1 //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11 // register allocator for LLVM. This allocator works by constructing a PBQP
12 // problem representing the register allocation problem under consideration,
13 // solving this using a PBQP solver, and mapping the solution back to a
14 // register assignment. If any variables are selected for spilling then spill
15 // code is inserted and the process repeated.
17 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18 // for register allocation. For more information on PBQP for register
19 // allocation, see the following papers:
21 // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22 // PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23 // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
25 // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26 // architectures. In Proceedings of the Joint Conference on Languages,
27 // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
30 //===----------------------------------------------------------------------===//
32 #define DEBUG_TYPE "regalloc"
35 #include "VirtRegMap.h"
37 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
38 #include "llvm/CodeGen/LiveStackAnalysis.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineLoopInfo.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/RegAllocRegistry.h"
43 #include "llvm/CodeGen/RegisterCoalescer.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetMachine.h"
55 static RegisterRegAlloc
56 registerPBQPRepAlloc("pbqp", "PBQP register allocator",
57 createPBQPRegisterAllocator
);
62 //! PBQP based allocators solve the register allocation problem by mapping
63 //! register allocation problems to Partitioned Boolean Quadratic
64 //! Programming problems.
65 class VISIBILITY_HIDDEN PBQPRegAlloc
: public MachineFunctionPass
{
70 //! Construct a PBQP register allocator.
71 PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID
) {}
73 //! Return the pass name.
74 virtual const char* getPassName() const throw() {
75 return "PBQP Register Allocator";
78 //! PBQP analysis usage.
79 virtual void getAnalysisUsage(AnalysisUsage
&au
) const {
80 au
.addRequired
<LiveIntervals
>();
81 au
.addRequiredTransitive
<RegisterCoalescer
>();
82 au
.addRequired
<LiveStacks
>();
83 au
.addPreserved
<LiveStacks
>();
84 au
.addRequired
<MachineLoopInfo
>();
85 au
.addPreserved
<MachineLoopInfo
>();
86 au
.addRequired
<VirtRegMap
>();
87 MachineFunctionPass::getAnalysisUsage(au
);
90 //! Perform register allocation
91 virtual bool runOnMachineFunction(MachineFunction
&MF
);
94 typedef std::map
<const LiveInterval
*, unsigned> LI2NodeMap
;
95 typedef std::vector
<const LiveInterval
*> Node2LIMap
;
96 typedef std::vector
<unsigned> AllowedSet
;
97 typedef std::vector
<AllowedSet
> AllowedSetMap
;
98 typedef std::set
<unsigned> RegSet
;
99 typedef std::pair
<unsigned, unsigned> RegPair
;
100 typedef std::map
<RegPair
, PBQPNum
> CoalesceMap
;
102 typedef std::set
<LiveInterval
*> LiveIntervalSet
;
105 const TargetMachine
*tm
;
106 const TargetRegisterInfo
*tri
;
107 const TargetInstrInfo
*tii
;
108 const MachineLoopInfo
*loopInfo
;
109 MachineRegisterInfo
*mri
;
117 AllowedSetMap allowedSets
;
118 LiveIntervalSet vregIntervalsToAlloc
,
122 //! Builds a PBQP cost vector.
123 template <typename RegContainer
>
124 PBQPVector
* buildCostVector(unsigned vReg
,
125 const RegContainer
&allowed
,
126 const CoalesceMap
&cealesces
,
127 PBQPNum spillCost
) const;
129 //! \brief Builds a PBQP interference matrix.
131 //! @return Either a pointer to a non-zero PBQP matrix representing the
132 //! allocation option costs, or a null pointer for a zero matrix.
134 //! Expects allowed sets for two interfering LiveIntervals. These allowed
135 //! sets should contain only allocable registers from the LiveInterval's
136 //! register class, with any interfering pre-colored registers removed.
137 template <typename RegContainer
>
138 PBQPMatrix
* buildInterferenceMatrix(const RegContainer
&allowed1
,
139 const RegContainer
&allowed2
) const;
142 //! Expects allowed sets for two potentially coalescable LiveIntervals,
143 //! and an estimated benefit due to coalescing. The allowed sets should
144 //! contain only allocable registers from the LiveInterval's register
145 //! classes, with any interfering pre-colored registers removed.
146 template <typename RegContainer
>
147 PBQPMatrix
* buildCoalescingMatrix(const RegContainer
&allowed1
,
148 const RegContainer
&allowed2
,
149 PBQPNum cBenefit
) const;
151 //! \brief Finds coalescing opportunities and returns them as a map.
153 //! Any entries in the map are guaranteed coalescable, even if their
154 //! corresponding live intervals overlap.
155 CoalesceMap
findCoalesces();
157 //! \brief Finds the initial set of vreg intervals to allocate.
158 void findVRegIntervalsToAlloc();
160 //! \brief Constructs a PBQP problem representation of the register
161 //! allocation problem for this function.
163 //! @return a PBQP solver object for the register allocation problem.
164 pbqp
* constructPBQPProblem();
166 //! \brief Adds a stack interval if the given live interval has been
167 //! spilled. Used to support stack slot coloring.
168 void addStackInterval(const LiveInterval
*spilled
,MachineRegisterInfo
* mri
);
170 //! \brief Given a solved PBQP problem maps this solution back to a register
172 bool mapPBQPToRegAlloc(pbqp
*problem
);
174 //! \brief Postprocessing before final spilling. Sets basic block "live in"
176 void finalizeAlloc() const;
180 char PBQPRegAlloc::ID
= 0;
184 template <typename RegContainer
>
185 PBQPVector
* PBQPRegAlloc::buildCostVector(unsigned vReg
,
186 const RegContainer
&allowed
,
187 const CoalesceMap
&coalesces
,
188 PBQPNum spillCost
) const {
190 typedef typename
RegContainer::const_iterator AllowedItr
;
192 // Allocate vector. Additional element (0th) used for spill option
193 PBQPVector
*v
= new PBQPVector(allowed
.size() + 1);
197 // Iterate over the allowed registers inserting coalesce benefits if there
200 for (AllowedItr itr
= allowed
.begin(), end
= allowed
.end();
201 itr
!= end
; ++itr
, ++ai
) {
203 unsigned pReg
= *itr
;
205 CoalesceMap::const_iterator cmItr
=
206 coalesces
.find(RegPair(vReg
, pReg
));
208 // No coalesce - on to the next preg.
209 if (cmItr
== coalesces
.end())
212 // We have a coalesce - insert the benefit.
213 (*v
)[ai
+ 1] = -cmItr
->second
;
219 template <typename RegContainer
>
220 PBQPMatrix
* PBQPRegAlloc::buildInterferenceMatrix(
221 const RegContainer
&allowed1
, const RegContainer
&allowed2
) const {
223 typedef typename
RegContainer::const_iterator RegContainerIterator
;
225 // Construct a PBQP matrix representing the cost of allocation options. The
226 // rows and columns correspond to the allocation options for the two live
227 // intervals. Elements will be infinite where corresponding registers alias,
228 // since we cannot allocate aliasing registers to interfering live intervals.
229 // All other elements (non-aliasing combinations) will have zero cost. Note
230 // that the spill option (element 0,0) has zero cost, since we can allocate
231 // both intervals to memory safely (the cost for each individual allocation
232 // to memory is accounted for by the cost vectors for each live interval).
233 PBQPMatrix
*m
= new PBQPMatrix(allowed1
.size() + 1, allowed2
.size() + 1);
235 // Assume this is a zero matrix until proven otherwise. Zero matrices occur
236 // between interfering live ranges with non-overlapping register sets (e.g.
237 // non-overlapping reg classes, or disjoint sets of allowed regs within the
238 // same class). The term "overlapping" is used advisedly: sets which do not
239 // intersect, but contain registers which alias, will have non-zero matrices.
240 // We optimize zero matrices away to improve solver speed.
241 bool isZeroMatrix
= true;
244 // Row index. Starts at 1, since the 0th row is for the spill option, which
248 // Iterate over allowed sets, insert infinities where required.
249 for (RegContainerIterator a1Itr
= allowed1
.begin(), a1End
= allowed1
.end();
250 a1Itr
!= a1End
; ++a1Itr
) {
252 // Column index, starts at 1 as for row index.
254 unsigned reg1
= *a1Itr
;
256 for (RegContainerIterator a2Itr
= allowed2
.begin(), a2End
= allowed2
.end();
257 a2Itr
!= a2End
; ++a2Itr
) {
259 unsigned reg2
= *a2Itr
;
261 // If the row/column regs are identical or alias insert an infinity.
262 if ((reg1
== reg2
) || tri
->areAliases(reg1
, reg2
)) {
263 (*m
)[ri
][ci
] = std::numeric_limits
<PBQPNum
>::infinity();
264 isZeroMatrix
= false;
273 // If this turns out to be a zero matrix...
275 // free it and return null.
280 // ...otherwise return the cost matrix.
284 template <typename RegContainer
>
285 PBQPMatrix
* PBQPRegAlloc::buildCoalescingMatrix(
286 const RegContainer
&allowed1
, const RegContainer
&allowed2
,
287 PBQPNum cBenefit
) const {
289 typedef typename
RegContainer::const_iterator RegContainerIterator
;
291 // Construct a PBQP Matrix representing the benefits of coalescing. As with
292 // interference matrices the rows and columns represent allowed registers
293 // for the LiveIntervals which are (potentially) to be coalesced. The amount
294 // -cBenefit will be placed in any element representing the same register
295 // for both intervals.
296 PBQPMatrix
*m
= new PBQPMatrix(allowed1
.size() + 1, allowed2
.size() + 1);
298 // Reset costs to zero.
301 // Assume the matrix is zero till proven otherwise. Zero matrices will be
302 // optimized away as in the interference case.
303 bool isZeroMatrix
= true;
305 // Row index. Starts at 1, since the 0th row is for the spill option, which
309 // Iterate over the allowed sets, insert coalescing benefits where
311 for (RegContainerIterator a1Itr
= allowed1
.begin(), a1End
= allowed1
.end();
312 a1Itr
!= a1End
; ++a1Itr
) {
314 // Column index, starts at 1 as for row index.
316 unsigned reg1
= *a1Itr
;
318 for (RegContainerIterator a2Itr
= allowed2
.begin(), a2End
= allowed2
.end();
319 a2Itr
!= a2End
; ++a2Itr
) {
321 // If the row and column represent the same register insert a beneficial
322 // cost to preference this allocation - it would allow us to eliminate a
324 if (reg1
== *a2Itr
) {
325 (*m
)[ri
][ci
] = -cBenefit
;
326 isZeroMatrix
= false;
335 // If this turns out to be a zero matrix...
337 // ...free it and return null.
345 PBQPRegAlloc::CoalesceMap
PBQPRegAlloc::findCoalesces() {
347 typedef MachineFunction::const_iterator MFIterator
;
348 typedef MachineBasicBlock::const_iterator MBBIterator
;
349 typedef LiveInterval::const_vni_iterator VNIIterator
;
351 CoalesceMap coalescesFound
;
353 // To find coalesces we need to iterate over the function looking for
354 // copy instructions.
355 for (MFIterator bbItr
= mf
->begin(), bbEnd
= mf
->end();
356 bbItr
!= bbEnd
; ++bbItr
) {
358 const MachineBasicBlock
*mbb
= &*bbItr
;
360 for (MBBIterator iItr
= mbb
->begin(), iEnd
= mbb
->end();
361 iItr
!= iEnd
; ++iItr
) {
363 const MachineInstr
*instr
= &*iItr
;
364 unsigned srcReg
, dstReg
, srcSubReg
, dstSubReg
;
366 // If this isn't a copy then continue to the next instruction.
367 if (!tii
->isMoveInstr(*instr
, srcReg
, dstReg
, srcSubReg
, dstSubReg
))
370 // If the registers are already the same our job is nice and easy.
371 if (dstReg
== srcReg
)
374 bool srcRegIsPhysical
= TargetRegisterInfo::isPhysicalRegister(srcReg
),
375 dstRegIsPhysical
= TargetRegisterInfo::isPhysicalRegister(dstReg
);
377 // If both registers are physical then we can't coalesce.
378 if (srcRegIsPhysical
&& dstRegIsPhysical
)
381 // If it's a copy that includes a virtual register but the source and
382 // destination classes differ then we can't coalesce, so continue with
383 // the next instruction.
384 const TargetRegisterClass
*srcRegClass
= srcRegIsPhysical
?
385 tri
->getPhysicalRegisterRegClass(srcReg
) : mri
->getRegClass(srcReg
);
387 const TargetRegisterClass
*dstRegClass
= dstRegIsPhysical
?
388 tri
->getPhysicalRegisterRegClass(dstReg
) : mri
->getRegClass(dstReg
);
390 if (srcRegClass
!= dstRegClass
)
393 // We also need any physical regs to be allocable, coalescing with
394 // a non-allocable register is invalid.
395 if (srcRegIsPhysical
) {
396 if (std::find(srcRegClass
->allocation_order_begin(*mf
),
397 srcRegClass
->allocation_order_end(*mf
), srcReg
) ==
398 srcRegClass
->allocation_order_end(*mf
))
402 if (dstRegIsPhysical
) {
403 if (std::find(dstRegClass
->allocation_order_begin(*mf
),
404 dstRegClass
->allocation_order_end(*mf
), dstReg
) ==
405 dstRegClass
->allocation_order_end(*mf
))
409 // If we've made it here we have a copy with compatible register classes.
410 // We can probably coalesce, but we need to consider overlap.
411 const LiveInterval
*srcLI
= &lis
->getInterval(srcReg
),
412 *dstLI
= &lis
->getInterval(dstReg
);
414 if (srcLI
->overlaps(*dstLI
)) {
415 // Even in the case of an overlap we might still be able to coalesce,
416 // but we need to make sure that no definition of either range occurs
417 // while the other range is live.
419 // Otherwise start by assuming we're ok.
422 // Test all defs of the source range.
424 vniItr
= srcLI
->vni_begin(), vniEnd
= srcLI
->vni_end();
425 vniItr
!= vniEnd
; ++vniItr
) {
427 // If we find a def that kills the coalescing opportunity then
428 // record it and break from the loop.
429 if (dstLI
->liveAt((*vniItr
)->def
)) {
435 // If we have a bad def give up, continue to the next instruction.
439 // Otherwise test definitions of the destination range.
441 vniItr
= dstLI
->vni_begin(), vniEnd
= dstLI
->vni_end();
442 vniItr
!= vniEnd
; ++vniItr
) {
444 // We want to make sure we skip the copy instruction itself.
445 if ((*vniItr
)->copy
== instr
)
448 if (srcLI
->liveAt((*vniItr
)->def
)) {
454 // As before a bad def we give up and continue to the next instr.
459 // If we make it to here then either the ranges didn't overlap, or they
460 // did, but none of their definitions would prevent us from coalescing.
461 // We're good to go with the coalesce.
463 float cBenefit
= powf(10.0f
, loopInfo
->getLoopDepth(mbb
)) / 5.0;
465 coalescesFound
[RegPair(srcReg
, dstReg
)] = cBenefit
;
466 coalescesFound
[RegPair(dstReg
, srcReg
)] = cBenefit
;
471 return coalescesFound
;
474 void PBQPRegAlloc::findVRegIntervalsToAlloc() {
476 // Iterate over all live ranges.
477 for (LiveIntervals::iterator itr
= lis
->begin(), end
= lis
->end();
480 // Ignore physical ones.
481 if (TargetRegisterInfo::isPhysicalRegister(itr
->first
))
484 LiveInterval
*li
= itr
->second
;
486 // If this live interval is non-empty we will use pbqp to allocate it.
487 // Empty intervals we allocate in a simple post-processing stage in
490 vregIntervalsToAlloc
.insert(li
);
493 emptyVRegIntervals
.insert(li
);
498 pbqp
* PBQPRegAlloc::constructPBQPProblem() {
500 typedef std::vector
<const LiveInterval
*> LIVector
;
501 typedef std::vector
<unsigned> RegVector
;
503 // This will store the physical intervals for easy reference.
504 LIVector physIntervals
;
506 // Start by clearing the old node <-> live interval mappings & allowed sets
511 // Populate physIntervals, update preg use:
512 for (LiveIntervals::iterator itr
= lis
->begin(), end
= lis
->end();
515 if (TargetRegisterInfo::isPhysicalRegister(itr
->first
)) {
516 physIntervals
.push_back(itr
->second
);
517 mri
->setPhysRegUsed(itr
->second
->reg
);
521 // Iterate over vreg intervals, construct live interval <-> node number
523 for (LiveIntervalSet::const_iterator
524 itr
= vregIntervalsToAlloc
.begin(), end
= vregIntervalsToAlloc
.end();
526 const LiveInterval
*li
= *itr
;
528 li2Node
[li
] = node2LI
.size();
529 node2LI
.push_back(li
);
532 // Get the set of potential coalesces.
533 CoalesceMap
coalesces(findCoalesces());
535 // Construct a PBQP solver for this problem
536 pbqp
*solver
= alloc_pbqp(vregIntervalsToAlloc
.size());
538 // Resize allowedSets container appropriately.
539 allowedSets
.resize(vregIntervalsToAlloc
.size());
541 // Iterate over virtual register intervals to compute allowed sets...
542 for (unsigned node
= 0; node
< node2LI
.size(); ++node
) {
544 // Grab pointers to the interval and its register class.
545 const LiveInterval
*li
= node2LI
[node
];
546 const TargetRegisterClass
*liRC
= mri
->getRegClass(li
->reg
);
548 // Start by assuming all allocable registers in the class are allowed...
549 RegVector
liAllowed(liRC
->allocation_order_begin(*mf
),
550 liRC
->allocation_order_end(*mf
));
552 // Eliminate the physical registers which overlap with this range, along
553 // with all their aliases.
554 for (LIVector::iterator pItr
= physIntervals
.begin(),
555 pEnd
= physIntervals
.end(); pItr
!= pEnd
; ++pItr
) {
557 if (!li
->overlaps(**pItr
))
560 unsigned pReg
= (*pItr
)->reg
;
562 // If we get here then the live intervals overlap, but we're still ok
563 // if they're coalescable.
564 if (coalesces
.find(RegPair(li
->reg
, pReg
)) != coalesces
.end())
567 // If we get here then we have a genuine exclusion.
569 // Remove the overlapping reg...
570 RegVector::iterator eraseItr
=
571 std::find(liAllowed
.begin(), liAllowed
.end(), pReg
);
573 if (eraseItr
!= liAllowed
.end())
574 liAllowed
.erase(eraseItr
);
576 const unsigned *aliasItr
= tri
->getAliasSet(pReg
);
579 // ...and its aliases.
580 for (; *aliasItr
!= 0; ++aliasItr
) {
581 RegVector::iterator eraseItr
=
582 std::find(liAllowed
.begin(), liAllowed
.end(), *aliasItr
);
584 if (eraseItr
!= liAllowed
.end()) {
585 liAllowed
.erase(eraseItr
);
591 // Copy the allowed set into a member vector for use when constructing cost
592 // vectors & matrices, and mapping PBQP solutions back to assignments.
593 allowedSets
[node
] = AllowedSet(liAllowed
.begin(), liAllowed
.end());
595 // Set the spill cost to the interval weight, or epsilon if the
596 // interval weight is zero
597 PBQPNum spillCost
= (li
->weight
!= 0.0) ?
598 li
->weight
: std::numeric_limits
<PBQPNum
>::min();
600 // Build a cost vector for this interval.
601 add_pbqp_nodecosts(solver
, node
,
602 buildCostVector(li
->reg
, allowedSets
[node
], coalesces
,
608 // Now add the cost matrices...
609 for (unsigned node1
= 0; node1
< node2LI
.size(); ++node1
) {
610 const LiveInterval
*li
= node2LI
[node1
];
612 // Test for live range overlaps and insert interference matrices.
613 for (unsigned node2
= node1
+ 1; node2
< node2LI
.size(); ++node2
) {
614 const LiveInterval
*li2
= node2LI
[node2
];
616 CoalesceMap::const_iterator cmItr
=
617 coalesces
.find(RegPair(li
->reg
, li2
->reg
));
621 if (cmItr
!= coalesces
.end()) {
622 m
= buildCoalescingMatrix(allowedSets
[node1
], allowedSets
[node2
],
625 else if (li
->overlaps(*li2
)) {
626 m
= buildInterferenceMatrix(allowedSets
[node1
], allowedSets
[node2
]);
630 add_pbqp_edgecosts(solver
, node1
, node2
, m
);
636 // We're done, PBQP problem constructed - return it.
640 void PBQPRegAlloc::addStackInterval(const LiveInterval
*spilled
,
641 MachineRegisterInfo
* mri
) {
642 int stackSlot
= vrm
->getStackSlot(spilled
->reg
);
644 if (stackSlot
== VirtRegMap::NO_STACK_SLOT
)
647 const TargetRegisterClass
*RC
= mri
->getRegClass(spilled
->reg
);
648 LiveInterval
&stackInterval
= lss
->getOrCreateInterval(stackSlot
, RC
);
651 if (stackInterval
.getNumValNums() != 0)
652 vni
= stackInterval
.getValNumInfo(0);
654 vni
= stackInterval
.getNextValue(-0U, 0, lss
->getVNInfoAllocator());
656 LiveInterval
&rhsInterval
= lis
->getInterval(spilled
->reg
);
657 stackInterval
.MergeRangesInAsValue(rhsInterval
, vni
);
660 bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp
*problem
) {
662 // Set to true if we have any spills
663 bool anotherRoundNeeded
= false;
665 // Clear the existing allocation.
668 // Iterate over the nodes mapping the PBQP solution to a register assignment.
669 for (unsigned node
= 0; node
< node2LI
.size(); ++node
) {
670 unsigned virtReg
= node2LI
[node
]->reg
,
671 allocSelection
= get_pbqp_solution(problem
, node
);
673 // If the PBQP solution is non-zero it's a physical register...
674 if (allocSelection
!= 0) {
675 // Get the physical reg, subtracting 1 to account for the spill option.
676 unsigned physReg
= allowedSets
[node
][allocSelection
- 1];
678 DOUT
<< "VREG " << virtReg
<< " -> " << tri
->getName(physReg
) << "\n";
680 assert(physReg
!= 0);
682 // Add to the virt reg map and update the used phys regs.
683 vrm
->assignVirt2Phys(virtReg
, physReg
);
685 // ...Otherwise it's a spill.
688 // Make sure we ignore this virtual reg on the next round
690 vregIntervalsToAlloc
.erase(&lis
->getInterval(virtReg
));
692 // Insert spill ranges for this live range
693 const LiveInterval
*spillInterval
= node2LI
[node
];
694 double oldSpillWeight
= spillInterval
->weight
;
695 SmallVector
<LiveInterval
*, 8> spillIs
;
696 std::vector
<LiveInterval
*> newSpills
=
697 lis
->addIntervalsForSpills(*spillInterval
, spillIs
, loopInfo
, *vrm
);
698 addStackInterval(spillInterval
, mri
);
700 DOUT
<< "VREG " << virtReg
<< " -> SPILLED (Cost: "
701 << oldSpillWeight
<< ", New vregs: ";
703 // Copy any newly inserted live intervals into the list of regs to
705 for (std::vector
<LiveInterval
*>::const_iterator
706 itr
= newSpills
.begin(), end
= newSpills
.end();
709 assert(!(*itr
)->empty() && "Empty spill range.");
711 DOUT
<< (*itr
)->reg
<< " ";
713 vregIntervalsToAlloc
.insert(*itr
);
718 // We need another round if spill intervals were added.
719 anotherRoundNeeded
|= !newSpills
.empty();
723 return !anotherRoundNeeded
;
726 void PBQPRegAlloc::finalizeAlloc() const {
727 typedef LiveIntervals::iterator LIIterator
;
728 typedef LiveInterval::Ranges::const_iterator LRIterator
;
730 // First allocate registers for the empty intervals.
731 for (LiveIntervalSet::const_iterator
732 itr
= emptyVRegIntervals
.begin(), end
= emptyVRegIntervals
.end();
734 LiveInterval
*li
= *itr
;
736 unsigned physReg
= li
->preference
;
739 const TargetRegisterClass
*liRC
= mri
->getRegClass(li
->reg
);
740 physReg
= *liRC
->allocation_order_begin(*mf
);
743 vrm
->assignVirt2Phys(li
->reg
, physReg
);
746 // Finally iterate over the basic blocks to compute and set the live-in sets.
747 SmallVector
<MachineBasicBlock
*, 8> liveInMBBs
;
748 MachineBasicBlock
*entryMBB
= &*mf
->begin();
750 for (LIIterator liItr
= lis
->begin(), liEnd
= lis
->end();
751 liItr
!= liEnd
; ++liItr
) {
753 const LiveInterval
*li
= liItr
->second
;
756 // Get the physical register for this interval
757 if (TargetRegisterInfo::isPhysicalRegister(li
->reg
)) {
760 else if (vrm
->isAssignedReg(li
->reg
)) {
761 reg
= vrm
->getPhys(li
->reg
);
764 // Ranges which are assigned a stack slot only are ignored.
768 // Iterate over the ranges of the current interval...
769 for (LRIterator lrItr
= li
->begin(), lrEnd
= li
->end();
770 lrItr
!= lrEnd
; ++lrItr
) {
772 // Find the set of basic blocks which this range is live into...
773 if (lis
->findLiveInMBBs(lrItr
->start
, lrItr
->end
, liveInMBBs
)) {
774 // And add the physreg for this interval to their live-in sets.
775 for (unsigned i
= 0; i
< liveInMBBs
.size(); ++i
) {
776 if (liveInMBBs
[i
] != entryMBB
) {
777 if (!liveInMBBs
[i
]->isLiveIn(reg
)) {
778 liveInMBBs
[i
]->addLiveIn(reg
);
789 bool PBQPRegAlloc::runOnMachineFunction(MachineFunction
&MF
) {
792 tm
= &mf
->getTarget();
793 tri
= tm
->getRegisterInfo();
794 tii
= tm
->getInstrInfo();
795 mri
= &mf
->getRegInfo();
797 lis
= &getAnalysis
<LiveIntervals
>();
798 lss
= &getAnalysis
<LiveStacks
>();
799 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
801 vrm
= &getAnalysis
<VirtRegMap
>();
803 DOUT
<< "PBQP Register Allocating for " << mf
->getFunction()->getName() << "\n";
805 // Allocator main loop:
807 // * Map current regalloc problem to a PBQP problem
808 // * Solve the PBQP problem
809 // * Map the solution back to a register allocation
810 // * Spill if necessary
812 // This process is continued till no more spills are generated.
814 // Find the vreg intervals in need of allocation.
815 findVRegIntervalsToAlloc();
817 // If there aren't any then we're done here.
818 if (vregIntervalsToAlloc
.empty() && emptyVRegIntervals
.empty())
821 // If there are non-empty intervals allocate them using pbqp.
822 if (!vregIntervalsToAlloc
.empty()) {
824 bool pbqpAllocComplete
= false;
827 while (!pbqpAllocComplete
) {
828 DOUT
<< " PBQP Regalloc round " << round
<< ":\n";
830 pbqp
*problem
= constructPBQPProblem();
834 pbqpAllocComplete
= mapPBQPToRegAlloc(problem
);
842 // Finalise allocation, allocate empty ranges.
845 vregIntervalsToAlloc
.clear();
846 emptyVRegIntervals
.clear();
851 DOUT
<< "Post alloc VirtRegMap:\n" << *vrm
<< "\n";
854 std::auto_ptr
<Spiller
> spiller(createSpiller());
855 spiller
->runOnMachineFunction(*mf
, *vrm
, lis
);
860 FunctionPass
* llvm::createPBQPRegisterAllocator() {
861 return new PBQPRegAlloc();