1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/Value.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterCoalescer.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
40 STATISTIC(numJoins
, "Number of interval joins performed");
41 STATISTIC(numCrossRCs
, "Number of cross class joins performed");
42 STATISTIC(numCommutes
, "Number of instruction commuting performed");
43 STATISTIC(numExtends
, "Number of copies extended");
44 STATISTIC(NumReMats
, "Number of instructions re-materialized");
45 STATISTIC(numPeep
, "Number of identity moves eliminated after coalescing");
46 STATISTIC(numAborts
, "Number of times interval joining aborted");
47 STATISTIC(numDeadValNo
, "Number of valno def marked dead");
49 char SimpleRegisterCoalescing::ID
= 0;
51 EnableJoining("join-liveintervals",
52 cl::desc("Coalesce copies (default=true)"),
56 DisableCrossClassJoin("disable-cross-class-join",
57 cl::desc("Avoid coalescing cross register class copies"),
58 cl::init(false), cl::Hidden
);
61 PhysJoinTweak("tweak-phys-join-heuristics",
62 cl::desc("Tweak heuristics for joining phys reg with vr"),
63 cl::init(false), cl::Hidden
);
65 static RegisterPass
<SimpleRegisterCoalescing
>
66 X("simple-register-coalescing", "Simple Register Coalescing");
68 // Declare that we implement the RegisterCoalescer interface
69 static RegisterAnalysisGroup
<RegisterCoalescer
, true/*The Default*/> V(X
);
71 const PassInfo
*const llvm::SimpleRegisterCoalescingID
= &X
;
73 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage
&AU
) const {
75 AU
.addRequired
<LiveIntervals
>();
76 AU
.addPreserved
<LiveIntervals
>();
77 AU
.addRequired
<MachineLoopInfo
>();
78 AU
.addPreserved
<MachineLoopInfo
>();
79 AU
.addPreservedID(MachineDominatorsID
);
81 AU
.addPreservedID(StrongPHIEliminationID
);
83 AU
.addPreservedID(PHIEliminationID
);
84 AU
.addPreservedID(TwoAddressInstructionPassID
);
85 MachineFunctionPass::getAnalysisUsage(AU
);
88 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
89 /// being the source and IntB being the dest, thus this defines a value number
90 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
91 /// see if we can merge these two pieces of B into a single value number,
92 /// eliminating a copy. For example:
96 /// B1 = A3 <- this copy
98 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
99 /// value number to be replaced with B0 (which simplifies the B liveinterval).
101 /// This returns true if an interval was modified.
103 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval
&IntA
,
105 MachineInstr
*CopyMI
) {
106 MachineInstrIndex CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
108 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
109 // the example above.
110 LiveInterval::iterator BLR
= IntB
.FindLiveRangeContaining(CopyIdx
);
111 assert(BLR
!= IntB
.end() && "Live range not found!");
112 VNInfo
*BValNo
= BLR
->valno
;
114 // Get the location that B is defined at. Two options: either this value has
115 // an unknown definition point or it is defined at CopyIdx. If unknown, we
117 if (!BValNo
->getCopy()) return false;
118 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
120 // AValNo is the value number in A that defines the copy, A3 in the example.
121 MachineInstrIndex CopyUseIdx
= li_
->getUseIndex(CopyIdx
);
122 LiveInterval::iterator ALR
= IntA
.FindLiveRangeContaining(CopyUseIdx
);
123 assert(ALR
!= IntA
.end() && "Live range not found!");
124 VNInfo
*AValNo
= ALR
->valno
;
125 // If it's re-defined by an early clobber somewhere in the live range, then
126 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
128 // 172 %ECX<def> = MOV32rr %reg1039<kill>
129 // 180 INLINEASM <es:subl $5,$1
130 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
131 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
132 // 188 %EAX<def> = MOV32rr %EAX<kill>
133 // 196 %ECX<def> = MOV32rr %ECX<kill>
134 // 204 %ECX<def> = MOV32rr %ECX<kill>
135 // 212 %EAX<def> = MOV32rr %EAX<kill>
136 // 220 %EAX<def> = MOV32rr %EAX
137 // 228 %reg1039<def> = MOV32rr %ECX<kill>
138 // The early clobber operand ties ECX input to the ECX def.
140 // The live interval of ECX is represented as this:
141 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
142 // The coalescer has no idea there was a def in the middle of [174,230].
143 if (AValNo
->hasRedefByEC())
146 // If AValNo is defined as a copy from IntB, we can potentially process this.
147 // Get the instruction that defines this value number.
148 unsigned SrcReg
= li_
->getVNInfoSourceReg(AValNo
);
149 if (!SrcReg
) return false; // Not defined by a copy.
151 // If the value number is not defined by a copy instruction, ignore it.
153 // If the source register comes from an interval other than IntB, we can't
155 if (SrcReg
!= IntB
.reg
) return false;
157 // Get the LiveRange in IntB that this value number starts with.
158 LiveInterval::iterator ValLR
=
159 IntB
.FindLiveRangeContaining(li_
->getPrevSlot(AValNo
->def
));
160 assert(ValLR
!= IntB
.end() && "Live range not found!");
162 // Make sure that the end of the live range is inside the same block as
164 MachineInstr
*ValLREndInst
=
165 li_
->getInstructionFromIndex(li_
->getPrevSlot(ValLR
->end
));
167 ValLREndInst
->getParent() != CopyMI
->getParent()) return false;
169 // Okay, we now know that ValLR ends in the same block that the CopyMI
170 // live-range starts. If there are no intervening live ranges between them in
171 // IntB, we can merge them.
172 if (ValLR
+1 != BLR
) return false;
174 // If a live interval is a physical register, conservatively check if any
175 // of its sub-registers is overlapping the live interval of the virtual
176 // register. If so, do not coalesce.
177 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
) &&
178 *tri_
->getSubRegisters(IntB
.reg
)) {
179 for (const unsigned* SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
)
180 if (li_
->hasInterval(*SR
) && IntA
.overlaps(li_
->getInterval(*SR
))) {
182 errs() << "Interfere with sub-register ";
183 li_
->getInterval(*SR
).print(errs(), tri_
);
190 errs() << "\nExtending: ";
191 IntB
.print(errs(), tri_
);
194 MachineInstrIndex FillerStart
= ValLR
->end
, FillerEnd
= BLR
->start
;
195 // We are about to delete CopyMI, so need to remove it as the 'instruction
196 // that defines this value #'. Update the the valnum with the new defining
198 BValNo
->def
= FillerStart
;
201 // Okay, we can merge them. We need to insert a new liverange:
202 // [ValLR.end, BLR.begin) of either value number, then we merge the
203 // two value numbers.
204 IntB
.addRange(LiveRange(FillerStart
, FillerEnd
, BValNo
));
206 // If the IntB live range is assigned to a physical register, and if that
207 // physreg has sub-registers, update their live intervals as well.
208 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
)) {
209 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
210 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
211 SRLI
.addRange(LiveRange(FillerStart
, FillerEnd
,
212 SRLI
.getNextValue(FillerStart
, 0, true,
213 li_
->getVNInfoAllocator())));
217 // Okay, merge "B1" into the same value number as "B0".
218 if (BValNo
!= ValLR
->valno
) {
219 IntB
.addKills(ValLR
->valno
, BValNo
->kills
);
220 IntB
.MergeValueNumberInto(BValNo
, ValLR
->valno
);
223 errs() << " result = ";
224 IntB
.print(errs(), tri_
);
228 // If the source instruction was killing the source register before the
229 // merge, unset the isKill marker given the live range has been extended.
230 int UIdx
= ValLREndInst
->findRegisterUseOperandIdx(IntB
.reg
, true);
232 ValLREndInst
->getOperand(UIdx
).setIsKill(false);
233 ValLR
->valno
->removeKill(FillerStart
);
236 // If the copy instruction was killing the destination register before the
237 // merge, find the last use and trim the live range. That will also add the
239 if (CopyMI
->killsRegister(IntA
.reg
))
240 TrimLiveIntervalToLastUse(CopyUseIdx
, CopyMI
->getParent(), IntA
, ALR
);
246 /// HasOtherReachingDefs - Return true if there are definitions of IntB
247 /// other than BValNo val# that can reach uses of AValno val# of IntA.
248 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval
&IntA
,
252 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
254 if (AI
->valno
!= AValNo
) continue;
255 LiveInterval::Ranges::iterator BI
=
256 std::upper_bound(IntB
.ranges
.begin(), IntB
.ranges
.end(), AI
->start
);
257 if (BI
!= IntB
.ranges
.begin())
259 for (; BI
!= IntB
.ranges
.end() && AI
->end
>= BI
->start
; ++BI
) {
260 if (BI
->valno
== BValNo
)
262 if (BI
->start
<= AI
->start
&& BI
->end
> AI
->start
)
264 if (BI
->start
> AI
->start
&& BI
->start
< AI
->end
)
271 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
272 /// being the source and IntB being the dest, thus this defines a value number
273 /// in IntB. If the source value number (in IntA) is defined by a commutable
274 /// instruction and its other operand is coalesced to the copy dest register,
275 /// see if we can transform the copy into a noop by commuting the definition. For
278 /// A3 = op A2 B0<kill>
280 /// B1 = A3 <- this copy
282 /// = op A3 <- more uses
286 /// B2 = op B0 A2<kill>
288 /// B1 = B2 <- now an identify copy
290 /// = op B2 <- more uses
292 /// This returns true if an interval was modified.
294 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval
&IntA
,
296 MachineInstr
*CopyMI
) {
297 MachineInstrIndex CopyIdx
=
298 li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
300 // FIXME: For now, only eliminate the copy by commuting its def when the
301 // source register is a virtual register. We want to guard against cases
302 // where the copy is a back edge copy and commuting the def lengthen the
303 // live interval of the source register to the entire loop.
304 if (TargetRegisterInfo::isPhysicalRegister(IntA
.reg
))
307 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
308 // the example above.
309 LiveInterval::iterator BLR
= IntB
.FindLiveRangeContaining(CopyIdx
);
310 assert(BLR
!= IntB
.end() && "Live range not found!");
311 VNInfo
*BValNo
= BLR
->valno
;
313 // Get the location that B is defined at. Two options: either this value has
314 // an unknown definition point or it is defined at CopyIdx. If unknown, we
316 if (!BValNo
->getCopy()) return false;
317 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
319 // AValNo is the value number in A that defines the copy, A3 in the example.
320 LiveInterval::iterator ALR
=
321 IntA
.FindLiveRangeContaining(li_
->getPrevSlot(CopyIdx
));
323 assert(ALR
!= IntA
.end() && "Live range not found!");
324 VNInfo
*AValNo
= ALR
->valno
;
325 // If other defs can reach uses of this def, then it's not safe to perform
326 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
328 if (AValNo
->isPHIDef() || !AValNo
->isDefAccurate() ||
329 AValNo
->isUnused() || AValNo
->hasPHIKill())
331 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(AValNo
->def
);
332 const TargetInstrDesc
&TID
= DefMI
->getDesc();
333 if (!TID
.isCommutable())
335 // If DefMI is a two-address instruction then commuting it will change the
336 // destination register.
337 int DefIdx
= DefMI
->findRegisterDefOperandIdx(IntA
.reg
);
338 assert(DefIdx
!= -1);
340 if (!DefMI
->isRegTiedToUseOperand(DefIdx
, &UseOpIdx
))
342 unsigned Op1
, Op2
, NewDstIdx
;
343 if (!tii_
->findCommutedOpIndices(DefMI
, Op1
, Op2
))
347 else if (Op2
== UseOpIdx
)
352 MachineOperand
&NewDstMO
= DefMI
->getOperand(NewDstIdx
);
353 unsigned NewReg
= NewDstMO
.getReg();
354 if (NewReg
!= IntB
.reg
|| !NewDstMO
.isKill())
357 // Make sure there are no other definitions of IntB that would reach the
358 // uses which the new definition can reach.
359 if (HasOtherReachingDefs(IntA
, IntB
, AValNo
, BValNo
))
362 // If some of the uses of IntA.reg is already coalesced away, return false.
363 // It's not possible to determine whether it's safe to perform the coalescing.
364 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(IntA
.reg
),
365 UE
= mri_
->use_end(); UI
!= UE
; ++UI
) {
366 MachineInstr
*UseMI
= &*UI
;
367 MachineInstrIndex UseIdx
= li_
->getInstructionIndex(UseMI
);
368 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
369 if (ULR
== IntA
.end())
371 if (ULR
->valno
== AValNo
&& JoinedCopies
.count(UseMI
))
375 // At this point we have decided that it is legal to do this
376 // transformation. Start by commuting the instruction.
377 MachineBasicBlock
*MBB
= DefMI
->getParent();
378 MachineInstr
*NewMI
= tii_
->commuteInstruction(DefMI
);
381 if (NewMI
!= DefMI
) {
382 li_
->ReplaceMachineInstrInMaps(DefMI
, NewMI
);
383 MBB
->insert(DefMI
, NewMI
);
386 unsigned OpIdx
= NewMI
->findRegisterUseOperandIdx(IntA
.reg
, false);
387 NewMI
->getOperand(OpIdx
).setIsKill();
389 bool BHasPHIKill
= BValNo
->hasPHIKill();
390 SmallVector
<VNInfo
*, 4> BDeadValNos
;
391 VNInfo::KillSet BKills
;
392 std::map
<MachineInstrIndex
, MachineInstrIndex
> BExtend
;
394 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
403 // then do not add kills of A to the newly created B interval.
404 bool Extended
= BLR
->end
> ALR
->end
&& ALR
->end
!= ALR
->start
;
406 BExtend
[ALR
->end
] = BLR
->end
;
408 // Update uses of IntA of the specific Val# with IntB.
409 bool BHasSubRegs
= false;
410 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
))
411 BHasSubRegs
= *tri_
->getSubRegisters(IntB
.reg
);
412 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(IntA
.reg
),
413 UE
= mri_
->use_end(); UI
!= UE
;) {
414 MachineOperand
&UseMO
= UI
.getOperand();
415 MachineInstr
*UseMI
= &*UI
;
417 if (JoinedCopies
.count(UseMI
))
419 MachineInstrIndex UseIdx
= li_
->getInstructionIndex(UseMI
);
420 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
421 if (ULR
== IntA
.end() || ULR
->valno
!= AValNo
)
423 UseMO
.setReg(NewReg
);
426 if (UseMO
.isKill()) {
428 UseMO
.setIsKill(false);
430 BKills
.push_back(li_
->getNextSlot(li_
->getUseIndex(UseIdx
)));
432 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
433 if (!tii_
->isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
435 if (DstReg
== IntB
.reg
) {
436 // This copy will become a noop. If it's defining a new val#,
437 // remove that val# as well. However this live range is being
438 // extended to the end of the existing live range defined by the copy.
439 MachineInstrIndex DefIdx
= li_
->getDefIndex(UseIdx
);
440 const LiveRange
*DLR
= IntB
.getLiveRangeContaining(DefIdx
);
441 BHasPHIKill
|= DLR
->valno
->hasPHIKill();
442 assert(DLR
->valno
->def
== DefIdx
);
443 BDeadValNos
.push_back(DLR
->valno
);
444 BExtend
[DLR
->start
] = DLR
->end
;
445 JoinedCopies
.insert(UseMI
);
446 // If this is a kill but it's going to be removed, the last use
447 // of the same val# is the new kill.
453 // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
454 // simply extend BLR if CopyMI doesn't end the range.
456 errs() << "\nExtending: ";
457 IntB
.print(errs(), tri_
);
460 // Remove val#'s defined by copies that will be coalesced away.
461 for (unsigned i
= 0, e
= BDeadValNos
.size(); i
!= e
; ++i
) {
462 VNInfo
*DeadVNI
= BDeadValNos
[i
];
464 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
465 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
466 const LiveRange
*SRLR
= SRLI
.getLiveRangeContaining(DeadVNI
->def
);
467 SRLI
.removeValNo(SRLR
->valno
);
470 IntB
.removeValNo(BDeadValNos
[i
]);
473 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
474 // is updated. Kills are also updated.
475 VNInfo
*ValNo
= BValNo
;
476 ValNo
->def
= AValNo
->def
;
478 for (unsigned j
= 0, ee
= ValNo
->kills
.size(); j
!= ee
; ++j
) {
479 if (ValNo
->kills
[j
] != BLR
->end
)
480 BKills
.push_back(ValNo
->kills
[j
]);
482 ValNo
->kills
.clear();
483 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
485 if (AI
->valno
!= AValNo
) continue;
486 MachineInstrIndex End
= AI
->end
;
487 std::map
<MachineInstrIndex
, MachineInstrIndex
>::iterator
488 EI
= BExtend
.find(End
);
489 if (EI
!= BExtend
.end())
491 IntB
.addRange(LiveRange(AI
->start
, End
, ValNo
));
493 // If the IntB live range is assigned to a physical register, and if that
494 // physreg has sub-registers, update their live intervals as well.
496 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
497 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
498 SRLI
.MergeInClobberRange(AI
->start
, End
, li_
->getVNInfoAllocator());
502 IntB
.addKills(ValNo
, BKills
);
503 ValNo
->setHasPHIKill(BHasPHIKill
);
506 errs() << " result = ";
507 IntB
.print(errs(), tri_
);
509 errs() << "\nShortening: ";
510 IntA
.print(errs(), tri_
);
513 IntA
.removeValNo(AValNo
);
516 errs() << " result = ";
517 IntA
.print(errs(), tri_
);
525 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
526 /// fallthoughs to SuccMBB.
527 static bool isSameOrFallThroughBB(MachineBasicBlock
*MBB
,
528 MachineBasicBlock
*SuccMBB
,
529 const TargetInstrInfo
*tii_
) {
532 MachineBasicBlock
*TBB
= 0, *FBB
= 0;
533 SmallVector
<MachineOperand
, 4> Cond
;
534 return !tii_
->AnalyzeBranch(*MBB
, TBB
, FBB
, Cond
) && !TBB
&& !FBB
&&
535 MBB
->isSuccessor(SuccMBB
);
538 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
539 /// from a physical register live interval as well as from the live intervals
540 /// of its sub-registers.
541 static void removeRange(LiveInterval
&li
,
542 MachineInstrIndex Start
, MachineInstrIndex End
,
543 LiveIntervals
*li_
, const TargetRegisterInfo
*tri_
) {
544 li
.removeRange(Start
, End
, true);
545 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
)) {
546 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
547 if (!li_
->hasInterval(*SR
))
549 LiveInterval
&sli
= li_
->getInterval(*SR
);
550 MachineInstrIndex RemoveStart
= Start
;
551 MachineInstrIndex RemoveEnd
= Start
;
552 while (RemoveEnd
!= End
) {
553 LiveInterval::iterator LR
= sli
.FindLiveRangeContaining(RemoveStart
);
556 RemoveEnd
= (LR
->end
< End
) ? LR
->end
: End
;
557 sli
.removeRange(RemoveStart
, RemoveEnd
, true);
558 RemoveStart
= RemoveEnd
;
564 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
565 /// as the copy instruction, trim the live interval to the last use and return
568 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(MachineInstrIndex CopyIdx
,
569 MachineBasicBlock
*CopyMBB
,
571 const LiveRange
*LR
) {
572 MachineInstrIndex MBBStart
= li_
->getMBBStartIdx(CopyMBB
);
573 MachineInstrIndex LastUseIdx
;
574 MachineOperand
*LastUse
=
575 lastRegisterUse(LR
->start
, li_
->getPrevSlot(CopyIdx
), li
.reg
, LastUseIdx
);
577 MachineInstr
*LastUseMI
= LastUse
->getParent();
578 if (!isSameOrFallThroughBB(LastUseMI
->getParent(), CopyMBB
, tii_
)) {
585 // r1025<dead> = r1024<kill>
586 if (MBBStart
< LR
->end
)
587 removeRange(li
, MBBStart
, LR
->end
, li_
, tri_
);
591 // There are uses before the copy, just shorten the live range to the end
593 LastUse
->setIsKill();
594 removeRange(li
, li_
->getDefIndex(LastUseIdx
), LR
->end
, li_
, tri_
);
595 LR
->valno
->addKill(li_
->getNextSlot(LastUseIdx
));
596 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
597 if (tii_
->isMoveInstr(*LastUseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
599 // Last use is itself an identity code.
600 int DeadIdx
= LastUseMI
->findRegisterDefOperandIdx(li
.reg
, false, tri_
);
601 LastUseMI
->getOperand(DeadIdx
).setIsDead();
607 if (LR
->start
<= MBBStart
&& LR
->end
> MBBStart
) {
608 if (LR
->start
== MachineInstrIndex()) {
609 assert(TargetRegisterInfo::isPhysicalRegister(li
.reg
));
610 // Live-in to the function but dead. Remove it from entry live-in set.
611 mf_
->begin()->removeLiveIn(li
.reg
);
613 // FIXME: Shorten intervals in BBs that reaches this BB.
619 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
620 /// computation, replace the copy by rematerialize the definition.
621 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval
&SrcInt
,
624 MachineInstr
*CopyMI
) {
625 MachineInstrIndex CopyIdx
= li_
->getUseIndex(li_
->getInstructionIndex(CopyMI
));
626 LiveInterval::iterator SrcLR
= SrcInt
.FindLiveRangeContaining(CopyIdx
);
627 assert(SrcLR
!= SrcInt
.end() && "Live range not found!");
628 VNInfo
*ValNo
= SrcLR
->valno
;
629 // If other defs can reach uses of this def, then it's not safe to perform
630 // the optimization. FIXME: Do isPHIDef and isDefAccurate both need to be
632 if (ValNo
->isPHIDef() || !ValNo
->isDefAccurate() ||
633 ValNo
->isUnused() || ValNo
->hasPHIKill())
635 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(ValNo
->def
);
636 const TargetInstrDesc
&TID
= DefMI
->getDesc();
637 if (!TID
.isAsCheapAsAMove())
639 if (!DefMI
->getDesc().isRematerializable() ||
640 !tii_
->isTriviallyReMaterializable(DefMI
))
642 bool SawStore
= false;
643 if (!DefMI
->isSafeToMove(tii_
, SawStore
))
645 if (TID
.getNumDefs() != 1)
647 if (DefMI
->getOpcode() != TargetInstrInfo::IMPLICIT_DEF
) {
648 // Make sure the copy destination register class fits the instruction
649 // definition register class. The mismatch can happen as a result of earlier
650 // extract_subreg, insert_subreg, subreg_to_reg coalescing.
651 const TargetRegisterClass
*RC
= TID
.OpInfo
[0].getRegClass(tri_
);
652 if (TargetRegisterInfo::isVirtualRegister(DstReg
)) {
653 if (mri_
->getRegClass(DstReg
) != RC
)
655 } else if (!RC
->contains(DstReg
))
659 // If destination register has a sub-register index on it, make sure it mtches
660 // the instruction register class.
662 const TargetInstrDesc
&TID
= DefMI
->getDesc();
663 if (TID
.getNumDefs() != 1)
665 const TargetRegisterClass
*DstRC
= mri_
->getRegClass(DstReg
);
666 const TargetRegisterClass
*DstSubRC
=
667 DstRC
->getSubRegisterRegClass(DstSubIdx
);
668 const TargetRegisterClass
*DefRC
= TID
.OpInfo
[0].getRegClass(tri_
);
671 else if (DefRC
!= DstSubRC
)
675 MachineInstrIndex DefIdx
= li_
->getDefIndex(CopyIdx
);
676 const LiveRange
*DLR
= li_
->getInterval(DstReg
).getLiveRangeContaining(DefIdx
);
677 DLR
->valno
->setCopy(0);
678 // Don't forget to update sub-register intervals.
679 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
680 for (const unsigned* SR
= tri_
->getSubRegisters(DstReg
); *SR
; ++SR
) {
681 if (!li_
->hasInterval(*SR
))
683 DLR
= li_
->getInterval(*SR
).getLiveRangeContaining(DefIdx
);
684 if (DLR
&& DLR
->valno
->getCopy() == CopyMI
)
685 DLR
->valno
->setCopy(0);
689 // If copy kills the source register, find the last use and propagate
691 bool checkForDeadDef
= false;
692 MachineBasicBlock
*MBB
= CopyMI
->getParent();
693 if (CopyMI
->killsRegister(SrcInt
.reg
))
694 if (!TrimLiveIntervalToLastUse(CopyIdx
, MBB
, SrcInt
, SrcLR
)) {
695 checkForDeadDef
= true;
698 MachineBasicBlock::iterator MII
= next(MachineBasicBlock::iterator(CopyMI
));
699 tii_
->reMaterialize(*MBB
, MII
, DstReg
, DstSubIdx
, DefMI
);
700 MachineInstr
*NewMI
= prior(MII
);
702 if (checkForDeadDef
) {
703 // PR4090 fix: Trim interval failed because there was no use of the
704 // source interval in this MBB. If the def is in this MBB too then we
705 // should mark it dead:
706 if (DefMI
->getParent() == MBB
) {
707 DefMI
->addRegisterDead(SrcInt
.reg
, tri_
);
708 SrcLR
->end
= li_
->getNextSlot(SrcLR
->start
);
712 // CopyMI may have implicit operands, transfer them over to the newly
713 // rematerialized instruction. And update implicit def interval valnos.
714 for (unsigned i
= CopyMI
->getDesc().getNumOperands(),
715 e
= CopyMI
->getNumOperands(); i
!= e
; ++i
) {
716 MachineOperand
&MO
= CopyMI
->getOperand(i
);
717 if (MO
.isReg() && MO
.isImplicit())
718 NewMI
->addOperand(MO
);
719 if (MO
.isDef() && li_
->hasInterval(MO
.getReg())) {
720 unsigned Reg
= MO
.getReg();
721 DLR
= li_
->getInterval(Reg
).getLiveRangeContaining(DefIdx
);
722 if (DLR
&& DLR
->valno
->getCopy() == CopyMI
)
723 DLR
->valno
->setCopy(0);
727 li_
->ReplaceMachineInstrInMaps(CopyMI
, NewMI
);
728 CopyMI
->eraseFromParent();
729 ReMatCopies
.insert(CopyMI
);
730 ReMatDefs
.insert(DefMI
);
735 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
736 /// update the subregister number if it is not zero. If DstReg is a
737 /// physical register and the existing subregister number of the def / use
738 /// being updated is not zero, make sure to set it to the correct physical
741 SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg
, unsigned DstReg
,
743 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
744 if (DstIsPhys
&& SubIdx
) {
745 // Figure out the real physical register we are updating with.
746 DstReg
= tri_
->getSubReg(DstReg
, SubIdx
);
750 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(SrcReg
),
751 E
= mri_
->reg_end(); I
!= E
; ) {
752 MachineOperand
&O
= I
.getOperand();
753 MachineInstr
*UseMI
= &*I
;
755 unsigned OldSubIdx
= O
.getSubReg();
757 unsigned UseDstReg
= DstReg
;
759 UseDstReg
= tri_
->getSubReg(DstReg
, OldSubIdx
);
761 unsigned CopySrcReg
, CopyDstReg
, CopySrcSubIdx
, CopyDstSubIdx
;
762 if (tii_
->isMoveInstr(*UseMI
, CopySrcReg
, CopyDstReg
,
763 CopySrcSubIdx
, CopyDstSubIdx
) &&
764 CopySrcReg
!= CopyDstReg
&&
765 CopySrcReg
== SrcReg
&& CopyDstReg
!= UseDstReg
) {
766 // If the use is a copy and it won't be coalesced away, and its source
767 // is defined by a trivial computation, try to rematerialize it instead.
768 if (ReMaterializeTrivialDef(li_
->getInterval(SrcReg
), CopyDstReg
,
769 CopyDstSubIdx
, UseMI
))
778 // Sub-register indexes goes from small to large. e.g.
779 // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
780 // EAX: 1 -> AL, 2 -> AX
781 // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
782 // sub-register 2 is also AX.
783 if (SubIdx
&& OldSubIdx
&& SubIdx
!= OldSubIdx
)
784 assert(OldSubIdx
< SubIdx
&& "Conflicting sub-register index!");
787 // Remove would-be duplicated kill marker.
788 if (O
.isKill() && UseMI
->killsRegister(DstReg
))
792 // After updating the operand, check if the machine instruction has
793 // become a copy. If so, update its val# information.
794 if (JoinedCopies
.count(UseMI
))
797 const TargetInstrDesc
&TID
= UseMI
->getDesc();
798 unsigned CopySrcReg
, CopyDstReg
, CopySrcSubIdx
, CopyDstSubIdx
;
799 if (TID
.getNumDefs() == 1 && TID
.getNumOperands() > 2 &&
800 tii_
->isMoveInstr(*UseMI
, CopySrcReg
, CopyDstReg
,
801 CopySrcSubIdx
, CopyDstSubIdx
) &&
802 CopySrcReg
!= CopyDstReg
&&
803 (TargetRegisterInfo::isVirtualRegister(CopyDstReg
) ||
804 allocatableRegs_
[CopyDstReg
])) {
805 LiveInterval
&LI
= li_
->getInterval(CopyDstReg
);
806 MachineInstrIndex DefIdx
=
807 li_
->getDefIndex(li_
->getInstructionIndex(UseMI
));
808 if (const LiveRange
*DLR
= LI
.getLiveRangeContaining(DefIdx
)) {
809 if (DLR
->valno
->def
== DefIdx
)
810 DLR
->valno
->setCopy(UseMI
);
816 /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
817 /// due to live range lengthening as the result of coalescing.
818 void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg
,
820 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(Reg
),
821 UE
= mri_
->use_end(); UI
!= UE
; ++UI
) {
822 MachineOperand
&UseMO
= UI
.getOperand();
825 MachineInstr
*UseMI
= UseMO
.getParent();
826 MachineInstrIndex UseIdx
=
827 li_
->getUseIndex(li_
->getInstructionIndex(UseMI
));
828 const LiveRange
*LR
= LI
.getLiveRangeContaining(UseIdx
);
829 if (!LR
|| !LR
->valno
->isKill(li_
->getNextSlot(UseIdx
))) {
830 if (LR
->valno
->def
!= li_
->getNextSlot(UseIdx
)) {
831 // Interesting problem. After coalescing reg1027's def and kill are both
832 // at the same point: %reg1027,0.000000e+00 = [56,814:0) 0@70-(814)
835 // 60 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
836 // 68 %reg1027<def> = t2LDRi12 %reg1027<kill>, 8, 14, %reg0
837 // 76 t2CMPzri %reg1038<kill,undef>, 0, 14, %reg0, %CPSR<imp-def>
838 // 84 %reg1027<def> = t2MOVr %reg1027, 14, %reg0, %reg0
839 // 96 t2Bcc mbb<bb5,0x2030910>, 1, %CPSR<kill>
841 // Do not remove the kill marker on t2LDRi12.
842 UseMO
.setIsKill(false);
848 /// removeIntervalIfEmpty - Check if the live interval of a physical register
849 /// is empty, if so remove it and also remove the empty intervals of its
850 /// sub-registers. Return true if live interval is removed.
851 static bool removeIntervalIfEmpty(LiveInterval
&li
, LiveIntervals
*li_
,
852 const TargetRegisterInfo
*tri_
) {
854 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
))
855 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
856 if (!li_
->hasInterval(*SR
))
858 LiveInterval
&sli
= li_
->getInterval(*SR
);
860 li_
->removeInterval(*SR
);
862 li_
->removeInterval(li
.reg
);
868 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
869 /// Return true if live interval is removed.
870 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval
&li
,
871 MachineInstr
*CopyMI
) {
872 MachineInstrIndex CopyIdx
= li_
->getInstructionIndex(CopyMI
);
873 LiveInterval::iterator MLR
=
874 li
.FindLiveRangeContaining(li_
->getDefIndex(CopyIdx
));
876 return false; // Already removed by ShortenDeadCopySrcLiveRange.
877 MachineInstrIndex RemoveStart
= MLR
->start
;
878 MachineInstrIndex RemoveEnd
= MLR
->end
;
879 MachineInstrIndex DefIdx
= li_
->getDefIndex(CopyIdx
);
880 // Remove the liverange that's defined by this.
881 if (RemoveStart
== DefIdx
&& RemoveEnd
== li_
->getNextSlot(DefIdx
)) {
882 removeRange(li
, RemoveStart
, RemoveEnd
, li_
, tri_
);
883 return removeIntervalIfEmpty(li
, li_
, tri_
);
888 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
889 /// the val# it defines. If the live interval becomes empty, remove it as well.
890 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval
&li
,
891 MachineInstr
*DefMI
) {
892 MachineInstrIndex DefIdx
= li_
->getDefIndex(li_
->getInstructionIndex(DefMI
));
893 LiveInterval::iterator MLR
= li
.FindLiveRangeContaining(DefIdx
);
894 if (DefIdx
!= MLR
->valno
->def
)
896 li
.removeValNo(MLR
->valno
);
897 return removeIntervalIfEmpty(li
, li_
, tri_
);
900 /// PropagateDeadness - Propagate the dead marker to the instruction which
901 /// defines the val#.
902 static void PropagateDeadness(LiveInterval
&li
, MachineInstr
*CopyMI
,
903 MachineInstrIndex
&LRStart
, LiveIntervals
*li_
,
904 const TargetRegisterInfo
* tri_
) {
905 MachineInstr
*DefMI
=
906 li_
->getInstructionFromIndex(li_
->getDefIndex(LRStart
));
907 if (DefMI
&& DefMI
!= CopyMI
) {
908 int DeadIdx
= DefMI
->findRegisterDefOperandIdx(li
.reg
, false);
910 DefMI
->getOperand(DeadIdx
).setIsDead();
912 DefMI
->addOperand(MachineOperand::CreateReg(li
.reg
,
913 true, true, false, true));
914 LRStart
= li_
->getNextSlot(LRStart
);
918 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
919 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
920 /// ends the live range there. If there isn't another use, then this live range
921 /// is dead. Return true if live interval is removed.
923 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval
&li
,
924 MachineInstr
*CopyMI
) {
925 MachineInstrIndex CopyIdx
= li_
->getInstructionIndex(CopyMI
);
926 if (CopyIdx
== MachineInstrIndex()) {
927 // FIXME: special case: function live in. It can be a general case if the
928 // first instruction index starts at > 0 value.
929 assert(TargetRegisterInfo::isPhysicalRegister(li
.reg
));
930 // Live-in to the function but dead. Remove it from entry live-in set.
931 if (mf_
->begin()->isLiveIn(li
.reg
))
932 mf_
->begin()->removeLiveIn(li
.reg
);
933 const LiveRange
*LR
= li
.getLiveRangeContaining(CopyIdx
);
934 removeRange(li
, LR
->start
, LR
->end
, li_
, tri_
);
935 return removeIntervalIfEmpty(li
, li_
, tri_
);
938 LiveInterval::iterator LR
=
939 li
.FindLiveRangeContaining(li_
->getPrevSlot(CopyIdx
));
941 // Livein but defined by a phi.
944 MachineInstrIndex RemoveStart
= LR
->start
;
945 MachineInstrIndex RemoveEnd
= li_
->getNextSlot(li_
->getDefIndex(CopyIdx
));
946 if (LR
->end
> RemoveEnd
)
947 // More uses past this copy? Nothing to do.
950 // If there is a last use in the same bb, we can't remove the live range.
951 // Shorten the live interval and return.
952 MachineBasicBlock
*CopyMBB
= CopyMI
->getParent();
953 if (TrimLiveIntervalToLastUse(CopyIdx
, CopyMBB
, li
, LR
))
956 // There are other kills of the val#. Nothing to do.
957 if (!li
.isOnlyLROfValNo(LR
))
960 MachineBasicBlock
*StartMBB
= li_
->getMBBFromIndex(RemoveStart
);
961 if (!isSameOrFallThroughBB(StartMBB
, CopyMBB
, tii_
))
962 // If the live range starts in another mbb and the copy mbb is not a fall
963 // through mbb, then we can only cut the range from the beginning of the
965 RemoveStart
= li_
->getNextSlot(li_
->getMBBStartIdx(CopyMBB
));
967 if (LR
->valno
->def
== RemoveStart
) {
968 // If the def MI defines the val# and this copy is the only kill of the
969 // val#, then propagate the dead marker.
970 PropagateDeadness(li
, CopyMI
, RemoveStart
, li_
, tri_
);
973 if (LR
->valno
->isKill(RemoveEnd
))
974 LR
->valno
->removeKill(RemoveEnd
);
977 removeRange(li
, RemoveStart
, RemoveEnd
, li_
, tri_
);
978 return removeIntervalIfEmpty(li
, li_
, tri_
);
981 /// CanCoalesceWithImpDef - Returns true if the specified copy instruction
982 /// from an implicit def to another register can be coalesced away.
983 bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr
*CopyMI
,
985 LiveInterval
&ImpLi
) const{
986 if (!CopyMI
->killsRegister(ImpLi
.reg
))
988 // Make sure this is the only use.
989 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(ImpLi
.reg
),
990 UE
= mri_
->use_end(); UI
!= UE
;) {
991 MachineInstr
*UseMI
= &*UI
;
993 if (CopyMI
== UseMI
|| JoinedCopies
.count(UseMI
))
1001 /// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
1002 /// a virtual destination register with physical source register.
1004 SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr
*CopyMI
,
1005 MachineBasicBlock
*CopyMBB
,
1006 LiveInterval
&DstInt
,
1007 LiveInterval
&SrcInt
) {
1008 // If the virtual register live interval is long but it has low use desity,
1009 // do not join them, instead mark the physical register as its allocation
1011 const TargetRegisterClass
*RC
= mri_
->getRegClass(DstInt
.reg
);
1012 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1013 unsigned Length
= li_
->getApproximateInstructionCount(DstInt
);
1014 if (Length
> Threshold
&&
1015 (((float)std::distance(mri_
->use_begin(DstInt
.reg
),
1016 mri_
->use_end()) / Length
) < (1.0 / Threshold
)))
1019 // If the virtual register live interval extends into a loop, turn down
1021 MachineInstrIndex CopyIdx
=
1022 li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
1023 const MachineLoop
*L
= loopInfo
->getLoopFor(CopyMBB
);
1025 // Let's see if the virtual register live interval extends into the loop.
1026 LiveInterval::iterator DLR
= DstInt
.FindLiveRangeContaining(CopyIdx
);
1027 assert(DLR
!= DstInt
.end() && "Live range not found!");
1028 DLR
= DstInt
.FindLiveRangeContaining(li_
->getNextSlot(DLR
->end
));
1029 if (DLR
!= DstInt
.end()) {
1030 CopyMBB
= li_
->getMBBFromIndex(DLR
->start
);
1031 L
= loopInfo
->getLoopFor(CopyMBB
);
1035 if (!L
|| Length
<= Threshold
)
1038 MachineInstrIndex UseIdx
= li_
->getUseIndex(CopyIdx
);
1039 LiveInterval::iterator SLR
= SrcInt
.FindLiveRangeContaining(UseIdx
);
1040 MachineBasicBlock
*SMBB
= li_
->getMBBFromIndex(SLR
->start
);
1041 if (loopInfo
->getLoopFor(SMBB
) != L
) {
1042 if (!loopInfo
->isLoopHeader(CopyMBB
))
1044 // If vr's live interval extends pass the loop header, do not join.
1045 for (MachineBasicBlock::succ_iterator SI
= CopyMBB
->succ_begin(),
1046 SE
= CopyMBB
->succ_end(); SI
!= SE
; ++SI
) {
1047 MachineBasicBlock
*SuccMBB
= *SI
;
1048 if (SuccMBB
== CopyMBB
)
1050 if (DstInt
.overlaps(li_
->getMBBStartIdx(SuccMBB
),
1051 li_
->getNextSlot(li_
->getMBBEndIdx(SuccMBB
))))
1058 /// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
1059 /// copy from a virtual source register to a physical destination register.
1061 SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr
*CopyMI
,
1062 MachineBasicBlock
*CopyMBB
,
1063 LiveInterval
&DstInt
,
1064 LiveInterval
&SrcInt
) {
1065 // If the virtual register live interval is long but it has low use desity,
1066 // do not join them, instead mark the physical register as its allocation
1068 const TargetRegisterClass
*RC
= mri_
->getRegClass(SrcInt
.reg
);
1069 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1070 unsigned Length
= li_
->getApproximateInstructionCount(SrcInt
);
1071 if (Length
> Threshold
&&
1072 (((float)std::distance(mri_
->use_begin(SrcInt
.reg
),
1073 mri_
->use_end()) / Length
) < (1.0 / Threshold
)))
1077 // Must be implicit_def.
1080 // If the virtual register live interval is defined or cross a loop, turn
1081 // down aggressiveness.
1082 MachineInstrIndex CopyIdx
=
1083 li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
1084 MachineInstrIndex UseIdx
= li_
->getUseIndex(CopyIdx
);
1085 LiveInterval::iterator SLR
= SrcInt
.FindLiveRangeContaining(UseIdx
);
1086 assert(SLR
!= SrcInt
.end() && "Live range not found!");
1087 SLR
= SrcInt
.FindLiveRangeContaining(li_
->getPrevSlot(SLR
->start
));
1088 if (SLR
== SrcInt
.end())
1090 MachineBasicBlock
*SMBB
= li_
->getMBBFromIndex(SLR
->start
);
1091 const MachineLoop
*L
= loopInfo
->getLoopFor(SMBB
);
1093 if (!L
|| Length
<= Threshold
)
1096 if (loopInfo
->getLoopFor(CopyMBB
) != L
) {
1097 if (SMBB
!= L
->getLoopLatch())
1099 // If vr's live interval is extended from before the loop latch, do not
1101 for (MachineBasicBlock::pred_iterator PI
= SMBB
->pred_begin(),
1102 PE
= SMBB
->pred_end(); PI
!= PE
; ++PI
) {
1103 MachineBasicBlock
*PredMBB
= *PI
;
1104 if (PredMBB
== SMBB
)
1106 if (SrcInt
.overlaps(li_
->getMBBStartIdx(PredMBB
),
1107 li_
->getNextSlot(li_
->getMBBEndIdx(PredMBB
))))
1114 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1115 /// two virtual registers from different register classes.
1117 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned LargeReg
,
1119 unsigned Threshold
) {
1120 // Then make sure the intervals are *short*.
1121 LiveInterval
&LargeInt
= li_
->getInterval(LargeReg
);
1122 LiveInterval
&SmallInt
= li_
->getInterval(SmallReg
);
1123 unsigned LargeSize
= li_
->getApproximateInstructionCount(LargeInt
);
1124 unsigned SmallSize
= li_
->getApproximateInstructionCount(SmallInt
);
1125 if (SmallSize
> Threshold
|| LargeSize
> Threshold
)
1126 if ((float)std::distance(mri_
->use_begin(SmallReg
),
1127 mri_
->use_end()) / SmallSize
<
1128 (float)std::distance(mri_
->use_begin(LargeReg
),
1129 mri_
->use_end()) / LargeSize
)
1134 /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
1135 /// register with a physical register, check if any of the virtual register
1136 /// operand is a sub-register use or def. If so, make sure it won't result
1137 /// in an illegal extract_subreg or insert_subreg instruction. e.g.
1138 /// vr1024 = extract_subreg vr1025, 1
1140 /// vr1024 = mov8rr AH
1141 /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
1142 /// AH does not have a super-reg whose sub-register 1 is AH.
1144 SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr
*CopyMI
,
1147 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(VirtReg
),
1148 E
= mri_
->reg_end(); I
!= E
; ++I
) {
1149 MachineOperand
&O
= I
.getOperand();
1150 MachineInstr
*MI
= &*I
;
1151 if (MI
== CopyMI
|| JoinedCopies
.count(MI
))
1153 unsigned SubIdx
= O
.getSubReg();
1154 if (SubIdx
&& !tri_
->getSubReg(PhysReg
, SubIdx
))
1156 if (MI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
) {
1157 SubIdx
= MI
->getOperand(2).getImm();
1158 if (O
.isUse() && !tri_
->getSubReg(PhysReg
, SubIdx
))
1161 unsigned SrcReg
= MI
->getOperand(1).getReg();
1162 const TargetRegisterClass
*RC
=
1163 TargetRegisterInfo::isPhysicalRegister(SrcReg
)
1164 ? tri_
->getPhysicalRegisterRegClass(SrcReg
)
1165 : mri_
->getRegClass(SrcReg
);
1166 if (!tri_
->getMatchingSuperReg(PhysReg
, SubIdx
, RC
))
1170 if (MI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
1171 MI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) {
1172 SubIdx
= MI
->getOperand(3).getImm();
1173 if (VirtReg
== MI
->getOperand(0).getReg()) {
1174 if (!tri_
->getSubReg(PhysReg
, SubIdx
))
1177 unsigned DstReg
= MI
->getOperand(0).getReg();
1178 const TargetRegisterClass
*RC
=
1179 TargetRegisterInfo::isPhysicalRegister(DstReg
)
1180 ? tri_
->getPhysicalRegisterRegClass(DstReg
)
1181 : mri_
->getRegClass(DstReg
);
1182 if (!tri_
->getMatchingSuperReg(PhysReg
, SubIdx
, RC
))
1191 /// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
1192 /// an extract_subreg where dst is a physical register, e.g.
1193 /// cl = EXTRACT_SUBREG reg1024, 1
1195 SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg
,
1196 unsigned SrcReg
, unsigned SubIdx
,
1197 unsigned &RealDstReg
) {
1198 const TargetRegisterClass
*RC
= mri_
->getRegClass(SrcReg
);
1199 RealDstReg
= tri_
->getMatchingSuperReg(DstReg
, SubIdx
, RC
);
1200 assert(RealDstReg
&& "Invalid extract_subreg instruction!");
1202 // For this type of EXTRACT_SUBREG, conservatively
1203 // check if the live interval of the source register interfere with the
1204 // actual super physical register we are trying to coalesce with.
1205 LiveInterval
&RHS
= li_
->getInterval(SrcReg
);
1206 if (li_
->hasInterval(RealDstReg
) &&
1207 RHS
.overlaps(li_
->getInterval(RealDstReg
))) {
1209 errs() << "Interfere with register ";
1210 li_
->getInterval(RealDstReg
).print(errs(), tri_
);
1212 return false; // Not coalescable
1214 for (const unsigned* SR
= tri_
->getSubRegisters(RealDstReg
); *SR
; ++SR
)
1215 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
1217 errs() << "Interfere with sub-register ";
1218 li_
->getInterval(*SR
).print(errs(), tri_
);
1220 return false; // Not coalescable
1225 /// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
1226 /// an insert_subreg where src is a physical register, e.g.
1227 /// reg1024 = INSERT_SUBREG reg1024, c1, 0
1229 SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg
,
1230 unsigned SrcReg
, unsigned SubIdx
,
1231 unsigned &RealSrcReg
) {
1232 const TargetRegisterClass
*RC
= mri_
->getRegClass(DstReg
);
1233 RealSrcReg
= tri_
->getMatchingSuperReg(SrcReg
, SubIdx
, RC
);
1234 assert(RealSrcReg
&& "Invalid extract_subreg instruction!");
1236 LiveInterval
&RHS
= li_
->getInterval(DstReg
);
1237 if (li_
->hasInterval(RealSrcReg
) &&
1238 RHS
.overlaps(li_
->getInterval(RealSrcReg
))) {
1240 errs() << "Interfere with register ";
1241 li_
->getInterval(RealSrcReg
).print(errs(), tri_
);
1243 return false; // Not coalescable
1245 for (const unsigned* SR
= tri_
->getSubRegisters(RealSrcReg
); *SR
; ++SR
)
1246 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
1248 errs() << "Interfere with sub-register ";
1249 li_
->getInterval(*SR
).print(errs(), tri_
);
1251 return false; // Not coalescable
1256 /// getRegAllocPreference - Return register allocation preference register.
1258 static unsigned getRegAllocPreference(unsigned Reg
, MachineFunction
&MF
,
1259 MachineRegisterInfo
*MRI
,
1260 const TargetRegisterInfo
*TRI
) {
1261 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
1263 std::pair
<unsigned, unsigned> Hint
= MRI
->getRegAllocationHint(Reg
);
1264 return TRI
->ResolveRegAllocHint(Hint
.first
, Hint
.second
, MF
);
1267 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1268 /// which are the src/dst of the copy instruction CopyMI. This returns true
1269 /// if the copy was successfully coalesced away. If it is not currently
1270 /// possible to coalesce this interval, but it may be possible if other
1271 /// things get coalesced, then it returns true by reference in 'Again'.
1272 bool SimpleRegisterCoalescing::JoinCopy(CopyRec
&TheCopy
, bool &Again
) {
1273 MachineInstr
*CopyMI
= TheCopy
.MI
;
1276 if (JoinedCopies
.count(CopyMI
) || ReMatCopies
.count(CopyMI
))
1277 return false; // Already done.
1279 DEBUG(errs() << li_
->getInstructionIndex(CopyMI
) << '\t' << *CopyMI
);
1281 unsigned SrcReg
, DstReg
, SrcSubIdx
= 0, DstSubIdx
= 0;
1282 bool isExtSubReg
= CopyMI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
;
1283 bool isInsSubReg
= CopyMI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
;
1284 bool isSubRegToReg
= CopyMI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
;
1285 unsigned SubIdx
= 0;
1287 DstReg
= CopyMI
->getOperand(0).getReg();
1288 DstSubIdx
= CopyMI
->getOperand(0).getSubReg();
1289 SrcReg
= CopyMI
->getOperand(1).getReg();
1290 SrcSubIdx
= CopyMI
->getOperand(2).getImm();
1291 } else if (isInsSubReg
|| isSubRegToReg
) {
1292 DstReg
= CopyMI
->getOperand(0).getReg();
1293 DstSubIdx
= CopyMI
->getOperand(3).getImm();
1294 SrcReg
= CopyMI
->getOperand(2).getReg();
1295 SrcSubIdx
= CopyMI
->getOperand(2).getSubReg();
1296 if (SrcSubIdx
&& SrcSubIdx
!= DstSubIdx
) {
1297 // r1025 = INSERT_SUBREG r1025, r1024<2>, 2 Then r1024 has already been
1298 // coalesced to a larger register so the subreg indices cancel out.
1299 DEBUG(errs() << "\tSource of insert_subreg is already coalesced "
1300 << "to another register.\n");
1301 return false; // Not coalescable.
1303 } else if (!tii_
->isMoveInstr(*CopyMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
)){
1304 llvm_unreachable("Unrecognized copy instruction!");
1307 // If they are already joined we continue.
1308 if (SrcReg
== DstReg
) {
1309 DEBUG(errs() << "\tCopy already coalesced.\n");
1310 return false; // Not coalescable.
1313 bool SrcIsPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
1314 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
1316 // If they are both physical registers, we cannot join them.
1317 if (SrcIsPhys
&& DstIsPhys
) {
1318 DEBUG(errs() << "\tCan not coalesce physregs.\n");
1319 return false; // Not coalescable.
1322 // We only join virtual registers with allocatable physical registers.
1323 if (SrcIsPhys
&& !allocatableRegs_
[SrcReg
]) {
1324 DEBUG(errs() << "\tSrc reg is unallocatable physreg.\n");
1325 return false; // Not coalescable.
1327 if (DstIsPhys
&& !allocatableRegs_
[DstReg
]) {
1328 DEBUG(errs() << "\tDst reg is unallocatable physreg.\n");
1329 return false; // Not coalescable.
1332 // Check that a physical source register is compatible with dst regclass
1334 unsigned SrcSubReg
= SrcSubIdx
?
1335 tri_
->getSubReg(SrcReg
, SrcSubIdx
) : SrcReg
;
1336 const TargetRegisterClass
*DstRC
= mri_
->getRegClass(DstReg
);
1337 const TargetRegisterClass
*DstSubRC
= DstRC
;
1339 DstSubRC
= DstRC
->getSubRegisterRegClass(DstSubIdx
);
1340 assert(DstSubRC
&& "Illegal subregister index");
1341 if (!DstSubRC
->contains(SrcSubReg
)) {
1342 DEBUG(errs() << "\tIncompatible destination regclass: "
1343 << tri_
->getName(SrcSubReg
) << " not in "
1344 << DstSubRC
->getName() << ".\n");
1345 return false; // Not coalescable.
1349 // Check that a physical dst register is compatible with source regclass
1351 unsigned DstSubReg
= DstSubIdx
?
1352 tri_
->getSubReg(DstReg
, DstSubIdx
) : DstReg
;
1353 const TargetRegisterClass
*SrcRC
= mri_
->getRegClass(SrcReg
);
1354 const TargetRegisterClass
*SrcSubRC
= SrcRC
;
1356 SrcSubRC
= SrcRC
->getSubRegisterRegClass(SrcSubIdx
);
1357 assert(SrcSubRC
&& "Illegal subregister index");
1358 if (!SrcSubRC
->contains(DstReg
)) {
1359 DEBUG(errs() << "\tIncompatible source regclass: "
1360 << tri_
->getName(DstSubReg
) << " not in "
1361 << SrcSubRC
->getName() << ".\n");
1363 return false; // Not coalescable.
1367 // Should be non-null only when coalescing to a sub-register class.
1368 bool CrossRC
= false;
1369 const TargetRegisterClass
*SrcRC
= SrcIsPhys
? 0 : mri_
->getRegClass(SrcReg
);
1370 const TargetRegisterClass
*DstRC
= DstIsPhys
? 0 : mri_
->getRegClass(DstReg
);
1371 const TargetRegisterClass
*NewRC
= NULL
;
1372 MachineBasicBlock
*CopyMBB
= CopyMI
->getParent();
1373 unsigned RealDstReg
= 0;
1374 unsigned RealSrcReg
= 0;
1375 if (isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) {
1376 SubIdx
= CopyMI
->getOperand(isExtSubReg
? 2 : 3).getImm();
1377 if (SrcIsPhys
&& isExtSubReg
) {
1378 // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
1379 // coalesced with AX.
1380 unsigned DstSubIdx
= CopyMI
->getOperand(0).getSubReg();
1382 // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
1383 // coalesced to a larger register so the subreg indices cancel out.
1384 if (DstSubIdx
!= SubIdx
) {
1385 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1386 return false; // Not coalescable.
1389 SrcReg
= tri_
->getSubReg(SrcReg
, SubIdx
);
1391 } else if (DstIsPhys
&& (isInsSubReg
|| isSubRegToReg
)) {
1392 // EAX = INSERT_SUBREG EAX, r1024, 0
1393 unsigned SrcSubIdx
= CopyMI
->getOperand(2).getSubReg();
1395 // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
1396 // coalesced to a larger register so the subreg indices cancel out.
1397 if (SrcSubIdx
!= SubIdx
) {
1398 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1399 return false; // Not coalescable.
1402 DstReg
= tri_
->getSubReg(DstReg
, SubIdx
);
1404 } else if ((DstIsPhys
&& isExtSubReg
) ||
1405 (SrcIsPhys
&& (isInsSubReg
|| isSubRegToReg
))) {
1406 if (!isSubRegToReg
&& CopyMI
->getOperand(1).getSubReg()) {
1407 DEBUG(errs() << "\tSrc of extract_subreg already coalesced with reg"
1408 << " of a super-class.\n");
1409 return false; // Not coalescable.
1413 if (!CanJoinExtractSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealDstReg
))
1414 return false; // Not coalescable
1416 if (!CanJoinInsertSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealSrcReg
))
1417 return false; // Not coalescable
1421 unsigned OldSubIdx
= isExtSubReg
? CopyMI
->getOperand(0).getSubReg()
1422 : CopyMI
->getOperand(2).getSubReg();
1424 if (OldSubIdx
== SubIdx
&& !differingRegisterClasses(SrcReg
, DstReg
))
1425 // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
1426 // coalesced to a larger register so the subreg indices cancel out.
1427 // Also check if the other larger register is of the same register
1428 // class as the would be resulting register.
1431 DEBUG(errs() << "\t Sub-register indices mismatch.\n");
1432 return false; // Not coalescable.
1436 if (!DstIsPhys
&& !SrcIsPhys
) {
1437 if (isInsSubReg
|| isSubRegToReg
) {
1438 NewRC
= tri_
->getMatchingSuperRegClass(DstRC
, SrcRC
, SubIdx
);
1439 } else // extract_subreg {
1440 NewRC
= tri_
->getMatchingSuperRegClass(SrcRC
, DstRC
, SubIdx
);
1443 DEBUG(errs() << "\t Conflicting sub-register indices.\n");
1444 return false; // Not coalescable
1447 unsigned LargeReg
= isExtSubReg
? SrcReg
: DstReg
;
1448 unsigned SmallReg
= isExtSubReg
? DstReg
: SrcReg
;
1449 unsigned Limit
= allocatableRCRegs_
[mri_
->getRegClass(SmallReg
)].count();
1450 if (!isWinToJoinCrossClass(LargeReg
, SmallReg
, Limit
)) {
1451 Again
= true; // May be possible to coalesce later.
1456 } else if (differingRegisterClasses(SrcReg
, DstReg
)) {
1457 if (DisableCrossClassJoin
)
1461 // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
1462 // with another? If it's the resulting destination register, then
1463 // the subidx must be propagated to uses (but only those defined
1464 // by the EXTRACT_SUBREG). If it's being coalesced into another
1465 // register, it should be safe because register is assumed to have
1466 // the register class of the super-register.
1468 // Process moves where one of the registers have a sub-register index.
1469 MachineOperand
*DstMO
= CopyMI
->findRegisterDefOperand(DstReg
);
1470 MachineOperand
*SrcMO
= CopyMI
->findRegisterUseOperand(SrcReg
);
1471 SubIdx
= DstMO
->getSubReg();
1473 if (SrcMO
->getSubReg())
1474 // FIXME: can we handle this?
1476 // This is not an insert_subreg but it looks like one.
1477 // e.g. %reg1024:4 = MOV32rr %EAX
1480 if (!CanJoinInsertSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealSrcReg
))
1481 return false; // Not coalescable
1485 SubIdx
= SrcMO
->getSubReg();
1487 // This is not a extract_subreg but it looks like one.
1488 // e.g. %cl = MOV16rr %reg1024:1
1491 if (!CanJoinExtractSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
,RealDstReg
))
1492 return false; // Not coalescable
1498 unsigned LargeReg
= SrcReg
;
1499 unsigned SmallReg
= DstReg
;
1501 // Now determine the register class of the joined register.
1503 if (SubIdx
&& DstRC
&& DstRC
->isASubClass()) {
1504 // This is a move to a sub-register class. However, the source is a
1505 // sub-register of a larger register class. We don't know what should
1506 // the register class be. FIXME.
1510 if (!DstIsPhys
&& !SrcIsPhys
)
1512 } else if (!SrcIsPhys
&& !DstIsPhys
) {
1513 NewRC
= getCommonSubClass(SrcRC
, DstRC
);
1515 DEBUG(errs() << "\tDisjoint regclasses: "
1516 << SrcRC
->getName() << ", "
1517 << DstRC
->getName() << ".\n");
1518 return false; // Not coalescable.
1520 if (DstRC
->getSize() > SrcRC
->getSize())
1521 std::swap(LargeReg
, SmallReg
);
1524 // If we are joining two virtual registers and the resulting register
1525 // class is more restrictive (fewer register, smaller size). Check if it's
1526 // worth doing the merge.
1527 if (!SrcIsPhys
&& !DstIsPhys
&&
1528 (isExtSubReg
|| DstRC
->isASubClass()) &&
1529 !isWinToJoinCrossClass(LargeReg
, SmallReg
,
1530 allocatableRCRegs_
[NewRC
].count())) {
1531 DEBUG(errs() << "\tSrc/Dest are different register classes.\n");
1532 // Allow the coalescer to try again in case either side gets coalesced to
1533 // a physical register that's compatible with the other side. e.g.
1534 // r1024 = MOV32to32_ r1025
1535 // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
1536 Again
= true; // May be possible to coalesce later.
1541 // Will it create illegal extract_subreg / insert_subreg?
1542 if (SrcIsPhys
&& HasIncompatibleSubRegDefUse(CopyMI
, DstReg
, SrcReg
))
1544 if (DstIsPhys
&& HasIncompatibleSubRegDefUse(CopyMI
, SrcReg
, DstReg
))
1547 LiveInterval
&SrcInt
= li_
->getInterval(SrcReg
);
1548 LiveInterval
&DstInt
= li_
->getInterval(DstReg
);
1549 assert(SrcInt
.reg
== SrcReg
&& DstInt
.reg
== DstReg
&&
1550 "Register mapping is horribly broken!");
1553 errs() << "\t\tInspecting "; SrcInt
.print(errs(), tri_
);
1554 errs() << " and "; DstInt
.print(errs(), tri_
);
1558 // Save a copy of the virtual register live interval. We'll manually
1559 // merge this into the "real" physical register live interval this is
1561 LiveInterval
*SavedLI
= 0;
1563 SavedLI
= li_
->dupInterval(&SrcInt
);
1564 else if (RealSrcReg
)
1565 SavedLI
= li_
->dupInterval(&DstInt
);
1567 // Check if it is necessary to propagate "isDead" property.
1568 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
) {
1569 MachineOperand
*mopd
= CopyMI
->findRegisterDefOperand(DstReg
, false);
1570 bool isDead
= mopd
->isDead();
1572 // We need to be careful about coalescing a source physical register with a
1573 // virtual register. Once the coalescing is done, it cannot be broken and
1574 // these are not spillable! If the destination interval uses are far away,
1575 // think twice about coalescing them!
1576 if (!isDead
&& (SrcIsPhys
|| DstIsPhys
)) {
1577 // If the copy is in a loop, take care not to coalesce aggressively if the
1578 // src is coming in from outside the loop (or the dst is out of the loop).
1579 // If it's not in a loop, then determine whether to join them base purely
1580 // by the length of the interval.
1581 if (PhysJoinTweak
) {
1583 if (!isWinToJoinVRWithSrcPhysReg(CopyMI
, CopyMBB
, DstInt
, SrcInt
)) {
1584 mri_
->setRegAllocationHint(DstInt
.reg
, 0, SrcReg
);
1586 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1587 Again
= true; // May be possible to coalesce later.
1591 if (!isWinToJoinVRWithDstPhysReg(CopyMI
, CopyMBB
, DstInt
, SrcInt
)) {
1592 mri_
->setRegAllocationHint(SrcInt
.reg
, 0, DstReg
);
1594 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1595 Again
= true; // May be possible to coalesce later.
1600 // If the virtual register live interval is long but it has low use desity,
1601 // do not join them, instead mark the physical register as its allocation
1603 LiveInterval
&JoinVInt
= SrcIsPhys
? DstInt
: SrcInt
;
1604 unsigned JoinVReg
= SrcIsPhys
? DstReg
: SrcReg
;
1605 unsigned JoinPReg
= SrcIsPhys
? SrcReg
: DstReg
;
1606 const TargetRegisterClass
*RC
= mri_
->getRegClass(JoinVReg
);
1607 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1608 unsigned Length
= li_
->getApproximateInstructionCount(JoinVInt
);
1609 float Ratio
= 1.0 / Threshold
;
1610 if (Length
> Threshold
&&
1611 (((float)std::distance(mri_
->use_begin(JoinVReg
),
1612 mri_
->use_end()) / Length
) < Ratio
)) {
1613 mri_
->setRegAllocationHint(JoinVInt
.reg
, 0, JoinPReg
);
1615 DEBUG(errs() << "\tMay tie down a physical register, abort!\n");
1616 Again
= true; // May be possible to coalesce later.
1623 // Okay, attempt to join these two intervals. On failure, this returns false.
1624 // Otherwise, if one of the intervals being joined is a physreg, this method
1625 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1626 // been modified, so we can use this information below to update aliases.
1627 bool Swapped
= false;
1628 // If SrcInt is implicitly defined, it's safe to coalesce.
1629 bool isEmpty
= SrcInt
.empty();
1630 if (isEmpty
&& !CanCoalesceWithImpDef(CopyMI
, DstInt
, SrcInt
)) {
1631 // Only coalesce an empty interval (defined by implicit_def) with
1632 // another interval which has a valno defined by the CopyMI and the CopyMI
1633 // is a kill of the implicit def.
1634 DEBUG(errs() << "Not profitable!\n");
1638 if (!isEmpty
&& !JoinIntervals(DstInt
, SrcInt
, Swapped
)) {
1639 // Coalescing failed.
1641 // If definition of source is defined by trivial computation, try
1642 // rematerializing it.
1643 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
&&
1644 ReMaterializeTrivialDef(SrcInt
, DstReg
, DstSubIdx
, CopyMI
))
1647 // If we can eliminate the copy without merging the live ranges, do so now.
1648 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
&&
1649 (AdjustCopiesBackFrom(SrcInt
, DstInt
, CopyMI
) ||
1650 RemoveCopyByCommutingDef(SrcInt
, DstInt
, CopyMI
))) {
1651 JoinedCopies
.insert(CopyMI
);
1655 // Otherwise, we are unable to join the intervals.
1656 DEBUG(errs() << "Interference!\n");
1657 Again
= true; // May be possible to coalesce later.
1661 LiveInterval
*ResSrcInt
= &SrcInt
;
1662 LiveInterval
*ResDstInt
= &DstInt
;
1664 std::swap(SrcReg
, DstReg
);
1665 std::swap(ResSrcInt
, ResDstInt
);
1667 assert(TargetRegisterInfo::isVirtualRegister(SrcReg
) &&
1668 "LiveInterval::join didn't work right!");
1670 // If we're about to merge live ranges into a physical register live interval,
1671 // we have to update any aliased register's live ranges to indicate that they
1672 // have clobbered values for this range.
1673 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
1674 // If this is a extract_subreg where dst is a physical register, e.g.
1675 // cl = EXTRACT_SUBREG reg1024, 1
1676 // then create and update the actual physical register allocated to RHS.
1677 if (RealDstReg
|| RealSrcReg
) {
1678 LiveInterval
&RealInt
=
1679 li_
->getOrCreateInterval(RealDstReg
? RealDstReg
: RealSrcReg
);
1680 for (LiveInterval::const_vni_iterator I
= SavedLI
->vni_begin(),
1681 E
= SavedLI
->vni_end(); I
!= E
; ++I
) {
1682 const VNInfo
*ValNo
= *I
;
1683 VNInfo
*NewValNo
= RealInt
.getNextValue(ValNo
->def
, ValNo
->getCopy(),
1684 false, // updated at *
1685 li_
->getVNInfoAllocator());
1686 NewValNo
->setFlags(ValNo
->getFlags()); // * updated here.
1687 RealInt
.addKills(NewValNo
, ValNo
->kills
);
1688 RealInt
.MergeValueInAsValue(*SavedLI
, ValNo
, NewValNo
);
1690 RealInt
.weight
+= SavedLI
->weight
;
1691 DstReg
= RealDstReg
? RealDstReg
: RealSrcReg
;
1694 // Update the liveintervals of sub-registers.
1695 for (const unsigned *AS
= tri_
->getSubRegisters(DstReg
); *AS
; ++AS
)
1696 li_
->getOrCreateInterval(*AS
).MergeInClobberRanges(*ResSrcInt
,
1697 li_
->getVNInfoAllocator());
1700 // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
1701 // larger super-register.
1702 if ((isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) &&
1703 !SrcIsPhys
&& !DstIsPhys
) {
1704 if ((isExtSubReg
&& !Swapped
) ||
1705 ((isInsSubReg
|| isSubRegToReg
) && Swapped
)) {
1706 ResSrcInt
->Copy(*ResDstInt
, mri_
, li_
->getVNInfoAllocator());
1707 std::swap(SrcReg
, DstReg
);
1708 std::swap(ResSrcInt
, ResDstInt
);
1712 // Coalescing to a virtual register that is of a sub-register class of the
1713 // other. Make sure the resulting register is set to the right register class.
1717 // This may happen even if it's cross-rc coalescing. e.g.
1718 // %reg1026<def> = SUBREG_TO_REG 0, %reg1037<kill>, 4
1719 // reg1026 -> GR64, reg1037 -> GR32_ABCD. The resulting register will have to
1720 // be allocate a register from GR64_ABCD.
1722 mri_
->setRegClass(DstReg
, NewRC
);
1724 // Remember to delete the copy instruction.
1725 JoinedCopies
.insert(CopyMI
);
1727 // Some live range has been lengthened due to colaescing, eliminate the
1728 // unnecessary kills.
1729 RemoveUnnecessaryKills(SrcReg
, *ResDstInt
);
1730 if (TargetRegisterInfo::isVirtualRegister(DstReg
))
1731 RemoveUnnecessaryKills(DstReg
, *ResDstInt
);
1733 UpdateRegDefsUses(SrcReg
, DstReg
, SubIdx
);
1735 // SrcReg is guarateed to be the register whose live interval that is
1737 li_
->removeInterval(SrcReg
);
1739 // Update regalloc hint.
1740 tri_
->UpdateRegAllocHint(SrcReg
, DstReg
, *mf_
);
1742 // Manually deleted the live interval copy.
1748 // If resulting interval has a preference that no longer fits because of subreg
1749 // coalescing, just clear the preference.
1750 unsigned Preference
= getRegAllocPreference(ResDstInt
->reg
, *mf_
, mri_
, tri_
);
1751 if (Preference
&& (isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) &&
1752 TargetRegisterInfo::isVirtualRegister(ResDstInt
->reg
)) {
1753 const TargetRegisterClass
*RC
= mri_
->getRegClass(ResDstInt
->reg
);
1754 if (!RC
->contains(Preference
))
1755 mri_
->setRegAllocationHint(ResDstInt
->reg
, 0, 0);
1759 errs() << "\n\t\tJoined. Result = ";
1760 ResDstInt
->print(errs(), tri_
);
1768 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1769 /// compute what the resultant value numbers for each value in the input two
1770 /// ranges will be. This is complicated by copies between the two which can
1771 /// and will commonly cause multiple value numbers to be merged into one.
1773 /// VN is the value number that we're trying to resolve. InstDefiningValue
1774 /// keeps track of the new InstDefiningValue assignment for the result
1775 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1776 /// whether a value in this or other is a copy from the opposite set.
1777 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1778 /// already been assigned.
1780 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1781 /// contains the value number the copy is from.
1783 static unsigned ComputeUltimateVN(VNInfo
*VNI
,
1784 SmallVector
<VNInfo
*, 16> &NewVNInfo
,
1785 DenseMap
<VNInfo
*, VNInfo
*> &ThisFromOther
,
1786 DenseMap
<VNInfo
*, VNInfo
*> &OtherFromThis
,
1787 SmallVector
<int, 16> &ThisValNoAssignments
,
1788 SmallVector
<int, 16> &OtherValNoAssignments
) {
1789 unsigned VN
= VNI
->id
;
1791 // If the VN has already been computed, just return it.
1792 if (ThisValNoAssignments
[VN
] >= 0)
1793 return ThisValNoAssignments
[VN
];
1794 // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1796 // If this val is not a copy from the other val, then it must be a new value
1797 // number in the destination.
1798 DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= ThisFromOther
.find(VNI
);
1799 if (I
== ThisFromOther
.end()) {
1800 NewVNInfo
.push_back(VNI
);
1801 return ThisValNoAssignments
[VN
] = NewVNInfo
.size()-1;
1803 VNInfo
*OtherValNo
= I
->second
;
1805 // Otherwise, this *is* a copy from the RHS. If the other side has already
1806 // been computed, return it.
1807 if (OtherValNoAssignments
[OtherValNo
->id
] >= 0)
1808 return ThisValNoAssignments
[VN
] = OtherValNoAssignments
[OtherValNo
->id
];
1810 // Mark this value number as currently being computed, then ask what the
1811 // ultimate value # of the other value is.
1812 ThisValNoAssignments
[VN
] = -2;
1813 unsigned UltimateVN
=
1814 ComputeUltimateVN(OtherValNo
, NewVNInfo
, OtherFromThis
, ThisFromOther
,
1815 OtherValNoAssignments
, ThisValNoAssignments
);
1816 return ThisValNoAssignments
[VN
] = UltimateVN
;
1819 static bool InVector(VNInfo
*Val
, const SmallVector
<VNInfo
*, 8> &V
) {
1820 return std::find(V
.begin(), V
.end(), Val
) != V
.end();
1823 /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
1824 /// the specified live interval is defined by a copy from the specified
1826 bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval
&li
,
1829 unsigned SrcReg
= li_
->getVNInfoSourceReg(LR
->valno
);
1832 // FIXME: Do isPHIDef and isDefAccurate both need to be tested?
1833 if ((LR
->valno
->isPHIDef() || !LR
->valno
->isDefAccurate()) &&
1834 TargetRegisterInfo::isPhysicalRegister(li
.reg
) &&
1835 *tri_
->getSuperRegisters(li
.reg
)) {
1836 // It's a sub-register live interval, we may not have precise information.
1838 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(LR
->start
);
1839 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
1841 tii_
->isMoveInstr(*DefMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
1842 DstReg
== li
.reg
&& SrcReg
== Reg
) {
1843 // Cache computed info.
1844 LR
->valno
->def
= LR
->start
;
1845 LR
->valno
->setCopy(DefMI
);
1852 /// SimpleJoin - Attempt to joint the specified interval into this one. The
1853 /// caller of this method must guarantee that the RHS only contains a single
1854 /// value number and that the RHS is not defined by a copy from this
1855 /// interval. This returns false if the intervals are not joinable, or it
1856 /// joins them and returns true.
1857 bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval
&LHS
, LiveInterval
&RHS
){
1858 assert(RHS
.containsOneValue());
1860 // Some number (potentially more than one) value numbers in the current
1861 // interval may be defined as copies from the RHS. Scan the overlapping
1862 // portions of the LHS and RHS, keeping track of this and looking for
1863 // overlapping live ranges that are NOT defined as copies. If these exist, we
1866 LiveInterval::iterator LHSIt
= LHS
.begin(), LHSEnd
= LHS
.end();
1867 LiveInterval::iterator RHSIt
= RHS
.begin(), RHSEnd
= RHS
.end();
1869 if (LHSIt
->start
< RHSIt
->start
) {
1870 LHSIt
= std::upper_bound(LHSIt
, LHSEnd
, RHSIt
->start
);
1871 if (LHSIt
!= LHS
.begin()) --LHSIt
;
1872 } else if (RHSIt
->start
< LHSIt
->start
) {
1873 RHSIt
= std::upper_bound(RHSIt
, RHSEnd
, LHSIt
->start
);
1874 if (RHSIt
!= RHS
.begin()) --RHSIt
;
1877 SmallVector
<VNInfo
*, 8> EliminatedLHSVals
;
1880 // Determine if these live intervals overlap.
1881 bool Overlaps
= false;
1882 if (LHSIt
->start
<= RHSIt
->start
)
1883 Overlaps
= LHSIt
->end
> RHSIt
->start
;
1885 Overlaps
= RHSIt
->end
> LHSIt
->start
;
1887 // If the live intervals overlap, there are two interesting cases: if the
1888 // LHS interval is defined by a copy from the RHS, it's ok and we record
1889 // that the LHS value # is the same as the RHS. If it's not, then we cannot
1890 // coalesce these live ranges and we bail out.
1892 // If we haven't already recorded that this value # is safe, check it.
1893 if (!InVector(LHSIt
->valno
, EliminatedLHSVals
)) {
1894 // Copy from the RHS?
1895 if (!RangeIsDefinedByCopyFromReg(LHS
, LHSIt
, RHS
.reg
))
1896 return false; // Nope, bail out.
1898 if (LHSIt
->contains(RHSIt
->valno
->def
))
1899 // Here is an interesting situation:
1901 // vr1025 = copy vr1024
1906 // Even though vr1025 is copied from vr1024, it's not safe to
1907 // coalesce them since the live range of vr1025 intersects the
1908 // def of vr1024. This happens because vr1025 is assigned the
1909 // value of the previous iteration of vr1024.
1911 EliminatedLHSVals
.push_back(LHSIt
->valno
);
1914 // We know this entire LHS live range is okay, so skip it now.
1915 if (++LHSIt
== LHSEnd
) break;
1919 if (LHSIt
->end
< RHSIt
->end
) {
1920 if (++LHSIt
== LHSEnd
) break;
1922 // One interesting case to check here. It's possible that we have
1923 // something like "X3 = Y" which defines a new value number in the LHS,
1924 // and is the last use of this liverange of the RHS. In this case, we
1925 // want to notice this copy (so that it gets coalesced away) even though
1926 // the live ranges don't actually overlap.
1927 if (LHSIt
->start
== RHSIt
->end
) {
1928 if (InVector(LHSIt
->valno
, EliminatedLHSVals
)) {
1929 // We already know that this value number is going to be merged in
1930 // if coalescing succeeds. Just skip the liverange.
1931 if (++LHSIt
== LHSEnd
) break;
1933 // Otherwise, if this is a copy from the RHS, mark it as being merged
1935 if (RangeIsDefinedByCopyFromReg(LHS
, LHSIt
, RHS
.reg
)) {
1936 if (LHSIt
->contains(RHSIt
->valno
->def
))
1937 // Here is an interesting situation:
1939 // vr1025 = copy vr1024
1944 // Even though vr1025 is copied from vr1024, it's not safe to
1945 // coalesced them since live range of vr1025 intersects the
1946 // def of vr1024. This happens because vr1025 is assigned the
1947 // value of the previous iteration of vr1024.
1949 EliminatedLHSVals
.push_back(LHSIt
->valno
);
1951 // We know this entire LHS live range is okay, so skip it now.
1952 if (++LHSIt
== LHSEnd
) break;
1957 if (++RHSIt
== RHSEnd
) break;
1961 // If we got here, we know that the coalescing will be successful and that
1962 // the value numbers in EliminatedLHSVals will all be merged together. Since
1963 // the most common case is that EliminatedLHSVals has a single number, we
1964 // optimize for it: if there is more than one value, we merge them all into
1965 // the lowest numbered one, then handle the interval as if we were merging
1966 // with one value number.
1967 VNInfo
*LHSValNo
= NULL
;
1968 if (EliminatedLHSVals
.size() > 1) {
1969 // Loop through all the equal value numbers merging them into the smallest
1971 VNInfo
*Smallest
= EliminatedLHSVals
[0];
1972 for (unsigned i
= 1, e
= EliminatedLHSVals
.size(); i
!= e
; ++i
) {
1973 if (EliminatedLHSVals
[i
]->id
< Smallest
->id
) {
1974 // Merge the current notion of the smallest into the smaller one.
1975 LHS
.MergeValueNumberInto(Smallest
, EliminatedLHSVals
[i
]);
1976 Smallest
= EliminatedLHSVals
[i
];
1978 // Merge into the smallest.
1979 LHS
.MergeValueNumberInto(EliminatedLHSVals
[i
], Smallest
);
1982 LHSValNo
= Smallest
;
1983 } else if (EliminatedLHSVals
.empty()) {
1984 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
) &&
1985 *tri_
->getSuperRegisters(LHS
.reg
))
1986 // Imprecise sub-register information. Can't handle it.
1988 llvm_unreachable("No copies from the RHS?");
1990 LHSValNo
= EliminatedLHSVals
[0];
1993 // Okay, now that there is a single LHS value number that we're merging the
1994 // RHS into, update the value number info for the LHS to indicate that the
1995 // value number is defined where the RHS value number was.
1996 const VNInfo
*VNI
= RHS
.getValNumInfo(0);
1997 LHSValNo
->def
= VNI
->def
;
1998 LHSValNo
->setCopy(VNI
->getCopy());
2000 // Okay, the final step is to loop over the RHS live intervals, adding them to
2002 if (VNI
->hasPHIKill())
2003 LHSValNo
->setHasPHIKill(true);
2004 LHS
.addKills(LHSValNo
, VNI
->kills
);
2005 LHS
.MergeRangesInAsValue(RHS
, LHSValNo
);
2007 LHS
.ComputeJoinedWeight(RHS
);
2009 // Update regalloc hint if both are virtual registers.
2010 if (TargetRegisterInfo::isVirtualRegister(LHS
.reg
) &&
2011 TargetRegisterInfo::isVirtualRegister(RHS
.reg
)) {
2012 std::pair
<unsigned, unsigned> RHSPref
= mri_
->getRegAllocationHint(RHS
.reg
);
2013 std::pair
<unsigned, unsigned> LHSPref
= mri_
->getRegAllocationHint(LHS
.reg
);
2014 if (RHSPref
!= LHSPref
)
2015 mri_
->setRegAllocationHint(LHS
.reg
, RHSPref
.first
, RHSPref
.second
);
2018 // Update the liveintervals of sub-registers.
2019 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
))
2020 for (const unsigned *AS
= tri_
->getSubRegisters(LHS
.reg
); *AS
; ++AS
)
2021 li_
->getOrCreateInterval(*AS
).MergeInClobberRanges(LHS
,
2022 li_
->getVNInfoAllocator());
2027 /// JoinIntervals - Attempt to join these two intervals. On failure, this
2028 /// returns false. Otherwise, if one of the intervals being joined is a
2029 /// physreg, this method always canonicalizes LHS to be it. The output
2030 /// "RHS" will not have been modified, so we can use this information
2031 /// below to update aliases.
2033 SimpleRegisterCoalescing::JoinIntervals(LiveInterval
&LHS
, LiveInterval
&RHS
,
2035 // Compute the final value assignment, assuming that the live ranges can be
2037 SmallVector
<int, 16> LHSValNoAssignments
;
2038 SmallVector
<int, 16> RHSValNoAssignments
;
2039 DenseMap
<VNInfo
*, VNInfo
*> LHSValsDefinedFromRHS
;
2040 DenseMap
<VNInfo
*, VNInfo
*> RHSValsDefinedFromLHS
;
2041 SmallVector
<VNInfo
*, 16> NewVNInfo
;
2043 // If a live interval is a physical register, conservatively check if any
2044 // of its sub-registers is overlapping the live interval of the virtual
2045 // register. If so, do not coalesce.
2046 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
) &&
2047 *tri_
->getSubRegisters(LHS
.reg
)) {
2048 // If it's coalescing a virtual register to a physical register, estimate
2049 // its live interval length. This is the *cost* of scanning an entire live
2050 // interval. If the cost is low, we'll do an exhaustive check instead.
2052 // If this is something like this:
2060 // That is, the live interval of v1024 crosses a bb. Then we can't rely on
2061 // less conservative check. It's possible a sub-register is defined before
2062 // v1024 (or live in) and live out of BB1.
2063 if (RHS
.containsOneValue() &&
2064 li_
->intervalIsInOneMBB(RHS
) &&
2065 li_
->getApproximateInstructionCount(RHS
) <= 10) {
2066 // Perform a more exhaustive check for some common cases.
2067 if (li_
->conflictsWithPhysRegRef(RHS
, LHS
.reg
, true, JoinedCopies
))
2070 for (const unsigned* SR
= tri_
->getSubRegisters(LHS
.reg
); *SR
; ++SR
)
2071 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
2073 errs() << "Interfere with sub-register ";
2074 li_
->getInterval(*SR
).print(errs(), tri_
);
2079 } else if (TargetRegisterInfo::isPhysicalRegister(RHS
.reg
) &&
2080 *tri_
->getSubRegisters(RHS
.reg
)) {
2081 if (LHS
.containsOneValue() &&
2082 li_
->getApproximateInstructionCount(LHS
) <= 10) {
2083 // Perform a more exhaustive check for some common cases.
2084 if (li_
->conflictsWithPhysRegRef(LHS
, RHS
.reg
, false, JoinedCopies
))
2087 for (const unsigned* SR
= tri_
->getSubRegisters(RHS
.reg
); *SR
; ++SR
)
2088 if (li_
->hasInterval(*SR
) && LHS
.overlaps(li_
->getInterval(*SR
))) {
2090 errs() << "Interfere with sub-register ";
2091 li_
->getInterval(*SR
).print(errs(), tri_
);
2098 // Compute ultimate value numbers for the LHS and RHS values.
2099 if (RHS
.containsOneValue()) {
2100 // Copies from a liveinterval with a single value are simple to handle and
2101 // very common, handle the special case here. This is important, because
2102 // often RHS is small and LHS is large (e.g. a physreg).
2104 // Find out if the RHS is defined as a copy from some value in the LHS.
2105 int RHSVal0DefinedFromLHS
= -1;
2107 VNInfo
*RHSValNoInfo
= NULL
;
2108 VNInfo
*RHSValNoInfo0
= RHS
.getValNumInfo(0);
2109 unsigned RHSSrcReg
= li_
->getVNInfoSourceReg(RHSValNoInfo0
);
2110 if (RHSSrcReg
== 0 || RHSSrcReg
!= LHS
.reg
) {
2111 // If RHS is not defined as a copy from the LHS, we can use simpler and
2112 // faster checks to see if the live ranges are coalescable. This joiner
2113 // can't swap the LHS/RHS intervals though.
2114 if (!TargetRegisterInfo::isPhysicalRegister(RHS
.reg
)) {
2115 return SimpleJoin(LHS
, RHS
);
2117 RHSValNoInfo
= RHSValNoInfo0
;
2120 // It was defined as a copy from the LHS, find out what value # it is.
2122 LHS
.getLiveRangeContaining(li_
->getPrevSlot(RHSValNoInfo0
->def
))->valno
;
2123 RHSValID
= RHSValNoInfo
->id
;
2124 RHSVal0DefinedFromLHS
= RHSValID
;
2127 LHSValNoAssignments
.resize(LHS
.getNumValNums(), -1);
2128 RHSValNoAssignments
.resize(RHS
.getNumValNums(), -1);
2129 NewVNInfo
.resize(LHS
.getNumValNums(), NULL
);
2131 // Okay, *all* of the values in LHS that are defined as a copy from RHS
2132 // should now get updated.
2133 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2136 unsigned VN
= VNI
->id
;
2137 if (unsigned LHSSrcReg
= li_
->getVNInfoSourceReg(VNI
)) {
2138 if (LHSSrcReg
!= RHS
.reg
) {
2139 // If this is not a copy from the RHS, its value number will be
2140 // unmodified by the coalescing.
2141 NewVNInfo
[VN
] = VNI
;
2142 LHSValNoAssignments
[VN
] = VN
;
2143 } else if (RHSValID
== -1) {
2144 // Otherwise, it is a copy from the RHS, and we don't already have a
2145 // value# for it. Keep the current value number, but remember it.
2146 LHSValNoAssignments
[VN
] = RHSValID
= VN
;
2147 NewVNInfo
[VN
] = RHSValNoInfo
;
2148 LHSValsDefinedFromRHS
[VNI
] = RHSValNoInfo0
;
2150 // Otherwise, use the specified value #.
2151 LHSValNoAssignments
[VN
] = RHSValID
;
2152 if (VN
== (unsigned)RHSValID
) { // Else this val# is dead.
2153 NewVNInfo
[VN
] = RHSValNoInfo
;
2154 LHSValsDefinedFromRHS
[VNI
] = RHSValNoInfo0
;
2158 NewVNInfo
[VN
] = VNI
;
2159 LHSValNoAssignments
[VN
] = VN
;
2163 assert(RHSValID
!= -1 && "Didn't find value #?");
2164 RHSValNoAssignments
[0] = RHSValID
;
2165 if (RHSVal0DefinedFromLHS
!= -1) {
2166 // This path doesn't go through ComputeUltimateVN so just set
2168 RHSValsDefinedFromLHS
[RHSValNoInfo0
] = (VNInfo
*)1;
2171 // Loop over the value numbers of the LHS, seeing if any are defined from
2173 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2176 if (VNI
->isUnused() || VNI
->getCopy() == 0) // Src not defined by a copy?
2179 // DstReg is known to be a register in the LHS interval. If the src is
2180 // from the RHS interval, we can use its value #.
2181 if (li_
->getVNInfoSourceReg(VNI
) != RHS
.reg
)
2184 // Figure out the value # from the RHS.
2185 LHSValsDefinedFromRHS
[VNI
]=
2186 RHS
.getLiveRangeContaining(li_
->getPrevSlot(VNI
->def
))->valno
;
2189 // Loop over the value numbers of the RHS, seeing if any are defined from
2191 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
2194 if (VNI
->isUnused() || VNI
->getCopy() == 0) // Src not defined by a copy?
2197 // DstReg is known to be a register in the RHS interval. If the src is
2198 // from the LHS interval, we can use its value #.
2199 if (li_
->getVNInfoSourceReg(VNI
) != LHS
.reg
)
2202 // Figure out the value # from the LHS.
2203 RHSValsDefinedFromLHS
[VNI
]=
2204 LHS
.getLiveRangeContaining(li_
->getPrevSlot(VNI
->def
))->valno
;
2207 LHSValNoAssignments
.resize(LHS
.getNumValNums(), -1);
2208 RHSValNoAssignments
.resize(RHS
.getNumValNums(), -1);
2209 NewVNInfo
.reserve(LHS
.getNumValNums() + RHS
.getNumValNums());
2211 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2214 unsigned VN
= VNI
->id
;
2215 if (LHSValNoAssignments
[VN
] >= 0 || VNI
->isUnused())
2217 ComputeUltimateVN(VNI
, NewVNInfo
,
2218 LHSValsDefinedFromRHS
, RHSValsDefinedFromLHS
,
2219 LHSValNoAssignments
, RHSValNoAssignments
);
2221 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
2224 unsigned VN
= VNI
->id
;
2225 if (RHSValNoAssignments
[VN
] >= 0 || VNI
->isUnused())
2227 // If this value number isn't a copy from the LHS, it's a new number.
2228 if (RHSValsDefinedFromLHS
.find(VNI
) == RHSValsDefinedFromLHS
.end()) {
2229 NewVNInfo
.push_back(VNI
);
2230 RHSValNoAssignments
[VN
] = NewVNInfo
.size()-1;
2234 ComputeUltimateVN(VNI
, NewVNInfo
,
2235 RHSValsDefinedFromLHS
, LHSValsDefinedFromRHS
,
2236 RHSValNoAssignments
, LHSValNoAssignments
);
2240 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
2241 // interval lists to see if these intervals are coalescable.
2242 LiveInterval::const_iterator I
= LHS
.begin();
2243 LiveInterval::const_iterator IE
= LHS
.end();
2244 LiveInterval::const_iterator J
= RHS
.begin();
2245 LiveInterval::const_iterator JE
= RHS
.end();
2247 // Skip ahead until the first place of potential sharing.
2248 if (I
->start
< J
->start
) {
2249 I
= std::upper_bound(I
, IE
, J
->start
);
2250 if (I
!= LHS
.begin()) --I
;
2251 } else if (J
->start
< I
->start
) {
2252 J
= std::upper_bound(J
, JE
, I
->start
);
2253 if (J
!= RHS
.begin()) --J
;
2257 // Determine if these two live ranges overlap.
2259 if (I
->start
< J
->start
) {
2260 Overlaps
= I
->end
> J
->start
;
2262 Overlaps
= J
->end
> I
->start
;
2265 // If so, check value # info to determine if they are really different.
2267 // If the live range overlap will map to the same value number in the
2268 // result liverange, we can still coalesce them. If not, we can't.
2269 if (LHSValNoAssignments
[I
->valno
->id
] !=
2270 RHSValNoAssignments
[J
->valno
->id
])
2274 if (I
->end
< J
->end
) {
2283 // Update kill info. Some live ranges are extended due to copy coalescing.
2284 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= LHSValsDefinedFromRHS
.begin(),
2285 E
= LHSValsDefinedFromRHS
.end(); I
!= E
; ++I
) {
2286 VNInfo
*VNI
= I
->first
;
2287 unsigned LHSValID
= LHSValNoAssignments
[VNI
->id
];
2288 NewVNInfo
[LHSValID
]->removeKill(VNI
->def
);
2289 if (VNI
->hasPHIKill())
2290 NewVNInfo
[LHSValID
]->setHasPHIKill(true);
2291 RHS
.addKills(NewVNInfo
[LHSValID
], VNI
->kills
);
2294 // Update kill info. Some live ranges are extended due to copy coalescing.
2295 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= RHSValsDefinedFromLHS
.begin(),
2296 E
= RHSValsDefinedFromLHS
.end(); I
!= E
; ++I
) {
2297 VNInfo
*VNI
= I
->first
;
2298 unsigned RHSValID
= RHSValNoAssignments
[VNI
->id
];
2299 NewVNInfo
[RHSValID
]->removeKill(VNI
->def
);
2300 if (VNI
->hasPHIKill())
2301 NewVNInfo
[RHSValID
]->setHasPHIKill(true);
2302 LHS
.addKills(NewVNInfo
[RHSValID
], VNI
->kills
);
2305 // If we get here, we know that we can coalesce the live ranges. Ask the
2306 // intervals to coalesce themselves now.
2307 if ((RHS
.ranges
.size() > LHS
.ranges
.size() &&
2308 TargetRegisterInfo::isVirtualRegister(LHS
.reg
)) ||
2309 TargetRegisterInfo::isPhysicalRegister(RHS
.reg
)) {
2310 RHS
.join(LHS
, &RHSValNoAssignments
[0], &LHSValNoAssignments
[0], NewVNInfo
,
2314 LHS
.join(RHS
, &LHSValNoAssignments
[0], &RHSValNoAssignments
[0], NewVNInfo
,
2322 // DepthMBBCompare - Comparison predicate that sort first based on the loop
2323 // depth of the basic block (the unsigned), and then on the MBB number.
2324 struct DepthMBBCompare
{
2325 typedef std::pair
<unsigned, MachineBasicBlock
*> DepthMBBPair
;
2326 bool operator()(const DepthMBBPair
&LHS
, const DepthMBBPair
&RHS
) const {
2327 if (LHS
.first
> RHS
.first
) return true; // Deeper loops first
2328 return LHS
.first
== RHS
.first
&&
2329 LHS
.second
->getNumber() < RHS
.second
->getNumber();
2334 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock
*MBB
,
2335 std::vector
<CopyRec
> &TryAgain
) {
2336 DEBUG(errs() << ((Value
*)MBB
->getBasicBlock())->getName() << ":\n");
2338 std::vector
<CopyRec
> VirtCopies
;
2339 std::vector
<CopyRec
> PhysCopies
;
2340 std::vector
<CopyRec
> ImpDefCopies
;
2341 for (MachineBasicBlock::iterator MII
= MBB
->begin(), E
= MBB
->end();
2343 MachineInstr
*Inst
= MII
++;
2345 // If this isn't a copy nor a extract_subreg, we can't join intervals.
2346 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2347 if (Inst
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
) {
2348 DstReg
= Inst
->getOperand(0).getReg();
2349 SrcReg
= Inst
->getOperand(1).getReg();
2350 } else if (Inst
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
2351 Inst
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) {
2352 DstReg
= Inst
->getOperand(0).getReg();
2353 SrcReg
= Inst
->getOperand(2).getReg();
2354 } else if (!tii_
->isMoveInstr(*Inst
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
2357 bool SrcIsPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
2358 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
2359 if (li_
->hasInterval(SrcReg
) && li_
->getInterval(SrcReg
).empty())
2360 ImpDefCopies
.push_back(CopyRec(Inst
, 0));
2361 else if (SrcIsPhys
|| DstIsPhys
)
2362 PhysCopies
.push_back(CopyRec(Inst
, 0));
2364 VirtCopies
.push_back(CopyRec(Inst
, 0));
2367 // Try coalescing implicit copies first, followed by copies to / from
2368 // physical registers, then finally copies from virtual registers to
2369 // virtual registers.
2370 for (unsigned i
= 0, e
= ImpDefCopies
.size(); i
!= e
; ++i
) {
2371 CopyRec
&TheCopy
= ImpDefCopies
[i
];
2373 if (!JoinCopy(TheCopy
, Again
))
2375 TryAgain
.push_back(TheCopy
);
2377 for (unsigned i
= 0, e
= PhysCopies
.size(); i
!= e
; ++i
) {
2378 CopyRec
&TheCopy
= PhysCopies
[i
];
2380 if (!JoinCopy(TheCopy
, Again
))
2382 TryAgain
.push_back(TheCopy
);
2384 for (unsigned i
= 0, e
= VirtCopies
.size(); i
!= e
; ++i
) {
2385 CopyRec
&TheCopy
= VirtCopies
[i
];
2387 if (!JoinCopy(TheCopy
, Again
))
2389 TryAgain
.push_back(TheCopy
);
2393 void SimpleRegisterCoalescing::joinIntervals() {
2394 DEBUG(errs() << "********** JOINING INTERVALS ***********\n");
2396 std::vector
<CopyRec
> TryAgainList
;
2397 if (loopInfo
->empty()) {
2398 // If there are no loops in the function, join intervals in function order.
2399 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();
2401 CopyCoalesceInMBB(I
, TryAgainList
);
2403 // Otherwise, join intervals in inner loops before other intervals.
2404 // Unfortunately we can't just iterate over loop hierarchy here because
2405 // there may be more MBB's than BB's. Collect MBB's for sorting.
2407 // Join intervals in the function prolog first. We want to join physical
2408 // registers with virtual registers before the intervals got too long.
2409 std::vector
<std::pair
<unsigned, MachineBasicBlock
*> > MBBs
;
2410 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();I
!= E
;++I
){
2411 MachineBasicBlock
*MBB
= I
;
2412 MBBs
.push_back(std::make_pair(loopInfo
->getLoopDepth(MBB
), I
));
2415 // Sort by loop depth.
2416 std::sort(MBBs
.begin(), MBBs
.end(), DepthMBBCompare());
2418 // Finally, join intervals in loop nest order.
2419 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
)
2420 CopyCoalesceInMBB(MBBs
[i
].second
, TryAgainList
);
2423 // Joining intervals can allow other intervals to be joined. Iteratively join
2424 // until we make no progress.
2425 bool ProgressMade
= true;
2426 while (ProgressMade
) {
2427 ProgressMade
= false;
2429 for (unsigned i
= 0, e
= TryAgainList
.size(); i
!= e
; ++i
) {
2430 CopyRec
&TheCopy
= TryAgainList
[i
];
2435 bool Success
= JoinCopy(TheCopy
, Again
);
2436 if (Success
|| !Again
) {
2437 TheCopy
.MI
= 0; // Mark this one as done.
2438 ProgressMade
= true;
2444 /// Return true if the two specified registers belong to different register
2445 /// classes. The registers may be either phys or virt regs.
2447 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA
,
2448 unsigned RegB
) const {
2449 // Get the register classes for the first reg.
2450 if (TargetRegisterInfo::isPhysicalRegister(RegA
)) {
2451 assert(TargetRegisterInfo::isVirtualRegister(RegB
) &&
2452 "Shouldn't consider two physregs!");
2453 return !mri_
->getRegClass(RegB
)->contains(RegA
);
2456 // Compare against the regclass for the second reg.
2457 const TargetRegisterClass
*RegClassA
= mri_
->getRegClass(RegA
);
2458 if (TargetRegisterInfo::isVirtualRegister(RegB
)) {
2459 const TargetRegisterClass
*RegClassB
= mri_
->getRegClass(RegB
);
2460 return RegClassA
!= RegClassB
;
2462 return !RegClassA
->contains(RegB
);
2465 /// lastRegisterUse - Returns the last use of the specific register between
2466 /// cycles Start and End or NULL if there are no uses.
2468 SimpleRegisterCoalescing::lastRegisterUse(MachineInstrIndex Start
,
2469 MachineInstrIndex End
,
2471 MachineInstrIndex
&UseIdx
) const{
2472 UseIdx
= MachineInstrIndex();
2473 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
2474 MachineOperand
*LastUse
= NULL
;
2475 for (MachineRegisterInfo::use_iterator I
= mri_
->use_begin(Reg
),
2476 E
= mri_
->use_end(); I
!= E
; ++I
) {
2477 MachineOperand
&Use
= I
.getOperand();
2478 MachineInstr
*UseMI
= Use
.getParent();
2479 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2480 if (tii_
->isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
2482 // Ignore identity copies.
2484 MachineInstrIndex Idx
= li_
->getInstructionIndex(UseMI
);
2485 if (Idx
>= Start
&& Idx
< End
&& Idx
>= UseIdx
) {
2487 UseIdx
= li_
->getUseIndex(Idx
);
2493 MachineInstrIndex s
= Start
;
2494 MachineInstrIndex e
= li_
->getBaseIndex(li_
->getPrevSlot(End
));
2496 // Skip deleted instructions
2497 MachineInstr
*MI
= li_
->getInstructionFromIndex(e
);
2498 while (e
!= MachineInstrIndex() && li_
->getPrevIndex(e
) >= s
&& !MI
) {
2499 e
= li_
->getPrevIndex(e
);
2500 MI
= li_
->getInstructionFromIndex(e
);
2502 if (e
< s
|| MI
== NULL
)
2505 // Ignore identity copies.
2506 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2507 if (!(tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
2509 for (unsigned i
= 0, NumOps
= MI
->getNumOperands(); i
!= NumOps
; ++i
) {
2510 MachineOperand
&Use
= MI
->getOperand(i
);
2511 if (Use
.isReg() && Use
.isUse() && Use
.getReg() &&
2512 tri_
->regsOverlap(Use
.getReg(), Reg
)) {
2513 UseIdx
= li_
->getUseIndex(e
);
2518 e
= li_
->getPrevIndex(e
);
2525 void SimpleRegisterCoalescing::printRegName(unsigned reg
) const {
2526 if (TargetRegisterInfo::isPhysicalRegister(reg
))
2527 errs() << tri_
->getName(reg
);
2529 errs() << "%reg" << reg
;
2532 void SimpleRegisterCoalescing::releaseMemory() {
2533 JoinedCopies
.clear();
2534 ReMatCopies
.clear();
2538 bool SimpleRegisterCoalescing::isZeroLengthInterval(LiveInterval
*li
) const {
2539 for (LiveInterval::Ranges::const_iterator
2540 i
= li
->ranges
.begin(), e
= li
->ranges
.end(); i
!= e
; ++i
)
2541 if (li_
->getPrevIndex(i
->end
) > i
->start
)
2547 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction
&fn
) {
2549 mri_
= &fn
.getRegInfo();
2550 tm_
= &fn
.getTarget();
2551 tri_
= tm_
->getRegisterInfo();
2552 tii_
= tm_
->getInstrInfo();
2553 li_
= &getAnalysis
<LiveIntervals
>();
2554 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
2556 DEBUG(errs() << "********** SIMPLE REGISTER COALESCING **********\n"
2557 << "********** Function: "
2558 << ((Value
*)mf_
->getFunction())->getName() << '\n');
2560 allocatableRegs_
= tri_
->getAllocatableSet(fn
);
2561 for (TargetRegisterInfo::regclass_iterator I
= tri_
->regclass_begin(),
2562 E
= tri_
->regclass_end(); I
!= E
; ++I
)
2563 allocatableRCRegs_
.insert(std::make_pair(*I
,
2564 tri_
->getAllocatableSet(fn
, *I
)));
2566 // Join (coalesce) intervals if requested.
2567 if (EnableJoining
) {
2570 errs() << "********** INTERVALS POST JOINING **********\n";
2571 for (LiveIntervals::iterator I
= li_
->begin(), E
= li_
->end(); I
!= E
; ++I
){
2572 I
->second
->print(errs(), tri_
);
2578 // Perform a final pass over the instructions and compute spill weights
2579 // and remove identity moves.
2580 SmallVector
<unsigned, 4> DeadDefs
;
2581 for (MachineFunction::iterator mbbi
= mf_
->begin(), mbbe
= mf_
->end();
2582 mbbi
!= mbbe
; ++mbbi
) {
2583 MachineBasicBlock
* mbb
= mbbi
;
2584 unsigned loopDepth
= loopInfo
->getLoopDepth(mbb
);
2586 for (MachineBasicBlock::iterator mii
= mbb
->begin(), mie
= mbb
->end();
2588 MachineInstr
*MI
= mii
;
2589 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2590 if (JoinedCopies
.count(MI
)) {
2591 // Delete all coalesced copies.
2592 if (!tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
)) {
2593 assert((MI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
||
2594 MI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
2595 MI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) &&
2596 "Unrecognized copy instruction");
2597 DstReg
= MI
->getOperand(0).getReg();
2599 if (MI
->registerDefIsDead(DstReg
)) {
2600 LiveInterval
&li
= li_
->getInterval(DstReg
);
2601 if (!ShortenDeadCopySrcLiveRange(li
, MI
))
2602 ShortenDeadCopyLiveRange(li
, MI
);
2604 li_
->RemoveMachineInstrFromMaps(MI
);
2605 mii
= mbbi
->erase(mii
);
2610 // Now check if this is a remat'ed def instruction which is now dead.
2611 if (ReMatDefs
.count(MI
)) {
2613 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2614 const MachineOperand
&MO
= MI
->getOperand(i
);
2617 unsigned Reg
= MO
.getReg();
2620 if (TargetRegisterInfo::isVirtualRegister(Reg
))
2621 DeadDefs
.push_back(Reg
);
2624 if (TargetRegisterInfo::isPhysicalRegister(Reg
) ||
2625 !mri_
->use_empty(Reg
)) {
2631 while (!DeadDefs
.empty()) {
2632 unsigned DeadDef
= DeadDefs
.back();
2633 DeadDefs
.pop_back();
2634 RemoveDeadDef(li_
->getInterval(DeadDef
), MI
);
2636 li_
->RemoveMachineInstrFromMaps(mii
);
2637 mii
= mbbi
->erase(mii
);
2643 // If the move will be an identity move delete it
2644 bool isMove
= tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
);
2645 if (isMove
&& SrcReg
== DstReg
) {
2646 if (li_
->hasInterval(SrcReg
)) {
2647 LiveInterval
&RegInt
= li_
->getInterval(SrcReg
);
2648 // If def of this move instruction is dead, remove its live range
2649 // from the dstination register's live interval.
2650 if (MI
->registerDefIsDead(DstReg
)) {
2651 if (!ShortenDeadCopySrcLiveRange(RegInt
, MI
))
2652 ShortenDeadCopyLiveRange(RegInt
, MI
);
2655 li_
->RemoveMachineInstrFromMaps(MI
);
2656 mii
= mbbi
->erase(mii
);
2659 SmallSet
<unsigned, 4> UniqueUses
;
2660 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2661 const MachineOperand
&mop
= MI
->getOperand(i
);
2662 if (mop
.isReg() && mop
.getReg() &&
2663 TargetRegisterInfo::isVirtualRegister(mop
.getReg())) {
2664 unsigned reg
= mop
.getReg();
2665 // Multiple uses of reg by the same instruction. It should not
2666 // contribute to spill weight again.
2667 if (UniqueUses
.count(reg
) != 0)
2669 LiveInterval
&RegInt
= li_
->getInterval(reg
);
2671 li_
->getSpillWeight(mop
.isDef(), mop
.isUse(), loopDepth
);
2672 UniqueUses
.insert(reg
);
2680 for (LiveIntervals::iterator I
= li_
->begin(), E
= li_
->end(); I
!= E
; ++I
) {
2681 LiveInterval
&LI
= *I
->second
;
2682 if (TargetRegisterInfo::isVirtualRegister(LI
.reg
)) {
2683 // If the live interval length is essentially zero, i.e. in every live
2684 // range the use follows def immediately, it doesn't make sense to spill
2685 // it and hope it will be easier to allocate for this li.
2686 if (isZeroLengthInterval(&LI
))
2687 LI
.weight
= HUGE_VALF
;
2689 bool isLoad
= false;
2690 SmallVector
<LiveInterval
*, 4> SpillIs
;
2691 if (li_
->isReMaterializable(LI
, SpillIs
, isLoad
)) {
2692 // If all of the definitions of the interval are re-materializable,
2693 // it is a preferred candidate for spilling. If non of the defs are
2694 // loads, then it's potentially very cheap to re-materialize.
2695 // FIXME: this gets much more complicated once we support non-trivial
2696 // re-materialization.
2704 // Slightly prefer live interval that has been assigned a preferred reg.
2705 std::pair
<unsigned, unsigned> Hint
= mri_
->getRegAllocationHint(LI
.reg
);
2706 if (Hint
.first
|| Hint
.second
)
2709 // Divide the weight of the interval by its size. This encourages
2710 // spilling of intervals that are large and have few uses, and
2711 // discourages spilling of small intervals with many uses.
2712 LI
.weight
/= li_
->getApproximateInstructionCount(LI
) * InstrSlots::NUM
;
2720 /// print - Implement the dump method.
2721 void SimpleRegisterCoalescing::print(raw_ostream
&O
, const Module
* m
) const {
2725 RegisterCoalescer
* llvm::createSimpleRegisterCoalescer() {
2726 return new SimpleRegisterCoalescing();
2729 // Make sure that anything that uses RegisterCoalescer pulls in this file...
2730 DEFINING_FILE_FOR(SimpleRegisterCoalescing
)