1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the pass that transforms the ARM machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
17 #include "ARMAddressingModes.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMInstrInfo.h"
20 #include "ARMRelocations.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/PassManager.h"
27 #include "llvm/CodeGen/MachineCodeEmitter.h"
28 #include "llvm/CodeGen/JITCodeEmitter.h"
29 #include "llvm/CodeGen/ObjectCodeEmitter.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/raw_ostream.h"
45 STATISTIC(NumEmitted
, "Number of machine instructions emitted");
49 class ARMCodeEmitter
{
51 /// getBinaryCodeForInstr - This function, generated by the
52 /// CodeEmitterGenerator using TableGen, produces the binary encoding for
53 /// machine instructions.
54 unsigned getBinaryCodeForInstr(const MachineInstr
&MI
);
57 template<class CodeEmitter
>
58 class VISIBILITY_HIDDEN Emitter
: public MachineFunctionPass
,
59 public ARMCodeEmitter
{
61 const ARMInstrInfo
*II
;
65 const std::vector
<MachineConstantPoolEntry
> *MCPEs
;
66 const std::vector
<MachineJumpTableEntry
> *MJTEs
;
71 explicit Emitter(TargetMachine
&tm
, CodeEmitter
&mce
)
72 : MachineFunctionPass(&ID
), JTI(0), II(0), TD(0), TM(tm
),
73 MCE(mce
), MCPEs(0), MJTEs(0),
74 IsPIC(TM
.getRelocationModel() == Reloc::PIC_
) {}
75 Emitter(TargetMachine
&tm
, CodeEmitter
&mce
,
76 const ARMInstrInfo
&ii
, const TargetData
&td
)
77 : MachineFunctionPass(&ID
), JTI(0), II(&ii
), TD(&td
), TM(tm
),
78 MCE(mce
), MCPEs(0), MJTEs(0),
79 IsPIC(TM
.getRelocationModel() == Reloc::PIC_
) {}
81 bool runOnMachineFunction(MachineFunction
&MF
);
83 virtual const char *getPassName() const {
84 return "ARM Machine Code Emitter";
87 void emitInstruction(const MachineInstr
&MI
);
91 void emitWordLE(unsigned Binary
);
93 void emitDWordLE(uint64_t Binary
);
95 void emitConstPoolInstruction(const MachineInstr
&MI
);
97 void emitMOVi2piecesInstruction(const MachineInstr
&MI
);
99 void emitLEApcrelJTInstruction(const MachineInstr
&MI
);
101 void emitPseudoMoveInstruction(const MachineInstr
&MI
);
103 void addPCLabel(unsigned LabelID
);
105 void emitPseudoInstruction(const MachineInstr
&MI
);
107 unsigned getMachineSoRegOpValue(const MachineInstr
&MI
,
108 const TargetInstrDesc
&TID
,
109 const MachineOperand
&MO
,
112 unsigned getMachineSoImmOpValue(unsigned SoImm
);
114 unsigned getAddrModeSBit(const MachineInstr
&MI
,
115 const TargetInstrDesc
&TID
) const;
117 void emitDataProcessingInstruction(const MachineInstr
&MI
,
118 unsigned ImplicitRd
= 0,
119 unsigned ImplicitRn
= 0);
121 void emitLoadStoreInstruction(const MachineInstr
&MI
,
122 unsigned ImplicitRd
= 0,
123 unsigned ImplicitRn
= 0);
125 void emitMiscLoadStoreInstruction(const MachineInstr
&MI
,
126 unsigned ImplicitRn
= 0);
128 void emitLoadStoreMultipleInstruction(const MachineInstr
&MI
);
130 void emitMulFrmInstruction(const MachineInstr
&MI
);
132 void emitExtendInstruction(const MachineInstr
&MI
);
134 void emitMiscArithInstruction(const MachineInstr
&MI
);
136 void emitBranchInstruction(const MachineInstr
&MI
);
138 void emitInlineJumpTable(unsigned JTIndex
);
140 void emitMiscBranchInstruction(const MachineInstr
&MI
);
142 void emitVFPArithInstruction(const MachineInstr
&MI
);
144 void emitVFPConversionInstruction(const MachineInstr
&MI
);
146 void emitVFPLoadStoreInstruction(const MachineInstr
&MI
);
148 void emitVFPLoadStoreMultipleInstruction(const MachineInstr
&MI
);
150 void emitMiscInstruction(const MachineInstr
&MI
);
152 /// getMachineOpValue - Return binary encoding of operand. If the machine
153 /// operand requires relocation, record the relocation and return zero.
154 unsigned getMachineOpValue(const MachineInstr
&MI
,const MachineOperand
&MO
);
155 unsigned getMachineOpValue(const MachineInstr
&MI
, unsigned OpIdx
) {
156 return getMachineOpValue(MI
, MI
.getOperand(OpIdx
));
159 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
161 unsigned getShiftOp(unsigned Imm
) const ;
163 /// Routines that handle operands which add machine relocations which are
164 /// fixed up by the relocation stage.
165 void emitGlobalAddress(GlobalValue
*GV
, unsigned Reloc
,
166 bool NeedStub
, intptr_t ACPV
= 0);
167 void emitExternalSymbolAddress(const char *ES
, unsigned Reloc
);
168 void emitConstPoolAddress(unsigned CPI
, unsigned Reloc
);
169 void emitJumpTableAddress(unsigned JTIndex
, unsigned Reloc
);
170 void emitMachineBasicBlock(MachineBasicBlock
*BB
, unsigned Reloc
,
171 intptr_t JTBase
= 0);
173 template <class CodeEmitter
>
174 char Emitter
<CodeEmitter
>::ID
= 0;
177 /// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
178 /// to the specified MCE object.
180 FunctionPass
*llvm::createARMCodeEmitterPass(ARMBaseTargetMachine
&TM
,
181 MachineCodeEmitter
&MCE
) {
182 return new Emitter
<MachineCodeEmitter
>(TM
, MCE
);
184 FunctionPass
*llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine
&TM
,
185 JITCodeEmitter
&JCE
) {
186 return new Emitter
<JITCodeEmitter
>(TM
, JCE
);
188 FunctionPass
*llvm::createARMObjectCodeEmitterPass(ARMBaseTargetMachine
&TM
,
189 ObjectCodeEmitter
&OCE
) {
190 return new Emitter
<ObjectCodeEmitter
>(TM
, OCE
);
193 template<class CodeEmitter
>
194 bool Emitter
<CodeEmitter
>::runOnMachineFunction(MachineFunction
&MF
) {
195 assert((MF
.getTarget().getRelocationModel() != Reloc::Default
||
196 MF
.getTarget().getRelocationModel() != Reloc::Static
) &&
197 "JIT relocation model must be set to static or default!");
198 II
= ((ARMTargetMachine
&)MF
.getTarget()).getInstrInfo();
199 TD
= ((ARMTargetMachine
&)MF
.getTarget()).getTargetData();
200 JTI
= ((ARMTargetMachine
&)MF
.getTarget()).getJITInfo();
201 MCPEs
= &MF
.getConstantPool()->getConstants();
202 MJTEs
= &MF
.getJumpTableInfo()->getJumpTables();
203 IsPIC
= TM
.getRelocationModel() == Reloc::PIC_
;
204 JTI
->Initialize(MF
, IsPIC
);
207 DEBUG(errs() << "JITTing function '"
208 << MF
.getFunction()->getName() << "'\n");
209 MCE
.startFunction(MF
);
210 for (MachineFunction::iterator MBB
= MF
.begin(), E
= MF
.end();
212 MCE
.StartMachineBasicBlock(MBB
);
213 for (MachineBasicBlock::const_iterator I
= MBB
->begin(), E
= MBB
->end();
217 } while (MCE
.finishFunction(MF
));
222 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
224 template<class CodeEmitter
>
225 unsigned Emitter
<CodeEmitter
>::getShiftOp(unsigned Imm
) const {
226 switch (ARM_AM::getAM2ShiftOpc(Imm
)) {
227 default: llvm_unreachable("Unknown shift opc!");
228 case ARM_AM::asr
: return 2;
229 case ARM_AM::lsl
: return 0;
230 case ARM_AM::lsr
: return 1;
232 case ARM_AM::rrx
: return 3;
237 /// getMachineOpValue - Return binary encoding of operand. If the machine
238 /// operand requires relocation, record the relocation and return zero.
239 template<class CodeEmitter
>
240 unsigned Emitter
<CodeEmitter
>::getMachineOpValue(const MachineInstr
&MI
,
241 const MachineOperand
&MO
) {
243 return ARMRegisterInfo::getRegisterNumbering(MO
.getReg());
245 return static_cast<unsigned>(MO
.getImm());
246 else if (MO
.isGlobal())
247 emitGlobalAddress(MO
.getGlobal(), ARM::reloc_arm_branch
, true);
248 else if (MO
.isSymbol())
249 emitExternalSymbolAddress(MO
.getSymbolName(), ARM::reloc_arm_branch
);
250 else if (MO
.isCPI()) {
251 const TargetInstrDesc
&TID
= MI
.getDesc();
252 // For VFP load, the immediate offset is multiplied by 4.
253 unsigned Reloc
= ((TID
.TSFlags
& ARMII::FormMask
) == ARMII::VFPLdStFrm
)
254 ? ARM::reloc_arm_vfp_cp_entry
: ARM::reloc_arm_cp_entry
;
255 emitConstPoolAddress(MO
.getIndex(), Reloc
);
256 } else if (MO
.isJTI())
257 emitJumpTableAddress(MO
.getIndex(), ARM::reloc_arm_relative
);
259 emitMachineBasicBlock(MO
.getMBB(), ARM::reloc_arm_branch
);
269 /// emitGlobalAddress - Emit the specified address to the code stream.
271 template<class CodeEmitter
>
272 void Emitter
<CodeEmitter
>::emitGlobalAddress(GlobalValue
*GV
, unsigned Reloc
,
273 bool NeedStub
, intptr_t ACPV
) {
274 MCE
.addRelocation(MachineRelocation::getGV(MCE
.getCurrentPCOffset(), Reloc
,
275 GV
, ACPV
, NeedStub
));
278 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
279 /// be emitted to the current location in the function, and allow it to be PC
281 template<class CodeEmitter
>
282 void Emitter
<CodeEmitter
>::emitExternalSymbolAddress(const char *ES
,
284 MCE
.addRelocation(MachineRelocation::getExtSym(MCE
.getCurrentPCOffset(),
288 /// emitConstPoolAddress - Arrange for the address of an constant pool
289 /// to be emitted to the current location in the function, and allow it to be PC
291 template<class CodeEmitter
>
292 void Emitter
<CodeEmitter
>::emitConstPoolAddress(unsigned CPI
,
294 // Tell JIT emitter we'll resolve the address.
295 MCE
.addRelocation(MachineRelocation::getConstPool(MCE
.getCurrentPCOffset(),
296 Reloc
, CPI
, 0, true));
299 /// emitJumpTableAddress - Arrange for the address of a jump table to
300 /// be emitted to the current location in the function, and allow it to be PC
302 template<class CodeEmitter
>
303 void Emitter
<CodeEmitter
>::emitJumpTableAddress(unsigned JTIndex
,
305 MCE
.addRelocation(MachineRelocation::getJumpTable(MCE
.getCurrentPCOffset(),
306 Reloc
, JTIndex
, 0, true));
309 /// emitMachineBasicBlock - Emit the specified address basic block.
310 template<class CodeEmitter
>
311 void Emitter
<CodeEmitter
>::emitMachineBasicBlock(MachineBasicBlock
*BB
,
312 unsigned Reloc
, intptr_t JTBase
) {
313 MCE
.addRelocation(MachineRelocation::getBB(MCE
.getCurrentPCOffset(),
317 template<class CodeEmitter
>
318 void Emitter
<CodeEmitter
>::emitWordLE(unsigned Binary
) {
320 DOUT
<< " 0x" << std::hex
<< std::setw(8) << std::setfill('0')
321 << Binary
<< std::dec
<< "\n";
323 MCE
.emitWordLE(Binary
);
326 template<class CodeEmitter
>
327 void Emitter
<CodeEmitter
>::emitDWordLE(uint64_t Binary
) {
329 DOUT
<< " 0x" << std::hex
<< std::setw(8) << std::setfill('0')
330 << (unsigned)Binary
<< std::dec
<< "\n";
331 DOUT
<< " 0x" << std::hex
<< std::setw(8) << std::setfill('0')
332 << (unsigned)(Binary
>> 32) << std::dec
<< "\n";
334 MCE
.emitDWordLE(Binary
);
337 template<class CodeEmitter
>
338 void Emitter
<CodeEmitter
>::emitInstruction(const MachineInstr
&MI
) {
339 DOUT
<< "JIT: " << (void*)MCE
.getCurrentPCValue() << ":\t" << MI
;
341 MCE
.processDebugLoc(MI
.getDebugLoc());
343 NumEmitted
++; // Keep track of the # of mi's emitted
344 switch (MI
.getDesc().TSFlags
& ARMII::FormMask
) {
346 llvm_unreachable("Unhandled instruction encoding format!");
350 emitPseudoInstruction(MI
);
353 case ARMII::DPSoRegFrm
:
354 emitDataProcessingInstruction(MI
);
358 emitLoadStoreInstruction(MI
);
360 case ARMII::LdMiscFrm
:
361 case ARMII::StMiscFrm
:
362 emitMiscLoadStoreInstruction(MI
);
364 case ARMII::LdStMulFrm
:
365 emitLoadStoreMultipleInstruction(MI
);
368 emitMulFrmInstruction(MI
);
371 emitExtendInstruction(MI
);
373 case ARMII::ArithMiscFrm
:
374 emitMiscArithInstruction(MI
);
377 emitBranchInstruction(MI
);
379 case ARMII::BrMiscFrm
:
380 emitMiscBranchInstruction(MI
);
383 case ARMII::VFPUnaryFrm
:
384 case ARMII::VFPBinaryFrm
:
385 emitVFPArithInstruction(MI
);
387 case ARMII::VFPConv1Frm
:
388 case ARMII::VFPConv2Frm
:
389 case ARMII::VFPConv3Frm
:
390 case ARMII::VFPConv4Frm
:
391 case ARMII::VFPConv5Frm
:
392 emitVFPConversionInstruction(MI
);
394 case ARMII::VFPLdStFrm
:
395 emitVFPLoadStoreInstruction(MI
);
397 case ARMII::VFPLdStMulFrm
:
398 emitVFPLoadStoreMultipleInstruction(MI
);
400 case ARMII::VFPMiscFrm
:
401 emitMiscInstruction(MI
);
406 template<class CodeEmitter
>
407 void Emitter
<CodeEmitter
>::emitConstPoolInstruction(const MachineInstr
&MI
) {
408 unsigned CPI
= MI
.getOperand(0).getImm(); // CP instruction index.
409 unsigned CPIndex
= MI
.getOperand(1).getIndex(); // Actual cp entry index.
410 const MachineConstantPoolEntry
&MCPE
= (*MCPEs
)[CPIndex
];
412 // Remember the CONSTPOOL_ENTRY address for later relocation.
413 JTI
->addConstantPoolEntryAddr(CPI
, MCE
.getCurrentPCValue());
415 // Emit constpool island entry. In most cases, the actual values will be
416 // resolved and relocated after code emission.
417 if (MCPE
.isMachineConstantPoolEntry()) {
418 ARMConstantPoolValue
*ACPV
=
419 static_cast<ARMConstantPoolValue
*>(MCPE
.Val
.MachineCPVal
);
421 DOUT
<< " ** ARM constant pool #" << CPI
<< " @ "
422 << (void*)MCE
.getCurrentPCValue() << " " << *ACPV
<< '\n';
424 GlobalValue
*GV
= ACPV
->getGV();
426 assert(!ACPV
->isStub() && "Don't know how to deal this yet!");
427 if (ACPV
->isNonLazyPointer())
428 MCE
.addRelocation(MachineRelocation::getIndirectSymbol(
429 MCE
.getCurrentPCOffset(), ARM::reloc_arm_machine_cp_entry
, GV
,
430 (intptr_t)ACPV
, false));
432 emitGlobalAddress(GV
, ARM::reloc_arm_machine_cp_entry
,
433 ACPV
->isStub() || isa
<Function
>(GV
), (intptr_t)ACPV
);
435 assert(!ACPV
->isNonLazyPointer() && "Don't know how to deal this yet!");
436 emitExternalSymbolAddress(ACPV
->getSymbol(), ARM::reloc_arm_absolute
);
440 Constant
*CV
= MCPE
.Val
.ConstVal
;
443 errs() << " ** Constant pool #" << CPI
<< " @ "
444 << (void*)MCE
.getCurrentPCValue() << " ";
445 if (const Function
*F
= dyn_cast
<Function
>(CV
))
446 errs() << F
->getName();
452 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
)) {
453 emitGlobalAddress(GV
, ARM::reloc_arm_absolute
, isa
<Function
>(GV
));
455 } else if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
456 uint32_t Val
= *(uint32_t*)CI
->getValue().getRawData();
458 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
)) {
459 if (CFP
->getType() == Type::FloatTy
)
460 emitWordLE(CFP
->getValueAPF().bitcastToAPInt().getZExtValue());
461 else if (CFP
->getType() == Type::DoubleTy
)
462 emitDWordLE(CFP
->getValueAPF().bitcastToAPInt().getZExtValue());
464 llvm_unreachable("Unable to handle this constantpool entry!");
467 llvm_unreachable("Unable to handle this constantpool entry!");
472 template<class CodeEmitter
>
473 void Emitter
<CodeEmitter
>::emitMOVi2piecesInstruction(const MachineInstr
&MI
) {
474 const MachineOperand
&MO0
= MI
.getOperand(0);
475 const MachineOperand
&MO1
= MI
.getOperand(1);
476 assert(MO1
.isImm() && ARM_AM::getSOImmVal(MO1
.isImm()) != -1 &&
477 "Not a valid so_imm value!");
478 unsigned V1
= ARM_AM::getSOImmTwoPartFirst(MO1
.getImm());
479 unsigned V2
= ARM_AM::getSOImmTwoPartSecond(MO1
.getImm());
481 // Emit the 'mov' instruction.
482 unsigned Binary
= 0xd << 21; // mov: Insts{24-21} = 0b1101
484 // Set the conditional execution predicate.
485 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
488 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRdShift
;
491 // Set bit I(25) to identify this is the immediate form of <shifter_op>
492 Binary
|= 1 << ARMII::I_BitShift
;
493 Binary
|= getMachineSoImmOpValue(V1
);
496 // Now the 'orr' instruction.
497 Binary
= 0xc << 21; // orr: Insts{24-21} = 0b1100
499 // Set the conditional execution predicate.
500 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
503 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRdShift
;
506 Binary
|= getMachineOpValue(MI
, MO0
) << ARMII::RegRnShift
;
509 // Set bit I(25) to identify this is the immediate form of <shifter_op>
510 Binary
|= 1 << ARMII::I_BitShift
;
511 Binary
|= getMachineSoImmOpValue(V2
);
515 template<class CodeEmitter
>
516 void Emitter
<CodeEmitter
>::emitLEApcrelJTInstruction(const MachineInstr
&MI
) {
517 // It's basically add r, pc, (LJTI - $+8)
519 const TargetInstrDesc
&TID
= MI
.getDesc();
521 // Emit the 'add' instruction.
522 unsigned Binary
= 0x4 << 21; // add: Insts{24-31} = 0b0100
524 // Set the conditional execution predicate
525 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
527 // Encode S bit if MI modifies CPSR.
528 Binary
|= getAddrModeSBit(MI
, TID
);
531 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRdShift
;
533 // Encode Rn which is PC.
534 Binary
|= ARMRegisterInfo::getRegisterNumbering(ARM::PC
) << ARMII::RegRnShift
;
536 // Encode the displacement.
537 Binary
|= 1 << ARMII::I_BitShift
;
538 emitJumpTableAddress(MI
.getOperand(1).getIndex(), ARM::reloc_arm_jt_base
);
543 template<class CodeEmitter
>
544 void Emitter
<CodeEmitter
>::emitPseudoMoveInstruction(const MachineInstr
&MI
) {
545 unsigned Opcode
= MI
.getDesc().Opcode
;
547 // Part of binary is determined by TableGn.
548 unsigned Binary
= getBinaryCodeForInstr(MI
);
550 // Set the conditional execution predicate
551 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
553 // Encode S bit if MI modifies CPSR.
554 if (Opcode
== ARM::MOVsrl_flag
|| Opcode
== ARM::MOVsra_flag
)
555 Binary
|= 1 << ARMII::S_BitShift
;
557 // Encode register def if there is one.
558 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRdShift
;
560 // Encode the shift operation.
567 case ARM::MOVsrl_flag
:
569 Binary
|= (0x2 << 4) | (1 << 7);
571 case ARM::MOVsra_flag
:
573 Binary
|= (0x4 << 4) | (1 << 7);
577 // Encode register Rm.
578 Binary
|= getMachineOpValue(MI
, 1);
583 template<class CodeEmitter
>
584 void Emitter
<CodeEmitter
>::addPCLabel(unsigned LabelID
) {
585 DOUT
<< " ** LPC" << LabelID
<< " @ "
586 << (void*)MCE
.getCurrentPCValue() << '\n';
587 JTI
->addPCLabelAddr(LabelID
, MCE
.getCurrentPCValue());
590 template<class CodeEmitter
>
591 void Emitter
<CodeEmitter
>::emitPseudoInstruction(const MachineInstr
&MI
) {
592 unsigned Opcode
= MI
.getDesc().Opcode
;
595 llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");//FIXME:
596 case TargetInstrInfo::INLINEASM
: {
597 // We allow inline assembler nodes with empty bodies - they can
598 // implicitly define registers, which is ok for JIT.
599 if (MI
.getOperand(0).getSymbolName()[0]) {
600 llvm_report_error("JIT does not support inline asm!");
604 case TargetInstrInfo::DBG_LABEL
:
605 case TargetInstrInfo::EH_LABEL
:
606 MCE
.emitLabel(MI
.getOperand(0).getImm());
608 case TargetInstrInfo::IMPLICIT_DEF
:
609 case TargetInstrInfo::DECLARE
:
613 case ARM::CONSTPOOL_ENTRY
:
614 emitConstPoolInstruction(MI
);
617 // Remember of the address of the PC label for relocation later.
618 addPCLabel(MI
.getOperand(2).getImm());
619 // PICADD is just an add instruction that implicitly read pc.
620 emitDataProcessingInstruction(MI
, 0, ARM::PC
);
627 // Remember of the address of the PC label for relocation later.
628 addPCLabel(MI
.getOperand(2).getImm());
629 // These are just load / store instructions that implicitly read pc.
630 emitLoadStoreInstruction(MI
, 0, ARM::PC
);
637 // Remember of the address of the PC label for relocation later.
638 addPCLabel(MI
.getOperand(2).getImm());
639 // These are just load / store instructions that implicitly read pc.
640 emitMiscLoadStoreInstruction(MI
, ARM::PC
);
643 case ARM::MOVi2pieces
:
644 // Two instructions to materialize a constant.
645 emitMOVi2piecesInstruction(MI
);
647 case ARM::LEApcrelJT
:
648 // Materialize jumptable address.
649 emitLEApcrelJTInstruction(MI
);
652 case ARM::MOVsrl_flag
:
653 case ARM::MOVsra_flag
:
654 emitPseudoMoveInstruction(MI
);
659 template<class CodeEmitter
>
660 unsigned Emitter
<CodeEmitter
>::getMachineSoRegOpValue(
661 const MachineInstr
&MI
,
662 const TargetInstrDesc
&TID
,
663 const MachineOperand
&MO
,
665 unsigned Binary
= getMachineOpValue(MI
, MO
);
667 const MachineOperand
&MO1
= MI
.getOperand(OpIdx
+ 1);
668 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
+ 2);
669 ARM_AM::ShiftOpc SOpc
= ARM_AM::getSORegShOp(MO2
.getImm());
671 // Encode the shift opcode.
673 unsigned Rs
= MO1
.getReg();
675 // Set shift operand (bit[7:4]).
680 // RRX - 0110 and bit[11:8] clear.
682 default: llvm_unreachable("Unknown shift opc!");
683 case ARM_AM::lsl
: SBits
= 0x1; break;
684 case ARM_AM::lsr
: SBits
= 0x3; break;
685 case ARM_AM::asr
: SBits
= 0x5; break;
686 case ARM_AM::ror
: SBits
= 0x7; break;
687 case ARM_AM::rrx
: SBits
= 0x6; break;
690 // Set shift operand (bit[6:4]).
696 default: llvm_unreachable("Unknown shift opc!");
697 case ARM_AM::lsl
: SBits
= 0x0; break;
698 case ARM_AM::lsr
: SBits
= 0x2; break;
699 case ARM_AM::asr
: SBits
= 0x4; break;
700 case ARM_AM::ror
: SBits
= 0x6; break;
703 Binary
|= SBits
<< 4;
704 if (SOpc
== ARM_AM::rrx
)
707 // Encode the shift operation Rs or shift_imm (except rrx).
709 // Encode Rs bit[11:8].
710 assert(ARM_AM::getSORegOffset(MO2
.getImm()) == 0);
712 (ARMRegisterInfo::getRegisterNumbering(Rs
) << ARMII::RegRsShift
);
715 // Encode shift_imm bit[11:7].
716 return Binary
| ARM_AM::getSORegOffset(MO2
.getImm()) << 7;
719 template<class CodeEmitter
>
720 unsigned Emitter
<CodeEmitter
>::getMachineSoImmOpValue(unsigned SoImm
) {
721 int SoImmVal
= ARM_AM::getSOImmVal(SoImm
);
722 assert(SoImmVal
!= -1 && "Not a valid so_imm value!");
724 // Encode rotate_imm.
725 unsigned Binary
= (ARM_AM::getSOImmValRot((unsigned)SoImmVal
) >> 1)
726 << ARMII::SoRotImmShift
;
729 Binary
|= ARM_AM::getSOImmValImm((unsigned)SoImmVal
);
733 template<class CodeEmitter
>
734 unsigned Emitter
<CodeEmitter
>::getAddrModeSBit(const MachineInstr
&MI
,
735 const TargetInstrDesc
&TID
) const {
736 for (unsigned i
= MI
.getNumOperands(), e
= TID
.getNumOperands(); i
!= e
; --i
){
737 const MachineOperand
&MO
= MI
.getOperand(i
-1);
738 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
)
739 return 1 << ARMII::S_BitShift
;
744 template<class CodeEmitter
>
745 void Emitter
<CodeEmitter
>::emitDataProcessingInstruction(
746 const MachineInstr
&MI
,
748 unsigned ImplicitRn
) {
749 const TargetInstrDesc
&TID
= MI
.getDesc();
751 if (TID
.Opcode
== ARM::BFC
) {
752 llvm_report_error("ARMv6t2 JIT is not yet supported.");
755 // Part of binary is determined by TableGn.
756 unsigned Binary
= getBinaryCodeForInstr(MI
);
758 // Set the conditional execution predicate
759 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
761 // Encode S bit if MI modifies CPSR.
762 Binary
|= getAddrModeSBit(MI
, TID
);
764 // Encode register def if there is one.
765 unsigned NumDefs
= TID
.getNumDefs();
768 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
770 // Special handling for implicit use (e.g. PC).
771 Binary
|= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd
)
772 << ARMII::RegRdShift
);
774 // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
775 if (TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
778 // Encode first non-shifter register operand if there is one.
779 bool isUnary
= TID
.TSFlags
& ARMII::UnaryDP
;
782 // Special handling for implicit use (e.g. PC).
783 Binary
|= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn
)
784 << ARMII::RegRnShift
);
786 Binary
|= getMachineOpValue(MI
, OpIdx
) << ARMII::RegRnShift
;
791 // Encode shifter operand.
792 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
793 if ((TID
.TSFlags
& ARMII::FormMask
) == ARMII::DPSoRegFrm
) {
795 emitWordLE(Binary
| getMachineSoRegOpValue(MI
, TID
, MO
, OpIdx
));
800 // Encode register Rm.
801 emitWordLE(Binary
| ARMRegisterInfo::getRegisterNumbering(MO
.getReg()));
806 Binary
|= getMachineSoImmOpValue((unsigned)MO
.getImm());
811 template<class CodeEmitter
>
812 void Emitter
<CodeEmitter
>::emitLoadStoreInstruction(
813 const MachineInstr
&MI
,
815 unsigned ImplicitRn
) {
816 const TargetInstrDesc
&TID
= MI
.getDesc();
817 unsigned Form
= TID
.TSFlags
& ARMII::FormMask
;
818 bool IsPrePost
= (TID
.TSFlags
& ARMII::IndexModeMask
) != 0;
820 // Part of binary is determined by TableGn.
821 unsigned Binary
= getBinaryCodeForInstr(MI
);
823 // Set the conditional execution predicate
824 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
828 // Operand 0 of a pre- and post-indexed store is the address base
829 // writeback. Skip it.
830 bool Skipped
= false;
831 if (IsPrePost
&& Form
== ARMII::StFrm
) {
838 // Special handling for implicit use (e.g. PC).
839 Binary
|= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd
)
840 << ARMII::RegRdShift
);
842 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
844 // Set second operand
846 // Special handling for implicit use (e.g. PC).
847 Binary
|= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn
)
848 << ARMII::RegRnShift
);
850 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRnShift
;
852 // If this is a two-address operand, skip it. e.g. LDR_PRE.
853 if (!Skipped
&& TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
856 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
);
857 unsigned AM2Opc
= (ImplicitRn
== ARM::PC
)
858 ? 0 : MI
.getOperand(OpIdx
+1).getImm();
860 // Set bit U(23) according to sign of immed value (positive or negative).
861 Binary
|= ((ARM_AM::getAM2Op(AM2Opc
) == ARM_AM::add
? 1 : 0) <<
863 if (!MO2
.getReg()) { // is immediate
864 if (ARM_AM::getAM2Offset(AM2Opc
))
865 // Set the value of offset_12 field
866 Binary
|= ARM_AM::getAM2Offset(AM2Opc
);
871 // Set bit I(25), because this is not in immediate enconding.
872 Binary
|= 1 << ARMII::I_BitShift
;
873 assert(TargetRegisterInfo::isPhysicalRegister(MO2
.getReg()));
874 // Set bit[3:0] to the corresponding Rm register
875 Binary
|= ARMRegisterInfo::getRegisterNumbering(MO2
.getReg());
877 // If this instr is in scaled register offset/index instruction, set
878 // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
879 if (unsigned ShImm
= ARM_AM::getAM2Offset(AM2Opc
)) {
880 Binary
|= getShiftOp(AM2Opc
) << ARMII::ShiftImmShift
; // shift
881 Binary
|= ShImm
<< ARMII::ShiftShift
; // shift_immed
887 template<class CodeEmitter
>
888 void Emitter
<CodeEmitter
>::emitMiscLoadStoreInstruction(const MachineInstr
&MI
,
889 unsigned ImplicitRn
) {
890 const TargetInstrDesc
&TID
= MI
.getDesc();
891 unsigned Form
= TID
.TSFlags
& ARMII::FormMask
;
892 bool IsPrePost
= (TID
.TSFlags
& ARMII::IndexModeMask
) != 0;
894 // Part of binary is determined by TableGn.
895 unsigned Binary
= getBinaryCodeForInstr(MI
);
897 // Set the conditional execution predicate
898 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
902 // Operand 0 of a pre- and post-indexed store is the address base
903 // writeback. Skip it.
904 bool Skipped
= false;
905 if (IsPrePost
&& Form
== ARMII::StMiscFrm
) {
911 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
913 // Skip LDRD and STRD's second operand.
914 if (TID
.Opcode
== ARM::LDRD
|| TID
.Opcode
== ARM::STRD
)
917 // Set second operand
919 // Special handling for implicit use (e.g. PC).
920 Binary
|= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn
)
921 << ARMII::RegRnShift
);
923 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRnShift
;
925 // If this is a two-address operand, skip it. e.g. LDRH_POST.
926 if (!Skipped
&& TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
929 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
);
930 unsigned AM3Opc
= (ImplicitRn
== ARM::PC
)
931 ? 0 : MI
.getOperand(OpIdx
+1).getImm();
933 // Set bit U(23) according to sign of immed value (positive or negative)
934 Binary
|= ((ARM_AM::getAM3Op(AM3Opc
) == ARM_AM::add
? 1 : 0) <<
937 // If this instr is in register offset/index encoding, set bit[3:0]
938 // to the corresponding Rm register.
940 Binary
|= ARMRegisterInfo::getRegisterNumbering(MO2
.getReg());
945 // This instr is in immediate offset/index encoding, set bit 22 to 1.
946 Binary
|= 1 << ARMII::AM3_I_BitShift
;
947 if (unsigned ImmOffs
= ARM_AM::getAM3Offset(AM3Opc
)) {
949 Binary
|= (ImmOffs
>> 4) << ARMII::ImmHiShift
; // immedH
950 Binary
|= (ImmOffs
& 0xF); // immedL
956 static unsigned getAddrModeUPBits(unsigned Mode
) {
959 // Set addressing mode by modifying bits U(23) and P(24)
960 // IA - Increment after - bit U = 1 and bit P = 0
961 // IB - Increment before - bit U = 1 and bit P = 1
962 // DA - Decrement after - bit U = 0 and bit P = 0
963 // DB - Decrement before - bit U = 0 and bit P = 1
965 default: llvm_unreachable("Unknown addressing sub-mode!");
966 case ARM_AM::da
: break;
967 case ARM_AM::db
: Binary
|= 0x1 << ARMII::P_BitShift
; break;
968 case ARM_AM::ia
: Binary
|= 0x1 << ARMII::U_BitShift
; break;
969 case ARM_AM::ib
: Binary
|= 0x3 << ARMII::U_BitShift
; break;
975 template<class CodeEmitter
>
976 void Emitter
<CodeEmitter
>::emitLoadStoreMultipleInstruction(
977 const MachineInstr
&MI
) {
978 // Part of binary is determined by TableGn.
979 unsigned Binary
= getBinaryCodeForInstr(MI
);
981 // Set the conditional execution predicate
982 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
984 // Set base address operand
985 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRnShift
;
987 // Set addressing mode by modifying bits U(23) and P(24)
988 const MachineOperand
&MO
= MI
.getOperand(1);
989 Binary
|= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO
.getImm()));
992 if (ARM_AM::getAM4WBFlag(MO
.getImm()))
993 Binary
|= 0x1 << ARMII::W_BitShift
;
996 for (unsigned i
= 4, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
997 const MachineOperand
&MO
= MI
.getOperand(i
);
998 if (!MO
.isReg() || MO
.isImplicit())
1000 unsigned RegNum
= ARMRegisterInfo::getRegisterNumbering(MO
.getReg());
1001 assert(TargetRegisterInfo::isPhysicalRegister(MO
.getReg()) &&
1003 Binary
|= 0x1 << RegNum
;
1009 template<class CodeEmitter
>
1010 void Emitter
<CodeEmitter
>::emitMulFrmInstruction(const MachineInstr
&MI
) {
1011 const TargetInstrDesc
&TID
= MI
.getDesc();
1013 // Part of binary is determined by TableGn.
1014 unsigned Binary
= getBinaryCodeForInstr(MI
);
1016 // Set the conditional execution predicate
1017 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1019 // Encode S bit if MI modifies CPSR.
1020 Binary
|= getAddrModeSBit(MI
, TID
);
1022 // 32x32->64bit operations have two destination registers. The number
1023 // of register definitions will tell us if that's what we're dealing with.
1025 if (TID
.getNumDefs() == 2)
1026 Binary
|= getMachineOpValue (MI
, OpIdx
++) << ARMII::RegRdLoShift
;
1029 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdHiShift
;
1032 Binary
|= getMachineOpValue(MI
, OpIdx
++);
1035 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRsShift
;
1037 // Many multiple instructions (e.g. MLA) have three src operands. Encode
1038 // it as Rn (for multiply, that's in the same offset as RdLo.
1039 if (TID
.getNumOperands() > OpIdx
&&
1040 !TID
.OpInfo
[OpIdx
].isPredicate() &&
1041 !TID
.OpInfo
[OpIdx
].isOptionalDef())
1042 Binary
|= getMachineOpValue(MI
, OpIdx
) << ARMII::RegRdLoShift
;
1047 template<class CodeEmitter
>
1048 void Emitter
<CodeEmitter
>::emitExtendInstruction(const MachineInstr
&MI
) {
1049 const TargetInstrDesc
&TID
= MI
.getDesc();
1051 // Part of binary is determined by TableGn.
1052 unsigned Binary
= getBinaryCodeForInstr(MI
);
1054 // Set the conditional execution predicate
1055 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1060 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
1062 const MachineOperand
&MO1
= MI
.getOperand(OpIdx
++);
1063 const MachineOperand
&MO2
= MI
.getOperand(OpIdx
);
1065 // Two register operand form.
1067 Binary
|= getMachineOpValue(MI
, MO1
) << ARMII::RegRnShift
;
1070 Binary
|= getMachineOpValue(MI
, MO2
);
1073 Binary
|= getMachineOpValue(MI
, MO1
);
1076 // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1077 if (MI
.getOperand(OpIdx
).isImm() &&
1078 !TID
.OpInfo
[OpIdx
].isPredicate() &&
1079 !TID
.OpInfo
[OpIdx
].isOptionalDef())
1080 Binary
|= (getMachineOpValue(MI
, OpIdx
) / 8) << ARMII::ExtRotImmShift
;
1085 template<class CodeEmitter
>
1086 void Emitter
<CodeEmitter
>::emitMiscArithInstruction(const MachineInstr
&MI
) {
1087 const TargetInstrDesc
&TID
= MI
.getDesc();
1089 // Part of binary is determined by TableGn.
1090 unsigned Binary
= getBinaryCodeForInstr(MI
);
1092 // Set the conditional execution predicate
1093 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1098 Binary
|= getMachineOpValue(MI
, OpIdx
++) << ARMII::RegRdShift
;
1100 const MachineOperand
&MO
= MI
.getOperand(OpIdx
++);
1101 if (OpIdx
== TID
.getNumOperands() ||
1102 TID
.OpInfo
[OpIdx
].isPredicate() ||
1103 TID
.OpInfo
[OpIdx
].isOptionalDef()) {
1104 // Encode Rm and it's done.
1105 Binary
|= getMachineOpValue(MI
, MO
);
1111 Binary
|= getMachineOpValue(MI
, MO
) << ARMII::RegRnShift
;
1114 Binary
|= getMachineOpValue(MI
, OpIdx
++);
1116 // Encode shift_imm.
1117 unsigned ShiftAmt
= MI
.getOperand(OpIdx
).getImm();
1118 assert(ShiftAmt
< 32 && "shift_imm range is 0 to 31!");
1119 Binary
|= ShiftAmt
<< ARMII::ShiftShift
;
1124 template<class CodeEmitter
>
1125 void Emitter
<CodeEmitter
>::emitBranchInstruction(const MachineInstr
&MI
) {
1126 const TargetInstrDesc
&TID
= MI
.getDesc();
1128 if (TID
.Opcode
== ARM::TPsoft
) {
1129 llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1132 // Part of binary is determined by TableGn.
1133 unsigned Binary
= getBinaryCodeForInstr(MI
);
1135 // Set the conditional execution predicate
1136 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1138 // Set signed_immed_24 field
1139 Binary
|= getMachineOpValue(MI
, 0);
1144 template<class CodeEmitter
>
1145 void Emitter
<CodeEmitter
>::emitInlineJumpTable(unsigned JTIndex
) {
1146 // Remember the base address of the inline jump table.
1147 uintptr_t JTBase
= MCE
.getCurrentPCValue();
1148 JTI
->addJumpTableBaseAddr(JTIndex
, JTBase
);
1149 DOUT
<< " ** Jump Table #" << JTIndex
<< " @ " << (void*)JTBase
<< '\n';
1151 // Now emit the jump table entries.
1152 const std::vector
<MachineBasicBlock
*> &MBBs
= (*MJTEs
)[JTIndex
].MBBs
;
1153 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
) {
1155 // DestBB address - JT base.
1156 emitMachineBasicBlock(MBBs
[i
], ARM::reloc_arm_pic_jt
, JTBase
);
1158 // Absolute DestBB address.
1159 emitMachineBasicBlock(MBBs
[i
], ARM::reloc_arm_absolute
);
1164 template<class CodeEmitter
>
1165 void Emitter
<CodeEmitter
>::emitMiscBranchInstruction(const MachineInstr
&MI
) {
1166 const TargetInstrDesc
&TID
= MI
.getDesc();
1168 // Handle jump tables.
1169 if (TID
.Opcode
== ARM::BR_JTr
|| TID
.Opcode
== ARM::BR_JTadd
) {
1170 // First emit a ldr pc, [] instruction.
1171 emitDataProcessingInstruction(MI
, ARM::PC
);
1173 // Then emit the inline jump table.
1175 (TID
.Opcode
== ARM::BR_JTr
)
1176 ? MI
.getOperand(1).getIndex() : MI
.getOperand(2).getIndex();
1177 emitInlineJumpTable(JTIndex
);
1179 } else if (TID
.Opcode
== ARM::BR_JTm
) {
1180 // First emit a ldr pc, [] instruction.
1181 emitLoadStoreInstruction(MI
, ARM::PC
);
1183 // Then emit the inline jump table.
1184 emitInlineJumpTable(MI
.getOperand(3).getIndex());
1188 // Part of binary is determined by TableGn.
1189 unsigned Binary
= getBinaryCodeForInstr(MI
);
1191 // Set the conditional execution predicate
1192 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1194 if (TID
.Opcode
== ARM::BX_RET
)
1195 // The return register is LR.
1196 Binary
|= ARMRegisterInfo::getRegisterNumbering(ARM::LR
);
1198 // otherwise, set the return register
1199 Binary
|= getMachineOpValue(MI
, 0);
1204 static unsigned encodeVFPRd(const MachineInstr
&MI
, unsigned OpIdx
) {
1205 unsigned RegD
= MI
.getOperand(OpIdx
).getReg();
1206 unsigned Binary
= 0;
1207 bool isSPVFP
= false;
1208 RegD
= ARMRegisterInfo::getRegisterNumbering(RegD
, &isSPVFP
);
1210 Binary
|= RegD
<< ARMII::RegRdShift
;
1212 Binary
|= ((RegD
& 0x1E) >> 1) << ARMII::RegRdShift
;
1213 Binary
|= (RegD
& 0x01) << ARMII::D_BitShift
;
1218 static unsigned encodeVFPRn(const MachineInstr
&MI
, unsigned OpIdx
) {
1219 unsigned RegN
= MI
.getOperand(OpIdx
).getReg();
1220 unsigned Binary
= 0;
1221 bool isSPVFP
= false;
1222 RegN
= ARMRegisterInfo::getRegisterNumbering(RegN
, &isSPVFP
);
1224 Binary
|= RegN
<< ARMII::RegRnShift
;
1226 Binary
|= ((RegN
& 0x1E) >> 1) << ARMII::RegRnShift
;
1227 Binary
|= (RegN
& 0x01) << ARMII::N_BitShift
;
1232 static unsigned encodeVFPRm(const MachineInstr
&MI
, unsigned OpIdx
) {
1233 unsigned RegM
= MI
.getOperand(OpIdx
).getReg();
1234 unsigned Binary
= 0;
1235 bool isSPVFP
= false;
1236 RegM
= ARMRegisterInfo::getRegisterNumbering(RegM
, &isSPVFP
);
1240 Binary
|= ((RegM
& 0x1E) >> 1);
1241 Binary
|= (RegM
& 0x01) << ARMII::M_BitShift
;
1246 template<class CodeEmitter
>
1247 void Emitter
<CodeEmitter
>::emitVFPArithInstruction(const MachineInstr
&MI
) {
1248 const TargetInstrDesc
&TID
= MI
.getDesc();
1250 // Part of binary is determined by TableGn.
1251 unsigned Binary
= getBinaryCodeForInstr(MI
);
1253 // Set the conditional execution predicate
1254 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1257 assert((Binary
& ARMII::D_BitShift
) == 0 &&
1258 (Binary
& ARMII::N_BitShift
) == 0 &&
1259 (Binary
& ARMII::M_BitShift
) == 0 && "VFP encoding bug!");
1262 Binary
|= encodeVFPRd(MI
, OpIdx
++);
1264 // If this is a two-address operand, skip it, e.g. FMACD.
1265 if (TID
.getOperandConstraint(OpIdx
, TOI::TIED_TO
) != -1)
1269 if ((TID
.TSFlags
& ARMII::FormMask
) == ARMII::VFPBinaryFrm
)
1270 Binary
|= encodeVFPRn(MI
, OpIdx
++);
1272 if (OpIdx
== TID
.getNumOperands() ||
1273 TID
.OpInfo
[OpIdx
].isPredicate() ||
1274 TID
.OpInfo
[OpIdx
].isOptionalDef()) {
1275 // FCMPEZD etc. has only one operand.
1281 Binary
|= encodeVFPRm(MI
, OpIdx
);
1286 template<class CodeEmitter
>
1287 void Emitter
<CodeEmitter
>::emitVFPConversionInstruction(
1288 const MachineInstr
&MI
) {
1289 const TargetInstrDesc
&TID
= MI
.getDesc();
1290 unsigned Form
= TID
.TSFlags
& ARMII::FormMask
;
1292 // Part of binary is determined by TableGn.
1293 unsigned Binary
= getBinaryCodeForInstr(MI
);
1295 // Set the conditional execution predicate
1296 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1300 case ARMII::VFPConv1Frm
:
1301 case ARMII::VFPConv2Frm
:
1302 case ARMII::VFPConv3Frm
:
1304 Binary
|= encodeVFPRd(MI
, 0);
1306 case ARMII::VFPConv4Frm
:
1308 Binary
|= encodeVFPRn(MI
, 0);
1310 case ARMII::VFPConv5Frm
:
1312 Binary
|= encodeVFPRm(MI
, 0);
1318 case ARMII::VFPConv1Frm
:
1320 Binary
|= encodeVFPRm(MI
, 1);
1322 case ARMII::VFPConv2Frm
:
1323 case ARMII::VFPConv3Frm
:
1325 Binary
|= encodeVFPRn(MI
, 1);
1327 case ARMII::VFPConv4Frm
:
1328 case ARMII::VFPConv5Frm
:
1330 Binary
|= encodeVFPRd(MI
, 1);
1334 if (Form
== ARMII::VFPConv5Frm
)
1336 Binary
|= encodeVFPRn(MI
, 2);
1337 else if (Form
== ARMII::VFPConv3Frm
)
1339 Binary
|= encodeVFPRm(MI
, 2);
1344 template<class CodeEmitter
>
1345 void Emitter
<CodeEmitter
>::emitVFPLoadStoreInstruction(const MachineInstr
&MI
) {
1346 // Part of binary is determined by TableGn.
1347 unsigned Binary
= getBinaryCodeForInstr(MI
);
1349 // Set the conditional execution predicate
1350 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1355 Binary
|= encodeVFPRd(MI
, OpIdx
++);
1357 // Encode address base.
1358 const MachineOperand
&Base
= MI
.getOperand(OpIdx
++);
1359 Binary
|= getMachineOpValue(MI
, Base
) << ARMII::RegRnShift
;
1361 // If there is a non-zero immediate offset, encode it.
1363 const MachineOperand
&Offset
= MI
.getOperand(OpIdx
);
1364 if (unsigned ImmOffs
= ARM_AM::getAM5Offset(Offset
.getImm())) {
1365 if (ARM_AM::getAM5Op(Offset
.getImm()) == ARM_AM::add
)
1366 Binary
|= 1 << ARMII::U_BitShift
;
1373 // If immediate offset is omitted, default to +0.
1374 Binary
|= 1 << ARMII::U_BitShift
;
1379 template<class CodeEmitter
>
1380 void Emitter
<CodeEmitter
>::emitVFPLoadStoreMultipleInstruction(
1381 const MachineInstr
&MI
) {
1382 // Part of binary is determined by TableGn.
1383 unsigned Binary
= getBinaryCodeForInstr(MI
);
1385 // Set the conditional execution predicate
1386 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1388 // Set base address operand
1389 Binary
|= getMachineOpValue(MI
, 0) << ARMII::RegRnShift
;
1391 // Set addressing mode by modifying bits U(23) and P(24)
1392 const MachineOperand
&MO
= MI
.getOperand(1);
1393 Binary
|= getAddrModeUPBits(ARM_AM::getAM5SubMode(MO
.getImm()));
1396 if (ARM_AM::getAM5WBFlag(MO
.getImm()))
1397 Binary
|= 0x1 << ARMII::W_BitShift
;
1399 // First register is encoded in Dd.
1400 Binary
|= encodeVFPRd(MI
, 4);
1402 // Number of registers are encoded in offset field.
1403 unsigned NumRegs
= 1;
1404 for (unsigned i
= 5, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1405 const MachineOperand
&MO
= MI
.getOperand(i
);
1406 if (!MO
.isReg() || MO
.isImplicit())
1410 Binary
|= NumRegs
* 2;
1415 template<class CodeEmitter
>
1416 void Emitter
<CodeEmitter
>::emitMiscInstruction(const MachineInstr
&MI
) {
1417 // Part of binary is determined by TableGn.
1418 unsigned Binary
= getBinaryCodeForInstr(MI
);
1420 // Set the conditional execution predicate
1421 Binary
|= II
->getPredicate(&MI
) << ARMII::CondShift
;
1426 #include "ARMGenCodeEmitter.inc"