!= E
; ++I
) {
2348 VNInfo
*VNI
= I
->first
;
2349 unsigned RHSValID
= RHSValNoAssignments
[VNI
->id
];
2350 NewVNInfo
[RHSValID
]->removeKill(VNI
->def
);
2351 if (VNI
->hasPHIKill())
2352 NewVNInfo
[RHSValID
]->setHasPHIKill(true);
2353 LHS
.addKills(NewVNInfo
[RHSValID
], VNI
->kills
);
2356 // If we get here, we know that we can coalesce the live ranges. Ask the
2357 // intervals to coalesce themselves now.
2358 if ((RHS
.ranges
.size() > LHS
.ranges
.size() &&
2359 TargetRegisterInfo::isVirtualRegister(LHS
.reg
)) ||
2360 TargetRegisterInfo::isPhysicalRegister(RHS
.reg
)) {
2361 RHS
.join(LHS
, &RHSValNoAssignments
[0], &LHSValNoAssignments
[0], NewVNInfo
,
2365 LHS
.join(RHS
, &LHSValNoAssignments
[0], &RHSValNoAssignments
[0], NewVNInfo
,
2373 // DepthMBBCompare - Comparison predicate that sort first based on the loop
2374 // depth of the basic block (the unsigned), and then on the MBB number.
2375 struct DepthMBBCompare
{
2376 typedef std::pair
<unsigned, MachineBasicBlock
*> DepthMBBPair
;
2377 bool operator()(const DepthMBBPair
&LHS
, const DepthMBBPair
&RHS
) const {
2378 if (LHS
.first
> RHS
.first
) return true; // Deeper loops first
2379 return LHS
.first
== RHS
.first
&&
2380 LHS
.second
->getNumber() < RHS
.second
->getNumber();
2385 /// getRepIntervalSize - Returns the size of the interval that represents the
2386 /// specified register.
2388 unsigned JoinPriorityQueue
<SF
>::getRepIntervalSize(unsigned Reg
) {
2389 return Rc
->getRepIntervalSize(Reg
);
2392 /// CopyRecSort::operator - Join priority queue sorting function.
2394 bool CopyRecSort::operator()(CopyRec left
, CopyRec right
) const {
2395 // Inner loops first.
2396 if (left
.LoopDepth
> right
.LoopDepth
)
2398 else if (left
.LoopDepth
== right
.LoopDepth
)
2399 if (left
.isBackEdge
&& !right
.isBackEdge
)
2404 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock
*MBB
,
2405 std::vector
<CopyRec
> &TryAgain
) {
2406 DEBUG(errs() << ((Value
*)MBB
->getBasicBlock())->getName() << ":\n");
2408 std::vector
<CopyRec
> VirtCopies
;
2409 std::vector
<CopyRec
> PhysCopies
;
2410 std::vector
<CopyRec
> ImpDefCopies
;
2411 unsigned LoopDepth
= loopInfo
->getLoopDepth(MBB
);
2412 for (MachineBasicBlock::iterator MII
= MBB
->begin(), E
= MBB
->end();
2414 MachineInstr
*Inst
= MII
++;
2416 // If this isn't a copy nor a extract_subreg, we can't join intervals.
2417 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2418 if (Inst
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
) {
2419 DstReg
= Inst
->getOperand(0).getReg();
2420 SrcReg
= Inst
->getOperand(1).getReg();
2421 } else if (Inst
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
2422 Inst
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) {
2423 DstReg
= Inst
->getOperand(0).getReg();
2424 SrcReg
= Inst
->getOperand(2).getReg();
2425 } else if (!tii_
->isMoveInstr(*Inst
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
2428 bool SrcIsPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
2429 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
2431 JoinQueue
->push(CopyRec(Inst
, LoopDepth
, isBackEdgeCopy(Inst
, DstReg
)));
2433 if (li_
->hasInterval(SrcReg
) && li_
->getInterval(SrcReg
).empty())
2434 ImpDefCopies
.push_back(CopyRec(Inst
, 0, false));
2435 else if (SrcIsPhys
|| DstIsPhys
)
2436 PhysCopies
.push_back(CopyRec(Inst
, 0, false));
2438 VirtCopies
.push_back(CopyRec(Inst
, 0, false));
2445 // Try coalescing implicit copies first, followed by copies to / from
2446 // physical registers, then finally copies from virtual registers to
2447 // virtual registers.
2448 for (unsigned i
= 0, e
= ImpDefCopies
.size(); i
!= e
; ++i
) {
2449 CopyRec
&TheCopy
= ImpDefCopies
[i
];
2451 if (!JoinCopy(TheCopy
, Again
))
2453 TryAgain
.push_back(TheCopy
);
2455 for (unsigned i
= 0, e
= PhysCopies
.size(); i
!= e
; ++i
) {
2456 CopyRec
&TheCopy
= PhysCopies
[i
];
2458 if (!JoinCopy(TheCopy
, Again
))
2460 TryAgain
.push_back(TheCopy
);
2462 for (unsigned i
= 0, e
= VirtCopies
.size(); i
!= e
; ++i
) {
2463 CopyRec
&TheCopy
= VirtCopies
[i
];
2465 if (!JoinCopy(TheCopy
, Again
))
2467 TryAgain
.push_back(TheCopy
);
2471 void SimpleRegisterCoalescing::joinIntervals() {
2472 DEBUG(errs() << "********** JOINING INTERVALS ***********\n");
2475 JoinQueue
= new JoinPriorityQueue
<CopyRecSort
>(this);
2477 std::vector
<CopyRec
> TryAgainList
;
2478 if (loopInfo
->empty()) {
2479 // If there are no loops in the function, join intervals in function order.
2480 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();
2482 CopyCoalesceInMBB(I
, TryAgainList
);
2484 // Otherwise, join intervals in inner loops before other intervals.
2485 // Unfortunately we can't just iterate over loop hierarchy here because
2486 // there may be more MBB's than BB's. Collect MBB's for sorting.
2488 // Join intervals in the function prolog first. We want to join physical
2489 // registers with virtual registers before the intervals got too long.
2490 std::vector
<std::pair
<unsigned, MachineBasicBlock
*> > MBBs
;
2491 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();I
!= E
;++I
){
2492 MachineBasicBlock
*MBB
= I
;
2493 MBBs
.push_back(std::make_pair(loopInfo
->getLoopDepth(MBB
), I
));
2496 // Sort by loop depth.
2497 std::sort(MBBs
.begin(), MBBs
.end(), DepthMBBCompare());
2499 // Finally, join intervals in loop nest order.
2500 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
)
2501 CopyCoalesceInMBB(MBBs
[i
].second
, TryAgainList
);
2504 // Joining intervals can allow other intervals to be joined. Iteratively join
2505 // until we make no progress.
2507 SmallVector
<CopyRec
, 16> TryAgain
;
2508 bool ProgressMade
= true;
2509 while (ProgressMade
) {
2510 ProgressMade
= false;
2511 while (!JoinQueue
->empty()) {
2512 CopyRec R
= JoinQueue
->pop();
2514 bool Success
= JoinCopy(R
, Again
);
2516 ProgressMade
= true;
2518 TryAgain
.push_back(R
);
2522 while (!TryAgain
.empty()) {
2523 JoinQueue
->push(TryAgain
.back());
2524 TryAgain
.pop_back();
2529 bool ProgressMade
= true;
2530 while (ProgressMade
) {
2531 ProgressMade
= false;
2533 for (unsigned i
= 0, e
= TryAgainList
.size(); i
!= e
; ++i
) {
2534 CopyRec
&TheCopy
= TryAgainList
[i
];
2537 bool Success
= JoinCopy(TheCopy
, Again
);
2538 if (Success
|| !Again
) {
2539 TheCopy
.MI
= 0; // Mark this one as done.
2540 ProgressMade
= true;
2551 /// Return true if the two specified registers belong to different register
2552 /// classes. The registers may be either phys or virt regs.
2554 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA
,
2555 unsigned RegB
) const {
2556 // Get the register classes for the first reg.
2557 if (TargetRegisterInfo::isPhysicalRegister(RegA
)) {
2558 assert(TargetRegisterInfo::isVirtualRegister(RegB
) &&
2559 "Shouldn't consider two physregs!");
2560 return !mri_
->getRegClass(RegB
)->contains(RegA
);
2563 // Compare against the regclass for the second reg.
2564 const TargetRegisterClass
*RegClassA
= mri_
->getRegClass(RegA
);
2565 if (TargetRegisterInfo::isVirtualRegister(RegB
)) {
2566 const TargetRegisterClass
*RegClassB
= mri_
->getRegClass(RegB
);
2567 return RegClassA
!= RegClassB
;
2569 return !RegClassA
->contains(RegB
);
2572 /// lastRegisterUse - Returns the last use of the specific register between
2573 /// cycles Start and End or NULL if there are no uses.
2575 SimpleRegisterCoalescing::lastRegisterUse(MachineInstrIndex Start
,
2576 MachineInstrIndex End
,
2578 MachineInstrIndex
&UseIdx
) const{
2579 UseIdx
= MachineInstrIndex();
2580 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
2581 MachineOperand
*LastUse
= NULL
;
2582 for (MachineRegisterInfo::use_iterator I
= mri_
->use_begin(Reg
),
2583 E
= mri_
->use_end(); I
!= E
; ++I
) {
2584 MachineOperand
&Use
= I
.getOperand();
2585 MachineInstr
*UseMI
= Use
.getParent();
2586 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2587 if (tii_
->isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
2589 // Ignore identity copies.
2591 MachineInstrIndex Idx
= li_
->getInstructionIndex(UseMI
);
2592 if (Idx
>= Start
&& Idx
< End
&& Idx
>= UseIdx
) {
2594 UseIdx
= li_
->getUseIndex(Idx
);
2600 MachineInstrIndex s
= Start
;
2601 MachineInstrIndex e
= li_
->getBaseIndex(li_
->getPrevSlot(End
));
2603 // Skip deleted instructions
2604 MachineInstr
*MI
= li_
->getInstructionFromIndex(e
);
2605 while (e
!= MachineInstrIndex() && li_
->getPrevIndex(e
) >= s
&& !MI
) {
2606 e
= li_
->getPrevIndex(e
);
2607 MI
= li_
->getInstructionFromIndex(e
);
2609 if (e
< s
|| MI
== NULL
)
2612 // Ignore identity copies.
2613 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2614 if (!(tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
2616 for (unsigned i
= 0, NumOps
= MI
->getNumOperands(); i
!= NumOps
; ++i
) {
2617 MachineOperand
&Use
= MI
->getOperand(i
);
2618 if (Use
.isReg() && Use
.isUse() && Use
.getReg() &&
2619 tri_
->regsOverlap(Use
.getReg(), Reg
)) {
2620 UseIdx
= li_
->getUseIndex(e
);
2625 e
= li_
->getPrevIndex(e
);
2632 void SimpleRegisterCoalescing::printRegName(unsigned reg
) const {
2633 if (TargetRegisterInfo::isPhysicalRegister(reg
))
2634 errs() << tri_
->getName(reg
);
2636 errs() << "%reg" << reg
;
2639 void SimpleRegisterCoalescing::releaseMemory() {
2640 JoinedCopies
.clear();
2641 ReMatCopies
.clear();
2645 bool SimpleRegisterCoalescing::isZeroLengthInterval(LiveInterval
*li
) const {
2646 for (LiveInterval::Ranges::const_iterator
2647 i
= li
->ranges
.begin(), e
= li
->ranges
.end(); i
!= e
; ++i
)
2648 if (li_
->getPrevIndex(i
->end
) > i
->start
)
2654 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction
&fn
) {
2656 mri_
= &fn
.getRegInfo();
2657 tm_
= &fn
.getTarget();
2658 tri_
= tm_
->getRegisterInfo();
2659 tii_
= tm_
->getInstrInfo();
2660 li_
= &getAnalysis
<LiveIntervals
>();
2661 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
2663 DEBUG(errs() << "********** SIMPLE REGISTER COALESCING **********\n"
2664 << "********** Function: "
2665 << ((Value
*)mf_
->getFunction())->getName() << '\n');
2667 allocatableRegs_
= tri_
->getAllocatableSet(fn
);
2668 for (TargetRegisterInfo::regclass_iterator I
= tri_
->regclass_begin(),
2669 E
= tri_
->regclass_end(); I
!= E
; ++I
)
2670 allocatableRCRegs_
.insert(std::make_pair(*I
,
2671 tri_
->getAllocatableSet(fn
, *I
)));
2673 // Join (coalesce) intervals if requested.
2674 if (EnableJoining
) {
2677 errs() << "********** INTERVALS POST JOINING **********\n";
2678 for (LiveIntervals::iterator I
= li_
->begin(), E
= li_
->end(); I
!= E
; ++I
){
2679 I
->second
->print(errs(), tri_
);
2685 // Perform a final pass over the instructions and compute spill weights
2686 // and remove identity moves.
2687 SmallVector
<unsigned, 4> DeadDefs
;
2688 for (MachineFunction::iterator mbbi
= mf_
->begin(), mbbe
= mf_
->end();
2689 mbbi
!= mbbe
; ++mbbi
) {
2690 MachineBasicBlock
* mbb
= mbbi
;
2691 unsigned loopDepth
= loopInfo
->getLoopDepth(mbb
);
2693 for (MachineBasicBlock::iterator mii
= mbb
->begin(), mie
= mbb
->end();
2695 MachineInstr
*MI
= mii
;
2696 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2697 if (JoinedCopies
.count(MI
)) {
2698 // Delete all coalesced copies.
2699 if (!tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
)) {
2700 assert((MI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
||
2701 MI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
2702 MI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) &&
2703 "Unrecognized copy instruction");
2704 DstReg
= MI
->getOperand(0).getReg();
2706 if (MI
->registerDefIsDead(DstReg
)) {
2707 LiveInterval
&li
= li_
->getInterval(DstReg
);
2708 if (!ShortenDeadCopySrcLiveRange(li
, MI
))
2709 ShortenDeadCopyLiveRange(li
, MI
);
2711 li_
->RemoveMachineInstrFromMaps(MI
);
2712 mii
= mbbi
->erase(mii
);
2717 // Now check if this is a remat'ed def instruction which is now dead.
2718 if (ReMatDefs
.count(MI
)) {
2720 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2721 const MachineOperand
&MO
= MI
->getOperand(i
);
2724 unsigned Reg
= MO
.getReg();
2727 if (TargetRegisterInfo::isVirtualRegister(Reg
))
2728 DeadDefs
.push_back(Reg
);
2731 if (TargetRegisterInfo::isPhysicalRegister(Reg
) ||
2732 !mri_
->use_empty(Reg
)) {
2738 while (!DeadDefs
.empty()) {
2739 unsigned DeadDef
= DeadDefs
.back();
2740 DeadDefs
.pop_back();
2741 RemoveDeadDef(li_
->getInterval(DeadDef
), MI
);
2743 li_
->RemoveMachineInstrFromMaps(mii
);
2744 mii
= mbbi
->erase(mii
);
2750 // If the move will be an identity move delete it
2751 bool isMove
= tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
);
2752 if (isMove
&& SrcReg
== DstReg
) {
2753 if (li_
->hasInterval(SrcReg
)) {
2754 LiveInterval
&RegInt
= li_
->getInterval(SrcReg
);
2755 // If def of this move instruction is dead, remove its live range
2756 // from the dstination register's live interval.
2757 if (MI
->registerDefIsDead(DstReg
)) {
2758 if (!ShortenDeadCopySrcLiveRange(RegInt
, MI
))
2759 ShortenDeadCopyLiveRange(RegInt
, MI
);
2762 li_
->RemoveMachineInstrFromMaps(MI
);
2763 mii
= mbbi
->erase(mii
);
2766 SmallSet
<unsigned, 4> UniqueUses
;
2767 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2768 const MachineOperand
&mop
= MI
->getOperand(i
);
2769 if (mop
.isReg() && mop
.getReg() &&
2770 TargetRegisterInfo::isVirtualRegister(mop
.getReg())) {
2771 unsigned reg
= mop
.getReg();
2772 // Multiple uses of reg by the same instruction. It should not
2773 // contribute to spill weight again.
2774 if (UniqueUses
.count(reg
) != 0)
2776 LiveInterval
&RegInt
= li_
->getInterval(reg
);
2778 li_
->getSpillWeight(mop
.isDef(), mop
.isUse(), loopDepth
);
2779 UniqueUses
.insert(reg
);
2787 for (LiveIntervals::iterator I
= li_
->begin(), E
= li_
->end(); I
!= E
; ++I
) {
2788 LiveInterval
&LI
= *I
->second
;
2789 if (TargetRegisterInfo::isVirtualRegister(LI
.reg
)) {
2790 // If the live interval length is essentially zero, i.e. in every live
2791 // range the use follows def immediately, it doesn't make sense to spill
2792 // it and hope it will be easier to allocate for this li.
2793 if (isZeroLengthInterval(&LI
))
2794 LI
.weight
= HUGE_VALF
;
2796 bool isLoad
= false;
2797 SmallVector
<LiveInterval
*, 4> SpillIs
;
2798 if (li_
->isReMaterializable(LI
, SpillIs
, isLoad
)) {
2799 // If all of the definitions of the interval are re-materializable,
2800 // it is a preferred candidate for spilling. If non of the defs are
2801 // loads, then it's potentially very cheap to re-materialize.
2802 // FIXME: this gets much more complicated once we support non-trivial
2803 // re-materialization.
2811 // Slightly prefer live interval that has been assigned a preferred reg.
2812 std::pair
<unsigned, unsigned> Hint
= mri_
->getRegAllocationHint(LI
.reg
);
2813 if (Hint
.first
|| Hint
.second
)
2816 // Divide the weight of the interval by its size. This encourages
2817 // spilling of intervals that are large and have few uses, and
2818 // discourages spilling of small intervals with many uses.
2819 LI
.weight
/= li_
->getApproximateInstructionCount(LI
) * InstrSlots::NUM
;
2827 /// print - Implement the dump method.
2828 void SimpleRegisterCoalescing::print(raw_ostream
&O
, const Module
* m
) const {
2832 RegisterCoalescer
* llvm::createSimpleRegisterCoalescer() {
2833 return new SimpleRegisterCoalescing();
2836 // Make sure that anything that uses RegisterCoalescer pulls in this file...
2837 DEFINING_FILE_FOR(SimpleRegisterCoalescing
)