Fix part 1 of pr4682. PICADD is a 16-bit instruction even in thumb2 mode.
[llvm/avr.git] / lib / Target / ARM / ARMCodeEmitter.cpp
blob7b497a76904f7edd3d4c82510ef0fe9bdbba3482
1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the pass that transforms the ARM machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
16 #include "ARM.h"
17 #include "ARMAddressingModes.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMInstrInfo.h"
20 #include "ARMRelocations.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/PassManager.h"
27 #include "llvm/CodeGen/MachineCodeEmitter.h"
28 #include "llvm/CodeGen/JITCodeEmitter.h"
29 #include "llvm/CodeGen/ObjectCodeEmitter.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/raw_ostream.h"
40 #ifndef NDEBUG
41 #include <iomanip>
42 #endif
43 using namespace llvm;
45 STATISTIC(NumEmitted, "Number of machine instructions emitted");
47 namespace {
49 class ARMCodeEmitter {
50 public:
51 /// getBinaryCodeForInstr - This function, generated by the
52 /// CodeEmitterGenerator using TableGen, produces the binary encoding for
53 /// machine instructions.
54 unsigned getBinaryCodeForInstr(const MachineInstr &MI);
57 template<class CodeEmitter>
58 class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass,
59 public ARMCodeEmitter {
60 ARMJITInfo *JTI;
61 const ARMInstrInfo *II;
62 const TargetData *TD;
63 TargetMachine &TM;
64 CodeEmitter &MCE;
65 const std::vector<MachineConstantPoolEntry> *MCPEs;
66 const std::vector<MachineJumpTableEntry> *MJTEs;
67 bool IsPIC;
69 public:
70 static char ID;
71 explicit Emitter(TargetMachine &tm, CodeEmitter &mce)
72 : MachineFunctionPass(&ID), JTI(0), II(0), TD(0), TM(tm),
73 MCE(mce), MCPEs(0), MJTEs(0),
74 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
75 Emitter(TargetMachine &tm, CodeEmitter &mce,
76 const ARMInstrInfo &ii, const TargetData &td)
77 : MachineFunctionPass(&ID), JTI(0), II(&ii), TD(&td), TM(tm),
78 MCE(mce), MCPEs(0), MJTEs(0),
79 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
81 bool runOnMachineFunction(MachineFunction &MF);
83 virtual const char *getPassName() const {
84 return "ARM Machine Code Emitter";
87 void emitInstruction(const MachineInstr &MI);
89 private:
91 void emitWordLE(unsigned Binary);
93 void emitDWordLE(uint64_t Binary);
95 void emitConstPoolInstruction(const MachineInstr &MI);
97 void emitMOVi2piecesInstruction(const MachineInstr &MI);
99 void emitLEApcrelJTInstruction(const MachineInstr &MI);
101 void emitPseudoMoveInstruction(const MachineInstr &MI);
103 void addPCLabel(unsigned LabelID);
105 void emitPseudoInstruction(const MachineInstr &MI);
107 unsigned getMachineSoRegOpValue(const MachineInstr &MI,
108 const TargetInstrDesc &TID,
109 const MachineOperand &MO,
110 unsigned OpIdx);
112 unsigned getMachineSoImmOpValue(unsigned SoImm);
114 unsigned getAddrModeSBit(const MachineInstr &MI,
115 const TargetInstrDesc &TID) const;
117 void emitDataProcessingInstruction(const MachineInstr &MI,
118 unsigned ImplicitRd = 0,
119 unsigned ImplicitRn = 0);
121 void emitLoadStoreInstruction(const MachineInstr &MI,
122 unsigned ImplicitRd = 0,
123 unsigned ImplicitRn = 0);
125 void emitMiscLoadStoreInstruction(const MachineInstr &MI,
126 unsigned ImplicitRn = 0);
128 void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
130 void emitMulFrmInstruction(const MachineInstr &MI);
132 void emitExtendInstruction(const MachineInstr &MI);
134 void emitMiscArithInstruction(const MachineInstr &MI);
136 void emitBranchInstruction(const MachineInstr &MI);
138 void emitInlineJumpTable(unsigned JTIndex);
140 void emitMiscBranchInstruction(const MachineInstr &MI);
142 void emitVFPArithInstruction(const MachineInstr &MI);
144 void emitVFPConversionInstruction(const MachineInstr &MI);
146 void emitVFPLoadStoreInstruction(const MachineInstr &MI);
148 void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
150 void emitMiscInstruction(const MachineInstr &MI);
152 /// getMachineOpValue - Return binary encoding of operand. If the machine
153 /// operand requires relocation, record the relocation and return zero.
154 unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO);
155 unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
156 return getMachineOpValue(MI, MI.getOperand(OpIdx));
159 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
161 unsigned getShiftOp(unsigned Imm) const ;
163 /// Routines that handle operands which add machine relocations which are
164 /// fixed up by the relocation stage.
165 void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
166 bool NeedStub, intptr_t ACPV = 0);
167 void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
168 void emitConstPoolAddress(unsigned CPI, unsigned Reloc);
169 void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc);
170 void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
171 intptr_t JTBase = 0);
173 template <class CodeEmitter>
174 char Emitter<CodeEmitter>::ID = 0;
177 /// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
178 /// to the specified MCE object.
180 FunctionPass *llvm::createARMCodeEmitterPass(ARMBaseTargetMachine &TM,
181 MachineCodeEmitter &MCE) {
182 return new Emitter<MachineCodeEmitter>(TM, MCE);
184 FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
185 JITCodeEmitter &JCE) {
186 return new Emitter<JITCodeEmitter>(TM, JCE);
188 FunctionPass *llvm::createARMObjectCodeEmitterPass(ARMBaseTargetMachine &TM,
189 ObjectCodeEmitter &OCE) {
190 return new Emitter<ObjectCodeEmitter>(TM, OCE);
193 template<class CodeEmitter>
194 bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
195 assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
196 MF.getTarget().getRelocationModel() != Reloc::Static) &&
197 "JIT relocation model must be set to static or default!");
198 II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
199 TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();
200 JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo();
201 MCPEs = &MF.getConstantPool()->getConstants();
202 MJTEs = &MF.getJumpTableInfo()->getJumpTables();
203 IsPIC = TM.getRelocationModel() == Reloc::PIC_;
204 JTI->Initialize(MF, IsPIC);
206 do {
207 DEBUG(errs() << "JITTing function '"
208 << MF.getFunction()->getName() << "'\n");
209 MCE.startFunction(MF);
210 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
211 MBB != E; ++MBB) {
212 MCE.StartMachineBasicBlock(MBB);
213 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
214 I != E; ++I)
215 emitInstruction(*I);
217 } while (MCE.finishFunction(MF));
219 return false;
222 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
224 template<class CodeEmitter>
225 unsigned Emitter<CodeEmitter>::getShiftOp(unsigned Imm) const {
226 switch (ARM_AM::getAM2ShiftOpc(Imm)) {
227 default: llvm_unreachable("Unknown shift opc!");
228 case ARM_AM::asr: return 2;
229 case ARM_AM::lsl: return 0;
230 case ARM_AM::lsr: return 1;
231 case ARM_AM::ror:
232 case ARM_AM::rrx: return 3;
234 return 0;
237 /// getMachineOpValue - Return binary encoding of operand. If the machine
238 /// operand requires relocation, record the relocation and return zero.
239 template<class CodeEmitter>
240 unsigned Emitter<CodeEmitter>::getMachineOpValue(const MachineInstr &MI,
241 const MachineOperand &MO) {
242 if (MO.isReg())
243 return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
244 else if (MO.isImm())
245 return static_cast<unsigned>(MO.getImm());
246 else if (MO.isGlobal())
247 emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true);
248 else if (MO.isSymbol())
249 emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
250 else if (MO.isCPI()) {
251 const TargetInstrDesc &TID = MI.getDesc();
252 // For VFP load, the immediate offset is multiplied by 4.
253 unsigned Reloc = ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
254 ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
255 emitConstPoolAddress(MO.getIndex(), Reloc);
256 } else if (MO.isJTI())
257 emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
258 else if (MO.isMBB())
259 emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
260 else {
261 #ifndef NDEBUG
262 cerr << MO;
263 #endif
264 llvm_unreachable(0);
266 return 0;
269 /// emitGlobalAddress - Emit the specified address to the code stream.
271 template<class CodeEmitter>
272 void Emitter<CodeEmitter>::emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
273 bool NeedStub, intptr_t ACPV) {
274 MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
275 GV, ACPV, NeedStub));
278 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
279 /// be emitted to the current location in the function, and allow it to be PC
280 /// relative.
281 template<class CodeEmitter>
282 void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
283 unsigned Reloc) {
284 MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
285 Reloc, ES));
288 /// emitConstPoolAddress - Arrange for the address of an constant pool
289 /// to be emitted to the current location in the function, and allow it to be PC
290 /// relative.
291 template<class CodeEmitter>
292 void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI,
293 unsigned Reloc) {
294 // Tell JIT emitter we'll resolve the address.
295 MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
296 Reloc, CPI, 0, true));
299 /// emitJumpTableAddress - Arrange for the address of a jump table to
300 /// be emitted to the current location in the function, and allow it to be PC
301 /// relative.
302 template<class CodeEmitter>
303 void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTIndex,
304 unsigned Reloc) {
305 MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
306 Reloc, JTIndex, 0, true));
309 /// emitMachineBasicBlock - Emit the specified address basic block.
310 template<class CodeEmitter>
311 void Emitter<CodeEmitter>::emitMachineBasicBlock(MachineBasicBlock *BB,
312 unsigned Reloc, intptr_t JTBase) {
313 MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
314 Reloc, BB, JTBase));
317 template<class CodeEmitter>
318 void Emitter<CodeEmitter>::emitWordLE(unsigned Binary) {
319 #ifndef NDEBUG
320 DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
321 << Binary << std::dec << "\n";
322 #endif
323 MCE.emitWordLE(Binary);
326 template<class CodeEmitter>
327 void Emitter<CodeEmitter>::emitDWordLE(uint64_t Binary) {
328 #ifndef NDEBUG
329 DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
330 << (unsigned)Binary << std::dec << "\n";
331 DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0')
332 << (unsigned)(Binary >> 32) << std::dec << "\n";
333 #endif
334 MCE.emitDWordLE(Binary);
337 template<class CodeEmitter>
338 void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI) {
339 DOUT << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI;
341 MCE.processDebugLoc(MI.getDebugLoc());
343 NumEmitted++; // Keep track of the # of mi's emitted
344 switch (MI.getDesc().TSFlags & ARMII::FormMask) {
345 default: {
346 llvm_unreachable("Unhandled instruction encoding format!");
347 break;
349 case ARMII::Pseudo:
350 emitPseudoInstruction(MI);
351 break;
352 case ARMII::DPFrm:
353 case ARMII::DPSoRegFrm:
354 emitDataProcessingInstruction(MI);
355 break;
356 case ARMII::LdFrm:
357 case ARMII::StFrm:
358 emitLoadStoreInstruction(MI);
359 break;
360 case ARMII::LdMiscFrm:
361 case ARMII::StMiscFrm:
362 emitMiscLoadStoreInstruction(MI);
363 break;
364 case ARMII::LdStMulFrm:
365 emitLoadStoreMultipleInstruction(MI);
366 break;
367 case ARMII::MulFrm:
368 emitMulFrmInstruction(MI);
369 break;
370 case ARMII::ExtFrm:
371 emitExtendInstruction(MI);
372 break;
373 case ARMII::ArithMiscFrm:
374 emitMiscArithInstruction(MI);
375 break;
376 case ARMII::BrFrm:
377 emitBranchInstruction(MI);
378 break;
379 case ARMII::BrMiscFrm:
380 emitMiscBranchInstruction(MI);
381 break;
382 // VFP instructions.
383 case ARMII::VFPUnaryFrm:
384 case ARMII::VFPBinaryFrm:
385 emitVFPArithInstruction(MI);
386 break;
387 case ARMII::VFPConv1Frm:
388 case ARMII::VFPConv2Frm:
389 case ARMII::VFPConv3Frm:
390 case ARMII::VFPConv4Frm:
391 case ARMII::VFPConv5Frm:
392 emitVFPConversionInstruction(MI);
393 break;
394 case ARMII::VFPLdStFrm:
395 emitVFPLoadStoreInstruction(MI);
396 break;
397 case ARMII::VFPLdStMulFrm:
398 emitVFPLoadStoreMultipleInstruction(MI);
399 break;
400 case ARMII::VFPMiscFrm:
401 emitMiscInstruction(MI);
402 break;
406 template<class CodeEmitter>
407 void Emitter<CodeEmitter>::emitConstPoolInstruction(const MachineInstr &MI) {
408 unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index.
409 unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
410 const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
412 // Remember the CONSTPOOL_ENTRY address for later relocation.
413 JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
415 // Emit constpool island entry. In most cases, the actual values will be
416 // resolved and relocated after code emission.
417 if (MCPE.isMachineConstantPoolEntry()) {
418 ARMConstantPoolValue *ACPV =
419 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
421 DOUT << " ** ARM constant pool #" << CPI << " @ "
422 << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n';
424 GlobalValue *GV = ACPV->getGV();
425 if (GV) {
426 assert(!ACPV->isStub() && "Don't know how to deal this yet!");
427 if (ACPV->isNonLazyPointer())
428 MCE.addRelocation(MachineRelocation::getIndirectSymbol(
429 MCE.getCurrentPCOffset(), ARM::reloc_arm_machine_cp_entry, GV,
430 (intptr_t)ACPV, false));
431 else
432 emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
433 ACPV->isStub() || isa<Function>(GV), (intptr_t)ACPV);
434 } else {
435 assert(!ACPV->isNonLazyPointer() && "Don't know how to deal this yet!");
436 emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
438 emitWordLE(0);
439 } else {
440 Constant *CV = MCPE.Val.ConstVal;
442 DEBUG({
443 errs() << " ** Constant pool #" << CPI << " @ "
444 << (void*)MCE.getCurrentPCValue() << " ";
445 if (const Function *F = dyn_cast<Function>(CV))
446 errs() << F->getName();
447 else
448 errs() << *CV;
449 errs() << '\n';
452 if (GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
453 emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV));
454 emitWordLE(0);
455 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
456 uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
457 emitWordLE(Val);
458 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
459 if (CFP->getType() == Type::FloatTy)
460 emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
461 else if (CFP->getType() == Type::DoubleTy)
462 emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
463 else {
464 llvm_unreachable("Unable to handle this constantpool entry!");
466 } else {
467 llvm_unreachable("Unable to handle this constantpool entry!");
472 template<class CodeEmitter>
473 void Emitter<CodeEmitter>::emitMOVi2piecesInstruction(const MachineInstr &MI) {
474 const MachineOperand &MO0 = MI.getOperand(0);
475 const MachineOperand &MO1 = MI.getOperand(1);
476 assert(MO1.isImm() && ARM_AM::getSOImmVal(MO1.isImm()) != -1 &&
477 "Not a valid so_imm value!");
478 unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
479 unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
481 // Emit the 'mov' instruction.
482 unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101
484 // Set the conditional execution predicate.
485 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
487 // Encode Rd.
488 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
490 // Encode so_imm.
491 // Set bit I(25) to identify this is the immediate form of <shifter_op>
492 Binary |= 1 << ARMII::I_BitShift;
493 Binary |= getMachineSoImmOpValue(V1);
494 emitWordLE(Binary);
496 // Now the 'orr' instruction.
497 Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100
499 // Set the conditional execution predicate.
500 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
502 // Encode Rd.
503 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
505 // Encode Rn.
506 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
508 // Encode so_imm.
509 // Set bit I(25) to identify this is the immediate form of <shifter_op>
510 Binary |= 1 << ARMII::I_BitShift;
511 Binary |= getMachineSoImmOpValue(V2);
512 emitWordLE(Binary);
515 template<class CodeEmitter>
516 void Emitter<CodeEmitter>::emitLEApcrelJTInstruction(const MachineInstr &MI) {
517 // It's basically add r, pc, (LJTI - $+8)
519 const TargetInstrDesc &TID = MI.getDesc();
521 // Emit the 'add' instruction.
522 unsigned Binary = 0x4 << 21; // add: Insts{24-31} = 0b0100
524 // Set the conditional execution predicate
525 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
527 // Encode S bit if MI modifies CPSR.
528 Binary |= getAddrModeSBit(MI, TID);
530 // Encode Rd.
531 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
533 // Encode Rn which is PC.
534 Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
536 // Encode the displacement.
537 Binary |= 1 << ARMII::I_BitShift;
538 emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
540 emitWordLE(Binary);
543 template<class CodeEmitter>
544 void Emitter<CodeEmitter>::emitPseudoMoveInstruction(const MachineInstr &MI) {
545 unsigned Opcode = MI.getDesc().Opcode;
547 // Part of binary is determined by TableGn.
548 unsigned Binary = getBinaryCodeForInstr(MI);
550 // Set the conditional execution predicate
551 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
553 // Encode S bit if MI modifies CPSR.
554 if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
555 Binary |= 1 << ARMII::S_BitShift;
557 // Encode register def if there is one.
558 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
560 // Encode the shift operation.
561 switch (Opcode) {
562 default: break;
563 case ARM::MOVrx:
564 // rrx
565 Binary |= 0x6 << 4;
566 break;
567 case ARM::MOVsrl_flag:
568 // lsr #1
569 Binary |= (0x2 << 4) | (1 << 7);
570 break;
571 case ARM::MOVsra_flag:
572 // asr #1
573 Binary |= (0x4 << 4) | (1 << 7);
574 break;
577 // Encode register Rm.
578 Binary |= getMachineOpValue(MI, 1);
580 emitWordLE(Binary);
583 template<class CodeEmitter>
584 void Emitter<CodeEmitter>::addPCLabel(unsigned LabelID) {
585 DOUT << " ** LPC" << LabelID << " @ "
586 << (void*)MCE.getCurrentPCValue() << '\n';
587 JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
590 template<class CodeEmitter>
591 void Emitter<CodeEmitter>::emitPseudoInstruction(const MachineInstr &MI) {
592 unsigned Opcode = MI.getDesc().Opcode;
593 switch (Opcode) {
594 default:
595 llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");//FIXME:
596 case TargetInstrInfo::INLINEASM: {
597 // We allow inline assembler nodes with empty bodies - they can
598 // implicitly define registers, which is ok for JIT.
599 if (MI.getOperand(0).getSymbolName()[0]) {
600 llvm_report_error("JIT does not support inline asm!");
602 break;
604 case TargetInstrInfo::DBG_LABEL:
605 case TargetInstrInfo::EH_LABEL:
606 MCE.emitLabel(MI.getOperand(0).getImm());
607 break;
608 case TargetInstrInfo::IMPLICIT_DEF:
609 case TargetInstrInfo::DECLARE:
610 case ARM::DWARF_LOC:
611 // Do nothing.
612 break;
613 case ARM::CONSTPOOL_ENTRY:
614 emitConstPoolInstruction(MI);
615 break;
616 case ARM::PICADD: {
617 // Remember of the address of the PC label for relocation later.
618 addPCLabel(MI.getOperand(2).getImm());
619 // PICADD is just an add instruction that implicitly read pc.
620 emitDataProcessingInstruction(MI, 0, ARM::PC);
621 break;
623 case ARM::PICLDR:
624 case ARM::PICLDRB:
625 case ARM::PICSTR:
626 case ARM::PICSTRB: {
627 // Remember of the address of the PC label for relocation later.
628 addPCLabel(MI.getOperand(2).getImm());
629 // These are just load / store instructions that implicitly read pc.
630 emitLoadStoreInstruction(MI, 0, ARM::PC);
631 break;
633 case ARM::PICLDRH:
634 case ARM::PICLDRSH:
635 case ARM::PICLDRSB:
636 case ARM::PICSTRH: {
637 // Remember of the address of the PC label for relocation later.
638 addPCLabel(MI.getOperand(2).getImm());
639 // These are just load / store instructions that implicitly read pc.
640 emitMiscLoadStoreInstruction(MI, ARM::PC);
641 break;
643 case ARM::MOVi2pieces:
644 // Two instructions to materialize a constant.
645 emitMOVi2piecesInstruction(MI);
646 break;
647 case ARM::LEApcrelJT:
648 // Materialize jumptable address.
649 emitLEApcrelJTInstruction(MI);
650 break;
651 case ARM::MOVrx:
652 case ARM::MOVsrl_flag:
653 case ARM::MOVsra_flag:
654 emitPseudoMoveInstruction(MI);
655 break;
659 template<class CodeEmitter>
660 unsigned Emitter<CodeEmitter>::getMachineSoRegOpValue(
661 const MachineInstr &MI,
662 const TargetInstrDesc &TID,
663 const MachineOperand &MO,
664 unsigned OpIdx) {
665 unsigned Binary = getMachineOpValue(MI, MO);
667 const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
668 const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
669 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
671 // Encode the shift opcode.
672 unsigned SBits = 0;
673 unsigned Rs = MO1.getReg();
674 if (Rs) {
675 // Set shift operand (bit[7:4]).
676 // LSL - 0001
677 // LSR - 0011
678 // ASR - 0101
679 // ROR - 0111
680 // RRX - 0110 and bit[11:8] clear.
681 switch (SOpc) {
682 default: llvm_unreachable("Unknown shift opc!");
683 case ARM_AM::lsl: SBits = 0x1; break;
684 case ARM_AM::lsr: SBits = 0x3; break;
685 case ARM_AM::asr: SBits = 0x5; break;
686 case ARM_AM::ror: SBits = 0x7; break;
687 case ARM_AM::rrx: SBits = 0x6; break;
689 } else {
690 // Set shift operand (bit[6:4]).
691 // LSL - 000
692 // LSR - 010
693 // ASR - 100
694 // ROR - 110
695 switch (SOpc) {
696 default: llvm_unreachable("Unknown shift opc!");
697 case ARM_AM::lsl: SBits = 0x0; break;
698 case ARM_AM::lsr: SBits = 0x2; break;
699 case ARM_AM::asr: SBits = 0x4; break;
700 case ARM_AM::ror: SBits = 0x6; break;
703 Binary |= SBits << 4;
704 if (SOpc == ARM_AM::rrx)
705 return Binary;
707 // Encode the shift operation Rs or shift_imm (except rrx).
708 if (Rs) {
709 // Encode Rs bit[11:8].
710 assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
711 return Binary |
712 (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
715 // Encode shift_imm bit[11:7].
716 return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
719 template<class CodeEmitter>
720 unsigned Emitter<CodeEmitter>::getMachineSoImmOpValue(unsigned SoImm) {
721 int SoImmVal = ARM_AM::getSOImmVal(SoImm);
722 assert(SoImmVal != -1 && "Not a valid so_imm value!");
724 // Encode rotate_imm.
725 unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
726 << ARMII::SoRotImmShift;
728 // Encode immed_8.
729 Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
730 return Binary;
733 template<class CodeEmitter>
734 unsigned Emitter<CodeEmitter>::getAddrModeSBit(const MachineInstr &MI,
735 const TargetInstrDesc &TID) const {
736 for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
737 const MachineOperand &MO = MI.getOperand(i-1);
738 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
739 return 1 << ARMII::S_BitShift;
741 return 0;
744 template<class CodeEmitter>
745 void Emitter<CodeEmitter>::emitDataProcessingInstruction(
746 const MachineInstr &MI,
747 unsigned ImplicitRd,
748 unsigned ImplicitRn) {
749 const TargetInstrDesc &TID = MI.getDesc();
751 if (TID.Opcode == ARM::BFC) {
752 llvm_report_error("ARMv6t2 JIT is not yet supported.");
755 // Part of binary is determined by TableGn.
756 unsigned Binary = getBinaryCodeForInstr(MI);
758 // Set the conditional execution predicate
759 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
761 // Encode S bit if MI modifies CPSR.
762 Binary |= getAddrModeSBit(MI, TID);
764 // Encode register def if there is one.
765 unsigned NumDefs = TID.getNumDefs();
766 unsigned OpIdx = 0;
767 if (NumDefs)
768 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
769 else if (ImplicitRd)
770 // Special handling for implicit use (e.g. PC).
771 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
772 << ARMII::RegRdShift);
774 // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
775 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
776 ++OpIdx;
778 // Encode first non-shifter register operand if there is one.
779 bool isUnary = TID.TSFlags & ARMII::UnaryDP;
780 if (!isUnary) {
781 if (ImplicitRn)
782 // Special handling for implicit use (e.g. PC).
783 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
784 << ARMII::RegRnShift);
785 else {
786 Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
787 ++OpIdx;
791 // Encode shifter operand.
792 const MachineOperand &MO = MI.getOperand(OpIdx);
793 if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
794 // Encode SoReg.
795 emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
796 return;
799 if (MO.isReg()) {
800 // Encode register Rm.
801 emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg()));
802 return;
805 // Encode so_imm.
806 Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
808 emitWordLE(Binary);
811 template<class CodeEmitter>
812 void Emitter<CodeEmitter>::emitLoadStoreInstruction(
813 const MachineInstr &MI,
814 unsigned ImplicitRd,
815 unsigned ImplicitRn) {
816 const TargetInstrDesc &TID = MI.getDesc();
817 unsigned Form = TID.TSFlags & ARMII::FormMask;
818 bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
820 // Part of binary is determined by TableGn.
821 unsigned Binary = getBinaryCodeForInstr(MI);
823 // Set the conditional execution predicate
824 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
826 unsigned OpIdx = 0;
828 // Operand 0 of a pre- and post-indexed store is the address base
829 // writeback. Skip it.
830 bool Skipped = false;
831 if (IsPrePost && Form == ARMII::StFrm) {
832 ++OpIdx;
833 Skipped = true;
836 // Set first operand
837 if (ImplicitRd)
838 // Special handling for implicit use (e.g. PC).
839 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
840 << ARMII::RegRdShift);
841 else
842 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
844 // Set second operand
845 if (ImplicitRn)
846 // Special handling for implicit use (e.g. PC).
847 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
848 << ARMII::RegRnShift);
849 else
850 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
852 // If this is a two-address operand, skip it. e.g. LDR_PRE.
853 if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
854 ++OpIdx;
856 const MachineOperand &MO2 = MI.getOperand(OpIdx);
857 unsigned AM2Opc = (ImplicitRn == ARM::PC)
858 ? 0 : MI.getOperand(OpIdx+1).getImm();
860 // Set bit U(23) according to sign of immed value (positive or negative).
861 Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
862 ARMII::U_BitShift);
863 if (!MO2.getReg()) { // is immediate
864 if (ARM_AM::getAM2Offset(AM2Opc))
865 // Set the value of offset_12 field
866 Binary |= ARM_AM::getAM2Offset(AM2Opc);
867 emitWordLE(Binary);
868 return;
871 // Set bit I(25), because this is not in immediate enconding.
872 Binary |= 1 << ARMII::I_BitShift;
873 assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
874 // Set bit[3:0] to the corresponding Rm register
875 Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
877 // If this instr is in scaled register offset/index instruction, set
878 // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
879 if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
880 Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift
881 Binary |= ShImm << ARMII::ShiftShift; // shift_immed
884 emitWordLE(Binary);
887 template<class CodeEmitter>
888 void Emitter<CodeEmitter>::emitMiscLoadStoreInstruction(const MachineInstr &MI,
889 unsigned ImplicitRn) {
890 const TargetInstrDesc &TID = MI.getDesc();
891 unsigned Form = TID.TSFlags & ARMII::FormMask;
892 bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
894 // Part of binary is determined by TableGn.
895 unsigned Binary = getBinaryCodeForInstr(MI);
897 // Set the conditional execution predicate
898 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
900 unsigned OpIdx = 0;
902 // Operand 0 of a pre- and post-indexed store is the address base
903 // writeback. Skip it.
904 bool Skipped = false;
905 if (IsPrePost && Form == ARMII::StMiscFrm) {
906 ++OpIdx;
907 Skipped = true;
910 // Set first operand
911 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
913 // Skip LDRD and STRD's second operand.
914 if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD)
915 ++OpIdx;
917 // Set second operand
918 if (ImplicitRn)
919 // Special handling for implicit use (e.g. PC).
920 Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
921 << ARMII::RegRnShift);
922 else
923 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
925 // If this is a two-address operand, skip it. e.g. LDRH_POST.
926 if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
927 ++OpIdx;
929 const MachineOperand &MO2 = MI.getOperand(OpIdx);
930 unsigned AM3Opc = (ImplicitRn == ARM::PC)
931 ? 0 : MI.getOperand(OpIdx+1).getImm();
933 // Set bit U(23) according to sign of immed value (positive or negative)
934 Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
935 ARMII::U_BitShift);
937 // If this instr is in register offset/index encoding, set bit[3:0]
938 // to the corresponding Rm register.
939 if (MO2.getReg()) {
940 Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
941 emitWordLE(Binary);
942 return;
945 // This instr is in immediate offset/index encoding, set bit 22 to 1.
946 Binary |= 1 << ARMII::AM3_I_BitShift;
947 if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
948 // Set operands
949 Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH
950 Binary |= (ImmOffs & 0xF); // immedL
953 emitWordLE(Binary);
956 static unsigned getAddrModeUPBits(unsigned Mode) {
957 unsigned Binary = 0;
959 // Set addressing mode by modifying bits U(23) and P(24)
960 // IA - Increment after - bit U = 1 and bit P = 0
961 // IB - Increment before - bit U = 1 and bit P = 1
962 // DA - Decrement after - bit U = 0 and bit P = 0
963 // DB - Decrement before - bit U = 0 and bit P = 1
964 switch (Mode) {
965 default: llvm_unreachable("Unknown addressing sub-mode!");
966 case ARM_AM::da: break;
967 case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
968 case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
969 case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
972 return Binary;
975 template<class CodeEmitter>
976 void Emitter<CodeEmitter>::emitLoadStoreMultipleInstruction(
977 const MachineInstr &MI) {
978 // Part of binary is determined by TableGn.
979 unsigned Binary = getBinaryCodeForInstr(MI);
981 // Set the conditional execution predicate
982 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
984 // Set base address operand
985 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
987 // Set addressing mode by modifying bits U(23) and P(24)
988 const MachineOperand &MO = MI.getOperand(1);
989 Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
991 // Set bit W(21)
992 if (ARM_AM::getAM4WBFlag(MO.getImm()))
993 Binary |= 0x1 << ARMII::W_BitShift;
995 // Set registers
996 for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) {
997 const MachineOperand &MO = MI.getOperand(i);
998 if (!MO.isReg() || MO.isImplicit())
999 break;
1000 unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
1001 assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1002 RegNum < 16);
1003 Binary |= 0x1 << RegNum;
1006 emitWordLE(Binary);
1009 template<class CodeEmitter>
1010 void Emitter<CodeEmitter>::emitMulFrmInstruction(const MachineInstr &MI) {
1011 const TargetInstrDesc &TID = MI.getDesc();
1013 // Part of binary is determined by TableGn.
1014 unsigned Binary = getBinaryCodeForInstr(MI);
1016 // Set the conditional execution predicate
1017 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1019 // Encode S bit if MI modifies CPSR.
1020 Binary |= getAddrModeSBit(MI, TID);
1022 // 32x32->64bit operations have two destination registers. The number
1023 // of register definitions will tell us if that's what we're dealing with.
1024 unsigned OpIdx = 0;
1025 if (TID.getNumDefs() == 2)
1026 Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1028 // Encode Rd
1029 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1031 // Encode Rm
1032 Binary |= getMachineOpValue(MI, OpIdx++);
1034 // Encode Rs
1035 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1037 // Many multiple instructions (e.g. MLA) have three src operands. Encode
1038 // it as Rn (for multiply, that's in the same offset as RdLo.
1039 if (TID.getNumOperands() > OpIdx &&
1040 !TID.OpInfo[OpIdx].isPredicate() &&
1041 !TID.OpInfo[OpIdx].isOptionalDef())
1042 Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1044 emitWordLE(Binary);
1047 template<class CodeEmitter>
1048 void Emitter<CodeEmitter>::emitExtendInstruction(const MachineInstr &MI) {
1049 const TargetInstrDesc &TID = MI.getDesc();
1051 // Part of binary is determined by TableGn.
1052 unsigned Binary = getBinaryCodeForInstr(MI);
1054 // Set the conditional execution predicate
1055 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1057 unsigned OpIdx = 0;
1059 // Encode Rd
1060 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1062 const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1063 const MachineOperand &MO2 = MI.getOperand(OpIdx);
1064 if (MO2.isReg()) {
1065 // Two register operand form.
1066 // Encode Rn.
1067 Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1069 // Encode Rm.
1070 Binary |= getMachineOpValue(MI, MO2);
1071 ++OpIdx;
1072 } else {
1073 Binary |= getMachineOpValue(MI, MO1);
1076 // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1077 if (MI.getOperand(OpIdx).isImm() &&
1078 !TID.OpInfo[OpIdx].isPredicate() &&
1079 !TID.OpInfo[OpIdx].isOptionalDef())
1080 Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1082 emitWordLE(Binary);
1085 template<class CodeEmitter>
1086 void Emitter<CodeEmitter>::emitMiscArithInstruction(const MachineInstr &MI) {
1087 const TargetInstrDesc &TID = MI.getDesc();
1089 // Part of binary is determined by TableGn.
1090 unsigned Binary = getBinaryCodeForInstr(MI);
1092 // Set the conditional execution predicate
1093 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1095 unsigned OpIdx = 0;
1097 // Encode Rd
1098 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1100 const MachineOperand &MO = MI.getOperand(OpIdx++);
1101 if (OpIdx == TID.getNumOperands() ||
1102 TID.OpInfo[OpIdx].isPredicate() ||
1103 TID.OpInfo[OpIdx].isOptionalDef()) {
1104 // Encode Rm and it's done.
1105 Binary |= getMachineOpValue(MI, MO);
1106 emitWordLE(Binary);
1107 return;
1110 // Encode Rn.
1111 Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1113 // Encode Rm.
1114 Binary |= getMachineOpValue(MI, OpIdx++);
1116 // Encode shift_imm.
1117 unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1118 assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1119 Binary |= ShiftAmt << ARMII::ShiftShift;
1121 emitWordLE(Binary);
1124 template<class CodeEmitter>
1125 void Emitter<CodeEmitter>::emitBranchInstruction(const MachineInstr &MI) {
1126 const TargetInstrDesc &TID = MI.getDesc();
1128 if (TID.Opcode == ARM::TPsoft) {
1129 llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1132 // Part of binary is determined by TableGn.
1133 unsigned Binary = getBinaryCodeForInstr(MI);
1135 // Set the conditional execution predicate
1136 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1138 // Set signed_immed_24 field
1139 Binary |= getMachineOpValue(MI, 0);
1141 emitWordLE(Binary);
1144 template<class CodeEmitter>
1145 void Emitter<CodeEmitter>::emitInlineJumpTable(unsigned JTIndex) {
1146 // Remember the base address of the inline jump table.
1147 uintptr_t JTBase = MCE.getCurrentPCValue();
1148 JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1149 DOUT << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase << '\n';
1151 // Now emit the jump table entries.
1152 const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1153 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1154 if (IsPIC)
1155 // DestBB address - JT base.
1156 emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1157 else
1158 // Absolute DestBB address.
1159 emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1160 emitWordLE(0);
1164 template<class CodeEmitter>
1165 void Emitter<CodeEmitter>::emitMiscBranchInstruction(const MachineInstr &MI) {
1166 const TargetInstrDesc &TID = MI.getDesc();
1168 // Handle jump tables.
1169 if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
1170 // First emit a ldr pc, [] instruction.
1171 emitDataProcessingInstruction(MI, ARM::PC);
1173 // Then emit the inline jump table.
1174 unsigned JTIndex =
1175 (TID.Opcode == ARM::BR_JTr)
1176 ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1177 emitInlineJumpTable(JTIndex);
1178 return;
1179 } else if (TID.Opcode == ARM::BR_JTm) {
1180 // First emit a ldr pc, [] instruction.
1181 emitLoadStoreInstruction(MI, ARM::PC);
1183 // Then emit the inline jump table.
1184 emitInlineJumpTable(MI.getOperand(3).getIndex());
1185 return;
1188 // Part of binary is determined by TableGn.
1189 unsigned Binary = getBinaryCodeForInstr(MI);
1191 // Set the conditional execution predicate
1192 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1194 if (TID.Opcode == ARM::BX_RET)
1195 // The return register is LR.
1196 Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR);
1197 else
1198 // otherwise, set the return register
1199 Binary |= getMachineOpValue(MI, 0);
1201 emitWordLE(Binary);
1204 static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1205 unsigned RegD = MI.getOperand(OpIdx).getReg();
1206 unsigned Binary = 0;
1207 bool isSPVFP = false;
1208 RegD = ARMRegisterInfo::getRegisterNumbering(RegD, &isSPVFP);
1209 if (!isSPVFP)
1210 Binary |= RegD << ARMII::RegRdShift;
1211 else {
1212 Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1213 Binary |= (RegD & 0x01) << ARMII::D_BitShift;
1215 return Binary;
1218 static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1219 unsigned RegN = MI.getOperand(OpIdx).getReg();
1220 unsigned Binary = 0;
1221 bool isSPVFP = false;
1222 RegN = ARMRegisterInfo::getRegisterNumbering(RegN, &isSPVFP);
1223 if (!isSPVFP)
1224 Binary |= RegN << ARMII::RegRnShift;
1225 else {
1226 Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1227 Binary |= (RegN & 0x01) << ARMII::N_BitShift;
1229 return Binary;
1232 static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1233 unsigned RegM = MI.getOperand(OpIdx).getReg();
1234 unsigned Binary = 0;
1235 bool isSPVFP = false;
1236 RegM = ARMRegisterInfo::getRegisterNumbering(RegM, &isSPVFP);
1237 if (!isSPVFP)
1238 Binary |= RegM;
1239 else {
1240 Binary |= ((RegM & 0x1E) >> 1);
1241 Binary |= (RegM & 0x01) << ARMII::M_BitShift;
1243 return Binary;
1246 template<class CodeEmitter>
1247 void Emitter<CodeEmitter>::emitVFPArithInstruction(const MachineInstr &MI) {
1248 const TargetInstrDesc &TID = MI.getDesc();
1250 // Part of binary is determined by TableGn.
1251 unsigned Binary = getBinaryCodeForInstr(MI);
1253 // Set the conditional execution predicate
1254 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1256 unsigned OpIdx = 0;
1257 assert((Binary & ARMII::D_BitShift) == 0 &&
1258 (Binary & ARMII::N_BitShift) == 0 &&
1259 (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1261 // Encode Dd / Sd.
1262 Binary |= encodeVFPRd(MI, OpIdx++);
1264 // If this is a two-address operand, skip it, e.g. FMACD.
1265 if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1266 ++OpIdx;
1268 // Encode Dn / Sn.
1269 if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1270 Binary |= encodeVFPRn(MI, OpIdx++);
1272 if (OpIdx == TID.getNumOperands() ||
1273 TID.OpInfo[OpIdx].isPredicate() ||
1274 TID.OpInfo[OpIdx].isOptionalDef()) {
1275 // FCMPEZD etc. has only one operand.
1276 emitWordLE(Binary);
1277 return;
1280 // Encode Dm / Sm.
1281 Binary |= encodeVFPRm(MI, OpIdx);
1283 emitWordLE(Binary);
1286 template<class CodeEmitter>
1287 void Emitter<CodeEmitter>::emitVFPConversionInstruction(
1288 const MachineInstr &MI) {
1289 const TargetInstrDesc &TID = MI.getDesc();
1290 unsigned Form = TID.TSFlags & ARMII::FormMask;
1292 // Part of binary is determined by TableGn.
1293 unsigned Binary = getBinaryCodeForInstr(MI);
1295 // Set the conditional execution predicate
1296 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1298 switch (Form) {
1299 default: break;
1300 case ARMII::VFPConv1Frm:
1301 case ARMII::VFPConv2Frm:
1302 case ARMII::VFPConv3Frm:
1303 // Encode Dd / Sd.
1304 Binary |= encodeVFPRd(MI, 0);
1305 break;
1306 case ARMII::VFPConv4Frm:
1307 // Encode Dn / Sn.
1308 Binary |= encodeVFPRn(MI, 0);
1309 break;
1310 case ARMII::VFPConv5Frm:
1311 // Encode Dm / Sm.
1312 Binary |= encodeVFPRm(MI, 0);
1313 break;
1316 switch (Form) {
1317 default: break;
1318 case ARMII::VFPConv1Frm:
1319 // Encode Dm / Sm.
1320 Binary |= encodeVFPRm(MI, 1);
1321 break;
1322 case ARMII::VFPConv2Frm:
1323 case ARMII::VFPConv3Frm:
1324 // Encode Dn / Sn.
1325 Binary |= encodeVFPRn(MI, 1);
1326 break;
1327 case ARMII::VFPConv4Frm:
1328 case ARMII::VFPConv5Frm:
1329 // Encode Dd / Sd.
1330 Binary |= encodeVFPRd(MI, 1);
1331 break;
1334 if (Form == ARMII::VFPConv5Frm)
1335 // Encode Dn / Sn.
1336 Binary |= encodeVFPRn(MI, 2);
1337 else if (Form == ARMII::VFPConv3Frm)
1338 // Encode Dm / Sm.
1339 Binary |= encodeVFPRm(MI, 2);
1341 emitWordLE(Binary);
1344 template<class CodeEmitter>
1345 void Emitter<CodeEmitter>::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1346 // Part of binary is determined by TableGn.
1347 unsigned Binary = getBinaryCodeForInstr(MI);
1349 // Set the conditional execution predicate
1350 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1352 unsigned OpIdx = 0;
1354 // Encode Dd / Sd.
1355 Binary |= encodeVFPRd(MI, OpIdx++);
1357 // Encode address base.
1358 const MachineOperand &Base = MI.getOperand(OpIdx++);
1359 Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1361 // If there is a non-zero immediate offset, encode it.
1362 if (Base.isReg()) {
1363 const MachineOperand &Offset = MI.getOperand(OpIdx);
1364 if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1365 if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1366 Binary |= 1 << ARMII::U_BitShift;
1367 Binary |= ImmOffs;
1368 emitWordLE(Binary);
1369 return;
1373 // If immediate offset is omitted, default to +0.
1374 Binary |= 1 << ARMII::U_BitShift;
1376 emitWordLE(Binary);
1379 template<class CodeEmitter>
1380 void Emitter<CodeEmitter>::emitVFPLoadStoreMultipleInstruction(
1381 const MachineInstr &MI) {
1382 // Part of binary is determined by TableGn.
1383 unsigned Binary = getBinaryCodeForInstr(MI);
1385 // Set the conditional execution predicate
1386 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1388 // Set base address operand
1389 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
1391 // Set addressing mode by modifying bits U(23) and P(24)
1392 const MachineOperand &MO = MI.getOperand(1);
1393 Binary |= getAddrModeUPBits(ARM_AM::getAM5SubMode(MO.getImm()));
1395 // Set bit W(21)
1396 if (ARM_AM::getAM5WBFlag(MO.getImm()))
1397 Binary |= 0x1 << ARMII::W_BitShift;
1399 // First register is encoded in Dd.
1400 Binary |= encodeVFPRd(MI, 4);
1402 // Number of registers are encoded in offset field.
1403 unsigned NumRegs = 1;
1404 for (unsigned i = 5, e = MI.getNumOperands(); i != e; ++i) {
1405 const MachineOperand &MO = MI.getOperand(i);
1406 if (!MO.isReg() || MO.isImplicit())
1407 break;
1408 ++NumRegs;
1410 Binary |= NumRegs * 2;
1412 emitWordLE(Binary);
1415 template<class CodeEmitter>
1416 void Emitter<CodeEmitter>::emitMiscInstruction(const MachineInstr &MI) {
1417 // Part of binary is determined by TableGn.
1418 unsigned Binary = getBinaryCodeForInstr(MI);
1420 // Set the conditional execution predicate
1421 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1423 emitWordLE(Binary);
1426 #include "ARMGenCodeEmitter.inc"