Quotes should be printed before private prefix; some code clean up.
[llvm/msp430.git] / lib / CodeGen / SimpleRegisterCoalescing.cpp
blob9d1297b72c4c9ea5bcaeccb1e15f655d849c5685
1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/Value.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterCoalescer.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include <algorithm>
35 #include <cmath>
36 using namespace llvm;
38 STATISTIC(numJoins , "Number of interval joins performed");
39 STATISTIC(numCrossRCs , "Number of cross class joins performed");
40 STATISTIC(numCommutes , "Number of instruction commuting performed");
41 STATISTIC(numExtends , "Number of copies extended");
42 STATISTIC(NumReMats , "Number of instructions re-materialized");
43 STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
44 STATISTIC(numAborts , "Number of times interval joining aborted");
45 STATISTIC(numDeadValNo, "Number of valno def marked dead");
47 char SimpleRegisterCoalescing::ID = 0;
48 static cl::opt<bool>
49 EnableJoining("join-liveintervals",
50 cl::desc("Coalesce copies (default=true)"),
51 cl::init(true));
53 static cl::opt<bool>
54 NewHeuristic("new-coalescer-heuristic",
55 cl::desc("Use new coalescer heuristic"),
56 cl::init(false), cl::Hidden);
58 static cl::opt<bool>
59 CrossClassJoin("join-cross-class-copies",
60 cl::desc("Coalesce cross register class copies"),
61 cl::init(false), cl::Hidden);
63 static cl::opt<bool>
64 PhysJoinTweak("tweak-phys-join-heuristics",
65 cl::desc("Tweak heuristics for joining phys reg with vr"),
66 cl::init(false), cl::Hidden);
68 static RegisterPass<SimpleRegisterCoalescing>
69 X("simple-register-coalescing", "Simple Register Coalescing");
71 // Declare that we implement the RegisterCoalescer interface
72 static RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
74 const PassInfo *const llvm::SimpleRegisterCoalescingID = &X;
76 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
77 AU.addRequired<LiveIntervals>();
78 AU.addPreserved<LiveIntervals>();
79 AU.addRequired<MachineLoopInfo>();
80 AU.addPreserved<MachineLoopInfo>();
81 AU.addPreservedID(MachineDominatorsID);
82 if (StrongPHIElim)
83 AU.addPreservedID(StrongPHIEliminationID);
84 else
85 AU.addPreservedID(PHIEliminationID);
86 AU.addPreservedID(TwoAddressInstructionPassID);
87 MachineFunctionPass::getAnalysisUsage(AU);
90 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
91 /// being the source and IntB being the dest, thus this defines a value number
92 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
93 /// see if we can merge these two pieces of B into a single value number,
94 /// eliminating a copy. For example:
95 ///
96 /// A3 = B0
97 /// ...
98 /// B1 = A3 <- this copy
99 ///
100 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
101 /// value number to be replaced with B0 (which simplifies the B liveinterval).
103 /// This returns true if an interval was modified.
105 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
106 LiveInterval &IntB,
107 MachineInstr *CopyMI) {
108 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
110 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
111 // the example above.
112 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
113 assert(BLR != IntB.end() && "Live range not found!");
114 VNInfo *BValNo = BLR->valno;
116 // Get the location that B is defined at. Two options: either this value has
117 // an unknown definition point or it is defined at CopyIdx. If unknown, we
118 // can't process it.
119 if (!BValNo->copy) return false;
120 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
122 // AValNo is the value number in A that defines the copy, A3 in the example.
123 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1);
124 assert(ALR != IntA.end() && "Live range not found!");
125 VNInfo *AValNo = ALR->valno;
126 // If it's re-defined by an early clobber somewhere in the live range, then
127 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
128 // See PR3149:
129 // 172 %ECX<def> = MOV32rr %reg1039<kill>
130 // 180 INLINEASM <es:subl $5,$1
131 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
132 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
133 // 188 %EAX<def> = MOV32rr %EAX<kill>
134 // 196 %ECX<def> = MOV32rr %ECX<kill>
135 // 204 %ECX<def> = MOV32rr %ECX<kill>
136 // 212 %EAX<def> = MOV32rr %EAX<kill>
137 // 220 %EAX<def> = MOV32rr %EAX
138 // 228 %reg1039<def> = MOV32rr %ECX<kill>
139 // The early clobber operand ties ECX input to the ECX def.
141 // The live interval of ECX is represented as this:
142 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
143 // The coalescer has no idea there was a def in the middle of [174,230].
144 if (AValNo->redefByEC)
145 return false;
147 // If AValNo is defined as a copy from IntB, we can potentially process this.
148 // Get the instruction that defines this value number.
149 unsigned SrcReg = li_->getVNInfoSourceReg(AValNo);
150 if (!SrcReg) return false; // Not defined by a copy.
152 // If the value number is not defined by a copy instruction, ignore it.
154 // If the source register comes from an interval other than IntB, we can't
155 // handle this.
156 if (SrcReg != IntB.reg) return false;
158 // Get the LiveRange in IntB that this value number starts with.
159 LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1);
160 assert(ValLR != IntB.end() && "Live range not found!");
162 // Make sure that the end of the live range is inside the same block as
163 // CopyMI.
164 MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1);
165 if (!ValLREndInst ||
166 ValLREndInst->getParent() != CopyMI->getParent()) return false;
168 // Okay, we now know that ValLR ends in the same block that the CopyMI
169 // live-range starts. If there are no intervening live ranges between them in
170 // IntB, we can merge them.
171 if (ValLR+1 != BLR) return false;
173 // If a live interval is a physical register, conservatively check if any
174 // of its sub-registers is overlapping the live interval of the virtual
175 // register. If so, do not coalesce.
176 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
177 *tri_->getSubRegisters(IntB.reg)) {
178 for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
179 if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
180 DOUT << "Interfere with sub-register ";
181 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
182 return false;
186 DOUT << "\nExtending: "; IntB.print(DOUT, tri_);
188 unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
189 // We are about to delete CopyMI, so need to remove it as the 'instruction
190 // that defines this value #'. Update the the valnum with the new defining
191 // instruction #.
192 BValNo->def = FillerStart;
193 BValNo->copy = NULL;
195 // Okay, we can merge them. We need to insert a new liverange:
196 // [ValLR.end, BLR.begin) of either value number, then we merge the
197 // two value numbers.
198 IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
200 // If the IntB live range is assigned to a physical register, and if that
201 // physreg has sub-registers, update their live intervals as well.
202 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
203 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
204 LiveInterval &SRLI = li_->getInterval(*SR);
205 SRLI.addRange(LiveRange(FillerStart, FillerEnd,
206 SRLI.getNextValue(FillerStart, 0, li_->getVNInfoAllocator())));
210 // Okay, merge "B1" into the same value number as "B0".
211 if (BValNo != ValLR->valno) {
212 IntB.addKills(ValLR->valno, BValNo->kills);
213 IntB.MergeValueNumberInto(BValNo, ValLR->valno);
215 DOUT << " result = "; IntB.print(DOUT, tri_);
216 DOUT << "\n";
218 // If the source instruction was killing the source register before the
219 // merge, unset the isKill marker given the live range has been extended.
220 int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
221 if (UIdx != -1) {
222 ValLREndInst->getOperand(UIdx).setIsKill(false);
223 IntB.removeKill(ValLR->valno, FillerStart);
226 ++numExtends;
227 return true;
230 /// HasOtherReachingDefs - Return true if there are definitions of IntB
231 /// other than BValNo val# that can reach uses of AValno val# of IntA.
232 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
233 LiveInterval &IntB,
234 VNInfo *AValNo,
235 VNInfo *BValNo) {
236 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
237 AI != AE; ++AI) {
238 if (AI->valno != AValNo) continue;
239 LiveInterval::Ranges::iterator BI =
240 std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
241 if (BI != IntB.ranges.begin())
242 --BI;
243 for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
244 if (BI->valno == BValNo)
245 continue;
246 if (BI->start <= AI->start && BI->end > AI->start)
247 return true;
248 if (BI->start > AI->start && BI->start < AI->end)
249 return true;
252 return false;
255 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
256 /// being the source and IntB being the dest, thus this defines a value number
257 /// in IntB. If the source value number (in IntA) is defined by a commutable
258 /// instruction and its other operand is coalesced to the copy dest register,
259 /// see if we can transform the copy into a noop by commuting the definition. For
260 /// example,
262 /// A3 = op A2 B0<kill>
263 /// ...
264 /// B1 = A3 <- this copy
265 /// ...
266 /// = op A3 <- more uses
268 /// ==>
270 /// B2 = op B0 A2<kill>
271 /// ...
272 /// B1 = B2 <- now an identify copy
273 /// ...
274 /// = op B2 <- more uses
276 /// This returns true if an interval was modified.
278 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
279 LiveInterval &IntB,
280 MachineInstr *CopyMI) {
281 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
283 // FIXME: For now, only eliminate the copy by commuting its def when the
284 // source register is a virtual register. We want to guard against cases
285 // where the copy is a back edge copy and commuting the def lengthen the
286 // live interval of the source register to the entire loop.
287 if (TargetRegisterInfo::isPhysicalRegister(IntA.reg))
288 return false;
290 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
291 // the example above.
292 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
293 assert(BLR != IntB.end() && "Live range not found!");
294 VNInfo *BValNo = BLR->valno;
296 // Get the location that B is defined at. Two options: either this value has
297 // an unknown definition point or it is defined at CopyIdx. If unknown, we
298 // can't process it.
299 if (!BValNo->copy) return false;
300 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
302 // AValNo is the value number in A that defines the copy, A3 in the example.
303 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1);
304 assert(ALR != IntA.end() && "Live range not found!");
305 VNInfo *AValNo = ALR->valno;
306 // If other defs can reach uses of this def, then it's not safe to perform
307 // the optimization.
308 if (AValNo->def == ~0U || AValNo->def == ~1U || AValNo->hasPHIKill)
309 return false;
310 MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
311 const TargetInstrDesc &TID = DefMI->getDesc();
312 unsigned NewDstIdx;
313 if (!TID.isCommutable() ||
314 !tii_->CommuteChangesDestination(DefMI, NewDstIdx))
315 return false;
317 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
318 unsigned NewReg = NewDstMO.getReg();
319 if (NewReg != IntB.reg || !NewDstMO.isKill())
320 return false;
322 // Make sure there are no other definitions of IntB that would reach the
323 // uses which the new definition can reach.
324 if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
325 return false;
327 // If some of the uses of IntA.reg is already coalesced away, return false.
328 // It's not possible to determine whether it's safe to perform the coalescing.
329 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
330 UE = mri_->use_end(); UI != UE; ++UI) {
331 MachineInstr *UseMI = &*UI;
332 unsigned UseIdx = li_->getInstructionIndex(UseMI);
333 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
334 if (ULR == IntA.end())
335 continue;
336 if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
337 return false;
340 // At this point we have decided that it is legal to do this
341 // transformation. Start by commuting the instruction.
342 MachineBasicBlock *MBB = DefMI->getParent();
343 MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
344 if (!NewMI)
345 return false;
346 if (NewMI != DefMI) {
347 li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
348 MBB->insert(DefMI, NewMI);
349 MBB->erase(DefMI);
351 unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
352 NewMI->getOperand(OpIdx).setIsKill();
354 bool BHasPHIKill = BValNo->hasPHIKill;
355 SmallVector<VNInfo*, 4> BDeadValNos;
356 SmallVector<unsigned, 4> BKills;
357 std::map<unsigned, unsigned> BExtend;
359 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
360 // A = or A, B
361 // ...
362 // B = A
363 // ...
364 // C = A<kill>
365 // ...
366 // = B
368 // then do not add kills of A to the newly created B interval.
369 bool Extended = BLR->end > ALR->end && ALR->end != ALR->start;
370 if (Extended)
371 BExtend[ALR->end] = BLR->end;
373 // Update uses of IntA of the specific Val# with IntB.
374 bool BHasSubRegs = false;
375 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
376 BHasSubRegs = *tri_->getSubRegisters(IntB.reg);
377 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
378 UE = mri_->use_end(); UI != UE;) {
379 MachineOperand &UseMO = UI.getOperand();
380 MachineInstr *UseMI = &*UI;
381 ++UI;
382 if (JoinedCopies.count(UseMI))
383 continue;
384 unsigned UseIdx = li_->getInstructionIndex(UseMI);
385 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
386 if (ULR == IntA.end() || ULR->valno != AValNo)
387 continue;
388 UseMO.setReg(NewReg);
389 if (UseMI == CopyMI)
390 continue;
391 if (UseMO.isKill()) {
392 if (Extended)
393 UseMO.setIsKill(false);
394 else
395 BKills.push_back(li_->getUseIndex(UseIdx)+1);
397 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
398 if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
399 continue;
400 if (DstReg == IntB.reg) {
401 // This copy will become a noop. If it's defining a new val#,
402 // remove that val# as well. However this live range is being
403 // extended to the end of the existing live range defined by the copy.
404 unsigned DefIdx = li_->getDefIndex(UseIdx);
405 const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
406 BHasPHIKill |= DLR->valno->hasPHIKill;
407 assert(DLR->valno->def == DefIdx);
408 BDeadValNos.push_back(DLR->valno);
409 BExtend[DLR->start] = DLR->end;
410 JoinedCopies.insert(UseMI);
411 // If this is a kill but it's going to be removed, the last use
412 // of the same val# is the new kill.
413 if (UseMO.isKill())
414 BKills.pop_back();
418 // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
419 // simply extend BLR if CopyMI doesn't end the range.
420 DOUT << "\nExtending: "; IntB.print(DOUT, tri_);
422 // Remove val#'s defined by copies that will be coalesced away.
423 for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) {
424 VNInfo *DeadVNI = BDeadValNos[i];
425 if (BHasSubRegs) {
426 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
427 LiveInterval &SRLI = li_->getInterval(*SR);
428 const LiveRange *SRLR = SRLI.getLiveRangeContaining(DeadVNI->def);
429 SRLI.removeValNo(SRLR->valno);
432 IntB.removeValNo(BDeadValNos[i]);
435 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
436 // is updated. Kills are also updated.
437 VNInfo *ValNo = BValNo;
438 ValNo->def = AValNo->def;
439 ValNo->copy = NULL;
440 for (unsigned j = 0, ee = ValNo->kills.size(); j != ee; ++j) {
441 unsigned Kill = ValNo->kills[j];
442 if (Kill != BLR->end)
443 BKills.push_back(Kill);
445 ValNo->kills.clear();
446 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
447 AI != AE; ++AI) {
448 if (AI->valno != AValNo) continue;
449 unsigned End = AI->end;
450 std::map<unsigned, unsigned>::iterator EI = BExtend.find(End);
451 if (EI != BExtend.end())
452 End = EI->second;
453 IntB.addRange(LiveRange(AI->start, End, ValNo));
455 // If the IntB live range is assigned to a physical register, and if that
456 // physreg has sub-registers, update their live intervals as well.
457 if (BHasSubRegs) {
458 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
459 LiveInterval &SRLI = li_->getInterval(*SR);
460 SRLI.MergeInClobberRange(AI->start, End, li_->getVNInfoAllocator());
464 IntB.addKills(ValNo, BKills);
465 ValNo->hasPHIKill = BHasPHIKill;
467 DOUT << " result = "; IntB.print(DOUT, tri_);
468 DOUT << "\n";
470 DOUT << "\nShortening: "; IntA.print(DOUT, tri_);
471 IntA.removeValNo(AValNo);
472 DOUT << " result = "; IntA.print(DOUT, tri_);
473 DOUT << "\n";
475 ++numCommutes;
476 return true;
479 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
480 /// fallthoughs to SuccMBB.
481 static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
482 MachineBasicBlock *SuccMBB,
483 const TargetInstrInfo *tii_) {
484 if (MBB == SuccMBB)
485 return true;
486 MachineBasicBlock *TBB = 0, *FBB = 0;
487 SmallVector<MachineOperand, 4> Cond;
488 return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
489 MBB->isSuccessor(SuccMBB);
492 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
493 /// from a physical register live interval as well as from the live intervals
494 /// of its sub-registers.
495 static void removeRange(LiveInterval &li, unsigned Start, unsigned End,
496 LiveIntervals *li_, const TargetRegisterInfo *tri_) {
497 li.removeRange(Start, End, true);
498 if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
499 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
500 if (!li_->hasInterval(*SR))
501 continue;
502 LiveInterval &sli = li_->getInterval(*SR);
503 unsigned RemoveEnd = Start;
504 while (RemoveEnd != End) {
505 LiveInterval::iterator LR = sli.FindLiveRangeContaining(Start);
506 if (LR == sli.end())
507 break;
508 RemoveEnd = (LR->end < End) ? LR->end : End;
509 sli.removeRange(Start, RemoveEnd, true);
510 Start = RemoveEnd;
516 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
517 /// as the copy instruction, trim the live interval to the last use and return
518 /// true.
519 bool
520 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx,
521 MachineBasicBlock *CopyMBB,
522 LiveInterval &li,
523 const LiveRange *LR) {
524 unsigned MBBStart = li_->getMBBStartIdx(CopyMBB);
525 unsigned LastUseIdx;
526 MachineOperand *LastUse = lastRegisterUse(LR->start, CopyIdx-1, li.reg,
527 LastUseIdx);
528 if (LastUse) {
529 MachineInstr *LastUseMI = LastUse->getParent();
530 if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
531 // r1024 = op
532 // ...
533 // BB1:
534 // = r1024
536 // BB2:
537 // r1025<dead> = r1024<kill>
538 if (MBBStart < LR->end)
539 removeRange(li, MBBStart, LR->end, li_, tri_);
540 return true;
543 // There are uses before the copy, just shorten the live range to the end
544 // of last use.
545 LastUse->setIsKill();
546 removeRange(li, li_->getDefIndex(LastUseIdx), LR->end, li_, tri_);
547 li.addKill(LR->valno, LastUseIdx+1);
548 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
549 if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
550 DstReg == li.reg) {
551 // Last use is itself an identity code.
552 int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg, false, tri_);
553 LastUseMI->getOperand(DeadIdx).setIsDead();
555 return true;
558 // Is it livein?
559 if (LR->start <= MBBStart && LR->end > MBBStart) {
560 if (LR->start == 0) {
561 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
562 // Live-in to the function but dead. Remove it from entry live-in set.
563 mf_->begin()->removeLiveIn(li.reg);
565 // FIXME: Shorten intervals in BBs that reaches this BB.
568 return false;
571 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
572 /// computation, replace the copy by rematerialize the definition.
573 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
574 unsigned DstReg,
575 MachineInstr *CopyMI) {
576 unsigned CopyIdx = li_->getUseIndex(li_->getInstructionIndex(CopyMI));
577 LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
578 assert(SrcLR != SrcInt.end() && "Live range not found!");
579 VNInfo *ValNo = SrcLR->valno;
580 // If other defs can reach uses of this def, then it's not safe to perform
581 // the optimization.
582 if (ValNo->def == ~0U || ValNo->def == ~1U || ValNo->hasPHIKill)
583 return false;
584 MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
585 const TargetInstrDesc &TID = DefMI->getDesc();
586 if (!TID.isAsCheapAsAMove())
587 return false;
588 if (!DefMI->getDesc().isRematerializable() ||
589 !tii_->isTriviallyReMaterializable(DefMI))
590 return false;
591 bool SawStore = false;
592 if (!DefMI->isSafeToMove(tii_, SawStore))
593 return false;
595 unsigned DefIdx = li_->getDefIndex(CopyIdx);
596 const LiveRange *DLR= li_->getInterval(DstReg).getLiveRangeContaining(DefIdx);
597 DLR->valno->copy = NULL;
598 // Don't forget to update sub-register intervals.
599 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
600 for (const unsigned* SR = tri_->getSubRegisters(DstReg); *SR; ++SR) {
601 if (!li_->hasInterval(*SR))
602 continue;
603 DLR = li_->getInterval(*SR).getLiveRangeContaining(DefIdx);
604 if (DLR && DLR->valno->copy == CopyMI)
605 DLR->valno->copy = NULL;
609 // If copy kills the source register, find the last use and propagate
610 // kill.
611 MachineBasicBlock *MBB = CopyMI->getParent();
612 if (CopyMI->killsRegister(SrcInt.reg))
613 TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR);
615 MachineBasicBlock::iterator MII = next(MachineBasicBlock::iterator(CopyMI));
616 CopyMI->removeFromParent();
617 tii_->reMaterialize(*MBB, MII, DstReg, DefMI);
618 MachineInstr *NewMI = prior(MII);
619 // CopyMI may have implicit operands, transfer them over to the newly
620 // rematerialized instruction. And update implicit def interval valnos.
621 for (unsigned i = CopyMI->getDesc().getNumOperands(),
622 e = CopyMI->getNumOperands(); i != e; ++i) {
623 MachineOperand &MO = CopyMI->getOperand(i);
624 if (MO.isReg() && MO.isImplicit())
625 NewMI->addOperand(MO);
626 if (MO.isDef() && li_->hasInterval(MO.getReg())) {
627 unsigned Reg = MO.getReg();
628 DLR = li_->getInterval(Reg).getLiveRangeContaining(DefIdx);
629 if (DLR && DLR->valno->copy == CopyMI)
630 DLR->valno->copy = NULL;
634 li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
635 MBB->getParent()->DeleteMachineInstr(CopyMI);
636 ReMatCopies.insert(CopyMI);
637 ReMatDefs.insert(DefMI);
638 ++NumReMats;
639 return true;
642 /// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
644 bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr *CopyMI,
645 unsigned DstReg) const {
646 MachineBasicBlock *MBB = CopyMI->getParent();
647 const MachineLoop *L = loopInfo->getLoopFor(MBB);
648 if (!L)
649 return false;
650 if (MBB != L->getLoopLatch())
651 return false;
653 LiveInterval &LI = li_->getInterval(DstReg);
654 unsigned DefIdx = li_->getInstructionIndex(CopyMI);
655 LiveInterval::const_iterator DstLR =
656 LI.FindLiveRangeContaining(li_->getDefIndex(DefIdx));
657 if (DstLR == LI.end())
658 return false;
659 unsigned KillIdx = li_->getMBBEndIdx(MBB) + 1;
660 if (DstLR->valno->kills.size() == 1 &&
661 DstLR->valno->kills[0] == KillIdx && DstLR->valno->hasPHIKill)
662 return true;
663 return false;
666 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
667 /// update the subregister number if it is not zero. If DstReg is a
668 /// physical register and the existing subregister number of the def / use
669 /// being updated is not zero, make sure to set it to the correct physical
670 /// subregister.
671 void
672 SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg,
673 unsigned SubIdx) {
674 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
675 if (DstIsPhys && SubIdx) {
676 // Figure out the real physical register we are updating with.
677 DstReg = tri_->getSubReg(DstReg, SubIdx);
678 SubIdx = 0;
681 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
682 E = mri_->reg_end(); I != E; ) {
683 MachineOperand &O = I.getOperand();
684 MachineInstr *UseMI = &*I;
685 ++I;
686 unsigned OldSubIdx = O.getSubReg();
687 if (DstIsPhys) {
688 unsigned UseDstReg = DstReg;
689 if (OldSubIdx)
690 UseDstReg = tri_->getSubReg(DstReg, OldSubIdx);
692 unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
693 if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
694 CopySrcSubIdx, CopyDstSubIdx) &&
695 CopySrcReg != CopyDstReg &&
696 CopySrcReg == SrcReg && CopyDstReg != UseDstReg) {
697 // If the use is a copy and it won't be coalesced away, and its source
698 // is defined by a trivial computation, try to rematerialize it instead.
699 if (ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg,UseMI))
700 continue;
703 O.setReg(UseDstReg);
704 O.setSubReg(0);
705 continue;
708 // Sub-register indexes goes from small to large. e.g.
709 // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
710 // EAX: 1 -> AL, 2 -> AX
711 // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
712 // sub-register 2 is also AX.
713 if (SubIdx && OldSubIdx && SubIdx != OldSubIdx)
714 assert(OldSubIdx < SubIdx && "Conflicting sub-register index!");
715 else if (SubIdx)
716 O.setSubReg(SubIdx);
717 // Remove would-be duplicated kill marker.
718 if (O.isKill() && UseMI->killsRegister(DstReg))
719 O.setIsKill(false);
720 O.setReg(DstReg);
722 // After updating the operand, check if the machine instruction has
723 // become a copy. If so, update its val# information.
724 const TargetInstrDesc &TID = UseMI->getDesc();
725 unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
726 if (TID.getNumDefs() == 1 && TID.getNumOperands() > 2 &&
727 tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
728 CopySrcSubIdx, CopyDstSubIdx) &&
729 CopySrcReg != CopyDstReg &&
730 (TargetRegisterInfo::isVirtualRegister(CopyDstReg) ||
731 allocatableRegs_[CopyDstReg])) {
732 LiveInterval &LI = li_->getInterval(CopyDstReg);
733 unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(UseMI));
734 const LiveRange *DLR = LI.getLiveRangeContaining(DefIdx);
735 if (DLR->valno->def == DefIdx)
736 DLR->valno->copy = UseMI;
741 /// RemoveDeadImpDef - Remove implicit_def instructions which are "re-defining"
742 /// registers due to insert_subreg coalescing. e.g.
743 /// r1024 = op
744 /// r1025 = implicit_def
745 /// r1025 = insert_subreg r1025, r1024
746 /// = op r1025
747 /// =>
748 /// r1025 = op
749 /// r1025 = implicit_def
750 /// r1025 = insert_subreg r1025, r1025
751 /// = op r1025
752 void
753 SimpleRegisterCoalescing::RemoveDeadImpDef(unsigned Reg, LiveInterval &LI) {
754 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
755 E = mri_->reg_end(); I != E; ) {
756 MachineOperand &O = I.getOperand();
757 MachineInstr *DefMI = &*I;
758 ++I;
759 if (!O.isDef())
760 continue;
761 if (DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
762 continue;
763 if (!LI.liveBeforeAndAt(li_->getInstructionIndex(DefMI)))
764 continue;
765 li_->RemoveMachineInstrFromMaps(DefMI);
766 DefMI->eraseFromParent();
770 /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
771 /// due to live range lengthening as the result of coalescing.
772 void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg,
773 LiveInterval &LI) {
774 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(Reg),
775 UE = mri_->use_end(); UI != UE; ++UI) {
776 MachineOperand &UseMO = UI.getOperand();
777 if (UseMO.isKill()) {
778 MachineInstr *UseMI = UseMO.getParent();
779 unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI));
780 const LiveRange *UI = LI.getLiveRangeContaining(UseIdx);
781 if (!UI || !LI.isKill(UI->valno, UseIdx+1))
782 UseMO.setIsKill(false);
787 /// removeIntervalIfEmpty - Check if the live interval of a physical register
788 /// is empty, if so remove it and also remove the empty intervals of its
789 /// sub-registers. Return true if live interval is removed.
790 static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
791 const TargetRegisterInfo *tri_) {
792 if (li.empty()) {
793 if (TargetRegisterInfo::isPhysicalRegister(li.reg))
794 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
795 if (!li_->hasInterval(*SR))
796 continue;
797 LiveInterval &sli = li_->getInterval(*SR);
798 if (sli.empty())
799 li_->removeInterval(*SR);
801 li_->removeInterval(li.reg);
802 return true;
804 return false;
807 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
808 /// Return true if live interval is removed.
809 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
810 MachineInstr *CopyMI) {
811 unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
812 LiveInterval::iterator MLR =
813 li.FindLiveRangeContaining(li_->getDefIndex(CopyIdx));
814 if (MLR == li.end())
815 return false; // Already removed by ShortenDeadCopySrcLiveRange.
816 unsigned RemoveStart = MLR->start;
817 unsigned RemoveEnd = MLR->end;
818 // Remove the liverange that's defined by this.
819 if (RemoveEnd == li_->getDefIndex(CopyIdx)+1) {
820 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
821 return removeIntervalIfEmpty(li, li_, tri_);
823 return false;
826 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
827 /// the val# it defines. If the live interval becomes empty, remove it as well.
828 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
829 MachineInstr *DefMI) {
830 unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(DefMI));
831 LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
832 if (DefIdx != MLR->valno->def)
833 return false;
834 li.removeValNo(MLR->valno);
835 return removeIntervalIfEmpty(li, li_, tri_);
838 /// PropagateDeadness - Propagate the dead marker to the instruction which
839 /// defines the val#.
840 static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
841 unsigned &LRStart, LiveIntervals *li_,
842 const TargetRegisterInfo* tri_) {
843 MachineInstr *DefMI =
844 li_->getInstructionFromIndex(li_->getDefIndex(LRStart));
845 if (DefMI && DefMI != CopyMI) {
846 int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg, false, tri_);
847 if (DeadIdx != -1) {
848 DefMI->getOperand(DeadIdx).setIsDead();
849 // A dead def should have a single cycle interval.
850 ++LRStart;
855 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
856 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
857 /// ends the live range there. If there isn't another use, then this live range
858 /// is dead. Return true if live interval is removed.
859 bool
860 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
861 MachineInstr *CopyMI) {
862 unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
863 if (CopyIdx == 0) {
864 // FIXME: special case: function live in. It can be a general case if the
865 // first instruction index starts at > 0 value.
866 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
867 // Live-in to the function but dead. Remove it from entry live-in set.
868 if (mf_->begin()->isLiveIn(li.reg))
869 mf_->begin()->removeLiveIn(li.reg);
870 const LiveRange *LR = li.getLiveRangeContaining(CopyIdx);
871 removeRange(li, LR->start, LR->end, li_, tri_);
872 return removeIntervalIfEmpty(li, li_, tri_);
875 LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx-1);
876 if (LR == li.end())
877 // Livein but defined by a phi.
878 return false;
880 unsigned RemoveStart = LR->start;
881 unsigned RemoveEnd = li_->getDefIndex(CopyIdx)+1;
882 if (LR->end > RemoveEnd)
883 // More uses past this copy? Nothing to do.
884 return false;
886 // If there is a last use in the same bb, we can't remove the live range.
887 // Shorten the live interval and return.
888 MachineBasicBlock *CopyMBB = CopyMI->getParent();
889 if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
890 return false;
892 MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
893 if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
894 // If the live range starts in another mbb and the copy mbb is not a fall
895 // through mbb, then we can only cut the range from the beginning of the
896 // copy mbb.
897 RemoveStart = li_->getMBBStartIdx(CopyMBB) + 1;
899 if (LR->valno->def == RemoveStart) {
900 // If the def MI defines the val# and this copy is the only kill of the
901 // val#, then propagate the dead marker.
902 if (li.isOnlyLROfValNo(LR)) {
903 PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
904 ++numDeadValNo;
906 if (li.isKill(LR->valno, RemoveEnd))
907 li.removeKill(LR->valno, RemoveEnd);
910 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
911 return removeIntervalIfEmpty(li, li_, tri_);
914 /// CanCoalesceWithImpDef - Returns true if the specified copy instruction
915 /// from an implicit def to another register can be coalesced away.
916 bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr *CopyMI,
917 LiveInterval &li,
918 LiveInterval &ImpLi) const{
919 if (!CopyMI->killsRegister(ImpLi.reg))
920 return false;
921 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
922 LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx);
923 if (LR == li.end())
924 return false;
925 if (LR->valno->hasPHIKill)
926 return false;
927 if (LR->valno->def != CopyIdx)
928 return false;
929 // Make sure all of val# uses are copies.
930 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(li.reg),
931 UE = mri_->use_end(); UI != UE;) {
932 MachineInstr *UseMI = &*UI;
933 ++UI;
934 if (JoinedCopies.count(UseMI))
935 continue;
936 unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI));
937 LiveInterval::iterator ULR = li.FindLiveRangeContaining(UseIdx);
938 if (ULR == li.end() || ULR->valno != LR->valno)
939 continue;
940 // If the use is not a use, then it's not safe to coalesce the move.
941 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
942 if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
943 if (UseMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG &&
944 UseMI->getOperand(1).getReg() == li.reg)
945 continue;
946 return false;
949 return true;
953 /// RemoveCopiesFromValNo - The specified value# is defined by an implicit
954 /// def and it is being removed. Turn all copies from this value# into
955 /// identity copies so they will be removed.
956 void SimpleRegisterCoalescing::RemoveCopiesFromValNo(LiveInterval &li,
957 VNInfo *VNI) {
958 SmallVector<MachineInstr*, 4> ImpDefs;
959 MachineOperand *LastUse = NULL;
960 unsigned LastUseIdx = li_->getUseIndex(VNI->def);
961 for (MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(li.reg),
962 RE = mri_->reg_end(); RI != RE;) {
963 MachineOperand *MO = &RI.getOperand();
964 MachineInstr *MI = &*RI;
965 ++RI;
966 if (MO->isDef()) {
967 if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
968 ImpDefs.push_back(MI);
970 continue;
972 if (JoinedCopies.count(MI))
973 continue;
974 unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(MI));
975 LiveInterval::iterator ULR = li.FindLiveRangeContaining(UseIdx);
976 if (ULR == li.end() || ULR->valno != VNI)
977 continue;
978 // If the use is a copy, turn it into an identity copy.
979 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
980 if (tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
981 SrcReg == li.reg) {
982 // Each use MI may have multiple uses of this register. Change them all.
983 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
984 MachineOperand &MO = MI->getOperand(i);
985 if (MO.isReg() && MO.getReg() == li.reg)
986 MO.setReg(DstReg);
988 JoinedCopies.insert(MI);
989 } else if (UseIdx > LastUseIdx) {
990 LastUseIdx = UseIdx;
991 LastUse = MO;
994 if (LastUse) {
995 LastUse->setIsKill();
996 li.addKill(VNI, LastUseIdx+1);
997 } else {
998 // Remove dead implicit_def's.
999 while (!ImpDefs.empty()) {
1000 MachineInstr *ImpDef = ImpDefs.back();
1001 ImpDefs.pop_back();
1002 li_->RemoveMachineInstrFromMaps(ImpDef);
1003 ImpDef->eraseFromParent();
1008 /// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
1009 /// a virtual destination register with physical source register.
1010 bool
1011 SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr *CopyMI,
1012 MachineBasicBlock *CopyMBB,
1013 LiveInterval &DstInt,
1014 LiveInterval &SrcInt) {
1015 // If the virtual register live interval is long but it has low use desity,
1016 // do not join them, instead mark the physical register as its allocation
1017 // preference.
1018 const TargetRegisterClass *RC = mri_->getRegClass(DstInt.reg);
1019 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1020 unsigned Length = li_->getApproximateInstructionCount(DstInt);
1021 if (Length > Threshold &&
1022 (((float)std::distance(mri_->use_begin(DstInt.reg),
1023 mri_->use_end()) / Length) < (1.0 / Threshold)))
1024 return false;
1026 // If the virtual register live interval extends into a loop, turn down
1027 // aggressiveness.
1028 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1029 const MachineLoop *L = loopInfo->getLoopFor(CopyMBB);
1030 if (!L) {
1031 // Let's see if the virtual register live interval extends into the loop.
1032 LiveInterval::iterator DLR = DstInt.FindLiveRangeContaining(CopyIdx);
1033 assert(DLR != DstInt.end() && "Live range not found!");
1034 DLR = DstInt.FindLiveRangeContaining(DLR->end+1);
1035 if (DLR != DstInt.end()) {
1036 CopyMBB = li_->getMBBFromIndex(DLR->start);
1037 L = loopInfo->getLoopFor(CopyMBB);
1041 if (!L || Length <= Threshold)
1042 return true;
1044 unsigned UseIdx = li_->getUseIndex(CopyIdx);
1045 LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
1046 MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
1047 if (loopInfo->getLoopFor(SMBB) != L) {
1048 if (!loopInfo->isLoopHeader(CopyMBB))
1049 return false;
1050 // If vr's live interval extends pass the loop header, do not join.
1051 for (MachineBasicBlock::succ_iterator SI = CopyMBB->succ_begin(),
1052 SE = CopyMBB->succ_end(); SI != SE; ++SI) {
1053 MachineBasicBlock *SuccMBB = *SI;
1054 if (SuccMBB == CopyMBB)
1055 continue;
1056 if (DstInt.overlaps(li_->getMBBStartIdx(SuccMBB),
1057 li_->getMBBEndIdx(SuccMBB)+1))
1058 return false;
1061 return true;
1064 /// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
1065 /// copy from a virtual source register to a physical destination register.
1066 bool
1067 SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr *CopyMI,
1068 MachineBasicBlock *CopyMBB,
1069 LiveInterval &DstInt,
1070 LiveInterval &SrcInt) {
1071 // If the virtual register live interval is long but it has low use desity,
1072 // do not join them, instead mark the physical register as its allocation
1073 // preference.
1074 const TargetRegisterClass *RC = mri_->getRegClass(SrcInt.reg);
1075 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1076 unsigned Length = li_->getApproximateInstructionCount(SrcInt);
1077 if (Length > Threshold &&
1078 (((float)std::distance(mri_->use_begin(SrcInt.reg),
1079 mri_->use_end()) / Length) < (1.0 / Threshold)))
1080 return false;
1082 if (SrcInt.empty())
1083 // Must be implicit_def.
1084 return false;
1086 // If the virtual register live interval is defined or cross a loop, turn
1087 // down aggressiveness.
1088 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1089 unsigned UseIdx = li_->getUseIndex(CopyIdx);
1090 LiveInterval::iterator SLR = SrcInt.FindLiveRangeContaining(UseIdx);
1091 assert(SLR != SrcInt.end() && "Live range not found!");
1092 SLR = SrcInt.FindLiveRangeContaining(SLR->start-1);
1093 if (SLR == SrcInt.end())
1094 return true;
1095 MachineBasicBlock *SMBB = li_->getMBBFromIndex(SLR->start);
1096 const MachineLoop *L = loopInfo->getLoopFor(SMBB);
1098 if (!L || Length <= Threshold)
1099 return true;
1101 if (loopInfo->getLoopFor(CopyMBB) != L) {
1102 if (SMBB != L->getLoopLatch())
1103 return false;
1104 // If vr's live interval is extended from before the loop latch, do not
1105 // join.
1106 for (MachineBasicBlock::pred_iterator PI = SMBB->pred_begin(),
1107 PE = SMBB->pred_end(); PI != PE; ++PI) {
1108 MachineBasicBlock *PredMBB = *PI;
1109 if (PredMBB == SMBB)
1110 continue;
1111 if (SrcInt.overlaps(li_->getMBBStartIdx(PredMBB),
1112 li_->getMBBEndIdx(PredMBB)+1))
1113 return false;
1116 return true;
1119 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1120 /// two virtual registers from different register classes.
1121 bool
1122 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned LargeReg,
1123 unsigned SmallReg,
1124 unsigned Threshold) {
1125 // Then make sure the intervals are *short*.
1126 LiveInterval &LargeInt = li_->getInterval(LargeReg);
1127 LiveInterval &SmallInt = li_->getInterval(SmallReg);
1128 unsigned LargeSize = li_->getApproximateInstructionCount(LargeInt);
1129 unsigned SmallSize = li_->getApproximateInstructionCount(SmallInt);
1130 if (SmallSize > Threshold || LargeSize > Threshold)
1131 if ((float)std::distance(mri_->use_begin(SmallReg),
1132 mri_->use_end()) / SmallSize <
1133 (float)std::distance(mri_->use_begin(LargeReg),
1134 mri_->use_end()) / LargeSize)
1135 return false;
1136 return true;
1139 /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
1140 /// register with a physical register, check if any of the virtual register
1141 /// operand is a sub-register use or def. If so, make sure it won't result
1142 /// in an illegal extract_subreg or insert_subreg instruction. e.g.
1143 /// vr1024 = extract_subreg vr1025, 1
1144 /// ...
1145 /// vr1024 = mov8rr AH
1146 /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
1147 /// AH does not have a super-reg whose sub-register 1 is AH.
1148 bool
1149 SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr *CopyMI,
1150 unsigned VirtReg,
1151 unsigned PhysReg) {
1152 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(VirtReg),
1153 E = mri_->reg_end(); I != E; ++I) {
1154 MachineOperand &O = I.getOperand();
1155 MachineInstr *MI = &*I;
1156 if (MI == CopyMI || JoinedCopies.count(MI))
1157 continue;
1158 unsigned SubIdx = O.getSubReg();
1159 if (SubIdx && !tri_->getSubReg(PhysReg, SubIdx))
1160 return true;
1161 if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
1162 SubIdx = MI->getOperand(2).getImm();
1163 if (O.isUse() && !tri_->getSubReg(PhysReg, SubIdx))
1164 return true;
1165 if (O.isDef()) {
1166 unsigned SrcReg = MI->getOperand(1).getReg();
1167 const TargetRegisterClass *RC =
1168 TargetRegisterInfo::isPhysicalRegister(SrcReg)
1169 ? tri_->getPhysicalRegisterRegClass(SrcReg)
1170 : mri_->getRegClass(SrcReg);
1171 if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
1172 return true;
1175 if (MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
1176 MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
1177 SubIdx = MI->getOperand(3).getImm();
1178 if (VirtReg == MI->getOperand(0).getReg()) {
1179 if (!tri_->getSubReg(PhysReg, SubIdx))
1180 return true;
1181 } else {
1182 unsigned DstReg = MI->getOperand(0).getReg();
1183 const TargetRegisterClass *RC =
1184 TargetRegisterInfo::isPhysicalRegister(DstReg)
1185 ? tri_->getPhysicalRegisterRegClass(DstReg)
1186 : mri_->getRegClass(DstReg);
1187 if (!tri_->getMatchingSuperReg(PhysReg, SubIdx, RC))
1188 return true;
1192 return false;
1196 /// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
1197 /// an extract_subreg where dst is a physical register, e.g.
1198 /// cl = EXTRACT_SUBREG reg1024, 1
1199 bool
1200 SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg,
1201 unsigned SrcReg, unsigned SubIdx,
1202 unsigned &RealDstReg) {
1203 const TargetRegisterClass *RC = mri_->getRegClass(SrcReg);
1204 RealDstReg = tri_->getMatchingSuperReg(DstReg, SubIdx, RC);
1205 assert(RealDstReg && "Invalid extract_subreg instruction!");
1207 // For this type of EXTRACT_SUBREG, conservatively
1208 // check if the live interval of the source register interfere with the
1209 // actual super physical register we are trying to coalesce with.
1210 LiveInterval &RHS = li_->getInterval(SrcReg);
1211 if (li_->hasInterval(RealDstReg) &&
1212 RHS.overlaps(li_->getInterval(RealDstReg))) {
1213 DOUT << "Interfere with register ";
1214 DEBUG(li_->getInterval(RealDstReg).print(DOUT, tri_));
1215 return false; // Not coalescable
1217 for (const unsigned* SR = tri_->getSubRegisters(RealDstReg); *SR; ++SR)
1218 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1219 DOUT << "Interfere with sub-register ";
1220 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
1221 return false; // Not coalescable
1223 return true;
1226 /// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
1227 /// an insert_subreg where src is a physical register, e.g.
1228 /// reg1024 = INSERT_SUBREG reg1024, c1, 0
1229 bool
1230 SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg,
1231 unsigned SrcReg, unsigned SubIdx,
1232 unsigned &RealSrcReg) {
1233 const TargetRegisterClass *RC = mri_->getRegClass(DstReg);
1234 RealSrcReg = tri_->getMatchingSuperReg(SrcReg, SubIdx, RC);
1235 assert(RealSrcReg && "Invalid extract_subreg instruction!");
1237 LiveInterval &RHS = li_->getInterval(DstReg);
1238 if (li_->hasInterval(RealSrcReg) &&
1239 RHS.overlaps(li_->getInterval(RealSrcReg))) {
1240 DOUT << "Interfere with register ";
1241 DEBUG(li_->getInterval(RealSrcReg).print(DOUT, tri_));
1242 return false; // Not coalescable
1244 for (const unsigned* SR = tri_->getSubRegisters(RealSrcReg); *SR; ++SR)
1245 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1246 DOUT << "Interfere with sub-register ";
1247 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
1248 return false; // Not coalescable
1250 return true;
1253 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1254 /// which are the src/dst of the copy instruction CopyMI. This returns true
1255 /// if the copy was successfully coalesced away. If it is not currently
1256 /// possible to coalesce this interval, but it may be possible if other
1257 /// things get coalesced, then it returns true by reference in 'Again'.
1258 bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
1259 MachineInstr *CopyMI = TheCopy.MI;
1261 Again = false;
1262 if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
1263 return false; // Already done.
1265 DOUT << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI;
1267 unsigned SrcReg, DstReg, SrcSubIdx = 0, DstSubIdx = 0;
1268 bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG;
1269 bool isInsSubReg = CopyMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG;
1270 bool isSubRegToReg = CopyMI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG;
1271 unsigned SubIdx = 0;
1272 if (isExtSubReg) {
1273 DstReg = CopyMI->getOperand(0).getReg();
1274 DstSubIdx = CopyMI->getOperand(0).getSubReg();
1275 SrcReg = CopyMI->getOperand(1).getReg();
1276 SrcSubIdx = CopyMI->getOperand(2).getImm();
1277 } else if (isInsSubReg || isSubRegToReg) {
1278 if (CopyMI->getOperand(2).getSubReg()) {
1279 DOUT << "\tSource of insert_subreg is already coalesced "
1280 << "to another register.\n";
1281 return false; // Not coalescable.
1283 DstReg = CopyMI->getOperand(0).getReg();
1284 DstSubIdx = CopyMI->getOperand(3).getImm();
1285 SrcReg = CopyMI->getOperand(2).getReg();
1286 } else if (!tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)){
1287 assert(0 && "Unrecognized copy instruction!");
1288 return false;
1291 // If they are already joined we continue.
1292 if (SrcReg == DstReg) {
1293 DOUT << "\tCopy already coalesced.\n";
1294 return false; // Not coalescable.
1297 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
1298 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1300 // If they are both physical registers, we cannot join them.
1301 if (SrcIsPhys && DstIsPhys) {
1302 DOUT << "\tCan not coalesce physregs.\n";
1303 return false; // Not coalescable.
1306 // We only join virtual registers with allocatable physical registers.
1307 if (SrcIsPhys && !allocatableRegs_[SrcReg]) {
1308 DOUT << "\tSrc reg is unallocatable physreg.\n";
1309 return false; // Not coalescable.
1311 if (DstIsPhys && !allocatableRegs_[DstReg]) {
1312 DOUT << "\tDst reg is unallocatable physreg.\n";
1313 return false; // Not coalescable.
1316 // Check that a physical source register is compatible with dst regclass
1317 if (SrcIsPhys) {
1318 unsigned SrcSubReg = SrcSubIdx ?
1319 tri_->getSubReg(SrcReg, SrcSubIdx) : SrcReg;
1320 const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
1321 const TargetRegisterClass *DstSubRC = DstRC;
1322 if (DstSubIdx)
1323 DstSubRC = DstRC->getSubRegisterRegClass(DstSubIdx);
1324 assert(DstSubRC && "Illegal subregister index");
1325 if (!DstSubRC->contains(SrcSubReg)) {
1326 DOUT << "\tIncompatible destination regclass: "
1327 << tri_->getName(SrcSubReg) << " not in " << DstSubRC->getName()
1328 << ".\n";
1329 return false; // Not coalescable.
1333 // Check that a physical dst register is compatible with source regclass
1334 if (DstIsPhys) {
1335 unsigned DstSubReg = DstSubIdx ?
1336 tri_->getSubReg(DstReg, DstSubIdx) : DstReg;
1337 const TargetRegisterClass *SrcRC = mri_->getRegClass(SrcReg);
1338 const TargetRegisterClass *SrcSubRC = SrcRC;
1339 if (SrcSubIdx)
1340 SrcSubRC = SrcRC->getSubRegisterRegClass(SrcSubIdx);
1341 assert(SrcSubRC && "Illegal subregister index");
1342 if (!SrcSubRC->contains(DstReg)) {
1343 DOUT << "\tIncompatible source regclass: "
1344 << tri_->getName(DstSubReg) << " not in " << SrcSubRC->getName()
1345 << ".\n";
1346 return false; // Not coalescable.
1350 // Should be non-null only when coalescing to a sub-register class.
1351 bool CrossRC = false;
1352 const TargetRegisterClass *NewRC = NULL;
1353 MachineBasicBlock *CopyMBB = CopyMI->getParent();
1354 unsigned RealDstReg = 0;
1355 unsigned RealSrcReg = 0;
1356 if (isExtSubReg || isInsSubReg || isSubRegToReg) {
1357 SubIdx = CopyMI->getOperand(isExtSubReg ? 2 : 3).getImm();
1358 if (SrcIsPhys && isExtSubReg) {
1359 // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
1360 // coalesced with AX.
1361 unsigned DstSubIdx = CopyMI->getOperand(0).getSubReg();
1362 if (DstSubIdx) {
1363 // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
1364 // coalesced to a larger register so the subreg indices cancel out.
1365 if (DstSubIdx != SubIdx) {
1366 DOUT << "\t Sub-register indices mismatch.\n";
1367 return false; // Not coalescable.
1369 } else
1370 SrcReg = tri_->getSubReg(SrcReg, SubIdx);
1371 SubIdx = 0;
1372 } else if (DstIsPhys && (isInsSubReg || isSubRegToReg)) {
1373 // EAX = INSERT_SUBREG EAX, r1024, 0
1374 unsigned SrcSubIdx = CopyMI->getOperand(2).getSubReg();
1375 if (SrcSubIdx) {
1376 // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
1377 // coalesced to a larger register so the subreg indices cancel out.
1378 if (SrcSubIdx != SubIdx) {
1379 DOUT << "\t Sub-register indices mismatch.\n";
1380 return false; // Not coalescable.
1382 } else
1383 DstReg = tri_->getSubReg(DstReg, SubIdx);
1384 SubIdx = 0;
1385 } else if ((DstIsPhys && isExtSubReg) ||
1386 (SrcIsPhys && (isInsSubReg || isSubRegToReg))) {
1387 if (!isSubRegToReg && CopyMI->getOperand(1).getSubReg()) {
1388 DOUT << "\tSrc of extract_subreg already coalesced with reg"
1389 << " of a super-class.\n";
1390 return false; // Not coalescable.
1393 if (isExtSubReg) {
1394 if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealDstReg))
1395 return false; // Not coalescable
1396 } else {
1397 if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
1398 return false; // Not coalescable
1400 SubIdx = 0;
1401 } else {
1402 unsigned OldSubIdx = isExtSubReg ? CopyMI->getOperand(0).getSubReg()
1403 : CopyMI->getOperand(2).getSubReg();
1404 if (OldSubIdx) {
1405 if (OldSubIdx == SubIdx && !differingRegisterClasses(SrcReg, DstReg))
1406 // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
1407 // coalesced to a larger register so the subreg indices cancel out.
1408 // Also check if the other larger register is of the same register
1409 // class as the would be resulting register.
1410 SubIdx = 0;
1411 else {
1412 DOUT << "\t Sub-register indices mismatch.\n";
1413 return false; // Not coalescable.
1416 if (SubIdx) {
1417 unsigned LargeReg = isExtSubReg ? SrcReg : DstReg;
1418 unsigned SmallReg = isExtSubReg ? DstReg : SrcReg;
1419 unsigned Limit= allocatableRCRegs_[mri_->getRegClass(SmallReg)].count();
1420 if (!isWinToJoinCrossClass(LargeReg, SmallReg, Limit)) {
1421 Again = true; // May be possible to coalesce later.
1422 return false;
1426 } else if (differingRegisterClasses(SrcReg, DstReg)) {
1427 if (!CrossClassJoin)
1428 return false;
1429 CrossRC = true;
1431 // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
1432 // with another? If it's the resulting destination register, then
1433 // the subidx must be propagated to uses (but only those defined
1434 // by the EXTRACT_SUBREG). If it's being coalesced into another
1435 // register, it should be safe because register is assumed to have
1436 // the register class of the super-register.
1438 // Process moves where one of the registers have a sub-register index.
1439 MachineOperand *DstMO = CopyMI->findRegisterDefOperand(DstReg);
1440 MachineOperand *SrcMO = CopyMI->findRegisterUseOperand(SrcReg);
1441 SubIdx = DstMO->getSubReg();
1442 if (SubIdx) {
1443 if (SrcMO->getSubReg())
1444 // FIXME: can we handle this?
1445 return false;
1446 // This is not an insert_subreg but it looks like one.
1447 // e.g. %reg1024:4 = MOV32rr %EAX
1448 isInsSubReg = true;
1449 if (SrcIsPhys) {
1450 if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
1451 return false; // Not coalescable
1452 SubIdx = 0;
1454 } else {
1455 SubIdx = SrcMO->getSubReg();
1456 if (SubIdx) {
1457 // This is not a extract_subreg but it looks like one.
1458 // e.g. %cl = MOV16rr %reg1024:1
1459 isExtSubReg = true;
1460 if (DstIsPhys) {
1461 if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx,RealDstReg))
1462 return false; // Not coalescable
1463 SubIdx = 0;
1468 const TargetRegisterClass *SrcRC= SrcIsPhys ? 0 : mri_->getRegClass(SrcReg);
1469 const TargetRegisterClass *DstRC= DstIsPhys ? 0 : mri_->getRegClass(DstReg);
1470 unsigned LargeReg = SrcReg;
1471 unsigned SmallReg = DstReg;
1472 unsigned Limit = 0;
1474 // Now determine the register class of the joined register.
1475 if (isExtSubReg) {
1476 if (SubIdx && DstRC && DstRC->isASubClass()) {
1477 // This is a move to a sub-register class. However, the source is a
1478 // sub-register of a larger register class. We don't know what should
1479 // the register class be. FIXME.
1480 Again = true;
1481 return false;
1483 Limit = allocatableRCRegs_[DstRC].count();
1484 } else if (!SrcIsPhys && !DstIsPhys) {
1485 NewRC = getCommonSubClass(SrcRC, DstRC);
1486 if (!NewRC) {
1487 DOUT << "\tDisjoint regclasses: "
1488 << SrcRC->getName() << ", "
1489 << DstRC->getName() << ".\n";
1490 return false; // Not coalescable.
1492 if (DstRC->getSize() > SrcRC->getSize())
1493 std::swap(LargeReg, SmallReg);
1496 // If we are joining two virtual registers and the resulting register
1497 // class is more restrictive (fewer register, smaller size). Check if it's
1498 // worth doing the merge.
1499 if (!SrcIsPhys && !DstIsPhys &&
1500 (isExtSubReg || DstRC->isASubClass()) &&
1501 !isWinToJoinCrossClass(LargeReg, SmallReg,
1502 allocatableRCRegs_[NewRC].count())) {
1503 DOUT << "\tSrc/Dest are different register classes.\n";
1504 // Allow the coalescer to try again in case either side gets coalesced to
1505 // a physical register that's compatible with the other side. e.g.
1506 // r1024 = MOV32to32_ r1025
1507 // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
1508 Again = true; // May be possible to coalesce later.
1509 return false;
1513 // Will it create illegal extract_subreg / insert_subreg?
1514 if (SrcIsPhys && HasIncompatibleSubRegDefUse(CopyMI, DstReg, SrcReg))
1515 return false;
1516 if (DstIsPhys && HasIncompatibleSubRegDefUse(CopyMI, SrcReg, DstReg))
1517 return false;
1519 LiveInterval &SrcInt = li_->getInterval(SrcReg);
1520 LiveInterval &DstInt = li_->getInterval(DstReg);
1521 assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg &&
1522 "Register mapping is horribly broken!");
1524 DOUT << "\t\tInspecting "; SrcInt.print(DOUT, tri_);
1525 DOUT << " and "; DstInt.print(DOUT, tri_);
1526 DOUT << ": ";
1528 // Save a copy of the virtual register live interval. We'll manually
1529 // merge this into the "real" physical register live interval this is
1530 // coalesced with.
1531 LiveInterval *SavedLI = 0;
1532 if (RealDstReg)
1533 SavedLI = li_->dupInterval(&SrcInt);
1534 else if (RealSrcReg)
1535 SavedLI = li_->dupInterval(&DstInt);
1537 // Check if it is necessary to propagate "isDead" property.
1538 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg) {
1539 MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg, false);
1540 bool isDead = mopd->isDead();
1542 // We need to be careful about coalescing a source physical register with a
1543 // virtual register. Once the coalescing is done, it cannot be broken and
1544 // these are not spillable! If the destination interval uses are far away,
1545 // think twice about coalescing them!
1546 if (!isDead && (SrcIsPhys || DstIsPhys)) {
1547 // If the copy is in a loop, take care not to coalesce aggressively if the
1548 // src is coming in from outside the loop (or the dst is out of the loop).
1549 // If it's not in a loop, then determine whether to join them base purely
1550 // by the length of the interval.
1551 if (PhysJoinTweak) {
1552 if (SrcIsPhys) {
1553 if (!isWinToJoinVRWithSrcPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
1554 DstInt.preference = SrcReg;
1555 ++numAborts;
1556 DOUT << "\tMay tie down a physical register, abort!\n";
1557 Again = true; // May be possible to coalesce later.
1558 return false;
1560 } else {
1561 if (!isWinToJoinVRWithDstPhysReg(CopyMI, CopyMBB, DstInt, SrcInt)) {
1562 SrcInt.preference = DstReg;
1563 ++numAborts;
1564 DOUT << "\tMay tie down a physical register, abort!\n";
1565 Again = true; // May be possible to coalesce later.
1566 return false;
1569 } else {
1570 // If the virtual register live interval is long but it has low use desity,
1571 // do not join them, instead mark the physical register as its allocation
1572 // preference.
1573 LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
1574 unsigned JoinVReg = SrcIsPhys ? DstReg : SrcReg;
1575 unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg;
1576 const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg);
1577 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1578 if (TheCopy.isBackEdge)
1579 Threshold *= 2; // Favors back edge copies.
1581 unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
1582 float Ratio = 1.0 / Threshold;
1583 if (Length > Threshold &&
1584 (((float)std::distance(mri_->use_begin(JoinVReg),
1585 mri_->use_end()) / Length) < Ratio)) {
1586 JoinVInt.preference = JoinPReg;
1587 ++numAborts;
1588 DOUT << "\tMay tie down a physical register, abort!\n";
1589 Again = true; // May be possible to coalesce later.
1590 return false;
1596 // Okay, attempt to join these two intervals. On failure, this returns false.
1597 // Otherwise, if one of the intervals being joined is a physreg, this method
1598 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1599 // been modified, so we can use this information below to update aliases.
1600 bool Swapped = false;
1601 // If SrcInt is implicitly defined, it's safe to coalesce.
1602 bool isEmpty = SrcInt.empty();
1603 if (isEmpty && !CanCoalesceWithImpDef(CopyMI, DstInt, SrcInt)) {
1604 // Only coalesce an empty interval (defined by implicit_def) with
1605 // another interval which has a valno defined by the CopyMI and the CopyMI
1606 // is a kill of the implicit def.
1607 DOUT << "Not profitable!\n";
1608 return false;
1611 if (!isEmpty && !JoinIntervals(DstInt, SrcInt, Swapped)) {
1612 // Coalescing failed.
1614 // If definition of source is defined by trivial computation, try
1615 // rematerializing it.
1616 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
1617 ReMaterializeTrivialDef(SrcInt, DstInt.reg, CopyMI))
1618 return true;
1620 // If we can eliminate the copy without merging the live ranges, do so now.
1621 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
1622 (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) ||
1623 RemoveCopyByCommutingDef(SrcInt, DstInt, CopyMI))) {
1624 JoinedCopies.insert(CopyMI);
1625 return true;
1628 // Otherwise, we are unable to join the intervals.
1629 DOUT << "Interference!\n";
1630 Again = true; // May be possible to coalesce later.
1631 return false;
1634 LiveInterval *ResSrcInt = &SrcInt;
1635 LiveInterval *ResDstInt = &DstInt;
1636 if (Swapped) {
1637 std::swap(SrcReg, DstReg);
1638 std::swap(ResSrcInt, ResDstInt);
1640 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1641 "LiveInterval::join didn't work right!");
1643 // If we're about to merge live ranges into a physical register live interval,
1644 // we have to update any aliased register's live ranges to indicate that they
1645 // have clobbered values for this range.
1646 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
1647 // If this is a extract_subreg where dst is a physical register, e.g.
1648 // cl = EXTRACT_SUBREG reg1024, 1
1649 // then create and update the actual physical register allocated to RHS.
1650 if (RealDstReg || RealSrcReg) {
1651 LiveInterval &RealInt =
1652 li_->getOrCreateInterval(RealDstReg ? RealDstReg : RealSrcReg);
1653 for (LiveInterval::const_vni_iterator I = SavedLI->vni_begin(),
1654 E = SavedLI->vni_end(); I != E; ++I) {
1655 const VNInfo *ValNo = *I;
1656 VNInfo *NewValNo = RealInt.getNextValue(ValNo->def, ValNo->copy,
1657 li_->getVNInfoAllocator());
1658 NewValNo->hasPHIKill = ValNo->hasPHIKill;
1659 NewValNo->redefByEC = ValNo->redefByEC;
1660 RealInt.addKills(NewValNo, ValNo->kills);
1661 RealInt.MergeValueInAsValue(*SavedLI, ValNo, NewValNo);
1663 RealInt.weight += SavedLI->weight;
1664 DstReg = RealDstReg ? RealDstReg : RealSrcReg;
1667 // Update the liveintervals of sub-registers.
1668 for (const unsigned *AS = tri_->getSubRegisters(DstReg); *AS; ++AS)
1669 li_->getOrCreateInterval(*AS).MergeInClobberRanges(*ResSrcInt,
1670 li_->getVNInfoAllocator());
1673 // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
1674 // larger super-register.
1675 if ((isExtSubReg || isInsSubReg || isSubRegToReg) &&
1676 !SrcIsPhys && !DstIsPhys) {
1677 if ((isExtSubReg && !Swapped) ||
1678 ((isInsSubReg || isSubRegToReg) && Swapped)) {
1679 ResSrcInt->Copy(*ResDstInt, li_->getVNInfoAllocator());
1680 std::swap(SrcReg, DstReg);
1681 std::swap(ResSrcInt, ResDstInt);
1685 // Coalescing to a virtual register that is of a sub-register class of the
1686 // other. Make sure the resulting register is set to the right register class.
1687 if (CrossRC) {
1688 ++numCrossRCs;
1689 if (NewRC)
1690 mri_->setRegClass(DstReg, NewRC);
1693 if (NewHeuristic) {
1694 // Add all copies that define val# in the source interval into the queue.
1695 for (LiveInterval::const_vni_iterator i = ResSrcInt->vni_begin(),
1696 e = ResSrcInt->vni_end(); i != e; ++i) {
1697 const VNInfo *vni = *i;
1698 if (!vni->def || vni->def == ~1U || vni->def == ~0U)
1699 continue;
1700 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
1701 unsigned NewSrcReg, NewDstReg, NewSrcSubIdx, NewDstSubIdx;
1702 if (CopyMI &&
1703 JoinedCopies.count(CopyMI) == 0 &&
1704 tii_->isMoveInstr(*CopyMI, NewSrcReg, NewDstReg,
1705 NewSrcSubIdx, NewDstSubIdx)) {
1706 unsigned LoopDepth = loopInfo->getLoopDepth(CopyMBB);
1707 JoinQueue->push(CopyRec(CopyMI, LoopDepth,
1708 isBackEdgeCopy(CopyMI, DstReg)));
1713 // Remember to delete the copy instruction.
1714 JoinedCopies.insert(CopyMI);
1716 // Some live range has been lengthened due to colaescing, eliminate the
1717 // unnecessary kills.
1718 RemoveUnnecessaryKills(SrcReg, *ResDstInt);
1719 if (TargetRegisterInfo::isVirtualRegister(DstReg))
1720 RemoveUnnecessaryKills(DstReg, *ResDstInt);
1722 if (isInsSubReg)
1723 // Avoid:
1724 // r1024 = op
1725 // r1024 = implicit_def
1726 // ...
1727 // = r1024
1728 RemoveDeadImpDef(DstReg, *ResDstInt);
1729 UpdateRegDefsUses(SrcReg, DstReg, SubIdx);
1731 // SrcReg is guarateed to be the register whose live interval that is
1732 // being merged.
1733 li_->removeInterval(SrcReg);
1735 // Manually deleted the live interval copy.
1736 if (SavedLI) {
1737 SavedLI->clear();
1738 delete SavedLI;
1741 if (isEmpty) {
1742 // Now the copy is being coalesced away, the val# previously defined
1743 // by the copy is being defined by an IMPLICIT_DEF which defines a zero
1744 // length interval. Remove the val#.
1745 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1746 const LiveRange *LR = ResDstInt->getLiveRangeContaining(CopyIdx);
1747 VNInfo *ImpVal = LR->valno;
1748 assert(ImpVal->def == CopyIdx);
1749 unsigned NextDef = LR->end;
1750 RemoveCopiesFromValNo(*ResDstInt, ImpVal);
1751 ResDstInt->removeValNo(ImpVal);
1752 LR = ResDstInt->FindLiveRangeContaining(NextDef);
1753 if (LR != ResDstInt->end() && LR->valno->def == NextDef) {
1754 // Special case: vr1024 = implicit_def
1755 // vr1024 = insert_subreg vr1024, vr1025, c
1756 // The insert_subreg becomes a "copy" that defines a val# which can itself
1757 // be coalesced away.
1758 MachineInstr *DefMI = li_->getInstructionFromIndex(NextDef);
1759 if (DefMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG)
1760 LR->valno->copy = DefMI;
1764 // If resulting interval has a preference that no longer fits because of subreg
1765 // coalescing, just clear the preference.
1766 if (ResDstInt->preference && (isExtSubReg || isInsSubReg || isSubRegToReg) &&
1767 TargetRegisterInfo::isVirtualRegister(ResDstInt->reg)) {
1768 const TargetRegisterClass *RC = mri_->getRegClass(ResDstInt->reg);
1769 if (!RC->contains(ResDstInt->preference))
1770 ResDstInt->preference = 0;
1773 DOUT << "\n\t\tJoined. Result = "; ResDstInt->print(DOUT, tri_);
1774 DOUT << "\n";
1776 ++numJoins;
1777 return true;
1780 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1781 /// compute what the resultant value numbers for each value in the input two
1782 /// ranges will be. This is complicated by copies between the two which can
1783 /// and will commonly cause multiple value numbers to be merged into one.
1785 /// VN is the value number that we're trying to resolve. InstDefiningValue
1786 /// keeps track of the new InstDefiningValue assignment for the result
1787 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1788 /// whether a value in this or other is a copy from the opposite set.
1789 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1790 /// already been assigned.
1792 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1793 /// contains the value number the copy is from.
1795 static unsigned ComputeUltimateVN(VNInfo *VNI,
1796 SmallVector<VNInfo*, 16> &NewVNInfo,
1797 DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1798 DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1799 SmallVector<int, 16> &ThisValNoAssignments,
1800 SmallVector<int, 16> &OtherValNoAssignments) {
1801 unsigned VN = VNI->id;
1803 // If the VN has already been computed, just return it.
1804 if (ThisValNoAssignments[VN] >= 0)
1805 return ThisValNoAssignments[VN];
1806 // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1808 // If this val is not a copy from the other val, then it must be a new value
1809 // number in the destination.
1810 DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1811 if (I == ThisFromOther.end()) {
1812 NewVNInfo.push_back(VNI);
1813 return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1815 VNInfo *OtherValNo = I->second;
1817 // Otherwise, this *is* a copy from the RHS. If the other side has already
1818 // been computed, return it.
1819 if (OtherValNoAssignments[OtherValNo->id] >= 0)
1820 return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1822 // Mark this value number as currently being computed, then ask what the
1823 // ultimate value # of the other value is.
1824 ThisValNoAssignments[VN] = -2;
1825 unsigned UltimateVN =
1826 ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1827 OtherValNoAssignments, ThisValNoAssignments);
1828 return ThisValNoAssignments[VN] = UltimateVN;
1831 static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) {
1832 return std::find(V.begin(), V.end(), Val) != V.end();
1835 /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
1836 /// the specified live interval is defined by a copy from the specified
1837 /// register.
1838 bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li,
1839 LiveRange *LR,
1840 unsigned Reg) {
1841 unsigned SrcReg = li_->getVNInfoSourceReg(LR->valno);
1842 if (SrcReg == Reg)
1843 return true;
1844 if (LR->valno->def == ~0U &&
1845 TargetRegisterInfo::isPhysicalRegister(li.reg) &&
1846 *tri_->getSuperRegisters(li.reg)) {
1847 // It's a sub-register live interval, we may not have precise information.
1848 // Re-compute it.
1849 MachineInstr *DefMI = li_->getInstructionFromIndex(LR->start);
1850 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1851 if (DefMI &&
1852 tii_->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
1853 DstReg == li.reg && SrcReg == Reg) {
1854 // Cache computed info.
1855 LR->valno->def = LR->start;
1856 LR->valno->copy = DefMI;
1857 return true;
1860 return false;
1863 /// SimpleJoin - Attempt to joint the specified interval into this one. The
1864 /// caller of this method must guarantee that the RHS only contains a single
1865 /// value number and that the RHS is not defined by a copy from this
1866 /// interval. This returns false if the intervals are not joinable, or it
1867 /// joins them and returns true.
1868 bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
1869 assert(RHS.containsOneValue());
1871 // Some number (potentially more than one) value numbers in the current
1872 // interval may be defined as copies from the RHS. Scan the overlapping
1873 // portions of the LHS and RHS, keeping track of this and looking for
1874 // overlapping live ranges that are NOT defined as copies. If these exist, we
1875 // cannot coalesce.
1877 LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
1878 LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
1880 if (LHSIt->start < RHSIt->start) {
1881 LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
1882 if (LHSIt != LHS.begin()) --LHSIt;
1883 } else if (RHSIt->start < LHSIt->start) {
1884 RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
1885 if (RHSIt != RHS.begin()) --RHSIt;
1888 SmallVector<VNInfo*, 8> EliminatedLHSVals;
1890 while (1) {
1891 // Determine if these live intervals overlap.
1892 bool Overlaps = false;
1893 if (LHSIt->start <= RHSIt->start)
1894 Overlaps = LHSIt->end > RHSIt->start;
1895 else
1896 Overlaps = RHSIt->end > LHSIt->start;
1898 // If the live intervals overlap, there are two interesting cases: if the
1899 // LHS interval is defined by a copy from the RHS, it's ok and we record
1900 // that the LHS value # is the same as the RHS. If it's not, then we cannot
1901 // coalesce these live ranges and we bail out.
1902 if (Overlaps) {
1903 // If we haven't already recorded that this value # is safe, check it.
1904 if (!InVector(LHSIt->valno, EliminatedLHSVals)) {
1905 // Copy from the RHS?
1906 if (!RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg))
1907 return false; // Nope, bail out.
1909 if (LHSIt->contains(RHSIt->valno->def))
1910 // Here is an interesting situation:
1911 // BB1:
1912 // vr1025 = copy vr1024
1913 // ..
1914 // BB2:
1915 // vr1024 = op
1916 // = vr1025
1917 // Even though vr1025 is copied from vr1024, it's not safe to
1918 // coalesce them since the live range of vr1025 intersects the
1919 // def of vr1024. This happens because vr1025 is assigned the
1920 // value of the previous iteration of vr1024.
1921 return false;
1922 EliminatedLHSVals.push_back(LHSIt->valno);
1925 // We know this entire LHS live range is okay, so skip it now.
1926 if (++LHSIt == LHSEnd) break;
1927 continue;
1930 if (LHSIt->end < RHSIt->end) {
1931 if (++LHSIt == LHSEnd) break;
1932 } else {
1933 // One interesting case to check here. It's possible that we have
1934 // something like "X3 = Y" which defines a new value number in the LHS,
1935 // and is the last use of this liverange of the RHS. In this case, we
1936 // want to notice this copy (so that it gets coalesced away) even though
1937 // the live ranges don't actually overlap.
1938 if (LHSIt->start == RHSIt->end) {
1939 if (InVector(LHSIt->valno, EliminatedLHSVals)) {
1940 // We already know that this value number is going to be merged in
1941 // if coalescing succeeds. Just skip the liverange.
1942 if (++LHSIt == LHSEnd) break;
1943 } else {
1944 // Otherwise, if this is a copy from the RHS, mark it as being merged
1945 // in.
1946 if (RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) {
1947 if (LHSIt->contains(RHSIt->valno->def))
1948 // Here is an interesting situation:
1949 // BB1:
1950 // vr1025 = copy vr1024
1951 // ..
1952 // BB2:
1953 // vr1024 = op
1954 // = vr1025
1955 // Even though vr1025 is copied from vr1024, it's not safe to
1956 // coalesced them since live range of vr1025 intersects the
1957 // def of vr1024. This happens because vr1025 is assigned the
1958 // value of the previous iteration of vr1024.
1959 return false;
1960 EliminatedLHSVals.push_back(LHSIt->valno);
1962 // We know this entire LHS live range is okay, so skip it now.
1963 if (++LHSIt == LHSEnd) break;
1968 if (++RHSIt == RHSEnd) break;
1972 // If we got here, we know that the coalescing will be successful and that
1973 // the value numbers in EliminatedLHSVals will all be merged together. Since
1974 // the most common case is that EliminatedLHSVals has a single number, we
1975 // optimize for it: if there is more than one value, we merge them all into
1976 // the lowest numbered one, then handle the interval as if we were merging
1977 // with one value number.
1978 VNInfo *LHSValNo = NULL;
1979 if (EliminatedLHSVals.size() > 1) {
1980 // Loop through all the equal value numbers merging them into the smallest
1981 // one.
1982 VNInfo *Smallest = EliminatedLHSVals[0];
1983 for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
1984 if (EliminatedLHSVals[i]->id < Smallest->id) {
1985 // Merge the current notion of the smallest into the smaller one.
1986 LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
1987 Smallest = EliminatedLHSVals[i];
1988 } else {
1989 // Merge into the smallest.
1990 LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
1993 LHSValNo = Smallest;
1994 } else if (EliminatedLHSVals.empty()) {
1995 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
1996 *tri_->getSuperRegisters(LHS.reg))
1997 // Imprecise sub-register information. Can't handle it.
1998 return false;
1999 assert(0 && "No copies from the RHS?");
2000 } else {
2001 LHSValNo = EliminatedLHSVals[0];
2004 // Okay, now that there is a single LHS value number that we're merging the
2005 // RHS into, update the value number info for the LHS to indicate that the
2006 // value number is defined where the RHS value number was.
2007 const VNInfo *VNI = RHS.getValNumInfo(0);
2008 LHSValNo->def = VNI->def;
2009 LHSValNo->copy = VNI->copy;
2011 // Okay, the final step is to loop over the RHS live intervals, adding them to
2012 // the LHS.
2013 LHSValNo->hasPHIKill |= VNI->hasPHIKill;
2014 LHS.addKills(LHSValNo, VNI->kills);
2015 LHS.MergeRangesInAsValue(RHS, LHSValNo);
2016 LHS.weight += RHS.weight;
2017 if (RHS.preference && !LHS.preference)
2018 LHS.preference = RHS.preference;
2020 // Update the liveintervals of sub-registers.
2021 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg))
2022 for (const unsigned *AS = tri_->getSubRegisters(LHS.reg); *AS; ++AS)
2023 li_->getOrCreateInterval(*AS).MergeInClobberRanges(LHS,
2024 li_->getVNInfoAllocator());
2026 return true;
2029 /// JoinIntervals - Attempt to join these two intervals. On failure, this
2030 /// returns false. Otherwise, if one of the intervals being joined is a
2031 /// physreg, this method always canonicalizes LHS to be it. The output
2032 /// "RHS" will not have been modified, so we can use this information
2033 /// below to update aliases.
2034 bool
2035 SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
2036 bool &Swapped) {
2037 // Compute the final value assignment, assuming that the live ranges can be
2038 // coalesced.
2039 SmallVector<int, 16> LHSValNoAssignments;
2040 SmallVector<int, 16> RHSValNoAssignments;
2041 DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
2042 DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
2043 SmallVector<VNInfo*, 16> NewVNInfo;
2045 // If a live interval is a physical register, conservatively check if any
2046 // of its sub-registers is overlapping the live interval of the virtual
2047 // register. If so, do not coalesce.
2048 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
2049 *tri_->getSubRegisters(LHS.reg)) {
2050 // If it's coalescing a virtual register to a physical register, estimate
2051 // its live interval length. This is the *cost* of scanning an entire live
2052 // interval. If the cost is low, we'll do an exhaustive check instead.
2054 // If this is something like this:
2055 // BB1:
2056 // v1024 = op
2057 // ...
2058 // BB2:
2059 // ...
2060 // RAX = v1024
2062 // That is, the live interval of v1024 crosses a bb. Then we can't rely on
2063 // less conservative check. It's possible a sub-register is defined before
2064 // v1024 (or live in) and live out of BB1.
2065 if (RHS.containsOneValue() &&
2066 li_->intervalIsInOneMBB(RHS) &&
2067 li_->getApproximateInstructionCount(RHS) <= 10) {
2068 // Perform a more exhaustive check for some common cases.
2069 if (li_->conflictsWithPhysRegRef(RHS, LHS.reg, true, JoinedCopies))
2070 return false;
2071 } else {
2072 for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR)
2073 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
2074 DOUT << "Interfere with sub-register ";
2075 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
2076 return false;
2079 } else if (TargetRegisterInfo::isPhysicalRegister(RHS.reg) &&
2080 *tri_->getSubRegisters(RHS.reg)) {
2081 if (LHS.containsOneValue() &&
2082 li_->getApproximateInstructionCount(LHS) <= 10) {
2083 // Perform a more exhaustive check for some common cases.
2084 if (li_->conflictsWithPhysRegRef(LHS, RHS.reg, false, JoinedCopies))
2085 return false;
2086 } else {
2087 for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR)
2088 if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
2089 DOUT << "Interfere with sub-register ";
2090 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
2091 return false;
2096 // Compute ultimate value numbers for the LHS and RHS values.
2097 if (RHS.containsOneValue()) {
2098 // Copies from a liveinterval with a single value are simple to handle and
2099 // very common, handle the special case here. This is important, because
2100 // often RHS is small and LHS is large (e.g. a physreg).
2102 // Find out if the RHS is defined as a copy from some value in the LHS.
2103 int RHSVal0DefinedFromLHS = -1;
2104 int RHSValID = -1;
2105 VNInfo *RHSValNoInfo = NULL;
2106 VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0);
2107 unsigned RHSSrcReg = li_->getVNInfoSourceReg(RHSValNoInfo0);
2108 if (RHSSrcReg == 0 || RHSSrcReg != LHS.reg) {
2109 // If RHS is not defined as a copy from the LHS, we can use simpler and
2110 // faster checks to see if the live ranges are coalescable. This joiner
2111 // can't swap the LHS/RHS intervals though.
2112 if (!TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
2113 return SimpleJoin(LHS, RHS);
2114 } else {
2115 RHSValNoInfo = RHSValNoInfo0;
2117 } else {
2118 // It was defined as a copy from the LHS, find out what value # it is.
2119 RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno;
2120 RHSValID = RHSValNoInfo->id;
2121 RHSVal0DefinedFromLHS = RHSValID;
2124 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
2125 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
2126 NewVNInfo.resize(LHS.getNumValNums(), NULL);
2128 // Okay, *all* of the values in LHS that are defined as a copy from RHS
2129 // should now get updated.
2130 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2131 i != e; ++i) {
2132 VNInfo *VNI = *i;
2133 unsigned VN = VNI->id;
2134 if (unsigned LHSSrcReg = li_->getVNInfoSourceReg(VNI)) {
2135 if (LHSSrcReg != RHS.reg) {
2136 // If this is not a copy from the RHS, its value number will be
2137 // unmodified by the coalescing.
2138 NewVNInfo[VN] = VNI;
2139 LHSValNoAssignments[VN] = VN;
2140 } else if (RHSValID == -1) {
2141 // Otherwise, it is a copy from the RHS, and we don't already have a
2142 // value# for it. Keep the current value number, but remember it.
2143 LHSValNoAssignments[VN] = RHSValID = VN;
2144 NewVNInfo[VN] = RHSValNoInfo;
2145 LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
2146 } else {
2147 // Otherwise, use the specified value #.
2148 LHSValNoAssignments[VN] = RHSValID;
2149 if (VN == (unsigned)RHSValID) { // Else this val# is dead.
2150 NewVNInfo[VN] = RHSValNoInfo;
2151 LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
2154 } else {
2155 NewVNInfo[VN] = VNI;
2156 LHSValNoAssignments[VN] = VN;
2160 assert(RHSValID != -1 && "Didn't find value #?");
2161 RHSValNoAssignments[0] = RHSValID;
2162 if (RHSVal0DefinedFromLHS != -1) {
2163 // This path doesn't go through ComputeUltimateVN so just set
2164 // it to anything.
2165 RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1;
2167 } else {
2168 // Loop over the value numbers of the LHS, seeing if any are defined from
2169 // the RHS.
2170 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2171 i != e; ++i) {
2172 VNInfo *VNI = *i;
2173 if (VNI->def == ~1U || VNI->copy == 0) // Src not defined by a copy?
2174 continue;
2176 // DstReg is known to be a register in the LHS interval. If the src is
2177 // from the RHS interval, we can use its value #.
2178 if (li_->getVNInfoSourceReg(VNI) != RHS.reg)
2179 continue;
2181 // Figure out the value # from the RHS.
2182 LHSValsDefinedFromRHS[VNI]=RHS.getLiveRangeContaining(VNI->def-1)->valno;
2185 // Loop over the value numbers of the RHS, seeing if any are defined from
2186 // the LHS.
2187 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
2188 i != e; ++i) {
2189 VNInfo *VNI = *i;
2190 if (VNI->def == ~1U || VNI->copy == 0) // Src not defined by a copy?
2191 continue;
2193 // DstReg is known to be a register in the RHS interval. If the src is
2194 // from the LHS interval, we can use its value #.
2195 if (li_->getVNInfoSourceReg(VNI) != LHS.reg)
2196 continue;
2198 // Figure out the value # from the LHS.
2199 RHSValsDefinedFromLHS[VNI]=LHS.getLiveRangeContaining(VNI->def-1)->valno;
2202 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
2203 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
2204 NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
2206 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2207 i != e; ++i) {
2208 VNInfo *VNI = *i;
2209 unsigned VN = VNI->id;
2210 if (LHSValNoAssignments[VN] >= 0 || VNI->def == ~1U)
2211 continue;
2212 ComputeUltimateVN(VNI, NewVNInfo,
2213 LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
2214 LHSValNoAssignments, RHSValNoAssignments);
2216 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
2217 i != e; ++i) {
2218 VNInfo *VNI = *i;
2219 unsigned VN = VNI->id;
2220 if (RHSValNoAssignments[VN] >= 0 || VNI->def == ~1U)
2221 continue;
2222 // If this value number isn't a copy from the LHS, it's a new number.
2223 if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
2224 NewVNInfo.push_back(VNI);
2225 RHSValNoAssignments[VN] = NewVNInfo.size()-1;
2226 continue;
2229 ComputeUltimateVN(VNI, NewVNInfo,
2230 RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
2231 RHSValNoAssignments, LHSValNoAssignments);
2235 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
2236 // interval lists to see if these intervals are coalescable.
2237 LiveInterval::const_iterator I = LHS.begin();
2238 LiveInterval::const_iterator IE = LHS.end();
2239 LiveInterval::const_iterator J = RHS.begin();
2240 LiveInterval::const_iterator JE = RHS.end();
2242 // Skip ahead until the first place of potential sharing.
2243 if (I->start < J->start) {
2244 I = std::upper_bound(I, IE, J->start);
2245 if (I != LHS.begin()) --I;
2246 } else if (J->start < I->start) {
2247 J = std::upper_bound(J, JE, I->start);
2248 if (J != RHS.begin()) --J;
2251 while (1) {
2252 // Determine if these two live ranges overlap.
2253 bool Overlaps;
2254 if (I->start < J->start) {
2255 Overlaps = I->end > J->start;
2256 } else {
2257 Overlaps = J->end > I->start;
2260 // If so, check value # info to determine if they are really different.
2261 if (Overlaps) {
2262 // If the live range overlap will map to the same value number in the
2263 // result liverange, we can still coalesce them. If not, we can't.
2264 if (LHSValNoAssignments[I->valno->id] !=
2265 RHSValNoAssignments[J->valno->id])
2266 return false;
2269 if (I->end < J->end) {
2270 ++I;
2271 if (I == IE) break;
2272 } else {
2273 ++J;
2274 if (J == JE) break;
2278 // Update kill info. Some live ranges are extended due to copy coalescing.
2279 for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
2280 E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
2281 VNInfo *VNI = I->first;
2282 unsigned LHSValID = LHSValNoAssignments[VNI->id];
2283 LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def);
2284 NewVNInfo[LHSValID]->hasPHIKill |= VNI->hasPHIKill;
2285 RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
2288 // Update kill info. Some live ranges are extended due to copy coalescing.
2289 for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
2290 E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
2291 VNInfo *VNI = I->first;
2292 unsigned RHSValID = RHSValNoAssignments[VNI->id];
2293 LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def);
2294 NewVNInfo[RHSValID]->hasPHIKill |= VNI->hasPHIKill;
2295 LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
2298 // If we get here, we know that we can coalesce the live ranges. Ask the
2299 // intervals to coalesce themselves now.
2300 if ((RHS.ranges.size() > LHS.ranges.size() &&
2301 TargetRegisterInfo::isVirtualRegister(LHS.reg)) ||
2302 TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
2303 RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo);
2304 Swapped = true;
2305 } else {
2306 LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo);
2307 Swapped = false;
2309 return true;
2312 namespace {
2313 // DepthMBBCompare - Comparison predicate that sort first based on the loop
2314 // depth of the basic block (the unsigned), and then on the MBB number.
2315 struct DepthMBBCompare {
2316 typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
2317 bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
2318 if (LHS.first > RHS.first) return true; // Deeper loops first
2319 return LHS.first == RHS.first &&
2320 LHS.second->getNumber() < RHS.second->getNumber();
2325 /// getRepIntervalSize - Returns the size of the interval that represents the
2326 /// specified register.
2327 template<class SF>
2328 unsigned JoinPriorityQueue<SF>::getRepIntervalSize(unsigned Reg) {
2329 return Rc->getRepIntervalSize(Reg);
2332 /// CopyRecSort::operator - Join priority queue sorting function.
2334 bool CopyRecSort::operator()(CopyRec left, CopyRec right) const {
2335 // Inner loops first.
2336 if (left.LoopDepth > right.LoopDepth)
2337 return false;
2338 else if (left.LoopDepth == right.LoopDepth)
2339 if (left.isBackEdge && !right.isBackEdge)
2340 return false;
2341 return true;
2344 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
2345 std::vector<CopyRec> &TryAgain) {
2346 DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
2348 std::vector<CopyRec> VirtCopies;
2349 std::vector<CopyRec> PhysCopies;
2350 std::vector<CopyRec> ImpDefCopies;
2351 unsigned LoopDepth = loopInfo->getLoopDepth(MBB);
2352 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2353 MII != E;) {
2354 MachineInstr *Inst = MII++;
2356 // If this isn't a copy nor a extract_subreg, we can't join intervals.
2357 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2358 if (Inst->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
2359 DstReg = Inst->getOperand(0).getReg();
2360 SrcReg = Inst->getOperand(1).getReg();
2361 } else if (Inst->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
2362 Inst->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
2363 DstReg = Inst->getOperand(0).getReg();
2364 SrcReg = Inst->getOperand(2).getReg();
2365 } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
2366 continue;
2368 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
2369 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
2370 if (NewHeuristic) {
2371 JoinQueue->push(CopyRec(Inst, LoopDepth, isBackEdgeCopy(Inst, DstReg)));
2372 } else {
2373 if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
2374 ImpDefCopies.push_back(CopyRec(Inst, 0, false));
2375 else if (SrcIsPhys || DstIsPhys)
2376 PhysCopies.push_back(CopyRec(Inst, 0, false));
2377 else
2378 VirtCopies.push_back(CopyRec(Inst, 0, false));
2382 if (NewHeuristic)
2383 return;
2385 // Try coalescing implicit copies first, followed by copies to / from
2386 // physical registers, then finally copies from virtual registers to
2387 // virtual registers.
2388 for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
2389 CopyRec &TheCopy = ImpDefCopies[i];
2390 bool Again = false;
2391 if (!JoinCopy(TheCopy, Again))
2392 if (Again)
2393 TryAgain.push_back(TheCopy);
2395 for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
2396 CopyRec &TheCopy = PhysCopies[i];
2397 bool Again = false;
2398 if (!JoinCopy(TheCopy, Again))
2399 if (Again)
2400 TryAgain.push_back(TheCopy);
2402 for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
2403 CopyRec &TheCopy = VirtCopies[i];
2404 bool Again = false;
2405 if (!JoinCopy(TheCopy, Again))
2406 if (Again)
2407 TryAgain.push_back(TheCopy);
2411 void SimpleRegisterCoalescing::joinIntervals() {
2412 DOUT << "********** JOINING INTERVALS ***********\n";
2414 if (NewHeuristic)
2415 JoinQueue = new JoinPriorityQueue<CopyRecSort>(this);
2417 std::vector<CopyRec> TryAgainList;
2418 if (loopInfo->empty()) {
2419 // If there are no loops in the function, join intervals in function order.
2420 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
2421 I != E; ++I)
2422 CopyCoalesceInMBB(I, TryAgainList);
2423 } else {
2424 // Otherwise, join intervals in inner loops before other intervals.
2425 // Unfortunately we can't just iterate over loop hierarchy here because
2426 // there may be more MBB's than BB's. Collect MBB's for sorting.
2428 // Join intervals in the function prolog first. We want to join physical
2429 // registers with virtual registers before the intervals got too long.
2430 std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
2431 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
2432 MachineBasicBlock *MBB = I;
2433 MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
2436 // Sort by loop depth.
2437 std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
2439 // Finally, join intervals in loop nest order.
2440 for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
2441 CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
2444 // Joining intervals can allow other intervals to be joined. Iteratively join
2445 // until we make no progress.
2446 if (NewHeuristic) {
2447 SmallVector<CopyRec, 16> TryAgain;
2448 bool ProgressMade = true;
2449 while (ProgressMade) {
2450 ProgressMade = false;
2451 while (!JoinQueue->empty()) {
2452 CopyRec R = JoinQueue->pop();
2453 bool Again = false;
2454 bool Success = JoinCopy(R, Again);
2455 if (Success)
2456 ProgressMade = true;
2457 else if (Again)
2458 TryAgain.push_back(R);
2461 if (ProgressMade) {
2462 while (!TryAgain.empty()) {
2463 JoinQueue->push(TryAgain.back());
2464 TryAgain.pop_back();
2468 } else {
2469 bool ProgressMade = true;
2470 while (ProgressMade) {
2471 ProgressMade = false;
2473 for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
2474 CopyRec &TheCopy = TryAgainList[i];
2475 if (TheCopy.MI) {
2476 bool Again = false;
2477 bool Success = JoinCopy(TheCopy, Again);
2478 if (Success || !Again) {
2479 TheCopy.MI = 0; // Mark this one as done.
2480 ProgressMade = true;
2487 if (NewHeuristic)
2488 delete JoinQueue;
2491 /// Return true if the two specified registers belong to different register
2492 /// classes. The registers may be either phys or virt regs.
2493 bool
2494 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
2495 unsigned RegB) const {
2496 // Get the register classes for the first reg.
2497 if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
2498 assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
2499 "Shouldn't consider two physregs!");
2500 return !mri_->getRegClass(RegB)->contains(RegA);
2503 // Compare against the regclass for the second reg.
2504 const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
2505 if (TargetRegisterInfo::isVirtualRegister(RegB)) {
2506 const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
2507 return RegClassA != RegClassB;
2509 return !RegClassA->contains(RegB);
2512 /// lastRegisterUse - Returns the last use of the specific register between
2513 /// cycles Start and End or NULL if there are no uses.
2514 MachineOperand *
2515 SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
2516 unsigned Reg, unsigned &UseIdx) const{
2517 UseIdx = 0;
2518 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2519 MachineOperand *LastUse = NULL;
2520 for (MachineRegisterInfo::use_iterator I = mri_->use_begin(Reg),
2521 E = mri_->use_end(); I != E; ++I) {
2522 MachineOperand &Use = I.getOperand();
2523 MachineInstr *UseMI = Use.getParent();
2524 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2525 if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
2526 SrcReg == DstReg)
2527 // Ignore identity copies.
2528 continue;
2529 unsigned Idx = li_->getInstructionIndex(UseMI);
2530 if (Idx >= Start && Idx < End && Idx >= UseIdx) {
2531 LastUse = &Use;
2532 UseIdx = li_->getUseIndex(Idx);
2535 return LastUse;
2538 int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
2539 int s = Start;
2540 while (e >= s) {
2541 // Skip deleted instructions
2542 MachineInstr *MI = li_->getInstructionFromIndex(e);
2543 while ((e - InstrSlots::NUM) >= s && !MI) {
2544 e -= InstrSlots::NUM;
2545 MI = li_->getInstructionFromIndex(e);
2547 if (e < s || MI == NULL)
2548 return NULL;
2550 // Ignore identity copies.
2551 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2552 if (!(tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
2553 SrcReg == DstReg))
2554 for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
2555 MachineOperand &Use = MI->getOperand(i);
2556 if (Use.isReg() && Use.isUse() && Use.getReg() &&
2557 tri_->regsOverlap(Use.getReg(), Reg)) {
2558 UseIdx = li_->getUseIndex(e);
2559 return &Use;
2563 e -= InstrSlots::NUM;
2566 return NULL;
2570 void SimpleRegisterCoalescing::printRegName(unsigned reg) const {
2571 if (TargetRegisterInfo::isPhysicalRegister(reg))
2572 cerr << tri_->getName(reg);
2573 else
2574 cerr << "%reg" << reg;
2577 void SimpleRegisterCoalescing::releaseMemory() {
2578 JoinedCopies.clear();
2579 ReMatCopies.clear();
2580 ReMatDefs.clear();
2583 static bool isZeroLengthInterval(LiveInterval *li) {
2584 for (LiveInterval::Ranges::const_iterator
2585 i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
2586 if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
2587 return false;
2588 return true;
2591 /// TurnCopyIntoImpDef - If source of the specified copy is an implicit def,
2592 /// turn the copy into an implicit def.
2593 bool
2594 SimpleRegisterCoalescing::TurnCopyIntoImpDef(MachineBasicBlock::iterator &I,
2595 MachineBasicBlock *MBB,
2596 unsigned DstReg, unsigned SrcReg) {
2597 MachineInstr *CopyMI = &*I;
2598 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
2599 if (!li_->hasInterval(SrcReg))
2600 return false;
2601 LiveInterval &SrcInt = li_->getInterval(SrcReg);
2602 if (!SrcInt.empty())
2603 return false;
2604 if (!li_->hasInterval(DstReg))
2605 return false;
2606 LiveInterval &DstInt = li_->getInterval(DstReg);
2607 const LiveRange *DstLR = DstInt.getLiveRangeContaining(CopyIdx);
2608 DstInt.removeValNo(DstLR->valno);
2609 CopyMI->setDesc(tii_->get(TargetInstrInfo::IMPLICIT_DEF));
2610 for (int i = CopyMI->getNumOperands() - 1, e = 0; i > e; --i)
2611 CopyMI->RemoveOperand(i);
2612 bool NoUse = mri_->use_empty(SrcReg);
2613 if (NoUse) {
2614 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
2615 E = mri_->reg_end(); I != E; ) {
2616 assert(I.getOperand().isDef());
2617 MachineInstr *DefMI = &*I;
2618 ++I;
2619 // The implicit_def source has no other uses, delete it.
2620 assert(DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF);
2621 li_->RemoveMachineInstrFromMaps(DefMI);
2622 DefMI->eraseFromParent();
2625 ++I;
2626 return true;
2630 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
2631 mf_ = &fn;
2632 mri_ = &fn.getRegInfo();
2633 tm_ = &fn.getTarget();
2634 tri_ = tm_->getRegisterInfo();
2635 tii_ = tm_->getInstrInfo();
2636 li_ = &getAnalysis<LiveIntervals>();
2637 loopInfo = &getAnalysis<MachineLoopInfo>();
2639 DOUT << "********** SIMPLE REGISTER COALESCING **********\n"
2640 << "********** Function: "
2641 << ((Value*)mf_->getFunction())->getName() << '\n';
2643 allocatableRegs_ = tri_->getAllocatableSet(fn);
2644 for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
2645 E = tri_->regclass_end(); I != E; ++I)
2646 allocatableRCRegs_.insert(std::make_pair(*I,
2647 tri_->getAllocatableSet(fn, *I)));
2649 // Join (coalesce) intervals if requested.
2650 if (EnableJoining) {
2651 joinIntervals();
2652 DEBUG({
2653 DOUT << "********** INTERVALS POST JOINING **********\n";
2654 for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I){
2655 I->second->print(DOUT, tri_);
2656 DOUT << "\n";
2661 // Perform a final pass over the instructions and compute spill weights
2662 // and remove identity moves.
2663 SmallVector<unsigned, 4> DeadDefs;
2664 for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
2665 mbbi != mbbe; ++mbbi) {
2666 MachineBasicBlock* mbb = mbbi;
2667 unsigned loopDepth = loopInfo->getLoopDepth(mbb);
2669 for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
2670 mii != mie; ) {
2671 MachineInstr *MI = mii;
2672 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2673 if (JoinedCopies.count(MI)) {
2674 // Delete all coalesced copies.
2675 if (!tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
2676 assert((MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
2677 MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
2678 MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
2679 "Unrecognized copy instruction");
2680 DstReg = MI->getOperand(0).getReg();
2682 if (MI->registerDefIsDead(DstReg)) {
2683 LiveInterval &li = li_->getInterval(DstReg);
2684 if (!ShortenDeadCopySrcLiveRange(li, MI))
2685 ShortenDeadCopyLiveRange(li, MI);
2687 li_->RemoveMachineInstrFromMaps(MI);
2688 mii = mbbi->erase(mii);
2689 ++numPeep;
2690 continue;
2693 // Now check if this is a remat'ed def instruction which is now dead.
2694 if (ReMatDefs.count(MI)) {
2695 bool isDead = true;
2696 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2697 const MachineOperand &MO = MI->getOperand(i);
2698 if (!MO.isReg())
2699 continue;
2700 unsigned Reg = MO.getReg();
2701 if (!Reg)
2702 continue;
2703 if (TargetRegisterInfo::isVirtualRegister(Reg))
2704 DeadDefs.push_back(Reg);
2705 if (MO.isDead())
2706 continue;
2707 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
2708 !mri_->use_empty(Reg)) {
2709 isDead = false;
2710 break;
2713 if (isDead) {
2714 while (!DeadDefs.empty()) {
2715 unsigned DeadDef = DeadDefs.back();
2716 DeadDefs.pop_back();
2717 RemoveDeadDef(li_->getInterval(DeadDef), MI);
2719 li_->RemoveMachineInstrFromMaps(mii);
2720 mii = mbbi->erase(mii);
2721 continue;
2722 } else
2723 DeadDefs.clear();
2726 // If the move will be an identity move delete it
2727 bool isMove= tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
2728 if (isMove && SrcReg == DstReg) {
2729 if (li_->hasInterval(SrcReg)) {
2730 LiveInterval &RegInt = li_->getInterval(SrcReg);
2731 // If def of this move instruction is dead, remove its live range
2732 // from the dstination register's live interval.
2733 if (MI->registerDefIsDead(DstReg)) {
2734 if (!ShortenDeadCopySrcLiveRange(RegInt, MI))
2735 ShortenDeadCopyLiveRange(RegInt, MI);
2738 li_->RemoveMachineInstrFromMaps(MI);
2739 mii = mbbi->erase(mii);
2740 ++numPeep;
2741 } else if (!isMove || !TurnCopyIntoImpDef(mii, mbb, DstReg, SrcReg)) {
2742 SmallSet<unsigned, 4> UniqueUses;
2743 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2744 const MachineOperand &mop = MI->getOperand(i);
2745 if (mop.isReg() && mop.getReg() &&
2746 TargetRegisterInfo::isVirtualRegister(mop.getReg())) {
2747 unsigned reg = mop.getReg();
2748 // Multiple uses of reg by the same instruction. It should not
2749 // contribute to spill weight again.
2750 if (UniqueUses.count(reg) != 0)
2751 continue;
2752 LiveInterval &RegInt = li_->getInterval(reg);
2753 RegInt.weight +=
2754 li_->getSpillWeight(mop.isDef(), mop.isUse(), loopDepth);
2755 UniqueUses.insert(reg);
2758 ++mii;
2763 for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
2764 LiveInterval &LI = *I->second;
2765 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
2766 // If the live interval length is essentially zero, i.e. in every live
2767 // range the use follows def immediately, it doesn't make sense to spill
2768 // it and hope it will be easier to allocate for this li.
2769 if (isZeroLengthInterval(&LI))
2770 LI.weight = HUGE_VALF;
2771 else {
2772 bool isLoad = false;
2773 SmallVector<LiveInterval*, 4> SpillIs;
2774 if (li_->isReMaterializable(LI, SpillIs, isLoad)) {
2775 // If all of the definitions of the interval are re-materializable,
2776 // it is a preferred candidate for spilling. If non of the defs are
2777 // loads, then it's potentially very cheap to re-materialize.
2778 // FIXME: this gets much more complicated once we support non-trivial
2779 // re-materialization.
2780 if (isLoad)
2781 LI.weight *= 0.9F;
2782 else
2783 LI.weight *= 0.5F;
2787 // Slightly prefer live interval that has been assigned a preferred reg.
2788 if (LI.preference)
2789 LI.weight *= 1.01F;
2791 // Divide the weight of the interval by its size. This encourages
2792 // spilling of intervals that are large and have few uses, and
2793 // discourages spilling of small intervals with many uses.
2794 LI.weight /= li_->getApproximateInstructionCount(LI) * InstrSlots::NUM;
2798 DEBUG(dump());
2799 return true;
2802 /// print - Implement the dump method.
2803 void SimpleRegisterCoalescing::print(std::ostream &O, const Module* m) const {
2804 li_->print(O, m);
2807 RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
2808 return new SimpleRegisterCoalescing();
2811 // Make sure that anything that uses RegisterCoalescer pulls in this file...
2812 DEFINING_FILE_FOR(SimpleRegisterCoalescing)