Change allowsUnalignedMemoryAccesses to take type argument since some targets
[llvm/avr.git] / lib / Target / X86 / X86ISelDAGToDAG.cpp
blob1f1b4fecf5ea559b85ad332131b7bb035f8f7e03
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a DAG pattern matching instruction selector for X86,
11 // converting from a legalized dag to a X86 dag.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-isel"
16 #include "X86.h"
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86RegisterInfo.h"
21 #include "X86Subtarget.h"
22 #include "X86TargetMachine.h"
23 #include "llvm/GlobalValue.h"
24 #include "llvm/Instructions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Support/CFG.h"
27 #include "llvm/Type.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SelectionDAGISel.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetOptions.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/Streams.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/Statistic.h"
44 using namespace llvm;
46 #include "llvm/Support/CommandLine.h"
47 static cl::opt<bool> AvoidDupAddrCompute("x86-avoid-dup-address", cl::Hidden);
49 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
51 //===----------------------------------------------------------------------===//
52 // Pattern Matcher Implementation
53 //===----------------------------------------------------------------------===//
55 namespace {
56 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
57 /// SDValue's instead of register numbers for the leaves of the matched
58 /// tree.
59 struct X86ISelAddressMode {
60 enum {
61 RegBase,
62 FrameIndexBase
63 } BaseType;
65 struct { // This is really a union, discriminated by BaseType!
66 SDValue Reg;
67 int FrameIndex;
68 } Base;
70 unsigned Scale;
71 SDValue IndexReg;
72 int32_t Disp;
73 SDValue Segment;
74 GlobalValue *GV;
75 Constant *CP;
76 const char *ES;
77 int JT;
78 unsigned Align; // CP alignment.
79 unsigned char SymbolFlags; // X86II::MO_*
81 X86ISelAddressMode()
82 : BaseType(RegBase), Scale(1), IndexReg(), Disp(0),
83 Segment(), GV(0), CP(0), ES(0), JT(-1), Align(0), SymbolFlags(0) {
86 bool hasSymbolicDisplacement() const {
87 return GV != 0 || CP != 0 || ES != 0 || JT != -1;
90 bool hasBaseOrIndexReg() const {
91 return IndexReg.getNode() != 0 || Base.Reg.getNode() != 0;
94 /// isRIPRelative - Return true if this addressing mode is already RIP
95 /// relative.
96 bool isRIPRelative() const {
97 if (BaseType != RegBase) return false;
98 if (RegisterSDNode *RegNode =
99 dyn_cast_or_null<RegisterSDNode>(Base.Reg.getNode()))
100 return RegNode->getReg() == X86::RIP;
101 return false;
104 void setBaseReg(SDValue Reg) {
105 BaseType = RegBase;
106 Base.Reg = Reg;
109 void dump() {
110 cerr << "X86ISelAddressMode " << this << '\n';
111 cerr << "Base.Reg ";
112 if (Base.Reg.getNode() != 0)
113 Base.Reg.getNode()->dump();
114 else
115 cerr << "nul";
116 cerr << " Base.FrameIndex " << Base.FrameIndex << '\n';
117 cerr << " Scale" << Scale << '\n';
118 cerr << "IndexReg ";
119 if (IndexReg.getNode() != 0)
120 IndexReg.getNode()->dump();
121 else
122 cerr << "nul";
123 cerr << " Disp " << Disp << '\n';
124 cerr << "GV ";
125 if (GV)
126 GV->dump();
127 else
128 cerr << "nul";
129 cerr << " CP ";
130 if (CP)
131 CP->dump();
132 else
133 cerr << "nul";
134 cerr << '\n';
135 cerr << "ES ";
136 if (ES)
137 cerr << ES;
138 else
139 cerr << "nul";
140 cerr << " JT" << JT << " Align" << Align << '\n';
145 namespace {
146 //===--------------------------------------------------------------------===//
147 /// ISel - X86 specific code to select X86 machine instructions for
148 /// SelectionDAG operations.
150 class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
151 /// X86Lowering - This object fully describes how to lower LLVM code to an
152 /// X86-specific SelectionDAG.
153 X86TargetLowering &X86Lowering;
155 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
156 /// make the right decision when generating code for different targets.
157 const X86Subtarget *Subtarget;
159 /// OptForSize - If true, selector should try to optimize for code size
160 /// instead of performance.
161 bool OptForSize;
163 public:
164 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
165 : SelectionDAGISel(tm, OptLevel),
166 X86Lowering(*tm.getTargetLowering()),
167 Subtarget(&tm.getSubtarget<X86Subtarget>()),
168 OptForSize(false) {}
170 virtual const char *getPassName() const {
171 return "X86 DAG->DAG Instruction Selection";
174 /// InstructionSelect - This callback is invoked by
175 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
176 virtual void InstructionSelect();
178 virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
180 virtual
181 bool IsLegalAndProfitableToFold(SDNode *N, SDNode *U, SDNode *Root) const;
183 // Include the pieces autogenerated from the target description.
184 #include "X86GenDAGISel.inc"
186 private:
187 SDNode *Select(SDValue N);
188 SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
189 SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
191 bool MatchSegmentBaseAddress(SDValue N, X86ISelAddressMode &AM);
192 bool MatchLoad(SDValue N, X86ISelAddressMode &AM);
193 bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
194 bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
195 bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
196 unsigned Depth);
197 bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
198 bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
199 SDValue &Scale, SDValue &Index, SDValue &Disp,
200 SDValue &Segment);
201 bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
202 SDValue &Scale, SDValue &Index, SDValue &Disp);
203 bool SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base,
204 SDValue &Scale, SDValue &Index, SDValue &Disp);
205 bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
206 SDValue N, SDValue &Base, SDValue &Scale,
207 SDValue &Index, SDValue &Disp,
208 SDValue &Segment,
209 SDValue &InChain, SDValue &OutChain);
210 bool TryFoldLoad(SDValue P, SDValue N,
211 SDValue &Base, SDValue &Scale,
212 SDValue &Index, SDValue &Disp,
213 SDValue &Segment);
214 void PreprocessForRMW();
215 void PreprocessForFPConvert();
217 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
218 /// inline asm expressions.
219 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
220 char ConstraintCode,
221 std::vector<SDValue> &OutOps);
223 void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
225 inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
226 SDValue &Scale, SDValue &Index,
227 SDValue &Disp, SDValue &Segment) {
228 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
229 CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
230 AM.Base.Reg;
231 Scale = getI8Imm(AM.Scale);
232 Index = AM.IndexReg;
233 // These are 32-bit even in 64-bit mode since RIP relative offset
234 // is 32-bit.
235 if (AM.GV)
236 Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp,
237 AM.SymbolFlags);
238 else if (AM.CP)
239 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
240 AM.Align, AM.Disp, AM.SymbolFlags);
241 else if (AM.ES)
242 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
243 else if (AM.JT != -1)
244 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
245 else
246 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
248 if (AM.Segment.getNode())
249 Segment = AM.Segment;
250 else
251 Segment = CurDAG->getRegister(0, MVT::i32);
254 /// getI8Imm - Return a target constant with the specified value, of type
255 /// i8.
256 inline SDValue getI8Imm(unsigned Imm) {
257 return CurDAG->getTargetConstant(Imm, MVT::i8);
260 /// getI16Imm - Return a target constant with the specified value, of type
261 /// i16.
262 inline SDValue getI16Imm(unsigned Imm) {
263 return CurDAG->getTargetConstant(Imm, MVT::i16);
266 /// getI32Imm - Return a target constant with the specified value, of type
267 /// i32.
268 inline SDValue getI32Imm(unsigned Imm) {
269 return CurDAG->getTargetConstant(Imm, MVT::i32);
272 /// getGlobalBaseReg - Return an SDNode that returns the value of
273 /// the global base register. Output instructions required to
274 /// initialize the global base register, if necessary.
276 SDNode *getGlobalBaseReg();
278 /// getTargetMachine - Return a reference to the TargetMachine, casted
279 /// to the target-specific type.
280 const X86TargetMachine &getTargetMachine() {
281 return static_cast<const X86TargetMachine &>(TM);
284 /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
285 /// to the target-specific type.
286 const X86InstrInfo *getInstrInfo() {
287 return getTargetMachine().getInstrInfo();
290 #ifndef NDEBUG
291 unsigned Indent;
292 #endif
297 bool X86DAGToDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
298 SDNode *Root) const {
299 if (OptLevel == CodeGenOpt::None) return false;
301 if (U == Root)
302 switch (U->getOpcode()) {
303 default: break;
304 case ISD::ADD:
305 case ISD::ADDC:
306 case ISD::ADDE:
307 case ISD::AND:
308 case ISD::OR:
309 case ISD::XOR: {
310 SDValue Op1 = U->getOperand(1);
312 // If the other operand is a 8-bit immediate we should fold the immediate
313 // instead. This reduces code size.
314 // e.g.
315 // movl 4(%esp), %eax
316 // addl $4, %eax
317 // vs.
318 // movl $4, %eax
319 // addl 4(%esp), %eax
320 // The former is 2 bytes shorter. In case where the increment is 1, then
321 // the saving can be 4 bytes (by using incl %eax).
322 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
323 if (Imm->getAPIntValue().isSignedIntN(8))
324 return false;
326 // If the other operand is a TLS address, we should fold it instead.
327 // This produces
328 // movl %gs:0, %eax
329 // leal i@NTPOFF(%eax), %eax
330 // instead of
331 // movl $i@NTPOFF, %eax
332 // addl %gs:0, %eax
333 // if the block also has an access to a second TLS address this will save
334 // a load.
335 // FIXME: This is probably also true for non TLS addresses.
336 if (Op1.getOpcode() == X86ISD::Wrapper) {
337 SDValue Val = Op1.getOperand(0);
338 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
339 return false;
344 // Proceed to 'generic' cycle finder code
345 return SelectionDAGISel::IsLegalAndProfitableToFold(N, U, Root);
348 /// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
349 /// and move load below the TokenFactor. Replace store's chain operand with
350 /// load's chain result.
351 static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
352 SDValue Store, SDValue TF) {
353 SmallVector<SDValue, 4> Ops;
354 for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
355 if (Load.getNode() == TF.getOperand(i).getNode())
356 Ops.push_back(Load.getOperand(0));
357 else
358 Ops.push_back(TF.getOperand(i));
359 SDValue NewTF = CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
360 SDValue NewLoad = CurDAG->UpdateNodeOperands(Load, NewTF,
361 Load.getOperand(1),
362 Load.getOperand(2));
363 CurDAG->UpdateNodeOperands(Store, NewLoad.getValue(1), Store.getOperand(1),
364 Store.getOperand(2), Store.getOperand(3));
367 /// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.
368 ///
369 static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
370 SDValue &Load) {
371 if (N.getOpcode() == ISD::BIT_CONVERT)
372 N = N.getOperand(0);
374 LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
375 if (!LD || LD->isVolatile())
376 return false;
377 if (LD->getAddressingMode() != ISD::UNINDEXED)
378 return false;
380 ISD::LoadExtType ExtType = LD->getExtensionType();
381 if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
382 return false;
384 if (N.hasOneUse() &&
385 N.getOperand(1) == Address &&
386 N.getNode()->isOperandOf(Chain.getNode())) {
387 Load = N;
388 return true;
390 return false;
393 /// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
394 /// operand and move load below the call's chain operand.
395 static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
396 SDValue Call, SDValue CallSeqStart) {
397 SmallVector<SDValue, 8> Ops;
398 SDValue Chain = CallSeqStart.getOperand(0);
399 if (Chain.getNode() == Load.getNode())
400 Ops.push_back(Load.getOperand(0));
401 else {
402 assert(Chain.getOpcode() == ISD::TokenFactor &&
403 "Unexpected CallSeqStart chain operand");
404 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
405 if (Chain.getOperand(i).getNode() == Load.getNode())
406 Ops.push_back(Load.getOperand(0));
407 else
408 Ops.push_back(Chain.getOperand(i));
409 SDValue NewChain =
410 CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
411 MVT::Other, &Ops[0], Ops.size());
412 Ops.clear();
413 Ops.push_back(NewChain);
415 for (unsigned i = 1, e = CallSeqStart.getNumOperands(); i != e; ++i)
416 Ops.push_back(CallSeqStart.getOperand(i));
417 CurDAG->UpdateNodeOperands(CallSeqStart, &Ops[0], Ops.size());
418 CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
419 Load.getOperand(1), Load.getOperand(2));
420 Ops.clear();
421 Ops.push_back(SDValue(Load.getNode(), 1));
422 for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
423 Ops.push_back(Call.getOperand(i));
424 CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
427 /// isCalleeLoad - Return true if call address is a load and it can be
428 /// moved below CALLSEQ_START and the chains leading up to the call.
429 /// Return the CALLSEQ_START by reference as a second output.
430 static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
431 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
432 return false;
433 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
434 if (!LD ||
435 LD->isVolatile() ||
436 LD->getAddressingMode() != ISD::UNINDEXED ||
437 LD->getExtensionType() != ISD::NON_EXTLOAD)
438 return false;
440 // Now let's find the callseq_start.
441 while (Chain.getOpcode() != ISD::CALLSEQ_START) {
442 if (!Chain.hasOneUse())
443 return false;
444 Chain = Chain.getOperand(0);
447 if (Chain.getOperand(0).getNode() == Callee.getNode())
448 return true;
449 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
450 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()))
451 return true;
452 return false;
456 /// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
457 /// This is only run if not in -O0 mode.
458 /// This allows the instruction selector to pick more read-modify-write
459 /// instructions. This is a common case:
461 /// [Load chain]
462 /// ^
463 /// |
464 /// [Load]
465 /// ^ ^
466 /// | |
467 /// / \-
468 /// / |
469 /// [TokenFactor] [Op]
470 /// ^ ^
471 /// | |
472 /// \ /
473 /// \ /
474 /// [Store]
476 /// The fact the store's chain operand != load's chain will prevent the
477 /// (store (op (load))) instruction from being selected. We can transform it to:
479 /// [Load chain]
480 /// ^
481 /// |
482 /// [TokenFactor]
483 /// ^
484 /// |
485 /// [Load]
486 /// ^ ^
487 /// | |
488 /// | \-
489 /// | |
490 /// | [Op]
491 /// | ^
492 /// | |
493 /// \ /
494 /// \ /
495 /// [Store]
496 void X86DAGToDAGISel::PreprocessForRMW() {
497 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
498 E = CurDAG->allnodes_end(); I != E; ++I) {
499 if (I->getOpcode() == X86ISD::CALL) {
500 /// Also try moving call address load from outside callseq_start to just
501 /// before the call to allow it to be folded.
503 /// [Load chain]
504 /// ^
505 /// |
506 /// [Load]
507 /// ^ ^
508 /// | |
509 /// / \--
510 /// / |
511 ///[CALLSEQ_START] |
512 /// ^ |
513 /// | |
514 /// [LOAD/C2Reg] |
515 /// | |
516 /// \ /
517 /// \ /
518 /// [CALL]
519 SDValue Chain = I->getOperand(0);
520 SDValue Load = I->getOperand(1);
521 if (!isCalleeLoad(Load, Chain))
522 continue;
523 MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
524 ++NumLoadMoved;
525 continue;
528 if (!ISD::isNON_TRUNCStore(I))
529 continue;
530 SDValue Chain = I->getOperand(0);
532 if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
533 continue;
535 SDValue N1 = I->getOperand(1);
536 SDValue N2 = I->getOperand(2);
537 if ((N1.getValueType().isFloatingPoint() &&
538 !N1.getValueType().isVector()) ||
539 !N1.hasOneUse())
540 continue;
542 bool RModW = false;
543 SDValue Load;
544 unsigned Opcode = N1.getNode()->getOpcode();
545 switch (Opcode) {
546 case ISD::ADD:
547 case ISD::MUL:
548 case ISD::AND:
549 case ISD::OR:
550 case ISD::XOR:
551 case ISD::ADDC:
552 case ISD::ADDE:
553 case ISD::VECTOR_SHUFFLE: {
554 SDValue N10 = N1.getOperand(0);
555 SDValue N11 = N1.getOperand(1);
556 RModW = isRMWLoad(N10, Chain, N2, Load);
557 if (!RModW)
558 RModW = isRMWLoad(N11, Chain, N2, Load);
559 break;
561 case ISD::SUB:
562 case ISD::SHL:
563 case ISD::SRA:
564 case ISD::SRL:
565 case ISD::ROTL:
566 case ISD::ROTR:
567 case ISD::SUBC:
568 case ISD::SUBE:
569 case X86ISD::SHLD:
570 case X86ISD::SHRD: {
571 SDValue N10 = N1.getOperand(0);
572 RModW = isRMWLoad(N10, Chain, N2, Load);
573 break;
577 if (RModW) {
578 MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
579 ++NumLoadMoved;
585 /// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
586 /// nodes that target the FP stack to be store and load to the stack. This is a
587 /// gross hack. We would like to simply mark these as being illegal, but when
588 /// we do that, legalize produces these when it expands calls, then expands
589 /// these in the same legalize pass. We would like dag combine to be able to
590 /// hack on these between the call expansion and the node legalization. As such
591 /// this pass basically does "really late" legalization of these inline with the
592 /// X86 isel pass.
593 void X86DAGToDAGISel::PreprocessForFPConvert() {
594 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
595 E = CurDAG->allnodes_end(); I != E; ) {
596 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
597 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
598 continue;
600 // If the source and destination are SSE registers, then this is a legal
601 // conversion that should not be lowered.
602 EVT SrcVT = N->getOperand(0).getValueType();
603 EVT DstVT = N->getValueType(0);
604 bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
605 bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
606 if (SrcIsSSE && DstIsSSE)
607 continue;
609 if (!SrcIsSSE && !DstIsSSE) {
610 // If this is an FPStack extension, it is a noop.
611 if (N->getOpcode() == ISD::FP_EXTEND)
612 continue;
613 // If this is a value-preserving FPStack truncation, it is a noop.
614 if (N->getConstantOperandVal(1))
615 continue;
618 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
619 // FPStack has extload and truncstore. SSE can fold direct loads into other
620 // operations. Based on this, decide what we want to do.
621 EVT MemVT;
622 if (N->getOpcode() == ISD::FP_ROUND)
623 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
624 else
625 MemVT = SrcIsSSE ? SrcVT : DstVT;
627 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
628 DebugLoc dl = N->getDebugLoc();
630 // FIXME: optimize the case where the src/dest is a load or store?
631 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
632 N->getOperand(0),
633 MemTmp, NULL, 0, MemVT);
634 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
635 NULL, 0, MemVT);
637 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
638 // extload we created. This will cause general havok on the dag because
639 // anything below the conversion could be folded into other existing nodes.
640 // To avoid invalidating 'I', back it up to the convert node.
641 --I;
642 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
644 // Now that we did that, the node is dead. Increment the iterator to the
645 // next node to process, then delete N.
646 ++I;
647 CurDAG->DeleteNode(N);
651 /// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
652 /// when it has created a SelectionDAG for us to codegen.
653 void X86DAGToDAGISel::InstructionSelect() {
654 const Function *F = MF->getFunction();
655 OptForSize = F->hasFnAttr(Attribute::OptimizeForSize);
657 DEBUG(BB->dump());
658 if (OptLevel != CodeGenOpt::None)
659 PreprocessForRMW();
661 // FIXME: This should only happen when not compiled with -O0.
662 PreprocessForFPConvert();
664 // Codegen the basic block.
665 #ifndef NDEBUG
666 DEBUG(errs() << "===== Instruction selection begins:\n");
667 Indent = 0;
668 #endif
669 SelectRoot(*CurDAG);
670 #ifndef NDEBUG
671 DEBUG(errs() << "===== Instruction selection ends:\n");
672 #endif
674 CurDAG->RemoveDeadNodes();
677 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
678 /// the main function.
679 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
680 MachineFrameInfo *MFI) {
681 const TargetInstrInfo *TII = TM.getInstrInfo();
682 if (Subtarget->isTargetCygMing())
683 BuildMI(BB, DebugLoc::getUnknownLoc(),
684 TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
687 void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
688 // If this is main, emit special code for main.
689 MachineBasicBlock *BB = MF.begin();
690 if (Fn.hasExternalLinkage() && Fn.getName() == "main")
691 EmitSpecialCodeForMain(BB, MF.getFrameInfo());
695 bool X86DAGToDAGISel::MatchSegmentBaseAddress(SDValue N,
696 X86ISelAddressMode &AM) {
697 assert(N.getOpcode() == X86ISD::SegmentBaseAddress);
698 SDValue Segment = N.getOperand(0);
700 if (AM.Segment.getNode() == 0) {
701 AM.Segment = Segment;
702 return false;
705 return true;
708 bool X86DAGToDAGISel::MatchLoad(SDValue N, X86ISelAddressMode &AM) {
709 // This optimization is valid because the GNU TLS model defines that
710 // gs:0 (or fs:0 on X86-64) contains its own address.
711 // For more information see http://people.redhat.com/drepper/tls.pdf
713 SDValue Address = N.getOperand(1);
714 if (Address.getOpcode() == X86ISD::SegmentBaseAddress &&
715 !MatchSegmentBaseAddress (Address, AM))
716 return false;
718 return true;
721 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
722 /// into an addressing mode. These wrap things that will resolve down into a
723 /// symbol reference. If no match is possible, this returns true, otherwise it
724 /// returns false.
725 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
726 // If the addressing mode already has a symbol as the displacement, we can
727 // never match another symbol.
728 if (AM.hasSymbolicDisplacement())
729 return true;
731 SDValue N0 = N.getOperand(0);
732 CodeModel::Model M = TM.getCodeModel();
734 // Handle X86-64 rip-relative addresses. We check this before checking direct
735 // folding because RIP is preferable to non-RIP accesses.
736 if (Subtarget->is64Bit() &&
737 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
738 // they cannot be folded into immediate fields.
739 // FIXME: This can be improved for kernel and other models?
740 (M == CodeModel::Small || CodeModel::Kernel) &&
741 // Base and index reg must be 0 in order to use %rip as base and lowering
742 // must allow RIP.
743 !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
744 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
745 int64_t Offset = AM.Disp + G->getOffset();
746 if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
747 AM.GV = G->getGlobal();
748 AM.Disp = Offset;
749 AM.SymbolFlags = G->getTargetFlags();
750 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
751 int64_t Offset = AM.Disp + CP->getOffset();
752 if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
753 AM.CP = CP->getConstVal();
754 AM.Align = CP->getAlignment();
755 AM.Disp = Offset;
756 AM.SymbolFlags = CP->getTargetFlags();
757 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
758 AM.ES = S->getSymbol();
759 AM.SymbolFlags = S->getTargetFlags();
760 } else {
761 JumpTableSDNode *J = cast<JumpTableSDNode>(N0);
762 AM.JT = J->getIndex();
763 AM.SymbolFlags = J->getTargetFlags();
766 if (N.getOpcode() == X86ISD::WrapperRIP)
767 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
768 return false;
771 // Handle the case when globals fit in our immediate field: This is true for
772 // X86-32 always and X86-64 when in -static -mcmodel=small mode. In 64-bit
773 // mode, this results in a non-RIP-relative computation.
774 if (!Subtarget->is64Bit() ||
775 ((M == CodeModel::Small || M == CodeModel::Kernel) &&
776 TM.getRelocationModel() == Reloc::Static)) {
777 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
778 AM.GV = G->getGlobal();
779 AM.Disp += G->getOffset();
780 AM.SymbolFlags = G->getTargetFlags();
781 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
782 AM.CP = CP->getConstVal();
783 AM.Align = CP->getAlignment();
784 AM.Disp += CP->getOffset();
785 AM.SymbolFlags = CP->getTargetFlags();
786 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
787 AM.ES = S->getSymbol();
788 AM.SymbolFlags = S->getTargetFlags();
789 } else {
790 JumpTableSDNode *J = cast<JumpTableSDNode>(N0);
791 AM.JT = J->getIndex();
792 AM.SymbolFlags = J->getTargetFlags();
794 return false;
797 return true;
800 /// MatchAddress - Add the specified node to the specified addressing mode,
801 /// returning true if it cannot be done. This just pattern matches for the
802 /// addressing mode.
803 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
804 if (MatchAddressRecursively(N, AM, 0))
805 return true;
807 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
808 // a smaller encoding and avoids a scaled-index.
809 if (AM.Scale == 2 &&
810 AM.BaseType == X86ISelAddressMode::RegBase &&
811 AM.Base.Reg.getNode() == 0) {
812 AM.Base.Reg = AM.IndexReg;
813 AM.Scale = 1;
816 return false;
819 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
820 unsigned Depth) {
821 bool is64Bit = Subtarget->is64Bit();
822 DebugLoc dl = N.getDebugLoc();
823 DEBUG({
824 errs() << "MatchAddress: ";
825 AM.dump();
827 // Limit recursion.
828 if (Depth > 5)
829 return MatchAddressBase(N, AM);
831 CodeModel::Model M = TM.getCodeModel();
833 // If this is already a %rip relative address, we can only merge immediates
834 // into it. Instead of handling this in every case, we handle it here.
835 // RIP relative addressing: %rip + 32-bit displacement!
836 if (AM.isRIPRelative()) {
837 // FIXME: JumpTable and ExternalSymbol address currently don't like
838 // displacements. It isn't very important, but this should be fixed for
839 // consistency.
840 if (!AM.ES && AM.JT != -1) return true;
842 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
843 int64_t Val = AM.Disp + Cst->getSExtValue();
844 if (X86::isOffsetSuitableForCodeModel(Val, M,
845 AM.hasSymbolicDisplacement())) {
846 AM.Disp = Val;
847 return false;
850 return true;
853 switch (N.getOpcode()) {
854 default: break;
855 case ISD::Constant: {
856 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
857 if (!is64Bit ||
858 X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
859 AM.hasSymbolicDisplacement())) {
860 AM.Disp += Val;
861 return false;
863 break;
866 case X86ISD::SegmentBaseAddress:
867 if (!MatchSegmentBaseAddress(N, AM))
868 return false;
869 break;
871 case X86ISD::Wrapper:
872 case X86ISD::WrapperRIP:
873 if (!MatchWrapper(N, AM))
874 return false;
875 break;
877 case ISD::LOAD:
878 if (!MatchLoad(N, AM))
879 return false;
880 break;
882 case ISD::FrameIndex:
883 if (AM.BaseType == X86ISelAddressMode::RegBase
884 && AM.Base.Reg.getNode() == 0) {
885 AM.BaseType = X86ISelAddressMode::FrameIndexBase;
886 AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
887 return false;
889 break;
891 case ISD::SHL:
892 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
893 break;
895 if (ConstantSDNode
896 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
897 unsigned Val = CN->getZExtValue();
898 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
899 // that the base operand remains free for further matching. If
900 // the base doesn't end up getting used, a post-processing step
901 // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
902 if (Val == 1 || Val == 2 || Val == 3) {
903 AM.Scale = 1 << Val;
904 SDValue ShVal = N.getNode()->getOperand(0);
906 // Okay, we know that we have a scale by now. However, if the scaled
907 // value is an add of something and a constant, we can fold the
908 // constant into the disp field here.
909 if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
910 isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
911 AM.IndexReg = ShVal.getNode()->getOperand(0);
912 ConstantSDNode *AddVal =
913 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
914 uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
915 if (!is64Bit ||
916 X86::isOffsetSuitableForCodeModel(Disp, M,
917 AM.hasSymbolicDisplacement()))
918 AM.Disp = Disp;
919 else
920 AM.IndexReg = ShVal;
921 } else {
922 AM.IndexReg = ShVal;
924 return false;
926 break;
929 case ISD::SMUL_LOHI:
930 case ISD::UMUL_LOHI:
931 // A mul_lohi where we need the low part can be folded as a plain multiply.
932 if (N.getResNo() != 0) break;
933 // FALL THROUGH
934 case ISD::MUL:
935 case X86ISD::MUL_IMM:
936 // X*[3,5,9] -> X+X*[2,4,8]
937 if (AM.BaseType == X86ISelAddressMode::RegBase &&
938 AM.Base.Reg.getNode() == 0 &&
939 AM.IndexReg.getNode() == 0) {
940 if (ConstantSDNode
941 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
942 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
943 CN->getZExtValue() == 9) {
944 AM.Scale = unsigned(CN->getZExtValue())-1;
946 SDValue MulVal = N.getNode()->getOperand(0);
947 SDValue Reg;
949 // Okay, we know that we have a scale by now. However, if the scaled
950 // value is an add of something and a constant, we can fold the
951 // constant into the disp field here.
952 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
953 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
954 Reg = MulVal.getNode()->getOperand(0);
955 ConstantSDNode *AddVal =
956 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
957 uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
958 CN->getZExtValue();
959 if (!is64Bit ||
960 X86::isOffsetSuitableForCodeModel(Disp, M,
961 AM.hasSymbolicDisplacement()))
962 AM.Disp = Disp;
963 else
964 Reg = N.getNode()->getOperand(0);
965 } else {
966 Reg = N.getNode()->getOperand(0);
969 AM.IndexReg = AM.Base.Reg = Reg;
970 return false;
973 break;
975 case ISD::SUB: {
976 // Given A-B, if A can be completely folded into the address and
977 // the index field with the index field unused, use -B as the index.
978 // This is a win if a has multiple parts that can be folded into
979 // the address. Also, this saves a mov if the base register has
980 // other uses, since it avoids a two-address sub instruction, however
981 // it costs an additional mov if the index register has other uses.
983 // Test if the LHS of the sub can be folded.
984 X86ISelAddressMode Backup = AM;
985 if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
986 AM = Backup;
987 break;
989 // Test if the index field is free for use.
990 if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
991 AM = Backup;
992 break;
994 int Cost = 0;
995 SDValue RHS = N.getNode()->getOperand(1);
996 // If the RHS involves a register with multiple uses, this
997 // transformation incurs an extra mov, due to the neg instruction
998 // clobbering its operand.
999 if (!RHS.getNode()->hasOneUse() ||
1000 RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1001 RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1002 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1003 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1004 RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1005 ++Cost;
1006 // If the base is a register with multiple uses, this
1007 // transformation may save a mov.
1008 if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1009 AM.Base.Reg.getNode() &&
1010 !AM.Base.Reg.getNode()->hasOneUse()) ||
1011 AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1012 --Cost;
1013 // If the folded LHS was interesting, this transformation saves
1014 // address arithmetic.
1015 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1016 ((AM.Disp != 0) && (Backup.Disp == 0)) +
1017 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1018 --Cost;
1019 // If it doesn't look like it may be an overall win, don't do it.
1020 if (Cost >= 0) {
1021 AM = Backup;
1022 break;
1025 // Ok, the transformation is legal and appears profitable. Go for it.
1026 SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1027 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1028 AM.IndexReg = Neg;
1029 AM.Scale = 1;
1031 // Insert the new nodes into the topological ordering.
1032 if (Zero.getNode()->getNodeId() == -1 ||
1033 Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1034 CurDAG->RepositionNode(N.getNode(), Zero.getNode());
1035 Zero.getNode()->setNodeId(N.getNode()->getNodeId());
1037 if (Neg.getNode()->getNodeId() == -1 ||
1038 Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1039 CurDAG->RepositionNode(N.getNode(), Neg.getNode());
1040 Neg.getNode()->setNodeId(N.getNode()->getNodeId());
1042 return false;
1045 case ISD::ADD: {
1046 X86ISelAddressMode Backup = AM;
1047 if (!MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1) &&
1048 !MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1))
1049 return false;
1050 AM = Backup;
1051 if (!MatchAddressRecursively(N.getNode()->getOperand(1), AM, Depth+1) &&
1052 !MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1))
1053 return false;
1054 AM = Backup;
1056 // If we couldn't fold both operands into the address at the same time,
1057 // see if we can just put each operand into a register and fold at least
1058 // the add.
1059 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1060 !AM.Base.Reg.getNode() &&
1061 !AM.IndexReg.getNode()) {
1062 AM.Base.Reg = N.getNode()->getOperand(0);
1063 AM.IndexReg = N.getNode()->getOperand(1);
1064 AM.Scale = 1;
1065 return false;
1067 break;
1070 case ISD::OR:
1071 // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1072 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1073 X86ISelAddressMode Backup = AM;
1074 uint64_t Offset = CN->getSExtValue();
1075 // Start with the LHS as an addr mode.
1076 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1077 // Address could not have picked a GV address for the displacement.
1078 AM.GV == NULL &&
1079 // On x86-64, the resultant disp must fit in 32-bits.
1080 (!is64Bit ||
1081 X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
1082 AM.hasSymbolicDisplacement())) &&
1083 // Check to see if the LHS & C is zero.
1084 CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
1085 AM.Disp += Offset;
1086 return false;
1088 AM = Backup;
1090 break;
1092 case ISD::AND: {
1093 // Perform some heroic transforms on an and of a constant-count shift
1094 // with a constant to enable use of the scaled offset field.
1096 SDValue Shift = N.getOperand(0);
1097 if (Shift.getNumOperands() != 2) break;
1099 // Scale must not be used already.
1100 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1102 SDValue X = Shift.getOperand(0);
1103 ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
1104 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
1105 if (!C1 || !C2) break;
1107 // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
1108 // allows us to convert the shift and and into an h-register extract and
1109 // a scaled index.
1110 if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
1111 unsigned ScaleLog = 8 - C1->getZExtValue();
1112 if (ScaleLog > 0 && ScaleLog < 4 &&
1113 C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
1114 SDValue Eight = CurDAG->getConstant(8, MVT::i8);
1115 SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
1116 SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1117 X, Eight);
1118 SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
1119 Srl, Mask);
1120 SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
1121 SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1122 And, ShlCount);
1124 // Insert the new nodes into the topological ordering.
1125 if (Eight.getNode()->getNodeId() == -1 ||
1126 Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1127 CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1128 Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1130 if (Mask.getNode()->getNodeId() == -1 ||
1131 Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1132 CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1133 Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1135 if (Srl.getNode()->getNodeId() == -1 ||
1136 Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1137 CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1138 Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1140 if (And.getNode()->getNodeId() == -1 ||
1141 And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1142 CurDAG->RepositionNode(N.getNode(), And.getNode());
1143 And.getNode()->setNodeId(N.getNode()->getNodeId());
1145 if (ShlCount.getNode()->getNodeId() == -1 ||
1146 ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1147 CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1148 ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1150 if (Shl.getNode()->getNodeId() == -1 ||
1151 Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1152 CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1153 Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1155 CurDAG->ReplaceAllUsesWith(N, Shl);
1156 AM.IndexReg = And;
1157 AM.Scale = (1 << ScaleLog);
1158 return false;
1162 // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1163 // allows us to fold the shift into this addressing mode.
1164 if (Shift.getOpcode() != ISD::SHL) break;
1166 // Not likely to be profitable if either the AND or SHIFT node has more
1167 // than one use (unless all uses are for address computation). Besides,
1168 // isel mechanism requires their node ids to be reused.
1169 if (!N.hasOneUse() || !Shift.hasOneUse())
1170 break;
1172 // Verify that the shift amount is something we can fold.
1173 unsigned ShiftCst = C1->getZExtValue();
1174 if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1175 break;
1177 // Get the new AND mask, this folds to a constant.
1178 SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1179 SDValue(C2, 0), SDValue(C1, 0));
1180 SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1181 NewANDMask);
1182 SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1183 NewAND, SDValue(C1, 0));
1185 // Insert the new nodes into the topological ordering.
1186 if (C1->getNodeId() > X.getNode()->getNodeId()) {
1187 CurDAG->RepositionNode(X.getNode(), C1);
1188 C1->setNodeId(X.getNode()->getNodeId());
1190 if (NewANDMask.getNode()->getNodeId() == -1 ||
1191 NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1192 CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1193 NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1195 if (NewAND.getNode()->getNodeId() == -1 ||
1196 NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1197 CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1198 NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1200 if (NewSHIFT.getNode()->getNodeId() == -1 ||
1201 NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1202 CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1203 NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1206 CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1208 AM.Scale = 1 << ShiftCst;
1209 AM.IndexReg = NewAND;
1210 return false;
1214 return MatchAddressBase(N, AM);
1217 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1218 /// specified addressing mode without any further recursion.
1219 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1220 // Is the base register already occupied?
1221 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
1222 // If so, check to see if the scale index register is set.
1223 if (AM.IndexReg.getNode() == 0) {
1224 AM.IndexReg = N;
1225 AM.Scale = 1;
1226 return false;
1229 // Otherwise, we cannot select it.
1230 return true;
1233 // Default, generate it as a register.
1234 AM.BaseType = X86ISelAddressMode::RegBase;
1235 AM.Base.Reg = N;
1236 return false;
1239 /// SelectAddr - returns true if it is able pattern match an addressing mode.
1240 /// It returns the operands which make up the maximal addressing mode it can
1241 /// match by reference.
1242 bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
1243 SDValue &Scale, SDValue &Index,
1244 SDValue &Disp, SDValue &Segment) {
1245 X86ISelAddressMode AM;
1246 bool Done = false;
1247 if (AvoidDupAddrCompute && !N.hasOneUse()) {
1248 unsigned Opcode = N.getOpcode();
1249 if (Opcode != ISD::Constant && Opcode != ISD::FrameIndex &&
1250 Opcode != X86ISD::Wrapper && Opcode != X86ISD::WrapperRIP) {
1251 // If we are able to fold N into addressing mode, then we'll allow it even
1252 // if N has multiple uses. In general, addressing computation is used as
1253 // addresses by all of its uses. But watch out for CopyToReg uses, that
1254 // means the address computation is liveout. It will be computed by a LEA
1255 // so we want to avoid computing the address twice.
1256 for (SDNode::use_iterator UI = N.getNode()->use_begin(),
1257 UE = N.getNode()->use_end(); UI != UE; ++UI) {
1258 if (UI->getOpcode() == ISD::CopyToReg) {
1259 MatchAddressBase(N, AM);
1260 Done = true;
1261 break;
1267 if (!Done && MatchAddress(N, AM))
1268 return false;
1270 EVT VT = N.getValueType();
1271 if (AM.BaseType == X86ISelAddressMode::RegBase) {
1272 if (!AM.Base.Reg.getNode())
1273 AM.Base.Reg = CurDAG->getRegister(0, VT);
1276 if (!AM.IndexReg.getNode())
1277 AM.IndexReg = CurDAG->getRegister(0, VT);
1279 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1280 return true;
1283 /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to
1284 /// match a load whose top elements are either undef or zeros. The load flavor
1285 /// is derived from the type of N, which is either v4f32 or v2f64.
1286 bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
1287 SDValue N, SDValue &Base,
1288 SDValue &Scale, SDValue &Index,
1289 SDValue &Disp, SDValue &Segment,
1290 SDValue &InChain,
1291 SDValue &OutChain) {
1292 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1293 InChain = N.getOperand(0).getValue(1);
1294 if (ISD::isNON_EXTLoad(InChain.getNode()) &&
1295 InChain.getValue(0).hasOneUse() &&
1296 N.hasOneUse() &&
1297 IsLegalAndProfitableToFold(N.getNode(), Pred.getNode(), Op.getNode())) {
1298 LoadSDNode *LD = cast<LoadSDNode>(InChain);
1299 if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1300 return false;
1301 OutChain = LD->getChain();
1302 return true;
1306 // Also handle the case where we explicitly require zeros in the top
1307 // elements. This is a vector shuffle from the zero vector.
1308 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1309 // Check to see if the top elements are all zeros (or bitcast of zeros).
1310 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1311 N.getOperand(0).getNode()->hasOneUse() &&
1312 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1313 N.getOperand(0).getOperand(0).hasOneUse()) {
1314 // Okay, this is a zero extending load. Fold it.
1315 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1316 if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1317 return false;
1318 OutChain = LD->getChain();
1319 InChain = SDValue(LD, 1);
1320 return true;
1322 return false;
1326 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1327 /// mode it matches can be cost effectively emitted as an LEA instruction.
1328 bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
1329 SDValue &Base, SDValue &Scale,
1330 SDValue &Index, SDValue &Disp) {
1331 X86ISelAddressMode AM;
1333 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1334 // segments.
1335 SDValue Copy = AM.Segment;
1336 SDValue T = CurDAG->getRegister(0, MVT::i32);
1337 AM.Segment = T;
1338 if (MatchAddress(N, AM))
1339 return false;
1340 assert (T == AM.Segment);
1341 AM.Segment = Copy;
1343 EVT VT = N.getValueType();
1344 unsigned Complexity = 0;
1345 if (AM.BaseType == X86ISelAddressMode::RegBase)
1346 if (AM.Base.Reg.getNode())
1347 Complexity = 1;
1348 else
1349 AM.Base.Reg = CurDAG->getRegister(0, VT);
1350 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1351 Complexity = 4;
1353 if (AM.IndexReg.getNode())
1354 Complexity++;
1355 else
1356 AM.IndexReg = CurDAG->getRegister(0, VT);
1358 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1359 // a simple shift.
1360 if (AM.Scale > 1)
1361 Complexity++;
1363 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1364 // to a LEA. This is determined with some expermentation but is by no means
1365 // optimal (especially for code size consideration). LEA is nice because of
1366 // its three-address nature. Tweak the cost function again when we can run
1367 // convertToThreeAddress() at register allocation time.
1368 if (AM.hasSymbolicDisplacement()) {
1369 // For X86-64, we should always use lea to materialize RIP relative
1370 // addresses.
1371 if (Subtarget->is64Bit())
1372 Complexity = 4;
1373 else
1374 Complexity += 2;
1377 if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
1378 Complexity++;
1380 // If it isn't worth using an LEA, reject it.
1381 if (Complexity <= 2)
1382 return false;
1384 SDValue Segment;
1385 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1386 return true;
1389 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1390 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue Op, SDValue N, SDValue &Base,
1391 SDValue &Scale, SDValue &Index,
1392 SDValue &Disp) {
1393 assert(Op.getOpcode() == X86ISD::TLSADDR);
1394 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1395 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1397 X86ISelAddressMode AM;
1398 AM.GV = GA->getGlobal();
1399 AM.Disp += GA->getOffset();
1400 AM.Base.Reg = CurDAG->getRegister(0, N.getValueType());
1401 AM.SymbolFlags = GA->getTargetFlags();
1403 if (N.getValueType() == MVT::i32) {
1404 AM.Scale = 1;
1405 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1406 } else {
1407 AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1410 SDValue Segment;
1411 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1412 return true;
1416 bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
1417 SDValue &Base, SDValue &Scale,
1418 SDValue &Index, SDValue &Disp,
1419 SDValue &Segment) {
1420 if (ISD::isNON_EXTLoad(N.getNode()) &&
1421 N.hasOneUse() &&
1422 IsLegalAndProfitableToFold(N.getNode(), P.getNode(), P.getNode()))
1423 return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp, Segment);
1424 return false;
1427 /// getGlobalBaseReg - Return an SDNode that returns the value of
1428 /// the global base register. Output instructions required to
1429 /// initialize the global base register, if necessary.
1431 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1432 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1433 return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1436 static SDNode *FindCallStartFromCall(SDNode *Node) {
1437 if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
1438 assert(Node->getOperand(0).getValueType() == MVT::Other &&
1439 "Node doesn't have a token chain argument!");
1440 return FindCallStartFromCall(Node->getOperand(0).getNode());
1443 SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1444 SDValue Chain = Node->getOperand(0);
1445 SDValue In1 = Node->getOperand(1);
1446 SDValue In2L = Node->getOperand(2);
1447 SDValue In2H = Node->getOperand(3);
1448 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1449 if (!SelectAddr(In1, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1450 return NULL;
1451 SDValue LSI = Node->getOperand(4); // MemOperand
1452 const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, LSI, Chain};
1453 return CurDAG->getTargetNode(Opc, Node->getDebugLoc(),
1454 MVT::i32, MVT::i32, MVT::Other, Ops,
1455 array_lengthof(Ops));
1458 SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1459 if (Node->hasAnyUseOfValue(0))
1460 return 0;
1462 // Optimize common patterns for __sync_add_and_fetch and
1463 // __sync_sub_and_fetch where the result is not used. This allows us
1464 // to use "lock" version of add, sub, inc, dec instructions.
1465 // FIXME: Do not use special instructions but instead add the "lock"
1466 // prefix to the target node somehow. The extra information will then be
1467 // transferred to machine instruction and it denotes the prefix.
1468 SDValue Chain = Node->getOperand(0);
1469 SDValue Ptr = Node->getOperand(1);
1470 SDValue Val = Node->getOperand(2);
1471 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1472 if (!SelectAddr(Ptr, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1473 return 0;
1475 bool isInc = false, isDec = false, isSub = false, isCN = false;
1476 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1477 if (CN) {
1478 isCN = true;
1479 int64_t CNVal = CN->getSExtValue();
1480 if (CNVal == 1)
1481 isInc = true;
1482 else if (CNVal == -1)
1483 isDec = true;
1484 else if (CNVal >= 0)
1485 Val = CurDAG->getTargetConstant(CNVal, NVT);
1486 else {
1487 isSub = true;
1488 Val = CurDAG->getTargetConstant(-CNVal, NVT);
1490 } else if (Val.hasOneUse() &&
1491 Val.getOpcode() == ISD::SUB &&
1492 X86::isZeroNode(Val.getOperand(0))) {
1493 isSub = true;
1494 Val = Val.getOperand(1);
1497 unsigned Opc = 0;
1498 switch (NVT.getSimpleVT().SimpleTy) {
1499 default: return 0;
1500 case MVT::i8:
1501 if (isInc)
1502 Opc = X86::LOCK_INC8m;
1503 else if (isDec)
1504 Opc = X86::LOCK_DEC8m;
1505 else if (isSub) {
1506 if (isCN)
1507 Opc = X86::LOCK_SUB8mi;
1508 else
1509 Opc = X86::LOCK_SUB8mr;
1510 } else {
1511 if (isCN)
1512 Opc = X86::LOCK_ADD8mi;
1513 else
1514 Opc = X86::LOCK_ADD8mr;
1516 break;
1517 case MVT::i16:
1518 if (isInc)
1519 Opc = X86::LOCK_INC16m;
1520 else if (isDec)
1521 Opc = X86::LOCK_DEC16m;
1522 else if (isSub) {
1523 if (isCN) {
1524 if (Predicate_i16immSExt8(Val.getNode()))
1525 Opc = X86::LOCK_SUB16mi8;
1526 else
1527 Opc = X86::LOCK_SUB16mi;
1528 } else
1529 Opc = X86::LOCK_SUB16mr;
1530 } else {
1531 if (isCN) {
1532 if (Predicate_i16immSExt8(Val.getNode()))
1533 Opc = X86::LOCK_ADD16mi8;
1534 else
1535 Opc = X86::LOCK_ADD16mi;
1536 } else
1537 Opc = X86::LOCK_ADD16mr;
1539 break;
1540 case MVT::i32:
1541 if (isInc)
1542 Opc = X86::LOCK_INC32m;
1543 else if (isDec)
1544 Opc = X86::LOCK_DEC32m;
1545 else if (isSub) {
1546 if (isCN) {
1547 if (Predicate_i32immSExt8(Val.getNode()))
1548 Opc = X86::LOCK_SUB32mi8;
1549 else
1550 Opc = X86::LOCK_SUB32mi;
1551 } else
1552 Opc = X86::LOCK_SUB32mr;
1553 } else {
1554 if (isCN) {
1555 if (Predicate_i32immSExt8(Val.getNode()))
1556 Opc = X86::LOCK_ADD32mi8;
1557 else
1558 Opc = X86::LOCK_ADD32mi;
1559 } else
1560 Opc = X86::LOCK_ADD32mr;
1562 break;
1563 case MVT::i64:
1564 if (isInc)
1565 Opc = X86::LOCK_INC64m;
1566 else if (isDec)
1567 Opc = X86::LOCK_DEC64m;
1568 else if (isSub) {
1569 Opc = X86::LOCK_SUB64mr;
1570 if (isCN) {
1571 if (Predicate_i64immSExt8(Val.getNode()))
1572 Opc = X86::LOCK_SUB64mi8;
1573 else if (Predicate_i64immSExt32(Val.getNode()))
1574 Opc = X86::LOCK_SUB64mi32;
1576 } else {
1577 Opc = X86::LOCK_ADD64mr;
1578 if (isCN) {
1579 if (Predicate_i64immSExt8(Val.getNode()))
1580 Opc = X86::LOCK_ADD64mi8;
1581 else if (Predicate_i64immSExt32(Val.getNode()))
1582 Opc = X86::LOCK_ADD64mi32;
1585 break;
1588 DebugLoc dl = Node->getDebugLoc();
1589 SDValue Undef = SDValue(CurDAG->getTargetNode(TargetInstrInfo::IMPLICIT_DEF,
1590 dl, NVT), 0);
1591 SDValue MemOp = CurDAG->getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
1592 if (isInc || isDec) {
1593 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, MemOp, Chain };
1594 SDValue Ret = SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Other, Ops, 7), 0);
1595 SDValue RetVals[] = { Undef, Ret };
1596 return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1597 } else {
1598 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, MemOp, Chain };
1599 SDValue Ret = SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Other, Ops, 8), 0);
1600 SDValue RetVals[] = { Undef, Ret };
1601 return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1605 SDNode *X86DAGToDAGISel::Select(SDValue N) {
1606 SDNode *Node = N.getNode();
1607 EVT NVT = Node->getValueType(0);
1608 unsigned Opc, MOpc;
1609 unsigned Opcode = Node->getOpcode();
1610 DebugLoc dl = Node->getDebugLoc();
1612 #ifndef NDEBUG
1613 DEBUG({
1614 errs() << std::string(Indent, ' ') << "Selecting: ";
1615 Node->dump(CurDAG);
1616 errs() << '\n';
1618 Indent += 2;
1619 #endif
1621 if (Node->isMachineOpcode()) {
1622 #ifndef NDEBUG
1623 DEBUG({
1624 errs() << std::string(Indent-2, ' ') << "== ";
1625 Node->dump(CurDAG);
1626 errs() << '\n';
1628 Indent -= 2;
1629 #endif
1630 return NULL; // Already selected.
1633 switch (Opcode) {
1634 default: break;
1635 case X86ISD::GlobalBaseReg:
1636 return getGlobalBaseReg();
1638 case X86ISD::ATOMOR64_DAG:
1639 return SelectAtomic64(Node, X86::ATOMOR6432);
1640 case X86ISD::ATOMXOR64_DAG:
1641 return SelectAtomic64(Node, X86::ATOMXOR6432);
1642 case X86ISD::ATOMADD64_DAG:
1643 return SelectAtomic64(Node, X86::ATOMADD6432);
1644 case X86ISD::ATOMSUB64_DAG:
1645 return SelectAtomic64(Node, X86::ATOMSUB6432);
1646 case X86ISD::ATOMNAND64_DAG:
1647 return SelectAtomic64(Node, X86::ATOMNAND6432);
1648 case X86ISD::ATOMAND64_DAG:
1649 return SelectAtomic64(Node, X86::ATOMAND6432);
1650 case X86ISD::ATOMSWAP64_DAG:
1651 return SelectAtomic64(Node, X86::ATOMSWAP6432);
1653 case ISD::ATOMIC_LOAD_ADD: {
1654 SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1655 if (RetVal)
1656 return RetVal;
1657 break;
1660 case ISD::SMUL_LOHI:
1661 case ISD::UMUL_LOHI: {
1662 SDValue N0 = Node->getOperand(0);
1663 SDValue N1 = Node->getOperand(1);
1665 bool isSigned = Opcode == ISD::SMUL_LOHI;
1666 if (!isSigned) {
1667 switch (NVT.getSimpleVT().SimpleTy) {
1668 default: llvm_unreachable("Unsupported VT!");
1669 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
1670 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1671 case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1672 case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1674 } else {
1675 switch (NVT.getSimpleVT().SimpleTy) {
1676 default: llvm_unreachable("Unsupported VT!");
1677 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
1678 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1679 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1680 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1684 unsigned LoReg, HiReg;
1685 switch (NVT.getSimpleVT().SimpleTy) {
1686 default: llvm_unreachable("Unsupported VT!");
1687 case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break;
1688 case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break;
1689 case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1690 case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1693 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1694 bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1695 // Multiply is commmutative.
1696 if (!foldedLoad) {
1697 foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1698 if (foldedLoad)
1699 std::swap(N0, N1);
1702 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1703 N0, SDValue()).getValue(1);
1705 if (foldedLoad) {
1706 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1707 InFlag };
1708 SDNode *CNode =
1709 CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1710 array_lengthof(Ops));
1711 InFlag = SDValue(CNode, 1);
1712 // Update the chain.
1713 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1714 } else {
1715 InFlag =
1716 SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1719 // Copy the low half of the result, if it is needed.
1720 if (!N.getValue(0).use_empty()) {
1721 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1722 LoReg, NVT, InFlag);
1723 InFlag = Result.getValue(2);
1724 ReplaceUses(N.getValue(0), Result);
1725 #ifndef NDEBUG
1726 DEBUG({
1727 errs() << std::string(Indent-2, ' ') << "=> ";
1728 Result.getNode()->dump(CurDAG);
1729 errs() << '\n';
1731 #endif
1733 // Copy the high half of the result, if it is needed.
1734 if (!N.getValue(1).use_empty()) {
1735 SDValue Result;
1736 if (HiReg == X86::AH && Subtarget->is64Bit()) {
1737 // Prevent use of AH in a REX instruction by referencing AX instead.
1738 // Shift it down 8 bits.
1739 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1740 X86::AX, MVT::i16, InFlag);
1741 InFlag = Result.getValue(2);
1742 Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
1743 Result,
1744 CurDAG->getTargetConstant(8, MVT::i8)), 0);
1745 // Then truncate it down to i8.
1746 SDValue SRIdx = CurDAG->getTargetConstant(X86::SUBREG_8BIT, MVT::i32);
1747 Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
1748 MVT::i8, Result, SRIdx), 0);
1749 } else {
1750 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1751 HiReg, NVT, InFlag);
1752 InFlag = Result.getValue(2);
1754 ReplaceUses(N.getValue(1), Result);
1755 #ifndef NDEBUG
1756 DEBUG({
1757 errs() << std::string(Indent-2, ' ') << "=> ";
1758 Result.getNode()->dump(CurDAG);
1759 errs() << '\n';
1761 #endif
1764 #ifndef NDEBUG
1765 Indent -= 2;
1766 #endif
1768 return NULL;
1771 case ISD::SDIVREM:
1772 case ISD::UDIVREM: {
1773 SDValue N0 = Node->getOperand(0);
1774 SDValue N1 = Node->getOperand(1);
1776 bool isSigned = Opcode == ISD::SDIVREM;
1777 if (!isSigned) {
1778 switch (NVT.getSimpleVT().SimpleTy) {
1779 default: llvm_unreachable("Unsupported VT!");
1780 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
1781 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1782 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1783 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1785 } else {
1786 switch (NVT.getSimpleVT().SimpleTy) {
1787 default: llvm_unreachable("Unsupported VT!");
1788 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
1789 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1790 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1791 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1795 unsigned LoReg, HiReg;
1796 unsigned ClrOpcode, SExtOpcode;
1797 switch (NVT.getSimpleVT().SimpleTy) {
1798 default: llvm_unreachable("Unsupported VT!");
1799 case MVT::i8:
1800 LoReg = X86::AL; HiReg = X86::AH;
1801 ClrOpcode = 0;
1802 SExtOpcode = X86::CBW;
1803 break;
1804 case MVT::i16:
1805 LoReg = X86::AX; HiReg = X86::DX;
1806 ClrOpcode = X86::MOV16r0;
1807 SExtOpcode = X86::CWD;
1808 break;
1809 case MVT::i32:
1810 LoReg = X86::EAX; HiReg = X86::EDX;
1811 ClrOpcode = X86::MOV32r0;
1812 SExtOpcode = X86::CDQ;
1813 break;
1814 case MVT::i64:
1815 LoReg = X86::RAX; HiReg = X86::RDX;
1816 ClrOpcode = ~0U; // NOT USED.
1817 SExtOpcode = X86::CQO;
1818 break;
1821 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1822 bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1823 bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1825 SDValue InFlag;
1826 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1827 // Special case for div8, just use a move with zero extension to AX to
1828 // clear the upper 8 bits (AH).
1829 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1830 if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1831 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1832 Move =
1833 SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, dl, MVT::i16,
1834 MVT::Other, Ops,
1835 array_lengthof(Ops)), 0);
1836 Chain = Move.getValue(1);
1837 ReplaceUses(N0.getValue(1), Chain);
1838 } else {
1839 Move =
1840 SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1841 Chain = CurDAG->getEntryNode();
1843 Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1844 InFlag = Chain.getValue(1);
1845 } else {
1846 InFlag =
1847 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1848 LoReg, N0, SDValue()).getValue(1);
1849 if (isSigned && !signBitIsZero) {
1850 // Sign extend the low part into the high part.
1851 InFlag =
1852 SDValue(CurDAG->getTargetNode(SExtOpcode, dl, MVT::Flag, InFlag),0);
1853 } else {
1854 // Zero out the high part, effectively zero extending the input.
1855 SDValue ClrNode;
1857 if (NVT.getSimpleVT() == MVT::i64) {
1858 ClrNode = SDValue(CurDAG->getTargetNode(X86::MOV32r0, dl, MVT::i32),
1860 // We just did a 32-bit clear, insert it into a 64-bit register to
1861 // clear the whole 64-bit reg.
1862 SDValue Undef =
1863 SDValue(CurDAG->getTargetNode(TargetInstrInfo::IMPLICIT_DEF,
1864 dl, MVT::i64), 0);
1865 SDValue SubRegNo =
1866 CurDAG->getTargetConstant(X86::SUBREG_32BIT, MVT::i32);
1867 ClrNode =
1868 SDValue(CurDAG->getTargetNode(TargetInstrInfo::INSERT_SUBREG, dl,
1869 MVT::i64, Undef, ClrNode, SubRegNo),
1871 } else {
1872 ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, dl, NVT), 0);
1875 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, HiReg,
1876 ClrNode, InFlag).getValue(1);
1880 if (foldedLoad) {
1881 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1882 InFlag };
1883 SDNode *CNode =
1884 CurDAG->getTargetNode(MOpc, dl, MVT::Other, MVT::Flag, Ops,
1885 array_lengthof(Ops));
1886 InFlag = SDValue(CNode, 1);
1887 // Update the chain.
1888 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1889 } else {
1890 InFlag =
1891 SDValue(CurDAG->getTargetNode(Opc, dl, MVT::Flag, N1, InFlag), 0);
1894 // Copy the division (low) result, if it is needed.
1895 if (!N.getValue(0).use_empty()) {
1896 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1897 LoReg, NVT, InFlag);
1898 InFlag = Result.getValue(2);
1899 ReplaceUses(N.getValue(0), Result);
1900 #ifndef NDEBUG
1901 DEBUG({
1902 errs() << std::string(Indent-2, ' ') << "=> ";
1903 Result.getNode()->dump(CurDAG);
1904 errs() << '\n';
1906 #endif
1908 // Copy the remainder (high) result, if it is needed.
1909 if (!N.getValue(1).use_empty()) {
1910 SDValue Result;
1911 if (HiReg == X86::AH && Subtarget->is64Bit()) {
1912 // Prevent use of AH in a REX instruction by referencing AX instead.
1913 // Shift it down 8 bits.
1914 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1915 X86::AX, MVT::i16, InFlag);
1916 InFlag = Result.getValue(2);
1917 Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, dl, MVT::i16,
1918 Result,
1919 CurDAG->getTargetConstant(8, MVT::i8)),
1921 // Then truncate it down to i8.
1922 SDValue SRIdx = CurDAG->getTargetConstant(X86::SUBREG_8BIT, MVT::i32);
1923 Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG, dl,
1924 MVT::i8, Result, SRIdx), 0);
1925 } else {
1926 Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1927 HiReg, NVT, InFlag);
1928 InFlag = Result.getValue(2);
1930 ReplaceUses(N.getValue(1), Result);
1931 #ifndef NDEBUG
1932 DEBUG({
1933 errs() << std::string(Indent-2, ' ') << "=> ";
1934 Result.getNode()->dump(CurDAG);
1935 errs() << '\n';
1937 #endif
1940 #ifndef NDEBUG
1941 Indent -= 2;
1942 #endif
1944 return NULL;
1947 case ISD::DECLARE: {
1948 // Handle DECLARE nodes here because the second operand may have been
1949 // wrapped in X86ISD::Wrapper.
1950 SDValue Chain = Node->getOperand(0);
1951 SDValue N1 = Node->getOperand(1);
1952 SDValue N2 = Node->getOperand(2);
1953 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N1);
1955 // FIXME: We need to handle this for VLAs.
1956 if (!FINode) {
1957 ReplaceUses(N.getValue(0), Chain);
1958 return NULL;
1961 if (N2.getOpcode() == ISD::ADD &&
1962 N2.getOperand(0).getOpcode() == X86ISD::GlobalBaseReg)
1963 N2 = N2.getOperand(1);
1965 // If N2 is not Wrapper(decriptor) then the llvm.declare is mangled
1966 // somehow, just ignore it.
1967 if (N2.getOpcode() != X86ISD::Wrapper &&
1968 N2.getOpcode() != X86ISD::WrapperRIP) {
1969 ReplaceUses(N.getValue(0), Chain);
1970 return NULL;
1972 GlobalAddressSDNode *GVNode =
1973 dyn_cast<GlobalAddressSDNode>(N2.getOperand(0));
1974 if (GVNode == 0) {
1975 ReplaceUses(N.getValue(0), Chain);
1976 return NULL;
1978 SDValue Tmp1 = CurDAG->getTargetFrameIndex(FINode->getIndex(),
1979 TLI.getPointerTy());
1980 SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GVNode->getGlobal(),
1981 TLI.getPointerTy());
1982 SDValue Ops[] = { Tmp1, Tmp2, Chain };
1983 return CurDAG->getTargetNode(TargetInstrInfo::DECLARE, dl,
1984 MVT::Other, Ops,
1985 array_lengthof(Ops));
1989 SDNode *ResNode = SelectCode(N);
1991 #ifndef NDEBUG
1992 DEBUG({
1993 errs() << std::string(Indent-2, ' ') << "=> ";
1994 if (ResNode == NULL || ResNode == N.getNode())
1995 N.getNode()->dump(CurDAG);
1996 else
1997 ResNode->dump(CurDAG);
1998 errs() << '\n';
2000 Indent -= 2;
2001 #endif
2003 return ResNode;
2006 bool X86DAGToDAGISel::
2007 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2008 std::vector<SDValue> &OutOps) {
2009 SDValue Op0, Op1, Op2, Op3, Op4;
2010 switch (ConstraintCode) {
2011 case 'o': // offsetable ??
2012 case 'v': // not offsetable ??
2013 default: return true;
2014 case 'm': // memory
2015 if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3, Op4))
2016 return true;
2017 break;
2020 OutOps.push_back(Op0);
2021 OutOps.push_back(Op1);
2022 OutOps.push_back(Op2);
2023 OutOps.push_back(Op3);
2024 OutOps.push_back(Op4);
2025 return false;
2028 /// createX86ISelDag - This pass converts a legalized DAG into a
2029 /// X86-specific DAG, ready for instruction scheduling.
2031 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2032 llvm::CodeGenOpt::Level OptLevel) {
2033 return new X86DAGToDAGISel(TM, OptLevel);