1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the pass which converts floating point instructions from
11 // virtual registers into register stack instructions. This pass uses live
12 // variable information to indicate where the FPn registers are used and their
15 // This pass is hampered by the lack of decent CFG manipulation routines for
16 // machine code. In particular, this wants to be able to split critical edges
17 // as necessary, traverse the machine basic block CFG in depth-first order, and
18 // allow there to be multiple machine basic blocks for each LLVM basicblock
19 // (needed for critical edge splitting).
21 // In particular, this pass currently barfs on critical edges. Because of this,
22 // it requires the instruction selector to insert FP_REG_KILL instructions on
23 // the exits of any basic block that has critical edges going from it, or which
24 // branch to a critical basic block.
26 // FIXME: this is not implemented yet. The stackifier pass only works on local
29 //===----------------------------------------------------------------------===//
31 #define DEBUG_TYPE "x86-codegen"
33 #include "X86InstrInfo.h"
34 #include "llvm/ADT/DepthFirstIterator.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/Passes.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetMachine.h"
52 STATISTIC(NumFXCH
, "Number of fxch instructions inserted");
53 STATISTIC(NumFP
, "Number of floating point instructions");
56 struct VISIBILITY_HIDDEN FPS
: public MachineFunctionPass
{
58 FPS() : MachineFunctionPass(&ID
) {}
60 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
62 AU
.addPreservedID(MachineLoopInfoID
);
63 AU
.addPreservedID(MachineDominatorsID
);
64 MachineFunctionPass::getAnalysisUsage(AU
);
67 virtual bool runOnMachineFunction(MachineFunction
&MF
);
69 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
72 const TargetInstrInfo
*TII
; // Machine instruction info.
73 MachineBasicBlock
*MBB
; // Current basic block
74 unsigned Stack
[8]; // FP<n> Registers in each stack slot...
75 unsigned RegMap
[8]; // Track which stack slot contains each register
76 unsigned StackTop
; // The current top of the FP stack.
78 void dumpStack() const {
79 errs() << "Stack contents:";
80 for (unsigned i
= 0; i
!= StackTop
; ++i
) {
81 errs() << " FP" << Stack
[i
];
82 assert(RegMap
[Stack
[i
]] == i
&& "Stack[] doesn't match RegMap[]!");
87 /// isStackEmpty - Return true if the FP stack is empty.
88 bool isStackEmpty() const {
92 // getSlot - Return the stack slot number a particular register number is
94 unsigned getSlot(unsigned RegNo
) const {
95 assert(RegNo
< 8 && "Regno out of range!");
99 // getStackEntry - Return the X86::FP<n> register in register ST(i).
100 unsigned getStackEntry(unsigned STi
) const {
101 assert(STi
< StackTop
&& "Access past stack top!");
102 return Stack
[StackTop
-1-STi
];
105 // getSTReg - Return the X86::ST(i) register which contains the specified
106 // FP<RegNo> register.
107 unsigned getSTReg(unsigned RegNo
) const {
108 return StackTop
- 1 - getSlot(RegNo
) + llvm::X86::ST0
;
111 // pushReg - Push the specified FP<n> register onto the stack.
112 void pushReg(unsigned Reg
) {
113 assert(Reg
< 8 && "Register number out of range!");
114 assert(StackTop
< 8 && "Stack overflow!");
115 Stack
[StackTop
] = Reg
;
116 RegMap
[Reg
] = StackTop
++;
119 bool isAtTop(unsigned RegNo
) const { return getSlot(RegNo
) == StackTop
-1; }
120 void moveToTop(unsigned RegNo
, MachineBasicBlock::iterator I
) {
121 MachineInstr
*MI
= I
;
122 DebugLoc dl
= MI
->getDebugLoc();
123 if (isAtTop(RegNo
)) return;
125 unsigned STReg
= getSTReg(RegNo
);
126 unsigned RegOnTop
= getStackEntry(0);
128 // Swap the slots the regs are in.
129 std::swap(RegMap
[RegNo
], RegMap
[RegOnTop
]);
131 // Swap stack slot contents.
132 assert(RegMap
[RegOnTop
] < StackTop
);
133 std::swap(Stack
[RegMap
[RegOnTop
]], Stack
[StackTop
-1]);
135 // Emit an fxch to update the runtime processors version of the state.
136 BuildMI(*MBB
, I
, dl
, TII
->get(X86::XCH_F
)).addReg(STReg
);
140 void duplicateToTop(unsigned RegNo
, unsigned AsReg
, MachineInstr
*I
) {
141 DebugLoc dl
= I
->getDebugLoc();
142 unsigned STReg
= getSTReg(RegNo
);
143 pushReg(AsReg
); // New register on top of stack
145 BuildMI(*MBB
, I
, dl
, TII
->get(X86::LD_Frr
)).addReg(STReg
);
148 // popStackAfter - Pop the current value off of the top of the FP stack
149 // after the specified instruction.
150 void popStackAfter(MachineBasicBlock::iterator
&I
);
152 // freeStackSlotAfter - Free the specified register from the register stack,
153 // so that it is no longer in a register. If the register is currently at
154 // the top of the stack, we just pop the current instruction, otherwise we
155 // store the current top-of-stack into the specified slot, then pop the top
157 void freeStackSlotAfter(MachineBasicBlock::iterator
&I
, unsigned Reg
);
159 bool processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
161 void handleZeroArgFP(MachineBasicBlock::iterator
&I
);
162 void handleOneArgFP(MachineBasicBlock::iterator
&I
);
163 void handleOneArgFPRW(MachineBasicBlock::iterator
&I
);
164 void handleTwoArgFP(MachineBasicBlock::iterator
&I
);
165 void handleCompareFP(MachineBasicBlock::iterator
&I
);
166 void handleCondMovFP(MachineBasicBlock::iterator
&I
);
167 void handleSpecialFP(MachineBasicBlock::iterator
&I
);
172 FunctionPass
*llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
174 /// getFPReg - Return the X86::FPx register number for the specified operand.
175 /// For example, this returns 3 for X86::FP3.
176 static unsigned getFPReg(const MachineOperand
&MO
) {
177 assert(MO
.isReg() && "Expected an FP register!");
178 unsigned Reg
= MO
.getReg();
179 assert(Reg
>= X86::FP0
&& Reg
<= X86::FP6
&& "Expected FP register!");
180 return Reg
- X86::FP0
;
184 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
185 /// register references into FP stack references.
187 bool FPS::runOnMachineFunction(MachineFunction
&MF
) {
188 // We only need to run this pass if there are any FP registers used in this
189 // function. If it is all integer, there is nothing for us to do!
190 bool FPIsUsed
= false;
192 assert(X86::FP6
== X86::FP0
+6 && "Register enums aren't sorted right!");
193 for (unsigned i
= 0; i
<= 6; ++i
)
194 if (MF
.getRegInfo().isPhysRegUsed(X86::FP0
+i
)) {
200 if (!FPIsUsed
) return false;
202 TII
= MF
.getTarget().getInstrInfo();
205 // Process the function in depth first order so that we process at least one
206 // of the predecessors for every reachable block in the function.
207 SmallPtrSet
<MachineBasicBlock
*, 8> Processed
;
208 MachineBasicBlock
*Entry
= MF
.begin();
210 bool Changed
= false;
211 for (df_ext_iterator
<MachineBasicBlock
*, SmallPtrSet
<MachineBasicBlock
*, 8> >
212 I
= df_ext_begin(Entry
, Processed
), E
= df_ext_end(Entry
, Processed
);
214 Changed
|= processBasicBlock(MF
, **I
);
216 // Process any unreachable blocks in arbitrary order now.
217 if (MF
.size() == Processed
.size())
220 for (MachineFunction::iterator BB
= MF
.begin(), E
= MF
.end(); BB
!= E
; ++BB
)
221 if (Processed
.insert(BB
))
222 Changed
|= processBasicBlock(MF
, *BB
);
227 /// processBasicBlock - Loop over all of the instructions in the basic block,
228 /// transforming FP instructions into their stack form.
230 bool FPS::processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&BB
) {
231 bool Changed
= false;
234 for (MachineBasicBlock::iterator I
= BB
.begin(); I
!= BB
.end(); ++I
) {
235 MachineInstr
*MI
= I
;
236 unsigned Flags
= MI
->getDesc().TSFlags
;
238 unsigned FPInstClass
= Flags
& X86II::FPTypeMask
;
239 if (MI
->getOpcode() == TargetInstrInfo::INLINEASM
)
240 FPInstClass
= X86II::SpecialFP
;
242 if (FPInstClass
== X86II::NotFP
)
243 continue; // Efficiently ignore non-fp insts!
245 MachineInstr
*PrevMI
= 0;
249 ++NumFP
; // Keep track of # of pseudo instrs
250 DEBUG(errs() << "\nFPInst:\t" << *MI
);
252 // Get dead variables list now because the MI pointer may be deleted as part
254 SmallVector
<unsigned, 8> DeadRegs
;
255 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
256 const MachineOperand
&MO
= MI
->getOperand(i
);
257 if (MO
.isReg() && MO
.isDead())
258 DeadRegs
.push_back(MO
.getReg());
261 switch (FPInstClass
) {
262 case X86II::ZeroArgFP
: handleZeroArgFP(I
); break;
263 case X86II::OneArgFP
: handleOneArgFP(I
); break; // fstp ST(0)
264 case X86II::OneArgFPRW
: handleOneArgFPRW(I
); break; // ST(0) = fsqrt(ST(0))
265 case X86II::TwoArgFP
: handleTwoArgFP(I
); break;
266 case X86II::CompareFP
: handleCompareFP(I
); break;
267 case X86II::CondMovFP
: handleCondMovFP(I
); break;
268 case X86II::SpecialFP
: handleSpecialFP(I
); break;
269 default: llvm_unreachable("Unknown FP Type!");
272 // Check to see if any of the values defined by this instruction are dead
273 // after definition. If so, pop them.
274 for (unsigned i
= 0, e
= DeadRegs
.size(); i
!= e
; ++i
) {
275 unsigned Reg
= DeadRegs
[i
];
276 if (Reg
>= X86::FP0
&& Reg
<= X86::FP6
) {
277 DEBUG(errs() << "Register FP#" << Reg
-X86::FP0
<< " is dead!\n");
278 freeStackSlotAfter(I
, Reg
-X86::FP0
);
282 // Print out all of the instructions expanded to if -debug
284 MachineBasicBlock::iterator
PrevI(PrevMI
);
286 errs() << "Just deleted pseudo instruction\n";
288 MachineBasicBlock::iterator Start
= I
;
289 // Rewind to first instruction newly inserted.
290 while (Start
!= BB
.begin() && prior(Start
) != PrevI
) --Start
;
291 errs() << "Inserted instructions:\n\t";
292 Start
->print(errs(), &MF
.getTarget());
293 while (++Start
!= next(I
)) {}
301 assert(isStackEmpty() && "Stack not empty at end of basic block?");
305 //===----------------------------------------------------------------------===//
306 // Efficient Lookup Table Support
307 //===----------------------------------------------------------------------===//
313 bool operator<(const TableEntry
&TE
) const { return from
< TE
.from
; }
314 friend bool operator<(const TableEntry
&TE
, unsigned V
) {
317 friend bool operator<(unsigned V
, const TableEntry
&TE
) {
324 static bool TableIsSorted(const TableEntry
*Table
, unsigned NumEntries
) {
325 for (unsigned i
= 0; i
!= NumEntries
-1; ++i
)
326 if (!(Table
[i
] < Table
[i
+1])) return false;
331 static int Lookup(const TableEntry
*Table
, unsigned N
, unsigned Opcode
) {
332 const TableEntry
*I
= std::lower_bound(Table
, Table
+N
, Opcode
);
333 if (I
!= Table
+N
&& I
->from
== Opcode
)
339 #define ASSERT_SORTED(TABLE)
341 #define ASSERT_SORTED(TABLE) \
342 { static bool TABLE##Checked = false; \
343 if (!TABLE##Checked) { \
344 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
345 "All lookup tables must be sorted for efficient access!"); \
346 TABLE##Checked = true; \
351 //===----------------------------------------------------------------------===//
352 // Register File -> Register Stack Mapping Methods
353 //===----------------------------------------------------------------------===//
355 // OpcodeTable - Sorted map of register instructions to their stack version.
356 // The first element is an register file pseudo instruction, the second is the
357 // concrete X86 instruction which uses the register stack.
359 static const TableEntry OpcodeTable
[] = {
360 { X86::ABS_Fp32
, X86::ABS_F
},
361 { X86::ABS_Fp64
, X86::ABS_F
},
362 { X86::ABS_Fp80
, X86::ABS_F
},
363 { X86::ADD_Fp32m
, X86::ADD_F32m
},
364 { X86::ADD_Fp64m
, X86::ADD_F64m
},
365 { X86::ADD_Fp64m32
, X86::ADD_F32m
},
366 { X86::ADD_Fp80m32
, X86::ADD_F32m
},
367 { X86::ADD_Fp80m64
, X86::ADD_F64m
},
368 { X86::ADD_FpI16m32
, X86::ADD_FI16m
},
369 { X86::ADD_FpI16m64
, X86::ADD_FI16m
},
370 { X86::ADD_FpI16m80
, X86::ADD_FI16m
},
371 { X86::ADD_FpI32m32
, X86::ADD_FI32m
},
372 { X86::ADD_FpI32m64
, X86::ADD_FI32m
},
373 { X86::ADD_FpI32m80
, X86::ADD_FI32m
},
374 { X86::CHS_Fp32
, X86::CHS_F
},
375 { X86::CHS_Fp64
, X86::CHS_F
},
376 { X86::CHS_Fp80
, X86::CHS_F
},
377 { X86::CMOVBE_Fp32
, X86::CMOVBE_F
},
378 { X86::CMOVBE_Fp64
, X86::CMOVBE_F
},
379 { X86::CMOVBE_Fp80
, X86::CMOVBE_F
},
380 { X86::CMOVB_Fp32
, X86::CMOVB_F
},
381 { X86::CMOVB_Fp64
, X86::CMOVB_F
},
382 { X86::CMOVB_Fp80
, X86::CMOVB_F
},
383 { X86::CMOVE_Fp32
, X86::CMOVE_F
},
384 { X86::CMOVE_Fp64
, X86::CMOVE_F
},
385 { X86::CMOVE_Fp80
, X86::CMOVE_F
},
386 { X86::CMOVNBE_Fp32
, X86::CMOVNBE_F
},
387 { X86::CMOVNBE_Fp64
, X86::CMOVNBE_F
},
388 { X86::CMOVNBE_Fp80
, X86::CMOVNBE_F
},
389 { X86::CMOVNB_Fp32
, X86::CMOVNB_F
},
390 { X86::CMOVNB_Fp64
, X86::CMOVNB_F
},
391 { X86::CMOVNB_Fp80
, X86::CMOVNB_F
},
392 { X86::CMOVNE_Fp32
, X86::CMOVNE_F
},
393 { X86::CMOVNE_Fp64
, X86::CMOVNE_F
},
394 { X86::CMOVNE_Fp80
, X86::CMOVNE_F
},
395 { X86::CMOVNP_Fp32
, X86::CMOVNP_F
},
396 { X86::CMOVNP_Fp64
, X86::CMOVNP_F
},
397 { X86::CMOVNP_Fp80
, X86::CMOVNP_F
},
398 { X86::CMOVP_Fp32
, X86::CMOVP_F
},
399 { X86::CMOVP_Fp64
, X86::CMOVP_F
},
400 { X86::CMOVP_Fp80
, X86::CMOVP_F
},
401 { X86::COS_Fp32
, X86::COS_F
},
402 { X86::COS_Fp64
, X86::COS_F
},
403 { X86::COS_Fp80
, X86::COS_F
},
404 { X86::DIVR_Fp32m
, X86::DIVR_F32m
},
405 { X86::DIVR_Fp64m
, X86::DIVR_F64m
},
406 { X86::DIVR_Fp64m32
, X86::DIVR_F32m
},
407 { X86::DIVR_Fp80m32
, X86::DIVR_F32m
},
408 { X86::DIVR_Fp80m64
, X86::DIVR_F64m
},
409 { X86::DIVR_FpI16m32
, X86::DIVR_FI16m
},
410 { X86::DIVR_FpI16m64
, X86::DIVR_FI16m
},
411 { X86::DIVR_FpI16m80
, X86::DIVR_FI16m
},
412 { X86::DIVR_FpI32m32
, X86::DIVR_FI32m
},
413 { X86::DIVR_FpI32m64
, X86::DIVR_FI32m
},
414 { X86::DIVR_FpI32m80
, X86::DIVR_FI32m
},
415 { X86::DIV_Fp32m
, X86::DIV_F32m
},
416 { X86::DIV_Fp64m
, X86::DIV_F64m
},
417 { X86::DIV_Fp64m32
, X86::DIV_F32m
},
418 { X86::DIV_Fp80m32
, X86::DIV_F32m
},
419 { X86::DIV_Fp80m64
, X86::DIV_F64m
},
420 { X86::DIV_FpI16m32
, X86::DIV_FI16m
},
421 { X86::DIV_FpI16m64
, X86::DIV_FI16m
},
422 { X86::DIV_FpI16m80
, X86::DIV_FI16m
},
423 { X86::DIV_FpI32m32
, X86::DIV_FI32m
},
424 { X86::DIV_FpI32m64
, X86::DIV_FI32m
},
425 { X86::DIV_FpI32m80
, X86::DIV_FI32m
},
426 { X86::ILD_Fp16m32
, X86::ILD_F16m
},
427 { X86::ILD_Fp16m64
, X86::ILD_F16m
},
428 { X86::ILD_Fp16m80
, X86::ILD_F16m
},
429 { X86::ILD_Fp32m32
, X86::ILD_F32m
},
430 { X86::ILD_Fp32m64
, X86::ILD_F32m
},
431 { X86::ILD_Fp32m80
, X86::ILD_F32m
},
432 { X86::ILD_Fp64m32
, X86::ILD_F64m
},
433 { X86::ILD_Fp64m64
, X86::ILD_F64m
},
434 { X86::ILD_Fp64m80
, X86::ILD_F64m
},
435 { X86::ISTT_Fp16m32
, X86::ISTT_FP16m
},
436 { X86::ISTT_Fp16m64
, X86::ISTT_FP16m
},
437 { X86::ISTT_Fp16m80
, X86::ISTT_FP16m
},
438 { X86::ISTT_Fp32m32
, X86::ISTT_FP32m
},
439 { X86::ISTT_Fp32m64
, X86::ISTT_FP32m
},
440 { X86::ISTT_Fp32m80
, X86::ISTT_FP32m
},
441 { X86::ISTT_Fp64m32
, X86::ISTT_FP64m
},
442 { X86::ISTT_Fp64m64
, X86::ISTT_FP64m
},
443 { X86::ISTT_Fp64m80
, X86::ISTT_FP64m
},
444 { X86::IST_Fp16m32
, X86::IST_F16m
},
445 { X86::IST_Fp16m64
, X86::IST_F16m
},
446 { X86::IST_Fp16m80
, X86::IST_F16m
},
447 { X86::IST_Fp32m32
, X86::IST_F32m
},
448 { X86::IST_Fp32m64
, X86::IST_F32m
},
449 { X86::IST_Fp32m80
, X86::IST_F32m
},
450 { X86::IST_Fp64m32
, X86::IST_FP64m
},
451 { X86::IST_Fp64m64
, X86::IST_FP64m
},
452 { X86::IST_Fp64m80
, X86::IST_FP64m
},
453 { X86::LD_Fp032
, X86::LD_F0
},
454 { X86::LD_Fp064
, X86::LD_F0
},
455 { X86::LD_Fp080
, X86::LD_F0
},
456 { X86::LD_Fp132
, X86::LD_F1
},
457 { X86::LD_Fp164
, X86::LD_F1
},
458 { X86::LD_Fp180
, X86::LD_F1
},
459 { X86::LD_Fp32m
, X86::LD_F32m
},
460 { X86::LD_Fp32m64
, X86::LD_F32m
},
461 { X86::LD_Fp32m80
, X86::LD_F32m
},
462 { X86::LD_Fp64m
, X86::LD_F64m
},
463 { X86::LD_Fp64m80
, X86::LD_F64m
},
464 { X86::LD_Fp80m
, X86::LD_F80m
},
465 { X86::MUL_Fp32m
, X86::MUL_F32m
},
466 { X86::MUL_Fp64m
, X86::MUL_F64m
},
467 { X86::MUL_Fp64m32
, X86::MUL_F32m
},
468 { X86::MUL_Fp80m32
, X86::MUL_F32m
},
469 { X86::MUL_Fp80m64
, X86::MUL_F64m
},
470 { X86::MUL_FpI16m32
, X86::MUL_FI16m
},
471 { X86::MUL_FpI16m64
, X86::MUL_FI16m
},
472 { X86::MUL_FpI16m80
, X86::MUL_FI16m
},
473 { X86::MUL_FpI32m32
, X86::MUL_FI32m
},
474 { X86::MUL_FpI32m64
, X86::MUL_FI32m
},
475 { X86::MUL_FpI32m80
, X86::MUL_FI32m
},
476 { X86::SIN_Fp32
, X86::SIN_F
},
477 { X86::SIN_Fp64
, X86::SIN_F
},
478 { X86::SIN_Fp80
, X86::SIN_F
},
479 { X86::SQRT_Fp32
, X86::SQRT_F
},
480 { X86::SQRT_Fp64
, X86::SQRT_F
},
481 { X86::SQRT_Fp80
, X86::SQRT_F
},
482 { X86::ST_Fp32m
, X86::ST_F32m
},
483 { X86::ST_Fp64m
, X86::ST_F64m
},
484 { X86::ST_Fp64m32
, X86::ST_F32m
},
485 { X86::ST_Fp80m32
, X86::ST_F32m
},
486 { X86::ST_Fp80m64
, X86::ST_F64m
},
487 { X86::ST_FpP80m
, X86::ST_FP80m
},
488 { X86::SUBR_Fp32m
, X86::SUBR_F32m
},
489 { X86::SUBR_Fp64m
, X86::SUBR_F64m
},
490 { X86::SUBR_Fp64m32
, X86::SUBR_F32m
},
491 { X86::SUBR_Fp80m32
, X86::SUBR_F32m
},
492 { X86::SUBR_Fp80m64
, X86::SUBR_F64m
},
493 { X86::SUBR_FpI16m32
, X86::SUBR_FI16m
},
494 { X86::SUBR_FpI16m64
, X86::SUBR_FI16m
},
495 { X86::SUBR_FpI16m80
, X86::SUBR_FI16m
},
496 { X86::SUBR_FpI32m32
, X86::SUBR_FI32m
},
497 { X86::SUBR_FpI32m64
, X86::SUBR_FI32m
},
498 { X86::SUBR_FpI32m80
, X86::SUBR_FI32m
},
499 { X86::SUB_Fp32m
, X86::SUB_F32m
},
500 { X86::SUB_Fp64m
, X86::SUB_F64m
},
501 { X86::SUB_Fp64m32
, X86::SUB_F32m
},
502 { X86::SUB_Fp80m32
, X86::SUB_F32m
},
503 { X86::SUB_Fp80m64
, X86::SUB_F64m
},
504 { X86::SUB_FpI16m32
, X86::SUB_FI16m
},
505 { X86::SUB_FpI16m64
, X86::SUB_FI16m
},
506 { X86::SUB_FpI16m80
, X86::SUB_FI16m
},
507 { X86::SUB_FpI32m32
, X86::SUB_FI32m
},
508 { X86::SUB_FpI32m64
, X86::SUB_FI32m
},
509 { X86::SUB_FpI32m80
, X86::SUB_FI32m
},
510 { X86::TST_Fp32
, X86::TST_F
},
511 { X86::TST_Fp64
, X86::TST_F
},
512 { X86::TST_Fp80
, X86::TST_F
},
513 { X86::UCOM_FpIr32
, X86::UCOM_FIr
},
514 { X86::UCOM_FpIr64
, X86::UCOM_FIr
},
515 { X86::UCOM_FpIr80
, X86::UCOM_FIr
},
516 { X86::UCOM_Fpr32
, X86::UCOM_Fr
},
517 { X86::UCOM_Fpr64
, X86::UCOM_Fr
},
518 { X86::UCOM_Fpr80
, X86::UCOM_Fr
},
521 static unsigned getConcreteOpcode(unsigned Opcode
) {
522 ASSERT_SORTED(OpcodeTable
);
523 int Opc
= Lookup(OpcodeTable
, array_lengthof(OpcodeTable
), Opcode
);
524 assert(Opc
!= -1 && "FP Stack instruction not in OpcodeTable!");
528 //===----------------------------------------------------------------------===//
530 //===----------------------------------------------------------------------===//
532 // PopTable - Sorted map of instructions to their popping version. The first
533 // element is an instruction, the second is the version which pops.
535 static const TableEntry PopTable
[] = {
536 { X86::ADD_FrST0
, X86::ADD_FPrST0
},
538 { X86::DIVR_FrST0
, X86::DIVR_FPrST0
},
539 { X86::DIV_FrST0
, X86::DIV_FPrST0
},
541 { X86::IST_F16m
, X86::IST_FP16m
},
542 { X86::IST_F32m
, X86::IST_FP32m
},
544 { X86::MUL_FrST0
, X86::MUL_FPrST0
},
546 { X86::ST_F32m
, X86::ST_FP32m
},
547 { X86::ST_F64m
, X86::ST_FP64m
},
548 { X86::ST_Frr
, X86::ST_FPrr
},
550 { X86::SUBR_FrST0
, X86::SUBR_FPrST0
},
551 { X86::SUB_FrST0
, X86::SUB_FPrST0
},
553 { X86::UCOM_FIr
, X86::UCOM_FIPr
},
555 { X86::UCOM_FPr
, X86::UCOM_FPPr
},
556 { X86::UCOM_Fr
, X86::UCOM_FPr
},
559 /// popStackAfter - Pop the current value off of the top of the FP stack after
560 /// the specified instruction. This attempts to be sneaky and combine the pop
561 /// into the instruction itself if possible. The iterator is left pointing to
562 /// the last instruction, be it a new pop instruction inserted, or the old
563 /// instruction if it was modified in place.
565 void FPS::popStackAfter(MachineBasicBlock::iterator
&I
) {
566 MachineInstr
* MI
= I
;
567 DebugLoc dl
= MI
->getDebugLoc();
568 ASSERT_SORTED(PopTable
);
569 assert(StackTop
> 0 && "Cannot pop empty stack!");
570 RegMap
[Stack
[--StackTop
]] = ~0; // Update state
572 // Check to see if there is a popping version of this instruction...
573 int Opcode
= Lookup(PopTable
, array_lengthof(PopTable
), I
->getOpcode());
575 I
->setDesc(TII
->get(Opcode
));
576 if (Opcode
== X86::UCOM_FPPr
)
578 } else { // Insert an explicit pop
579 I
= BuildMI(*MBB
, ++I
, dl
, TII
->get(X86::ST_FPrr
)).addReg(X86::ST0
);
583 /// freeStackSlotAfter - Free the specified register from the register stack, so
584 /// that it is no longer in a register. If the register is currently at the top
585 /// of the stack, we just pop the current instruction, otherwise we store the
586 /// current top-of-stack into the specified slot, then pop the top of stack.
587 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator
&I
, unsigned FPRegNo
) {
588 if (getStackEntry(0) == FPRegNo
) { // already at the top of stack? easy.
593 // Otherwise, store the top of stack into the dead slot, killing the operand
594 // without having to add in an explicit xchg then pop.
596 unsigned STReg
= getSTReg(FPRegNo
);
597 unsigned OldSlot
= getSlot(FPRegNo
);
598 unsigned TopReg
= Stack
[StackTop
-1];
599 Stack
[OldSlot
] = TopReg
;
600 RegMap
[TopReg
] = OldSlot
;
601 RegMap
[FPRegNo
] = ~0;
602 Stack
[--StackTop
] = ~0;
603 MachineInstr
*MI
= I
;
604 DebugLoc dl
= MI
->getDebugLoc();
605 I
= BuildMI(*MBB
, ++I
, dl
, TII
->get(X86::ST_FPrr
)).addReg(STReg
);
609 //===----------------------------------------------------------------------===//
610 // Instruction transformation implementation
611 //===----------------------------------------------------------------------===//
613 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
615 void FPS::handleZeroArgFP(MachineBasicBlock::iterator
&I
) {
616 MachineInstr
*MI
= I
;
617 unsigned DestReg
= getFPReg(MI
->getOperand(0));
619 // Change from the pseudo instruction to the concrete instruction.
620 MI
->RemoveOperand(0); // Remove the explicit ST(0) operand
621 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
623 // Result gets pushed on the stack.
627 /// handleOneArgFP - fst <mem>, ST(0)
629 void FPS::handleOneArgFP(MachineBasicBlock::iterator
&I
) {
630 MachineInstr
*MI
= I
;
631 unsigned NumOps
= MI
->getDesc().getNumOperands();
632 assert((NumOps
== X86AddrNumOperands
+ 1 || NumOps
== 1) &&
633 "Can only handle fst* & ftst instructions!");
635 // Is this the last use of the source register?
636 unsigned Reg
= getFPReg(MI
->getOperand(NumOps
-1));
637 bool KillsSrc
= MI
->killsRegister(X86::FP0
+Reg
);
639 // FISTP64m is strange because there isn't a non-popping versions.
640 // If we have one _and_ we don't want to pop the operand, duplicate the value
641 // on the stack instead of moving it. This ensure that popping the value is
643 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
646 (MI
->getOpcode() == X86::IST_Fp64m32
||
647 MI
->getOpcode() == X86::ISTT_Fp16m32
||
648 MI
->getOpcode() == X86::ISTT_Fp32m32
||
649 MI
->getOpcode() == X86::ISTT_Fp64m32
||
650 MI
->getOpcode() == X86::IST_Fp64m64
||
651 MI
->getOpcode() == X86::ISTT_Fp16m64
||
652 MI
->getOpcode() == X86::ISTT_Fp32m64
||
653 MI
->getOpcode() == X86::ISTT_Fp64m64
||
654 MI
->getOpcode() == X86::IST_Fp64m80
||
655 MI
->getOpcode() == X86::ISTT_Fp16m80
||
656 MI
->getOpcode() == X86::ISTT_Fp32m80
||
657 MI
->getOpcode() == X86::ISTT_Fp64m80
||
658 MI
->getOpcode() == X86::ST_FpP80m
)) {
659 duplicateToTop(Reg
, 7 /*temp register*/, I
);
661 moveToTop(Reg
, I
); // Move to the top of the stack...
664 // Convert from the pseudo instruction to the concrete instruction.
665 MI
->RemoveOperand(NumOps
-1); // Remove explicit ST(0) operand
666 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
668 if (MI
->getOpcode() == X86::IST_FP64m
||
669 MI
->getOpcode() == X86::ISTT_FP16m
||
670 MI
->getOpcode() == X86::ISTT_FP32m
||
671 MI
->getOpcode() == X86::ISTT_FP64m
||
672 MI
->getOpcode() == X86::ST_FP80m
) {
673 assert(StackTop
> 0 && "Stack empty??");
675 } else if (KillsSrc
) { // Last use of operand?
681 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
682 /// replace the value with a newly computed value. These instructions may have
683 /// non-fp operands after their FP operands.
687 /// R1 = fadd R2, [mem]
689 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator
&I
) {
690 MachineInstr
*MI
= I
;
692 unsigned NumOps
= MI
->getDesc().getNumOperands();
693 assert(NumOps
>= 2 && "FPRW instructions must have 2 ops!!");
696 // Is this the last use of the source register?
697 unsigned Reg
= getFPReg(MI
->getOperand(1));
698 bool KillsSrc
= MI
->killsRegister(X86::FP0
+Reg
);
701 // If this is the last use of the source register, just make sure it's on
702 // the top of the stack.
704 assert(StackTop
> 0 && "Stack cannot be empty!");
706 pushReg(getFPReg(MI
->getOperand(0)));
708 // If this is not the last use of the source register, _copy_ it to the top
710 duplicateToTop(Reg
, getFPReg(MI
->getOperand(0)), I
);
713 // Change from the pseudo instruction to the concrete instruction.
714 MI
->RemoveOperand(1); // Drop the source operand.
715 MI
->RemoveOperand(0); // Drop the destination operand.
716 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
720 //===----------------------------------------------------------------------===//
721 // Define tables of various ways to map pseudo instructions
724 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
725 static const TableEntry ForwardST0Table
[] = {
726 { X86::ADD_Fp32
, X86::ADD_FST0r
},
727 { X86::ADD_Fp64
, X86::ADD_FST0r
},
728 { X86::ADD_Fp80
, X86::ADD_FST0r
},
729 { X86::DIV_Fp32
, X86::DIV_FST0r
},
730 { X86::DIV_Fp64
, X86::DIV_FST0r
},
731 { X86::DIV_Fp80
, X86::DIV_FST0r
},
732 { X86::MUL_Fp32
, X86::MUL_FST0r
},
733 { X86::MUL_Fp64
, X86::MUL_FST0r
},
734 { X86::MUL_Fp80
, X86::MUL_FST0r
},
735 { X86::SUB_Fp32
, X86::SUB_FST0r
},
736 { X86::SUB_Fp64
, X86::SUB_FST0r
},
737 { X86::SUB_Fp80
, X86::SUB_FST0r
},
740 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
741 static const TableEntry ReverseST0Table
[] = {
742 { X86::ADD_Fp32
, X86::ADD_FST0r
}, // commutative
743 { X86::ADD_Fp64
, X86::ADD_FST0r
}, // commutative
744 { X86::ADD_Fp80
, X86::ADD_FST0r
}, // commutative
745 { X86::DIV_Fp32
, X86::DIVR_FST0r
},
746 { X86::DIV_Fp64
, X86::DIVR_FST0r
},
747 { X86::DIV_Fp80
, X86::DIVR_FST0r
},
748 { X86::MUL_Fp32
, X86::MUL_FST0r
}, // commutative
749 { X86::MUL_Fp64
, X86::MUL_FST0r
}, // commutative
750 { X86::MUL_Fp80
, X86::MUL_FST0r
}, // commutative
751 { X86::SUB_Fp32
, X86::SUBR_FST0r
},
752 { X86::SUB_Fp64
, X86::SUBR_FST0r
},
753 { X86::SUB_Fp80
, X86::SUBR_FST0r
},
756 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
757 static const TableEntry ForwardSTiTable
[] = {
758 { X86::ADD_Fp32
, X86::ADD_FrST0
}, // commutative
759 { X86::ADD_Fp64
, X86::ADD_FrST0
}, // commutative
760 { X86::ADD_Fp80
, X86::ADD_FrST0
}, // commutative
761 { X86::DIV_Fp32
, X86::DIVR_FrST0
},
762 { X86::DIV_Fp64
, X86::DIVR_FrST0
},
763 { X86::DIV_Fp80
, X86::DIVR_FrST0
},
764 { X86::MUL_Fp32
, X86::MUL_FrST0
}, // commutative
765 { X86::MUL_Fp64
, X86::MUL_FrST0
}, // commutative
766 { X86::MUL_Fp80
, X86::MUL_FrST0
}, // commutative
767 { X86::SUB_Fp32
, X86::SUBR_FrST0
},
768 { X86::SUB_Fp64
, X86::SUBR_FrST0
},
769 { X86::SUB_Fp80
, X86::SUBR_FrST0
},
772 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
773 static const TableEntry ReverseSTiTable
[] = {
774 { X86::ADD_Fp32
, X86::ADD_FrST0
},
775 { X86::ADD_Fp64
, X86::ADD_FrST0
},
776 { X86::ADD_Fp80
, X86::ADD_FrST0
},
777 { X86::DIV_Fp32
, X86::DIV_FrST0
},
778 { X86::DIV_Fp64
, X86::DIV_FrST0
},
779 { X86::DIV_Fp80
, X86::DIV_FrST0
},
780 { X86::MUL_Fp32
, X86::MUL_FrST0
},
781 { X86::MUL_Fp64
, X86::MUL_FrST0
},
782 { X86::MUL_Fp80
, X86::MUL_FrST0
},
783 { X86::SUB_Fp32
, X86::SUB_FrST0
},
784 { X86::SUB_Fp64
, X86::SUB_FrST0
},
785 { X86::SUB_Fp80
, X86::SUB_FrST0
},
789 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
790 /// instructions which need to be simplified and possibly transformed.
792 /// Result: ST(0) = fsub ST(0), ST(i)
793 /// ST(i) = fsub ST(0), ST(i)
794 /// ST(0) = fsubr ST(0), ST(i)
795 /// ST(i) = fsubr ST(0), ST(i)
797 void FPS::handleTwoArgFP(MachineBasicBlock::iterator
&I
) {
798 ASSERT_SORTED(ForwardST0Table
); ASSERT_SORTED(ReverseST0Table
);
799 ASSERT_SORTED(ForwardSTiTable
); ASSERT_SORTED(ReverseSTiTable
);
800 MachineInstr
*MI
= I
;
802 unsigned NumOperands
= MI
->getDesc().getNumOperands();
803 assert(NumOperands
== 3 && "Illegal TwoArgFP instruction!");
804 unsigned Dest
= getFPReg(MI
->getOperand(0));
805 unsigned Op0
= getFPReg(MI
->getOperand(NumOperands
-2));
806 unsigned Op1
= getFPReg(MI
->getOperand(NumOperands
-1));
807 bool KillsOp0
= MI
->killsRegister(X86::FP0
+Op0
);
808 bool KillsOp1
= MI
->killsRegister(X86::FP0
+Op1
);
809 DebugLoc dl
= MI
->getDebugLoc();
811 unsigned TOS
= getStackEntry(0);
813 // One of our operands must be on the top of the stack. If neither is yet, we
815 if (Op0
!= TOS
&& Op1
!= TOS
) { // No operand at TOS?
816 // We can choose to move either operand to the top of the stack. If one of
817 // the operands is killed by this instruction, we want that one so that we
818 // can update right on top of the old version.
820 moveToTop(Op0
, I
); // Move dead operand to TOS.
822 } else if (KillsOp1
) {
826 // All of the operands are live after this instruction executes, so we
827 // cannot update on top of any operand. Because of this, we must
828 // duplicate one of the stack elements to the top. It doesn't matter
829 // which one we pick.
831 duplicateToTop(Op0
, Dest
, I
);
835 } else if (!KillsOp0
&& !KillsOp1
) {
836 // If we DO have one of our operands at the top of the stack, but we don't
837 // have a dead operand, we must duplicate one of the operands to a new slot
839 duplicateToTop(Op0
, Dest
, I
);
844 // Now we know that one of our operands is on the top of the stack, and at
845 // least one of our operands is killed by this instruction.
846 assert((TOS
== Op0
|| TOS
== Op1
) && (KillsOp0
|| KillsOp1
) &&
847 "Stack conditions not set up right!");
849 // We decide which form to use based on what is on the top of the stack, and
850 // which operand is killed by this instruction.
851 const TableEntry
*InstTable
;
852 bool isForward
= TOS
== Op0
;
853 bool updateST0
= (TOS
== Op0
&& !KillsOp1
) || (TOS
== Op1
&& !KillsOp0
);
856 InstTable
= ForwardST0Table
;
858 InstTable
= ReverseST0Table
;
861 InstTable
= ForwardSTiTable
;
863 InstTable
= ReverseSTiTable
;
866 int Opcode
= Lookup(InstTable
, array_lengthof(ForwardST0Table
),
868 assert(Opcode
!= -1 && "Unknown TwoArgFP pseudo instruction!");
870 // NotTOS - The register which is not on the top of stack...
871 unsigned NotTOS
= (TOS
== Op0
) ? Op1
: Op0
;
873 // Replace the old instruction with a new instruction
875 I
= BuildMI(*MBB
, I
, dl
, TII
->get(Opcode
)).addReg(getSTReg(NotTOS
));
877 // If both operands are killed, pop one off of the stack in addition to
878 // overwriting the other one.
879 if (KillsOp0
&& KillsOp1
&& Op0
!= Op1
) {
880 assert(!updateST0
&& "Should have updated other operand!");
881 popStackAfter(I
); // Pop the top of stack
884 // Update stack information so that we know the destination register is now on
886 unsigned UpdatedSlot
= getSlot(updateST0
? TOS
: NotTOS
);
887 assert(UpdatedSlot
< StackTop
&& Dest
< 7);
888 Stack
[UpdatedSlot
] = Dest
;
889 RegMap
[Dest
] = UpdatedSlot
;
890 MBB
->getParent()->DeleteMachineInstr(MI
); // Remove the old instruction
893 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
894 /// register arguments and no explicit destinations.
896 void FPS::handleCompareFP(MachineBasicBlock::iterator
&I
) {
897 ASSERT_SORTED(ForwardST0Table
); ASSERT_SORTED(ReverseST0Table
);
898 ASSERT_SORTED(ForwardSTiTable
); ASSERT_SORTED(ReverseSTiTable
);
899 MachineInstr
*MI
= I
;
901 unsigned NumOperands
= MI
->getDesc().getNumOperands();
902 assert(NumOperands
== 2 && "Illegal FUCOM* instruction!");
903 unsigned Op0
= getFPReg(MI
->getOperand(NumOperands
-2));
904 unsigned Op1
= getFPReg(MI
->getOperand(NumOperands
-1));
905 bool KillsOp0
= MI
->killsRegister(X86::FP0
+Op0
);
906 bool KillsOp1
= MI
->killsRegister(X86::FP0
+Op1
);
908 // Make sure the first operand is on the top of stack, the other one can be
912 // Change from the pseudo instruction to the concrete instruction.
913 MI
->getOperand(0).setReg(getSTReg(Op1
));
914 MI
->RemoveOperand(1);
915 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
917 // If any of the operands are killed by this instruction, free them.
918 if (KillsOp0
) freeStackSlotAfter(I
, Op0
);
919 if (KillsOp1
&& Op0
!= Op1
) freeStackSlotAfter(I
, Op1
);
922 /// handleCondMovFP - Handle two address conditional move instructions. These
923 /// instructions move a st(i) register to st(0) iff a condition is true. These
924 /// instructions require that the first operand is at the top of the stack, but
925 /// otherwise don't modify the stack at all.
926 void FPS::handleCondMovFP(MachineBasicBlock::iterator
&I
) {
927 MachineInstr
*MI
= I
;
929 unsigned Op0
= getFPReg(MI
->getOperand(0));
930 unsigned Op1
= getFPReg(MI
->getOperand(2));
931 bool KillsOp1
= MI
->killsRegister(X86::FP0
+Op1
);
933 // The first operand *must* be on the top of the stack.
936 // Change the second operand to the stack register that the operand is in.
937 // Change from the pseudo instruction to the concrete instruction.
938 MI
->RemoveOperand(0);
939 MI
->RemoveOperand(1);
940 MI
->getOperand(0).setReg(getSTReg(Op1
));
941 MI
->setDesc(TII
->get(getConcreteOpcode(MI
->getOpcode())));
943 // If we kill the second operand, make sure to pop it from the stack.
944 if (Op0
!= Op1
&& KillsOp1
) {
945 // Get this value off of the register stack.
946 freeStackSlotAfter(I
, Op1
);
951 /// handleSpecialFP - Handle special instructions which behave unlike other
952 /// floating point instructions. This is primarily intended for use by pseudo
955 void FPS::handleSpecialFP(MachineBasicBlock::iterator
&I
) {
956 MachineInstr
*MI
= I
;
957 DebugLoc dl
= MI
->getDebugLoc();
958 switch (MI
->getOpcode()) {
959 default: llvm_unreachable("Unknown SpecialFP instruction!");
960 case X86::FpGET_ST0_32
:// Appears immediately after a call returning FP type!
961 case X86::FpGET_ST0_64
:// Appears immediately after a call returning FP type!
962 case X86::FpGET_ST0_80
:// Appears immediately after a call returning FP type!
963 assert(StackTop
== 0 && "Stack should be empty after a call!");
964 pushReg(getFPReg(MI
->getOperand(0)));
966 case X86::FpGET_ST1_32
:// Appears immediately after a call returning FP type!
967 case X86::FpGET_ST1_64
:// Appears immediately after a call returning FP type!
968 case X86::FpGET_ST1_80
:{// Appears immediately after a call returning FP type!
969 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
970 // The pattern we expect is:
975 // At this point, we've pushed FP1 on the top of stack, so it should be
976 // present if it isn't dead. If it was dead, we already emitted a pop to
977 // remove it from the stack and StackTop = 0.
979 // Push FP4 as top of stack next.
980 pushReg(getFPReg(MI
->getOperand(0)));
982 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
983 // dead. In this case, the ST(1) value is the only thing that is live, so
984 // it should be on the TOS (after the pop that was emitted) and is. Just
985 // continue in this case.
989 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
990 // elements so that our accounting is correct.
991 unsigned RegOnTop
= getStackEntry(0);
992 unsigned RegNo
= getStackEntry(1);
994 // Swap the slots the regs are in.
995 std::swap(RegMap
[RegNo
], RegMap
[RegOnTop
]);
997 // Swap stack slot contents.
998 assert(RegMap
[RegOnTop
] < StackTop
);
999 std::swap(Stack
[RegMap
[RegOnTop
]], Stack
[StackTop
-1]);
1002 case X86::FpSET_ST0_32
:
1003 case X86::FpSET_ST0_64
:
1004 case X86::FpSET_ST0_80
: {
1005 unsigned Op0
= getFPReg(MI
->getOperand(0));
1007 // FpSET_ST0_80 is generated by copyRegToReg for both function return
1008 // and inline assembly with the "st" constrain. In the latter case,
1009 // it is possible for ST(0) to be alive after this instruction.
1010 if (!MI
->killsRegister(X86::FP0
+ Op0
)) {
1012 duplicateToTop(0, 7 /*temp register*/, I
);
1016 --StackTop
; // "Forget" we have something on the top of stack!
1019 case X86::FpSET_ST1_32
:
1020 case X86::FpSET_ST1_64
:
1021 case X86::FpSET_ST1_80
:
1022 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1023 if (StackTop
== 1) {
1024 BuildMI(*MBB
, I
, dl
, TII
->get(X86::XCH_F
)).addReg(X86::ST1
);
1029 assert(StackTop
== 2 && "Stack should have two element on it to return!");
1030 --StackTop
; // "Forget" we have something on the top of stack!
1032 case X86::MOV_Fp3232
:
1033 case X86::MOV_Fp3264
:
1034 case X86::MOV_Fp6432
:
1035 case X86::MOV_Fp6464
:
1036 case X86::MOV_Fp3280
:
1037 case X86::MOV_Fp6480
:
1038 case X86::MOV_Fp8032
:
1039 case X86::MOV_Fp8064
:
1040 case X86::MOV_Fp8080
: {
1041 const MachineOperand
&MO1
= MI
->getOperand(1);
1042 unsigned SrcReg
= getFPReg(MO1
);
1044 const MachineOperand
&MO0
= MI
->getOperand(0);
1045 // These can be created due to inline asm. Two address pass can introduce
1046 // copies from RFP registers to virtual registers.
1047 if (MO0
.getReg() == X86::ST0
&& SrcReg
== 0) {
1048 assert(MO1
.isKill());
1049 // Treat %ST0<def> = MOV_Fp8080 %FP0<kill>
1050 // like FpSET_ST0_80 %FP0<kill>, %ST0<imp-def>
1051 assert((StackTop
== 1 || StackTop
== 2)
1052 && "Stack should have one or two element on it to return!");
1053 --StackTop
; // "Forget" we have something on the top of stack!
1055 } else if (MO0
.getReg() == X86::ST1
&& SrcReg
== 1) {
1056 assert(MO1
.isKill());
1057 // Treat %ST1<def> = MOV_Fp8080 %FP1<kill>
1058 // like FpSET_ST1_80 %FP0<kill>, %ST1<imp-def>
1059 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1060 if (StackTop
== 1) {
1061 BuildMI(*MBB
, I
, dl
, TII
->get(X86::XCH_F
)).addReg(X86::ST1
);
1066 assert(StackTop
== 2 && "Stack should have two element on it to return!");
1067 --StackTop
; // "Forget" we have something on the top of stack!
1071 unsigned DestReg
= getFPReg(MO0
);
1072 if (MI
->killsRegister(X86::FP0
+SrcReg
)) {
1073 // If the input operand is killed, we can just change the owner of the
1074 // incoming stack slot into the result.
1075 unsigned Slot
= getSlot(SrcReg
);
1076 assert(Slot
< 7 && DestReg
< 7 && "FpMOV operands invalid!");
1077 Stack
[Slot
] = DestReg
;
1078 RegMap
[DestReg
] = Slot
;
1081 // For FMOV we just duplicate the specified value to a new stack slot.
1082 // This could be made better, but would require substantial changes.
1083 duplicateToTop(SrcReg
, DestReg
, I
);
1087 case TargetInstrInfo::INLINEASM
: {
1088 // The inline asm MachineInstr currently only *uses* FP registers for the
1089 // 'f' constraint. These should be turned into the current ST(x) register
1090 // in the machine instr. Also, any kills should be explicitly popped after
1093 unsigned NumKills
= 0;
1094 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1095 MachineOperand
&Op
= MI
->getOperand(i
);
1096 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1098 assert(Op
.isUse() && "Only handle inline asm uses right now");
1100 unsigned FPReg
= getFPReg(Op
);
1101 Op
.setReg(getSTReg(FPReg
));
1103 // If we kill this operand, make sure to pop it from the stack after the
1104 // asm. We just remember it for now, and pop them all off at the end in
1107 Kills
[NumKills
++] = FPReg
;
1110 // If this asm kills any FP registers (is the last use of them) we must
1111 // explicitly emit pop instructions for them. Do this now after the asm has
1112 // executed so that the ST(x) numbers are not off (which would happen if we
1113 // did this inline with operand rewriting).
1115 // Note: this might be a non-optimal pop sequence. We might be able to do
1116 // better by trying to pop in stack order or something.
1117 MachineBasicBlock::iterator InsertPt
= MI
;
1119 freeStackSlotAfter(InsertPt
, Kills
[--NumKills
]);
1121 // Don't delete the inline asm!
1127 // If RET has an FP register use operand, pass the first one in ST(0) and
1128 // the second one in ST(1).
1129 if (isStackEmpty()) return; // Quick check to see if any are possible.
1131 // Find the register operands.
1132 unsigned FirstFPRegOp
= ~0U, SecondFPRegOp
= ~0U;
1134 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1135 MachineOperand
&Op
= MI
->getOperand(i
);
1136 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1138 // FP Register uses must be kills unless there are two uses of the same
1139 // register, in which case only one will be a kill.
1140 assert(Op
.isUse() &&
1141 (Op
.isKill() || // Marked kill.
1142 getFPReg(Op
) == FirstFPRegOp
|| // Second instance.
1143 MI
->killsRegister(Op
.getReg())) && // Later use is marked kill.
1144 "Ret only defs operands, and values aren't live beyond it");
1146 if (FirstFPRegOp
== ~0U)
1147 FirstFPRegOp
= getFPReg(Op
);
1149 assert(SecondFPRegOp
== ~0U && "More than two fp operands!");
1150 SecondFPRegOp
= getFPReg(Op
);
1153 // Remove the operand so that later passes don't see it.
1154 MI
->RemoveOperand(i
);
1158 // There are only four possibilities here:
1159 // 1) we are returning a single FP value. In this case, it has to be in
1160 // ST(0) already, so just declare success by removing the value from the
1162 if (SecondFPRegOp
== ~0U) {
1163 // Assert that the top of stack contains the right FP register.
1164 assert(StackTop
== 1 && FirstFPRegOp
== getStackEntry(0) &&
1165 "Top of stack not the right register for RET!");
1167 // Ok, everything is good, mark the value as not being on the stack
1168 // anymore so that our assertion about the stack being empty at end of
1169 // block doesn't fire.
1174 // Otherwise, we are returning two values:
1175 // 2) If returning the same value for both, we only have one thing in the FP
1176 // stack. Consider: RET FP1, FP1
1177 if (StackTop
== 1) {
1178 assert(FirstFPRegOp
== SecondFPRegOp
&& FirstFPRegOp
== getStackEntry(0)&&
1179 "Stack misconfiguration for RET!");
1181 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1182 // register to hold it.
1183 unsigned NewReg
= (FirstFPRegOp
+1)%7;
1184 duplicateToTop(FirstFPRegOp
, NewReg
, MI
);
1185 FirstFPRegOp
= NewReg
;
1188 /// Okay we know we have two different FPx operands now:
1189 assert(StackTop
== 2 && "Must have two values live!");
1191 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1192 /// in ST(1). In this case, emit an fxch.
1193 if (getStackEntry(0) == SecondFPRegOp
) {
1194 assert(getStackEntry(1) == FirstFPRegOp
&& "Unknown regs live");
1195 moveToTop(FirstFPRegOp
, MI
);
1198 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1199 /// ST(1). Just remove both from our understanding of the stack and return.
1200 assert(getStackEntry(0) == FirstFPRegOp
&& "Unknown regs live");
1201 assert(getStackEntry(1) == SecondFPRegOp
&& "Unknown regs live");
1206 I
= MBB
->erase(I
); // Remove the pseudo instruction