1 //===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the target-independent ELF writer. This file writes out
11 // the ELF file in the following order:
14 // #2. '.text' section
15 // #3. '.data' section
16 // #4. '.bss' section (conceptual position in file)
18 // #X. '.shstrtab' section
21 // The entries in the section table are laid out as:
22 // #0. Null entry [required]
23 // #1. ".text" entry - the program code
24 // #2. ".data" entry - global variables with initializers. [ if needed ]
25 // #3. ".bss" entry - global variables without initializers. [ if needed ]
27 // #N. ".shstrtab" entry - String table for the section names.
29 //===----------------------------------------------------------------------===//
31 #define DEBUG_TYPE "elfwriter"
33 #include "ELFWriter.h"
34 #include "ELFCodeEmitter.h"
35 #include "llvm/Constants.h"
36 #include "llvm/Module.h"
37 #include "llvm/PassManager.h"
38 #include "llvm/DerivedTypes.h"
39 #include "llvm/CodeGen/BinaryObject.h"
40 #include "llvm/CodeGen/FileWriters.h"
41 #include "llvm/CodeGen/MachineCodeEmitter.h"
42 #include "llvm/CodeGen/ObjectCodeEmitter.h"
43 #include "llvm/CodeGen/MachineCodeEmitter.h"
44 #include "llvm/CodeGen/MachineConstantPool.h"
45 #include "llvm/MC/MCContext.h"
46 #include "llvm/MC/MCSectionELF.h"
47 #include "llvm/Target/TargetAsmInfo.h"
48 #include "llvm/Target/TargetData.h"
49 #include "llvm/Target/TargetELFWriterInfo.h"
50 #include "llvm/Target/TargetLowering.h"
51 #include "llvm/Target/TargetLoweringObjectFile.h"
52 #include "llvm/Target/TargetMachine.h"
53 #include "llvm/Support/Mangler.h"
54 #include "llvm/Support/Streams.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
61 char ELFWriter::ID
= 0;
63 /// AddELFWriter - Add the ELF writer to the function pass manager
64 ObjectCodeEmitter
*llvm::AddELFWriter(PassManagerBase
&PM
,
67 ELFWriter
*EW
= new ELFWriter(O
, TM
);
69 return EW
->getObjectCodeEmitter();
72 //===----------------------------------------------------------------------===//
73 // ELFWriter Implementation
74 //===----------------------------------------------------------------------===//
76 ELFWriter::ELFWriter(raw_ostream
&o
, TargetMachine
&tm
)
77 : MachineFunctionPass(&ID
), O(o
), TM(tm
),
78 OutContext(*new MCContext()),
79 TLOF(TM
.getTargetLowering()->getObjFileLowering()),
80 is64Bit(TM
.getTargetData()->getPointerSizeInBits() == 64),
81 isLittleEndian(TM
.getTargetData()->isLittleEndian()),
82 ElfHdr(isLittleEndian
, is64Bit
) {
84 TAI
= TM
.getTargetAsmInfo();
85 TEW
= TM
.getELFWriterInfo();
87 // Create the object code emitter object for this target.
88 ElfCE
= new ELFCodeEmitter(*this);
90 // Inital number of sections
94 ELFWriter::~ELFWriter() {
99 // doInitialization - Emit the file header and all of the global variables for
100 // the module to the ELF file.
101 bool ELFWriter::doInitialization(Module
&M
) {
102 // Initialize TargetLoweringObjectFile.
103 const_cast<TargetLoweringObjectFile
&>(TLOF
).Initialize(OutContext
, TM
);
105 Mang
= new Mangler(M
);
109 // Fields e_shnum e_shstrndx are only known after all section have
110 // been emitted. They locations in the ouput buffer are recorded so
111 // to be patched up later.
115 // emitWord method behaves differently for ELF32 and ELF64, writing
116 // 4 bytes in the former and 8 in the last for *_off and *_addr elf types
118 ElfHdr
.emitByte(0x7f); // e_ident[EI_MAG0]
119 ElfHdr
.emitByte('E'); // e_ident[EI_MAG1]
120 ElfHdr
.emitByte('L'); // e_ident[EI_MAG2]
121 ElfHdr
.emitByte('F'); // e_ident[EI_MAG3]
123 ElfHdr
.emitByte(TEW
->getEIClass()); // e_ident[EI_CLASS]
124 ElfHdr
.emitByte(TEW
->getEIData()); // e_ident[EI_DATA]
125 ElfHdr
.emitByte(EV_CURRENT
); // e_ident[EI_VERSION]
126 ElfHdr
.emitAlignment(16); // e_ident[EI_NIDENT-EI_PAD]
128 ElfHdr
.emitWord16(ET_REL
); // e_type
129 ElfHdr
.emitWord16(TEW
->getEMachine()); // e_machine = target
130 ElfHdr
.emitWord32(EV_CURRENT
); // e_version
131 ElfHdr
.emitWord(0); // e_entry, no entry point in .o file
132 ElfHdr
.emitWord(0); // e_phoff, no program header for .o
133 ELFHdr_e_shoff_Offset
= ElfHdr
.size();
134 ElfHdr
.emitWord(0); // e_shoff = sec hdr table off in bytes
135 ElfHdr
.emitWord32(TEW
->getEFlags()); // e_flags = whatever the target wants
136 ElfHdr
.emitWord16(TEW
->getHdrSize()); // e_ehsize = ELF header size
137 ElfHdr
.emitWord16(0); // e_phentsize = prog header entry size
138 ElfHdr
.emitWord16(0); // e_phnum = # prog header entries = 0
140 // e_shentsize = Section header entry size
141 ElfHdr
.emitWord16(TEW
->getSHdrSize());
143 // e_shnum = # of section header ents
144 ELFHdr_e_shnum_Offset
= ElfHdr
.size();
145 ElfHdr
.emitWord16(0); // Placeholder
147 // e_shstrndx = Section # of '.shstrtab'
148 ELFHdr_e_shstrndx_Offset
= ElfHdr
.size();
149 ElfHdr
.emitWord16(0); // Placeholder
151 // Add the null section, which is required to be first in the file.
154 // The first entry in the symtab is the null symbol and the second
155 // is a local symbol containing the module/file name
156 SymbolList
.push_back(new ELFSym());
157 SymbolList
.push_back(ELFSym::getFileSym());
162 // AddPendingGlobalSymbol - Add a global to be processed and to
163 // the global symbol lookup, use a zero index because the table
164 // index will be determined later.
165 void ELFWriter::AddPendingGlobalSymbol(const GlobalValue
*GV
,
166 bool AddToLookup
/* = false */) {
167 PendingGlobals
.insert(GV
);
169 GblSymLookup
[GV
] = 0;
172 // AddPendingExternalSymbol - Add the external to be processed
173 // and to the external symbol lookup, use a zero index because
174 // the symbol table index will be determined later.
175 void ELFWriter::AddPendingExternalSymbol(const char *External
) {
176 PendingExternals
.insert(External
);
177 ExtSymLookup
[External
] = 0;
180 ELFSection
&ELFWriter::getDataSection() {
181 const MCSectionELF
*Data
= (const MCSectionELF
*)TLOF
.getDataSection();
182 return getSection(Data
->getSectionName(), Data
->getType(),
183 Data
->getFlags(), 4);
186 ELFSection
&ELFWriter::getBSSSection() {
187 const MCSectionELF
*BSS
= (const MCSectionELF
*)TLOF
.getBSSSection();
188 return getSection(BSS
->getSectionName(), BSS
->getType(), BSS
->getFlags(), 4);
191 // getCtorSection - Get the static constructor section
192 ELFSection
&ELFWriter::getCtorSection() {
193 const MCSectionELF
*Ctor
= (const MCSectionELF
*)TLOF
.getStaticCtorSection();
194 return getSection(Ctor
->getSectionName(), Ctor
->getType(), Ctor
->getFlags());
197 // getDtorSection - Get the static destructor section
198 ELFSection
&ELFWriter::getDtorSection() {
199 const MCSectionELF
*Dtor
= (const MCSectionELF
*)TLOF
.getStaticDtorSection();
200 return getSection(Dtor
->getSectionName(), Dtor
->getType(), Dtor
->getFlags());
203 // getTextSection - Get the text section for the specified function
204 ELFSection
&ELFWriter::getTextSection(Function
*F
) {
205 const MCSectionELF
*Text
=
206 (const MCSectionELF
*)TLOF
.SectionForGlobal(F
, Mang
, TM
);
207 return getSection(Text
->getSectionName(), Text
->getType(), Text
->getFlags());
210 // getJumpTableSection - Get a read only section for constants when
211 // emitting jump tables. TODO: add PIC support
212 ELFSection
&ELFWriter::getJumpTableSection() {
213 const MCSectionELF
*JT
=
214 (const MCSectionELF
*)TLOF
.getSectionForConstant(SectionKind::getReadOnly());
215 return getSection(JT
->getSectionName(), JT
->getType(), JT
->getFlags(),
216 TM
.getTargetData()->getPointerABIAlignment());
219 // getConstantPoolSection - Get a constant pool section based on the machine
220 // constant pool entry type and relocation info.
221 ELFSection
&ELFWriter::getConstantPoolSection(MachineConstantPoolEntry
&CPE
) {
223 switch (CPE
.getRelocationInfo()) {
224 default: llvm_unreachable("Unknown section kind");
225 case 2: Kind
= SectionKind::getReadOnlyWithRel(); break;
227 Kind
= SectionKind::getReadOnlyWithRelLocal();
230 switch (TM
.getTargetData()->getTypeAllocSize(CPE
.getType())) {
231 case 4: Kind
= SectionKind::getMergeableConst4(); break;
232 case 8: Kind
= SectionKind::getMergeableConst8(); break;
233 case 16: Kind
= SectionKind::getMergeableConst16(); break;
234 default: Kind
= SectionKind::getMergeableConst(); break;
238 const MCSectionELF
*CPSect
=
239 (const MCSectionELF
*)TLOF
.getSectionForConstant(Kind
);
240 return getSection(CPSect
->getSectionName(), CPSect
->getType(),
241 CPSect
->getFlags(), CPE
.getAlignment());
244 // getRelocSection - Return the relocation section of section 'S'. 'RelA'
245 // is true if the relocation section contains entries with addends.
246 ELFSection
&ELFWriter::getRelocSection(ELFSection
&S
) {
247 unsigned SectionType
= TEW
->hasRelocationAddend() ?
248 ELFSection::SHT_RELA
: ELFSection::SHT_REL
;
250 std::string
SectionName(".rel");
251 if (TEW
->hasRelocationAddend())
252 SectionName
.append("a");
253 SectionName
.append(S
.getName());
255 return getSection(SectionName
, SectionType
, 0, TEW
->getPrefELFAlignment());
258 // getGlobalELFVisibility - Returns the ELF specific visibility type
259 unsigned ELFWriter::getGlobalELFVisibility(const GlobalValue
*GV
) {
260 switch (GV
->getVisibility()) {
262 llvm_unreachable("unknown visibility type");
263 case GlobalValue::DefaultVisibility
:
264 return ELFSym::STV_DEFAULT
;
265 case GlobalValue::HiddenVisibility
:
266 return ELFSym::STV_HIDDEN
;
267 case GlobalValue::ProtectedVisibility
:
268 return ELFSym::STV_PROTECTED
;
273 // getGlobalELFBinding - Returns the ELF specific binding type
274 unsigned ELFWriter::getGlobalELFBinding(const GlobalValue
*GV
) {
275 if (GV
->hasInternalLinkage())
276 return ELFSym::STB_LOCAL
;
278 if (GV
->isWeakForLinker() && !GV
->hasCommonLinkage())
279 return ELFSym::STB_WEAK
;
281 return ELFSym::STB_GLOBAL
;
284 // getGlobalELFType - Returns the ELF specific type for a global
285 unsigned ELFWriter::getGlobalELFType(const GlobalValue
*GV
) {
286 if (GV
->isDeclaration())
287 return ELFSym::STT_NOTYPE
;
289 if (isa
<Function
>(GV
))
290 return ELFSym::STT_FUNC
;
292 return ELFSym::STT_OBJECT
;
295 // IsELFUndefSym - True if the global value must be marked as a symbol
296 // which points to a SHN_UNDEF section. This means that the symbol has
297 // no definition on the module.
298 static bool IsELFUndefSym(const GlobalValue
*GV
) {
299 return GV
->isDeclaration() || (isa
<Function
>(GV
));
302 // AddToSymbolList - Update the symbol lookup and If the symbol is
303 // private add it to PrivateSyms list, otherwise to SymbolList.
304 void ELFWriter::AddToSymbolList(ELFSym
*GblSym
) {
305 assert(GblSym
->isGlobalValue() && "Symbol must be a global value");
307 const GlobalValue
*GV
= GblSym
->getGlobalValue();
308 if (GV
->hasPrivateLinkage()) {
309 // For a private symbols, keep track of the index inside
310 // the private list since it will never go to the symbol
311 // table and won't be patched up later.
312 PrivateSyms
.push_back(GblSym
);
313 GblSymLookup
[GV
] = PrivateSyms
.size()-1;
315 // Non private symbol are left with zero indices until
316 // they are patched up during the symbol table emition
317 // (where the indicies are created).
318 SymbolList
.push_back(GblSym
);
319 GblSymLookup
[GV
] = 0;
323 // EmitGlobal - Choose the right section for global and emit it
324 void ELFWriter::EmitGlobal(const GlobalValue
*GV
) {
326 // Check if the referenced symbol is already emitted
327 if (GblSymLookup
.find(GV
) != GblSymLookup
.end())
330 // Handle ELF Bind, Visibility and Type for the current symbol
331 unsigned SymBind
= getGlobalELFBinding(GV
);
332 unsigned SymType
= getGlobalELFType(GV
);
333 bool IsUndefSym
= IsELFUndefSym(GV
);
335 ELFSym
*GblSym
= IsUndefSym
? ELFSym::getUndefGV(GV
, SymBind
)
336 : ELFSym::getGV(GV
, SymBind
, SymType
, getGlobalELFVisibility(GV
));
339 assert(isa
<GlobalVariable
>(GV
) && "GV not a global variable!");
340 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
342 // Handle special llvm globals
343 if (EmitSpecialLLVMGlobal(GVar
))
346 // Get the ELF section where this global belongs from TLOF
347 const MCSectionELF
*S
=
348 (const MCSectionELF
*)TLOF
.SectionForGlobal(GV
, Mang
, TM
);
350 getSection(S
->getSectionName(), S
->getType(), S
->getFlags());
351 SectionKind Kind
= S
->getKind();
353 // The symbol align should update the section alignment if needed
354 const TargetData
*TD
= TM
.getTargetData();
355 unsigned Align
= TD
->getPreferredAlignment(GVar
);
356 unsigned Size
= TD
->getTypeAllocSize(GVar
->getInitializer()->getType());
359 if (S
->HasCommonSymbols()) { // Symbol must go to a common section
360 GblSym
->SectionIdx
= ELFSection::SHN_COMMON
;
362 // A new linkonce section is created for each global in the
363 // common section, the default alignment is 1 and the symbol
364 // value contains its alignment.
366 GblSym
->Value
= Align
;
368 } else if (Kind
.isBSS() || Kind
.isThreadBSS()) { // Symbol goes to BSS.
369 GblSym
->SectionIdx
= ES
.SectionIdx
;
371 // Update the size with alignment and the next object can
372 // start in the right offset in the section
373 if (Align
) ES
.Size
= (ES
.Size
+ Align
-1) & ~(Align
-1);
374 ES
.Align
= std::max(ES
.Align
, Align
);
376 // GblSym->Value should contain the virtual offset inside the section.
377 // Virtual because the BSS space is not allocated on ELF objects
378 GblSym
->Value
= ES
.Size
;
381 } else { // The symbol must go to some kind of data section
382 GblSym
->SectionIdx
= ES
.SectionIdx
;
384 // GblSym->Value should contain the symbol offset inside the section,
385 // and all symbols should start on their required alignment boundary
386 ES
.Align
= std::max(ES
.Align
, Align
);
387 ES
.emitAlignment(Align
);
388 GblSym
->Value
= ES
.size();
390 // Emit the global to the data section 'ES'
391 EmitGlobalConstant(GVar
->getInitializer(), ES
);
395 AddToSymbolList(GblSym
);
398 void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct
*CVS
,
401 // Print the fields in successive locations. Pad to align if needed!
402 const TargetData
*TD
= TM
.getTargetData();
403 unsigned Size
= TD
->getTypeAllocSize(CVS
->getType());
404 const StructLayout
*cvsLayout
= TD
->getStructLayout(CVS
->getType());
405 uint64_t sizeSoFar
= 0;
406 for (unsigned i
= 0, e
= CVS
->getNumOperands(); i
!= e
; ++i
) {
407 const Constant
* field
= CVS
->getOperand(i
);
409 // Check if padding is needed and insert one or more 0s.
410 uint64_t fieldSize
= TD
->getTypeAllocSize(field
->getType());
411 uint64_t padSize
= ((i
== e
-1 ? Size
: cvsLayout
->getElementOffset(i
+1))
412 - cvsLayout
->getElementOffset(i
)) - fieldSize
;
413 sizeSoFar
+= fieldSize
+ padSize
;
415 // Now print the actual field value.
416 EmitGlobalConstant(field
, GblS
);
418 // Insert padding - this may include padding to increase the size of the
419 // current field up to the ABI size (if the struct is not packed) as well
420 // as padding to ensure that the next field starts at the right offset.
421 GblS
.emitZeros(padSize
);
423 assert(sizeSoFar
== cvsLayout
->getSizeInBytes() &&
424 "Layout of constant struct may be incorrect!");
427 void ELFWriter::EmitGlobalConstant(const Constant
*CV
, ELFSection
&GblS
) {
428 const TargetData
*TD
= TM
.getTargetData();
429 unsigned Size
= TD
->getTypeAllocSize(CV
->getType());
431 if (const ConstantArray
*CVA
= dyn_cast
<ConstantArray
>(CV
)) {
432 for (unsigned i
= 0, e
= CVA
->getNumOperands(); i
!= e
; ++i
)
433 EmitGlobalConstant(CVA
->getOperand(i
), GblS
);
435 } else if (isa
<ConstantAggregateZero
>(CV
)) {
436 GblS
.emitZeros(Size
);
438 } else if (const ConstantStruct
*CVS
= dyn_cast
<ConstantStruct
>(CV
)) {
439 EmitGlobalConstantStruct(CVS
, GblS
);
441 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
442 APInt Val
= CFP
->getValueAPF().bitcastToAPInt();
443 if (CFP
->getType() == Type::getDoubleTy(CV
->getContext()))
444 GblS
.emitWord64(Val
.getZExtValue());
445 else if (CFP
->getType() == Type::getFloatTy(CV
->getContext()))
446 GblS
.emitWord32(Val
.getZExtValue());
447 else if (CFP
->getType() == Type::getX86_FP80Ty(CV
->getContext())) {
449 TD
->getTypeAllocSize(Type::getX86_FP80Ty(CV
->getContext()))-
450 TD
->getTypeStoreSize(Type::getX86_FP80Ty(CV
->getContext()));
451 GblS
.emitWordFP80(Val
.getRawData(), PadSize
);
452 } else if (CFP
->getType() == Type::getPPC_FP128Ty(CV
->getContext()))
453 llvm_unreachable("PPC_FP128Ty global emission not implemented");
455 } else if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
457 GblS
.emitByte(CI
->getZExtValue());
459 GblS
.emitWord16(CI
->getZExtValue());
461 GblS
.emitWord32(CI
->getZExtValue());
463 EmitGlobalConstantLargeInt(CI
, GblS
);
465 } else if (const ConstantVector
*CP
= dyn_cast
<ConstantVector
>(CV
)) {
466 const VectorType
*PTy
= CP
->getType();
467 for (unsigned I
= 0, E
= PTy
->getNumElements(); I
< E
; ++I
)
468 EmitGlobalConstant(CP
->getOperand(I
), GblS
);
470 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
471 // Resolve a constant expression which returns a (Constant, Offset)
472 // pair. If 'Res.first' is a GlobalValue, emit a relocation with
473 // the offset 'Res.second', otherwise emit a global constant like
474 // it is always done for not contant expression types.
475 CstExprResTy Res
= ResolveConstantExpr(CE
);
476 const Constant
*Op
= Res
.first
;
478 if (isa
<GlobalValue
>(Op
))
479 EmitGlobalDataRelocation(cast
<const GlobalValue
>(Op
),
480 TD
->getTypeAllocSize(Op
->getType()),
483 EmitGlobalConstant(Op
, GblS
);
486 } else if (CV
->getType()->getTypeID() == Type::PointerTyID
) {
487 // Fill the data entry with zeros or emit a relocation entry
488 if (isa
<ConstantPointerNull
>(CV
))
489 GblS
.emitZeros(Size
);
491 EmitGlobalDataRelocation(cast
<const GlobalValue
>(CV
),
494 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
)) {
495 // This is a constant address for a global variable or function and
496 // therefore must be referenced using a relocation entry.
497 EmitGlobalDataRelocation(GV
, Size
, GblS
);
502 raw_string_ostream
ErrorMsg(msg
);
503 ErrorMsg
<< "Constant unimp for type: " << *CV
->getType();
504 llvm_report_error(ErrorMsg
.str());
507 // ResolveConstantExpr - Resolve the constant expression until it stop
508 // yielding other constant expressions.
509 CstExprResTy
ELFWriter::ResolveConstantExpr(const Constant
*CV
) {
510 const TargetData
*TD
= TM
.getTargetData();
512 // There ins't constant expression inside others anymore
513 if (!isa
<ConstantExpr
>(CV
))
514 return std::make_pair(CV
, 0);
516 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
);
517 switch (CE
->getOpcode()) {
518 case Instruction::BitCast
:
519 return ResolveConstantExpr(CE
->getOperand(0));
521 case Instruction::GetElementPtr
: {
522 const Constant
*ptrVal
= CE
->getOperand(0);
523 SmallVector
<Value
*, 8> idxVec(CE
->op_begin()+1, CE
->op_end());
524 int64_t Offset
= TD
->getIndexedOffset(ptrVal
->getType(), &idxVec
[0],
526 return std::make_pair(ptrVal
, Offset
);
528 case Instruction::IntToPtr
: {
529 Constant
*Op
= CE
->getOperand(0);
530 Op
= ConstantExpr::getIntegerCast(Op
, TD
->getIntPtrType(CV
->getContext()),
532 return ResolveConstantExpr(Op
);
534 case Instruction::PtrToInt
: {
535 Constant
*Op
= CE
->getOperand(0);
536 const Type
*Ty
= CE
->getType();
538 // We can emit the pointer value into this slot if the slot is an
539 // integer slot greater or equal to the size of the pointer.
540 if (TD
->getTypeAllocSize(Ty
) == TD
->getTypeAllocSize(Op
->getType()))
541 return ResolveConstantExpr(Op
);
543 llvm_unreachable("Integer size less then pointer size");
545 case Instruction::Add
:
546 case Instruction::Sub
: {
547 // Only handle cases where there's a constant expression with GlobalValue
548 // as first operand and ConstantInt as second, which are the cases we can
549 // solve direclty using a relocation entry. GlobalValue=Op0, CstInt=Op1
550 // 1) Instruction::Add => (global) + CstInt
551 // 2) Instruction::Sub => (global) + -CstInt
552 const Constant
*Op0
= CE
->getOperand(0);
553 const Constant
*Op1
= CE
->getOperand(1);
554 assert(isa
<ConstantInt
>(Op1
) && "Op1 must be a ConstantInt");
556 CstExprResTy Res
= ResolveConstantExpr(Op0
);
557 assert(isa
<GlobalValue
>(Res
.first
) && "Op0 must be a GlobalValue");
559 const APInt
&RHS
= cast
<ConstantInt
>(Op1
)->getValue();
560 switch (CE
->getOpcode()) {
561 case Instruction::Add
:
562 return std::make_pair(Res
.first
, RHS
.getSExtValue());
563 case Instruction::Sub
:
564 return std::make_pair(Res
.first
, (-RHS
).getSExtValue());
569 std::string
msg(CE
->getOpcodeName());
570 raw_string_ostream
ErrorMsg(msg
);
571 ErrorMsg
<< ": Unsupported ConstantExpr type";
572 llvm_report_error(ErrorMsg
.str());
574 return std::make_pair(CV
, 0); // silence warning
577 void ELFWriter::EmitGlobalDataRelocation(const GlobalValue
*GV
, unsigned Size
,
578 ELFSection
&GblS
, int64_t Offset
) {
579 // Create the relocation entry for the global value
580 MachineRelocation MR
=
581 MachineRelocation::getGV(GblS
.getCurrentPCOffset(),
582 TEW
->getAbsoluteLabelMachineRelTy(),
583 const_cast<GlobalValue
*>(GV
),
586 // Fill the data entry with zeros
587 GblS
.emitZeros(Size
);
589 // Add the relocation entry for the current data section
590 GblS
.addRelocation(MR
);
593 void ELFWriter::EmitGlobalConstantLargeInt(const ConstantInt
*CI
,
595 const TargetData
*TD
= TM
.getTargetData();
596 unsigned BitWidth
= CI
->getBitWidth();
597 assert(isPowerOf2_32(BitWidth
) &&
598 "Non-power-of-2-sized integers not handled!");
600 const uint64_t *RawData
= CI
->getValue().getRawData();
602 for (unsigned i
= 0, e
= BitWidth
/ 64; i
!= e
; ++i
) {
603 Val
= (TD
->isBigEndian()) ? RawData
[e
- i
- 1] : RawData
[i
];
608 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
609 /// special global used by LLVM. If so, emit it and return true, otherwise
610 /// do nothing and return false.
611 bool ELFWriter::EmitSpecialLLVMGlobal(const GlobalVariable
*GV
) {
612 if (GV
->getName() == "llvm.used")
613 llvm_unreachable("not implemented yet");
615 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
616 if (GV
->getSection() == "llvm.metadata" ||
617 GV
->hasAvailableExternallyLinkage())
620 if (!GV
->hasAppendingLinkage()) return false;
622 assert(GV
->hasInitializer() && "Not a special LLVM global!");
624 const TargetData
*TD
= TM
.getTargetData();
625 unsigned Align
= TD
->getPointerPrefAlignment();
626 if (GV
->getName() == "llvm.global_ctors") {
627 ELFSection
&Ctor
= getCtorSection();
628 Ctor
.emitAlignment(Align
);
629 EmitXXStructorList(GV
->getInitializer(), Ctor
);
633 if (GV
->getName() == "llvm.global_dtors") {
634 ELFSection
&Dtor
= getDtorSection();
635 Dtor
.emitAlignment(Align
);
636 EmitXXStructorList(GV
->getInitializer(), Dtor
);
643 /// EmitXXStructorList - Emit the ctor or dtor list. This just emits out the
644 /// function pointers, ignoring the init priority.
645 void ELFWriter::EmitXXStructorList(Constant
*List
, ELFSection
&Xtor
) {
646 // Should be an array of '{ int, void ()* }' structs. The first value is the
647 // init priority, which we ignore.
648 if (!isa
<ConstantArray
>(List
)) return;
649 ConstantArray
*InitList
= cast
<ConstantArray
>(List
);
650 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
)
651 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(InitList
->getOperand(i
))){
652 if (CS
->getNumOperands() != 2) return; // Not array of 2-element structs.
654 if (CS
->getOperand(1)->isNullValue())
655 return; // Found a null terminator, exit printing.
656 // Emit the function pointer.
657 EmitGlobalConstant(CS
->getOperand(1), Xtor
);
661 bool ELFWriter::runOnMachineFunction(MachineFunction
&MF
) {
662 // Nothing to do here, this is all done through the ElfCE object above.
666 /// doFinalization - Now that the module has been completely processed, emit
667 /// the ELF file to 'O'.
668 bool ELFWriter::doFinalization(Module
&M
) {
669 // Emit .data section placeholder
672 // Emit .bss section placeholder
675 // Build and emit data, bss and "common" sections.
676 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
680 // Emit all pending globals
681 for (PendingGblsIter I
= PendingGlobals
.begin(), E
= PendingGlobals
.end();
685 // Emit all pending externals
686 for (PendingExtsIter I
= PendingExternals
.begin(), E
= PendingExternals
.end();
688 SymbolList
.push_back(ELFSym::getExtSym(*I
));
690 // Emit non-executable stack note
691 if (TAI
->getNonexecutableStackDirective())
692 getNonExecStackSection();
694 // Emit a symbol for each section created until now, skip null section
695 for (unsigned i
= 1, e
= SectionList
.size(); i
< e
; ++i
) {
696 ELFSection
&ES
= *SectionList
[i
];
697 ELFSym
*SectionSym
= ELFSym::getSectionSym();
698 SectionSym
->SectionIdx
= ES
.SectionIdx
;
699 SymbolList
.push_back(SectionSym
);
700 ES
.Sym
= SymbolList
.back();
704 EmitStringTable(M
.getModuleIdentifier());
706 // Emit the symbol table now, if non-empty.
709 // Emit the relocation sections.
712 // Emit the sections string table.
713 EmitSectionTableStringTable();
715 // Dump the sections and section table to the .o file.
716 OutputSectionsAndSectionTable();
718 // We are done with the abstract symbols.
723 // Release the name mangler object.
724 delete Mang
; Mang
= 0;
728 // RelocateField - Patch relocatable field with 'Offset' in 'BO'
729 // using a 'Value' of known 'Size'
730 void ELFWriter::RelocateField(BinaryObject
&BO
, uint32_t Offset
,
731 int64_t Value
, unsigned Size
) {
733 BO
.fixWord32(Value
, Offset
);
735 BO
.fixWord64(Value
, Offset
);
737 llvm_unreachable("don't know howto patch relocatable field");
740 /// EmitRelocations - Emit relocations
741 void ELFWriter::EmitRelocations() {
743 // True if the target uses the relocation entry to hold the addend,
744 // otherwise the addend is written directly to the relocatable field.
745 bool HasRelA
= TEW
->hasRelocationAddend();
747 // Create Relocation sections for each section which needs it.
748 for (unsigned i
=0, e
=SectionList
.size(); i
!= e
; ++i
) {
749 ELFSection
&S
= *SectionList
[i
];
751 // This section does not have relocations
752 if (!S
.hasRelocations()) continue;
753 ELFSection
&RelSec
= getRelocSection(S
);
755 // 'Link' - Section hdr idx of the associated symbol table
756 // 'Info' - Section hdr idx of the section to which the relocation applies
757 ELFSection
&SymTab
= getSymbolTableSection();
758 RelSec
.Link
= SymTab
.SectionIdx
;
759 RelSec
.Info
= S
.SectionIdx
;
760 RelSec
.EntSize
= TEW
->getRelocationEntrySize();
762 // Get the relocations from Section
763 std::vector
<MachineRelocation
> Relos
= S
.getRelocations();
764 for (std::vector
<MachineRelocation
>::iterator MRI
= Relos
.begin(),
765 MRE
= Relos
.end(); MRI
!= MRE
; ++MRI
) {
766 MachineRelocation
&MR
= *MRI
;
768 // Relocatable field offset from the section start
769 unsigned RelOffset
= MR
.getMachineCodeOffset();
771 // Symbol index in the symbol table
774 // Target specific relocation field type and size
775 unsigned RelType
= TEW
->getRelocationType(MR
.getRelocationType());
776 unsigned RelTySize
= TEW
->getRelocationTySize(RelType
);
779 // There are several machine relocations types, and each one of
780 // them needs a different approach to retrieve the symbol table index.
781 if (MR
.isGlobalValue()) {
782 const GlobalValue
*G
= MR
.getGlobalValue();
783 int64_t GlobalOffset
= MR
.getConstantVal();
784 SymIdx
= GblSymLookup
[G
];
785 if (G
->hasPrivateLinkage()) {
786 // If the target uses a section offset in the relocation:
787 // SymIdx + Addend = section sym for global + section offset
788 unsigned SectionIdx
= PrivateSyms
[SymIdx
]->SectionIdx
;
789 Addend
= PrivateSyms
[SymIdx
]->Value
+ GlobalOffset
;
790 SymIdx
= SectionList
[SectionIdx
]->getSymbolTableIndex();
792 Addend
= TEW
->getDefaultAddendForRelTy(RelType
, GlobalOffset
);
794 } else if (MR
.isExternalSymbol()) {
795 const char *ExtSym
= MR
.getExternalSymbol();
796 SymIdx
= ExtSymLookup
[ExtSym
];
797 Addend
= TEW
->getDefaultAddendForRelTy(RelType
);
799 // Get the symbol index for the section symbol
800 unsigned SectionIdx
= MR
.getConstantVal();
801 SymIdx
= SectionList
[SectionIdx
]->getSymbolTableIndex();
803 // The symbol offset inside the section
804 int64_t SymOffset
= (int64_t)MR
.getResultPointer();
806 // For pc relative relocations where symbols are defined in the same
807 // section they are referenced, ignore the relocation entry and patch
808 // the relocatable field with the symbol offset directly.
809 if (S
.SectionIdx
== SectionIdx
&& TEW
->isPCRelativeRel(RelType
)) {
810 int64_t Value
= TEW
->computeRelocation(SymOffset
, RelOffset
, RelType
);
811 RelocateField(S
, RelOffset
, Value
, RelTySize
);
815 Addend
= TEW
->getDefaultAddendForRelTy(RelType
, SymOffset
);
818 // The target without addend on the relocation symbol must be
819 // patched in the relocation place itself to contain the addend
820 // otherwise write zeros to make sure there is no garbage there
821 RelocateField(S
, RelOffset
, HasRelA
? 0 : Addend
, RelTySize
);
823 // Get the relocation entry and emit to the relocation section
824 ELFRelocation
Rel(RelOffset
, SymIdx
, RelType
, HasRelA
, Addend
);
825 EmitRelocation(RelSec
, Rel
, HasRelA
);
830 /// EmitRelocation - Write relocation 'Rel' to the relocation section 'Rel'
831 void ELFWriter::EmitRelocation(BinaryObject
&RelSec
, ELFRelocation
&Rel
,
833 RelSec
.emitWord(Rel
.getOffset());
834 RelSec
.emitWord(Rel
.getInfo(is64Bit
));
836 RelSec
.emitWord(Rel
.getAddend());
839 /// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable'
840 void ELFWriter::EmitSymbol(BinaryObject
&SymbolTable
, ELFSym
&Sym
) {
842 SymbolTable
.emitWord32(Sym
.NameIdx
);
843 SymbolTable
.emitByte(Sym
.Info
);
844 SymbolTable
.emitByte(Sym
.Other
);
845 SymbolTable
.emitWord16(Sym
.SectionIdx
);
846 SymbolTable
.emitWord64(Sym
.Value
);
847 SymbolTable
.emitWord64(Sym
.Size
);
849 SymbolTable
.emitWord32(Sym
.NameIdx
);
850 SymbolTable
.emitWord32(Sym
.Value
);
851 SymbolTable
.emitWord32(Sym
.Size
);
852 SymbolTable
.emitByte(Sym
.Info
);
853 SymbolTable
.emitByte(Sym
.Other
);
854 SymbolTable
.emitWord16(Sym
.SectionIdx
);
858 /// EmitSectionHeader - Write section 'Section' header in 'SHdrTab'
859 /// Section Header Table
860 void ELFWriter::EmitSectionHeader(BinaryObject
&SHdrTab
,
861 const ELFSection
&SHdr
) {
862 SHdrTab
.emitWord32(SHdr
.NameIdx
);
863 SHdrTab
.emitWord32(SHdr
.Type
);
865 SHdrTab
.emitWord64(SHdr
.Flags
);
866 SHdrTab
.emitWord(SHdr
.Addr
);
867 SHdrTab
.emitWord(SHdr
.Offset
);
868 SHdrTab
.emitWord64(SHdr
.Size
);
869 SHdrTab
.emitWord32(SHdr
.Link
);
870 SHdrTab
.emitWord32(SHdr
.Info
);
871 SHdrTab
.emitWord64(SHdr
.Align
);
872 SHdrTab
.emitWord64(SHdr
.EntSize
);
874 SHdrTab
.emitWord32(SHdr
.Flags
);
875 SHdrTab
.emitWord(SHdr
.Addr
);
876 SHdrTab
.emitWord(SHdr
.Offset
);
877 SHdrTab
.emitWord32(SHdr
.Size
);
878 SHdrTab
.emitWord32(SHdr
.Link
);
879 SHdrTab
.emitWord32(SHdr
.Info
);
880 SHdrTab
.emitWord32(SHdr
.Align
);
881 SHdrTab
.emitWord32(SHdr
.EntSize
);
885 /// EmitStringTable - If the current symbol table is non-empty, emit the string
887 void ELFWriter::EmitStringTable(const std::string
&ModuleName
) {
888 if (!SymbolList
.size()) return; // Empty symbol table.
889 ELFSection
&StrTab
= getStringTableSection();
891 // Set the zero'th symbol to a null byte, as required.
894 // Walk on the symbol list and write symbol names into the string table.
896 for (ELFSymIter I
=SymbolList
.begin(), E
=SymbolList
.end(); I
!= E
; ++I
) {
900 if (Sym
.isGlobalValue())
901 Name
.append(Mang
->getMangledName(Sym
.getGlobalValue()));
902 else if (Sym
.isExternalSym())
903 Name
.append(Sym
.getExternalSymbol());
904 else if (Sym
.isFileType())
905 Name
.append(ModuleName
);
911 StrTab
.emitString(Name
);
913 // Keep track of the number of bytes emitted to this section.
914 Index
+= Name
.size()+1;
917 assert(Index
== StrTab
.size());
921 // SortSymbols - On the symbol table local symbols must come before
922 // all other symbols with non-local bindings. The return value is
923 // the position of the first non local symbol.
924 unsigned ELFWriter::SortSymbols() {
925 unsigned FirstNonLocalSymbol
;
926 std::vector
<ELFSym
*> LocalSyms
, OtherSyms
;
928 for (ELFSymIter I
=SymbolList
.begin(), E
=SymbolList
.end(); I
!= E
; ++I
) {
929 if ((*I
)->isLocalBind())
930 LocalSyms
.push_back(*I
);
932 OtherSyms
.push_back(*I
);
935 FirstNonLocalSymbol
= LocalSyms
.size();
937 for (unsigned i
= 0; i
< FirstNonLocalSymbol
; ++i
)
938 SymbolList
.push_back(LocalSyms
[i
]);
940 for (ELFSymIter I
=OtherSyms
.begin(), E
=OtherSyms
.end(); I
!= E
; ++I
)
941 SymbolList
.push_back(*I
);
946 return FirstNonLocalSymbol
;
949 /// EmitSymbolTable - Emit the symbol table itself.
950 void ELFWriter::EmitSymbolTable() {
951 if (!SymbolList
.size()) return; // Empty symbol table.
953 // Now that we have emitted the string table and know the offset into the
954 // string table of each symbol, emit the symbol table itself.
955 ELFSection
&SymTab
= getSymbolTableSection();
956 SymTab
.Align
= TEW
->getPrefELFAlignment();
958 // Section Index of .strtab.
959 SymTab
.Link
= getStringTableSection().SectionIdx
;
961 // Size of each symtab entry.
962 SymTab
.EntSize
= TEW
->getSymTabEntrySize();
964 // Reorder the symbol table with local symbols first!
965 unsigned FirstNonLocalSymbol
= SortSymbols();
967 // Emit all the symbols to the symbol table.
968 for (unsigned i
= 0, e
= SymbolList
.size(); i
< e
; ++i
) {
969 ELFSym
&Sym
= *SymbolList
[i
];
971 // Emit symbol to the symbol table
972 EmitSymbol(SymTab
, Sym
);
974 // Record the symbol table index for each symbol
975 if (Sym
.isGlobalValue())
976 GblSymLookup
[Sym
.getGlobalValue()] = i
;
977 else if (Sym
.isExternalSym())
978 ExtSymLookup
[Sym
.getExternalSymbol()] = i
;
980 // Keep track on the symbol index into the symbol table
984 // One greater than the symbol table index of the last local symbol
985 SymTab
.Info
= FirstNonLocalSymbol
;
986 SymTab
.Size
= SymTab
.size();
989 /// EmitSectionTableStringTable - This method adds and emits a section for the
990 /// ELF Section Table string table: the string table that holds all of the
992 void ELFWriter::EmitSectionTableStringTable() {
993 // First step: add the section for the string table to the list of sections:
994 ELFSection
&SHStrTab
= getSectionHeaderStringTableSection();
996 // Now that we know which section number is the .shstrtab section, update the
997 // e_shstrndx entry in the ELF header.
998 ElfHdr
.fixWord16(SHStrTab
.SectionIdx
, ELFHdr_e_shstrndx_Offset
);
1000 // Set the NameIdx of each section in the string table and emit the bytes for
1001 // the string table.
1004 for (ELFSectionIter I
=SectionList
.begin(), E
=SectionList
.end(); I
!= E
; ++I
) {
1005 ELFSection
&S
= *(*I
);
1006 // Set the index into the table. Note if we have lots of entries with
1007 // common suffixes, we could memoize them here if we cared.
1009 SHStrTab
.emitString(S
.getName());
1011 // Keep track of the number of bytes emitted to this section.
1012 Index
+= S
.getName().size()+1;
1015 // Set the size of .shstrtab now that we know what it is.
1016 assert(Index
== SHStrTab
.size());
1017 SHStrTab
.Size
= Index
;
1020 /// OutputSectionsAndSectionTable - Now that we have constructed the file header
1021 /// and all of the sections, emit these to the ostream destination and emit the
1023 void ELFWriter::OutputSectionsAndSectionTable() {
1024 // Pass #1: Compute the file offset for each section.
1025 size_t FileOff
= ElfHdr
.size(); // File header first.
1027 // Adjust alignment of all section if needed, skip the null section.
1028 for (unsigned i
=1, e
=SectionList
.size(); i
< e
; ++i
) {
1029 ELFSection
&ES
= *SectionList
[i
];
1031 ES
.Offset
= FileOff
;
1035 // Update Section size
1037 ES
.Size
= ES
.size();
1039 // Align FileOff to whatever the alignment restrictions of the section are.
1041 FileOff
= (FileOff
+ES
.Align
-1) & ~(ES
.Align
-1);
1043 ES
.Offset
= FileOff
;
1047 // Align Section Header.
1048 unsigned TableAlign
= TEW
->getPrefELFAlignment();
1049 FileOff
= (FileOff
+TableAlign
-1) & ~(TableAlign
-1);
1051 // Now that we know where all of the sections will be emitted, set the e_shnum
1052 // entry in the ELF header.
1053 ElfHdr
.fixWord16(NumSections
, ELFHdr_e_shnum_Offset
);
1055 // Now that we know the offset in the file of the section table, update the
1056 // e_shoff address in the ELF header.
1057 ElfHdr
.fixWord(FileOff
, ELFHdr_e_shoff_Offset
);
1059 // Now that we know all of the data in the file header, emit it and all of the
1061 O
.write((char *)&ElfHdr
.getData()[0], ElfHdr
.size());
1062 FileOff
= ElfHdr
.size();
1064 // Section Header Table blob
1065 BinaryObject
SHdrTable(isLittleEndian
, is64Bit
);
1067 // Emit all of sections to the file and build the section header table.
1068 for (ELFSectionIter I
=SectionList
.begin(), E
=SectionList
.end(); I
!= E
; ++I
) {
1069 ELFSection
&S
= *(*I
);
1070 DOUT
<< "SectionIdx: " << S
.SectionIdx
<< ", Name: " << S
.getName()
1071 << ", Size: " << S
.Size
<< ", Offset: " << S
.Offset
1072 << ", SectionData Size: " << S
.size() << "\n";
1074 // Align FileOff to whatever the alignment restrictions of the section are.
1077 for (size_t NewFileOff
= (FileOff
+S
.Align
-1) & ~(S
.Align
-1);
1078 FileOff
!= NewFileOff
; ++FileOff
)
1081 O
.write((char *)&S
.getData()[0], S
.Size
);
1085 EmitSectionHeader(SHdrTable
, S
);
1088 // Align output for the section table.
1089 for (size_t NewFileOff
= (FileOff
+TableAlign
-1) & ~(TableAlign
-1);
1090 FileOff
!= NewFileOff
; ++FileOff
)
1093 // Emit the section table itself.
1094 O
.write((char *)&SHdrTable
.getData()[0], SHdrTable
.size());