1 //===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This tool implements a just-in-time compiler for LLVM, allowing direct
11 // execution of LLVM bitcode in an efficient manner.
13 //===----------------------------------------------------------------------===//
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/GlobalVariable.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/ModuleProvider.h"
22 #include "llvm/CodeGen/JITCodeEmitter.h"
23 #include "llvm/CodeGen/MachineCodeInfo.h"
24 #include "llvm/ExecutionEngine/GenericValue.h"
25 #include "llvm/ExecutionEngine/JITEventListener.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetJITInfo.h"
29 #include "llvm/Support/Dwarf.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MutexGuard.h"
32 #include "llvm/System/DynamicLibrary.h"
33 #include "llvm/Config/config.h"
38 // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
39 // of atexit). It passes the address of linker generated symbol __dso_handle
41 // This configuration change happened at version 5330.
42 # include <AvailabilityMacros.h>
43 # if defined(MAC_OS_X_VERSION_10_4) && \
44 ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
45 (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
46 __APPLE_CC__ >= 5330))
47 # ifndef HAVE___DSO_HANDLE
48 # define HAVE___DSO_HANDLE 1
54 extern void *__dso_handle
__attribute__ ((__visibility__ ("hidden")));
59 static struct RegisterJIT
{
60 RegisterJIT() { JIT::Register(); }
65 extern "C" void LLVMLinkInJIT() {
69 #if defined(__GNUC__) && !defined(__ARM__EABI__)
71 // libgcc defines the __register_frame function to dynamically register new
72 // dwarf frames for exception handling. This functionality is not portable
73 // across compilers and is only provided by GCC. We use the __register_frame
74 // function here so that code generated by the JIT cooperates with the unwinding
75 // runtime of libgcc. When JITting with exception handling enable, LLVM
76 // generates dwarf frames and registers it to libgcc with __register_frame.
78 // The __register_frame function works with Linux.
80 // Unfortunately, this functionality seems to be in libgcc after the unwinding
81 // library of libgcc for darwin was written. The code for darwin overwrites the
82 // value updated by __register_frame with a value fetched with "keymgr".
83 // "keymgr" is an obsolete functionality, which should be rewritten some day.
84 // In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
85 // need a workaround in LLVM which uses the "keymgr" to dynamically modify the
86 // values of an opaque key, used by libgcc to find dwarf tables.
88 extern "C" void __register_frame(void*);
90 #if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
100 // LibgccObject - This is the structure defined in libgcc. There is no #include
101 // provided for this structure, so we also define it here. libgcc calls it
102 // "struct object". The structure is undocumented in libgcc.
103 struct LibgccObject
{
108 /// frame - Pointer to the exception table.
111 /// encoding - The encoding of the object?
114 unsigned long sorted
: 1;
115 unsigned long from_array
: 1;
116 unsigned long mixed_encoding
: 1;
117 unsigned long encoding
: 8;
118 unsigned long count
: 21;
123 /// fde_end - libgcc defines this field only if some macro is defined. We
124 /// include this field even if it may not there, to make libgcc happy.
127 /// next - At least we know it's a chained list!
128 struct LibgccObject
*next
;
131 // "kemgr" stuff. Apparently, all frame tables are stored there.
132 extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
133 extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
134 #define KEYMGR_GCC3_DW2_OBJ_LIST 302 /* Dwarf2 object list */
136 /// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
137 /// probably contains all dwarf tables that are loaded.
138 struct LibgccObjectInfo
{
140 /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
142 struct LibgccObject
* seenObjects
;
144 /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
146 struct LibgccObject
* unseenObjects
;
151 /// darwin_register_frame - Since __register_frame does not work with darwin's
152 /// libgcc,we provide our own function, which "tricks" libgcc by modifying the
153 /// "Dwarf2 object list" key.
154 void DarwinRegisterFrame(void* FrameBegin
) {
156 LibgccObjectInfo
* LOI
= (struct LibgccObjectInfo
*)
157 _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST
);
158 assert(LOI
&& "This should be preallocated by the runtime");
160 // Allocate a new LibgccObject to represent this frame. Deallocation of this
161 // object may be impossible: since darwin code in libgcc was written after
162 // the ability to dynamically register frames, things may crash if we
164 struct LibgccObject
* ob
= (struct LibgccObject
*)
165 malloc(sizeof(struct LibgccObject
));
167 // Do like libgcc for the values of the field.
168 ob
->unused1
= (void *)-1;
171 ob
->frame
= FrameBegin
;
173 ob
->encoding
.b
.encoding
= llvm::dwarf::DW_EH_PE_omit
;
175 // Put the info on both places, as libgcc uses the first or the the second
176 // field. Note that we rely on having two pointers here. If fde_end was a
177 // char, things would get complicated.
178 ob
->fde_end
= (char*)LOI
->unseenObjects
;
179 ob
->next
= LOI
->unseenObjects
;
181 // Update the key's unseenObjects list.
182 LOI
->unseenObjects
= ob
;
184 // Finally update the "key". Apparently, libgcc requires it.
185 _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST
,
194 /// createJIT - This is the factory method for creating a JIT for the current
195 /// machine, it does not fall back to the interpreter. This takes ownership
196 /// of the module provider.
197 ExecutionEngine
*ExecutionEngine::createJIT(ModuleProvider
*MP
,
198 std::string
*ErrorStr
,
199 JITMemoryManager
*JMM
,
200 CodeGenOpt::Level OptLevel
,
202 return JIT::createJIT(MP
, ErrorStr
, JMM
, OptLevel
, GVsWithCode
);
205 ExecutionEngine
*JIT::createJIT(ModuleProvider
*MP
,
206 std::string
*ErrorStr
,
207 JITMemoryManager
*JMM
,
208 CodeGenOpt::Level OptLevel
,
210 // Make sure we can resolve symbols in the program as well. The zero arg
211 // to the function tells DynamicLibrary to load the program, not a library.
212 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr
))
215 // Pick a target either via -march or by guessing the native arch.
216 TargetMachine
*TM
= JIT::selectTarget(MP
, ErrorStr
);
217 if (!TM
|| (ErrorStr
&& ErrorStr
->length() > 0)) return 0;
219 // If the target supports JIT code generation, create a the JIT.
220 if (TargetJITInfo
*TJ
= TM
->getJITInfo()) {
221 return new JIT(MP
, *TM
, *TJ
, JMM
, OptLevel
, GVsWithCode
);
224 *ErrorStr
= "target does not support JIT code generation";
229 JIT::JIT(ModuleProvider
*MP
, TargetMachine
&tm
, TargetJITInfo
&tji
,
230 JITMemoryManager
*JMM
, CodeGenOpt::Level OptLevel
, bool GVsWithCode
)
231 : ExecutionEngine(MP
), TM(tm
), TJI(tji
), AllocateGVsWithCode(GVsWithCode
) {
232 setTargetData(TM
.getTargetData());
234 jitstate
= new JITState(MP
);
237 JCE
= createEmitter(*this, JMM
);
240 MutexGuard
locked(lock
);
241 FunctionPassManager
&PM
= jitstate
->getPM(locked
);
242 PM
.add(new TargetData(*TM
.getTargetData()));
244 // Turn the machine code intermediate representation into bytes in memory that
246 if (TM
.addPassesToEmitMachineCode(PM
, *JCE
, OptLevel
)) {
247 llvm_report_error("Target does not support machine code emission!");
250 // Register routine for informing unwinding runtime about new EH frames
251 #if defined(__GNUC__) && !defined(__ARM_EABI__)
253 struct LibgccObjectInfo
* LOI
= (struct LibgccObjectInfo
*)
254 _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST
);
256 // The key is created on demand, and libgcc creates it the first time an
257 // exception occurs. Since we need the key to register frames, we create
260 LOI
= (LibgccObjectInfo
*)calloc(sizeof(struct LibgccObjectInfo
), 1);
261 _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST
, LOI
);
262 InstallExceptionTableRegister(DarwinRegisterFrame
);
264 InstallExceptionTableRegister(__register_frame
);
268 // Initialize passes.
269 PM
.doInitialization();
278 /// addModuleProvider - Add a new ModuleProvider to the JIT. If we previously
279 /// removed the last ModuleProvider, we need re-initialize jitstate with a valid
281 void JIT::addModuleProvider(ModuleProvider
*MP
) {
282 MutexGuard
locked(lock
);
284 if (Modules
.empty()) {
285 assert(!jitstate
&& "jitstate should be NULL if Modules vector is empty!");
287 jitstate
= new JITState(MP
);
289 FunctionPassManager
&PM
= jitstate
->getPM(locked
);
290 PM
.add(new TargetData(*TM
.getTargetData()));
292 // Turn the machine code intermediate representation into bytes in memory
293 // that may be executed.
294 if (TM
.addPassesToEmitMachineCode(PM
, *JCE
, CodeGenOpt::Default
)) {
295 llvm_report_error("Target does not support machine code emission!");
298 // Initialize passes.
299 PM
.doInitialization();
302 ExecutionEngine::addModuleProvider(MP
);
305 /// removeModuleProvider - If we are removing the last ModuleProvider,
306 /// invalidate the jitstate since the PassManager it contains references a
307 /// released ModuleProvider.
308 Module
*JIT::removeModuleProvider(ModuleProvider
*MP
, std::string
*E
) {
309 Module
*result
= ExecutionEngine::removeModuleProvider(MP
, E
);
311 MutexGuard
locked(lock
);
313 if (jitstate
->getMP() == MP
) {
318 if (!jitstate
&& !Modules
.empty()) {
319 jitstate
= new JITState(Modules
[0]);
321 FunctionPassManager
&PM
= jitstate
->getPM(locked
);
322 PM
.add(new TargetData(*TM
.getTargetData()));
324 // Turn the machine code intermediate representation into bytes in memory
325 // that may be executed.
326 if (TM
.addPassesToEmitMachineCode(PM
, *JCE
, CodeGenOpt::Default
)) {
327 llvm_report_error("Target does not support machine code emission!");
330 // Initialize passes.
331 PM
.doInitialization();
336 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
337 /// and deletes the ModuleProvider and owned Module. Avoids materializing
338 /// the underlying module.
339 void JIT::deleteModuleProvider(ModuleProvider
*MP
, std::string
*E
) {
340 ExecutionEngine::deleteModuleProvider(MP
, E
);
342 MutexGuard
locked(lock
);
344 if (jitstate
->getMP() == MP
) {
349 if (!jitstate
&& !Modules
.empty()) {
350 jitstate
= new JITState(Modules
[0]);
352 FunctionPassManager
&PM
= jitstate
->getPM(locked
);
353 PM
.add(new TargetData(*TM
.getTargetData()));
355 // Turn the machine code intermediate representation into bytes in memory
356 // that may be executed.
357 if (TM
.addPassesToEmitMachineCode(PM
, *JCE
, CodeGenOpt::Default
)) {
358 llvm_report_error("Target does not support machine code emission!");
361 // Initialize passes.
362 PM
.doInitialization();
366 /// run - Start execution with the specified function and arguments.
368 GenericValue
JIT::runFunction(Function
*F
,
369 const std::vector
<GenericValue
> &ArgValues
) {
370 assert(F
&& "Function *F was null at entry to run()");
372 void *FPtr
= getPointerToFunction(F
);
373 assert(FPtr
&& "Pointer to fn's code was null after getPointerToFunction");
374 const FunctionType
*FTy
= F
->getFunctionType();
375 const Type
*RetTy
= FTy
->getReturnType();
377 assert((FTy
->getNumParams() == ArgValues
.size() ||
378 (FTy
->isVarArg() && FTy
->getNumParams() <= ArgValues
.size())) &&
379 "Wrong number of arguments passed into function!");
380 assert(FTy
->getNumParams() == ArgValues
.size() &&
381 "This doesn't support passing arguments through varargs (yet)!");
383 // Handle some common cases first. These cases correspond to common `main'
385 if (RetTy
== Type::getInt32Ty(F
->getContext()) ||
386 RetTy
== Type::getVoidTy(F
->getContext())) {
387 switch (ArgValues
.size()) {
389 if (FTy
->getParamType(0) == Type::getInt32Ty(F
->getContext()) &&
390 isa
<PointerType
>(FTy
->getParamType(1)) &&
391 isa
<PointerType
>(FTy
->getParamType(2))) {
392 int (*PF
)(int, char **, const char **) =
393 (int(*)(int, char **, const char **))(intptr_t)FPtr
;
395 // Call the function.
397 rv
.IntVal
= APInt(32, PF(ArgValues
[0].IntVal
.getZExtValue(),
398 (char **)GVTOP(ArgValues
[1]),
399 (const char **)GVTOP(ArgValues
[2])));
404 if (FTy
->getParamType(0) == Type::getInt32Ty(F
->getContext()) &&
405 isa
<PointerType
>(FTy
->getParamType(1))) {
406 int (*PF
)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr
;
408 // Call the function.
410 rv
.IntVal
= APInt(32, PF(ArgValues
[0].IntVal
.getZExtValue(),
411 (char **)GVTOP(ArgValues
[1])));
416 if (FTy
->getNumParams() == 1 &&
417 FTy
->getParamType(0) == Type::getInt32Ty(F
->getContext())) {
419 int (*PF
)(int) = (int(*)(int))(intptr_t)FPtr
;
420 rv
.IntVal
= APInt(32, PF(ArgValues
[0].IntVal
.getZExtValue()));
427 // Handle cases where no arguments are passed first.
428 if (ArgValues
.empty()) {
430 switch (RetTy
->getTypeID()) {
431 default: llvm_unreachable("Unknown return type for function call!");
432 case Type::IntegerTyID
: {
433 unsigned BitWidth
= cast
<IntegerType
>(RetTy
)->getBitWidth();
435 rv
.IntVal
= APInt(BitWidth
, ((bool(*)())(intptr_t)FPtr
)());
436 else if (BitWidth
<= 8)
437 rv
.IntVal
= APInt(BitWidth
, ((char(*)())(intptr_t)FPtr
)());
438 else if (BitWidth
<= 16)
439 rv
.IntVal
= APInt(BitWidth
, ((short(*)())(intptr_t)FPtr
)());
440 else if (BitWidth
<= 32)
441 rv
.IntVal
= APInt(BitWidth
, ((int(*)())(intptr_t)FPtr
)());
442 else if (BitWidth
<= 64)
443 rv
.IntVal
= APInt(BitWidth
, ((int64_t(*)())(intptr_t)FPtr
)());
445 llvm_unreachable("Integer types > 64 bits not supported");
449 rv
.IntVal
= APInt(32, ((int(*)())(intptr_t)FPtr
)());
451 case Type::FloatTyID
:
452 rv
.FloatVal
= ((float(*)())(intptr_t)FPtr
)();
454 case Type::DoubleTyID
:
455 rv
.DoubleVal
= ((double(*)())(intptr_t)FPtr
)();
457 case Type::X86_FP80TyID
:
458 case Type::FP128TyID
:
459 case Type::PPC_FP128TyID
:
460 llvm_unreachable("long double not supported yet");
462 case Type::PointerTyID
:
463 return PTOGV(((void*(*)())(intptr_t)FPtr
)());
467 // Okay, this is not one of our quick and easy cases. Because we don't have a
468 // full FFI, we have to codegen a nullary stub function that just calls the
469 // function we are interested in, passing in constants for all of the
470 // arguments. Make this function and return.
472 // First, create the function.
473 FunctionType
*STy
=FunctionType::get(RetTy
, false);
474 Function
*Stub
= Function::Create(STy
, Function::InternalLinkage
, "",
477 // Insert a basic block.
478 BasicBlock
*StubBB
= BasicBlock::Create(F
->getContext(), "", Stub
);
480 // Convert all of the GenericValue arguments over to constants. Note that we
481 // currently don't support varargs.
482 SmallVector
<Value
*, 8> Args
;
483 for (unsigned i
= 0, e
= ArgValues
.size(); i
!= e
; ++i
) {
485 const Type
*ArgTy
= FTy
->getParamType(i
);
486 const GenericValue
&AV
= ArgValues
[i
];
487 switch (ArgTy
->getTypeID()) {
488 default: llvm_unreachable("Unknown argument type for function call!");
489 case Type::IntegerTyID
:
490 C
= ConstantInt::get(F
->getContext(), AV
.IntVal
);
492 case Type::FloatTyID
:
493 C
= ConstantFP::get(F
->getContext(), APFloat(AV
.FloatVal
));
495 case Type::DoubleTyID
:
496 C
= ConstantFP::get(F
->getContext(), APFloat(AV
.DoubleVal
));
498 case Type::PPC_FP128TyID
:
499 case Type::X86_FP80TyID
:
500 case Type::FP128TyID
:
501 C
= ConstantFP::get(F
->getContext(), APFloat(AV
.IntVal
));
503 case Type::PointerTyID
:
504 void *ArgPtr
= GVTOP(AV
);
505 if (sizeof(void*) == 4)
506 C
= ConstantInt::get(Type::getInt32Ty(F
->getContext()),
507 (int)(intptr_t)ArgPtr
);
509 C
= ConstantInt::get(Type::getInt64Ty(F
->getContext()),
511 // Cast the integer to pointer
512 C
= ConstantExpr::getIntToPtr(C
, ArgTy
);
518 CallInst
*TheCall
= CallInst::Create(F
, Args
.begin(), Args
.end(),
520 TheCall
->setCallingConv(F
->getCallingConv());
521 TheCall
->setTailCall();
522 if (TheCall
->getType() != Type::getVoidTy(F
->getContext()))
523 // Return result of the call.
524 ReturnInst::Create(F
->getContext(), TheCall
, StubBB
);
526 ReturnInst::Create(F
->getContext(), StubBB
); // Just return void.
528 // Finally, return the value returned by our nullary stub function.
529 return runFunction(Stub
, std::vector
<GenericValue
>());
532 void JIT::RegisterJITEventListener(JITEventListener
*L
) {
535 MutexGuard
locked(lock
);
536 EventListeners
.push_back(L
);
538 void JIT::UnregisterJITEventListener(JITEventListener
*L
) {
541 MutexGuard
locked(lock
);
542 std::vector
<JITEventListener
*>::reverse_iterator I
=
543 std::find(EventListeners
.rbegin(), EventListeners
.rend(), L
);
544 if (I
!= EventListeners
.rend()) {
545 std::swap(*I
, EventListeners
.back());
546 EventListeners
.pop_back();
549 void JIT::NotifyFunctionEmitted(
551 void *Code
, size_t Size
,
552 const JITEvent_EmittedFunctionDetails
&Details
) {
553 MutexGuard
locked(lock
);
554 for (unsigned I
= 0, S
= EventListeners
.size(); I
< S
; ++I
) {
555 EventListeners
[I
]->NotifyFunctionEmitted(F
, Code
, Size
, Details
);
559 void JIT::NotifyFreeingMachineCode(const Function
&F
, void *OldPtr
) {
560 MutexGuard
locked(lock
);
561 for (unsigned I
= 0, S
= EventListeners
.size(); I
< S
; ++I
) {
562 EventListeners
[I
]->NotifyFreeingMachineCode(F
, OldPtr
);
566 /// runJITOnFunction - Run the FunctionPassManager full of
567 /// just-in-time compilation passes on F, hopefully filling in
568 /// GlobalAddress[F] with the address of F's machine code.
570 void JIT::runJITOnFunction(Function
*F
, MachineCodeInfo
*MCI
) {
571 MutexGuard
locked(lock
);
573 class MCIListener
: public JITEventListener
{
574 MachineCodeInfo
*const MCI
;
576 MCIListener(MachineCodeInfo
*mci
) : MCI(mci
) {}
577 virtual void NotifyFunctionEmitted(const Function
&,
578 void *Code
, size_t Size
,
579 const EmittedFunctionDetails
&) {
580 MCI
->setAddress(Code
);
584 MCIListener
MCIL(MCI
);
585 RegisterJITEventListener(&MCIL
);
587 runJITOnFunctionUnlocked(F
, locked
);
589 UnregisterJITEventListener(&MCIL
);
592 void JIT::runJITOnFunctionUnlocked(Function
*F
, const MutexGuard
&locked
) {
593 static bool isAlreadyCodeGenerating
= false;
594 assert(!isAlreadyCodeGenerating
&& "Error: Recursive compilation detected!");
597 isAlreadyCodeGenerating
= true;
598 jitstate
->getPM(locked
).run(*F
);
599 isAlreadyCodeGenerating
= false;
601 // If the function referred to another function that had not yet been
602 // read from bitcode, but we are jitting non-lazily, emit it now.
603 while (!jitstate
->getPendingFunctions(locked
).empty()) {
604 Function
*PF
= jitstate
->getPendingFunctions(locked
).back();
605 jitstate
->getPendingFunctions(locked
).pop_back();
608 isAlreadyCodeGenerating
= true;
609 jitstate
->getPM(locked
).run(*PF
);
610 isAlreadyCodeGenerating
= false;
612 // Now that the function has been jitted, ask the JITEmitter to rewrite
613 // the stub with real address of the function.
614 updateFunctionStub(PF
);
617 // If the JIT is configured to emit info so that dlsym can be used to
618 // rewrite stubs to external globals, do so now.
619 if (areDlsymStubsEnabled() && isLazyCompilationDisabled())
620 updateDlsymStubTable();
623 /// getPointerToFunction - This method is used to get the address of the
624 /// specified function, compiling it if neccesary.
626 void *JIT::getPointerToFunction(Function
*F
) {
628 if (void *Addr
= getPointerToGlobalIfAvailable(F
))
629 return Addr
; // Check if function already code gen'd
631 MutexGuard
locked(lock
);
633 // Now that this thread owns the lock, check if another thread has already
634 // code gen'd the function.
635 if (void *Addr
= getPointerToGlobalIfAvailable(F
))
638 // Make sure we read in the function if it exists in this Module.
639 if (F
->hasNotBeenReadFromBitcode()) {
640 // Determine the module provider this function is provided by.
641 Module
*M
= F
->getParent();
642 ModuleProvider
*MP
= 0;
643 for (unsigned i
= 0, e
= Modules
.size(); i
!= e
; ++i
) {
644 if (Modules
[i
]->getModule() == M
) {
649 assert(MP
&& "Function isn't in a module we know about!");
651 std::string ErrorMsg
;
652 if (MP
->materializeFunction(F
, &ErrorMsg
)) {
653 llvm_report_error("Error reading function '" + F
->getName()+
654 "' from bitcode file: " + ErrorMsg
);
657 // Now retry to get the address.
658 if (void *Addr
= getPointerToGlobalIfAvailable(F
))
662 if (F
->isDeclaration()) {
663 bool AbortOnFailure
=
664 !areDlsymStubsEnabled() && !F
->hasExternalWeakLinkage();
665 void *Addr
= getPointerToNamedFunction(F
->getName(), AbortOnFailure
);
666 addGlobalMapping(F
, Addr
);
670 runJITOnFunctionUnlocked(F
, locked
);
672 void *Addr
= getPointerToGlobalIfAvailable(F
);
673 assert(Addr
&& "Code generation didn't add function to GlobalAddress table!");
677 /// getOrEmitGlobalVariable - Return the address of the specified global
678 /// variable, possibly emitting it to memory if needed. This is used by the
680 void *JIT::getOrEmitGlobalVariable(const GlobalVariable
*GV
) {
681 MutexGuard
locked(lock
);
683 void *Ptr
= getPointerToGlobalIfAvailable(GV
);
686 // If the global is external, just remember the address.
687 if (GV
->isDeclaration()) {
688 #if HAVE___DSO_HANDLE
689 if (GV
->getName() == "__dso_handle")
690 return (void*)&__dso_handle
;
692 Ptr
= sys::DynamicLibrary::SearchForAddressOfSymbol(GV
->getName());
693 if (Ptr
== 0 && !areDlsymStubsEnabled()) {
694 llvm_report_error("Could not resolve external global address: "
697 addGlobalMapping(GV
, Ptr
);
699 // If the global hasn't been emitted to memory yet, allocate space and
700 // emit it into memory.
701 Ptr
= getMemoryForGV(GV
);
702 addGlobalMapping(GV
, Ptr
);
703 EmitGlobalVariable(GV
); // Initialize the variable.
708 /// recompileAndRelinkFunction - This method is used to force a function
709 /// which has already been compiled, to be compiled again, possibly
710 /// after it has been modified. Then the entry to the old copy is overwritten
711 /// with a branch to the new copy. If there was no old copy, this acts
712 /// just like JIT::getPointerToFunction().
714 void *JIT::recompileAndRelinkFunction(Function
*F
) {
715 void *OldAddr
= getPointerToGlobalIfAvailable(F
);
717 // If it's not already compiled there is no reason to patch it up.
718 if (OldAddr
== 0) { return getPointerToFunction(F
); }
720 // Delete the old function mapping.
721 addGlobalMapping(F
, 0);
723 // Recodegen the function
726 // Update state, forward the old function to the new function.
727 void *Addr
= getPointerToGlobalIfAvailable(F
);
728 assert(Addr
&& "Code generation didn't add function to GlobalAddress table!");
729 TJI
.replaceMachineCodeForFunction(OldAddr
, Addr
);
733 /// getMemoryForGV - This method abstracts memory allocation of global
734 /// variable so that the JIT can allocate thread local variables depending
737 char* JIT::getMemoryForGV(const GlobalVariable
* GV
) {
740 // GlobalVariable's which are not "constant" will cause trouble in a server
741 // situation. It's returned in the same block of memory as code which may
743 if (isGVCompilationDisabled() && !GV
->isConstant()) {
744 llvm_report_error("Compilation of non-internal GlobalValue is disabled!");
747 // Some applications require globals and code to live together, so they may
748 // be allocated into the same buffer, but in general globals are allocated
749 // through the memory manager which puts them near the code but not in the
751 const Type
*GlobalType
= GV
->getType()->getElementType();
752 size_t S
= getTargetData()->getTypeAllocSize(GlobalType
);
753 size_t A
= getTargetData()->getPreferredAlignment(GV
);
754 if (GV
->isThreadLocal()) {
755 MutexGuard
locked(lock
);
756 Ptr
= TJI
.allocateThreadLocalMemory(S
);
757 } else if (TJI
.allocateSeparateGVMemory()) {
759 Ptr
= (char*)malloc(S
);
761 // Allocate S+A bytes of memory, then use an aligned pointer within that
763 Ptr
= (char*)malloc(S
+A
);
764 unsigned MisAligned
= ((intptr_t)Ptr
& (A
-1));
765 Ptr
= Ptr
+ (MisAligned
? (A
-MisAligned
) : 0);
767 } else if (AllocateGVsWithCode
) {
768 Ptr
= (char*)JCE
->allocateSpace(S
, A
);
770 Ptr
= (char*)JCE
->allocateGlobal(S
, A
);
775 void JIT::addPendingFunction(Function
*F
) {
776 MutexGuard
locked(lock
);
777 jitstate
->getPendingFunctions(locked
).push_back(F
);
781 JITEventListener::~JITEventListener() {}