Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / Target / CBackend / CBackend.cpp
blobf4418040e1825c2a2c0c78c3db69cc7154f8fec0
1 //===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library converts LLVM code to C code, compilable by GCC and other C
11 // compilers.
13 //===----------------------------------------------------------------------===//
15 #include "CTargetMachine.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Module.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Pass.h"
22 #include "llvm/PassManager.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/Intrinsics.h"
25 #include "llvm/IntrinsicInst.h"
26 #include "llvm/InlineAsm.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/Analysis/ConstantsScanner.h"
30 #include "llvm/Analysis/FindUsedTypes.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/CodeGen/IntrinsicLowering.h"
35 #include "llvm/Transforms/Scalar.h"
36 #include "llvm/Target/TargetAsmInfo.h"
37 #include "llvm/Target/TargetData.h"
38 #include "llvm/Target/TargetRegistry.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/CFG.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/FormattedStream.h"
43 #include "llvm/Support/GetElementPtrTypeIterator.h"
44 #include "llvm/Support/InstVisitor.h"
45 #include "llvm/Support/Mangler.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/System/Host.h"
48 #include "llvm/Config/config.h"
49 #include <algorithm>
50 #include <sstream>
51 using namespace llvm;
53 extern "C" void LLVMInitializeCBackendTarget() {
54 // Register the target.
55 RegisterTargetMachine<CTargetMachine> X(TheCBackendTarget);
58 namespace {
59 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
60 /// any unnamed structure types that are used by the program, and merges
61 /// external functions with the same name.
62 ///
63 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
64 public:
65 static char ID;
66 CBackendNameAllUsedStructsAndMergeFunctions()
67 : ModulePass(&ID) {}
68 void getAnalysisUsage(AnalysisUsage &AU) const {
69 AU.addRequired<FindUsedTypes>();
72 virtual const char *getPassName() const {
73 return "C backend type canonicalizer";
76 virtual bool runOnModule(Module &M);
79 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
81 /// CWriter - This class is the main chunk of code that converts an LLVM
82 /// module to a C translation unit.
83 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
84 formatted_raw_ostream &Out;
85 IntrinsicLowering *IL;
86 Mangler *Mang;
87 LoopInfo *LI;
88 const Module *TheModule;
89 const TargetAsmInfo* TAsm;
90 const TargetData* TD;
91 std::map<const Type *, std::string> TypeNames;
92 std::map<const ConstantFP *, unsigned> FPConstantMap;
93 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
94 std::set<const Argument*> ByValParams;
95 unsigned FPCounter;
96 unsigned OpaqueCounter;
97 DenseMap<const Value*, unsigned> AnonValueNumbers;
98 unsigned NextAnonValueNumber;
100 public:
101 static char ID;
102 explicit CWriter(formatted_raw_ostream &o)
103 : FunctionPass(&ID), Out(o), IL(0), Mang(0), LI(0),
104 TheModule(0), TAsm(0), TD(0), OpaqueCounter(0), NextAnonValueNumber(0) {
105 FPCounter = 0;
108 virtual const char *getPassName() const { return "C backend"; }
110 void getAnalysisUsage(AnalysisUsage &AU) const {
111 AU.addRequired<LoopInfo>();
112 AU.setPreservesAll();
115 virtual bool doInitialization(Module &M);
117 bool runOnFunction(Function &F) {
118 // Do not codegen any 'available_externally' functions at all, they have
119 // definitions outside the translation unit.
120 if (F.hasAvailableExternallyLinkage())
121 return false;
123 LI = &getAnalysis<LoopInfo>();
125 // Get rid of intrinsics we can't handle.
126 lowerIntrinsics(F);
128 // Output all floating point constants that cannot be printed accurately.
129 printFloatingPointConstants(F);
131 printFunction(F);
132 return false;
135 virtual bool doFinalization(Module &M) {
136 // Free memory...
137 delete IL;
138 delete TD;
139 delete Mang;
140 FPConstantMap.clear();
141 TypeNames.clear();
142 ByValParams.clear();
143 intrinsicPrototypesAlreadyGenerated.clear();
144 return false;
147 raw_ostream &printType(formatted_raw_ostream &Out,
148 const Type *Ty,
149 bool isSigned = false,
150 const std::string &VariableName = "",
151 bool IgnoreName = false,
152 const AttrListPtr &PAL = AttrListPtr());
153 std::ostream &printType(std::ostream &Out, const Type *Ty,
154 bool isSigned = false,
155 const std::string &VariableName = "",
156 bool IgnoreName = false,
157 const AttrListPtr &PAL = AttrListPtr());
158 raw_ostream &printSimpleType(formatted_raw_ostream &Out,
159 const Type *Ty,
160 bool isSigned,
161 const std::string &NameSoFar = "");
162 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
163 bool isSigned,
164 const std::string &NameSoFar = "");
166 void printStructReturnPointerFunctionType(formatted_raw_ostream &Out,
167 const AttrListPtr &PAL,
168 const PointerType *Ty);
170 /// writeOperandDeref - Print the result of dereferencing the specified
171 /// operand with '*'. This is equivalent to printing '*' then using
172 /// writeOperand, but avoids excess syntax in some cases.
173 void writeOperandDeref(Value *Operand) {
174 if (isAddressExposed(Operand)) {
175 // Already something with an address exposed.
176 writeOperandInternal(Operand);
177 } else {
178 Out << "*(";
179 writeOperand(Operand);
180 Out << ")";
184 void writeOperand(Value *Operand, bool Static = false);
185 void writeInstComputationInline(Instruction &I);
186 void writeOperandInternal(Value *Operand, bool Static = false);
187 void writeOperandWithCast(Value* Operand, unsigned Opcode);
188 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
189 bool writeInstructionCast(const Instruction &I);
191 void writeMemoryAccess(Value *Operand, const Type *OperandType,
192 bool IsVolatile, unsigned Alignment);
194 private :
195 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
197 void lowerIntrinsics(Function &F);
199 void printModule(Module *M);
200 void printModuleTypes(const TypeSymbolTable &ST);
201 void printContainedStructs(const Type *Ty, std::set<const Type *> &);
202 void printFloatingPointConstants(Function &F);
203 void printFloatingPointConstants(const Constant *C);
204 void printFunctionSignature(const Function *F, bool Prototype);
206 void printFunction(Function &);
207 void printBasicBlock(BasicBlock *BB);
208 void printLoop(Loop *L);
210 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
211 void printConstant(Constant *CPV, bool Static);
212 void printConstantWithCast(Constant *CPV, unsigned Opcode);
213 bool printConstExprCast(const ConstantExpr *CE, bool Static);
214 void printConstantArray(ConstantArray *CPA, bool Static);
215 void printConstantVector(ConstantVector *CV, bool Static);
217 /// isAddressExposed - Return true if the specified value's name needs to
218 /// have its address taken in order to get a C value of the correct type.
219 /// This happens for global variables, byval parameters, and direct allocas.
220 bool isAddressExposed(const Value *V) const {
221 if (const Argument *A = dyn_cast<Argument>(V))
222 return ByValParams.count(A);
223 return isa<GlobalVariable>(V) || isDirectAlloca(V);
226 // isInlinableInst - Attempt to inline instructions into their uses to build
227 // trees as much as possible. To do this, we have to consistently decide
228 // what is acceptable to inline, so that variable declarations don't get
229 // printed and an extra copy of the expr is not emitted.
231 static bool isInlinableInst(const Instruction &I) {
232 // Always inline cmp instructions, even if they are shared by multiple
233 // expressions. GCC generates horrible code if we don't.
234 if (isa<CmpInst>(I))
235 return true;
237 // Must be an expression, must be used exactly once. If it is dead, we
238 // emit it inline where it would go.
239 if (I.getType() == Type::getVoidTy(I.getContext()) || !I.hasOneUse() ||
240 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
241 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
242 isa<InsertValueInst>(I))
243 // Don't inline a load across a store or other bad things!
244 return false;
246 // Must not be used in inline asm, extractelement, or shufflevector.
247 if (I.hasOneUse()) {
248 const Instruction &User = cast<Instruction>(*I.use_back());
249 if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
250 isa<ShuffleVectorInst>(User))
251 return false;
254 // Only inline instruction it if it's use is in the same BB as the inst.
255 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
258 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
259 // variables which are accessed with the & operator. This causes GCC to
260 // generate significantly better code than to emit alloca calls directly.
262 static const AllocaInst *isDirectAlloca(const Value *V) {
263 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
264 if (!AI) return false;
265 if (AI->isArrayAllocation())
266 return 0; // FIXME: we can also inline fixed size array allocas!
267 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
268 return 0;
269 return AI;
272 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
273 static bool isInlineAsm(const Instruction& I) {
274 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
275 return true;
276 return false;
279 // Instruction visitation functions
280 friend class InstVisitor<CWriter>;
282 void visitReturnInst(ReturnInst &I);
283 void visitBranchInst(BranchInst &I);
284 void visitSwitchInst(SwitchInst &I);
285 void visitInvokeInst(InvokeInst &I) {
286 llvm_unreachable("Lowerinvoke pass didn't work!");
289 void visitUnwindInst(UnwindInst &I) {
290 llvm_unreachable("Lowerinvoke pass didn't work!");
292 void visitUnreachableInst(UnreachableInst &I);
294 void visitPHINode(PHINode &I);
295 void visitBinaryOperator(Instruction &I);
296 void visitICmpInst(ICmpInst &I);
297 void visitFCmpInst(FCmpInst &I);
299 void visitCastInst (CastInst &I);
300 void visitSelectInst(SelectInst &I);
301 void visitCallInst (CallInst &I);
302 void visitInlineAsm(CallInst &I);
303 bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
305 void visitMallocInst(MallocInst &I);
306 void visitAllocaInst(AllocaInst &I);
307 void visitFreeInst (FreeInst &I);
308 void visitLoadInst (LoadInst &I);
309 void visitStoreInst (StoreInst &I);
310 void visitGetElementPtrInst(GetElementPtrInst &I);
311 void visitVAArgInst (VAArgInst &I);
313 void visitInsertElementInst(InsertElementInst &I);
314 void visitExtractElementInst(ExtractElementInst &I);
315 void visitShuffleVectorInst(ShuffleVectorInst &SVI);
317 void visitInsertValueInst(InsertValueInst &I);
318 void visitExtractValueInst(ExtractValueInst &I);
320 void visitInstruction(Instruction &I) {
321 #ifndef NDEBUG
322 cerr << "C Writer does not know about " << I;
323 #endif
324 llvm_unreachable(0);
327 void outputLValue(Instruction *I) {
328 Out << " " << GetValueName(I) << " = ";
331 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
332 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
333 BasicBlock *Successor, unsigned Indent);
334 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
335 unsigned Indent);
336 void printGEPExpression(Value *Ptr, gep_type_iterator I,
337 gep_type_iterator E, bool Static);
339 std::string GetValueName(const Value *Operand);
343 char CWriter::ID = 0;
345 /// This method inserts names for any unnamed structure types that are used by
346 /// the program, and removes names from structure types that are not used by the
347 /// program.
349 bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
350 // Get a set of types that are used by the program...
351 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
353 // Loop over the module symbol table, removing types from UT that are
354 // already named, and removing names for types that are not used.
356 TypeSymbolTable &TST = M.getTypeSymbolTable();
357 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
358 TI != TE; ) {
359 TypeSymbolTable::iterator I = TI++;
361 // If this isn't a struct or array type, remove it from our set of types
362 // to name. This simplifies emission later.
363 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second) &&
364 !isa<ArrayType>(I->second)) {
365 TST.remove(I);
366 } else {
367 // If this is not used, remove it from the symbol table.
368 std::set<const Type *>::iterator UTI = UT.find(I->second);
369 if (UTI == UT.end())
370 TST.remove(I);
371 else
372 UT.erase(UTI); // Only keep one name for this type.
376 // UT now contains types that are not named. Loop over it, naming
377 // structure types.
379 bool Changed = false;
380 unsigned RenameCounter = 0;
381 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
382 I != E; ++I)
383 if (isa<StructType>(*I) || isa<ArrayType>(*I)) {
384 while (M.addTypeName("unnamed"+utostr(RenameCounter), *I))
385 ++RenameCounter;
386 Changed = true;
390 // Loop over all external functions and globals. If we have two with
391 // identical names, merge them.
392 // FIXME: This code should disappear when we don't allow values with the same
393 // names when they have different types!
394 std::map<std::string, GlobalValue*> ExtSymbols;
395 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
396 Function *GV = I++;
397 if (GV->isDeclaration() && GV->hasName()) {
398 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
399 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
400 if (!X.second) {
401 // Found a conflict, replace this global with the previous one.
402 GlobalValue *OldGV = X.first->second;
403 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
404 GV->eraseFromParent();
405 Changed = true;
409 // Do the same for globals.
410 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
411 I != E;) {
412 GlobalVariable *GV = I++;
413 if (GV->isDeclaration() && GV->hasName()) {
414 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
415 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
416 if (!X.second) {
417 // Found a conflict, replace this global with the previous one.
418 GlobalValue *OldGV = X.first->second;
419 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
420 GV->eraseFromParent();
421 Changed = true;
426 return Changed;
429 /// printStructReturnPointerFunctionType - This is like printType for a struct
430 /// return type, except, instead of printing the type as void (*)(Struct*, ...)
431 /// print it as "Struct (*)(...)", for struct return functions.
432 void CWriter::printStructReturnPointerFunctionType(formatted_raw_ostream &Out,
433 const AttrListPtr &PAL,
434 const PointerType *TheTy) {
435 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
436 std::stringstream FunctionInnards;
437 FunctionInnards << " (*) (";
438 bool PrintedType = false;
440 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
441 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
442 unsigned Idx = 1;
443 for (++I, ++Idx; I != E; ++I, ++Idx) {
444 if (PrintedType)
445 FunctionInnards << ", ";
446 const Type *ArgTy = *I;
447 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
448 assert(isa<PointerType>(ArgTy));
449 ArgTy = cast<PointerType>(ArgTy)->getElementType();
451 printType(FunctionInnards, ArgTy,
452 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
453 PrintedType = true;
455 if (FTy->isVarArg()) {
456 if (PrintedType)
457 FunctionInnards << ", ...";
458 } else if (!PrintedType) {
459 FunctionInnards << "void";
461 FunctionInnards << ')';
462 std::string tstr = FunctionInnards.str();
463 printType(Out, RetTy,
464 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
467 raw_ostream &
468 CWriter::printSimpleType(formatted_raw_ostream &Out, const Type *Ty,
469 bool isSigned,
470 const std::string &NameSoFar) {
471 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
472 "Invalid type for printSimpleType");
473 switch (Ty->getTypeID()) {
474 case Type::VoidTyID: return Out << "void " << NameSoFar;
475 case Type::IntegerTyID: {
476 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
477 if (NumBits == 1)
478 return Out << "bool " << NameSoFar;
479 else if (NumBits <= 8)
480 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
481 else if (NumBits <= 16)
482 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
483 else if (NumBits <= 32)
484 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
485 else if (NumBits <= 64)
486 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
487 else {
488 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
489 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
492 case Type::FloatTyID: return Out << "float " << NameSoFar;
493 case Type::DoubleTyID: return Out << "double " << NameSoFar;
494 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
495 // present matches host 'long double'.
496 case Type::X86_FP80TyID:
497 case Type::PPC_FP128TyID:
498 case Type::FP128TyID: return Out << "long double " << NameSoFar;
500 case Type::VectorTyID: {
501 const VectorType *VTy = cast<VectorType>(Ty);
502 return printSimpleType(Out, VTy->getElementType(), isSigned,
503 " __attribute__((vector_size(" +
504 utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
507 default:
508 #ifndef NDEBUG
509 cerr << "Unknown primitive type: " << *Ty << "\n";
510 #endif
511 llvm_unreachable(0);
515 std::ostream &
516 CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
517 const std::string &NameSoFar) {
518 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
519 "Invalid type for printSimpleType");
520 switch (Ty->getTypeID()) {
521 case Type::VoidTyID: return Out << "void " << NameSoFar;
522 case Type::IntegerTyID: {
523 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
524 if (NumBits == 1)
525 return Out << "bool " << NameSoFar;
526 else if (NumBits <= 8)
527 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
528 else if (NumBits <= 16)
529 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
530 else if (NumBits <= 32)
531 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
532 else if (NumBits <= 64)
533 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
534 else {
535 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
536 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
539 case Type::FloatTyID: return Out << "float " << NameSoFar;
540 case Type::DoubleTyID: return Out << "double " << NameSoFar;
541 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
542 // present matches host 'long double'.
543 case Type::X86_FP80TyID:
544 case Type::PPC_FP128TyID:
545 case Type::FP128TyID: return Out << "long double " << NameSoFar;
547 case Type::VectorTyID: {
548 const VectorType *VTy = cast<VectorType>(Ty);
549 return printSimpleType(Out, VTy->getElementType(), isSigned,
550 " __attribute__((vector_size(" +
551 utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
554 default:
555 #ifndef NDEBUG
556 cerr << "Unknown primitive type: " << *Ty << "\n";
557 #endif
558 llvm_unreachable(0);
562 // Pass the Type* and the variable name and this prints out the variable
563 // declaration.
565 raw_ostream &CWriter::printType(formatted_raw_ostream &Out,
566 const Type *Ty,
567 bool isSigned, const std::string &NameSoFar,
568 bool IgnoreName, const AttrListPtr &PAL) {
569 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
570 printSimpleType(Out, Ty, isSigned, NameSoFar);
571 return Out;
574 // Check to see if the type is named.
575 if (!IgnoreName || isa<OpaqueType>(Ty)) {
576 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
577 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
580 switch (Ty->getTypeID()) {
581 case Type::FunctionTyID: {
582 const FunctionType *FTy = cast<FunctionType>(Ty);
583 std::stringstream FunctionInnards;
584 FunctionInnards << " (" << NameSoFar << ") (";
585 unsigned Idx = 1;
586 for (FunctionType::param_iterator I = FTy->param_begin(),
587 E = FTy->param_end(); I != E; ++I) {
588 const Type *ArgTy = *I;
589 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
590 assert(isa<PointerType>(ArgTy));
591 ArgTy = cast<PointerType>(ArgTy)->getElementType();
593 if (I != FTy->param_begin())
594 FunctionInnards << ", ";
595 printType(FunctionInnards, ArgTy,
596 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
597 ++Idx;
599 if (FTy->isVarArg()) {
600 if (FTy->getNumParams())
601 FunctionInnards << ", ...";
602 } else if (!FTy->getNumParams()) {
603 FunctionInnards << "void";
605 FunctionInnards << ')';
606 std::string tstr = FunctionInnards.str();
607 printType(Out, FTy->getReturnType(),
608 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
609 return Out;
611 case Type::StructTyID: {
612 const StructType *STy = cast<StructType>(Ty);
613 Out << NameSoFar + " {\n";
614 unsigned Idx = 0;
615 for (StructType::element_iterator I = STy->element_begin(),
616 E = STy->element_end(); I != E; ++I) {
617 Out << " ";
618 printType(Out, *I, false, "field" + utostr(Idx++));
619 Out << ";\n";
621 Out << '}';
622 if (STy->isPacked())
623 Out << " __attribute__ ((packed))";
624 return Out;
627 case Type::PointerTyID: {
628 const PointerType *PTy = cast<PointerType>(Ty);
629 std::string ptrName = "*" + NameSoFar;
631 if (isa<ArrayType>(PTy->getElementType()) ||
632 isa<VectorType>(PTy->getElementType()))
633 ptrName = "(" + ptrName + ")";
635 if (!PAL.isEmpty())
636 // Must be a function ptr cast!
637 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
638 return printType(Out, PTy->getElementType(), false, ptrName);
641 case Type::ArrayTyID: {
642 const ArrayType *ATy = cast<ArrayType>(Ty);
643 unsigned NumElements = ATy->getNumElements();
644 if (NumElements == 0) NumElements = 1;
645 // Arrays are wrapped in structs to allow them to have normal
646 // value semantics (avoiding the array "decay").
647 Out << NameSoFar << " { ";
648 printType(Out, ATy->getElementType(), false,
649 "array[" + utostr(NumElements) + "]");
650 return Out << "; }";
653 case Type::OpaqueTyID: {
654 std::string TyName = "struct opaque_" + itostr(OpaqueCounter++);
655 assert(TypeNames.find(Ty) == TypeNames.end());
656 TypeNames[Ty] = TyName;
657 return Out << TyName << ' ' << NameSoFar;
659 default:
660 llvm_unreachable("Unhandled case in getTypeProps!");
663 return Out;
666 // Pass the Type* and the variable name and this prints out the variable
667 // declaration.
669 std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
670 bool isSigned, const std::string &NameSoFar,
671 bool IgnoreName, const AttrListPtr &PAL) {
672 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
673 printSimpleType(Out, Ty, isSigned, NameSoFar);
674 return Out;
677 // Check to see if the type is named.
678 if (!IgnoreName || isa<OpaqueType>(Ty)) {
679 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
680 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
683 switch (Ty->getTypeID()) {
684 case Type::FunctionTyID: {
685 const FunctionType *FTy = cast<FunctionType>(Ty);
686 std::stringstream FunctionInnards;
687 FunctionInnards << " (" << NameSoFar << ") (";
688 unsigned Idx = 1;
689 for (FunctionType::param_iterator I = FTy->param_begin(),
690 E = FTy->param_end(); I != E; ++I) {
691 const Type *ArgTy = *I;
692 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
693 assert(isa<PointerType>(ArgTy));
694 ArgTy = cast<PointerType>(ArgTy)->getElementType();
696 if (I != FTy->param_begin())
697 FunctionInnards << ", ";
698 printType(FunctionInnards, ArgTy,
699 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
700 ++Idx;
702 if (FTy->isVarArg()) {
703 if (FTy->getNumParams())
704 FunctionInnards << ", ...";
705 } else if (!FTy->getNumParams()) {
706 FunctionInnards << "void";
708 FunctionInnards << ')';
709 std::string tstr = FunctionInnards.str();
710 printType(Out, FTy->getReturnType(),
711 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
712 return Out;
714 case Type::StructTyID: {
715 const StructType *STy = cast<StructType>(Ty);
716 Out << NameSoFar + " {\n";
717 unsigned Idx = 0;
718 for (StructType::element_iterator I = STy->element_begin(),
719 E = STy->element_end(); I != E; ++I) {
720 Out << " ";
721 printType(Out, *I, false, "field" + utostr(Idx++));
722 Out << ";\n";
724 Out << '}';
725 if (STy->isPacked())
726 Out << " __attribute__ ((packed))";
727 return Out;
730 case Type::PointerTyID: {
731 const PointerType *PTy = cast<PointerType>(Ty);
732 std::string ptrName = "*" + NameSoFar;
734 if (isa<ArrayType>(PTy->getElementType()) ||
735 isa<VectorType>(PTy->getElementType()))
736 ptrName = "(" + ptrName + ")";
738 if (!PAL.isEmpty())
739 // Must be a function ptr cast!
740 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
741 return printType(Out, PTy->getElementType(), false, ptrName);
744 case Type::ArrayTyID: {
745 const ArrayType *ATy = cast<ArrayType>(Ty);
746 unsigned NumElements = ATy->getNumElements();
747 if (NumElements == 0) NumElements = 1;
748 // Arrays are wrapped in structs to allow them to have normal
749 // value semantics (avoiding the array "decay").
750 Out << NameSoFar << " { ";
751 printType(Out, ATy->getElementType(), false,
752 "array[" + utostr(NumElements) + "]");
753 return Out << "; }";
756 case Type::OpaqueTyID: {
757 std::string TyName = "struct opaque_" + itostr(OpaqueCounter++);
758 assert(TypeNames.find(Ty) == TypeNames.end());
759 TypeNames[Ty] = TyName;
760 return Out << TyName << ' ' << NameSoFar;
762 default:
763 llvm_unreachable("Unhandled case in getTypeProps!");
766 return Out;
769 void CWriter::printConstantArray(ConstantArray *CPA, bool Static) {
771 // As a special case, print the array as a string if it is an array of
772 // ubytes or an array of sbytes with positive values.
774 const Type *ETy = CPA->getType()->getElementType();
775 bool isString = (ETy == Type::getInt8Ty(CPA->getContext()) ||
776 ETy == Type::getInt8Ty(CPA->getContext()));
778 // Make sure the last character is a null char, as automatically added by C
779 if (isString && (CPA->getNumOperands() == 0 ||
780 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
781 isString = false;
783 if (isString) {
784 Out << '\"';
785 // Keep track of whether the last number was a hexadecimal escape
786 bool LastWasHex = false;
788 // Do not include the last character, which we know is null
789 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
790 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
792 // Print it out literally if it is a printable character. The only thing
793 // to be careful about is when the last letter output was a hex escape
794 // code, in which case we have to be careful not to print out hex digits
795 // explicitly (the C compiler thinks it is a continuation of the previous
796 // character, sheesh...)
798 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
799 LastWasHex = false;
800 if (C == '"' || C == '\\')
801 Out << "\\" << (char)C;
802 else
803 Out << (char)C;
804 } else {
805 LastWasHex = false;
806 switch (C) {
807 case '\n': Out << "\\n"; break;
808 case '\t': Out << "\\t"; break;
809 case '\r': Out << "\\r"; break;
810 case '\v': Out << "\\v"; break;
811 case '\a': Out << "\\a"; break;
812 case '\"': Out << "\\\""; break;
813 case '\'': Out << "\\\'"; break;
814 default:
815 Out << "\\x";
816 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
817 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
818 LastWasHex = true;
819 break;
823 Out << '\"';
824 } else {
825 Out << '{';
826 if (CPA->getNumOperands()) {
827 Out << ' ';
828 printConstant(cast<Constant>(CPA->getOperand(0)), Static);
829 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
830 Out << ", ";
831 printConstant(cast<Constant>(CPA->getOperand(i)), Static);
834 Out << " }";
838 void CWriter::printConstantVector(ConstantVector *CP, bool Static) {
839 Out << '{';
840 if (CP->getNumOperands()) {
841 Out << ' ';
842 printConstant(cast<Constant>(CP->getOperand(0)), Static);
843 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
844 Out << ", ";
845 printConstant(cast<Constant>(CP->getOperand(i)), Static);
848 Out << " }";
851 // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
852 // textually as a double (rather than as a reference to a stack-allocated
853 // variable). We decide this by converting CFP to a string and back into a
854 // double, and then checking whether the conversion results in a bit-equal
855 // double to the original value of CFP. This depends on us and the target C
856 // compiler agreeing on the conversion process (which is pretty likely since we
857 // only deal in IEEE FP).
859 static bool isFPCSafeToPrint(const ConstantFP *CFP) {
860 bool ignored;
861 // Do long doubles in hex for now.
862 if (CFP->getType() != Type::getFloatTy(CFP->getContext()) &&
863 CFP->getType() != Type::getDoubleTy(CFP->getContext()))
864 return false;
865 APFloat APF = APFloat(CFP->getValueAPF()); // copy
866 if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
867 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
868 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
869 char Buffer[100];
870 sprintf(Buffer, "%a", APF.convertToDouble());
871 if (!strncmp(Buffer, "0x", 2) ||
872 !strncmp(Buffer, "-0x", 3) ||
873 !strncmp(Buffer, "+0x", 3))
874 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
875 return false;
876 #else
877 std::string StrVal = ftostr(APF);
879 while (StrVal[0] == ' ')
880 StrVal.erase(StrVal.begin());
882 // Check to make sure that the stringized number is not some string like "Inf"
883 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
884 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
885 ((StrVal[0] == '-' || StrVal[0] == '+') &&
886 (StrVal[1] >= '0' && StrVal[1] <= '9')))
887 // Reparse stringized version!
888 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
889 return false;
890 #endif
893 /// Print out the casting for a cast operation. This does the double casting
894 /// necessary for conversion to the destination type, if necessary.
895 /// @brief Print a cast
896 void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
897 // Print the destination type cast
898 switch (opc) {
899 case Instruction::UIToFP:
900 case Instruction::SIToFP:
901 case Instruction::IntToPtr:
902 case Instruction::Trunc:
903 case Instruction::BitCast:
904 case Instruction::FPExt:
905 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
906 Out << '(';
907 printType(Out, DstTy);
908 Out << ')';
909 break;
910 case Instruction::ZExt:
911 case Instruction::PtrToInt:
912 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
913 Out << '(';
914 printSimpleType(Out, DstTy, false);
915 Out << ')';
916 break;
917 case Instruction::SExt:
918 case Instruction::FPToSI: // For these, make sure we get a signed dest
919 Out << '(';
920 printSimpleType(Out, DstTy, true);
921 Out << ')';
922 break;
923 default:
924 llvm_unreachable("Invalid cast opcode");
927 // Print the source type cast
928 switch (opc) {
929 case Instruction::UIToFP:
930 case Instruction::ZExt:
931 Out << '(';
932 printSimpleType(Out, SrcTy, false);
933 Out << ')';
934 break;
935 case Instruction::SIToFP:
936 case Instruction::SExt:
937 Out << '(';
938 printSimpleType(Out, SrcTy, true);
939 Out << ')';
940 break;
941 case Instruction::IntToPtr:
942 case Instruction::PtrToInt:
943 // Avoid "cast to pointer from integer of different size" warnings
944 Out << "(unsigned long)";
945 break;
946 case Instruction::Trunc:
947 case Instruction::BitCast:
948 case Instruction::FPExt:
949 case Instruction::FPTrunc:
950 case Instruction::FPToSI:
951 case Instruction::FPToUI:
952 break; // These don't need a source cast.
953 default:
954 llvm_unreachable("Invalid cast opcode");
955 break;
959 // printConstant - The LLVM Constant to C Constant converter.
960 void CWriter::printConstant(Constant *CPV, bool Static) {
961 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
962 switch (CE->getOpcode()) {
963 case Instruction::Trunc:
964 case Instruction::ZExt:
965 case Instruction::SExt:
966 case Instruction::FPTrunc:
967 case Instruction::FPExt:
968 case Instruction::UIToFP:
969 case Instruction::SIToFP:
970 case Instruction::FPToUI:
971 case Instruction::FPToSI:
972 case Instruction::PtrToInt:
973 case Instruction::IntToPtr:
974 case Instruction::BitCast:
975 Out << "(";
976 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
977 if (CE->getOpcode() == Instruction::SExt &&
978 CE->getOperand(0)->getType() == Type::getInt1Ty(CPV->getContext())) {
979 // Make sure we really sext from bool here by subtracting from 0
980 Out << "0-";
982 printConstant(CE->getOperand(0), Static);
983 if (CE->getType() == Type::getInt1Ty(CPV->getContext()) &&
984 (CE->getOpcode() == Instruction::Trunc ||
985 CE->getOpcode() == Instruction::FPToUI ||
986 CE->getOpcode() == Instruction::FPToSI ||
987 CE->getOpcode() == Instruction::PtrToInt)) {
988 // Make sure we really truncate to bool here by anding with 1
989 Out << "&1u";
991 Out << ')';
992 return;
994 case Instruction::GetElementPtr:
995 Out << "(";
996 printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
997 gep_type_end(CPV), Static);
998 Out << ")";
999 return;
1000 case Instruction::Select:
1001 Out << '(';
1002 printConstant(CE->getOperand(0), Static);
1003 Out << '?';
1004 printConstant(CE->getOperand(1), Static);
1005 Out << ':';
1006 printConstant(CE->getOperand(2), Static);
1007 Out << ')';
1008 return;
1009 case Instruction::Add:
1010 case Instruction::FAdd:
1011 case Instruction::Sub:
1012 case Instruction::FSub:
1013 case Instruction::Mul:
1014 case Instruction::FMul:
1015 case Instruction::SDiv:
1016 case Instruction::UDiv:
1017 case Instruction::FDiv:
1018 case Instruction::URem:
1019 case Instruction::SRem:
1020 case Instruction::FRem:
1021 case Instruction::And:
1022 case Instruction::Or:
1023 case Instruction::Xor:
1024 case Instruction::ICmp:
1025 case Instruction::Shl:
1026 case Instruction::LShr:
1027 case Instruction::AShr:
1029 Out << '(';
1030 bool NeedsClosingParens = printConstExprCast(CE, Static);
1031 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
1032 switch (CE->getOpcode()) {
1033 case Instruction::Add:
1034 case Instruction::FAdd: Out << " + "; break;
1035 case Instruction::Sub:
1036 case Instruction::FSub: Out << " - "; break;
1037 case Instruction::Mul:
1038 case Instruction::FMul: Out << " * "; break;
1039 case Instruction::URem:
1040 case Instruction::SRem:
1041 case Instruction::FRem: Out << " % "; break;
1042 case Instruction::UDiv:
1043 case Instruction::SDiv:
1044 case Instruction::FDiv: Out << " / "; break;
1045 case Instruction::And: Out << " & "; break;
1046 case Instruction::Or: Out << " | "; break;
1047 case Instruction::Xor: Out << " ^ "; break;
1048 case Instruction::Shl: Out << " << "; break;
1049 case Instruction::LShr:
1050 case Instruction::AShr: Out << " >> "; break;
1051 case Instruction::ICmp:
1052 switch (CE->getPredicate()) {
1053 case ICmpInst::ICMP_EQ: Out << " == "; break;
1054 case ICmpInst::ICMP_NE: Out << " != "; break;
1055 case ICmpInst::ICMP_SLT:
1056 case ICmpInst::ICMP_ULT: Out << " < "; break;
1057 case ICmpInst::ICMP_SLE:
1058 case ICmpInst::ICMP_ULE: Out << " <= "; break;
1059 case ICmpInst::ICMP_SGT:
1060 case ICmpInst::ICMP_UGT: Out << " > "; break;
1061 case ICmpInst::ICMP_SGE:
1062 case ICmpInst::ICMP_UGE: Out << " >= "; break;
1063 default: llvm_unreachable("Illegal ICmp predicate");
1065 break;
1066 default: llvm_unreachable("Illegal opcode here!");
1068 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
1069 if (NeedsClosingParens)
1070 Out << "))";
1071 Out << ')';
1072 return;
1074 case Instruction::FCmp: {
1075 Out << '(';
1076 bool NeedsClosingParens = printConstExprCast(CE, Static);
1077 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
1078 Out << "0";
1079 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
1080 Out << "1";
1081 else {
1082 const char* op = 0;
1083 switch (CE->getPredicate()) {
1084 default: llvm_unreachable("Illegal FCmp predicate");
1085 case FCmpInst::FCMP_ORD: op = "ord"; break;
1086 case FCmpInst::FCMP_UNO: op = "uno"; break;
1087 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
1088 case FCmpInst::FCMP_UNE: op = "une"; break;
1089 case FCmpInst::FCMP_ULT: op = "ult"; break;
1090 case FCmpInst::FCMP_ULE: op = "ule"; break;
1091 case FCmpInst::FCMP_UGT: op = "ugt"; break;
1092 case FCmpInst::FCMP_UGE: op = "uge"; break;
1093 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
1094 case FCmpInst::FCMP_ONE: op = "one"; break;
1095 case FCmpInst::FCMP_OLT: op = "olt"; break;
1096 case FCmpInst::FCMP_OLE: op = "ole"; break;
1097 case FCmpInst::FCMP_OGT: op = "ogt"; break;
1098 case FCmpInst::FCMP_OGE: op = "oge"; break;
1100 Out << "llvm_fcmp_" << op << "(";
1101 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
1102 Out << ", ";
1103 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
1104 Out << ")";
1106 if (NeedsClosingParens)
1107 Out << "))";
1108 Out << ')';
1109 return;
1111 default:
1112 #ifndef NDEBUG
1113 cerr << "CWriter Error: Unhandled constant expression: "
1114 << *CE << "\n";
1115 #endif
1116 llvm_unreachable(0);
1118 } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
1119 Out << "((";
1120 printType(Out, CPV->getType()); // sign doesn't matter
1121 Out << ")/*UNDEF*/";
1122 if (!isa<VectorType>(CPV->getType())) {
1123 Out << "0)";
1124 } else {
1125 Out << "{})";
1127 return;
1130 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
1131 const Type* Ty = CI->getType();
1132 if (Ty == Type::getInt1Ty(CPV->getContext()))
1133 Out << (CI->getZExtValue() ? '1' : '0');
1134 else if (Ty == Type::getInt32Ty(CPV->getContext()))
1135 Out << CI->getZExtValue() << 'u';
1136 else if (Ty->getPrimitiveSizeInBits() > 32)
1137 Out << CI->getZExtValue() << "ull";
1138 else {
1139 Out << "((";
1140 printSimpleType(Out, Ty, false) << ')';
1141 if (CI->isMinValue(true))
1142 Out << CI->getZExtValue() << 'u';
1143 else
1144 Out << CI->getSExtValue();
1145 Out << ')';
1147 return;
1150 switch (CPV->getType()->getTypeID()) {
1151 case Type::FloatTyID:
1152 case Type::DoubleTyID:
1153 case Type::X86_FP80TyID:
1154 case Type::PPC_FP128TyID:
1155 case Type::FP128TyID: {
1156 ConstantFP *FPC = cast<ConstantFP>(CPV);
1157 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
1158 if (I != FPConstantMap.end()) {
1159 // Because of FP precision problems we must load from a stack allocated
1160 // value that holds the value in hex.
1161 Out << "(*(" << (FPC->getType() == Type::getFloatTy(CPV->getContext()) ?
1162 "float" :
1163 FPC->getType() == Type::getDoubleTy(CPV->getContext()) ?
1164 "double" :
1165 "long double")
1166 << "*)&FPConstant" << I->second << ')';
1167 } else {
1168 double V;
1169 if (FPC->getType() == Type::getFloatTy(CPV->getContext()))
1170 V = FPC->getValueAPF().convertToFloat();
1171 else if (FPC->getType() == Type::getDoubleTy(CPV->getContext()))
1172 V = FPC->getValueAPF().convertToDouble();
1173 else {
1174 // Long double. Convert the number to double, discarding precision.
1175 // This is not awesome, but it at least makes the CBE output somewhat
1176 // useful.
1177 APFloat Tmp = FPC->getValueAPF();
1178 bool LosesInfo;
1179 Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo);
1180 V = Tmp.convertToDouble();
1183 if (IsNAN(V)) {
1184 // The value is NaN
1186 // FIXME the actual NaN bits should be emitted.
1187 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
1188 // it's 0x7ff4.
1189 const unsigned long QuietNaN = 0x7ff8UL;
1190 //const unsigned long SignalNaN = 0x7ff4UL;
1192 // We need to grab the first part of the FP #
1193 char Buffer[100];
1195 uint64_t ll = DoubleToBits(V);
1196 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
1198 std::string Num(&Buffer[0], &Buffer[6]);
1199 unsigned long Val = strtoul(Num.c_str(), 0, 16);
1201 if (FPC->getType() == Type::getFloatTy(FPC->getContext()))
1202 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
1203 << Buffer << "\") /*nan*/ ";
1204 else
1205 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
1206 << Buffer << "\") /*nan*/ ";
1207 } else if (IsInf(V)) {
1208 // The value is Inf
1209 if (V < 0) Out << '-';
1210 Out << "LLVM_INF" <<
1211 (FPC->getType() == Type::getFloatTy(FPC->getContext()) ? "F" : "")
1212 << " /*inf*/ ";
1213 } else {
1214 std::string Num;
1215 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
1216 // Print out the constant as a floating point number.
1217 char Buffer[100];
1218 sprintf(Buffer, "%a", V);
1219 Num = Buffer;
1220 #else
1221 Num = ftostr(FPC->getValueAPF());
1222 #endif
1223 Out << Num;
1226 break;
1229 case Type::ArrayTyID:
1230 // Use C99 compound expression literal initializer syntax.
1231 if (!Static) {
1232 Out << "(";
1233 printType(Out, CPV->getType());
1234 Out << ")";
1236 Out << "{ "; // Arrays are wrapped in struct types.
1237 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
1238 printConstantArray(CA, Static);
1239 } else {
1240 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1241 const ArrayType *AT = cast<ArrayType>(CPV->getType());
1242 Out << '{';
1243 if (AT->getNumElements()) {
1244 Out << ' ';
1245 Constant *CZ = Constant::getNullValue(AT->getElementType());
1246 printConstant(CZ, Static);
1247 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
1248 Out << ", ";
1249 printConstant(CZ, Static);
1252 Out << " }";
1254 Out << " }"; // Arrays are wrapped in struct types.
1255 break;
1257 case Type::VectorTyID:
1258 // Use C99 compound expression literal initializer syntax.
1259 if (!Static) {
1260 Out << "(";
1261 printType(Out, CPV->getType());
1262 Out << ")";
1264 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
1265 printConstantVector(CV, Static);
1266 } else {
1267 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1268 const VectorType *VT = cast<VectorType>(CPV->getType());
1269 Out << "{ ";
1270 Constant *CZ = Constant::getNullValue(VT->getElementType());
1271 printConstant(CZ, Static);
1272 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
1273 Out << ", ";
1274 printConstant(CZ, Static);
1276 Out << " }";
1278 break;
1280 case Type::StructTyID:
1281 // Use C99 compound expression literal initializer syntax.
1282 if (!Static) {
1283 Out << "(";
1284 printType(Out, CPV->getType());
1285 Out << ")";
1287 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1288 const StructType *ST = cast<StructType>(CPV->getType());
1289 Out << '{';
1290 if (ST->getNumElements()) {
1291 Out << ' ';
1292 printConstant(Constant::getNullValue(ST->getElementType(0)), Static);
1293 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1294 Out << ", ";
1295 printConstant(Constant::getNullValue(ST->getElementType(i)), Static);
1298 Out << " }";
1299 } else {
1300 Out << '{';
1301 if (CPV->getNumOperands()) {
1302 Out << ' ';
1303 printConstant(cast<Constant>(CPV->getOperand(0)), Static);
1304 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1305 Out << ", ";
1306 printConstant(cast<Constant>(CPV->getOperand(i)), Static);
1309 Out << " }";
1311 break;
1313 case Type::PointerTyID:
1314 if (isa<ConstantPointerNull>(CPV)) {
1315 Out << "((";
1316 printType(Out, CPV->getType()); // sign doesn't matter
1317 Out << ")/*NULL*/0)";
1318 break;
1319 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1320 writeOperand(GV, Static);
1321 break;
1323 // FALL THROUGH
1324 default:
1325 #ifndef NDEBUG
1326 cerr << "Unknown constant type: " << *CPV << "\n";
1327 #endif
1328 llvm_unreachable(0);
1332 // Some constant expressions need to be casted back to the original types
1333 // because their operands were casted to the expected type. This function takes
1334 // care of detecting that case and printing the cast for the ConstantExpr.
1335 bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) {
1336 bool NeedsExplicitCast = false;
1337 const Type *Ty = CE->getOperand(0)->getType();
1338 bool TypeIsSigned = false;
1339 switch (CE->getOpcode()) {
1340 case Instruction::Add:
1341 case Instruction::Sub:
1342 case Instruction::Mul:
1343 // We need to cast integer arithmetic so that it is always performed
1344 // as unsigned, to avoid undefined behavior on overflow.
1345 case Instruction::LShr:
1346 case Instruction::URem:
1347 case Instruction::UDiv: NeedsExplicitCast = true; break;
1348 case Instruction::AShr:
1349 case Instruction::SRem:
1350 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1351 case Instruction::SExt:
1352 Ty = CE->getType();
1353 NeedsExplicitCast = true;
1354 TypeIsSigned = true;
1355 break;
1356 case Instruction::ZExt:
1357 case Instruction::Trunc:
1358 case Instruction::FPTrunc:
1359 case Instruction::FPExt:
1360 case Instruction::UIToFP:
1361 case Instruction::SIToFP:
1362 case Instruction::FPToUI:
1363 case Instruction::FPToSI:
1364 case Instruction::PtrToInt:
1365 case Instruction::IntToPtr:
1366 case Instruction::BitCast:
1367 Ty = CE->getType();
1368 NeedsExplicitCast = true;
1369 break;
1370 default: break;
1372 if (NeedsExplicitCast) {
1373 Out << "((";
1374 if (Ty->isInteger() && Ty != Type::getInt1Ty(Ty->getContext()))
1375 printSimpleType(Out, Ty, TypeIsSigned);
1376 else
1377 printType(Out, Ty); // not integer, sign doesn't matter
1378 Out << ")(";
1380 return NeedsExplicitCast;
1383 // Print a constant assuming that it is the operand for a given Opcode. The
1384 // opcodes that care about sign need to cast their operands to the expected
1385 // type before the operation proceeds. This function does the casting.
1386 void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1388 // Extract the operand's type, we'll need it.
1389 const Type* OpTy = CPV->getType();
1391 // Indicate whether to do the cast or not.
1392 bool shouldCast = false;
1393 bool typeIsSigned = false;
1395 // Based on the Opcode for which this Constant is being written, determine
1396 // the new type to which the operand should be casted by setting the value
1397 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1398 // casted below.
1399 switch (Opcode) {
1400 default:
1401 // for most instructions, it doesn't matter
1402 break;
1403 case Instruction::Add:
1404 case Instruction::Sub:
1405 case Instruction::Mul:
1406 // We need to cast integer arithmetic so that it is always performed
1407 // as unsigned, to avoid undefined behavior on overflow.
1408 case Instruction::LShr:
1409 case Instruction::UDiv:
1410 case Instruction::URem:
1411 shouldCast = true;
1412 break;
1413 case Instruction::AShr:
1414 case Instruction::SDiv:
1415 case Instruction::SRem:
1416 shouldCast = true;
1417 typeIsSigned = true;
1418 break;
1421 // Write out the casted constant if we should, otherwise just write the
1422 // operand.
1423 if (shouldCast) {
1424 Out << "((";
1425 printSimpleType(Out, OpTy, typeIsSigned);
1426 Out << ")";
1427 printConstant(CPV, false);
1428 Out << ")";
1429 } else
1430 printConstant(CPV, false);
1433 std::string CWriter::GetValueName(const Value *Operand) {
1434 // Mangle globals with the standard mangler interface for LLC compatibility.
1435 if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand))
1436 return Mang->getMangledName(GV);
1438 std::string Name = Operand->getName();
1440 if (Name.empty()) { // Assign unique names to local temporaries.
1441 unsigned &No = AnonValueNumbers[Operand];
1442 if (No == 0)
1443 No = ++NextAnonValueNumber;
1444 Name = "tmp__" + utostr(No);
1447 std::string VarName;
1448 VarName.reserve(Name.capacity());
1450 for (std::string::iterator I = Name.begin(), E = Name.end();
1451 I != E; ++I) {
1452 char ch = *I;
1454 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
1455 (ch >= '0' && ch <= '9') || ch == '_')) {
1456 char buffer[5];
1457 sprintf(buffer, "_%x_", ch);
1458 VarName += buffer;
1459 } else
1460 VarName += ch;
1463 return "llvm_cbe_" + VarName;
1466 /// writeInstComputationInline - Emit the computation for the specified
1467 /// instruction inline, with no destination provided.
1468 void CWriter::writeInstComputationInline(Instruction &I) {
1469 // We can't currently support integer types other than 1, 8, 16, 32, 64.
1470 // Validate this.
1471 const Type *Ty = I.getType();
1472 if (Ty->isInteger() && (Ty!=Type::getInt1Ty(I.getContext()) &&
1473 Ty!=Type::getInt8Ty(I.getContext()) &&
1474 Ty!=Type::getInt16Ty(I.getContext()) &&
1475 Ty!=Type::getInt32Ty(I.getContext()) &&
1476 Ty!=Type::getInt64Ty(I.getContext()))) {
1477 llvm_report_error("The C backend does not currently support integer "
1478 "types of widths other than 1, 8, 16, 32, 64.\n"
1479 "This is being tracked as PR 4158.");
1482 // If this is a non-trivial bool computation, make sure to truncate down to
1483 // a 1 bit value. This is important because we want "add i1 x, y" to return
1484 // "0" when x and y are true, not "2" for example.
1485 bool NeedBoolTrunc = false;
1486 if (I.getType() == Type::getInt1Ty(I.getContext()) &&
1487 !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
1488 NeedBoolTrunc = true;
1490 if (NeedBoolTrunc)
1491 Out << "((";
1493 visit(I);
1495 if (NeedBoolTrunc)
1496 Out << ")&1)";
1500 void CWriter::writeOperandInternal(Value *Operand, bool Static) {
1501 if (Instruction *I = dyn_cast<Instruction>(Operand))
1502 // Should we inline this instruction to build a tree?
1503 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1504 Out << '(';
1505 writeInstComputationInline(*I);
1506 Out << ')';
1507 return;
1510 Constant* CPV = dyn_cast<Constant>(Operand);
1512 if (CPV && !isa<GlobalValue>(CPV))
1513 printConstant(CPV, Static);
1514 else
1515 Out << GetValueName(Operand);
1518 void CWriter::writeOperand(Value *Operand, bool Static) {
1519 bool isAddressImplicit = isAddressExposed(Operand);
1520 if (isAddressImplicit)
1521 Out << "(&"; // Global variables are referenced as their addresses by llvm
1523 writeOperandInternal(Operand, Static);
1525 if (isAddressImplicit)
1526 Out << ')';
1529 // Some instructions need to have their result value casted back to the
1530 // original types because their operands were casted to the expected type.
1531 // This function takes care of detecting that case and printing the cast
1532 // for the Instruction.
1533 bool CWriter::writeInstructionCast(const Instruction &I) {
1534 const Type *Ty = I.getOperand(0)->getType();
1535 switch (I.getOpcode()) {
1536 case Instruction::Add:
1537 case Instruction::Sub:
1538 case Instruction::Mul:
1539 // We need to cast integer arithmetic so that it is always performed
1540 // as unsigned, to avoid undefined behavior on overflow.
1541 case Instruction::LShr:
1542 case Instruction::URem:
1543 case Instruction::UDiv:
1544 Out << "((";
1545 printSimpleType(Out, Ty, false);
1546 Out << ")(";
1547 return true;
1548 case Instruction::AShr:
1549 case Instruction::SRem:
1550 case Instruction::SDiv:
1551 Out << "((";
1552 printSimpleType(Out, Ty, true);
1553 Out << ")(";
1554 return true;
1555 default: break;
1557 return false;
1560 // Write the operand with a cast to another type based on the Opcode being used.
1561 // This will be used in cases where an instruction has specific type
1562 // requirements (usually signedness) for its operands.
1563 void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1565 // Extract the operand's type, we'll need it.
1566 const Type* OpTy = Operand->getType();
1568 // Indicate whether to do the cast or not.
1569 bool shouldCast = false;
1571 // Indicate whether the cast should be to a signed type or not.
1572 bool castIsSigned = false;
1574 // Based on the Opcode for which this Operand is being written, determine
1575 // the new type to which the operand should be casted by setting the value
1576 // of OpTy. If we change OpTy, also set shouldCast to true.
1577 switch (Opcode) {
1578 default:
1579 // for most instructions, it doesn't matter
1580 break;
1581 case Instruction::Add:
1582 case Instruction::Sub:
1583 case Instruction::Mul:
1584 // We need to cast integer arithmetic so that it is always performed
1585 // as unsigned, to avoid undefined behavior on overflow.
1586 case Instruction::LShr:
1587 case Instruction::UDiv:
1588 case Instruction::URem: // Cast to unsigned first
1589 shouldCast = true;
1590 castIsSigned = false;
1591 break;
1592 case Instruction::GetElementPtr:
1593 case Instruction::AShr:
1594 case Instruction::SDiv:
1595 case Instruction::SRem: // Cast to signed first
1596 shouldCast = true;
1597 castIsSigned = true;
1598 break;
1601 // Write out the casted operand if we should, otherwise just write the
1602 // operand.
1603 if (shouldCast) {
1604 Out << "((";
1605 printSimpleType(Out, OpTy, castIsSigned);
1606 Out << ")";
1607 writeOperand(Operand);
1608 Out << ")";
1609 } else
1610 writeOperand(Operand);
1613 // Write the operand with a cast to another type based on the icmp predicate
1614 // being used.
1615 void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1616 // This has to do a cast to ensure the operand has the right signedness.
1617 // Also, if the operand is a pointer, we make sure to cast to an integer when
1618 // doing the comparison both for signedness and so that the C compiler doesn't
1619 // optimize things like "p < NULL" to false (p may contain an integer value
1620 // f.e.).
1621 bool shouldCast = Cmp.isRelational();
1623 // Write out the casted operand if we should, otherwise just write the
1624 // operand.
1625 if (!shouldCast) {
1626 writeOperand(Operand);
1627 return;
1630 // Should this be a signed comparison? If so, convert to signed.
1631 bool castIsSigned = Cmp.isSignedPredicate();
1633 // If the operand was a pointer, convert to a large integer type.
1634 const Type* OpTy = Operand->getType();
1635 if (isa<PointerType>(OpTy))
1636 OpTy = TD->getIntPtrType(Operand->getContext());
1638 Out << "((";
1639 printSimpleType(Out, OpTy, castIsSigned);
1640 Out << ")";
1641 writeOperand(Operand);
1642 Out << ")";
1645 // generateCompilerSpecificCode - This is where we add conditional compilation
1646 // directives to cater to specific compilers as need be.
1648 static void generateCompilerSpecificCode(formatted_raw_ostream& Out,
1649 const TargetData *TD) {
1650 // Alloca is hard to get, and we don't want to include stdlib.h here.
1651 Out << "/* get a declaration for alloca */\n"
1652 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1653 << "#define alloca(x) __builtin_alloca((x))\n"
1654 << "#define _alloca(x) __builtin_alloca((x))\n"
1655 << "#elif defined(__APPLE__)\n"
1656 << "extern void *__builtin_alloca(unsigned long);\n"
1657 << "#define alloca(x) __builtin_alloca(x)\n"
1658 << "#define longjmp _longjmp\n"
1659 << "#define setjmp _setjmp\n"
1660 << "#elif defined(__sun__)\n"
1661 << "#if defined(__sparcv9)\n"
1662 << "extern void *__builtin_alloca(unsigned long);\n"
1663 << "#else\n"
1664 << "extern void *__builtin_alloca(unsigned int);\n"
1665 << "#endif\n"
1666 << "#define alloca(x) __builtin_alloca(x)\n"
1667 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__arm__)\n"
1668 << "#define alloca(x) __builtin_alloca(x)\n"
1669 << "#elif defined(_MSC_VER)\n"
1670 << "#define inline _inline\n"
1671 << "#define alloca(x) _alloca(x)\n"
1672 << "#else\n"
1673 << "#include <alloca.h>\n"
1674 << "#endif\n\n";
1676 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1677 // If we aren't being compiled with GCC, just drop these attributes.
1678 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1679 << "#define __attribute__(X)\n"
1680 << "#endif\n\n";
1682 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1683 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1684 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1685 << "#elif defined(__GNUC__)\n"
1686 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1687 << "#else\n"
1688 << "#define __EXTERNAL_WEAK__\n"
1689 << "#endif\n\n";
1691 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1692 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1693 << "#define __ATTRIBUTE_WEAK__\n"
1694 << "#elif defined(__GNUC__)\n"
1695 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1696 << "#else\n"
1697 << "#define __ATTRIBUTE_WEAK__\n"
1698 << "#endif\n\n";
1700 // Add hidden visibility support. FIXME: APPLE_CC?
1701 Out << "#if defined(__GNUC__)\n"
1702 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1703 << "#endif\n\n";
1705 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1706 // From the GCC documentation:
1708 // double __builtin_nan (const char *str)
1710 // This is an implementation of the ISO C99 function nan.
1712 // Since ISO C99 defines this function in terms of strtod, which we do
1713 // not implement, a description of the parsing is in order. The string is
1714 // parsed as by strtol; that is, the base is recognized by leading 0 or
1715 // 0x prefixes. The number parsed is placed in the significand such that
1716 // the least significant bit of the number is at the least significant
1717 // bit of the significand. The number is truncated to fit the significand
1718 // field provided. The significand is forced to be a quiet NaN.
1720 // This function, if given a string literal, is evaluated early enough
1721 // that it is considered a compile-time constant.
1723 // float __builtin_nanf (const char *str)
1725 // Similar to __builtin_nan, except the return type is float.
1727 // double __builtin_inf (void)
1729 // Similar to __builtin_huge_val, except a warning is generated if the
1730 // target floating-point format does not support infinities. This
1731 // function is suitable for implementing the ISO C99 macro INFINITY.
1733 // float __builtin_inff (void)
1735 // Similar to __builtin_inf, except the return type is float.
1736 Out << "#ifdef __GNUC__\n"
1737 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1738 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1739 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1740 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1741 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1742 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1743 << "#define LLVM_PREFETCH(addr,rw,locality) "
1744 "__builtin_prefetch(addr,rw,locality)\n"
1745 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1746 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1747 << "#define LLVM_ASM __asm__\n"
1748 << "#else\n"
1749 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1750 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1751 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1752 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1753 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1754 << "#define LLVM_INFF 0.0F /* Float */\n"
1755 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1756 << "#define __ATTRIBUTE_CTOR__\n"
1757 << "#define __ATTRIBUTE_DTOR__\n"
1758 << "#define LLVM_ASM(X)\n"
1759 << "#endif\n\n";
1761 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1762 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1763 << "#define __builtin_stack_restore(X) /* noop */\n"
1764 << "#endif\n\n";
1766 // Output typedefs for 128-bit integers. If these are needed with a
1767 // 32-bit target or with a C compiler that doesn't support mode(TI),
1768 // more drastic measures will be needed.
1769 Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
1770 << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
1771 << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
1772 << "#endif\n\n";
1774 // Output target-specific code that should be inserted into main.
1775 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
1778 /// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1779 /// the StaticTors set.
1780 static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1781 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1782 if (!InitList) return;
1784 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1785 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1786 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1788 if (CS->getOperand(1)->isNullValue())
1789 return; // Found a null terminator, exit printing.
1790 Constant *FP = CS->getOperand(1);
1791 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1792 if (CE->isCast())
1793 FP = CE->getOperand(0);
1794 if (Function *F = dyn_cast<Function>(FP))
1795 StaticTors.insert(F);
1799 enum SpecialGlobalClass {
1800 NotSpecial = 0,
1801 GlobalCtors, GlobalDtors,
1802 NotPrinted
1805 /// getGlobalVariableClass - If this is a global that is specially recognized
1806 /// by LLVM, return a code that indicates how we should handle it.
1807 static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1808 // If this is a global ctors/dtors list, handle it now.
1809 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1810 if (GV->getName() == "llvm.global_ctors")
1811 return GlobalCtors;
1812 else if (GV->getName() == "llvm.global_dtors")
1813 return GlobalDtors;
1816 // Otherwise, it it is other metadata, don't print it. This catches things
1817 // like debug information.
1818 if (GV->getSection() == "llvm.metadata")
1819 return NotPrinted;
1821 return NotSpecial;
1824 // PrintEscapedString - Print each character of the specified string, escaping
1825 // it if it is not printable or if it is an escape char.
1826 static void PrintEscapedString(const char *Str, unsigned Length,
1827 raw_ostream &Out) {
1828 for (unsigned i = 0; i != Length; ++i) {
1829 unsigned char C = Str[i];
1830 if (isprint(C) && C != '\\' && C != '"')
1831 Out << C;
1832 else if (C == '\\')
1833 Out << "\\\\";
1834 else if (C == '\"')
1835 Out << "\\\"";
1836 else if (C == '\t')
1837 Out << "\\t";
1838 else
1839 Out << "\\x" << hexdigit(C >> 4) << hexdigit(C & 0x0F);
1843 // PrintEscapedString - Print each character of the specified string, escaping
1844 // it if it is not printable or if it is an escape char.
1845 static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
1846 PrintEscapedString(Str.c_str(), Str.size(), Out);
1849 bool CWriter::doInitialization(Module &M) {
1850 FunctionPass::doInitialization(M);
1852 // Initialize
1853 TheModule = &M;
1855 TD = new TargetData(&M);
1856 IL = new IntrinsicLowering(*TD);
1857 IL->AddPrototypes(M);
1859 // Ensure that all structure types have names...
1860 Mang = new Mangler(M);
1861 Mang->markCharUnacceptable('.');
1863 // Keep track of which functions are static ctors/dtors so they can have
1864 // an attribute added to their prototypes.
1865 std::set<Function*> StaticCtors, StaticDtors;
1866 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1867 I != E; ++I) {
1868 switch (getGlobalVariableClass(I)) {
1869 default: break;
1870 case GlobalCtors:
1871 FindStaticTors(I, StaticCtors);
1872 break;
1873 case GlobalDtors:
1874 FindStaticTors(I, StaticDtors);
1875 break;
1879 // get declaration for alloca
1880 Out << "/* Provide Declarations */\n";
1881 Out << "#include <stdarg.h>\n"; // Varargs support
1882 Out << "#include <setjmp.h>\n"; // Unwind support
1883 generateCompilerSpecificCode(Out, TD);
1885 // Provide a definition for `bool' if not compiling with a C++ compiler.
1886 Out << "\n"
1887 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1889 << "\n\n/* Support for floating point constants */\n"
1890 << "typedef unsigned long long ConstantDoubleTy;\n"
1891 << "typedef unsigned int ConstantFloatTy;\n"
1892 << "typedef struct { unsigned long long f1; unsigned short f2; "
1893 "unsigned short pad[3]; } ConstantFP80Ty;\n"
1894 // This is used for both kinds of 128-bit long double; meaning differs.
1895 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1896 " ConstantFP128Ty;\n"
1897 << "\n\n/* Global Declarations */\n";
1899 // First output all the declarations for the program, because C requires
1900 // Functions & globals to be declared before they are used.
1902 if (!M.getModuleInlineAsm().empty()) {
1903 Out << "/* Module asm statements */\n"
1904 << "asm(";
1906 // Split the string into lines, to make it easier to read the .ll file.
1907 std::string Asm = M.getModuleInlineAsm();
1908 size_t CurPos = 0;
1909 size_t NewLine = Asm.find_first_of('\n', CurPos);
1910 while (NewLine != std::string::npos) {
1911 // We found a newline, print the portion of the asm string from the
1912 // last newline up to this newline.
1913 Out << "\"";
1914 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1915 Out);
1916 Out << "\\n\"\n";
1917 CurPos = NewLine+1;
1918 NewLine = Asm.find_first_of('\n', CurPos);
1920 Out << "\"";
1921 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1922 Out << "\");\n"
1923 << "/* End Module asm statements */\n";
1926 // Loop over the symbol table, emitting all named constants...
1927 printModuleTypes(M.getTypeSymbolTable());
1929 // Global variable declarations...
1930 if (!M.global_empty()) {
1931 Out << "\n/* External Global Variable Declarations */\n";
1932 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1933 I != E; ++I) {
1935 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() ||
1936 I->hasCommonLinkage())
1937 Out << "extern ";
1938 else if (I->hasDLLImportLinkage())
1939 Out << "__declspec(dllimport) ";
1940 else
1941 continue; // Internal Global
1943 // Thread Local Storage
1944 if (I->isThreadLocal())
1945 Out << "__thread ";
1947 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1949 if (I->hasExternalWeakLinkage())
1950 Out << " __EXTERNAL_WEAK__";
1951 Out << ";\n";
1955 // Function declarations
1956 Out << "\n/* Function Declarations */\n";
1957 Out << "double fmod(double, double);\n"; // Support for FP rem
1958 Out << "float fmodf(float, float);\n";
1959 Out << "long double fmodl(long double, long double);\n";
1961 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1962 // Don't print declarations for intrinsic functions.
1963 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
1964 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1965 if (I->hasExternalWeakLinkage())
1966 Out << "extern ";
1967 printFunctionSignature(I, true);
1968 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1969 Out << " __ATTRIBUTE_WEAK__";
1970 if (I->hasExternalWeakLinkage())
1971 Out << " __EXTERNAL_WEAK__";
1972 if (StaticCtors.count(I))
1973 Out << " __ATTRIBUTE_CTOR__";
1974 if (StaticDtors.count(I))
1975 Out << " __ATTRIBUTE_DTOR__";
1976 if (I->hasHiddenVisibility())
1977 Out << " __HIDDEN__";
1979 if (I->hasName() && I->getName()[0] == 1)
1980 Out << " LLVM_ASM(\"" << I->getName().substr(1) << "\")";
1982 Out << ";\n";
1986 // Output the global variable declarations
1987 if (!M.global_empty()) {
1988 Out << "\n\n/* Global Variable Declarations */\n";
1989 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1990 I != E; ++I)
1991 if (!I->isDeclaration()) {
1992 // Ignore special globals, such as debug info.
1993 if (getGlobalVariableClass(I))
1994 continue;
1996 if (I->hasLocalLinkage())
1997 Out << "static ";
1998 else
1999 Out << "extern ";
2001 // Thread Local Storage
2002 if (I->isThreadLocal())
2003 Out << "__thread ";
2005 printType(Out, I->getType()->getElementType(), false,
2006 GetValueName(I));
2008 if (I->hasLinkOnceLinkage())
2009 Out << " __attribute__((common))";
2010 else if (I->hasCommonLinkage()) // FIXME is this right?
2011 Out << " __ATTRIBUTE_WEAK__";
2012 else if (I->hasWeakLinkage())
2013 Out << " __ATTRIBUTE_WEAK__";
2014 else if (I->hasExternalWeakLinkage())
2015 Out << " __EXTERNAL_WEAK__";
2016 if (I->hasHiddenVisibility())
2017 Out << " __HIDDEN__";
2018 Out << ";\n";
2022 // Output the global variable definitions and contents...
2023 if (!M.global_empty()) {
2024 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
2025 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
2026 I != E; ++I)
2027 if (!I->isDeclaration()) {
2028 // Ignore special globals, such as debug info.
2029 if (getGlobalVariableClass(I))
2030 continue;
2032 if (I->hasLocalLinkage())
2033 Out << "static ";
2034 else if (I->hasDLLImportLinkage())
2035 Out << "__declspec(dllimport) ";
2036 else if (I->hasDLLExportLinkage())
2037 Out << "__declspec(dllexport) ";
2039 // Thread Local Storage
2040 if (I->isThreadLocal())
2041 Out << "__thread ";
2043 printType(Out, I->getType()->getElementType(), false,
2044 GetValueName(I));
2045 if (I->hasLinkOnceLinkage())
2046 Out << " __attribute__((common))";
2047 else if (I->hasWeakLinkage())
2048 Out << " __ATTRIBUTE_WEAK__";
2049 else if (I->hasCommonLinkage())
2050 Out << " __ATTRIBUTE_WEAK__";
2052 if (I->hasHiddenVisibility())
2053 Out << " __HIDDEN__";
2055 // If the initializer is not null, emit the initializer. If it is null,
2056 // we try to avoid emitting large amounts of zeros. The problem with
2057 // this, however, occurs when the variable has weak linkage. In this
2058 // case, the assembler will complain about the variable being both weak
2059 // and common, so we disable this optimization.
2060 // FIXME common linkage should avoid this problem.
2061 if (!I->getInitializer()->isNullValue()) {
2062 Out << " = " ;
2063 writeOperand(I->getInitializer(), true);
2064 } else if (I->hasWeakLinkage()) {
2065 // We have to specify an initializer, but it doesn't have to be
2066 // complete. If the value is an aggregate, print out { 0 }, and let
2067 // the compiler figure out the rest of the zeros.
2068 Out << " = " ;
2069 if (isa<StructType>(I->getInitializer()->getType()) ||
2070 isa<VectorType>(I->getInitializer()->getType())) {
2071 Out << "{ 0 }";
2072 } else if (isa<ArrayType>(I->getInitializer()->getType())) {
2073 // As with structs and vectors, but with an extra set of braces
2074 // because arrays are wrapped in structs.
2075 Out << "{ { 0 } }";
2076 } else {
2077 // Just print it out normally.
2078 writeOperand(I->getInitializer(), true);
2081 Out << ";\n";
2085 if (!M.empty())
2086 Out << "\n\n/* Function Bodies */\n";
2088 // Emit some helper functions for dealing with FCMP instruction's
2089 // predicates
2090 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
2091 Out << "return X == X && Y == Y; }\n";
2092 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
2093 Out << "return X != X || Y != Y; }\n";
2094 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
2095 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
2096 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
2097 Out << "return X != Y; }\n";
2098 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
2099 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
2100 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
2101 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
2102 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
2103 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
2104 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
2105 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
2106 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
2107 Out << "return X == Y ; }\n";
2108 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
2109 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
2110 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
2111 Out << "return X < Y ; }\n";
2112 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
2113 Out << "return X > Y ; }\n";
2114 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
2115 Out << "return X <= Y ; }\n";
2116 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
2117 Out << "return X >= Y ; }\n";
2118 return false;
2122 /// Output all floating point constants that cannot be printed accurately...
2123 void CWriter::printFloatingPointConstants(Function &F) {
2124 // Scan the module for floating point constants. If any FP constant is used
2125 // in the function, we want to redirect it here so that we do not depend on
2126 // the precision of the printed form, unless the printed form preserves
2127 // precision.
2129 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
2130 I != E; ++I)
2131 printFloatingPointConstants(*I);
2133 Out << '\n';
2136 void CWriter::printFloatingPointConstants(const Constant *C) {
2137 // If this is a constant expression, recursively check for constant fp values.
2138 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2139 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
2140 printFloatingPointConstants(CE->getOperand(i));
2141 return;
2144 // Otherwise, check for a FP constant that we need to print.
2145 const ConstantFP *FPC = dyn_cast<ConstantFP>(C);
2146 if (FPC == 0 ||
2147 // Do not put in FPConstantMap if safe.
2148 isFPCSafeToPrint(FPC) ||
2149 // Already printed this constant?
2150 FPConstantMap.count(FPC))
2151 return;
2153 FPConstantMap[FPC] = FPCounter; // Number the FP constants
2155 if (FPC->getType() == Type::getDoubleTy(FPC->getContext())) {
2156 double Val = FPC->getValueAPF().convertToDouble();
2157 uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2158 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
2159 << " = 0x" << utohexstr(i)
2160 << "ULL; /* " << Val << " */\n";
2161 } else if (FPC->getType() == Type::getFloatTy(FPC->getContext())) {
2162 float Val = FPC->getValueAPF().convertToFloat();
2163 uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt().
2164 getZExtValue();
2165 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
2166 << " = 0x" << utohexstr(i)
2167 << "U; /* " << Val << " */\n";
2168 } else if (FPC->getType() == Type::getX86_FP80Ty(FPC->getContext())) {
2169 // api needed to prevent premature destruction
2170 APInt api = FPC->getValueAPF().bitcastToAPInt();
2171 const uint64_t *p = api.getRawData();
2172 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
2173 << " = { 0x" << utohexstr(p[0])
2174 << "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}"
2175 << "}; /* Long double constant */\n";
2176 } else if (FPC->getType() == Type::getPPC_FP128Ty(FPC->getContext())) {
2177 APInt api = FPC->getValueAPF().bitcastToAPInt();
2178 const uint64_t *p = api.getRawData();
2179 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
2180 << " = { 0x"
2181 << utohexstr(p[0]) << ", 0x" << utohexstr(p[1])
2182 << "}; /* Long double constant */\n";
2184 } else {
2185 llvm_unreachable("Unknown float type!");
2191 /// printSymbolTable - Run through symbol table looking for type names. If a
2192 /// type name is found, emit its declaration...
2194 void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
2195 Out << "/* Helper union for bitcasts */\n";
2196 Out << "typedef union {\n";
2197 Out << " unsigned int Int32;\n";
2198 Out << " unsigned long long Int64;\n";
2199 Out << " float Float;\n";
2200 Out << " double Double;\n";
2201 Out << "} llvmBitCastUnion;\n";
2203 // We are only interested in the type plane of the symbol table.
2204 TypeSymbolTable::const_iterator I = TST.begin();
2205 TypeSymbolTable::const_iterator End = TST.end();
2207 // If there are no type names, exit early.
2208 if (I == End) return;
2210 // Print out forward declarations for structure types before anything else!
2211 Out << "/* Structure forward decls */\n";
2212 for (; I != End; ++I) {
2213 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
2214 Out << Name << ";\n";
2215 TypeNames.insert(std::make_pair(I->second, Name));
2218 Out << '\n';
2220 // Now we can print out typedefs. Above, we guaranteed that this can only be
2221 // for struct or opaque types.
2222 Out << "/* Typedefs */\n";
2223 for (I = TST.begin(); I != End; ++I) {
2224 std::string Name = "l_" + Mang->makeNameProper(I->first);
2225 Out << "typedef ";
2226 printType(Out, I->second, false, Name);
2227 Out << ";\n";
2230 Out << '\n';
2232 // Keep track of which structures have been printed so far...
2233 std::set<const Type *> StructPrinted;
2235 // Loop over all structures then push them into the stack so they are
2236 // printed in the correct order.
2238 Out << "/* Structure contents */\n";
2239 for (I = TST.begin(); I != End; ++I)
2240 if (isa<StructType>(I->second) || isa<ArrayType>(I->second))
2241 // Only print out used types!
2242 printContainedStructs(I->second, StructPrinted);
2245 // Push the struct onto the stack and recursively push all structs
2246 // this one depends on.
2248 // TODO: Make this work properly with vector types
2250 void CWriter::printContainedStructs(const Type *Ty,
2251 std::set<const Type*> &StructPrinted) {
2252 // Don't walk through pointers.
2253 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
2255 // Print all contained types first.
2256 for (Type::subtype_iterator I = Ty->subtype_begin(),
2257 E = Ty->subtype_end(); I != E; ++I)
2258 printContainedStructs(*I, StructPrinted);
2260 if (isa<StructType>(Ty) || isa<ArrayType>(Ty)) {
2261 // Check to see if we have already printed this struct.
2262 if (StructPrinted.insert(Ty).second) {
2263 // Print structure type out.
2264 std::string Name = TypeNames[Ty];
2265 printType(Out, Ty, false, Name, true);
2266 Out << ";\n\n";
2271 void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
2272 /// isStructReturn - Should this function actually return a struct by-value?
2273 bool isStructReturn = F->hasStructRetAttr();
2275 if (F->hasLocalLinkage()) Out << "static ";
2276 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
2277 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
2278 switch (F->getCallingConv()) {
2279 case CallingConv::X86_StdCall:
2280 Out << "__attribute__((stdcall)) ";
2281 break;
2282 case CallingConv::X86_FastCall:
2283 Out << "__attribute__((fastcall)) ";
2284 break;
2287 // Loop over the arguments, printing them...
2288 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
2289 const AttrListPtr &PAL = F->getAttributes();
2291 std::stringstream FunctionInnards;
2293 // Print out the name...
2294 FunctionInnards << GetValueName(F) << '(';
2296 bool PrintedArg = false;
2297 if (!F->isDeclaration()) {
2298 if (!F->arg_empty()) {
2299 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
2300 unsigned Idx = 1;
2302 // If this is a struct-return function, don't print the hidden
2303 // struct-return argument.
2304 if (isStructReturn) {
2305 assert(I != E && "Invalid struct return function!");
2306 ++I;
2307 ++Idx;
2310 std::string ArgName;
2311 for (; I != E; ++I) {
2312 if (PrintedArg) FunctionInnards << ", ";
2313 if (I->hasName() || !Prototype)
2314 ArgName = GetValueName(I);
2315 else
2316 ArgName = "";
2317 const Type *ArgTy = I->getType();
2318 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
2319 ArgTy = cast<PointerType>(ArgTy)->getElementType();
2320 ByValParams.insert(I);
2322 printType(FunctionInnards, ArgTy,
2323 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt),
2324 ArgName);
2325 PrintedArg = true;
2326 ++Idx;
2329 } else {
2330 // Loop over the arguments, printing them.
2331 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
2332 unsigned Idx = 1;
2334 // If this is a struct-return function, don't print the hidden
2335 // struct-return argument.
2336 if (isStructReturn) {
2337 assert(I != E && "Invalid struct return function!");
2338 ++I;
2339 ++Idx;
2342 for (; I != E; ++I) {
2343 if (PrintedArg) FunctionInnards << ", ";
2344 const Type *ArgTy = *I;
2345 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
2346 assert(isa<PointerType>(ArgTy));
2347 ArgTy = cast<PointerType>(ArgTy)->getElementType();
2349 printType(FunctionInnards, ArgTy,
2350 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt));
2351 PrintedArg = true;
2352 ++Idx;
2356 // Finish printing arguments... if this is a vararg function, print the ...,
2357 // unless there are no known types, in which case, we just emit ().
2359 if (FT->isVarArg() && PrintedArg) {
2360 if (PrintedArg) FunctionInnards << ", ";
2361 FunctionInnards << "..."; // Output varargs portion of signature!
2362 } else if (!FT->isVarArg() && !PrintedArg) {
2363 FunctionInnards << "void"; // ret() -> ret(void) in C.
2365 FunctionInnards << ')';
2367 // Get the return tpe for the function.
2368 const Type *RetTy;
2369 if (!isStructReturn)
2370 RetTy = F->getReturnType();
2371 else {
2372 // If this is a struct-return function, print the struct-return type.
2373 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
2376 // Print out the return type and the signature built above.
2377 printType(Out, RetTy,
2378 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt),
2379 FunctionInnards.str());
2382 static inline bool isFPIntBitCast(const Instruction &I) {
2383 if (!isa<BitCastInst>(I))
2384 return false;
2385 const Type *SrcTy = I.getOperand(0)->getType();
2386 const Type *DstTy = I.getType();
2387 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
2388 (DstTy->isFloatingPoint() && SrcTy->isInteger());
2391 void CWriter::printFunction(Function &F) {
2392 /// isStructReturn - Should this function actually return a struct by-value?
2393 bool isStructReturn = F.hasStructRetAttr();
2395 printFunctionSignature(&F, false);
2396 Out << " {\n";
2398 // If this is a struct return function, handle the result with magic.
2399 if (isStructReturn) {
2400 const Type *StructTy =
2401 cast<PointerType>(F.arg_begin()->getType())->getElementType();
2402 Out << " ";
2403 printType(Out, StructTy, false, "StructReturn");
2404 Out << "; /* Struct return temporary */\n";
2406 Out << " ";
2407 printType(Out, F.arg_begin()->getType(), false,
2408 GetValueName(F.arg_begin()));
2409 Out << " = &StructReturn;\n";
2412 bool PrintedVar = false;
2414 // print local variable information for the function
2415 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2416 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2417 Out << " ";
2418 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2419 Out << "; /* Address-exposed local */\n";
2420 PrintedVar = true;
2421 } else if (I->getType() != Type::getVoidTy(F.getContext()) &&
2422 !isInlinableInst(*I)) {
2423 Out << " ";
2424 printType(Out, I->getType(), false, GetValueName(&*I));
2425 Out << ";\n";
2427 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2428 Out << " ";
2429 printType(Out, I->getType(), false,
2430 GetValueName(&*I)+"__PHI_TEMPORARY");
2431 Out << ";\n";
2433 PrintedVar = true;
2435 // We need a temporary for the BitCast to use so it can pluck a value out
2436 // of a union to do the BitCast. This is separate from the need for a
2437 // variable to hold the result of the BitCast.
2438 if (isFPIntBitCast(*I)) {
2439 Out << " llvmBitCastUnion " << GetValueName(&*I)
2440 << "__BITCAST_TEMPORARY;\n";
2441 PrintedVar = true;
2445 if (PrintedVar)
2446 Out << '\n';
2448 if (F.hasExternalLinkage() && F.getName() == "main")
2449 Out << " CODE_FOR_MAIN();\n";
2451 // print the basic blocks
2452 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2453 if (Loop *L = LI->getLoopFor(BB)) {
2454 if (L->getHeader() == BB && L->getParentLoop() == 0)
2455 printLoop(L);
2456 } else {
2457 printBasicBlock(BB);
2461 Out << "}\n\n";
2464 void CWriter::printLoop(Loop *L) {
2465 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2466 << "' to make GCC happy */\n";
2467 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2468 BasicBlock *BB = L->getBlocks()[i];
2469 Loop *BBLoop = LI->getLoopFor(BB);
2470 if (BBLoop == L)
2471 printBasicBlock(BB);
2472 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2473 printLoop(BBLoop);
2475 Out << " } while (1); /* end of syntactic loop '"
2476 << L->getHeader()->getName() << "' */\n";
2479 void CWriter::printBasicBlock(BasicBlock *BB) {
2481 // Don't print the label for the basic block if there are no uses, or if
2482 // the only terminator use is the predecessor basic block's terminator.
2483 // We have to scan the use list because PHI nodes use basic blocks too but
2484 // do not require a label to be generated.
2486 bool NeedsLabel = false;
2487 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2488 if (isGotoCodeNecessary(*PI, BB)) {
2489 NeedsLabel = true;
2490 break;
2493 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2495 // Output all of the instructions in the basic block...
2496 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2497 ++II) {
2498 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2499 if (II->getType() != Type::getVoidTy(BB->getContext()) &&
2500 !isInlineAsm(*II))
2501 outputLValue(II);
2502 else
2503 Out << " ";
2504 writeInstComputationInline(*II);
2505 Out << ";\n";
2509 // Don't emit prefix or suffix for the terminator.
2510 visit(*BB->getTerminator());
2514 // Specific Instruction type classes... note that all of the casts are
2515 // necessary because we use the instruction classes as opaque types...
2517 void CWriter::visitReturnInst(ReturnInst &I) {
2518 // If this is a struct return function, return the temporary struct.
2519 bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
2521 if (isStructReturn) {
2522 Out << " return StructReturn;\n";
2523 return;
2526 // Don't output a void return if this is the last basic block in the function
2527 if (I.getNumOperands() == 0 &&
2528 &*--I.getParent()->getParent()->end() == I.getParent() &&
2529 !I.getParent()->size() == 1) {
2530 return;
2533 if (I.getNumOperands() > 1) {
2534 Out << " {\n";
2535 Out << " ";
2536 printType(Out, I.getParent()->getParent()->getReturnType());
2537 Out << " llvm_cbe_mrv_temp = {\n";
2538 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2539 Out << " ";
2540 writeOperand(I.getOperand(i));
2541 if (i != e - 1)
2542 Out << ",";
2543 Out << "\n";
2545 Out << " };\n";
2546 Out << " return llvm_cbe_mrv_temp;\n";
2547 Out << " }\n";
2548 return;
2551 Out << " return";
2552 if (I.getNumOperands()) {
2553 Out << ' ';
2554 writeOperand(I.getOperand(0));
2556 Out << ";\n";
2559 void CWriter::visitSwitchInst(SwitchInst &SI) {
2561 Out << " switch (";
2562 writeOperand(SI.getOperand(0));
2563 Out << ") {\n default:\n";
2564 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2565 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2566 Out << ";\n";
2567 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2568 Out << " case ";
2569 writeOperand(SI.getOperand(i));
2570 Out << ":\n";
2571 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2572 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2573 printBranchToBlock(SI.getParent(), Succ, 2);
2574 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2575 Out << " break;\n";
2577 Out << " }\n";
2580 void CWriter::visitUnreachableInst(UnreachableInst &I) {
2581 Out << " /*UNREACHABLE*/;\n";
2584 bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2585 /// FIXME: This should be reenabled, but loop reordering safe!!
2586 return true;
2588 if (next(Function::iterator(From)) != Function::iterator(To))
2589 return true; // Not the direct successor, we need a goto.
2591 //isa<SwitchInst>(From->getTerminator())
2593 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2594 return true;
2595 return false;
2598 void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2599 BasicBlock *Successor,
2600 unsigned Indent) {
2601 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2602 PHINode *PN = cast<PHINode>(I);
2603 // Now we have to do the printing.
2604 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2605 if (!isa<UndefValue>(IV)) {
2606 Out << std::string(Indent, ' ');
2607 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2608 writeOperand(IV);
2609 Out << "; /* for PHI node */\n";
2614 void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2615 unsigned Indent) {
2616 if (isGotoCodeNecessary(CurBB, Succ)) {
2617 Out << std::string(Indent, ' ') << " goto ";
2618 writeOperand(Succ);
2619 Out << ";\n";
2623 // Branch instruction printing - Avoid printing out a branch to a basic block
2624 // that immediately succeeds the current one.
2626 void CWriter::visitBranchInst(BranchInst &I) {
2628 if (I.isConditional()) {
2629 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2630 Out << " if (";
2631 writeOperand(I.getCondition());
2632 Out << ") {\n";
2634 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2635 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2637 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2638 Out << " } else {\n";
2639 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2640 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2642 } else {
2643 // First goto not necessary, assume second one is...
2644 Out << " if (!";
2645 writeOperand(I.getCondition());
2646 Out << ") {\n";
2648 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2649 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2652 Out << " }\n";
2653 } else {
2654 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2655 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2657 Out << "\n";
2660 // PHI nodes get copied into temporary values at the end of predecessor basic
2661 // blocks. We now need to copy these temporary values into the REAL value for
2662 // the PHI.
2663 void CWriter::visitPHINode(PHINode &I) {
2664 writeOperand(&I);
2665 Out << "__PHI_TEMPORARY";
2669 void CWriter::visitBinaryOperator(Instruction &I) {
2670 // binary instructions, shift instructions, setCond instructions.
2671 assert(!isa<PointerType>(I.getType()));
2673 // We must cast the results of binary operations which might be promoted.
2674 bool needsCast = false;
2675 if ((I.getType() == Type::getInt8Ty(I.getContext())) ||
2676 (I.getType() == Type::getInt16Ty(I.getContext()))
2677 || (I.getType() == Type::getFloatTy(I.getContext()))) {
2678 needsCast = true;
2679 Out << "((";
2680 printType(Out, I.getType(), false);
2681 Out << ")(";
2684 // If this is a negation operation, print it out as such. For FP, we don't
2685 // want to print "-0.0 - X".
2686 if (BinaryOperator::isNeg(&I)) {
2687 Out << "-(";
2688 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2689 Out << ")";
2690 } else if (BinaryOperator::isFNeg(&I)) {
2691 Out << "-(";
2692 writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I)));
2693 Out << ")";
2694 } else if (I.getOpcode() == Instruction::FRem) {
2695 // Output a call to fmod/fmodf instead of emitting a%b
2696 if (I.getType() == Type::getFloatTy(I.getContext()))
2697 Out << "fmodf(";
2698 else if (I.getType() == Type::getDoubleTy(I.getContext()))
2699 Out << "fmod(";
2700 else // all 3 flavors of long double
2701 Out << "fmodl(";
2702 writeOperand(I.getOperand(0));
2703 Out << ", ";
2704 writeOperand(I.getOperand(1));
2705 Out << ")";
2706 } else {
2708 // Write out the cast of the instruction's value back to the proper type
2709 // if necessary.
2710 bool NeedsClosingParens = writeInstructionCast(I);
2712 // Certain instructions require the operand to be forced to a specific type
2713 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2714 // below for operand 1
2715 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2717 switch (I.getOpcode()) {
2718 case Instruction::Add:
2719 case Instruction::FAdd: Out << " + "; break;
2720 case Instruction::Sub:
2721 case Instruction::FSub: Out << " - "; break;
2722 case Instruction::Mul:
2723 case Instruction::FMul: Out << " * "; break;
2724 case Instruction::URem:
2725 case Instruction::SRem:
2726 case Instruction::FRem: Out << " % "; break;
2727 case Instruction::UDiv:
2728 case Instruction::SDiv:
2729 case Instruction::FDiv: Out << " / "; break;
2730 case Instruction::And: Out << " & "; break;
2731 case Instruction::Or: Out << " | "; break;
2732 case Instruction::Xor: Out << " ^ "; break;
2733 case Instruction::Shl : Out << " << "; break;
2734 case Instruction::LShr:
2735 case Instruction::AShr: Out << " >> "; break;
2736 default:
2737 #ifndef NDEBUG
2738 cerr << "Invalid operator type!" << I;
2739 #endif
2740 llvm_unreachable(0);
2743 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2744 if (NeedsClosingParens)
2745 Out << "))";
2748 if (needsCast) {
2749 Out << "))";
2753 void CWriter::visitICmpInst(ICmpInst &I) {
2754 // We must cast the results of icmp which might be promoted.
2755 bool needsCast = false;
2757 // Write out the cast of the instruction's value back to the proper type
2758 // if necessary.
2759 bool NeedsClosingParens = writeInstructionCast(I);
2761 // Certain icmp predicate require the operand to be forced to a specific type
2762 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2763 // below for operand 1
2764 writeOperandWithCast(I.getOperand(0), I);
2766 switch (I.getPredicate()) {
2767 case ICmpInst::ICMP_EQ: Out << " == "; break;
2768 case ICmpInst::ICMP_NE: Out << " != "; break;
2769 case ICmpInst::ICMP_ULE:
2770 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2771 case ICmpInst::ICMP_UGE:
2772 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2773 case ICmpInst::ICMP_ULT:
2774 case ICmpInst::ICMP_SLT: Out << " < "; break;
2775 case ICmpInst::ICMP_UGT:
2776 case ICmpInst::ICMP_SGT: Out << " > "; break;
2777 default:
2778 #ifndef NDEBUG
2779 cerr << "Invalid icmp predicate!" << I;
2780 #endif
2781 llvm_unreachable(0);
2784 writeOperandWithCast(I.getOperand(1), I);
2785 if (NeedsClosingParens)
2786 Out << "))";
2788 if (needsCast) {
2789 Out << "))";
2793 void CWriter::visitFCmpInst(FCmpInst &I) {
2794 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2795 Out << "0";
2796 return;
2798 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2799 Out << "1";
2800 return;
2803 const char* op = 0;
2804 switch (I.getPredicate()) {
2805 default: llvm_unreachable("Illegal FCmp predicate");
2806 case FCmpInst::FCMP_ORD: op = "ord"; break;
2807 case FCmpInst::FCMP_UNO: op = "uno"; break;
2808 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2809 case FCmpInst::FCMP_UNE: op = "une"; break;
2810 case FCmpInst::FCMP_ULT: op = "ult"; break;
2811 case FCmpInst::FCMP_ULE: op = "ule"; break;
2812 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2813 case FCmpInst::FCMP_UGE: op = "uge"; break;
2814 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2815 case FCmpInst::FCMP_ONE: op = "one"; break;
2816 case FCmpInst::FCMP_OLT: op = "olt"; break;
2817 case FCmpInst::FCMP_OLE: op = "ole"; break;
2818 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2819 case FCmpInst::FCMP_OGE: op = "oge"; break;
2822 Out << "llvm_fcmp_" << op << "(";
2823 // Write the first operand
2824 writeOperand(I.getOperand(0));
2825 Out << ", ";
2826 // Write the second operand
2827 writeOperand(I.getOperand(1));
2828 Out << ")";
2831 static const char * getFloatBitCastField(const Type *Ty) {
2832 switch (Ty->getTypeID()) {
2833 default: llvm_unreachable("Invalid Type");
2834 case Type::FloatTyID: return "Float";
2835 case Type::DoubleTyID: return "Double";
2836 case Type::IntegerTyID: {
2837 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2838 if (NumBits <= 32)
2839 return "Int32";
2840 else
2841 return "Int64";
2846 void CWriter::visitCastInst(CastInst &I) {
2847 const Type *DstTy = I.getType();
2848 const Type *SrcTy = I.getOperand(0)->getType();
2849 if (isFPIntBitCast(I)) {
2850 Out << '(';
2851 // These int<->float and long<->double casts need to be handled specially
2852 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2853 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2854 writeOperand(I.getOperand(0));
2855 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2856 << getFloatBitCastField(I.getType());
2857 Out << ')';
2858 return;
2861 Out << '(';
2862 printCast(I.getOpcode(), SrcTy, DstTy);
2864 // Make a sext from i1 work by subtracting the i1 from 0 (an int).
2865 if (SrcTy == Type::getInt1Ty(I.getContext()) &&
2866 I.getOpcode() == Instruction::SExt)
2867 Out << "0-";
2869 writeOperand(I.getOperand(0));
2871 if (DstTy == Type::getInt1Ty(I.getContext()) &&
2872 (I.getOpcode() == Instruction::Trunc ||
2873 I.getOpcode() == Instruction::FPToUI ||
2874 I.getOpcode() == Instruction::FPToSI ||
2875 I.getOpcode() == Instruction::PtrToInt)) {
2876 // Make sure we really get a trunc to bool by anding the operand with 1
2877 Out << "&1u";
2879 Out << ')';
2882 void CWriter::visitSelectInst(SelectInst &I) {
2883 Out << "((";
2884 writeOperand(I.getCondition());
2885 Out << ") ? (";
2886 writeOperand(I.getTrueValue());
2887 Out << ") : (";
2888 writeOperand(I.getFalseValue());
2889 Out << "))";
2893 void CWriter::lowerIntrinsics(Function &F) {
2894 // This is used to keep track of intrinsics that get generated to a lowered
2895 // function. We must generate the prototypes before the function body which
2896 // will only be expanded on first use (by the loop below).
2897 std::vector<Function*> prototypesToGen;
2899 // Examine all the instructions in this function to find the intrinsics that
2900 // need to be lowered.
2901 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2902 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2903 if (CallInst *CI = dyn_cast<CallInst>(I++))
2904 if (Function *F = CI->getCalledFunction())
2905 switch (F->getIntrinsicID()) {
2906 case Intrinsic::not_intrinsic:
2907 case Intrinsic::memory_barrier:
2908 case Intrinsic::vastart:
2909 case Intrinsic::vacopy:
2910 case Intrinsic::vaend:
2911 case Intrinsic::returnaddress:
2912 case Intrinsic::frameaddress:
2913 case Intrinsic::setjmp:
2914 case Intrinsic::longjmp:
2915 case Intrinsic::prefetch:
2916 case Intrinsic::dbg_stoppoint:
2917 case Intrinsic::powi:
2918 case Intrinsic::x86_sse_cmp_ss:
2919 case Intrinsic::x86_sse_cmp_ps:
2920 case Intrinsic::x86_sse2_cmp_sd:
2921 case Intrinsic::x86_sse2_cmp_pd:
2922 case Intrinsic::ppc_altivec_lvsl:
2923 // We directly implement these intrinsics
2924 break;
2925 default:
2926 // If this is an intrinsic that directly corresponds to a GCC
2927 // builtin, we handle it.
2928 const char *BuiltinName = "";
2929 #define GET_GCC_BUILTIN_NAME
2930 #include "llvm/Intrinsics.gen"
2931 #undef GET_GCC_BUILTIN_NAME
2932 // If we handle it, don't lower it.
2933 if (BuiltinName[0]) break;
2935 // All other intrinsic calls we must lower.
2936 Instruction *Before = 0;
2937 if (CI != &BB->front())
2938 Before = prior(BasicBlock::iterator(CI));
2940 IL->LowerIntrinsicCall(CI);
2941 if (Before) { // Move iterator to instruction after call
2942 I = Before; ++I;
2943 } else {
2944 I = BB->begin();
2946 // If the intrinsic got lowered to another call, and that call has
2947 // a definition then we need to make sure its prototype is emitted
2948 // before any calls to it.
2949 if (CallInst *Call = dyn_cast<CallInst>(I))
2950 if (Function *NewF = Call->getCalledFunction())
2951 if (!NewF->isDeclaration())
2952 prototypesToGen.push_back(NewF);
2954 break;
2957 // We may have collected some prototypes to emit in the loop above.
2958 // Emit them now, before the function that uses them is emitted. But,
2959 // be careful not to emit them twice.
2960 std::vector<Function*>::iterator I = prototypesToGen.begin();
2961 std::vector<Function*>::iterator E = prototypesToGen.end();
2962 for ( ; I != E; ++I) {
2963 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2964 Out << '\n';
2965 printFunctionSignature(*I, true);
2966 Out << ";\n";
2971 void CWriter::visitCallInst(CallInst &I) {
2972 if (isa<InlineAsm>(I.getOperand(0)))
2973 return visitInlineAsm(I);
2975 bool WroteCallee = false;
2977 // Handle intrinsic function calls first...
2978 if (Function *F = I.getCalledFunction())
2979 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2980 if (visitBuiltinCall(I, ID, WroteCallee))
2981 return;
2983 Value *Callee = I.getCalledValue();
2985 const PointerType *PTy = cast<PointerType>(Callee->getType());
2986 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2988 // If this is a call to a struct-return function, assign to the first
2989 // parameter instead of passing it to the call.
2990 const AttrListPtr &PAL = I.getAttributes();
2991 bool hasByVal = I.hasByValArgument();
2992 bool isStructRet = I.hasStructRetAttr();
2993 if (isStructRet) {
2994 writeOperandDeref(I.getOperand(1));
2995 Out << " = ";
2998 if (I.isTailCall()) Out << " /*tail*/ ";
3000 if (!WroteCallee) {
3001 // If this is an indirect call to a struct return function, we need to cast
3002 // the pointer. Ditto for indirect calls with byval arguments.
3003 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
3005 // GCC is a real PITA. It does not permit codegening casts of functions to
3006 // function pointers if they are in a call (it generates a trap instruction
3007 // instead!). We work around this by inserting a cast to void* in between
3008 // the function and the function pointer cast. Unfortunately, we can't just
3009 // form the constant expression here, because the folder will immediately
3010 // nuke it.
3012 // Note finally, that this is completely unsafe. ANSI C does not guarantee
3013 // that void* and function pointers have the same size. :( To deal with this
3014 // in the common case, we handle casts where the number of arguments passed
3015 // match exactly.
3017 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
3018 if (CE->isCast())
3019 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
3020 NeedsCast = true;
3021 Callee = RF;
3024 if (NeedsCast) {
3025 // Ok, just cast the pointer type.
3026 Out << "((";
3027 if (isStructRet)
3028 printStructReturnPointerFunctionType(Out, PAL,
3029 cast<PointerType>(I.getCalledValue()->getType()));
3030 else if (hasByVal)
3031 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
3032 else
3033 printType(Out, I.getCalledValue()->getType());
3034 Out << ")(void*)";
3036 writeOperand(Callee);
3037 if (NeedsCast) Out << ')';
3040 Out << '(';
3042 unsigned NumDeclaredParams = FTy->getNumParams();
3044 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
3045 unsigned ArgNo = 0;
3046 if (isStructRet) { // Skip struct return argument.
3047 ++AI;
3048 ++ArgNo;
3051 bool PrintedArg = false;
3052 for (; AI != AE; ++AI, ++ArgNo) {
3053 if (PrintedArg) Out << ", ";
3054 if (ArgNo < NumDeclaredParams &&
3055 (*AI)->getType() != FTy->getParamType(ArgNo)) {
3056 Out << '(';
3057 printType(Out, FTy->getParamType(ArgNo),
3058 /*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt));
3059 Out << ')';
3061 // Check if the argument is expected to be passed by value.
3062 if (I.paramHasAttr(ArgNo+1, Attribute::ByVal))
3063 writeOperandDeref(*AI);
3064 else
3065 writeOperand(*AI);
3066 PrintedArg = true;
3068 Out << ')';
3071 /// visitBuiltinCall - Handle the call to the specified builtin. Returns true
3072 /// if the entire call is handled, return false it it wasn't handled, and
3073 /// optionally set 'WroteCallee' if the callee has already been printed out.
3074 bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
3075 bool &WroteCallee) {
3076 switch (ID) {
3077 default: {
3078 // If this is an intrinsic that directly corresponds to a GCC
3079 // builtin, we emit it here.
3080 const char *BuiltinName = "";
3081 Function *F = I.getCalledFunction();
3082 #define GET_GCC_BUILTIN_NAME
3083 #include "llvm/Intrinsics.gen"
3084 #undef GET_GCC_BUILTIN_NAME
3085 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
3087 Out << BuiltinName;
3088 WroteCallee = true;
3089 return false;
3091 case Intrinsic::memory_barrier:
3092 Out << "__sync_synchronize()";
3093 return true;
3094 case Intrinsic::vastart:
3095 Out << "0; ";
3097 Out << "va_start(*(va_list*)";
3098 writeOperand(I.getOperand(1));
3099 Out << ", ";
3100 // Output the last argument to the enclosing function.
3101 if (I.getParent()->getParent()->arg_empty()) {
3102 std::string msg;
3103 raw_string_ostream Msg(msg);
3104 Msg << "The C backend does not currently support zero "
3105 << "argument varargs functions, such as '"
3106 << I.getParent()->getParent()->getName() << "'!";
3107 llvm_report_error(Msg.str());
3109 writeOperand(--I.getParent()->getParent()->arg_end());
3110 Out << ')';
3111 return true;
3112 case Intrinsic::vaend:
3113 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
3114 Out << "0; va_end(*(va_list*)";
3115 writeOperand(I.getOperand(1));
3116 Out << ')';
3117 } else {
3118 Out << "va_end(*(va_list*)0)";
3120 return true;
3121 case Intrinsic::vacopy:
3122 Out << "0; ";
3123 Out << "va_copy(*(va_list*)";
3124 writeOperand(I.getOperand(1));
3125 Out << ", *(va_list*)";
3126 writeOperand(I.getOperand(2));
3127 Out << ')';
3128 return true;
3129 case Intrinsic::returnaddress:
3130 Out << "__builtin_return_address(";
3131 writeOperand(I.getOperand(1));
3132 Out << ')';
3133 return true;
3134 case Intrinsic::frameaddress:
3135 Out << "__builtin_frame_address(";
3136 writeOperand(I.getOperand(1));
3137 Out << ')';
3138 return true;
3139 case Intrinsic::powi:
3140 Out << "__builtin_powi(";
3141 writeOperand(I.getOperand(1));
3142 Out << ", ";
3143 writeOperand(I.getOperand(2));
3144 Out << ')';
3145 return true;
3146 case Intrinsic::setjmp:
3147 Out << "setjmp(*(jmp_buf*)";
3148 writeOperand(I.getOperand(1));
3149 Out << ')';
3150 return true;
3151 case Intrinsic::longjmp:
3152 Out << "longjmp(*(jmp_buf*)";
3153 writeOperand(I.getOperand(1));
3154 Out << ", ";
3155 writeOperand(I.getOperand(2));
3156 Out << ')';
3157 return true;
3158 case Intrinsic::prefetch:
3159 Out << "LLVM_PREFETCH((const void *)";
3160 writeOperand(I.getOperand(1));
3161 Out << ", ";
3162 writeOperand(I.getOperand(2));
3163 Out << ", ";
3164 writeOperand(I.getOperand(3));
3165 Out << ")";
3166 return true;
3167 case Intrinsic::stacksave:
3168 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
3169 // to work around GCC bugs (see PR1809).
3170 Out << "0; *((void**)&" << GetValueName(&I)
3171 << ") = __builtin_stack_save()";
3172 return true;
3173 case Intrinsic::dbg_stoppoint: {
3174 // If we use writeOperand directly we get a "u" suffix which is rejected
3175 // by gcc.
3176 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3177 std::string dir;
3178 GetConstantStringInfo(SPI.getDirectory(), dir);
3179 std::string file;
3180 GetConstantStringInfo(SPI.getFileName(), file);
3181 Out << "\n#line "
3182 << SPI.getLine()
3183 << " \""
3184 << dir << '/' << file << "\"\n";
3185 return true;
3187 case Intrinsic::x86_sse_cmp_ss:
3188 case Intrinsic::x86_sse_cmp_ps:
3189 case Intrinsic::x86_sse2_cmp_sd:
3190 case Intrinsic::x86_sse2_cmp_pd:
3191 Out << '(';
3192 printType(Out, I.getType());
3193 Out << ')';
3194 // Multiple GCC builtins multiplex onto this intrinsic.
3195 switch (cast<ConstantInt>(I.getOperand(3))->getZExtValue()) {
3196 default: llvm_unreachable("Invalid llvm.x86.sse.cmp!");
3197 case 0: Out << "__builtin_ia32_cmpeq"; break;
3198 case 1: Out << "__builtin_ia32_cmplt"; break;
3199 case 2: Out << "__builtin_ia32_cmple"; break;
3200 case 3: Out << "__builtin_ia32_cmpunord"; break;
3201 case 4: Out << "__builtin_ia32_cmpneq"; break;
3202 case 5: Out << "__builtin_ia32_cmpnlt"; break;
3203 case 6: Out << "__builtin_ia32_cmpnle"; break;
3204 case 7: Out << "__builtin_ia32_cmpord"; break;
3206 if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
3207 Out << 'p';
3208 else
3209 Out << 's';
3210 if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
3211 Out << 's';
3212 else
3213 Out << 'd';
3215 Out << "(";
3216 writeOperand(I.getOperand(1));
3217 Out << ", ";
3218 writeOperand(I.getOperand(2));
3219 Out << ")";
3220 return true;
3221 case Intrinsic::ppc_altivec_lvsl:
3222 Out << '(';
3223 printType(Out, I.getType());
3224 Out << ')';
3225 Out << "__builtin_altivec_lvsl(0, (void*)";
3226 writeOperand(I.getOperand(1));
3227 Out << ")";
3228 return true;
3232 //This converts the llvm constraint string to something gcc is expecting.
3233 //TODO: work out platform independent constraints and factor those out
3234 // of the per target tables
3235 // handle multiple constraint codes
3236 std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
3238 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
3240 const char *const *table = 0;
3242 // Grab the translation table from TargetAsmInfo if it exists.
3243 if (!TAsm) {
3244 std::string Triple = TheModule->getTargetTriple();
3245 if (Triple.empty())
3246 Triple = llvm::sys::getHostTriple();
3248 std::string E;
3249 if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
3250 TAsm = Match->createAsmInfo(Triple);
3252 if (TAsm)
3253 table = TAsm->getAsmCBE();
3255 // Search the translation table if it exists.
3256 for (int i = 0; table && table[i]; i += 2)
3257 if (c.Codes[0] == table[i])
3258 return table[i+1];
3260 // Default is identity.
3261 return c.Codes[0];
3264 //TODO: import logic from AsmPrinter.cpp
3265 static std::string gccifyAsm(std::string asmstr) {
3266 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
3267 if (asmstr[i] == '\n')
3268 asmstr.replace(i, 1, "\\n");
3269 else if (asmstr[i] == '\t')
3270 asmstr.replace(i, 1, "\\t");
3271 else if (asmstr[i] == '$') {
3272 if (asmstr[i + 1] == '{') {
3273 std::string::size_type a = asmstr.find_first_of(':', i + 1);
3274 std::string::size_type b = asmstr.find_first_of('}', i + 1);
3275 std::string n = "%" +
3276 asmstr.substr(a + 1, b - a - 1) +
3277 asmstr.substr(i + 2, a - i - 2);
3278 asmstr.replace(i, b - i + 1, n);
3279 i += n.size() - 1;
3280 } else
3281 asmstr.replace(i, 1, "%");
3283 else if (asmstr[i] == '%')//grr
3284 { asmstr.replace(i, 1, "%%"); ++i;}
3286 return asmstr;
3289 //TODO: assumptions about what consume arguments from the call are likely wrong
3290 // handle communitivity
3291 void CWriter::visitInlineAsm(CallInst &CI) {
3292 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
3293 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
3295 std::vector<std::pair<Value*, int> > ResultVals;
3296 if (CI.getType() == Type::getVoidTy(CI.getContext()))
3298 else if (const StructType *ST = dyn_cast<StructType>(CI.getType())) {
3299 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
3300 ResultVals.push_back(std::make_pair(&CI, (int)i));
3301 } else {
3302 ResultVals.push_back(std::make_pair(&CI, -1));
3305 // Fix up the asm string for gcc and emit it.
3306 Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
3307 Out << " :";
3309 unsigned ValueCount = 0;
3310 bool IsFirst = true;
3312 // Convert over all the output constraints.
3313 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3314 E = Constraints.end(); I != E; ++I) {
3316 if (I->Type != InlineAsm::isOutput) {
3317 ++ValueCount;
3318 continue; // Ignore non-output constraints.
3321 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3322 std::string C = InterpretASMConstraint(*I);
3323 if (C.empty()) continue;
3325 if (!IsFirst) {
3326 Out << ", ";
3327 IsFirst = false;
3330 // Unpack the dest.
3331 Value *DestVal;
3332 int DestValNo = -1;
3334 if (ValueCount < ResultVals.size()) {
3335 DestVal = ResultVals[ValueCount].first;
3336 DestValNo = ResultVals[ValueCount].second;
3337 } else
3338 DestVal = CI.getOperand(ValueCount-ResultVals.size()+1);
3340 if (I->isEarlyClobber)
3341 C = "&"+C;
3343 Out << "\"=" << C << "\"(" << GetValueName(DestVal);
3344 if (DestValNo != -1)
3345 Out << ".field" << DestValNo; // Multiple retvals.
3346 Out << ")";
3347 ++ValueCount;
3351 // Convert over all the input constraints.
3352 Out << "\n :";
3353 IsFirst = true;
3354 ValueCount = 0;
3355 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3356 E = Constraints.end(); I != E; ++I) {
3357 if (I->Type != InlineAsm::isInput) {
3358 ++ValueCount;
3359 continue; // Ignore non-input constraints.
3362 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3363 std::string C = InterpretASMConstraint(*I);
3364 if (C.empty()) continue;
3366 if (!IsFirst) {
3367 Out << ", ";
3368 IsFirst = false;
3371 assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
3372 Value *SrcVal = CI.getOperand(ValueCount-ResultVals.size()+1);
3374 Out << "\"" << C << "\"(";
3375 if (!I->isIndirect)
3376 writeOperand(SrcVal);
3377 else
3378 writeOperandDeref(SrcVal);
3379 Out << ")";
3382 // Convert over the clobber constraints.
3383 IsFirst = true;
3384 ValueCount = 0;
3385 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3386 E = Constraints.end(); I != E; ++I) {
3387 if (I->Type != InlineAsm::isClobber)
3388 continue; // Ignore non-input constraints.
3390 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3391 std::string C = InterpretASMConstraint(*I);
3392 if (C.empty()) continue;
3394 if (!IsFirst) {
3395 Out << ", ";
3396 IsFirst = false;
3399 Out << '\"' << C << '"';
3402 Out << ")";
3405 void CWriter::visitMallocInst(MallocInst &I) {
3406 llvm_unreachable("lowerallocations pass didn't work!");
3409 void CWriter::visitAllocaInst(AllocaInst &I) {
3410 Out << '(';
3411 printType(Out, I.getType());
3412 Out << ") alloca(sizeof(";
3413 printType(Out, I.getType()->getElementType());
3414 Out << ')';
3415 if (I.isArrayAllocation()) {
3416 Out << " * " ;
3417 writeOperand(I.getOperand(0));
3419 Out << ')';
3422 void CWriter::visitFreeInst(FreeInst &I) {
3423 llvm_unreachable("lowerallocations pass didn't work!");
3426 void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
3427 gep_type_iterator E, bool Static) {
3429 // If there are no indices, just print out the pointer.
3430 if (I == E) {
3431 writeOperand(Ptr);
3432 return;
3435 // Find out if the last index is into a vector. If so, we have to print this
3436 // specially. Since vectors can't have elements of indexable type, only the
3437 // last index could possibly be of a vector element.
3438 const VectorType *LastIndexIsVector = 0;
3440 for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
3441 LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
3444 Out << "(";
3446 // If the last index is into a vector, we can't print it as &a[i][j] because
3447 // we can't index into a vector with j in GCC. Instead, emit this as
3448 // (((float*)&a[i])+j)
3449 if (LastIndexIsVector) {
3450 Out << "((";
3451 printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
3452 Out << ")(";
3455 Out << '&';
3457 // If the first index is 0 (very typical) we can do a number of
3458 // simplifications to clean up the code.
3459 Value *FirstOp = I.getOperand();
3460 if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
3461 // First index isn't simple, print it the hard way.
3462 writeOperand(Ptr);
3463 } else {
3464 ++I; // Skip the zero index.
3466 // Okay, emit the first operand. If Ptr is something that is already address
3467 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
3468 if (isAddressExposed(Ptr)) {
3469 writeOperandInternal(Ptr, Static);
3470 } else if (I != E && isa<StructType>(*I)) {
3471 // If we didn't already emit the first operand, see if we can print it as
3472 // P->f instead of "P[0].f"
3473 writeOperand(Ptr);
3474 Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3475 ++I; // eat the struct index as well.
3476 } else {
3477 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
3478 Out << "(*";
3479 writeOperand(Ptr);
3480 Out << ")";
3484 for (; I != E; ++I) {
3485 if (isa<StructType>(*I)) {
3486 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3487 } else if (isa<ArrayType>(*I)) {
3488 Out << ".array[";
3489 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3490 Out << ']';
3491 } else if (!isa<VectorType>(*I)) {
3492 Out << '[';
3493 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3494 Out << ']';
3495 } else {
3496 // If the last index is into a vector, then print it out as "+j)". This
3497 // works with the 'LastIndexIsVector' code above.
3498 if (isa<Constant>(I.getOperand()) &&
3499 cast<Constant>(I.getOperand())->isNullValue()) {
3500 Out << "))"; // avoid "+0".
3501 } else {
3502 Out << ")+(";
3503 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3504 Out << "))";
3508 Out << ")";
3511 void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
3512 bool IsVolatile, unsigned Alignment) {
3514 bool IsUnaligned = Alignment &&
3515 Alignment < TD->getABITypeAlignment(OperandType);
3517 if (!IsUnaligned)
3518 Out << '*';
3519 if (IsVolatile || IsUnaligned) {
3520 Out << "((";
3521 if (IsUnaligned)
3522 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
3523 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
3524 if (IsUnaligned) {
3525 Out << "; } ";
3526 if (IsVolatile) Out << "volatile ";
3527 Out << "*";
3529 Out << ")";
3532 writeOperand(Operand);
3534 if (IsVolatile || IsUnaligned) {
3535 Out << ')';
3536 if (IsUnaligned)
3537 Out << "->data";
3541 void CWriter::visitLoadInst(LoadInst &I) {
3542 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
3543 I.getAlignment());
3547 void CWriter::visitStoreInst(StoreInst &I) {
3548 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
3549 I.isVolatile(), I.getAlignment());
3550 Out << " = ";
3551 Value *Operand = I.getOperand(0);
3552 Constant *BitMask = 0;
3553 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
3554 if (!ITy->isPowerOf2ByteWidth())
3555 // We have a bit width that doesn't match an even power-of-2 byte
3556 // size. Consequently we must & the value with the type's bit mask
3557 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3558 if (BitMask)
3559 Out << "((";
3560 writeOperand(Operand);
3561 if (BitMask) {
3562 Out << ") & ";
3563 printConstant(BitMask, false);
3564 Out << ")";
3568 void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
3569 printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
3570 gep_type_end(I), false);
3573 void CWriter::visitVAArgInst(VAArgInst &I) {
3574 Out << "va_arg(*(va_list*)";
3575 writeOperand(I.getOperand(0));
3576 Out << ", ";
3577 printType(Out, I.getType());
3578 Out << ");\n ";
3581 void CWriter::visitInsertElementInst(InsertElementInst &I) {
3582 const Type *EltTy = I.getType()->getElementType();
3583 writeOperand(I.getOperand(0));
3584 Out << ";\n ";
3585 Out << "((";
3586 printType(Out, PointerType::getUnqual(EltTy));
3587 Out << ")(&" << GetValueName(&I) << "))[";
3588 writeOperand(I.getOperand(2));
3589 Out << "] = (";
3590 writeOperand(I.getOperand(1));
3591 Out << ")";
3594 void CWriter::visitExtractElementInst(ExtractElementInst &I) {
3595 // We know that our operand is not inlined.
3596 Out << "((";
3597 const Type *EltTy =
3598 cast<VectorType>(I.getOperand(0)->getType())->getElementType();
3599 printType(Out, PointerType::getUnqual(EltTy));
3600 Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
3601 writeOperand(I.getOperand(1));
3602 Out << "]";
3605 void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
3606 Out << "(";
3607 printType(Out, SVI.getType());
3608 Out << "){ ";
3609 const VectorType *VT = SVI.getType();
3610 unsigned NumElts = VT->getNumElements();
3611 const Type *EltTy = VT->getElementType();
3613 for (unsigned i = 0; i != NumElts; ++i) {
3614 if (i) Out << ", ";
3615 int SrcVal = SVI.getMaskValue(i);
3616 if ((unsigned)SrcVal >= NumElts*2) {
3617 Out << " 0/*undef*/ ";
3618 } else {
3619 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
3620 if (isa<Instruction>(Op)) {
3621 // Do an extractelement of this value from the appropriate input.
3622 Out << "((";
3623 printType(Out, PointerType::getUnqual(EltTy));
3624 Out << ")(&" << GetValueName(Op)
3625 << "))[" << (SrcVal & (NumElts-1)) << "]";
3626 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
3627 Out << "0";
3628 } else {
3629 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
3630 (NumElts-1)),
3631 false);
3635 Out << "}";
3638 void CWriter::visitInsertValueInst(InsertValueInst &IVI) {
3639 // Start by copying the entire aggregate value into the result variable.
3640 writeOperand(IVI.getOperand(0));
3641 Out << ";\n ";
3643 // Then do the insert to update the field.
3644 Out << GetValueName(&IVI);
3645 for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
3646 i != e; ++i) {
3647 const Type *IndexedTy =
3648 ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(), b, i+1);
3649 if (isa<ArrayType>(IndexedTy))
3650 Out << ".array[" << *i << "]";
3651 else
3652 Out << ".field" << *i;
3654 Out << " = ";
3655 writeOperand(IVI.getOperand(1));
3658 void CWriter::visitExtractValueInst(ExtractValueInst &EVI) {
3659 Out << "(";
3660 if (isa<UndefValue>(EVI.getOperand(0))) {
3661 Out << "(";
3662 printType(Out, EVI.getType());
3663 Out << ") 0/*UNDEF*/";
3664 } else {
3665 Out << GetValueName(EVI.getOperand(0));
3666 for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
3667 i != e; ++i) {
3668 const Type *IndexedTy =
3669 ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(), b, i+1);
3670 if (isa<ArrayType>(IndexedTy))
3671 Out << ".array[" << *i << "]";
3672 else
3673 Out << ".field" << *i;
3676 Out << ")";
3679 //===----------------------------------------------------------------------===//
3680 // External Interface declaration
3681 //===----------------------------------------------------------------------===//
3683 bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3684 formatted_raw_ostream &o,
3685 CodeGenFileType FileType,
3686 CodeGenOpt::Level OptLevel) {
3687 if (FileType != TargetMachine::AssemblyFile) return true;
3689 PM.add(createGCLoweringPass());
3690 PM.add(createLowerAllocationsPass(true));
3691 PM.add(createLowerInvokePass());
3692 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3693 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3694 PM.add(new CWriter(o));
3695 PM.add(createGCInfoDeleter());
3696 return false;