remove a dead bool.
[llvm/avr.git] / lib / Analysis / LoopInfo.cpp
blob665e53df6dcc1c46797d774206658e050e8ca0ef
1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG. Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Analysis/Dominators.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/Support/CFG.h"
23 #include "llvm/ADT/DepthFirstIterator.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include <algorithm>
26 using namespace llvm;
28 char LoopInfo::ID = 0;
29 static RegisterPass<LoopInfo>
30 X("loops", "Natural Loop Information", true, true);
32 //===----------------------------------------------------------------------===//
33 // Loop implementation
36 /// isLoopInvariant - Return true if the specified value is loop invariant
37 ///
38 bool Loop::isLoopInvariant(Value *V) const {
39 if (Instruction *I = dyn_cast<Instruction>(V))
40 return isLoopInvariant(I);
41 return true; // All non-instructions are loop invariant
44 /// isLoopInvariant - Return true if the specified instruction is
45 /// loop-invariant.
46 ///
47 bool Loop::isLoopInvariant(Instruction *I) const {
48 return !contains(I->getParent());
51 /// makeLoopInvariant - If the given value is an instruciton inside of the
52 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
53 /// Return true if the value after any hoisting is loop invariant. This
54 /// function can be used as a slightly more aggressive replacement for
55 /// isLoopInvariant.
56 ///
57 /// If InsertPt is specified, it is the point to hoist instructions to.
58 /// If null, the terminator of the loop preheader is used.
59 ///
60 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
61 Instruction *InsertPt) const {
62 if (Instruction *I = dyn_cast<Instruction>(V))
63 return makeLoopInvariant(I, Changed, InsertPt);
64 return true; // All non-instructions are loop-invariant.
67 /// makeLoopInvariant - If the given instruction is inside of the
68 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
69 /// Return true if the instruction after any hoisting is loop invariant. This
70 /// function can be used as a slightly more aggressive replacement for
71 /// isLoopInvariant.
72 ///
73 /// If InsertPt is specified, it is the point to hoist instructions to.
74 /// If null, the terminator of the loop preheader is used.
75 ///
76 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
77 Instruction *InsertPt) const {
78 // Test if the value is already loop-invariant.
79 if (isLoopInvariant(I))
80 return true;
81 if (!I->isSafeToSpeculativelyExecute())
82 return false;
83 if (I->mayReadFromMemory())
84 return false;
85 // Determine the insertion point, unless one was given.
86 if (!InsertPt) {
87 BasicBlock *Preheader = getLoopPreheader();
88 // Without a preheader, hoisting is not feasible.
89 if (!Preheader)
90 return false;
91 InsertPt = Preheader->getTerminator();
93 // Don't hoist instructions with loop-variant operands.
94 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
95 if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
96 return false;
97 // Hoist.
98 I->moveBefore(InsertPt);
99 Changed = true;
100 return true;
103 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
104 /// induction variable: an integer recurrence that starts at 0 and increments
105 /// by one each time through the loop. If so, return the phi node that
106 /// corresponds to it.
108 /// The IndVarSimplify pass transforms loops to have a canonical induction
109 /// variable.
111 PHINode *Loop::getCanonicalInductionVariable() const {
112 BasicBlock *H = getHeader();
114 BasicBlock *Incoming = 0, *Backedge = 0;
115 typedef GraphTraits<Inverse<BasicBlock*> > InvBlockTraits;
116 InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(H);
117 assert(PI != InvBlockTraits::child_end(H) &&
118 "Loop must have at least one backedge!");
119 Backedge = *PI++;
120 if (PI == InvBlockTraits::child_end(H)) return 0; // dead loop
121 Incoming = *PI++;
122 if (PI != InvBlockTraits::child_end(H)) return 0; // multiple backedges?
124 if (contains(Incoming)) {
125 if (contains(Backedge))
126 return 0;
127 std::swap(Incoming, Backedge);
128 } else if (!contains(Backedge))
129 return 0;
131 // Loop over all of the PHI nodes, looking for a canonical indvar.
132 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
133 PHINode *PN = cast<PHINode>(I);
134 if (ConstantInt *CI =
135 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
136 if (CI->isNullValue())
137 if (Instruction *Inc =
138 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
139 if (Inc->getOpcode() == Instruction::Add &&
140 Inc->getOperand(0) == PN)
141 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
142 if (CI->equalsInt(1))
143 return PN;
145 return 0;
148 /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
149 /// the canonical induction variable value for the "next" iteration of the
150 /// loop. This always succeeds if getCanonicalInductionVariable succeeds.
152 Instruction *Loop::getCanonicalInductionVariableIncrement() const {
153 if (PHINode *PN = getCanonicalInductionVariable()) {
154 bool P1InLoop = contains(PN->getIncomingBlock(1));
155 return cast<Instruction>(PN->getIncomingValue(P1InLoop));
157 return 0;
160 /// getTripCount - Return a loop-invariant LLVM value indicating the number of
161 /// times the loop will be executed. Note that this means that the backedge
162 /// of the loop executes N-1 times. If the trip-count cannot be determined,
163 /// this returns null.
165 /// The IndVarSimplify pass transforms loops to have a form that this
166 /// function easily understands.
168 Value *Loop::getTripCount() const {
169 // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
170 // canonical induction variable and V is the trip count of the loop.
171 Instruction *Inc = getCanonicalInductionVariableIncrement();
172 if (Inc == 0) return 0;
173 PHINode *IV = cast<PHINode>(Inc->getOperand(0));
175 BasicBlock *BackedgeBlock =
176 IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
178 if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
179 if (BI->isConditional()) {
180 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
181 if (ICI->getOperand(0) == Inc) {
182 if (BI->getSuccessor(0) == getHeader()) {
183 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
184 return ICI->getOperand(1);
185 } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
186 return ICI->getOperand(1);
192 return 0;
195 /// getSmallConstantTripCount - Returns the trip count of this loop as a
196 /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
197 /// of not constant. Will also return 0 if the trip count is very large
198 /// (>= 2^32)
199 unsigned Loop::getSmallConstantTripCount() const {
200 Value* TripCount = this->getTripCount();
201 if (TripCount) {
202 if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
203 // Guard against huge trip counts.
204 if (TripCountC->getValue().getActiveBits() <= 32) {
205 return (unsigned)TripCountC->getZExtValue();
209 return 0;
212 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
213 /// trip count of this loop as a normal unsigned value, if possible. This
214 /// means that the actual trip count is always a multiple of the returned
215 /// value (don't forget the trip count could very well be zero as well!).
217 /// Returns 1 if the trip count is unknown or not guaranteed to be the
218 /// multiple of a constant (which is also the case if the trip count is simply
219 /// constant, use getSmallConstantTripCount for that case), Will also return 1
220 /// if the trip count is very large (>= 2^32).
221 unsigned Loop::getSmallConstantTripMultiple() const {
222 Value* TripCount = this->getTripCount();
223 // This will hold the ConstantInt result, if any
224 ConstantInt *Result = NULL;
225 if (TripCount) {
226 // See if the trip count is constant itself
227 Result = dyn_cast<ConstantInt>(TripCount);
228 // if not, see if it is a multiplication
229 if (!Result)
230 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
231 switch (BO->getOpcode()) {
232 case BinaryOperator::Mul:
233 Result = dyn_cast<ConstantInt>(BO->getOperand(1));
234 break;
235 default:
236 break;
240 // Guard against huge trip counts.
241 if (Result && Result->getValue().getActiveBits() <= 32) {
242 return (unsigned)Result->getZExtValue();
243 } else {
244 return 1;
248 /// isLCSSAForm - Return true if the Loop is in LCSSA form
249 bool Loop::isLCSSAForm() const {
250 // Sort the blocks vector so that we can use binary search to do quick
251 // lookups.
252 SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
254 for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
255 BasicBlock *BB = *BI;
256 for (BasicBlock ::iterator I = BB->begin(), E = BB->end(); I != E;++I)
257 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
258 ++UI) {
259 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
260 if (PHINode *P = dyn_cast<PHINode>(*UI)) {
261 UserBB = P->getIncomingBlock(UI);
264 // Check the current block, as a fast-path. Most values are used in
265 // the same block they are defined in.
266 if (UserBB != BB && !LoopBBs.count(UserBB))
267 return false;
271 return true;
274 /// isLoopSimplifyForm - Return true if the Loop is in the form that
275 /// the LoopSimplify form transforms loops to, which is sometimes called
276 /// normal form.
277 bool Loop::isLoopSimplifyForm() const {
278 // Normal-form loops have a preheader.
279 if (!getLoopPreheader())
280 return false;
281 // Normal-form loops have a single backedge.
282 if (!getLoopLatch())
283 return false;
284 // Each predecessor of each exit block of a normal loop is contained
285 // within the loop.
286 SmallVector<BasicBlock *, 4> ExitBlocks;
287 getExitBlocks(ExitBlocks);
288 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
289 for (pred_iterator PI = pred_begin(ExitBlocks[i]),
290 PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
291 if (!contains(*PI))
292 return false;
293 // All the requirements are met.
294 return true;
297 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
298 /// These are the blocks _outside of the current loop_ which are branched to.
299 /// This assumes that loop is in canonical form.
301 void
302 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
303 assert(isLoopSimplifyForm() &&
304 "getUniqueExitBlocks assumes the loop is in canonical form!");
306 // Sort the blocks vector so that we can use binary search to do quick
307 // lookups.
308 SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
309 std::sort(LoopBBs.begin(), LoopBBs.end());
311 SmallVector<BasicBlock *, 32> switchExitBlocks;
313 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
315 BasicBlock *current = *BI;
316 switchExitBlocks.clear();
318 typedef GraphTraits<BasicBlock *> BlockTraits;
319 typedef GraphTraits<Inverse<BasicBlock *> > InvBlockTraits;
320 for (BlockTraits::ChildIteratorType I =
321 BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
322 I != E; ++I) {
323 // If block is inside the loop then it is not a exit block.
324 if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
325 continue;
327 InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(*I);
328 BasicBlock *firstPred = *PI;
330 // If current basic block is this exit block's first predecessor
331 // then only insert exit block in to the output ExitBlocks vector.
332 // This ensures that same exit block is not inserted twice into
333 // ExitBlocks vector.
334 if (current != firstPred)
335 continue;
337 // If a terminator has more then two successors, for example SwitchInst,
338 // then it is possible that there are multiple edges from current block
339 // to one exit block.
340 if (std::distance(BlockTraits::child_begin(current),
341 BlockTraits::child_end(current)) <= 2) {
342 ExitBlocks.push_back(*I);
343 continue;
346 // In case of multiple edges from current block to exit block, collect
347 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
348 // duplicate edges.
349 if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
350 == switchExitBlocks.end()) {
351 switchExitBlocks.push_back(*I);
352 ExitBlocks.push_back(*I);
358 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
359 /// block, return that block. Otherwise return null.
360 BasicBlock *Loop::getUniqueExitBlock() const {
361 SmallVector<BasicBlock *, 8> UniqueExitBlocks;
362 getUniqueExitBlocks(UniqueExitBlocks);
363 if (UniqueExitBlocks.size() == 1)
364 return UniqueExitBlocks[0];
365 return 0;
368 //===----------------------------------------------------------------------===//
369 // LoopInfo implementation
371 bool LoopInfo::runOnFunction(Function &) {
372 releaseMemory();
373 LI.Calculate(getAnalysis<DominatorTree>().getBase()); // Update
374 return false;
377 void LoopInfo::verifyAnalysis() const {
378 for (iterator I = begin(), E = end(); I != E; ++I) {
379 assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
380 (*I)->verifyLoopNest();
384 void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
385 AU.setPreservesAll();
386 AU.addRequired<DominatorTree>();
389 void LoopInfo::print(raw_ostream &OS, const Module*) const {
390 LI.print(OS);