Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / Target / TargetData.cpp
blob838c675d1b7dfba1b196d889bffe1fbc95588266
1 //===-- TargetData.cpp - Data size & alignment routines --------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines target properties related to datatype size/offset/alignment
11 // information.
13 // This structure should be created once, filled in if the defaults are not
14 // correct and then passed around by const&. None of the members functions
15 // require modification to the object.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Target/TargetData.h"
20 #include "llvm/Module.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Support/GetElementPtrTypeIterator.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/ManagedStatic.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/System/Mutex.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include <algorithm>
31 #include <cstdlib>
32 using namespace llvm;
34 // Handle the Pass registration stuff necessary to use TargetData's.
36 // Register the default SparcV9 implementation...
37 static RegisterPass<TargetData> X("targetdata", "Target Data Layout", false,
38 true);
39 char TargetData::ID = 0;
41 //===----------------------------------------------------------------------===//
42 // Support for StructLayout
43 //===----------------------------------------------------------------------===//
45 StructLayout::StructLayout(const StructType *ST, const TargetData &TD) {
46 StructAlignment = 0;
47 StructSize = 0;
48 NumElements = ST->getNumElements();
50 // Loop over each of the elements, placing them in memory.
51 for (unsigned i = 0, e = NumElements; i != e; ++i) {
52 const Type *Ty = ST->getElementType(i);
53 unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty);
55 // Add padding if necessary to align the data element properly.
56 if ((StructSize & (TyAlign-1)) != 0)
57 StructSize = TargetData::RoundUpAlignment(StructSize, TyAlign);
59 // Keep track of maximum alignment constraint.
60 StructAlignment = std::max(TyAlign, StructAlignment);
62 MemberOffsets[i] = StructSize;
63 StructSize += TD.getTypeAllocSize(Ty); // Consume space for this data item
66 // Empty structures have alignment of 1 byte.
67 if (StructAlignment == 0) StructAlignment = 1;
69 // Add padding to the end of the struct so that it could be put in an array
70 // and all array elements would be aligned correctly.
71 if ((StructSize & (StructAlignment-1)) != 0)
72 StructSize = TargetData::RoundUpAlignment(StructSize, StructAlignment);
76 /// getElementContainingOffset - Given a valid offset into the structure,
77 /// return the structure index that contains it.
78 unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
79 const uint64_t *SI =
80 std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
81 assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
82 --SI;
83 assert(*SI <= Offset && "upper_bound didn't work");
84 assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) &&
85 (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
86 "Upper bound didn't work!");
88 // Multiple fields can have the same offset if any of them are zero sized.
89 // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
90 // at the i32 element, because it is the last element at that offset. This is
91 // the right one to return, because anything after it will have a higher
92 // offset, implying that this element is non-empty.
93 return SI-&MemberOffsets[0];
96 //===----------------------------------------------------------------------===//
97 // TargetAlignElem, TargetAlign support
98 //===----------------------------------------------------------------------===//
100 TargetAlignElem
101 TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align,
102 unsigned char pref_align, uint32_t bit_width) {
103 assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
104 TargetAlignElem retval;
105 retval.AlignType = align_type;
106 retval.ABIAlign = abi_align;
107 retval.PrefAlign = pref_align;
108 retval.TypeBitWidth = bit_width;
109 return retval;
112 bool
113 TargetAlignElem::operator==(const TargetAlignElem &rhs) const {
114 return (AlignType == rhs.AlignType
115 && ABIAlign == rhs.ABIAlign
116 && PrefAlign == rhs.PrefAlign
117 && TypeBitWidth == rhs.TypeBitWidth);
120 std::ostream &
121 TargetAlignElem::dump(std::ostream &os) const {
122 return os << AlignType
123 << TypeBitWidth
124 << ":" << (int) (ABIAlign * 8)
125 << ":" << (int) (PrefAlign * 8);
128 const TargetAlignElem TargetData::InvalidAlignmentElem =
129 TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0);
131 //===----------------------------------------------------------------------===//
132 // TargetData Class Implementation
133 //===----------------------------------------------------------------------===//
136 A TargetDescription string consists of a sequence of hyphen-delimited
137 specifiers for target endianness, pointer size and alignments, and various
138 primitive type sizes and alignments. A typical string looks something like:
139 <br><br>
140 "E-p:32:32:32-i1:8:8-i8:8:8-i32:32:32-i64:32:64-f32:32:32-f64:32:64"
141 <br><br>
142 (note: this string is not fully specified and is only an example.)
144 Alignments come in two flavors: ABI and preferred. ABI alignment (abi_align,
145 below) dictates how a type will be aligned within an aggregate and when used
146 as an argument. Preferred alignment (pref_align, below) determines a type's
147 alignment when emitted as a global.
149 Specifier string details:
150 <br><br>
151 <i>[E|e]</i>: Endianness. "E" specifies a big-endian target data model, "e"
152 specifies a little-endian target data model.
153 <br><br>
154 <i>p:@verbatim<size>:<abi_align>:<pref_align>@endverbatim</i>: Pointer size,
155 ABI and preferred alignment.
156 <br><br>
157 <i>@verbatim<type><size>:<abi_align>:<pref_align>@endverbatim</i>: Numeric type
158 alignment. Type is
159 one of <i>i|f|v|a</i>, corresponding to integer, floating point, vector (aka
160 packed) or aggregate. Size indicates the size, e.g., 32 or 64 bits.
162 The default string, fully specified is:
163 <br><br>
164 "E-p:64:64:64-a0:0:0-f32:32:32-f64:0:64"
165 "-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:0:64"
166 "-v64:64:64-v128:128:128"
167 <br><br>
168 Note that in the case of aggregates, 0 is the default ABI and preferred
169 alignment. This is a special case, where the aggregate's computed worst-case
170 alignment will be used.
172 void TargetData::init(const std::string &TargetDescription) {
173 std::string temp = TargetDescription;
175 LittleEndian = false;
176 PointerMemSize = 8;
177 PointerABIAlign = 8;
178 PointerPrefAlign = PointerABIAlign;
180 // Default alignments
181 setAlignment(INTEGER_ALIGN, 1, 1, 1); // i1
182 setAlignment(INTEGER_ALIGN, 1, 1, 8); // i8
183 setAlignment(INTEGER_ALIGN, 2, 2, 16); // i16
184 setAlignment(INTEGER_ALIGN, 4, 4, 32); // i32
185 setAlignment(INTEGER_ALIGN, 4, 8, 64); // i64
186 setAlignment(FLOAT_ALIGN, 4, 4, 32); // float
187 setAlignment(FLOAT_ALIGN, 8, 8, 64); // double
188 setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32
189 setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ...
190 setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct, union, class, ...
192 while (!temp.empty()) {
193 std::string token = getToken(temp, "-");
194 std::string arg0 = getToken(token, ":");
195 const char *p = arg0.c_str();
196 switch(*p) {
197 case 'E':
198 LittleEndian = false;
199 break;
200 case 'e':
201 LittleEndian = true;
202 break;
203 case 'p':
204 PointerMemSize = atoi(getToken(token,":").c_str()) / 8;
205 PointerABIAlign = atoi(getToken(token,":").c_str()) / 8;
206 PointerPrefAlign = atoi(getToken(token,":").c_str()) / 8;
207 if (PointerPrefAlign == 0)
208 PointerPrefAlign = PointerABIAlign;
209 break;
210 case 'i':
211 case 'v':
212 case 'f':
213 case 'a':
214 case 's': {
215 AlignTypeEnum align_type = STACK_ALIGN; // Dummy init, silence warning
216 switch(*p) {
217 case 'i': align_type = INTEGER_ALIGN; break;
218 case 'v': align_type = VECTOR_ALIGN; break;
219 case 'f': align_type = FLOAT_ALIGN; break;
220 case 'a': align_type = AGGREGATE_ALIGN; break;
221 case 's': align_type = STACK_ALIGN; break;
223 uint32_t size = (uint32_t) atoi(++p);
224 unsigned char abi_align = atoi(getToken(token, ":").c_str()) / 8;
225 unsigned char pref_align = atoi(getToken(token, ":").c_str()) / 8;
226 if (pref_align == 0)
227 pref_align = abi_align;
228 setAlignment(align_type, abi_align, pref_align, size);
229 break;
231 default:
232 break;
237 TargetData::TargetData(const Module *M)
238 : ImmutablePass(&ID) {
239 init(M->getDataLayout());
242 void
243 TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align,
244 unsigned char pref_align, uint32_t bit_width) {
245 assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
246 for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
247 if (Alignments[i].AlignType == align_type &&
248 Alignments[i].TypeBitWidth == bit_width) {
249 // Update the abi, preferred alignments.
250 Alignments[i].ABIAlign = abi_align;
251 Alignments[i].PrefAlign = pref_align;
252 return;
256 Alignments.push_back(TargetAlignElem::get(align_type, abi_align,
257 pref_align, bit_width));
260 /// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
261 /// preferred if ABIInfo = false) the target wants for the specified datatype.
262 unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType,
263 uint32_t BitWidth, bool ABIInfo,
264 const Type *Ty) const {
265 // Check to see if we have an exact match and remember the best match we see.
266 int BestMatchIdx = -1;
267 int LargestInt = -1;
268 for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
269 if (Alignments[i].AlignType == AlignType &&
270 Alignments[i].TypeBitWidth == BitWidth)
271 return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign;
273 // The best match so far depends on what we're looking for.
274 if (AlignType == VECTOR_ALIGN && Alignments[i].AlignType == VECTOR_ALIGN) {
275 // If this is a specification for a smaller vector type, we will fall back
276 // to it. This happens because <128 x double> can be implemented in terms
277 // of 64 <2 x double>.
278 if (Alignments[i].TypeBitWidth < BitWidth) {
279 // Verify that we pick the biggest of the fallbacks.
280 if (BestMatchIdx == -1 ||
281 Alignments[BestMatchIdx].TypeBitWidth < Alignments[i].TypeBitWidth)
282 BestMatchIdx = i;
284 } else if (AlignType == INTEGER_ALIGN &&
285 Alignments[i].AlignType == INTEGER_ALIGN) {
286 // The "best match" for integers is the smallest size that is larger than
287 // the BitWidth requested.
288 if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 ||
289 Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth))
290 BestMatchIdx = i;
291 // However, if there isn't one that's larger, then we must use the
292 // largest one we have (see below)
293 if (LargestInt == -1 ||
294 Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth)
295 LargestInt = i;
299 // Okay, we didn't find an exact solution. Fall back here depending on what
300 // is being looked for.
301 if (BestMatchIdx == -1) {
302 // If we didn't find an integer alignment, fall back on most conservative.
303 if (AlignType == INTEGER_ALIGN) {
304 BestMatchIdx = LargestInt;
305 } else {
306 assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!");
308 // If we didn't find a vector size that is smaller or equal to this type,
309 // then we will end up scalarizing this to its element type. Just return
310 // the alignment of the element.
311 return getAlignment(cast<VectorType>(Ty)->getElementType(), ABIInfo);
315 // Since we got a "best match" index, just return it.
316 return ABIInfo ? Alignments[BestMatchIdx].ABIAlign
317 : Alignments[BestMatchIdx].PrefAlign;
320 namespace {
322 /// LayoutInfo - The lazy cache of structure layout information maintained by
323 /// TargetData. Note that the struct types must have been free'd before
324 /// llvm_shutdown is called (and thus this is deallocated) because all the
325 /// targets with cached elements should have been destroyed.
327 typedef std::pair<const TargetData*,const StructType*> LayoutKey;
329 struct DenseMapLayoutKeyInfo {
330 static inline LayoutKey getEmptyKey() { return LayoutKey(0, 0); }
331 static inline LayoutKey getTombstoneKey() {
332 return LayoutKey((TargetData*)(intptr_t)-1, 0);
334 static unsigned getHashValue(const LayoutKey &Val) {
335 return DenseMapInfo<void*>::getHashValue(Val.first) ^
336 DenseMapInfo<void*>::getHashValue(Val.second);
338 static bool isEqual(const LayoutKey &LHS, const LayoutKey &RHS) {
339 return LHS == RHS;
342 static bool isPod() { return true; }
345 typedef DenseMap<LayoutKey, StructLayout*, DenseMapLayoutKeyInfo> LayoutInfoTy;
349 static ManagedStatic<LayoutInfoTy> LayoutInfo;
350 static ManagedStatic<sys::SmartMutex<true> > LayoutLock;
352 TargetData::~TargetData() {
353 if (!LayoutInfo.isConstructed())
354 return;
356 sys::SmartScopedLock<true> Lock(*LayoutLock);
357 // Remove any layouts for this TD.
358 LayoutInfoTy &TheMap = *LayoutInfo;
359 for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end(); I != E; ) {
360 if (I->first.first == this) {
361 I->second->~StructLayout();
362 free(I->second);
363 TheMap.erase(I++);
364 } else {
365 ++I;
370 const StructLayout *TargetData::getStructLayout(const StructType *Ty) const {
371 LayoutInfoTy &TheMap = *LayoutInfo;
373 sys::SmartScopedLock<true> Lock(*LayoutLock);
374 StructLayout *&SL = TheMap[LayoutKey(this, Ty)];
375 if (SL) return SL;
377 // Otherwise, create the struct layout. Because it is variable length, we
378 // malloc it, then use placement new.
379 int NumElts = Ty->getNumElements();
380 StructLayout *L =
381 (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1)*sizeof(uint64_t));
383 // Set SL before calling StructLayout's ctor. The ctor could cause other
384 // entries to be added to TheMap, invalidating our reference.
385 SL = L;
387 new (L) StructLayout(Ty, *this);
388 return L;
391 /// InvalidateStructLayoutInfo - TargetData speculatively caches StructLayout
392 /// objects. If a TargetData object is alive when types are being refined and
393 /// removed, this method must be called whenever a StructType is removed to
394 /// avoid a dangling pointer in this cache.
395 void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const {
396 if (!LayoutInfo.isConstructed()) return; // No cache.
398 sys::SmartScopedLock<true> Lock(*LayoutLock);
399 LayoutInfoTy::iterator I = LayoutInfo->find(LayoutKey(this, Ty));
400 if (I == LayoutInfo->end()) return;
402 I->second->~StructLayout();
403 free(I->second);
404 LayoutInfo->erase(I);
408 std::string TargetData::getStringRepresentation() const {
409 std::string repr;
410 repr.append(LittleEndian ? "e" : "E");
411 repr.append("-p:").append(itostr((int64_t) (PointerMemSize * 8))).
412 append(":").append(itostr((int64_t) (PointerABIAlign * 8))).
413 append(":").append(itostr((int64_t) (PointerPrefAlign * 8)));
414 for (align_const_iterator I = Alignments.begin();
415 I != Alignments.end();
416 ++I) {
417 repr.append("-").append(1, (char) I->AlignType).
418 append(utostr((int64_t) I->TypeBitWidth)).
419 append(":").append(utostr((uint64_t) (I->ABIAlign * 8))).
420 append(":").append(utostr((uint64_t) (I->PrefAlign * 8)));
422 return repr;
426 uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const {
427 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
428 switch (Ty->getTypeID()) {
429 case Type::LabelTyID:
430 case Type::PointerTyID:
431 return getPointerSizeInBits();
432 case Type::ArrayTyID: {
433 const ArrayType *ATy = cast<ArrayType>(Ty);
434 return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements();
436 case Type::StructTyID:
437 // Get the layout annotation... which is lazily created on demand.
438 return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
439 case Type::IntegerTyID:
440 return cast<IntegerType>(Ty)->getBitWidth();
441 case Type::VoidTyID:
442 return 8;
443 case Type::FloatTyID:
444 return 32;
445 case Type::DoubleTyID:
446 return 64;
447 case Type::PPC_FP128TyID:
448 case Type::FP128TyID:
449 return 128;
450 // In memory objects this is always aligned to a higher boundary, but
451 // only 80 bits contain information.
452 case Type::X86_FP80TyID:
453 return 80;
454 case Type::VectorTyID:
455 return cast<VectorType>(Ty)->getBitWidth();
456 default:
457 llvm_unreachable("TargetData::getTypeSizeInBits(): Unsupported type");
458 break;
460 return 0;
464 \param abi_or_pref Flag that determines which alignment is returned. true
465 returns the ABI alignment, false returns the preferred alignment.
466 \param Ty The underlying type for which alignment is determined.
468 Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
469 == false) for the requested type \a Ty.
471 unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const {
472 int AlignType = -1;
474 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
475 switch (Ty->getTypeID()) {
476 // Early escape for the non-numeric types.
477 case Type::LabelTyID:
478 case Type::PointerTyID:
479 return (abi_or_pref
480 ? getPointerABIAlignment()
481 : getPointerPrefAlignment());
482 case Type::ArrayTyID:
483 return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
485 case Type::StructTyID: {
486 // Packed structure types always have an ABI alignment of one.
487 if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
488 return 1;
490 // Get the layout annotation... which is lazily created on demand.
491 const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
492 unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty);
493 return std::max(Align, (unsigned)Layout->getAlignment());
495 case Type::IntegerTyID:
496 case Type::VoidTyID:
497 AlignType = INTEGER_ALIGN;
498 break;
499 case Type::FloatTyID:
500 case Type::DoubleTyID:
501 // PPC_FP128TyID and FP128TyID have different data contents, but the
502 // same size and alignment, so they look the same here.
503 case Type::PPC_FP128TyID:
504 case Type::FP128TyID:
505 case Type::X86_FP80TyID:
506 AlignType = FLOAT_ALIGN;
507 break;
508 case Type::VectorTyID:
509 AlignType = VECTOR_ALIGN;
510 break;
511 default:
512 llvm_unreachable("Bad type for getAlignment!!!");
513 break;
516 return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty),
517 abi_or_pref, Ty);
520 unsigned char TargetData::getABITypeAlignment(const Type *Ty) const {
521 return getAlignment(Ty, true);
524 unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const {
525 for (unsigned i = 0, e = Alignments.size(); i != e; ++i)
526 if (Alignments[i].AlignType == STACK_ALIGN)
527 return Alignments[i].ABIAlign;
529 return getABITypeAlignment(Ty);
532 unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const {
533 return getAlignment(Ty, false);
536 unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const {
537 unsigned Align = (unsigned) getPrefTypeAlignment(Ty);
538 assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
539 return Log2_32(Align);
542 /// getIntPtrType - Return an unsigned integer type that is the same size or
543 /// greater to the host pointer size.
544 const IntegerType *TargetData::getIntPtrType(LLVMContext &C) const {
545 return IntegerType::get(C, getPointerSizeInBits());
549 uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices,
550 unsigned NumIndices) const {
551 const Type *Ty = ptrTy;
552 assert(isa<PointerType>(Ty) && "Illegal argument for getIndexedOffset()");
553 uint64_t Result = 0;
555 generic_gep_type_iterator<Value* const*>
556 TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices);
557 for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) {
558 if (const StructType *STy = dyn_cast<StructType>(*TI)) {
559 assert(Indices[CurIDX]->getType() ==
560 Type::getInt32Ty(ptrTy->getContext()) &&
561 "Illegal struct idx");
562 unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue();
564 // Get structure layout information...
565 const StructLayout *Layout = getStructLayout(STy);
567 // Add in the offset, as calculated by the structure layout info...
568 Result += Layout->getElementOffset(FieldNo);
570 // Update Ty to refer to current element
571 Ty = STy->getElementType(FieldNo);
572 } else {
573 // Update Ty to refer to current element
574 Ty = cast<SequentialType>(Ty)->getElementType();
576 // Get the array index and the size of each array element.
577 int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue();
578 Result += arrayIdx * (int64_t)getTypeAllocSize(Ty);
582 return Result;
585 /// getPreferredAlignment - Return the preferred alignment of the specified
586 /// global. This includes an explicitly requested alignment (if the global
587 /// has one).
588 unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const {
589 const Type *ElemType = GV->getType()->getElementType();
590 unsigned Alignment = getPrefTypeAlignment(ElemType);
591 if (GV->getAlignment() > Alignment)
592 Alignment = GV->getAlignment();
594 if (GV->hasInitializer()) {
595 if (Alignment < 16) {
596 // If the global is not external, see if it is large. If so, give it a
597 // larger alignment.
598 if (getTypeSizeInBits(ElemType) > 128)
599 Alignment = 16; // 16-byte alignment.
602 return Alignment;
605 /// getPreferredAlignmentLog - Return the preferred alignment of the
606 /// specified global, returned in log form. This includes an explicitly
607 /// requested alignment (if the global has one).
608 unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const {
609 return Log2_32(getPreferredAlignment(GV));