1 ///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the implementation of the FastISel class.
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Function.h"
43 #include "llvm/GlobalVariable.h"
44 #include "llvm/Instructions.h"
45 #include "llvm/IntrinsicInst.h"
46 #include "llvm/CodeGen/FastISel.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineModuleInfo.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/DwarfWriter.h"
51 #include "llvm/Analysis/DebugInfo.h"
52 #include "llvm/Target/TargetData.h"
53 #include "llvm/Target/TargetInstrInfo.h"
54 #include "llvm/Target/TargetLowering.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "SelectionDAGBuild.h"
59 unsigned FastISel::getRegForValue(Value
*V
) {
60 EVT RealVT
= TLI
.getValueType(V
->getType(), /*AllowUnknown=*/true);
61 // Don't handle non-simple values in FastISel.
62 if (!RealVT
.isSimple())
65 // Ignore illegal types. We must do this before looking up the value
66 // in ValueMap because Arguments are given virtual registers regardless
67 // of whether FastISel can handle them.
68 MVT VT
= RealVT
.getSimpleVT();
69 if (!TLI
.isTypeLegal(VT
)) {
70 // Promote MVT::i1 to a legal type though, because it's common and easy.
72 VT
= TLI
.getTypeToTransformTo(V
->getContext(), VT
).getSimpleVT();
77 // Look up the value to see if we already have a register for it. We
78 // cache values defined by Instructions across blocks, and other values
79 // only locally. This is because Instructions already have the SSA
80 // def-dominatess-use requirement enforced.
81 if (ValueMap
.count(V
))
83 unsigned Reg
= LocalValueMap
[V
];
87 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
88 if (CI
->getValue().getActiveBits() <= 64)
89 Reg
= FastEmit_i(VT
, VT
, ISD::Constant
, CI
->getZExtValue());
90 } else if (isa
<AllocaInst
>(V
)) {
91 Reg
= TargetMaterializeAlloca(cast
<AllocaInst
>(V
));
92 } else if (isa
<ConstantPointerNull
>(V
)) {
93 // Translate this as an integer zero so that it can be
94 // local-CSE'd with actual integer zeros.
96 getRegForValue(Constant::getNullValue(TD
.getIntPtrType(V
->getContext())));
97 } else if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(V
)) {
98 Reg
= FastEmit_f(VT
, VT
, ISD::ConstantFP
, CF
);
101 const APFloat
&Flt
= CF
->getValueAPF();
102 EVT IntVT
= TLI
.getPointerTy();
105 uint32_t IntBitWidth
= IntVT
.getSizeInBits();
107 (void) Flt
.convertToInteger(x
, IntBitWidth
, /*isSigned=*/true,
108 APFloat::rmTowardZero
, &isExact
);
110 APInt
IntVal(IntBitWidth
, 2, x
);
112 unsigned IntegerReg
=
113 getRegForValue(ConstantInt::get(V
->getContext(), IntVal
));
115 Reg
= FastEmit_r(IntVT
.getSimpleVT(), VT
, ISD::SINT_TO_FP
, IntegerReg
);
118 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
119 if (!SelectOperator(CE
, CE
->getOpcode())) return 0;
120 Reg
= LocalValueMap
[CE
];
121 } else if (isa
<UndefValue
>(V
)) {
122 Reg
= createResultReg(TLI
.getRegClassFor(VT
));
123 BuildMI(MBB
, DL
, TII
.get(TargetInstrInfo::IMPLICIT_DEF
), Reg
);
126 // If target-independent code couldn't handle the value, give target-specific
128 if (!Reg
&& isa
<Constant
>(V
))
129 Reg
= TargetMaterializeConstant(cast
<Constant
>(V
));
131 // Don't cache constant materializations in the general ValueMap.
132 // To do so would require tracking what uses they dominate.
134 LocalValueMap
[V
] = Reg
;
138 unsigned FastISel::lookUpRegForValue(Value
*V
) {
139 // Look up the value to see if we already have a register for it. We
140 // cache values defined by Instructions across blocks, and other values
141 // only locally. This is because Instructions already have the SSA
142 // def-dominatess-use requirement enforced.
143 if (ValueMap
.count(V
))
145 return LocalValueMap
[V
];
148 /// UpdateValueMap - Update the value map to include the new mapping for this
149 /// instruction, or insert an extra copy to get the result in a previous
150 /// determined register.
151 /// NOTE: This is only necessary because we might select a block that uses
152 /// a value before we select the block that defines the value. It might be
153 /// possible to fix this by selecting blocks in reverse postorder.
154 unsigned FastISel::UpdateValueMap(Value
* I
, unsigned Reg
) {
155 if (!isa
<Instruction
>(I
)) {
156 LocalValueMap
[I
] = Reg
;
160 unsigned &AssignedReg
= ValueMap
[I
];
161 if (AssignedReg
== 0)
163 else if (Reg
!= AssignedReg
) {
164 const TargetRegisterClass
*RegClass
= MRI
.getRegClass(Reg
);
165 TII
.copyRegToReg(*MBB
, MBB
->end(), AssignedReg
,
166 Reg
, RegClass
, RegClass
);
171 unsigned FastISel::getRegForGEPIndex(Value
*Idx
) {
172 unsigned IdxN
= getRegForValue(Idx
);
174 // Unhandled operand. Halt "fast" selection and bail.
177 // If the index is smaller or larger than intptr_t, truncate or extend it.
178 MVT PtrVT
= TLI
.getPointerTy();
179 EVT IdxVT
= EVT::getEVT(Idx
->getType(), /*HandleUnknown=*/false);
180 if (IdxVT
.bitsLT(PtrVT
))
181 IdxN
= FastEmit_r(IdxVT
.getSimpleVT(), PtrVT
, ISD::SIGN_EXTEND
, IdxN
);
182 else if (IdxVT
.bitsGT(PtrVT
))
183 IdxN
= FastEmit_r(IdxVT
.getSimpleVT(), PtrVT
, ISD::TRUNCATE
, IdxN
);
187 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
188 /// which has an opcode which directly corresponds to the given ISD opcode.
190 bool FastISel::SelectBinaryOp(User
*I
, ISD::NodeType ISDOpcode
) {
191 EVT VT
= EVT::getEVT(I
->getType(), /*HandleUnknown=*/true);
192 if (VT
== MVT::Other
|| !VT
.isSimple())
193 // Unhandled type. Halt "fast" selection and bail.
196 // We only handle legal types. For example, on x86-32 the instruction
197 // selector contains all of the 64-bit instructions from x86-64,
198 // under the assumption that i64 won't be used if the target doesn't
200 if (!TLI
.isTypeLegal(VT
)) {
201 // MVT::i1 is special. Allow AND, OR, or XOR because they
202 // don't require additional zeroing, which makes them easy.
204 (ISDOpcode
== ISD::AND
|| ISDOpcode
== ISD::OR
||
205 ISDOpcode
== ISD::XOR
))
206 VT
= TLI
.getTypeToTransformTo(I
->getContext(), VT
);
211 unsigned Op0
= getRegForValue(I
->getOperand(0));
213 // Unhandled operand. Halt "fast" selection and bail.
216 // Check if the second operand is a constant and handle it appropriately.
217 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
218 unsigned ResultReg
= FastEmit_ri(VT
.getSimpleVT(), VT
.getSimpleVT(),
219 ISDOpcode
, Op0
, CI
->getZExtValue());
220 if (ResultReg
!= 0) {
221 // We successfully emitted code for the given LLVM Instruction.
222 UpdateValueMap(I
, ResultReg
);
227 // Check if the second operand is a constant float.
228 if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(I
->getOperand(1))) {
229 unsigned ResultReg
= FastEmit_rf(VT
.getSimpleVT(), VT
.getSimpleVT(),
231 if (ResultReg
!= 0) {
232 // We successfully emitted code for the given LLVM Instruction.
233 UpdateValueMap(I
, ResultReg
);
238 unsigned Op1
= getRegForValue(I
->getOperand(1));
240 // Unhandled operand. Halt "fast" selection and bail.
243 // Now we have both operands in registers. Emit the instruction.
244 unsigned ResultReg
= FastEmit_rr(VT
.getSimpleVT(), VT
.getSimpleVT(),
245 ISDOpcode
, Op0
, Op1
);
247 // Target-specific code wasn't able to find a machine opcode for
248 // the given ISD opcode and type. Halt "fast" selection and bail.
251 // We successfully emitted code for the given LLVM Instruction.
252 UpdateValueMap(I
, ResultReg
);
256 bool FastISel::SelectGetElementPtr(User
*I
) {
257 unsigned N
= getRegForValue(I
->getOperand(0));
259 // Unhandled operand. Halt "fast" selection and bail.
262 const Type
*Ty
= I
->getOperand(0)->getType();
263 MVT VT
= TLI
.getPointerTy();
264 for (GetElementPtrInst::op_iterator OI
= I
->op_begin()+1, E
= I
->op_end();
267 if (const StructType
*StTy
= dyn_cast
<StructType
>(Ty
)) {
268 unsigned Field
= cast
<ConstantInt
>(Idx
)->getZExtValue();
271 uint64_t Offs
= TD
.getStructLayout(StTy
)->getElementOffset(Field
);
272 // FIXME: This can be optimized by combining the add with a
274 N
= FastEmit_ri_(VT
, ISD::ADD
, N
, Offs
, VT
);
276 // Unhandled operand. Halt "fast" selection and bail.
279 Ty
= StTy
->getElementType(Field
);
281 Ty
= cast
<SequentialType
>(Ty
)->getElementType();
283 // If this is a constant subscript, handle it quickly.
284 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx
)) {
285 if (CI
->getZExtValue() == 0) continue;
287 TD
.getTypeAllocSize(Ty
)*cast
<ConstantInt
>(CI
)->getSExtValue();
288 N
= FastEmit_ri_(VT
, ISD::ADD
, N
, Offs
, VT
);
290 // Unhandled operand. Halt "fast" selection and bail.
295 // N = N + Idx * ElementSize;
296 uint64_t ElementSize
= TD
.getTypeAllocSize(Ty
);
297 unsigned IdxN
= getRegForGEPIndex(Idx
);
299 // Unhandled operand. Halt "fast" selection and bail.
302 if (ElementSize
!= 1) {
303 IdxN
= FastEmit_ri_(VT
, ISD::MUL
, IdxN
, ElementSize
, VT
);
305 // Unhandled operand. Halt "fast" selection and bail.
308 N
= FastEmit_rr(VT
, VT
, ISD::ADD
, N
, IdxN
);
310 // Unhandled operand. Halt "fast" selection and bail.
315 // We successfully emitted code for the given LLVM Instruction.
316 UpdateValueMap(I
, N
);
320 bool FastISel::SelectCall(User
*I
) {
321 Function
*F
= cast
<CallInst
>(I
)->getCalledFunction();
322 if (!F
) return false;
324 unsigned IID
= F
->getIntrinsicID();
327 case Intrinsic::dbg_stoppoint
: {
328 DbgStopPointInst
*SPI
= cast
<DbgStopPointInst
>(I
);
329 if (isValidDebugInfoIntrinsic(*SPI
, CodeGenOpt::None
))
330 setCurDebugLoc(ExtractDebugLocation(*SPI
, MF
.getDebugLocInfo()));
333 case Intrinsic::dbg_region_start
: {
334 DbgRegionStartInst
*RSI
= cast
<DbgRegionStartInst
>(I
);
335 if (isValidDebugInfoIntrinsic(*RSI
, CodeGenOpt::None
) && DW
336 && DW
->ShouldEmitDwarfDebug()) {
338 DW
->RecordRegionStart(cast
<GlobalVariable
>(RSI
->getContext()));
339 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
340 BuildMI(MBB
, DL
, II
).addImm(ID
);
344 case Intrinsic::dbg_region_end
: {
345 DbgRegionEndInst
*REI
= cast
<DbgRegionEndInst
>(I
);
346 if (isValidDebugInfoIntrinsic(*REI
, CodeGenOpt::None
) && DW
347 && DW
->ShouldEmitDwarfDebug()) {
349 DISubprogram
Subprogram(cast
<GlobalVariable
>(REI
->getContext()));
350 if (isInlinedFnEnd(*REI
, MF
.getFunction())) {
351 // This is end of an inlined function.
352 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
353 ID
= DW
->RecordInlinedFnEnd(Subprogram
);
355 // Returned ID is 0 if this is unbalanced "end of inlined
356 // scope". This could happen if optimizer eats dbg intrinsics
357 // or "beginning of inlined scope" is not recoginized due to
358 // missing location info. In such cases, ignore this region.end.
359 BuildMI(MBB
, DL
, II
).addImm(ID
);
361 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
362 ID
= DW
->RecordRegionEnd(cast
<GlobalVariable
>(REI
->getContext()));
363 BuildMI(MBB
, DL
, II
).addImm(ID
);
368 case Intrinsic::dbg_func_start
: {
369 DbgFuncStartInst
*FSI
= cast
<DbgFuncStartInst
>(I
);
370 if (!isValidDebugInfoIntrinsic(*FSI
, CodeGenOpt::None
) || !DW
371 || !DW
->ShouldEmitDwarfDebug())
374 if (isInlinedFnStart(*FSI
, MF
.getFunction())) {
375 // This is a beginning of an inlined function.
377 // If llvm.dbg.func.start is seen in a new block before any
378 // llvm.dbg.stoppoint intrinsic then the location info is unknown.
379 // FIXME : Why DebugLoc is reset at the beginning of each block ?
380 DebugLoc PrevLoc
= DL
;
381 if (PrevLoc
.isUnknown())
383 // Record the source line.
384 setCurDebugLoc(ExtractDebugLocation(*FSI
, MF
.getDebugLocInfo()));
386 DebugLocTuple PrevLocTpl
= MF
.getDebugLocTuple(PrevLoc
);
387 DISubprogram
SP(cast
<GlobalVariable
>(FSI
->getSubprogram()));
388 unsigned LabelID
= DW
->RecordInlinedFnStart(SP
,
389 DICompileUnit(PrevLocTpl
.CompileUnit
),
392 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
393 BuildMI(MBB
, DL
, II
).addImm(LabelID
);
397 // This is a beginning of a new function.
398 MF
.setDefaultDebugLoc(ExtractDebugLocation(*FSI
, MF
.getDebugLocInfo()));
400 // llvm.dbg.func_start also defines beginning of function scope.
401 DW
->RecordRegionStart(cast
<GlobalVariable
>(FSI
->getSubprogram()));
404 case Intrinsic::dbg_declare
: {
405 DbgDeclareInst
*DI
= cast
<DbgDeclareInst
>(I
);
406 if (!isValidDebugInfoIntrinsic(*DI
, CodeGenOpt::None
) || !DW
407 || !DW
->ShouldEmitDwarfDebug())
410 Value
*Variable
= DI
->getVariable();
411 Value
*Address
= DI
->getAddress();
412 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Address
))
413 Address
= BCI
->getOperand(0);
414 AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Address
);
415 // Don't handle byval struct arguments or VLAs, for example.
417 DenseMap
<const AllocaInst
*, int>::iterator SI
=
418 StaticAllocaMap
.find(AI
);
419 if (SI
== StaticAllocaMap
.end()) break; // VLAs.
422 // Determine the debug globalvariable.
423 GlobalValue
*GV
= cast
<GlobalVariable
>(Variable
);
425 // Build the DECLARE instruction.
426 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DECLARE
);
427 MachineInstr
*DeclareMI
428 = BuildMI(MBB
, DL
, II
).addFrameIndex(FI
).addGlobalAddress(GV
);
429 DIVariable
DV(cast
<GlobalVariable
>(GV
));
430 DW
->RecordVariableScope(DV
, DeclareMI
);
433 case Intrinsic::eh_exception
: {
434 EVT VT
= TLI
.getValueType(I
->getType());
435 switch (TLI
.getOperationAction(ISD::EXCEPTIONADDR
, VT
)) {
437 case TargetLowering::Expand
: {
438 assert(MBB
->isLandingPad() && "Call to eh.exception not in landing pad!");
439 unsigned Reg
= TLI
.getExceptionAddressRegister();
440 const TargetRegisterClass
*RC
= TLI
.getRegClassFor(VT
);
441 unsigned ResultReg
= createResultReg(RC
);
442 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
444 assert(InsertedCopy
&& "Can't copy address registers!");
445 InsertedCopy
= InsertedCopy
;
446 UpdateValueMap(I
, ResultReg
);
452 case Intrinsic::eh_selector_i32
:
453 case Intrinsic::eh_selector_i64
: {
454 EVT VT
= TLI
.getValueType(I
->getType());
455 switch (TLI
.getOperationAction(ISD::EHSELECTION
, VT
)) {
457 case TargetLowering::Expand
: {
458 EVT VT
= (IID
== Intrinsic::eh_selector_i32
?
459 MVT::i32
: MVT::i64
);
462 if (MBB
->isLandingPad())
463 AddCatchInfo(*cast
<CallInst
>(I
), MMI
, MBB
);
466 CatchInfoLost
.insert(cast
<CallInst
>(I
));
468 // FIXME: Mark exception selector register as live in. Hack for PR1508.
469 unsigned Reg
= TLI
.getExceptionSelectorRegister();
470 if (Reg
) MBB
->addLiveIn(Reg
);
473 unsigned Reg
= TLI
.getExceptionSelectorRegister();
474 const TargetRegisterClass
*RC
= TLI
.getRegClassFor(VT
);
475 unsigned ResultReg
= createResultReg(RC
);
476 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
478 assert(InsertedCopy
&& "Can't copy address registers!");
479 InsertedCopy
= InsertedCopy
;
480 UpdateValueMap(I
, ResultReg
);
483 getRegForValue(Constant::getNullValue(I
->getType()));
484 UpdateValueMap(I
, ResultReg
);
495 bool FastISel::SelectCast(User
*I
, ISD::NodeType Opcode
) {
496 EVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
497 EVT DstVT
= TLI
.getValueType(I
->getType());
499 if (SrcVT
== MVT::Other
|| !SrcVT
.isSimple() ||
500 DstVT
== MVT::Other
|| !DstVT
.isSimple())
501 // Unhandled type. Halt "fast" selection and bail.
504 // Check if the destination type is legal. Or as a special case,
505 // it may be i1 if we're doing a truncate because that's
506 // easy and somewhat common.
507 if (!TLI
.isTypeLegal(DstVT
))
508 if (DstVT
!= MVT::i1
|| Opcode
!= ISD::TRUNCATE
)
509 // Unhandled type. Halt "fast" selection and bail.
512 // Check if the source operand is legal. Or as a special case,
513 // it may be i1 if we're doing zero-extension because that's
514 // easy and somewhat common.
515 if (!TLI
.isTypeLegal(SrcVT
))
516 if (SrcVT
!= MVT::i1
|| Opcode
!= ISD::ZERO_EXTEND
)
517 // Unhandled type. Halt "fast" selection and bail.
520 unsigned InputReg
= getRegForValue(I
->getOperand(0));
522 // Unhandled operand. Halt "fast" selection and bail.
525 // If the operand is i1, arrange for the high bits in the register to be zero.
526 if (SrcVT
== MVT::i1
) {
527 SrcVT
= TLI
.getTypeToTransformTo(I
->getContext(), SrcVT
);
528 InputReg
= FastEmitZExtFromI1(SrcVT
.getSimpleVT(), InputReg
);
532 // If the result is i1, truncate to the target's type for i1 first.
533 if (DstVT
== MVT::i1
)
534 DstVT
= TLI
.getTypeToTransformTo(I
->getContext(), DstVT
);
536 unsigned ResultReg
= FastEmit_r(SrcVT
.getSimpleVT(),
543 UpdateValueMap(I
, ResultReg
);
547 bool FastISel::SelectBitCast(User
*I
) {
548 // If the bitcast doesn't change the type, just use the operand value.
549 if (I
->getType() == I
->getOperand(0)->getType()) {
550 unsigned Reg
= getRegForValue(I
->getOperand(0));
553 UpdateValueMap(I
, Reg
);
557 // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
558 EVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
559 EVT DstVT
= TLI
.getValueType(I
->getType());
561 if (SrcVT
== MVT::Other
|| !SrcVT
.isSimple() ||
562 DstVT
== MVT::Other
|| !DstVT
.isSimple() ||
563 !TLI
.isTypeLegal(SrcVT
) || !TLI
.isTypeLegal(DstVT
))
564 // Unhandled type. Halt "fast" selection and bail.
567 unsigned Op0
= getRegForValue(I
->getOperand(0));
569 // Unhandled operand. Halt "fast" selection and bail.
572 // First, try to perform the bitcast by inserting a reg-reg copy.
573 unsigned ResultReg
= 0;
574 if (SrcVT
.getSimpleVT() == DstVT
.getSimpleVT()) {
575 TargetRegisterClass
* SrcClass
= TLI
.getRegClassFor(SrcVT
);
576 TargetRegisterClass
* DstClass
= TLI
.getRegClassFor(DstVT
);
577 ResultReg
= createResultReg(DstClass
);
579 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
580 Op0
, DstClass
, SrcClass
);
585 // If the reg-reg copy failed, select a BIT_CONVERT opcode.
587 ResultReg
= FastEmit_r(SrcVT
.getSimpleVT(), DstVT
.getSimpleVT(),
588 ISD::BIT_CONVERT
, Op0
);
593 UpdateValueMap(I
, ResultReg
);
598 FastISel::SelectInstruction(Instruction
*I
) {
599 return SelectOperator(I
, I
->getOpcode());
602 /// FastEmitBranch - Emit an unconditional branch to the given block,
603 /// unless it is the immediate (fall-through) successor, and update
606 FastISel::FastEmitBranch(MachineBasicBlock
*MSucc
) {
607 MachineFunction::iterator NextMBB
=
608 next(MachineFunction::iterator(MBB
));
610 if (MBB
->isLayoutSuccessor(MSucc
)) {
611 // The unconditional fall-through case, which needs no instructions.
613 // The unconditional branch case.
614 TII
.InsertBranch(*MBB
, MSucc
, NULL
, SmallVector
<MachineOperand
, 0>());
616 MBB
->addSuccessor(MSucc
);
620 FastISel::SelectOperator(User
*I
, unsigned Opcode
) {
622 case Instruction::Add
:
623 return SelectBinaryOp(I
, ISD::ADD
);
624 case Instruction::FAdd
:
625 return SelectBinaryOp(I
, ISD::FADD
);
626 case Instruction::Sub
:
627 return SelectBinaryOp(I
, ISD::SUB
);
628 case Instruction::FSub
:
629 return SelectBinaryOp(I
, ISD::FSUB
);
630 case Instruction::Mul
:
631 return SelectBinaryOp(I
, ISD::MUL
);
632 case Instruction::FMul
:
633 return SelectBinaryOp(I
, ISD::FMUL
);
634 case Instruction::SDiv
:
635 return SelectBinaryOp(I
, ISD::SDIV
);
636 case Instruction::UDiv
:
637 return SelectBinaryOp(I
, ISD::UDIV
);
638 case Instruction::FDiv
:
639 return SelectBinaryOp(I
, ISD::FDIV
);
640 case Instruction::SRem
:
641 return SelectBinaryOp(I
, ISD::SREM
);
642 case Instruction::URem
:
643 return SelectBinaryOp(I
, ISD::UREM
);
644 case Instruction::FRem
:
645 return SelectBinaryOp(I
, ISD::FREM
);
646 case Instruction::Shl
:
647 return SelectBinaryOp(I
, ISD::SHL
);
648 case Instruction::LShr
:
649 return SelectBinaryOp(I
, ISD::SRL
);
650 case Instruction::AShr
:
651 return SelectBinaryOp(I
, ISD::SRA
);
652 case Instruction::And
:
653 return SelectBinaryOp(I
, ISD::AND
);
654 case Instruction::Or
:
655 return SelectBinaryOp(I
, ISD::OR
);
656 case Instruction::Xor
:
657 return SelectBinaryOp(I
, ISD::XOR
);
659 case Instruction::GetElementPtr
:
660 return SelectGetElementPtr(I
);
662 case Instruction::Br
: {
663 BranchInst
*BI
= cast
<BranchInst
>(I
);
665 if (BI
->isUnconditional()) {
666 BasicBlock
*LLVMSucc
= BI
->getSuccessor(0);
667 MachineBasicBlock
*MSucc
= MBBMap
[LLVMSucc
];
668 FastEmitBranch(MSucc
);
672 // Conditional branches are not handed yet.
673 // Halt "fast" selection and bail.
677 case Instruction::Unreachable
:
681 case Instruction::PHI
:
682 // PHI nodes are already emitted.
685 case Instruction::Alloca
:
686 // FunctionLowering has the static-sized case covered.
687 if (StaticAllocaMap
.count(cast
<AllocaInst
>(I
)))
690 // Dynamic-sized alloca is not handled yet.
693 case Instruction::Call
:
694 return SelectCall(I
);
696 case Instruction::BitCast
:
697 return SelectBitCast(I
);
699 case Instruction::FPToSI
:
700 return SelectCast(I
, ISD::FP_TO_SINT
);
701 case Instruction::ZExt
:
702 return SelectCast(I
, ISD::ZERO_EXTEND
);
703 case Instruction::SExt
:
704 return SelectCast(I
, ISD::SIGN_EXTEND
);
705 case Instruction::Trunc
:
706 return SelectCast(I
, ISD::TRUNCATE
);
707 case Instruction::SIToFP
:
708 return SelectCast(I
, ISD::SINT_TO_FP
);
710 case Instruction::IntToPtr
: // Deliberate fall-through.
711 case Instruction::PtrToInt
: {
712 EVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
713 EVT DstVT
= TLI
.getValueType(I
->getType());
714 if (DstVT
.bitsGT(SrcVT
))
715 return SelectCast(I
, ISD::ZERO_EXTEND
);
716 if (DstVT
.bitsLT(SrcVT
))
717 return SelectCast(I
, ISD::TRUNCATE
);
718 unsigned Reg
= getRegForValue(I
->getOperand(0));
719 if (Reg
== 0) return false;
720 UpdateValueMap(I
, Reg
);
725 // Unhandled instruction. Halt "fast" selection and bail.
730 FastISel::FastISel(MachineFunction
&mf
,
731 MachineModuleInfo
*mmi
,
733 DenseMap
<const Value
*, unsigned> &vm
,
734 DenseMap
<const BasicBlock
*, MachineBasicBlock
*> &bm
,
735 DenseMap
<const AllocaInst
*, int> &am
737 , SmallSet
<Instruction
*, 8> &cil
750 MRI(MF
.getRegInfo()),
751 MFI(*MF
.getFrameInfo()),
752 MCP(*MF
.getConstantPool()),
754 TD(*TM
.getTargetData()),
755 TII(*TM
.getInstrInfo()),
756 TLI(*TM
.getTargetLowering()) {
759 FastISel::~FastISel() {}
761 unsigned FastISel::FastEmit_(MVT
, MVT
,
766 unsigned FastISel::FastEmit_r(MVT
, MVT
,
767 ISD::NodeType
, unsigned /*Op0*/) {
771 unsigned FastISel::FastEmit_rr(MVT
, MVT
,
772 ISD::NodeType
, unsigned /*Op0*/,
777 unsigned FastISel::FastEmit_i(MVT
, MVT
, ISD::NodeType
, uint64_t /*Imm*/) {
781 unsigned FastISel::FastEmit_f(MVT
, MVT
,
782 ISD::NodeType
, ConstantFP
* /*FPImm*/) {
786 unsigned FastISel::FastEmit_ri(MVT
, MVT
,
787 ISD::NodeType
, unsigned /*Op0*/,
792 unsigned FastISel::FastEmit_rf(MVT
, MVT
,
793 ISD::NodeType
, unsigned /*Op0*/,
794 ConstantFP
* /*FPImm*/) {
798 unsigned FastISel::FastEmit_rri(MVT
, MVT
,
800 unsigned /*Op0*/, unsigned /*Op1*/,
805 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
806 /// to emit an instruction with an immediate operand using FastEmit_ri.
807 /// If that fails, it materializes the immediate into a register and try
808 /// FastEmit_rr instead.
809 unsigned FastISel::FastEmit_ri_(MVT VT
, ISD::NodeType Opcode
,
810 unsigned Op0
, uint64_t Imm
,
812 // First check if immediate type is legal. If not, we can't use the ri form.
813 unsigned ResultReg
= FastEmit_ri(VT
, VT
, Opcode
, Op0
, Imm
);
816 unsigned MaterialReg
= FastEmit_i(ImmType
, ImmType
, ISD::Constant
, Imm
);
817 if (MaterialReg
== 0)
819 return FastEmit_rr(VT
, VT
, Opcode
, Op0
, MaterialReg
);
822 /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
823 /// to emit an instruction with a floating-point immediate operand using
824 /// FastEmit_rf. If that fails, it materializes the immediate into a register
825 /// and try FastEmit_rr instead.
826 unsigned FastISel::FastEmit_rf_(MVT VT
, ISD::NodeType Opcode
,
827 unsigned Op0
, ConstantFP
*FPImm
,
829 // First check if immediate type is legal. If not, we can't use the rf form.
830 unsigned ResultReg
= FastEmit_rf(VT
, VT
, Opcode
, Op0
, FPImm
);
834 // Materialize the constant in a register.
835 unsigned MaterialReg
= FastEmit_f(ImmType
, ImmType
, ISD::ConstantFP
, FPImm
);
836 if (MaterialReg
== 0) {
837 // If the target doesn't have a way to directly enter a floating-point
838 // value into a register, use an alternate approach.
839 // TODO: The current approach only supports floating-point constants
840 // that can be constructed by conversion from integer values. This should
841 // be replaced by code that creates a load from a constant-pool entry,
842 // which will require some target-specific work.
843 const APFloat
&Flt
= FPImm
->getValueAPF();
844 EVT IntVT
= TLI
.getPointerTy();
847 uint32_t IntBitWidth
= IntVT
.getSizeInBits();
849 (void) Flt
.convertToInteger(x
, IntBitWidth
, /*isSigned=*/true,
850 APFloat::rmTowardZero
, &isExact
);
853 APInt
IntVal(IntBitWidth
, 2, x
);
855 unsigned IntegerReg
= FastEmit_i(IntVT
.getSimpleVT(), IntVT
.getSimpleVT(),
856 ISD::Constant
, IntVal
.getZExtValue());
859 MaterialReg
= FastEmit_r(IntVT
.getSimpleVT(), VT
,
860 ISD::SINT_TO_FP
, IntegerReg
);
861 if (MaterialReg
== 0)
864 return FastEmit_rr(VT
, VT
, Opcode
, Op0
, MaterialReg
);
867 unsigned FastISel::createResultReg(const TargetRegisterClass
* RC
) {
868 return MRI
.createVirtualRegister(RC
);
871 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode
,
872 const TargetRegisterClass
* RC
) {
873 unsigned ResultReg
= createResultReg(RC
);
874 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
876 BuildMI(MBB
, DL
, II
, ResultReg
);
880 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode
,
881 const TargetRegisterClass
*RC
,
883 unsigned ResultReg
= createResultReg(RC
);
884 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
886 if (II
.getNumDefs() >= 1)
887 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
);
889 BuildMI(MBB
, DL
, II
).addReg(Op0
);
890 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
891 II
.ImplicitDefs
[0], RC
, RC
);
899 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode
,
900 const TargetRegisterClass
*RC
,
901 unsigned Op0
, unsigned Op1
) {
902 unsigned ResultReg
= createResultReg(RC
);
903 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
905 if (II
.getNumDefs() >= 1)
906 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addReg(Op1
);
908 BuildMI(MBB
, DL
, II
).addReg(Op0
).addReg(Op1
);
909 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
910 II
.ImplicitDefs
[0], RC
, RC
);
917 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode
,
918 const TargetRegisterClass
*RC
,
919 unsigned Op0
, uint64_t Imm
) {
920 unsigned ResultReg
= createResultReg(RC
);
921 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
923 if (II
.getNumDefs() >= 1)
924 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addImm(Imm
);
926 BuildMI(MBB
, DL
, II
).addReg(Op0
).addImm(Imm
);
927 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
928 II
.ImplicitDefs
[0], RC
, RC
);
935 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode
,
936 const TargetRegisterClass
*RC
,
937 unsigned Op0
, ConstantFP
*FPImm
) {
938 unsigned ResultReg
= createResultReg(RC
);
939 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
941 if (II
.getNumDefs() >= 1)
942 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addFPImm(FPImm
);
944 BuildMI(MBB
, DL
, II
).addReg(Op0
).addFPImm(FPImm
);
945 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
946 II
.ImplicitDefs
[0], RC
, RC
);
953 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode
,
954 const TargetRegisterClass
*RC
,
955 unsigned Op0
, unsigned Op1
, uint64_t Imm
) {
956 unsigned ResultReg
= createResultReg(RC
);
957 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
959 if (II
.getNumDefs() >= 1)
960 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addReg(Op1
).addImm(Imm
);
962 BuildMI(MBB
, DL
, II
).addReg(Op0
).addReg(Op1
).addImm(Imm
);
963 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
964 II
.ImplicitDefs
[0], RC
, RC
);
971 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode
,
972 const TargetRegisterClass
*RC
,
974 unsigned ResultReg
= createResultReg(RC
);
975 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
977 if (II
.getNumDefs() >= 1)
978 BuildMI(MBB
, DL
, II
, ResultReg
).addImm(Imm
);
980 BuildMI(MBB
, DL
, II
).addImm(Imm
);
981 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
982 II
.ImplicitDefs
[0], RC
, RC
);
989 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT
,
990 unsigned Op0
, uint32_t Idx
) {
991 const TargetRegisterClass
* RC
= MRI
.getRegClass(Op0
);
993 unsigned ResultReg
= createResultReg(TLI
.getRegClassFor(RetVT
));
994 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::EXTRACT_SUBREG
);
996 if (II
.getNumDefs() >= 1)
997 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addImm(Idx
);
999 BuildMI(MBB
, DL
, II
).addReg(Op0
).addImm(Idx
);
1000 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
1001 II
.ImplicitDefs
[0], RC
, RC
);
1008 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1009 /// with all but the least significant bit set to zero.
1010 unsigned FastISel::FastEmitZExtFromI1(MVT VT
, unsigned Op
) {
1011 return FastEmit_ri(VT
, VT
, ISD::AND
, Op
, 1);