It's not legal to fold a load from a narrower stack slot into a wider instruction...
[llvm/avr.git] / lib / CodeGen / SimpleRegisterCoalescing.cpp
blobb61735fdf4d9713f234852c05021ffdcbfe99991
1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/Value.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterCoalescer.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include <algorithm>
37 #include <cmath>
38 using namespace llvm;
40 STATISTIC(numJoins , "Number of interval joins performed");
41 STATISTIC(numCrossRCs , "Number of cross class joins performed");
42 STATISTIC(numCommutes , "Number of instruction commuting performed");
43 STATISTIC(numExtends , "Number of copies extended");
44 STATISTIC(NumReMats , "Number of instructions re-materialized");
45 STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
46 STATISTIC(numAborts , "Number of times interval joining aborted");
47 STATISTIC(numDeadValNo, "Number of valno def marked dead");
49 char SimpleRegisterCoalescing::ID = 0;
50 static cl::opt<bool>
51 EnableJoining("join-liveintervals",
52 cl::desc("Coalesce copies (default=true)"),
53 cl::init(true));
55 static cl::opt<bool>
56 NewHeuristic("new-coalescer-heuristic",
57 cl::desc("Use new coalescer heuristic"),
58 cl::init(false), cl::Hidden);
60 static cl::opt<bool>
61 DisableCrossClassJoin("disable-cross-class-join",
62 cl::desc("Avoid coalescing cross register class copies"),
63 cl::init(false), cl::Hidden);
65 static cl::opt<bool>
66 PhysJoinTweak("tweak-phys-join-heuristics",
67 cl::desc("Tweak heuristics for joining phys reg with vr"),
68 cl::init(false), cl::Hidden);
70 static RegisterPass<SimpleRegisterCoalescing>
71 X("simple-register-coalescing", "Simple Register Coalescing");
73 // Declare that we implement the RegisterCoalescer interface
74 static RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
76 const PassInfo *const llvm::SimpleRegisterCoalescingID = &X;
78 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
79 AU.setPreservesCFG();
80 AU.addRequired<LiveIntervals>();
81 AU.addPreserved<LiveIntervals>();
82 AU.addRequired<MachineLoopInfo>();
83 AU.addPreserved<MachineLoopInfo>();
84 AU.addPreservedID(MachineDominatorsID);
85 if (StrongPHIElim)
86 AU.addPreservedID(StrongPHIEliminationID);
87 else
88 AU.addPreservedID(PHIEliminationID);
89 AU.addPreservedID(TwoAddressInstructionPassID);
90 MachineFunctionPass::getAnalysisUsage(AU);
93 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
94 /// being the source and IntB being the dest, thus this defines a value number
95 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
96 /// see if we can merge these two pieces of B into a single value number,
97 /// eliminating a copy. For example:
98 ///
99 /// A3 = B0
100 /// ...
101 /// B1 = A3 <- this copy
103 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
104 /// value number to be replaced with B0 (which simplifies the B liveinterval).
106 /// This returns true if an interval was modified.
108 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
109 LiveInterval &IntB,
110 MachineInstr *CopyMI) {
111 MachineInstrIndex CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
113 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
114 // the example above.
115 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
116 assert(BLR != IntB.end() && "Live range not found!");
117 VNInfo *BValNo = BLR->valno;
119 // Get the location that B is defined at. Two options: either this value has
120 // an unknown definition point or it is defined at CopyIdx. If unknown, we
121 // can't process it.
122 if (!BValNo->getCopy()) return false;
123 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
125 // AValNo is the value number in A that defines the copy, A3 in the example.
126 MachineInstrIndex CopyUseIdx = li_->getUseIndex(CopyIdx);
127 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
128 assert(ALR != IntA.end() && "Live range not found!");
129 VNInfo *AValNo = ALR->valno;
130 // If it's re-defined by an early clobber somewhere in the live range, then
131 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
132 // See PR3149:
133 // 172 %ECX<def> = MOV32rr %reg1039<kill>
134 // 180 INLINEASM <es:subl $5,$1
135 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
136 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
137 // 188 %EAX<def> = MOV32rr %EAX<kill>
138 // 196 %ECX<def> = MOV32rr %ECX<kill>
139 // 204 %ECX<def> = MOV32rr %ECX<kill>
140 // 212 %EAX<def> = MOV32rr %EAX<kill>
141 // 220 %EAX<def> = MOV32rr %EAX
142 // 228 %reg1039<def> = MOV32rr %ECX<kill>
143 // The early clobber operand ties ECX input to the ECX def.
145 // The live interval of ECX is represented as this:
146 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
147 // The coalescer has no idea there was a def in the middle of [174,230].
148 if (AValNo->hasRedefByEC())
149 return false;
151 // If AValNo is defined as a copy from IntB, we can potentially process this.
152 // Get the instruction that defines this value number.
153 unsigned SrcReg = li_->getVNInfoSourceReg(AValNo);
154 if (!SrcReg) return false; // Not defined by a copy.
156 // If the value number is not defined by a copy instruction, ignore it.
158 // If the source register comes from an interval other than IntB, we can't
159 // handle this.
160 if (SrcReg != IntB.reg) return false;
162 // Get the LiveRange in IntB that this value number starts with.
163 LiveInterval::iterator ValLR =
164 IntB.FindLiveRangeContaining(li_->getPrevSlot(AValNo->def));
165 assert(ValLR != IntB.end() && "Live range not found!");
167 // Make sure that the end of the live range is inside the same block as
168 // CopyMI.
169 MachineInstr *ValLREndInst =
170 li_->getInstructionFromIndex(li_->getPrevSlot(ValLR->end));
171 if (!ValLREndInst ||
172 ValLREndInst->getParent() != CopyMI->getParent()) return false;
174 // Okay, we now know that ValLR ends in the same block that the CopyMI
175 // live-range starts. If there are no intervening live ranges between them in
176 // IntB, we can merge them.
177 if (ValLR+1 != BLR) return false;
179 // If a live interval is a physical register, conservatively check if any
180 // of its sub-registers is overlapping the live interval of the virtual
181 // register. If so, do not coalesce.
182 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
183 *tri_->getSubRegisters(IntB.reg)) {
184 for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
185 if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
186 DEBUG({
187 errs() << "Interfere with sub-register ";
188 li_->getInterval(*SR).print(errs(), tri_);
190 return false;
194 DEBUG({
195 errs() << "\nExtending: ";
196 IntB.print(errs(), tri_);
199 MachineInstrIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
200 // We are about to delete CopyMI, so need to remove it as the 'instruction
201 // that defines this value #'. Update the the valnum with the new defining
202 // instruction #.
203 BValNo->def = FillerStart;
204 BValNo->setCopy(0);
206 // Okay, we can merge them. We need to insert a new liverange:
207 // [ValLR.end, BLR.begin) of either value number, then we merge the
208 // two value numbers.
209 IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
211 // If the IntB live range is assigned to a physical register, and if that
212 // physreg has sub-registers, update their live intervals as well.
213 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
214 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
215 LiveInterval &SRLI = li_->getInterval(*SR);
216 SRLI.addRange(LiveRange(FillerStart, FillerEnd,
217 SRLI.getNextValue(FillerStart, 0, true,
218 li_->getVNInfoAllocator())));
222 // Okay, merge "B1" into the same value number as "B0".
223 if (BValNo != ValLR->valno) {
224 IntB.addKills(ValLR->valno, BValNo->kills);
225 IntB.MergeValueNumberInto(BValNo, ValLR->valno);
227 DEBUG({
228 errs() << " result = ";
229 IntB.print(errs(), tri_);
230 errs() << "\n";
233 // If the source instruction was killing the source register before the
234 // merge, unset the isKill marker given the live range has been extended.
235 int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
236 if (UIdx != -1) {
237 ValLREndInst->getOperand(UIdx).setIsKill(false);
238 ValLR->valno->removeKill(FillerStart);
241 // If the copy instruction was killing the destination register before the
242 // merge, find the last use and trim the live range. That will also add the
243 // isKill marker.
244 if (CopyMI->killsRegister(IntA.reg))
245 TrimLiveIntervalToLastUse(CopyUseIdx, CopyMI->getParent(), IntA, ALR);
247 ++numExtends;
248 return true;
251 /// HasOtherReachingDefs - Return true if there are definitions of IntB
252 /// other than BValNo val# that can reach uses of AValno val# of IntA.
253 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
254 LiveInterval &IntB,
255 VNInfo *AValNo,
256 VNInfo *BValNo) {
257 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
258 AI != AE; ++AI) {
259 if (AI->valno != AValNo) continue;
260 LiveInterval::Ranges::iterator BI =
261 std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
262 if (BI != IntB.ranges.begin())
263 --BI;
264 for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
265 if (BI->valno == BValNo)
266 continue;
267 if (BI->start <= AI->start && BI->end > AI->start)
268 return true;
269 if (BI->start > AI->start && BI->start < AI->end)
270 return true;
273 return false;
276 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
277 /// being the source and IntB being the dest, thus this defines a value number
278 /// in IntB. If the source value number (in IntA) is defined by a commutable
279 /// instruction and its other operand is coalesced to the copy dest register,
280 /// see if we can transform the copy into a noop by commuting the definition. For
281 /// example,
283 /// A3 = op A2 B0<kill>
284 /// ...
285 /// B1 = A3 <- this copy
286 /// ...
287 /// = op A3 <- more uses
289 /// ==>
291 /// B2 = op B0 A2<kill>
292 /// ...
293 /// B1 = B2 <- now an identify copy
294 /// ...
295 /// = op B2 <- more uses
297 /// This returns true if an interval was modified.
299 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
300 LiveInterval &IntB,
301 MachineInstr *CopyMI) {
302 MachineInstrIndex CopyIdx =
303 li_->getDefIndex(li_->getInstructionIndex(CopyMI));
305 // FIXME: For now, only eliminate the copy by commuting its def when the
306 // source register is a virtual register. We want to guard against cases
307 // where the copy is a back edge copy and commuting the def lengthen the
308 // live interval of the source register to the entire loop.
309 if (TargetRegisterInfo::isPhysicalRegister(IntA.reg))
310 return false;
312 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
313 // the example above.
314 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
315 assert(BLR != IntB.end() && "Live range not found!");
316 VNInfo *BValNo = BLR->valno;
318 // Get the location that B is defined at. Two options: either this value has
319 // an unknown definition point or it is defined at CopyIdx. If unknown, we
320 // can't process it.
321 if (!BValNo->getCopy()) return false;
322 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
324 // AValNo is the value number in A that defines the copy, A3 in the example.
325 LiveInterval::iterator ALR =
326 IntA.FindLiveRangeContaining(li_->getPrevSlot(CopyIdx));
328 assert(ALR != IntA.end() && "Live range not found!");
329 VNInfo *AValNo = ALR->valno;
330 // If other defs can reach uses of this def, then it's not safe to perform
331 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
332 // tested?
333 if (AValNo->isPHIDef() || !AValNo->isDefAccurate() ||
334 AValNo->isUnused() || AValNo->hasPHIKill())
335 return false;
336 MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
337 const TargetInstrDesc &TID = DefMI->getDesc();
338 if (!TID.isCommutable())
339 return false;
340 // If DefMI is a two-address instruction then commuting it will change the
341 // destination register.
342 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
343 assert(DefIdx != -1);
344 unsigned UseOpIdx;
345 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
346 return false;
347 unsigned Op1, Op2, NewDstIdx;
348 if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
349 return false;
350 if (Op1 == UseOpIdx)
351 NewDstIdx = Op2;
352 else if (Op2 == UseOpIdx)
353 NewDstIdx = Op1;
354 else
355 return false;
357 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
358 unsigned NewReg = NewDstMO.getReg();
359 if (NewReg != IntB.reg || !NewDstMO.isKill())
360 return false;
362 // Make sure there are no other definitions of IntB that would reach the
363 // uses which the new definition can reach.
364 if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
365 return false;
367 // If some of the uses of IntA.reg is already coalesced away, return false.
368 // It's not possible to determine whether it's safe to perform the coalescing.
369 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
370 UE = mri_->use_end(); UI != UE; ++UI) {
371 MachineInstr *UseMI = &*UI;
372 MachineInstrIndex UseIdx = li_->getInstructionIndex(UseMI);
373 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
374 if (ULR == IntA.end())
375 continue;
376 if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
377 return false;
380 // At this point we have decided that it is legal to do this
381 // transformation. Start by commuting the instruction.
382 MachineBasicBlock *MBB = DefMI->getParent();
383 MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
384 if (!NewMI)
385 return false;
386 if (NewMI != DefMI) {
387 li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
388 MBB->insert(DefMI, NewMI);
389 MBB->erase(DefMI);
391 unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
392 NewMI->getOperand(OpIdx).setIsKill();
394 bool BHasPHIKill = BValNo->hasPHIKill();
395 SmallVector<VNInfo*, 4> BDeadValNos;
396 VNInfo::KillSet BKills;
397 std::map<MachineInstrIndex, MachineInstrIndex> BExtend;
399 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
400 // A = or A, B
401 // ...
402 // B = A
403 // ...
404 // C = A<kill>
405 // ...
406 // = B
408 // then do not add kills of A to the newly created B interval.
409 bool Extended = BLR->end > ALR->end && ALR->end != ALR->start;
410 if (Extended)
411 BExtend[ALR->end] = BLR->end;
413 // Update uses of IntA of the specific Val# with IntB.
414 bool BHasSubRegs = false;
415 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
416 BHasSubRegs = *tri_->getSubRegisters(IntB.reg);
417 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
418 UE = mri_->use_end(); UI != UE;) {
419 MachineOperand &UseMO = UI.getOperand();
420 MachineInstr *UseMI = &*UI;
421 ++UI;
422 if (JoinedCopies.count(UseMI))
423 continue;
424 MachineInstrIndex UseIdx = li_->getInstructionIndex(UseMI);
425 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
426 if (ULR == IntA.end() || ULR->valno != AValNo)
427 continue;
428 UseMO.setReg(NewReg);
429 if (UseMI == CopyMI)
430 continue;
431 if (UseMO.isKill()) {
432 if (Extended)
433 UseMO.setIsKill(false);
434 else
435 BKills.push_back(li_->getNextSlot(li_->getUseIndex(UseIdx)));
437 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
438 if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
439 continue;
440 if (DstReg == IntB.reg) {
441 // This copy will become a noop. If it's defining a new val#,
442 // remove that val# as well. However this live range is being
443 // extended to the end of the existing live range defined by the copy.
444 MachineInstrIndex DefIdx = li_->getDefIndex(UseIdx);
445 const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
446 BHasPHIKill |= DLR->valno->hasPHIKill();
447 assert(DLR->valno->def == DefIdx);
448 BDeadValNos.push_back(DLR->valno);
449 BExtend[DLR->start] = DLR->end;
450 JoinedCopies.insert(UseMI);
451 // If this is a kill but it's going to be removed, the last use
452 // of the same val# is the new kill.
453 if (UseMO.isKill())
454 BKills.pop_back();
458 // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
459 // simply extend BLR if CopyMI doesn't end the range.
460 DEBUG({
461 errs() << "\nExtending: ";
462 IntB.print(errs(), tri_);
465 // Remove val#'s defined by copies that will be coalesced away.
466 for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) {
467 VNInfo *DeadVNI = BDeadValNos[i];
468 if (BHasSubRegs) {
469 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
470 LiveInterval &SRLI = li_->getInterval(*SR);
471 const LiveRange *SRLR = SRLI.getLiveRangeContaining(DeadVNI->def);
472 SRLI.removeValNo(SRLR->valno);
475 IntB.removeValNo(BDeadValNos[i]);
478 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
479 // is updated. Kills are also updated.
480 VNInfo *ValNo = BValNo;
481 ValNo->def = AValNo->def;
482 ValNo->setCopy(0);
483 for (unsigned j = 0, ee = ValNo->kills.size(); j != ee; ++j) {
484 if (ValNo->kills[j] != BLR->end)
485 BKills.push_back(ValNo->kills[j]);
487 ValNo->kills.clear();
488 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
489 AI != AE; ++AI) {
490 if (AI->valno != AValNo) continue;
491 MachineInstrIndex End = AI->end;
492 std::map<MachineInstrIndex, MachineInstrIndex>::iterator
493 EI = BExtend.find(End);
494 if (EI != BExtend.end())
495 End = EI->second;
496 IntB.addRange(LiveRange(AI->start, End, ValNo));
498 // If the IntB live range is assigned to a physical register, and if that
499 // physreg has sub-registers, update their live intervals as well.
500 if (BHasSubRegs) {
501 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
502 LiveInterval &SRLI = li_->getInterval(*SR);
503 SRLI.MergeInClobberRange(AI->start, End, li_->getVNInfoAllocator());
507 IntB.addKills(ValNo, BKills);
508 ValNo->setHasPHIKill(BHasPHIKill);
510 DEBUG({
511 errs() << " result = ";
512 IntB.print(errs(), tri_);
513 errs() << '\n';
514 errs() << "\nShortening: ";
515 IntA.print(errs(), tri_);
518 IntA.removeValNo(AValNo);
520 DEBUG({
521 errs() << " result = ";
522 IntA.print(errs(), tri_);
523 errs() << '\n';
526 ++numCommutes;
527 return true;
530 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
531 /// fallthoughs to SuccMBB.
532 static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
533 MachineBasicBlock *SuccMBB,
534 const TargetInstrInfo *tii_) {
535 if (MBB == SuccMBB)
536 return true;
537 MachineBasicBlock *TBB = 0, *FBB = 0;
538 SmallVector<MachineOperand, 4> Cond;
539 return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
540 MBB->isSuccessor(SuccMBB);
543 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
544 /// from a physical register live interval as well as from the live intervals
545 /// of its sub-registers.
546 static void removeRange(LiveInterval &li,
547 MachineInstrIndex Start, MachineInstrIndex End,
548 LiveIntervals *li_, const TargetRegisterInfo *tri_) {
549 li.removeRange(Start, End, true);
550 if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
551 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
552 if (!li_->hasInterval(*SR))
553 continue;
554 LiveInterval &sli = li_->getInterval(*SR);
555 MachineInstrIndex RemoveEnd = Start;
556 while (RemoveEnd != End) {
557 LiveInterval::iterator LR = sli.FindLiveRangeContaining(Start);
558 if (LR == sli.end())
559 break;
560 RemoveEnd = (LR->end < End) ? LR->end : End;
561 sli.removeRange(Start, RemoveEnd, true);
562 Start = RemoveEnd;
568 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
569 /// as the copy instruction, trim the live interval to the last use and return
570 /// true.
571 bool
572 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(MachineInstrIndex CopyIdx,
573 MachineBasicBlock *CopyMBB,
574 LiveInterval &li,
575 const LiveRange *LR) {
576 MachineInstrIndex MBBStart = li_->getMBBStartIdx(CopyMBB);
577 MachineInstrIndex LastUseIdx;
578 MachineOperand *LastUse =
579 lastRegisterUse(LR->start, li_->getPrevSlot(CopyIdx), li.reg, LastUseIdx);
580 if (LastUse) {
581 MachineInstr *LastUseMI = LastUse->getParent();
582 if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
583 // r1024 = op
584 // ...
585 // BB1:
586 // = r1024
588 // BB2:
589 // r1025<dead> = r1024<kill>
590 if (MBBStart < LR->end)
591 removeRange(li, MBBStart, LR->end, li_, tri_);
592 return true;
595 // There are uses before the copy, just shorten the live range to the end
596 // of last use.
597 LastUse->setIsKill();
598 removeRange(li, li_->getDefIndex(LastUseIdx), LR->end, li_, tri_);
599 LR->valno->addKill(li_->getNextSlot(LastUseIdx));
600 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
601 if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
602 DstReg == li.reg) {
603 // Last use is itself an identity code.
604 int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg, false, tri_);
605 LastUseMI->getOperand(DeadIdx).setIsDead();
607 return true;
610 // Is it livein?
611 if (LR->start <= MBBStart && LR->end > MBBStart) {
612 if (LR->start == MachineInstrIndex()) {
613 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
614 // Live-in to the function but dead. Remove it from entry live-in set.
615 mf_->begin()->removeLiveIn(li.reg);
617 // FIXME: Shorten intervals in BBs that reaches this BB.
620 return false;
623 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
624 /// computation, replace the copy by rematerialize the definition.
625 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
626 unsigned DstReg,
627 unsigned DstSubIdx,
628 MachineInstr *CopyMI) {
629 MachineInstrIndex CopyIdx = li_->getUseIndex(li_->getInstructionIndex(CopyMI));
630 LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
631 assert(SrcLR != SrcInt.end() && "Live range not found!");
632 VNInfo *ValNo = SrcLR->valno;
633 // If other defs can reach uses of this def, then it's not safe to perform
634 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
635 // tested?
636 if (ValNo->isPHIDef() || !ValNo->isDefAccurate() ||
637 ValNo->isUnused() || ValNo->hasPHIKill())
638 return false;
639 MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
640 const TargetInstrDesc &TID = DefMI->getDesc();
641 if (!TID.isAsCheapAsAMove())
642 return false;
643 if (!DefMI->getDesc().isRematerializable() ||
644 !tii_->isTriviallyReMaterializable(DefMI))
645 return false;
646 bool SawStore = false;
647 if (!DefMI->isSafeToMove(tii_, SawStore))
648 return false;
649 if (TID.getNumDefs() != 1)
650 return false;
651 if (DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF) {
652 // Make sure the copy destination register class fits the instruction
653 // definition register class. The mismatch can happen as a result of earlier
654 // extract_subreg, insert_subreg, subreg_to_reg coalescing.
655 const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_);
656 if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
657 if (mri_->getRegClass(DstReg) != RC)
658 return false;
659 } else if (!RC->contains(DstReg))
660 return false;
663 // If destination register has a sub-register index on it, make sure it mtches
664 // the instruction register class.
665 if (DstSubIdx) {
666 const TargetInstrDesc &TID = DefMI->getDesc();
667 if (TID.getNumDefs() != 1)
668 return false;
669 const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
670 const TargetRegisterClass *DstSubRC =
671 DstRC->getSubRegisterRegClass(DstSubIdx);
672 const TargetRegisterClass *DefRC = TID.OpInfo[0].getRegClass(tri_);
673 if (DefRC == DstRC)
674 DstSubIdx = 0;
675 else if (DefRC != DstSubRC)
676 return false;
679 MachineInstrIndex DefIdx = li_->getDefIndex(CopyIdx);
680 const LiveRange *DLR= li_->getInterval(DstReg).getLiveRangeContaining(DefIdx);
681 DLR->valno->setCopy(0);
682 // Don't forget to update sub-register intervals.
683 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
684 for (const unsigned* SR = tri_->getSubRegisters(DstReg); *SR; ++SR) {
685 if (!li_->hasInterval(*SR))
686 continue;
687 DLR = li_->getInterval(*SR).getLiveRangeContaining(DefIdx);
688 if (DLR && DLR->valno->getCopy() == CopyMI)
689 DLR->valno->setCopy(0);
693 // If copy kills the source register, find the last use and propagate
694 // kill.
695 bool checkForDeadDef = false;
696 MachineBasicBlock *MBB = CopyMI->getParent();
697 if (CopyMI->killsRegister(SrcInt.reg))
698 if (!TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR)) {
699 checkForDeadDef = true;
702 MachineBasicBlock::iterator MII = next(MachineBasicBlock::iterator(CopyMI));
703 tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI);
704 MachineInstr *NewMI = prior(MII);
706 if (checkForDeadDef) {
707 // PR4090 fix: Trim interval failed because there was no use of the
708 // source interval in this MBB. If the def is in this MBB too then we
709 // should mark it dead:
710 if (DefMI->getParent() == MBB) {
711 DefMI->addRegisterDead(SrcInt.reg, tri_);
712 SrcLR->end = li_->getNextSlot(SrcLR->start);
716 // CopyMI may have implicit operands, transfer them over to the newly
717 // rematerialized instruction. And update implicit def interval valnos.
718 for (unsigned i = CopyMI->getDesc().getNumOperands(),
719 e = CopyMI->getNumOperands(); i != e; ++i) {
720 MachineOperand &MO = CopyMI->getOperand(i);
721 if (MO.isReg() && MO.isImplicit())
722 NewMI->addOperand(MO);
723 if (MO.isDef() && li_->hasInterval(MO.getReg())) {
724 unsigned Reg = MO.getReg();
725 DLR = li_->getInterval(Reg).getLiveRangeContaining(DefIdx);
726 if (DLR && DLR->valno->getCopy() == CopyMI)
727 DLR->valno->setCopy(0);
731 li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
732 CopyMI->eraseFromParent();
733 ReMatCopies.insert(CopyMI);
734 ReMatDefs.insert(DefMI);
735 ++NumReMats;
736 return true;
739 /// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
741 bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr *CopyMI,
742 unsigned DstReg) const {
743 MachineBasicBlock *MBB = CopyMI->getParent();
744 const MachineLoop *L = loopInfo->getLoopFor(MBB);
745 if (!L)
746 return false;
747 if (MBB != L->getLoopLatch())
748 return false;
750 LiveInterval &LI = li_->getInterval(DstReg);
751 MachineInstrIndex DefIdx = li_->getInstructionIndex(CopyMI);
752 LiveInterval::const_iterator DstLR =
753 LI.FindLiveRangeContaining(li_->getDefIndex(DefIdx));
754 if (DstLR == LI.end())
755 return false;
756 if (DstLR->valno->kills.size() == 1 && DstLR->valno->kills[0].isPHIIndex())
757 return true;
758 return false;
761 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
762 /// update the subregister number if it is not zero. If DstReg is a
763 /// physical register and the existing subregister number of the def / use
764 /// being updated is not zero, make sure to set it to the correct physical
765 /// subregister.
766 void
767 SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg,
768 unsigned SubIdx) {
769 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
770 if (DstIsPhys && SubIdx) {
771 // Figure out the real physical register we are updating with.
772 DstReg = tri_->getSubReg(DstReg, SubIdx);
773 SubIdx = 0;
776 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
777 E = mri_->reg_end(); I != E; ) {
778 MachineOperand &O = I.getOperand();
779 MachineInstr *UseMI = &*I;
780 ++I;
781 unsigned OldSubIdx = O.getSubReg();
782 if (DstIsPhys) {
783 unsigned UseDstReg = DstReg;
784 if (OldSubIdx)
785 UseDstReg = tri_->getSubReg(DstReg, OldSubIdx);
787 unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
788 if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
789 CopySrcSubIdx, CopyDstSubIdx) &&
790 CopySrcReg != CopyDstReg &&
791 CopySrcReg == SrcReg && CopyDstReg != UseDstReg) {
792 // If the use is a copy and it won't be coalesced away, and its source
793 // is defined by a trivial computation, try to rematerialize it instead.
794 if (ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg,
795 CopyDstSubIdx, UseMI))
796 continue;
799 O.setReg(UseDstReg);
800 O.setSubReg(0);
801 continue;
804 // Sub-register indexes goes from small to large. e.g.
805 // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
806 // EAX: 1 -> AL, 2 -> AX
807 // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
808 // sub-register 2 is also AX.
809 if (SubIdx && OldSubIdx && SubIdx != OldSubIdx)
810 assert(OldSubIdx < SubIdx && "Conflicting sub-register index!");
811 else if (SubIdx)
812 O.setSubReg(SubIdx);
813 // Remove would-be duplicated kill marker.
814 if (O.isKill() && UseMI->killsRegister(DstReg))
815 O.setIsKill(false);
816 O.setReg(DstReg);
818 // After updating the operand, check if the machine instruction has
819 // become a copy. If so, update its val# information.
820 if (JoinedCopies.count(UseMI))
821 continue;
823 const TargetInstrDesc &TID = UseMI->getDesc();
824 unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
825 if (TID.getNumDefs() == 1 && TID.getNumOperands() > 2 &&
826 tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
827 CopySrcSubIdx, CopyDstSubIdx) &&
828 CopySrcReg != CopyDstReg &&
829 (TargetRegisterInfo::isVirtualRegister(CopyDstReg) ||
830 allocatableRegs_[CopyDstReg])) {
831 LiveInterval &LI = li_->getInterval(CopyDstReg);
832 MachineInstrIndex DefIdx =
833 li_->getDefIndex(li_->getInstructionIndex(UseMI));
834 if (const LiveRange *DLR = LI.getLiveRangeContaining(DefIdx)) {
835 if (DLR->valno->def == DefIdx)
836 DLR->valno->setCopy(UseMI);
842 /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
843 /// due to live range lengthening as the result of coalescing.
844 void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg,
845 LiveInterval &LI) {
846 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(Reg),
847 UE = mri_->use_end(); UI != UE; ++UI) {
848 MachineOperand &UseMO = UI.getOperand();
849 if (!UseMO.isKill())
850 continue;
851 MachineInstr *UseMI = UseMO.getParent();
852 MachineInstrIndex UseIdx =
853 li_->getUseIndex(li_->getInstructionIndex(UseMI));
854 const LiveRange *LR = LI.getLiveRangeContaining(UseIdx);
855 if (!LR || !LR->valno->isKill(li_->getNextSlot(UseIdx))) {
856 if (LR->valno->def != li_->getNextSlot(UseIdx)) {
857 // Interesting problem. After coalescing reg1027's def and kill are both
858 // at the same point: %reg1027,0.000000e+00 = [56,814:0) 0@70-(814)
860 // bb5:
861 // 60 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
862 // 68 %reg1027<def> = t2LDRi12 %reg1027<kill>, 8, 14, %reg0
863 // 76 t2CMPzri %reg1038<kill,undef>, 0, 14, %reg0, %CPSR<imp-def>
864 // 84 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
865 // 96 t2Bcc mbb<bb5,0x2030910>, 1, %CPSR<kill>
867 // Do not remove the kill marker on t2LDRi12.
868 UseMO.setIsKill(false);
874 /// removeIntervalIfEmpty - Check if the live interval of a physical register
875 /// is empty, if so remove it and also remove the empty intervals of its
876 /// sub-registers. Return true if live interval is removed.
877 static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
878 const TargetRegisterInfo *tri_) {
879 if (li.empty()) {
880 if (TargetRegisterInfo::isPhysicalRegister(li.reg))
881 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
882 if (!li_->hasInterval(*SR))
883 continue;
884 LiveInterval &sli = li_->getInterval(*SR);
885 if (sli.empty())
886 li_->removeInterval(*SR);
888 li_->removeInterval(li.reg);
889 return true;
891 return false;
894 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
895 /// Return true if live interval is removed.
896 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
897 MachineInstr *CopyMI) {
898 MachineInstrIndex CopyIdx = li_->getInstructionIndex(CopyMI);
899 LiveInterval::iterator MLR =
900 li.FindLiveRangeContaining(li_->getDefIndex(CopyIdx));
901 if (MLR == li.end())
902 return false; // Already removed by ShortenDeadCopySrcLiveRange.
903 MachineInstrIndex RemoveStart = MLR->start;
904 MachineInstrIndex RemoveEnd = MLR->end;
905 MachineInstrIndex DefIdx = li_->getDefIndex(CopyIdx);
906 // Remove the liverange that's defined by this.
907 if (RemoveStart == DefIdx && RemoveEnd == li_->getNextSlot(DefIdx)) {
908 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
909 return removeIntervalIfEmpty(li, li_, tri_);
911 return false;
914 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
915 /// the val# it defines. If the live interval becomes empty, remove it as well.
916 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
917 MachineInstr *DefMI) {
918 MachineInstrIndex DefIdx = li_->getDefIndex(li_->getInstructionIndex(DefMI));
919 LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
920 if (DefIdx != MLR->valno->def)
921 return false;
922 li.removeValNo(MLR->valno);
923 return removeIntervalIfEmpty(li, li_, tri_);
926 /// PropagateDeadness - Propagate the dead marker to the instruction which
927 /// defines the val#.
928 static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
929 MachineInstrIndex &LRStart, LiveIntervals *li_,
930 const TargetRegisterInfo* tri_) {
931 MachineInstr *DefMI =
932 li_->getInstructionFromIndex(li_->getDefIndex(LRStart));
933 if (DefMI && DefMI != CopyMI) {
934 int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg, false);
935 if (DeadIdx != -1)
936 DefMI->getOperand(DeadIdx).setIsDead();
937 else
938 DefMI->addOperand(MachineOperand::CreateReg(li.reg,
939 true, true, false, true));
940 LRStart = li_->getNextSlot(LRStart);
944 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
945 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
946 /// ends the live range there. If there isn't another use, then this live range
947 /// is dead. Return true if live interval is removed.
948 bool
949 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
950 MachineInstr *CopyMI) {
951 MachineInstrIndex CopyIdx = li_->getInstructionIndex(CopyMI);
952 if (CopyIdx == MachineInstrIndex()) {
953 // FIXME: special case: function live in. It can be a general case if the
954 // first instruction index starts at > 0 value.
955 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
956 // Live-in to the function but dead. Remove it from entry live-in set.
957 if (mf_->begin()->isLiveIn(li.reg))
958 mf_->begin()->removeLiveIn(li.reg);
959 const LiveRange *LR = li.getLiveRangeContaining(CopyIdx);
960 removeRange(li, LR->start, LR->end, li_, tri_);
961 return removeIntervalIfEmpty(li, li_, tri_);
964 LiveInterval::iterator LR =
965 li.FindLiveRangeContaining(li_->getPrevSlot(CopyIdx));
966 if (LR == li.end())
967 // Livein but defined by a phi.
968 return false;
970 MachineInstrIndex RemoveStart = LR->start;
971 MachineInstrIndex RemoveEnd = li_->getNextSlot(li_->getDefIndex(CopyIdx));
972 if (LR->end > RemoveEnd)
973 // More uses past this copy? Nothing to do.
974 return false;
976 // If there is a last use in the same bb, we can't remove the live range.
977 // Shorten the live interval and return.
978 MachineBasicBlock *CopyMBB = CopyMI->getParent();
979 if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
980 return false;
982 // There are other kills of the val#. Nothing to do.
983 if (!li.isOnlyLROfValNo(LR))
984 return false;
986 MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
987 if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
988 // If the live range starts in another mbb and the copy mbb is not a fall
989 // through mbb, then we can only cut the range from the beginning of the
990 // copy mbb.
991 RemoveStart = li_->getNextSlot(li_->getMBBStartIdx(CopyMBB));
993 if (LR->valno->def == RemoveStart) {
994 // If the def MI defines the val# and this copy is the only kill of the
995 // val#, then propagate the dead marker.
996 PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
997 ++numDeadValNo;
999 if (LR->valno->isKill(RemoveEnd))
1000 LR->valno->removeKill(RemoveEnd);
1003 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
1004 return removeIntervalIfEmpty(li, li_, tri_);
1007 /// CanCoalesceWithImpDef - Returns true if the specified copy instruction
1008 /// from an implicit def to another register can be coalesced away.
1009 bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr *CopyMI,
1010 LiveInterval &li,
1011 LiveInterval &ImpLi) const{
1012 if (!CopyMI->killsRegister(ImpLi.reg))
1013 return false;
1014 // Make sure this is the only use.
1015 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(ImpLi.reg),
1016 UE = mri_->use_end(); UI != UE;) {
1017 MachineInstr *UseMI = &*UI;
1018 ++UI;
1019 if (CopyMI == UseMI || JoinedCopies.count(UseMI))
1020 continue;
1021 return false;
1023 return true;
1027 /// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
1028 /// a virtual destination register with physical source register.
1029 bool
1030 SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI,
1031 MachineBasicBlock *CopyMBB,
1032 LiveInterval &DstInt,
1033 LiveInterval &SrcInt) {
1034 // If the virtual register live interval is long but it has low use desity,
1035 // do not join them, instead mark the physical register as its allocation
1036 // preference.
1037 const TargetRegisterClass *RC = mri_->getRegClass(DstInt.reg);
1038 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1039 unsigned Length = li_->getApproximateInstructionCount(DstInt);
1040 if (Length > Threshold &&
1041 (((float)std::distance(mri_->use_begin(DstInt.reg),
1042 mri_->use_end()) / Length) < (1.0 / Threshold)))
1043 return false;
1045 // If the virtual register live interval extends into a loop, turn down
1046 // aggressiveness.
1047 MachineInstrIndex CopyIdx =
1048 li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1049 const MachineLoop *L = loopInfo->getLoopFor(CopyMBB);
1050 if (!L) {
1051 // Let's see if the virtual register live interval extends into the loop.
1052 LiveInterval::iterator DLR = DstInt.FindLiveRangeContaining(CopyIdx);
1053 assert(DLR != DstInt.end() && "Live range not found!");
1054 DLR = DstInt.FindLiveRangeContaining(li_->getNextSlot(DLR->end));
1055 if (DLR != DstInt.end()) {
1056 CopyMBB = li_->getMBBFromIndex(DLR->start);
1057 L = loopInfo->getLoopFor(CopyMBB);
1061 if (!L || Length <= Threshold)
1062 return true;
1064 MachineInstrIndex UseIdx = li_->getUseIndex(CopyIdx);
1065 LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
1066 MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
1067 if (loopInfo->getLoopFor(SMBB) != L) {
1068 if (!loopInfo->isLoopHeader(CopyMBB))
1069 return false;
1070 // If vr's live interval extends pass the loop header, do not join.
1071 for (MachineBasicBlock::succ_iterator SI = CopyMBB->succ_begin(),
1072 SE = CopyMBB->succ_end(); SI != SE; ++SI) {
1073 MachineBasicBlock *SuccMBB = *SI;
1074 if (SuccMBB == CopyMBB)
1075 continue;
1076 if (DstInt.overlaps(li_->getMBBStartIdx(SuccMBB),
1077 li_->getNextSlot(li_->getMBBEndIdx(SuccMBB))))
1078 return false;
1081 return true;
1084 /// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
1085 /// copy from a virtual source register to a physical destination register.
1086 bool
1087 SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr *CopyMI,
1088 MachineBasicBlock *CopyMBB,
1089 LiveInterval &DstInt,
1090 LiveInterval &SrcInt) {
1091 // If the virtual register live interval is long but it has low use desity,
1092 // do not join them, instead mark the physical register as its allocation
1093 // preference.
1094 const TargetRegisterClass *RC = mri_->getRegClass(SrcInt.reg);
1095 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1096 unsigned Length = li_->getApproximateInstructionCount(SrcInt);
1097 if (Length > Threshold &&
1098 (((float)std::distance(mri_->use_begin(SrcInt.reg),
1099 mri_->use_end()) / Length) < (1.0 / Threshold)))
1100 return false;
1102 if (SrcInt.empty())
1103 // Must be implicit_def.
1104 return false;
1106 // If the virtual register live interval is defined or cross a loop, turn
1107 // down aggressiveness.
1108 MachineInstrIndex CopyIdx =
1109 li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1110 MachineInstrIndex UseIdx = li_->getUseIndex(CopyIdx);
1111 LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
1112 assert(SLR != SrcInt.end() && "Live range not found!");
1113 SLR = SrcInt.FindLiveRangeContaining(li_->getPrevSlot(SLR->start));
1114 if (SLR == SrcInt.end())
1115 return true;
1116 MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
1117 const MachineLoop *L = loopInfo->getLoopFor(SMBB);
1119 if (!L || Length <= Threshold)
1120 return true;
1122 if (loopInfo->getLoopFor(CopyMBB) != L) {
1123 if (SMBB != L->getLoopLatch())
1124 return false;
1125 // If vr's live interval is extended from before the loop latch, do not
1126 // join.
1127 for (MachineBasicBlock::pred_iterator PI = SMBB->pred_begin(),
1128 PE = SMBB->pred_end(); PI != PE; ++PI) {
1129 MachineBasicBlock *PredMBB = *PI;
1130 if (PredMBB == SMBB)
1131 continue;
1132 if (SrcInt.overlaps(li_->getMBBStartIdx(PredMBB),
1133 li_->getNextSlot(li_->getMBBEndIdx(PredMBB))))
1134 return false;
1137 return true;
1140 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1141 /// two virtual registers from different register classes.
1142 bool
1143 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned LargeReg,
1144 unsigned SmallReg,
1145 unsigned Threshold) {
1146 // Then make sure the intervals are *short*.
1147 LiveInterval &LargeInt = li_->getInterval(LargeReg);
1148 LiveInterval &SmallInt = li_->getInterval(SmallReg);
1149 unsigned LargeSize = li_->getApproximateInstructionCount(LargeInt);
1150 unsigned SmallSize = li_->getApproximateInstructionCount(SmallInt);
1151 if (SmallSize > Threshold || LargeSize > Threshold)
1152 if ((float)std::distance(mri_->use_begin(SmallReg),
1153 mri_->use_end()) / SmallSize <
1154 (float)std::distance(mri_->use_begin(LargeReg),
1155 mri_->use_end()) / LargeSize)
1156 return false;
1157 return true;
1160 /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
1161 /// register with a physical register, check if any of the virtual register
1162 /// operand is a sub-register use or def. If so, make sure it won't result
1163 /// in an illegal extract_subreg or insert_subreg instruction. e.g.
1164 /// vr1024 = extract_subreg vr1025, 1
1165 /// ...
1166 /// vr1024 = mov8rr AH
1167 /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
1168 /// AH does not have a super-reg whose sub-register 1 is AH.
1169 bool
1170 SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr *CopyMI,
1171 unsigned VirtReg,
1172 unsigned PhysReg) {
1173 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(VirtReg),
1174 E = mri_->reg_end(); I != E; ++I) {
1175 MachineOperand &O = I.getOperand();
1176 MachineInstr *MI = &*I;
1177 if (MI == CopyMI || JoinedCopies.count(MI))
1178 continue;
1179 unsigned SubIdx = O.getSubReg();
1180 if (SubIdx && !tri_->getSubReg(PhysReg, SubIdx))
1181 return true;
1182 if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
1183 SubIdx = MI->getOperand(2).getImm();
1184 if (O.isUse() && !tri_->getSubReg(PhysReg, SubIdx))
1185 return true;
1186 if (O.isDef()) {
1187 unsigned SrcReg = MI->getOperand(1).getReg();
1188 const TargetRegisterClass *RC =
1189 TargetRegisterInfo::isPhysicalRegister(SrcReg)
1190 ? tri_->getPhysicalRegisterRegClass(SrcReg)
1191 : mri_->getRegClass(SrcReg);
1192 if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
1193 return true;
1196 if (MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
1197 MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
1198 SubIdx = MI->getOperand(3).getImm();
1199 if (VirtReg == MI->getOperand(0).getReg()) {
1200 if (!tri_->getSubReg(PhysReg, SubIdx))
1201 return true;
1202 } else {
1203 unsigned DstReg = MI->getOperand(0).getReg();
1204 const TargetRegisterClass *RC =
1205 TargetRegisterInfo::isPhysicalRegister(DstReg)
1206 ? tri_->getPhysicalRegisterRegClass(DstReg)
1207 : mri_->getRegClass(DstReg);
1208 if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
1209 return true;
1213 return false;
1217 /// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
1218 /// an extract_subreg where dst is a physical register, e.g.
1219 /// cl = EXTRACT_SUBREG reg1024, 1
1220 bool
1221 SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg,
1222 unsigned SrcReg, unsigned SubIdx,
1223 unsigned &RealDstReg) {
1224 const TargetRegisterClass *RC = mri_->getRegClass(SrcReg);
1225 RealDstReg = tri_->getMatchingSuperReg(DstReg, SubIdx, RC);
1226 assert(RealDstReg && "Invalid extract_subreg instruction!");
1228 // For this type of EXTRACT_SUBREG, conservatively
1229 // check if the live interval of the source register interfere with the
1230 // actual super physical register we are trying to coalesce with.
1231 LiveInterval &RHS = li_->getInterval(SrcReg);
1232 if (li_->hasInterval(RealDstReg) &&
1233 RHS.overlaps(li_->getInterval(RealDstReg))) {
1234 DEBUG({
1235 errs() << "Interfere with register ";
1236 li_->getInterval(RealDstReg).print(errs(), tri_);
1238 return false; // Not coalescable
1240 for (const unsigned* SR = tri_->getSubRegisters(RealDstReg); *SR; ++SR)
1241 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1242 DEBUG({
1243 errs() << "Interfere with sub-register ";
1244 li_->getInterval(*SR).print(errs(), tri_);
1246 return false; // Not coalescable
1248 return true;
1251 /// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
1252 /// an insert_subreg where src is a physical register, e.g.
1253 /// reg1024 = INSERT_SUBREG reg1024, c1, 0
1254 bool
1255 SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg,
1256 unsigned SrcReg, unsigned SubIdx,
1257 unsigned &RealSrcReg) {
1258 const TargetRegisterClass *RC = mri_->getRegClass(DstReg);
1259 RealSrcReg = tri_->getMatchingSuperReg(SrcReg, SubIdx, RC);
1260 assert(RealSrcReg && "Invalid extract_subreg instruction!");
1262 LiveInterval &RHS = li_->getInterval(DstReg);
1263 if (li_->hasInterval(RealSrcReg) &&
1264 RHS.overlaps(li_->getInterval(RealSrcReg))) {
1265 DEBUG({
1266 errs() << "Interfere with register ";
1267 li_->getInterval(RealSrcReg).print(errs(), tri_);
1269 return false; // Not coalescable
1271 for (const unsigned* SR = tri_->getSubRegisters(RealSrcReg); *SR; ++SR)
1272 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1273 DEBUG({
1274 errs() << "Interfere with sub-register ";
1275 li_->getInterval(*SR).print(errs(), tri_);
1277 return false; // Not coalescable
1279 return true;
1282 /// getRegAllocPreference - Return register allocation preference register.
1284 static unsigned getRegAllocPreference(unsigned Reg, MachineFunction &MF,
1285 MachineRegisterInfo *MRI,
1286 const TargetRegisterInfo *TRI) {
1287 if (TargetRegisterInfo::isPhysicalRegister(Reg))
1288 return 0;
1289 std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(Reg);
1290 return TRI->ResolveRegAllocHint(Hint.first, Hint.second, MF);
1293 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1294 /// which are the src/dst of the copy instruction CopyMI. This returns true
1295 /// if the copy was successfully coalesced away. If it is not currently
1296 /// possible to coalesce this interval, but it may be possible if other
1297 /// things get coalesced, then it returns true by reference in 'Again'.
1298 bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
1299 MachineInstr *CopyMI = TheCopy.MI;
1301 Again = false;
1302 if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
1303 return false; // Already done.
1305 DEBUG(errs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1307 unsigned SrcReg, DstReg, SrcSubIdx = 0, DstSubIdx = 0;
1308 bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG;
1309 bool isInsSubReg = CopyMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG;
1310 bool isSubRegToReg = CopyMI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG;
1311 unsigned SubIdx = 0;
1312 if (isExtSubReg) {
1313 DstReg = CopyMI->getOperand(0).getReg();
1314 DstSubIdx = CopyMI->getOperand(0).getSubReg();
1315 SrcReg = CopyMI->getOperand(1).getReg();
1316 SrcSubIdx = CopyMI->getOperand(2).getImm();
1317 } else if (isInsSubReg || isSubRegToReg) {
1318 DstReg = CopyMI->getOperand(0).getReg();
1319 DstSubIdx = CopyMI->getOperand(3).getImm();
1320 SrcReg = CopyMI->getOperand(2).getReg();
1321 SrcSubIdx = CopyMI->getOperand(2).getSubReg();
1322 if (SrcSubIdx && SrcSubIdx != DstSubIdx) {
1323 // r1025 = INSERT_SUBREG r1025, r1024<2>, 2 Then r1024 has already been
1324 // coalesced to a larger register so the subreg indices cancel out.
1325 DEBUG(errs() << "\tSource of insert_subreg is already coalesced "
1326 << "to another register.\n");
1327 return false; // Not coalescable.
1329 } else if (!tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)){
1330 llvm_unreachable("Unrecognized copy instruction!");
1333 // If they are already joined we continue.
1334 if (SrcReg == DstReg) {
1335 DEBUG(errs() << "\tCopy already coalesced.\n");
1336 return false; // Not coalescable.
1339 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
1340 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1342 // If they are both physical registers, we cannot join them.
1343 if (SrcIsPhys && DstIsPhys) {
1344 DEBUG(errs() << "\tCan not coalesce physregs.\n");
1345 return false; // Not coalescable.
1348 // We only join virtual registers with allocatable physical registers.
1349 if (SrcIsPhys && !allocatableRegs_[SrcReg]) {
1350 DEBUG(errs() << "\tSrc reg is unallocatable physreg.\n");
1351 return false; // Not coalescable.
1353 if (DstIsPhys && !allocatableRegs_[DstReg]) {
1354 DEBUG(errs() << "\tDst reg is unallocatable physreg.\n");
1355 return false; // Not coalescable.
1358 // Check that a physical source register is compatible with dst regclass
1359 if (SrcIsPhys) {
1360 unsigned SrcSubReg = SrcSubIdx ?
1361 tri_->getSubReg(SrcReg, SrcSubIdx) : SrcReg;
1362 const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
1363 const TargetRegisterClass *DstSubRC = DstRC;
1364 if (DstSubIdx)
1365 DstSubRC = DstRC->getSubRegisterRegClass(DstSubIdx);
1366 assert(DstSubRC && "Illegal subregister index");
1367 if (!DstSubRC->contains(SrcSubReg)) {
1368 DEBUG(errs() << "\tIncompatible destination regclass: "
1369 << tri_->getName(SrcSubReg) << " not in "
1370 << DstSubRC->getName() << ".\n");
1371 return false; // Not coalescable.
1375 // Check that a physical dst register is compatible with source regclass
1376 if (DstIsPhys) {
1377 unsigned DstSubReg = DstSubIdx ?
1378 tri_->getSubReg(DstReg, DstSubIdx) : DstReg;
1379 const TargetRegisterClass *SrcRC = mri_->getRegClass(SrcReg);
1380 const TargetRegisterClass *SrcSubRC = SrcRC;
1381 if (SrcSubIdx)
1382 SrcSubRC = SrcRC->getSubRegisterRegClass(SrcSubIdx);
1383 assert(SrcSubRC && "Illegal subregister index");
1384 if (!SrcSubRC->contains(DstReg)) {
1385 DEBUG(errs() << "\tIncompatible source regclass: "
1386 << tri_->getName(DstSubReg) << " not in "
1387 << SrcSubRC->getName() << ".\n");
1388 (void)DstSubReg;
1389 return false; // Not coalescable.
1393 // Should be non-null only when coalescing to a sub-register class.
1394 bool CrossRC = false;
1395 const TargetRegisterClass *SrcRC= SrcIsPhys ? 0 : mri_->getRegClass(SrcReg);
1396 const TargetRegisterClass *DstRC= DstIsPhys ? 0 : mri_->getRegClass(DstReg);
1397 const TargetRegisterClass *NewRC = NULL;
1398 MachineBasicBlock *CopyMBB = CopyMI->getParent();
1399 unsigned RealDstReg = 0;
1400 unsigned RealSrcReg = 0;
1401 if (isExtSubReg || isInsSubReg || isSubRegToReg) {
1402 SubIdx = CopyMI->getOperand(isExtSubReg ? 2 : 3).getImm();
1403 if (SrcIsPhys && isExtSubReg) {
1404 // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
1405 // coalesced with AX.
1406 unsigned DstSubIdx = CopyMI->getOperand(0).getSubReg();
1407 if (DstSubIdx) {
1408 // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
1409 // coalesced to a larger register so the subreg indices cancel out.
1410 if (DstSubIdx != SubIdx) {
1411 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1412 return false; // Not coalescable.
1414 } else
1415 SrcReg = tri_->getSubReg(SrcReg, SubIdx);
1416 SubIdx = 0;
1417 } else if (DstIsPhys && (isInsSubReg || isSubRegToReg)) {
1418 // EAX = INSERT_SUBREG EAX, r1024, 0
1419 unsigned SrcSubIdx = CopyMI->getOperand(2).getSubReg();
1420 if (SrcSubIdx) {
1421 // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
1422 // coalesced to a larger register so the subreg indices cancel out.
1423 if (SrcSubIdx != SubIdx) {
1424 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1425 return false; // Not coalescable.
1427 } else
1428 DstReg = tri_->getSubReg(DstReg, SubIdx);
1429 SubIdx = 0;
1430 } else if ((DstIsPhys && isExtSubReg) ||
1431 (SrcIsPhys && (isInsSubReg || isSubRegToReg))) {
1432 if (!isSubRegToReg && CopyMI->getOperand(1).getSubReg()) {
1433 DEBUG(errs() << "\tSrc of extract_subreg already coalesced with reg"
1434 << " of a super-class.\n");
1435 return false; // Not coalescable.
1438 if (isExtSubReg) {
1439 if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealDstReg))
1440 return false; // Not coalescable
1441 } else {
1442 if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
1443 return false; // Not coalescable
1445 SubIdx = 0;
1446 } else {
1447 unsigned OldSubIdx = isExtSubReg ? CopyMI->getOperand(0).getSubReg()
1448 : CopyMI->getOperand(2).getSubReg();
1449 if (OldSubIdx) {
1450 if (OldSubIdx == SubIdx && !differingRegisterClasses(SrcReg, DstReg))
1451 // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
1452 // coalesced to a larger register so the subreg indices cancel out.
1453 // Also check if the other larger register is of the same register
1454 // class as the would be resulting register.
1455 SubIdx = 0;
1456 else {
1457 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1458 return false; // Not coalescable.
1461 if (SubIdx) {
1462 if (!DstIsPhys && !SrcIsPhys) {
1463 if (isInsSubReg || isSubRegToReg) {
1464 NewRC = tri_->getMatchingSuperRegClass(DstRC, SrcRC, SubIdx);
1465 } else // extract_subreg {
1466 NewRC = tri_->getMatchingSuperRegClass(SrcRC, DstRC, SubIdx);
1468 if (!NewRC) {
1469 DEBUG(errs() << "\t Conflicting sub-register indices.\n");
1470 return false; // Not coalescable
1473 unsigned LargeReg = isExtSubReg ? SrcReg : DstReg;
1474 unsigned SmallReg = isExtSubReg ? DstReg : SrcReg;
1475 unsigned Limit= allocatableRCRegs_[mri_->getRegClass(SmallReg)].count();
1476 if (!isWinToJoinCrossClass(LargeReg, SmallReg, Limit)) {
1477 Again = true; // May be possible to coalesce later.
1478 return false;
1482 } else if (differingRegisterClasses(SrcReg, DstReg)) {
1483 if (DisableCrossClassJoin)
1484 return false;
1485 CrossRC = true;
1487 // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
1488 // with another? If it's the resulting destination register, then
1489 // the subidx must be propagated to uses (but only those defined
1490 // by the EXTRACT_SUBREG). If it's being coalesced into another
1491 // register, it should be safe because register is assumed to have
1492 // the register class of the super-register.
1494 // Process moves where one of the registers have a sub-register index.
1495 MachineOperand *DstMO = CopyMI->findRegisterDefOperand(DstReg);
1496 MachineOperand *SrcMO = CopyMI->findRegisterUseOperand(SrcReg);
1497 SubIdx = DstMO->getSubReg();
1498 if (SubIdx) {
1499 if (SrcMO->getSubReg())
1500 // FIXME: can we handle this?
1501 return false;
1502 // This is not an insert_subreg but it looks like one.
1503 // e.g. %reg1024:4 = MOV32rr %EAX
1504 isInsSubReg = true;
1505 if (SrcIsPhys) {
1506 if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
1507 return false; // Not coalescable
1508 SubIdx = 0;
1510 } else {
1511 SubIdx = SrcMO->getSubReg();
1512 if (SubIdx) {
1513 // This is not a extract_subreg but it looks like one.
1514 // e.g. %cl = MOV16rr %reg1024:1
1515 isExtSubReg = true;
1516 if (DstIsPhys) {
1517 if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx,RealDstReg))
1518 return false; // Not coalescable
1519 SubIdx = 0;
1524 unsigned LargeReg = SrcReg;
1525 unsigned SmallReg = DstReg;
1527 // Now determine the register class of the joined register.
1528 if (isExtSubReg) {
1529 if (SubIdx && DstRC && DstRC->isASubClass()) {
1530 // This is a move to a sub-register class. However, the source is a
1531 // sub-register of a larger register class. We don't know what should
1532 // the register class be. FIXME.
1533 Again = true;
1534 return false;
1536 if (!DstIsPhys && !SrcIsPhys)
1537 NewRC = SrcRC;
1538 } else if (!SrcIsPhys && !DstIsPhys) {
1539 NewRC = getCommonSubClass(SrcRC, DstRC);
1540 if (!NewRC) {
1541 DEBUG(errs() << "\tDisjoint regclasses: "
1542 << SrcRC->getName() << ", "
1543 << DstRC->getName() << ".\n");
1544 return false; // Not coalescable.
1546 if (DstRC->getSize() > SrcRC->getSize())
1547 std::swap(LargeReg, SmallReg);
1550 // If we are joining two virtual registers and the resulting register
1551 // class is more restrictive (fewer register, smaller size). Check if it's
1552 // worth doing the merge.
1553 if (!SrcIsPhys && !DstIsPhys &&
1554 (isExtSubReg || DstRC->isASubClass()) &&
1555 !isWinToJoinCrossClass(LargeReg, SmallReg,
1556 allocatableRCRegs_[NewRC].count())) {
1557 DEBUG(errs() << "\tSrc/Dest are different register classes.\n");
1558 // Allow the coalescer to try again in case either side gets coalesced to
1559 // a physical register that's compatible with the other side. e.g.
1560 // r1024 = MOV32to32_ r1025
1561 // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
1562 Again = true; // May be possible to coalesce later.
1563 return false;
1567 // Will it create illegal extract_subreg / insert_subreg?
1568 if (SrcIsPhys && HasIncompatibleSubRegDefUse(CopyMI, DstReg, SrcReg))
1569 return false;
1570 if (DstIsPhys && HasIncompatibleSubRegDefUse(CopyMI, SrcReg, DstReg))
1571 return false;
1573 LiveInterval &SrcInt = li_->getInterval(SrcReg);
1574 LiveInterval &DstInt = li_->getInterval(DstReg);
1575 assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg &&
1576 "Register mapping is horribly broken!");
1578 DEBUG({
1579 errs() << "\t\tInspecting "; SrcInt.print(errs(), tri_);
1580 errs() << " and "; DstInt.print(errs(), tri_);
1581 errs() << ": ";
1584 // Save a copy of the virtual register live interval. We'll manually
1585 // merge this into the "real" physical register live interval this is
1586 // coalesced with.
1587 LiveInterval *SavedLI = 0;
1588 if (RealDstReg)
1589 SavedLI = li_->dupInterval(&SrcInt);
1590 else if (RealSrcReg)
1591 SavedLI = li_->dupInterval(&DstInt);
1593 // Check if it is necessary to propagate "isDead" property.
1594 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg) {
1595 MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg, false);
1596 bool isDead = mopd->isDead();
1598 // We need to be careful about coalescing a source physical register with a
1599 // virtual register. Once the coalescing is done, it cannot be broken and
1600 // these are not spillable! If the destination interval uses are far away,
1601 // think twice about coalescing them!
1602 if (!isDead && (SrcIsPhys || DstIsPhys)) {
1603 // If the copy is in a loop, take care not to coalesce aggressively if the
1604 // src is coming in from outside the loop (or the dst is out of the loop).
1605 // If it's not in a loop, then determine whether to join them base purely
1606 // by the length of the interval.
1607 if (PhysJoinTweak) {
1608 if (SrcIsPhys) {
1609 if (!isWinToJoinVRWithSrcPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
1610 mri_->setRegAllocationHint(DstInt.reg, 0, SrcReg);
1611 ++numAborts;
1612 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1613 Again = true; // May be possible to coalesce later.
1614 return false;
1616 } else {
1617 if (!isWinToJoinVRWithDstPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
1618 mri_->setRegAllocationHint(SrcInt.reg, 0, DstReg);
1619 ++numAborts;
1620 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1621 Again = true; // May be possible to coalesce later.
1622 return false;
1625 } else {
1626 // If the virtual register live interval is long but it has low use desity,
1627 // do not join them, instead mark the physical register as its allocation
1628 // preference.
1629 LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
1630 unsigned JoinVReg = SrcIsPhys ? DstReg : SrcReg;
1631 unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg;
1632 const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg);
1633 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1634 if (TheCopy.isBackEdge)
1635 Threshold *= 2; // Favors back edge copies.
1637 unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
1638 float Ratio = 1.0 / Threshold;
1639 if (Length > Threshold &&
1640 (((float)std::distance(mri_->use_begin(JoinVReg),
1641 mri_->use_end()) / Length) < Ratio)) {
1642 mri_->setRegAllocationHint(JoinVInt.reg, 0, JoinPReg);
1643 ++numAborts;
1644 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1645 Again = true; // May be possible to coalesce later.
1646 return false;
1652 // Okay, attempt to join these two intervals. On failure, this returns false.
1653 // Otherwise, if one of the intervals being joined is a physreg, this method
1654 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1655 // been modified, so we can use this information below to update aliases.
1656 bool Swapped = false;
1657 // If SrcInt is implicitly defined, it's safe to coalesce.
1658 bool isEmpty = SrcInt.empty();
1659 if (isEmpty && !CanCoalesceWithImpDef(CopyMI, DstInt, SrcInt)) {
1660 // Only coalesce an empty interval (defined by implicit_def) with
1661 // another interval which has a valno defined by the CopyMI and the CopyMI
1662 // is a kill of the implicit def.
1663 DEBUG(errs() << "Not profitable!\n");
1664 return false;
1667 if (!isEmpty && !JoinIntervals(DstInt, SrcInt, Swapped)) {
1668 // Coalescing failed.
1670 // If definition of source is defined by trivial computation, try
1671 // rematerializing it.
1672 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
1673 ReMaterializeTrivialDef(SrcInt, DstReg, DstSubIdx, CopyMI))
1674 return true;
1676 // If we can eliminate the copy without merging the live ranges, do so now.
1677 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
1678 (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) ||
1679 RemoveCopyByCommutingDef(SrcInt, DstInt, CopyMI))) {
1680 JoinedCopies.insert(CopyMI);
1681 return true;
1684 // Otherwise, we are unable to join the intervals.
1685 DEBUG(errs() << "Interference!\n");
1686 Again = true; // May be possible to coalesce later.
1687 return false;
1690 LiveInterval *ResSrcInt = &SrcInt;
1691 LiveInterval *ResDstInt = &DstInt;
1692 if (Swapped) {
1693 std::swap(SrcReg, DstReg);
1694 std::swap(ResSrcInt, ResDstInt);
1696 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1697 "LiveInterval::join didn't work right!");
1699 // If we're about to merge live ranges into a physical register live interval,
1700 // we have to update any aliased register's live ranges to indicate that they
1701 // have clobbered values for this range.
1702 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
1703 // If this is a extract_subreg where dst is a physical register, e.g.
1704 // cl = EXTRACT_SUBREG reg1024, 1
1705 // then create and update the actual physical register allocated to RHS.
1706 if (RealDstReg || RealSrcReg) {
1707 LiveInterval &RealInt =
1708 li_->getOrCreateInterval(RealDstReg ? RealDstReg : RealSrcReg);
1709 for (LiveInterval::const_vni_iterator I = SavedLI->vni_begin(),
1710 E = SavedLI->vni_end(); I != E; ++I) {
1711 const VNInfo *ValNo = *I;
1712 VNInfo *NewValNo = RealInt.getNextValue(ValNo->def, ValNo->getCopy(),
1713 false, // updated at *
1714 li_->getVNInfoAllocator());
1715 NewValNo->setFlags(ValNo->getFlags()); // * updated here.
1716 RealInt.addKills(NewValNo, ValNo->kills);
1717 RealInt.MergeValueInAsValue(*SavedLI, ValNo, NewValNo);
1719 RealInt.weight += SavedLI->weight;
1720 DstReg = RealDstReg ? RealDstReg : RealSrcReg;
1723 // Update the liveintervals of sub-registers.
1724 for (const unsigned *AS = tri_->getSubRegisters(DstReg); *AS; ++AS)
1725 li_->getOrCreateInterval(*AS).MergeInClobberRanges(*ResSrcInt,
1726 li_->getVNInfoAllocator());
1729 // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
1730 // larger super-register.
1731 if ((isExtSubReg || isInsSubReg || isSubRegToReg) &&
1732 !SrcIsPhys && !DstIsPhys) {
1733 if ((isExtSubReg && !Swapped) ||
1734 ((isInsSubReg || isSubRegToReg) && Swapped)) {
1735 ResSrcInt->Copy(*ResDstInt, mri_, li_->getVNInfoAllocator());
1736 std::swap(SrcReg, DstReg);
1737 std::swap(ResSrcInt, ResDstInt);
1741 // Coalescing to a virtual register that is of a sub-register class of the
1742 // other. Make sure the resulting register is set to the right register class.
1743 if (CrossRC)
1744 ++numCrossRCs;
1746 // This may happen even if it's cross-rc coalescing. e.g.
1747 // %reg1026<def> = SUBREG_TO_REG 0, %reg1037<kill>, 4
1748 // reg1026 -> GR64, reg1037 -> GR32_ABCD. The resulting register will have to
1749 // be allocate a register from GR64_ABCD.
1750 if (NewRC)
1751 mri_->setRegClass(DstReg, NewRC);
1753 if (NewHeuristic) {
1754 // Add all copies that define val# in the source interval into the queue.
1755 for (LiveInterval::const_vni_iterator i = ResSrcInt->vni_begin(),
1756 e = ResSrcInt->vni_end(); i != e; ++i) {
1757 const VNInfo *vni = *i;
1758 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1759 if (vni->def == MachineInstrIndex() || vni->isUnused() || vni->isPHIDef() ||
1760 !vni->isDefAccurate())
1761 continue;
1762 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
1763 unsigned NewSrcReg, NewDstReg, NewSrcSubIdx, NewDstSubIdx;
1764 if (CopyMI &&
1765 JoinedCopies.count(CopyMI) == 0 &&
1766 tii_->isMoveInstr(*CopyMI, NewSrcReg, NewDstReg,
1767 NewSrcSubIdx, NewDstSubIdx)) {
1768 unsigned LoopDepth = loopInfo->getLoopDepth(CopyMBB);
1769 JoinQueue->push(CopyRec(CopyMI, LoopDepth,
1770 isBackEdgeCopy(CopyMI, DstReg)));
1775 // Remember to delete the copy instruction.
1776 JoinedCopies.insert(CopyMI);
1778 // Some live range has been lengthened due to colaescing, eliminate the
1779 // unnecessary kills.
1780 RemoveUnnecessaryKills(SrcReg, *ResDstInt);
1781 if (TargetRegisterInfo::isVirtualRegister(DstReg))
1782 RemoveUnnecessaryKills(DstReg, *ResDstInt);
1784 UpdateRegDefsUses(SrcReg, DstReg, SubIdx);
1786 // SrcReg is guarateed to be the register whose live interval that is
1787 // being merged.
1788 li_->removeInterval(SrcReg);
1790 // Update regalloc hint.
1791 tri_->UpdateRegAllocHint(SrcReg, DstReg, *mf_);
1793 // Manually deleted the live interval copy.
1794 if (SavedLI) {
1795 SavedLI->clear();
1796 delete SavedLI;
1799 // If resulting interval has a preference that no longer fits because of subreg
1800 // coalescing, just clear the preference.
1801 unsigned Preference = getRegAllocPreference(ResDstInt->reg, *mf_, mri_, tri_);
1802 if (Preference && (isExtSubReg || isInsSubReg || isSubRegToReg) &&
1803 TargetRegisterInfo::isVirtualRegister(ResDstInt->reg)) {
1804 const TargetRegisterClass *RC = mri_->getRegClass(ResDstInt->reg);
1805 if (!RC->contains(Preference))
1806 mri_->setRegAllocationHint(ResDstInt->reg, 0, 0);
1809 DEBUG({
1810 errs() << "\n\t\tJoined. Result = ";
1811 ResDstInt->print(errs(), tri_);
1812 errs() << "\n";
1815 ++numJoins;
1816 return true;
1819 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1820 /// compute what the resultant value numbers for each value in the input two
1821 /// ranges will be. This is complicated by copies between the two which can
1822 /// and will commonly cause multiple value numbers to be merged into one.
1824 /// VN is the value number that we're trying to resolve. InstDefiningValue
1825 /// keeps track of the new InstDefiningValue assignment for the result
1826 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1827 /// whether a value in this or other is a copy from the opposite set.
1828 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1829 /// already been assigned.
1831 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1832 /// contains the value number the copy is from.
1834 static unsigned ComputeUltimateVN(VNInfo *VNI,
1835 SmallVector<VNInfo*, 16> &NewVNInfo,
1836 DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1837 DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1838 SmallVector<int, 16> &ThisValNoAssignments,
1839 SmallVector<int, 16> &OtherValNoAssignments) {
1840 unsigned VN = VNI->id;
1842 // If the VN has already been computed, just return it.
1843 if (ThisValNoAssignments[VN] >= 0)
1844 return ThisValNoAssignments[VN];
1845 // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1847 // If this val is not a copy from the other val, then it must be a new value
1848 // number in the destination.
1849 DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1850 if (I == ThisFromOther.end()) {
1851 NewVNInfo.push_back(VNI);
1852 return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1854 VNInfo *OtherValNo = I->second;
1856 // Otherwise, this *is* a copy from the RHS. If the other side has already
1857 // been computed, return it.
1858 if (OtherValNoAssignments[OtherValNo->id] >= 0)
1859 return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1861 // Mark this value number as currently being computed, then ask what the
1862 // ultimate value # of the other value is.
1863 ThisValNoAssignments[VN] = -2;
1864 unsigned UltimateVN =
1865 ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1866 OtherValNoAssignments, ThisValNoAssignments);
1867 return ThisValNoAssignments[VN] = UltimateVN;
1870 static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) {
1871 return std::find(V.begin(), V.end(), Val) != V.end();
1874 /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
1875 /// the specified live interval is defined by a copy from the specified
1876 /// register.
1877 bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li,
1878 LiveRange *LR,
1879 unsigned Reg) {
1880 unsigned SrcReg = li_->getVNInfoSourceReg(LR->valno);
1881 if (SrcReg == Reg)
1882 return true;
1883 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1884 if ((LR->valno->isPHIDef() || !LR->valno->isDefAccurate()) &&
1885 TargetRegisterInfo::isPhysicalRegister(li.reg) &&
1886 *tri_->getSuperRegisters(li.reg)) {
1887 // It's a sub-register live interval, we may not have precise information.
1888 // Re-compute it.
1889 MachineInstr *DefMI = li_->getInstructionFromIndex(LR->start);
1890 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1891 if (DefMI &&
1892 tii_->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
1893 DstReg == li.reg && SrcReg == Reg) {
1894 // Cache computed info.
1895 LR->valno->def = LR->start;
1896 LR->valno->setCopy(DefMI);
1897 return true;
1900 return false;
1903 /// SimpleJoin - Attempt to joint the specified interval into this one. The
1904 /// caller of this method must guarantee that the RHS only contains a single
1905 /// value number and that the RHS is not defined by a copy from this
1906 /// interval. This returns false if the intervals are not joinable, or it
1907 /// joins them and returns true.
1908 bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
1909 assert(RHS.containsOneValue());
1911 // Some number (potentially more than one) value numbers in the current
1912 // interval may be defined as copies from the RHS. Scan the overlapping
1913 // portions of the LHS and RHS, keeping track of this and looking for
1914 // overlapping live ranges that are NOT defined as copies. If these exist, we
1915 // cannot coalesce.
1917 LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
1918 LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
1920 if (LHSIt->start < RHSIt->start) {
1921 LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
1922 if (LHSIt != LHS.begin()) --LHSIt;
1923 } else if (RHSIt->start < LHSIt->start) {
1924 RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
1925 if (RHSIt != RHS.begin()) --RHSIt;
1928 SmallVector<VNInfo*, 8> EliminatedLHSVals;
1930 while (1) {
1931 // Determine if these live intervals overlap.
1932 bool Overlaps = false;
1933 if (LHSIt->start <= RHSIt->start)
1934 Overlaps = LHSIt->end > RHSIt->start;
1935 else
1936 Overlaps = RHSIt->end > LHSIt->start;
1938 // If the live intervals overlap, there are two interesting cases: if the
1939 // LHS interval is defined by a copy from the RHS, it's ok and we record
1940 // that the LHS value # is the same as the RHS. If it's not, then we cannot
1941 // coalesce these live ranges and we bail out.
1942 if (Overlaps) {
1943 // If we haven't already recorded that this value # is safe, check it.
1944 if (!InVector(LHSIt->valno, EliminatedLHSVals)) {
1945 // Copy from the RHS?
1946 if (!RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg))
1947 return false; // Nope, bail out.
1949 if (LHSIt->contains(RHSIt->valno->def))
1950 // Here is an interesting situation:
1951 // BB1:
1952 // vr1025 = copy vr1024
1953 // ..
1954 // BB2:
1955 // vr1024 = op
1956 // = vr1025
1957 // Even though vr1025 is copied from vr1024, it's not safe to
1958 // coalesce them since the live range of vr1025 intersects the
1959 // def of vr1024. This happens because vr1025 is assigned the
1960 // value of the previous iteration of vr1024.
1961 return false;
1962 EliminatedLHSVals.push_back(LHSIt->valno);
1965 // We know this entire LHS live range is okay, so skip it now.
1966 if (++LHSIt == LHSEnd) break;
1967 continue;
1970 if (LHSIt->end < RHSIt->end) {
1971 if (++LHSIt == LHSEnd) break;
1972 } else {
1973 // One interesting case to check here. It's possible that we have
1974 // something like "X3 = Y" which defines a new value number in the LHS,
1975 // and is the last use of this liverange of the RHS. In this case, we
1976 // want to notice this copy (so that it gets coalesced away) even though
1977 // the live ranges don't actually overlap.
1978 if (LHSIt->start == RHSIt->end) {
1979 if (InVector(LHSIt->valno, EliminatedLHSVals)) {
1980 // We already know that this value number is going to be merged in
1981 // if coalescing succeeds. Just skip the liverange.
1982 if (++LHSIt == LHSEnd) break;
1983 } else {
1984 // Otherwise, if this is a copy from the RHS, mark it as being merged
1985 // in.
1986 if (RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) {
1987 if (LHSIt->contains(RHSIt->valno->def))
1988 // Here is an interesting situation:
1989 // BB1:
1990 // vr1025 = copy vr1024
1991 // ..
1992 // BB2:
1993 // vr1024 = op
1994 // = vr1025
1995 // Even though vr1025 is copied from vr1024, it's not safe to
1996 // coalesced them since live range of vr1025 intersects the
1997 // def of vr1024. This happens because vr1025 is assigned the
1998 // value of the previous iteration of vr1024.
1999 return false;
2000 EliminatedLHSVals.push_back(LHSIt->valno);
2002 // We know this entire LHS live range is okay, so skip it now.
2003 if (++LHSIt == LHSEnd) break;
2008 if (++RHSIt == RHSEnd) break;
2012 // If we got here, we know that the coalescing will be successful and that
2013 // the value numbers in EliminatedLHSVals will all be merged together. Since
2014 // the most common case is that EliminatedLHSVals has a single number, we
2015 // optimize for it: if there is more than one value, we merge them all into
2016 // the lowest numbered one, then handle the interval as if we were merging
2017 // with one value number.
2018 VNInfo *LHSValNo = NULL;
2019 if (EliminatedLHSVals.size() > 1) {
2020 // Loop through all the equal value numbers merging them into the smallest
2021 // one.
2022 VNInfo *Smallest = EliminatedLHSVals[0];
2023 for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
2024 if (EliminatedLHSVals[i]->id < Smallest->id) {
2025 // Merge the current notion of the smallest into the smaller one.
2026 LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
2027 Smallest = EliminatedLHSVals[i];
2028 } else {
2029 // Merge into the smallest.
2030 LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
2033 LHSValNo = Smallest;
2034 } else if (EliminatedLHSVals.empty()) {
2035 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
2036 *tri_->getSuperRegisters(LHS.reg))
2037 // Imprecise sub-register information. Can't handle it.
2038 return false;
2039 llvm_unreachable("No copies from the RHS?");
2040 } else {
2041 LHSValNo = EliminatedLHSVals[0];
2044 // Okay, now that there is a single LHS value number that we're merging the
2045 // RHS into, update the value number info for the LHS to indicate that the
2046 // value number is defined where the RHS value number was.
2047 const VNInfo *VNI = RHS.getValNumInfo(0);
2048 LHSValNo->def = VNI->def;
2049 LHSValNo->setCopy(VNI->getCopy());
2051 // Okay, the final step is to loop over the RHS live intervals, adding them to
2052 // the LHS.
2053 if (VNI->hasPHIKill())
2054 LHSValNo->setHasPHIKill(true);
2055 LHS.addKills(LHSValNo, VNI->kills);
2056 LHS.MergeRangesInAsValue(RHS, LHSValNo);
2058 LHS.ComputeJoinedWeight(RHS);
2060 // Update regalloc hint if both are virtual registers.
2061 if (TargetRegisterInfo::isVirtualRegister(LHS.reg) &&
2062 TargetRegisterInfo::isVirtualRegister(RHS.reg)) {
2063 std::pair<unsigned, unsigned> RHSPref = mri_->getRegAllocationHint(RHS.reg);
2064 std::pair<unsigned, unsigned> LHSPref = mri_->getRegAllocationHint(LHS.reg);
2065 if (RHSPref != LHSPref)
2066 mri_->setRegAllocationHint(LHS.reg, RHSPref.first, RHSPref.second);
2069 // Update the liveintervals of sub-registers.
2070 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg))
2071 for (const unsigned *AS = tri_->getSubRegisters(LHS.reg); *AS; ++AS)
2072 li_->getOrCreateInterval(*AS).MergeInClobberRanges(LHS,
2073 li_->getVNInfoAllocator());
2075 return true;
2078 /// JoinIntervals - Attempt to join these two intervals. On failure, this
2079 /// returns false. Otherwise, if one of the intervals being joined is a
2080 /// physreg, this method always canonicalizes LHS to be it. The output
2081 /// "RHS" will not have been modified, so we can use this information
2082 /// below to update aliases.
2083 bool
2084 SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
2085 bool &Swapped) {
2086 // Compute the final value assignment, assuming that the live ranges can be
2087 // coalesced.
2088 SmallVector<int, 16> LHSValNoAssignments;
2089 SmallVector<int, 16> RHSValNoAssignments;
2090 DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
2091 DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
2092 SmallVector<VNInfo*, 16> NewVNInfo;
2094 // If a live interval is a physical register, conservatively check if any
2095 // of its sub-registers is overlapping the live interval of the virtual
2096 // register. If so, do not coalesce.
2097 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
2098 *tri_->getSubRegisters(LHS.reg)) {
2099 // If it's coalescing a virtual register to a physical register, estimate
2100 // its live interval length. This is the *cost* of scanning an entire live
2101 // interval. If the cost is low, we'll do an exhaustive check instead.
2103 // If this is something like this:
2104 // BB1:
2105 // v1024 = op
2106 // ...
2107 // BB2:
2108 // ...
2109 // RAX = v1024
2111 // That is, the live interval of v1024 crosses a bb. Then we can't rely on
2112 // less conservative check. It's possible a sub-register is defined before
2113 // v1024 (or live in) and live out of BB1.
2114 if (RHS.containsOneValue() &&
2115 li_->intervalIsInOneMBB(RHS) &&
2116 li_->getApproximateInstructionCount(RHS) <= 10) {
2117 // Perform a more exhaustive check for some common cases.
2118 if (li_->conflictsWithPhysRegRef(RHS, LHS.reg, true, JoinedCopies))
2119 return false;
2120 } else {
2121 for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR)
2122 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
2123 DEBUG({
2124 errs() << "Interfere with sub-register ";
2125 li_->getInterval(*SR).print(errs(), tri_);
2127 return false;
2130 } else if (TargetRegisterInfo::isPhysicalRegister(RHS.reg) &&
2131 *tri_->getSubRegisters(RHS.reg)) {
2132 if (LHS.containsOneValue() &&
2133 li_->getApproximateInstructionCount(LHS) <= 10) {
2134 // Perform a more exhaustive check for some common cases.
2135 if (li_->conflictsWithPhysRegRef(LHS, RHS.reg, false, JoinedCopies))
2136 return false;
2137 } else {
2138 for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR)
2139 if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
2140 DEBUG({
2141 errs() << "Interfere with sub-register ";
2142 li_->getInterval(*SR).print(errs(), tri_);
2144 return false;
2149 // Compute ultimate value numbers for the LHS and RHS values.
2150 if (RHS.containsOneValue()) {
2151 // Copies from a liveinterval with a single value are simple to handle and
2152 // very common, handle the special case here. This is important, because
2153 // often RHS is small and LHS is large (e.g. a physreg).
2155 // Find out if the RHS is defined as a copy from some value in the LHS.
2156 int RHSVal0DefinedFromLHS = -1;
2157 int RHSValID = -1;
2158 VNInfo *RHSValNoInfo = NULL;
2159 VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0);
2160 unsigned RHSSrcReg = li_->getVNInfoSourceReg(RHSValNoInfo0);
2161 if (RHSSrcReg == 0 || RHSSrcReg != LHS.reg) {
2162 // If RHS is not defined as a copy from the LHS, we can use simpler and
2163 // faster checks to see if the live ranges are coalescable. This joiner
2164 // can't swap the LHS/RHS intervals though.
2165 if (!TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
2166 return SimpleJoin(LHS, RHS);
2167 } else {
2168 RHSValNoInfo = RHSValNoInfo0;
2170 } else {
2171 // It was defined as a copy from the LHS, find out what value # it is.
2172 RHSValNoInfo =
2173 LHS.getLiveRangeContaining(li_->getPrevSlot(RHSValNoInfo0->def))->valno;
2174 RHSValID = RHSValNoInfo->id;
2175 RHSVal0DefinedFromLHS = RHSValID;
2178 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
2179 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
2180 NewVNInfo.resize(LHS.getNumValNums(), NULL);
2182 // Okay, *all* of the values in LHS that are defined as a copy from RHS
2183 // should now get updated.
2184 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2185 i != e; ++i) {
2186 VNInfo *VNI = *i;
2187 unsigned VN = VNI->id;
2188 if (unsigned LHSSrcReg = li_->getVNInfoSourceReg(VNI)) {
2189 if (LHSSrcReg != RHS.reg) {
2190 // If this is not a copy from the RHS, its value number will be
2191 // unmodified by the coalescing.
2192 NewVNInfo[VN] = VNI;
2193 LHSValNoAssignments[VN] = VN;
2194 } else if (RHSValID == -1) {
2195 // Otherwise, it is a copy from the RHS, and we don't already have a
2196 // value# for it. Keep the current value number, but remember it.
2197 LHSValNoAssignments[VN] = RHSValID = VN;
2198 NewVNInfo[VN] = RHSValNoInfo;
2199 LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
2200 } else {
2201 // Otherwise, use the specified value #.
2202 LHSValNoAssignments[VN] = RHSValID;
2203 if (VN == (unsigned)RHSValID) { // Else this val# is dead.
2204 NewVNInfo[VN] = RHSValNoInfo;
2205 LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
2208 } else {
2209 NewVNInfo[VN] = VNI;
2210 LHSValNoAssignments[VN] = VN;
2214 assert(RHSValID != -1 && "Didn't find value #?");
2215 RHSValNoAssignments[0] = RHSValID;
2216 if (RHSVal0DefinedFromLHS != -1) {
2217 // This path doesn't go through ComputeUltimateVN so just set
2218 // it to anything.
2219 RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1;
2221 } else {
2222 // Loop over the value numbers of the LHS, seeing if any are defined from
2223 // the RHS.
2224 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2225 i != e; ++i) {
2226 VNInfo *VNI = *i;
2227 if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy?
2228 continue;
2230 // DstReg is known to be a register in the LHS interval. If the src is
2231 // from the RHS interval, we can use its value #.
2232 if (li_->getVNInfoSourceReg(VNI) != RHS.reg)
2233 continue;
2235 // Figure out the value # from the RHS.
2236 LHSValsDefinedFromRHS[VNI]=
2237 RHS.getLiveRangeContaining(li_->getPrevSlot(VNI->def))->valno;
2240 // Loop over the value numbers of the RHS, seeing if any are defined from
2241 // the LHS.
2242 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
2243 i != e; ++i) {
2244 VNInfo *VNI = *i;
2245 if (VNI->isUnused() || VNI->getCopy() == 0) // Src not defined by a copy?
2246 continue;
2248 // DstReg is known to be a register in the RHS interval. If the src is
2249 // from the LHS interval, we can use its value #.
2250 if (li_->getVNInfoSourceReg(VNI) != LHS.reg)
2251 continue;
2253 // Figure out the value # from the LHS.
2254 RHSValsDefinedFromLHS[VNI]=
2255 LHS.getLiveRangeContaining(li_->getPrevSlot(VNI->def))->valno;
2258 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
2259 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
2260 NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
2262 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2263 i != e; ++i) {
2264 VNInfo *VNI = *i;
2265 unsigned VN = VNI->id;
2266 if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
2267 continue;
2268 ComputeUltimateVN(VNI, NewVNInfo,
2269 LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
2270 LHSValNoAssignments, RHSValNoAssignments);
2272 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
2273 i != e; ++i) {
2274 VNInfo *VNI = *i;
2275 unsigned VN = VNI->id;
2276 if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
2277 continue;
2278 // If this value number isn't a copy from the LHS, it's a new number.
2279 if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
2280 NewVNInfo.push_back(VNI);
2281 RHSValNoAssignments[VN] = NewVNInfo.size()-1;
2282 continue;
2285 ComputeUltimateVN(VNI, NewVNInfo,
2286 RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
2287 RHSValNoAssignments, LHSValNoAssignments);
2291 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
2292 // interval lists to see if these intervals are coalescable.
2293 LiveInterval::const_iterator I = LHS.begin();
2294 LiveInterval::const_iterator IE = LHS.end();
2295 LiveInterval::const_iterator J = RHS.begin();
2296 LiveInterval::const_iterator JE = RHS.end();
2298 // Skip ahead until the first place of potential sharing.
2299 if (I->start < J->start) {
2300 I = std::upper_bound(I, IE, J->start);
2301 if (I != LHS.begin()) --I;
2302 } else if (J->start < I->start) {
2303 J = std::upper_bound(J, JE, I->start);
2304 if (J != RHS.begin()) --J;
2307 while (1) {
2308 // Determine if these two live ranges overlap.
2309 bool Overlaps;
2310 if (I->start < J->start) {
2311 Overlaps = I->end > J->start;
2312 } else {
2313 Overlaps = J->end > I->start;
2316 // If so, check value # info to determine if they are really different.
2317 if (Overlaps) {
2318 // If the live range overlap will map to the same value number in the
2319 // result liverange, we can still coalesce them. If not, we can't.
2320 if (LHSValNoAssignments[I->valno->id] !=
2321 RHSValNoAssignments[J->valno->id])
2322 return false;
2325 if (I->end < J->end) {
2326 ++I;
2327 if (I == IE) break;
2328 } else {
2329 ++J;
2330 if (J == JE) break;
2334 // Update kill info. Some live ranges are extended due to copy coalescing.
2335 for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
2336 E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
2337 VNInfo *VNI = I->first;
2338 unsigned LHSValID = LHSValNoAssignments[VNI->id];
2339 NewVNInfo[LHSValID]->removeKill(VNI->def);
2340 if (VNI->hasPHIKill())
2341 NewVNInfo[LHSValID]->setHasPHIKill(true);
2342 RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
2345 // Update kill info. Some live ranges are extended due to copy coalescing.
2346 for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
2347 E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
2348 VNInfo *VNI = I->first;
2349 unsigned RHSValID = RHSValNoAssignments[VNI->id];
2350 NewVNInfo[RHSValID]->removeKill(VNI->def);
2351 if (VNI->hasPHIKill())
2352 NewVNInfo[RHSValID]->setHasPHIKill(true);
2353 LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
2356 // If we get here, we know that we can coalesce the live ranges. Ask the
2357 // intervals to coalesce themselves now.
2358 if ((RHS.ranges.size() > LHS.ranges.size() &&
2359 TargetRegisterInfo::isVirtualRegister(LHS.reg)) ||
2360 TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
2361 RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo,
2362 mri_);
2363 Swapped = true;
2364 } else {
2365 LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
2366 mri_);
2367 Swapped = false;
2369 return true;
2372 namespace {
2373 // DepthMBBCompare - Comparison predicate that sort first based on the loop
2374 // depth of the basic block (the unsigned), and then on the MBB number.
2375 struct DepthMBBCompare {
2376 typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
2377 bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
2378 if (LHS.first > RHS.first) return true; // Deeper loops first
2379 return LHS.first == RHS.first &&
2380 LHS.second->getNumber() < RHS.second->getNumber();
2385 /// getRepIntervalSize - Returns the size of the interval that represents the
2386 /// specified register.
2387 template<class SF>
2388 unsigned JoinPriorityQueue<SF>::getRepIntervalSize(unsigned Reg) {
2389 return Rc->getRepIntervalSize(Reg);
2392 /// CopyRecSort::operator - Join priority queue sorting function.
2394 bool CopyRecSort::operator()(CopyRec left, CopyRec right) const {
2395 // Inner loops first.
2396 if (left.LoopDepth > right.LoopDepth)
2397 return false;
2398 else if (left.LoopDepth == right.LoopDepth)
2399 if (left.isBackEdge && !right.isBackEdge)
2400 return false;
2401 return true;
2404 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
2405 std::vector<CopyRec> &TryAgain) {
2406 DEBUG(errs() << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
2408 std::vector<CopyRec> VirtCopies;
2409 std::vector<CopyRec> PhysCopies;
2410 std::vector<CopyRec> ImpDefCopies;
2411 unsigned LoopDepth = loopInfo->getLoopDepth(MBB);
2412 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2413 MII != E;) {
2414 MachineInstr *Inst = MII++;
2416 // If this isn't a copy nor a extract_subreg, we can't join intervals.
2417 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2418 if (Inst->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
2419 DstReg = Inst->getOperand(0).getReg();
2420 SrcReg = Inst->getOperand(1).getReg();
2421 } else if (Inst->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
2422 Inst->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
2423 DstReg = Inst->getOperand(0).getReg();
2424 SrcReg = Inst->getOperand(2).getReg();
2425 } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
2426 continue;
2428 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
2429 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
2430 if (NewHeuristic) {
2431 JoinQueue->push(CopyRec(Inst, LoopDepth, isBackEdgeCopy(Inst, DstReg)));
2432 } else {
2433 if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
2434 ImpDefCopies.push_back(CopyRec(Inst, 0, false));
2435 else if (SrcIsPhys || DstIsPhys)
2436 PhysCopies.push_back(CopyRec(Inst, 0, false));
2437 else
2438 VirtCopies.push_back(CopyRec(Inst, 0, false));
2442 if (NewHeuristic)
2443 return;
2445 // Try coalescing implicit copies first, followed by copies to / from
2446 // physical registers, then finally copies from virtual registers to
2447 // virtual registers.
2448 for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
2449 CopyRec &TheCopy = ImpDefCopies[i];
2450 bool Again = false;
2451 if (!JoinCopy(TheCopy, Again))
2452 if (Again)
2453 TryAgain.push_back(TheCopy);
2455 for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
2456 CopyRec &TheCopy = PhysCopies[i];
2457 bool Again = false;
2458 if (!JoinCopy(TheCopy, Again))
2459 if (Again)
2460 TryAgain.push_back(TheCopy);
2462 for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
2463 CopyRec &TheCopy = VirtCopies[i];
2464 bool Again = false;
2465 if (!JoinCopy(TheCopy, Again))
2466 if (Again)
2467 TryAgain.push_back(TheCopy);
2471 void SimpleRegisterCoalescing::joinIntervals() {
2472 DEBUG(errs() << "********** JOINING INTERVALS ***********\n");
2474 if (NewHeuristic)
2475 JoinQueue = new JoinPriorityQueue<CopyRecSort>(this);
2477 std::vector<CopyRec> TryAgainList;
2478 if (loopInfo->empty()) {
2479 // If there are no loops in the function, join intervals in function order.
2480 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
2481 I != E; ++I)
2482 CopyCoalesceInMBB(I, TryAgainList);
2483 } else {
2484 // Otherwise, join intervals in inner loops before other intervals.
2485 // Unfortunately we can't just iterate over loop hierarchy here because
2486 // there may be more MBB's than BB's. Collect MBB's for sorting.
2488 // Join intervals in the function prolog first. We want to join physical
2489 // registers with virtual registers before the intervals got too long.
2490 std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
2491 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
2492 MachineBasicBlock *MBB = I;
2493 MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
2496 // Sort by loop depth.
2497 std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
2499 // Finally, join intervals in loop nest order.
2500 for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
2501 CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
2504 // Joining intervals can allow other intervals to be joined. Iteratively join
2505 // until we make no progress.
2506 if (NewHeuristic) {
2507 SmallVector<CopyRec, 16> TryAgain;
2508 bool ProgressMade = true;
2509 while (ProgressMade) {
2510 ProgressMade = false;
2511 while (!JoinQueue->empty()) {
2512 CopyRec R = JoinQueue->pop();
2513 bool Again = false;
2514 bool Success = JoinCopy(R, Again);
2515 if (Success)
2516 ProgressMade = true;
2517 else if (Again)
2518 TryAgain.push_back(R);
2521 if (ProgressMade) {
2522 while (!TryAgain.empty()) {
2523 JoinQueue->push(TryAgain.back());
2524 TryAgain.pop_back();
2528 } else {
2529 bool ProgressMade = true;
2530 while (ProgressMade) {
2531 ProgressMade = false;
2533 for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
2534 CopyRec &TheCopy = TryAgainList[i];
2535 if (TheCopy.MI) {
2536 bool Again = false;
2537 bool Success = JoinCopy(TheCopy, Again);
2538 if (Success || !Again) {
2539 TheCopy.MI = 0; // Mark this one as done.
2540 ProgressMade = true;
2547 if (NewHeuristic)
2548 delete JoinQueue;
2551 /// Return true if the two specified registers belong to different register
2552 /// classes. The registers may be either phys or virt regs.
2553 bool
2554 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
2555 unsigned RegB) const {
2556 // Get the register classes for the first reg.
2557 if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
2558 assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
2559 "Shouldn't consider two physregs!");
2560 return !mri_->getRegClass(RegB)->contains(RegA);
2563 // Compare against the regclass for the second reg.
2564 const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
2565 if (TargetRegisterInfo::isVirtualRegister(RegB)) {
2566 const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
2567 return RegClassA != RegClassB;
2569 return !RegClassA->contains(RegB);
2572 /// lastRegisterUse - Returns the last use of the specific register between
2573 /// cycles Start and End or NULL if there are no uses.
2574 MachineOperand *
2575 SimpleRegisterCoalescing::lastRegisterUse(MachineInstrIndex Start,
2576 MachineInstrIndex End,
2577 unsigned Reg,
2578 MachineInstrIndex &UseIdx) const{
2579 UseIdx = MachineInstrIndex();
2580 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2581 MachineOperand *LastUse = NULL;
2582 for (MachineRegisterInfo::use_iterator I = mri_->use_begin(Reg),
2583 E = mri_->use_end(); I != E; ++I) {
2584 MachineOperand &Use = I.getOperand();
2585 MachineInstr *UseMI = Use.getParent();
2586 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2587 if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
2588 SrcReg == DstReg)
2589 // Ignore identity copies.
2590 continue;
2591 MachineInstrIndex Idx = li_->getInstructionIndex(UseMI);
2592 if (Idx >= Start && Idx < End && Idx >= UseIdx) {
2593 LastUse = &Use;
2594 UseIdx = li_->getUseIndex(Idx);
2597 return LastUse;
2600 MachineInstrIndex s = Start;
2601 MachineInstrIndex e = li_->getBaseIndex(li_->getPrevSlot(End));
2602 while (e >= s) {
2603 // Skip deleted instructions
2604 MachineInstr *MI = li_->getInstructionFromIndex(e);
2605 while (e != MachineInstrIndex() && li_->getPrevIndex(e) >= s && !MI) {
2606 e = li_->getPrevIndex(e);
2607 MI = li_->getInstructionFromIndex(e);
2609 if (e < s || MI == NULL)
2610 return NULL;
2612 // Ignore identity copies.
2613 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2614 if (!(tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
2615 SrcReg == DstReg))
2616 for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
2617 MachineOperand &Use = MI->getOperand(i);
2618 if (Use.isReg() && Use.isUse() && Use.getReg() &&
2619 tri_->regsOverlap(Use.getReg(), Reg)) {
2620 UseIdx = li_->getUseIndex(e);
2621 return &Use;
2625 e = li_->getPrevIndex(e);
2628 return NULL;
2632 void SimpleRegisterCoalescing::printRegName(unsigned reg) const {
2633 if (TargetRegisterInfo::isPhysicalRegister(reg))
2634 errs() << tri_->getName(reg);
2635 else
2636 errs() << "%reg" << reg;
2639 void SimpleRegisterCoalescing::releaseMemory() {
2640 JoinedCopies.clear();
2641 ReMatCopies.clear();
2642 ReMatDefs.clear();
2645 bool SimpleRegisterCoalescing::isZeroLengthInterval(LiveInterval *li) const {
2646 for (LiveInterval::Ranges::const_iterator
2647 i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
2648 if (li_->getPrevIndex(i->end) > i->start)
2649 return false;
2650 return true;
2654 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
2655 mf_ = &fn;
2656 mri_ = &fn.getRegInfo();
2657 tm_ = &fn.getTarget();
2658 tri_ = tm_->getRegisterInfo();
2659 tii_ = tm_->getInstrInfo();
2660 li_ = &getAnalysis<LiveIntervals>();
2661 loopInfo = &getAnalysis<MachineLoopInfo>();
2663 DEBUG(errs() << "********** SIMPLE REGISTER COALESCING **********\n"
2664 << "********** Function: "
2665 << ((Value*)mf_->getFunction())->getName() << '\n');
2667 allocatableRegs_ = tri_->getAllocatableSet(fn);
2668 for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
2669 E = tri_->regclass_end(); I != E; ++I)
2670 allocatableRCRegs_.insert(std::make_pair(*I,
2671 tri_->getAllocatableSet(fn, *I)));
2673 // Join (coalesce) intervals if requested.
2674 if (EnableJoining) {
2675 joinIntervals();
2676 DEBUG({
2677 errs() << "********** INTERVALS POST JOINING **********\n";
2678 for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I){
2679 I->second->print(errs(), tri_);
2680 errs() << "\n";
2685 // Perform a final pass over the instructions and compute spill weights
2686 // and remove identity moves.
2687 SmallVector<unsigned, 4> DeadDefs;
2688 for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
2689 mbbi != mbbe; ++mbbi) {
2690 MachineBasicBlock* mbb = mbbi;
2691 unsigned loopDepth = loopInfo->getLoopDepth(mbb);
2693 for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
2694 mii != mie; ) {
2695 MachineInstr *MI = mii;
2696 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2697 if (JoinedCopies.count(MI)) {
2698 // Delete all coalesced copies.
2699 if (!tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
2700 assert((MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
2701 MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
2702 MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
2703 "Unrecognized copy instruction");
2704 DstReg = MI->getOperand(0).getReg();
2706 if (MI->registerDefIsDead(DstReg)) {
2707 LiveInterval &li = li_->getInterval(DstReg);
2708 if (!ShortenDeadCopySrcLiveRange(li, MI))
2709 ShortenDeadCopyLiveRange(li, MI);
2711 li_->RemoveMachineInstrFromMaps(MI);
2712 mii = mbbi->erase(mii);
2713 ++numPeep;
2714 continue;
2717 // Now check if this is a remat'ed def instruction which is now dead.
2718 if (ReMatDefs.count(MI)) {
2719 bool isDead = true;
2720 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2721 const MachineOperand &MO = MI->getOperand(i);
2722 if (!MO.isReg())
2723 continue;
2724 unsigned Reg = MO.getReg();
2725 if (!Reg)
2726 continue;
2727 if (TargetRegisterInfo::isVirtualRegister(Reg))
2728 DeadDefs.push_back(Reg);
2729 if (MO.isDead())
2730 continue;
2731 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
2732 !mri_->use_empty(Reg)) {
2733 isDead = false;
2734 break;
2737 if (isDead) {
2738 while (!DeadDefs.empty()) {
2739 unsigned DeadDef = DeadDefs.back();
2740 DeadDefs.pop_back();
2741 RemoveDeadDef(li_->getInterval(DeadDef), MI);
2743 li_->RemoveMachineInstrFromMaps(mii);
2744 mii = mbbi->erase(mii);
2745 continue;
2746 } else
2747 DeadDefs.clear();
2750 // If the move will be an identity move delete it
2751 bool isMove= tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
2752 if (isMove && SrcReg == DstReg) {
2753 if (li_->hasInterval(SrcReg)) {
2754 LiveInterval &RegInt = li_->getInterval(SrcReg);
2755 // If def of this move instruction is dead, remove its live range
2756 // from the dstination register's live interval.
2757 if (MI->registerDefIsDead(DstReg)) {
2758 if (!ShortenDeadCopySrcLiveRange(RegInt, MI))
2759 ShortenDeadCopyLiveRange(RegInt, MI);
2762 li_->RemoveMachineInstrFromMaps(MI);
2763 mii = mbbi->erase(mii);
2764 ++numPeep;
2765 } else {
2766 SmallSet<unsigned, 4> UniqueUses;
2767 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2768 const MachineOperand &mop = MI->getOperand(i);
2769 if (mop.isReg() && mop.getReg() &&
2770 TargetRegisterInfo::isVirtualRegister(mop.getReg())) {
2771 unsigned reg = mop.getReg();
2772 // Multiple uses of reg by the same instruction. It should not
2773 // contribute to spill weight again.
2774 if (UniqueUses.count(reg) != 0)
2775 continue;
2776 LiveInterval &RegInt = li_->getInterval(reg);
2777 RegInt.weight +=
2778 li_->getSpillWeight(mop.isDef(), mop.isUse(), loopDepth);
2779 UniqueUses.insert(reg);
2782 ++mii;
2787 for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
2788 LiveInterval &LI = *I->second;
2789 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
2790 // If the live interval length is essentially zero, i.e. in every live
2791 // range the use follows def immediately, it doesn't make sense to spill
2792 // it and hope it will be easier to allocate for this li.
2793 if (isZeroLengthInterval(&LI))
2794 LI.weight = HUGE_VALF;
2795 else {
2796 bool isLoad = false;
2797 SmallVector<LiveInterval*, 4> SpillIs;
2798 if (li_->isReMaterializable(LI, SpillIs, isLoad)) {
2799 // If all of the definitions of the interval are re-materializable,
2800 // it is a preferred candidate for spilling. If non of the defs are
2801 // loads, then it's potentially very cheap to re-materialize.
2802 // FIXME: this gets much more complicated once we support non-trivial
2803 // re-materialization.
2804 if (isLoad)
2805 LI.weight *= 0.9F;
2806 else
2807 LI.weight *= 0.5F;
2811 // Slightly prefer live interval that has been assigned a preferred reg.
2812 std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(LI.reg);
2813 if (Hint.first || Hint.second)
2814 LI.weight *= 1.01F;
2816 // Divide the weight of the interval by its size. This encourages
2817 // spilling of intervals that are large and have few uses, and
2818 // discourages spilling of small intervals with many uses.
2819 LI.weight /= li_->getApproximateInstructionCount(LI) * InstrSlots::NUM;
2823 DEBUG(dump());
2824 return true;
2827 /// print - Implement the dump method.
2828 void SimpleRegisterCoalescing::print(raw_ostream &O, const Module* m) const {
2829 li_->print(O, m);
2832 RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
2833 return new SimpleRegisterCoalescing();
2836 // Make sure that anything that uses RegisterCoalescer pulls in this file...
2837 DEFINING_FILE_FOR(SimpleRegisterCoalescing)