Fix part 1 of pr4682. PICADD is a 16-bit instruction even in thumb2 mode.
[llvm/avr.git] / lib / Target / X86 / X86ISelLowering.h
blob9a88cc7afd3db4ebc7291344cf634afc94c7a5e1
1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
13 //===----------------------------------------------------------------------===//
15 #ifndef X86ISELLOWERING_H
16 #define X86ISELLOWERING_H
18 #include "X86Subtarget.h"
19 #include "X86RegisterInfo.h"
20 #include "X86MachineFunctionInfo.h"
21 #include "llvm/Target/TargetLowering.h"
22 #include "llvm/CodeGen/FastISel.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
26 namespace llvm {
27 namespace X86ISD {
28 // X86 Specific DAG Nodes
29 enum NodeType {
30 // Start the numbering where the builtin ops leave off.
31 FIRST_NUMBER = ISD::BUILTIN_OP_END,
33 /// BSF - Bit scan forward.
34 /// BSR - Bit scan reverse.
35 BSF,
36 BSR,
38 /// SHLD, SHRD - Double shift instructions. These correspond to
39 /// X86::SHLDxx and X86::SHRDxx instructions.
40 SHLD,
41 SHRD,
43 /// FAND - Bitwise logical AND of floating point values. This corresponds
44 /// to X86::ANDPS or X86::ANDPD.
45 FAND,
47 /// FOR - Bitwise logical OR of floating point values. This corresponds
48 /// to X86::ORPS or X86::ORPD.
49 FOR,
51 /// FXOR - Bitwise logical XOR of floating point values. This corresponds
52 /// to X86::XORPS or X86::XORPD.
53 FXOR,
55 /// FSRL - Bitwise logical right shift of floating point values. These
56 /// corresponds to X86::PSRLDQ.
57 FSRL,
59 /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
60 /// integer source in memory and FP reg result. This corresponds to the
61 /// X86::FILD*m instructions. It has three inputs (token chain, address,
62 /// and source type) and two outputs (FP value and token chain). FILD_FLAG
63 /// also produces a flag).
64 FILD,
65 FILD_FLAG,
67 /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
68 /// integer destination in memory and a FP reg source. This corresponds
69 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
70 /// has two inputs (token chain and address) and two outputs (int value
71 /// and token chain).
72 FP_TO_INT16_IN_MEM,
73 FP_TO_INT32_IN_MEM,
74 FP_TO_INT64_IN_MEM,
76 /// FLD - This instruction implements an extending load to FP stack slots.
77 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
78 /// operand, ptr to load from, and a ValueType node indicating the type
79 /// to load to.
80 FLD,
82 /// FST - This instruction implements a truncating store to FP stack
83 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
84 /// chain operand, value to store, address, and a ValueType to store it
85 /// as.
86 FST,
88 /// CALL/TAILCALL - These operations represent an abstract X86 call
89 /// instruction, which includes a bunch of information. In particular the
90 /// operands of these node are:
91 ///
92 /// #0 - The incoming token chain
93 /// #1 - The callee
94 /// #2 - The number of arg bytes the caller pushes on the stack.
95 /// #3 - The number of arg bytes the callee pops off the stack.
96 /// #4 - The value to pass in AL/AX/EAX (optional)
97 /// #5 - The value to pass in DL/DX/EDX (optional)
98 ///
99 /// The result values of these nodes are:
101 /// #0 - The outgoing token chain
102 /// #1 - The first register result value (optional)
103 /// #2 - The second register result value (optional)
105 /// The CALL vs TAILCALL distinction boils down to whether the callee is
106 /// known not to modify the caller's stack frame, as is standard with
107 /// LLVM.
108 CALL,
109 TAILCALL,
111 /// RDTSC_DAG - This operation implements the lowering for
112 /// readcyclecounter
113 RDTSC_DAG,
115 /// X86 compare and logical compare instructions.
116 CMP, COMI, UCOMI,
118 /// X86 bit-test instructions.
121 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the flag
122 /// operand produced by a CMP instruction.
123 SETCC,
125 /// X86 conditional moves. Operand 0 and operand 1 are the two values
126 /// to select from. Operand 2 is the condition code, and operand 3 is the
127 /// flag operand produced by a CMP or TEST instruction. It also writes a
128 /// flag result.
129 CMOV,
131 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
132 /// is the block to branch if condition is true, operand 2 is the
133 /// condition code, and operand 3 is the flag operand produced by a CMP
134 /// or TEST instruction.
135 BRCOND,
137 /// Return with a flag operand. Operand 0 is the chain operand, operand
138 /// 1 is the number of bytes of stack to pop.
139 RET_FLAG,
141 /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
142 REP_STOS,
144 /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
145 REP_MOVS,
147 /// GlobalBaseReg - On Darwin, this node represents the result of the popl
148 /// at function entry, used for PIC code.
149 GlobalBaseReg,
151 /// Wrapper - A wrapper node for TargetConstantPool,
152 /// TargetExternalSymbol, and TargetGlobalAddress.
153 Wrapper,
155 /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
156 /// relative displacements.
157 WrapperRIP,
159 /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
160 /// i32, corresponds to X86::PEXTRB.
161 PEXTRB,
163 /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
164 /// i32, corresponds to X86::PEXTRW.
165 PEXTRW,
167 /// INSERTPS - Insert any element of a 4 x float vector into any element
168 /// of a destination 4 x floatvector.
169 INSERTPS,
171 /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
172 /// corresponds to X86::PINSRB.
173 PINSRB,
175 /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
176 /// corresponds to X86::PINSRW.
177 PINSRW,
179 /// PSHUFB - Shuffle 16 8-bit values within a vector.
180 PSHUFB,
182 /// FMAX, FMIN - Floating point max and min.
184 FMAX, FMIN,
186 /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
187 /// approximation. Note that these typically require refinement
188 /// in order to obtain suitable precision.
189 FRSQRT, FRCP,
191 // TLSADDR - Thread Local Storage.
192 TLSADDR,
194 // SegmentBaseAddress - The address segment:0
195 SegmentBaseAddress,
197 // EH_RETURN - Exception Handling helpers.
198 EH_RETURN,
200 /// TC_RETURN - Tail call return.
201 /// operand #0 chain
202 /// operand #1 callee (register or absolute)
203 /// operand #2 stack adjustment
204 /// operand #3 optional in flag
205 TC_RETURN,
207 // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
208 LCMPXCHG_DAG,
209 LCMPXCHG8_DAG,
211 // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
212 // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
213 // Atomic 64-bit binary operations.
214 ATOMADD64_DAG,
215 ATOMSUB64_DAG,
216 ATOMOR64_DAG,
217 ATOMXOR64_DAG,
218 ATOMAND64_DAG,
219 ATOMNAND64_DAG,
220 ATOMSWAP64_DAG,
222 // FNSTCW16m - Store FP control world into i16 memory.
223 FNSTCW16m,
225 // VZEXT_MOVL - Vector move low and zero extend.
226 VZEXT_MOVL,
228 // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
229 VZEXT_LOAD,
231 // VSHL, VSRL - Vector logical left / right shift.
232 VSHL, VSRL,
234 // CMPPD, CMPPS - Vector double/float comparison.
235 // CMPPD, CMPPS - Vector double/float comparison.
236 CMPPD, CMPPS,
238 // PCMP* - Vector integer comparisons.
239 PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ,
240 PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ,
242 // ADD, SUB, SMUL, UMUL, etc. - Arithmetic operations with FLAGS results.
243 ADD, SUB, SMUL, UMUL,
244 INC, DEC,
246 // MUL_IMM - X86 specific multiply by immediate.
247 MUL_IMM,
249 // PTEST - Vector bitwise comparisons
250 PTEST
254 /// Define some predicates that are used for node matching.
255 namespace X86 {
256 /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
257 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
258 bool isPSHUFDMask(ShuffleVectorSDNode *N);
260 /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
261 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
262 bool isPSHUFHWMask(ShuffleVectorSDNode *N);
264 /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
265 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
266 bool isPSHUFLWMask(ShuffleVectorSDNode *N);
268 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
269 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
270 bool isSHUFPMask(ShuffleVectorSDNode *N);
272 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
273 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
274 bool isMOVHLPSMask(ShuffleVectorSDNode *N);
276 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
277 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
278 /// <2, 3, 2, 3>
279 bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N);
281 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
282 /// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
283 bool isMOVLPMask(ShuffleVectorSDNode *N);
285 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
286 /// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
287 /// as well as MOVLHPS.
288 bool isMOVHPMask(ShuffleVectorSDNode *N);
290 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
291 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
292 bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
294 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
295 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
296 bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
298 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
299 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
300 /// <0, 0, 1, 1>
301 bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N);
303 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
304 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
305 /// <2, 2, 3, 3>
306 bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N);
308 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
309 /// specifies a shuffle of elements that is suitable for input to MOVSS,
310 /// MOVSD, and MOVD, i.e. setting the lowest element.
311 bool isMOVLMask(ShuffleVectorSDNode *N);
313 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
314 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
315 bool isMOVSHDUPMask(ShuffleVectorSDNode *N);
317 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
318 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
319 bool isMOVSLDUPMask(ShuffleVectorSDNode *N);
321 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
322 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
323 bool isMOVDDUPMask(ShuffleVectorSDNode *N);
325 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
326 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
327 /// instructions.
328 unsigned getShuffleSHUFImmediate(SDNode *N);
330 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
331 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
332 /// instructions.
333 unsigned getShufflePSHUFHWImmediate(SDNode *N);
335 /// getShufflePSHUFKWImmediate - Return the appropriate immediate to shuffle
336 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
337 /// instructions.
338 unsigned getShufflePSHUFLWImmediate(SDNode *N);
340 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
341 /// constant +0.0.
342 bool isZeroNode(SDValue Elt);
345 //===--------------------------------------------------------------------===//
346 // X86TargetLowering - X86 Implementation of the TargetLowering interface
347 class X86TargetLowering : public TargetLowering {
348 int VarArgsFrameIndex; // FrameIndex for start of varargs area.
349 int RegSaveFrameIndex; // X86-64 vararg func register save area.
350 unsigned VarArgsGPOffset; // X86-64 vararg func int reg offset.
351 unsigned VarArgsFPOffset; // X86-64 vararg func fp reg offset.
352 int BytesToPopOnReturn; // Number of arg bytes ret should pop.
353 int BytesCallerReserves; // Number of arg bytes caller makes.
355 public:
356 explicit X86TargetLowering(X86TargetMachine &TM);
358 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
359 /// jumptable.
360 SDValue getPICJumpTableRelocBase(SDValue Table,
361 SelectionDAG &DAG) const;
363 // Return the number of bytes that a function should pop when it returns (in
364 // addition to the space used by the return address).
366 unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }
368 // Return the number of bytes that the caller reserves for arguments passed
369 // to this function.
370 unsigned getBytesCallerReserves() const { return BytesCallerReserves; }
372 /// getStackPtrReg - Return the stack pointer register we are using: either
373 /// ESP or RSP.
374 unsigned getStackPtrReg() const { return X86StackPtr; }
376 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
377 /// function arguments in the caller parameter area. For X86, aggregates
378 /// that contains are placed at 16-byte boundaries while the rest are at
379 /// 4-byte boundaries.
380 virtual unsigned getByValTypeAlignment(const Type *Ty) const;
382 /// getOptimalMemOpType - Returns the target specific optimal type for load
383 /// and store operations as a result of memset, memcpy, and memmove
384 /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
385 /// determining it.
386 virtual
387 MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
388 bool isSrcConst, bool isSrcStr,
389 SelectionDAG &DAG) const;
391 /// LowerOperation - Provide custom lowering hooks for some operations.
393 virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
395 /// ReplaceNodeResults - Replace the results of node with an illegal result
396 /// type with new values built out of custom code.
398 virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
399 SelectionDAG &DAG);
402 virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
404 virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
405 MachineBasicBlock *MBB) const;
408 /// getTargetNodeName - This method returns the name of a target specific
409 /// DAG node.
410 virtual const char *getTargetNodeName(unsigned Opcode) const;
412 /// getSetCCResultType - Return the ISD::SETCC ValueType
413 virtual MVT getSetCCResultType(MVT VT) const;
415 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
416 /// in Mask are known to be either zero or one and return them in the
417 /// KnownZero/KnownOne bitsets.
418 virtual void computeMaskedBitsForTargetNode(const SDValue Op,
419 const APInt &Mask,
420 APInt &KnownZero,
421 APInt &KnownOne,
422 const SelectionDAG &DAG,
423 unsigned Depth = 0) const;
425 virtual bool
426 isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
428 SDValue getReturnAddressFrameIndex(SelectionDAG &DAG);
430 virtual bool ExpandInlineAsm(CallInst *CI) const;
432 ConstraintType getConstraintType(const std::string &Constraint) const;
434 std::vector<unsigned>
435 getRegClassForInlineAsmConstraint(const std::string &Constraint,
436 MVT VT) const;
438 virtual const char *LowerXConstraint(MVT ConstraintVT) const;
440 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
441 /// vector. If it is invalid, don't add anything to Ops. If hasMemory is
442 /// true it means one of the asm constraint of the inline asm instruction
443 /// being processed is 'm'.
444 virtual void LowerAsmOperandForConstraint(SDValue Op,
445 char ConstraintLetter,
446 bool hasMemory,
447 std::vector<SDValue> &Ops,
448 SelectionDAG &DAG) const;
450 /// getRegForInlineAsmConstraint - Given a physical register constraint
451 /// (e.g. {edx}), return the register number and the register class for the
452 /// register. This should only be used for C_Register constraints. On
453 /// error, this returns a register number of 0.
454 std::pair<unsigned, const TargetRegisterClass*>
455 getRegForInlineAsmConstraint(const std::string &Constraint,
456 MVT VT) const;
458 /// isLegalAddressingMode - Return true if the addressing mode represented
459 /// by AM is legal for this target, for a load/store of the specified type.
460 virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
462 /// isTruncateFree - Return true if it's free to truncate a value of
463 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
464 /// register EAX to i16 by referencing its sub-register AX.
465 virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const;
466 virtual bool isTruncateFree(MVT VT1, MVT VT2) const;
468 /// isZExtFree - Return true if any actual instruction that defines a
469 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
470 /// register. This does not necessarily include registers defined in
471 /// unknown ways, such as incoming arguments, or copies from unknown
472 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
473 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
474 /// all instructions that define 32-bit values implicit zero-extend the
475 /// result out to 64 bits.
476 virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const;
477 virtual bool isZExtFree(MVT VT1, MVT VT2) const;
479 /// isNarrowingProfitable - Return true if it's profitable to narrow
480 /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
481 /// from i32 to i8 but not from i32 to i16.
482 virtual bool isNarrowingProfitable(MVT VT1, MVT VT2) const;
484 /// isShuffleMaskLegal - Targets can use this to indicate that they only
485 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
486 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
487 /// values are assumed to be legal.
488 virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
489 MVT VT) const;
491 /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
492 /// used by Targets can use this to indicate if there is a suitable
493 /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
494 /// pool entry.
495 virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
496 MVT VT) const;
498 /// ShouldShrinkFPConstant - If true, then instruction selection should
499 /// seek to shrink the FP constant of the specified type to a smaller type
500 /// in order to save space and / or reduce runtime.
501 virtual bool ShouldShrinkFPConstant(MVT VT) const {
502 // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
503 // expensive than a straight movsd. On the other hand, it's important to
504 // shrink long double fp constant since fldt is very slow.
505 return !X86ScalarSSEf64 || VT == MVT::f80;
508 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
509 /// for tail call optimization. Targets which want to do tail call
510 /// optimization should implement this function.
511 virtual bool IsEligibleForTailCallOptimization(CallSDNode *TheCall,
512 SDValue Ret,
513 SelectionDAG &DAG) const;
515 virtual const X86Subtarget* getSubtarget() {
516 return Subtarget;
519 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
520 /// computed in an SSE register, not on the X87 floating point stack.
521 bool isScalarFPTypeInSSEReg(MVT VT) const {
522 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
523 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
526 /// getWidenVectorType: given a vector type, returns the type to widen
527 /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
528 /// If there is no vector type that we want to widen to, returns MVT::Other
529 /// When and were to widen is target dependent based on the cost of
530 /// scalarizing vs using the wider vector type.
531 virtual MVT getWidenVectorType(MVT VT) const;
533 /// createFastISel - This method returns a target specific FastISel object,
534 /// or null if the target does not support "fast" ISel.
535 virtual FastISel *
536 createFastISel(MachineFunction &mf,
537 MachineModuleInfo *mmi, DwarfWriter *dw,
538 DenseMap<const Value *, unsigned> &,
539 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
540 DenseMap<const AllocaInst *, int> &
541 #ifndef NDEBUG
542 , SmallSet<Instruction*, 8> &
543 #endif
546 /// getFunctionAlignment - Return the Log2 alignment of this function.
547 virtual unsigned getFunctionAlignment(const Function *F) const;
549 private:
550 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
551 /// make the right decision when generating code for different targets.
552 const X86Subtarget *Subtarget;
553 const X86RegisterInfo *RegInfo;
554 const TargetData *TD;
556 /// X86StackPtr - X86 physical register used as stack ptr.
557 unsigned X86StackPtr;
559 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
560 /// floating point ops.
561 /// When SSE is available, use it for f32 operations.
562 /// When SSE2 is available, use it for f64 operations.
563 bool X86ScalarSSEf32;
564 bool X86ScalarSSEf64;
566 SDNode *LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
567 unsigned CallingConv, SelectionDAG &DAG);
569 SDValue LowerMemArgument(SDValue Op, SelectionDAG &DAG,
570 const CCValAssign &VA, MachineFrameInfo *MFI,
571 unsigned CC, SDValue Root, unsigned i);
573 SDValue LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
574 const SDValue &StackPtr,
575 const CCValAssign &VA, SDValue Chain,
576 SDValue Arg, ISD::ArgFlagsTy Flags);
578 // Call lowering helpers.
579 bool IsCalleePop(bool isVarArg, unsigned CallingConv);
580 SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
581 SDValue Chain, bool IsTailCall, bool Is64Bit,
582 int FPDiff, DebugLoc dl);
584 CCAssignFn *CCAssignFnForNode(unsigned CallingConv) const;
585 NameDecorationStyle NameDecorationForFORMAL_ARGUMENTS(SDValue Op);
586 unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG &DAG);
588 std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
589 bool isSigned);
591 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG);
592 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG);
593 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG);
594 SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG);
595 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG);
596 SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG);
597 SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG);
598 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG);
599 SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
600 int64_t Offset, SelectionDAG &DAG) const;
601 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
602 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
603 SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG);
604 SDValue LowerShift(SDValue Op, SelectionDAG &DAG);
605 SDValue BuildFILD(SDValue Op, MVT SrcVT, SDValue Chain, SDValue StackSlot,
606 SelectionDAG &DAG);
607 SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG);
608 SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG);
609 SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG);
610 SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG);
611 SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG);
612 SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG);
613 SDValue LowerFABS(SDValue Op, SelectionDAG &DAG);
614 SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG);
615 SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG);
616 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG);
617 SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG);
618 SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG);
619 SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG);
620 SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG);
621 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG);
622 SDValue LowerCALL(SDValue Op, SelectionDAG &DAG);
623 SDValue LowerRET(SDValue Op, SelectionDAG &DAG);
624 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG);
625 SDValue LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG);
626 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG);
627 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG);
628 SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG);
629 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG);
630 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG);
631 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG);
632 SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG);
633 SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG);
634 SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG);
635 SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG);
636 SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG);
637 SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG);
638 SDValue LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG);
639 SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG);
641 SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG);
642 SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG);
643 SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG);
645 void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
646 SelectionDAG &DAG, unsigned NewOp);
648 SDValue EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
649 SDValue Chain,
650 SDValue Dst, SDValue Src,
651 SDValue Size, unsigned Align,
652 const Value *DstSV, uint64_t DstSVOff);
653 SDValue EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
654 SDValue Chain,
655 SDValue Dst, SDValue Src,
656 SDValue Size, unsigned Align,
657 bool AlwaysInline,
658 const Value *DstSV, uint64_t DstSVOff,
659 const Value *SrcSV, uint64_t SrcSVOff);
661 /// Utility function to emit atomic bitwise operations (and, or, xor).
662 // It takes the bitwise instruction to expand, the associated machine basic
663 // block, and the associated X86 opcodes for reg/reg and reg/imm.
664 MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
665 MachineInstr *BInstr,
666 MachineBasicBlock *BB,
667 unsigned regOpc,
668 unsigned immOpc,
669 unsigned loadOpc,
670 unsigned cxchgOpc,
671 unsigned copyOpc,
672 unsigned notOpc,
673 unsigned EAXreg,
674 TargetRegisterClass *RC,
675 bool invSrc = false) const;
677 MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
678 MachineInstr *BInstr,
679 MachineBasicBlock *BB,
680 unsigned regOpcL,
681 unsigned regOpcH,
682 unsigned immOpcL,
683 unsigned immOpcH,
684 bool invSrc = false) const;
686 /// Utility function to emit atomic min and max. It takes the min/max
687 /// instruction to expand, the associated basic block, and the associated
688 /// cmov opcode for moving the min or max value.
689 MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
690 MachineBasicBlock *BB,
691 unsigned cmovOpc) const;
693 /// Emit nodes that will be selected as "test Op0,Op0", or something
694 /// equivalent, for use with the given x86 condition code.
695 SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG);
697 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
698 /// equivalent, for use with the given x86 condition code.
699 SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
700 SelectionDAG &DAG);
703 namespace X86 {
704 FastISel *createFastISel(MachineFunction &mf,
705 MachineModuleInfo *mmi, DwarfWriter *dw,
706 DenseMap<const Value *, unsigned> &,
707 DenseMap<const BasicBlock *, MachineBasicBlock *> &,
708 DenseMap<const AllocaInst *, int> &
709 #ifndef NDEBUG
710 , SmallSet<Instruction*, 8> &
711 #endif
716 #endif // X86ISELLOWERING_H