1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/Value.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterCoalescer.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/STLExtras.h"
38 STATISTIC(numJoins
, "Number of interval joins performed");
39 STATISTIC(numCrossRCs
, "Number of cross class joins performed");
40 STATISTIC(numCommutes
, "Number of instruction commuting performed");
41 STATISTIC(numExtends
, "Number of copies extended");
42 STATISTIC(NumReMats
, "Number of instructions re-materialized");
43 STATISTIC(numPeep
, "Number of identity moves eliminated after coalescing");
44 STATISTIC(numAborts
, "Number of times interval joining aborted");
45 STATISTIC(numDeadValNo
, "Number of valno def marked dead");
47 char SimpleRegisterCoalescing::ID
= 0;
49 EnableJoining("join-liveintervals",
50 cl::desc("Coalesce copies (default=true)"),
54 NewHeuristic("new-coalescer-heuristic",
55 cl::desc("Use new coalescer heuristic"),
56 cl::init(false), cl::Hidden
);
59 CrossClassJoin("join-cross-class-copies",
60 cl::desc("Coalesce cross register class copies"),
61 cl::init(false), cl::Hidden
);
64 PhysJoinTweak("tweak-phys-join-heuristics",
65 cl::desc("Tweak heuristics for joining phys reg with vr"),
66 cl::init(false), cl::Hidden
);
68 static RegisterPass
<SimpleRegisterCoalescing
>
69 X("simple-register-coalescing", "Simple Register Coalescing");
71 // Declare that we implement the RegisterCoalescer interface
72 static RegisterAnalysisGroup
<RegisterCoalescer
, true/*The Default*/> V(X
);
74 const PassInfo
*const llvm::SimpleRegisterCoalescingID
= &X
;
76 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage
&AU
) const {
77 AU
.addRequired
<LiveIntervals
>();
78 AU
.addPreserved
<LiveIntervals
>();
79 AU
.addRequired
<MachineLoopInfo
>();
80 AU
.addPreserved
<MachineLoopInfo
>();
81 AU
.addPreservedID(MachineDominatorsID
);
83 AU
.addPreservedID(StrongPHIEliminationID
);
85 AU
.addPreservedID(PHIEliminationID
);
86 AU
.addPreservedID(TwoAddressInstructionPassID
);
87 MachineFunctionPass::getAnalysisUsage(AU
);
90 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
91 /// being the source and IntB being the dest, thus this defines a value number
92 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
93 /// see if we can merge these two pieces of B into a single value number,
94 /// eliminating a copy. For example:
98 /// B1 = A3 <- this copy
100 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
101 /// value number to be replaced with B0 (which simplifies the B liveinterval).
103 /// This returns true if an interval was modified.
105 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval
&IntA
,
107 MachineInstr
*CopyMI
) {
108 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
110 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
111 // the example above.
112 LiveInterval::iterator BLR
= IntB
.FindLiveRangeContaining(CopyIdx
);
113 assert(BLR
!= IntB
.end() && "Live range not found!");
114 VNInfo
*BValNo
= BLR
->valno
;
116 // Get the location that B is defined at. Two options: either this value has
117 // an unknown definition point or it is defined at CopyIdx. If unknown, we
119 if (!BValNo
->copy
) return false;
120 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
122 // AValNo is the value number in A that defines the copy, A3 in the example.
123 LiveInterval::iterator ALR
= IntA
.FindLiveRangeContaining(CopyIdx
-1);
124 assert(ALR
!= IntA
.end() && "Live range not found!");
125 VNInfo
*AValNo
= ALR
->valno
;
126 // If it's re-defined by an early clobber somewhere in the live range, then
127 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
129 // 172 %ECX<def> = MOV32rr %reg1039<kill>
130 // 180 INLINEASM <es:subl $5,$1
131 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
132 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
133 // 188 %EAX<def> = MOV32rr %EAX<kill>
134 // 196 %ECX<def> = MOV32rr %ECX<kill>
135 // 204 %ECX<def> = MOV32rr %ECX<kill>
136 // 212 %EAX<def> = MOV32rr %EAX<kill>
137 // 220 %EAX<def> = MOV32rr %EAX
138 // 228 %reg1039<def> = MOV32rr %ECX<kill>
139 // The early clobber operand ties ECX input to the ECX def.
141 // The live interval of ECX is represented as this:
142 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
143 // The coalescer has no idea there was a def in the middle of [174,230].
144 if (AValNo
->redefByEC
)
147 // If AValNo is defined as a copy from IntB, we can potentially process this.
148 // Get the instruction that defines this value number.
149 unsigned SrcReg
= li_
->getVNInfoSourceReg(AValNo
);
150 if (!SrcReg
) return false; // Not defined by a copy.
152 // If the value number is not defined by a copy instruction, ignore it.
154 // If the source register comes from an interval other than IntB, we can't
156 if (SrcReg
!= IntB
.reg
) return false;
158 // Get the LiveRange in IntB that this value number starts with.
159 LiveInterval::iterator ValLR
= IntB
.FindLiveRangeContaining(AValNo
->def
-1);
160 assert(ValLR
!= IntB
.end() && "Live range not found!");
162 // Make sure that the end of the live range is inside the same block as
164 MachineInstr
*ValLREndInst
= li_
->getInstructionFromIndex(ValLR
->end
-1);
166 ValLREndInst
->getParent() != CopyMI
->getParent()) return false;
168 // Okay, we now know that ValLR ends in the same block that the CopyMI
169 // live-range starts. If there are no intervening live ranges between them in
170 // IntB, we can merge them.
171 if (ValLR
+1 != BLR
) return false;
173 // If a live interval is a physical register, conservatively check if any
174 // of its sub-registers is overlapping the live interval of the virtual
175 // register. If so, do not coalesce.
176 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
) &&
177 *tri_
->getSubRegisters(IntB
.reg
)) {
178 for (const unsigned* SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
)
179 if (li_
->hasInterval(*SR
) && IntA
.overlaps(li_
->getInterval(*SR
))) {
180 DOUT
<< "Interfere with sub-register ";
181 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
186 DOUT
<< "\nExtending: "; IntB
.print(DOUT
, tri_
);
188 unsigned FillerStart
= ValLR
->end
, FillerEnd
= BLR
->start
;
189 // We are about to delete CopyMI, so need to remove it as the 'instruction
190 // that defines this value #'. Update the the valnum with the new defining
192 BValNo
->def
= FillerStart
;
195 // Okay, we can merge them. We need to insert a new liverange:
196 // [ValLR.end, BLR.begin) of either value number, then we merge the
197 // two value numbers.
198 IntB
.addRange(LiveRange(FillerStart
, FillerEnd
, BValNo
));
200 // If the IntB live range is assigned to a physical register, and if that
201 // physreg has sub-registers, update their live intervals as well.
202 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
)) {
203 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
204 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
205 SRLI
.addRange(LiveRange(FillerStart
, FillerEnd
,
206 SRLI
.getNextValue(FillerStart
, 0, li_
->getVNInfoAllocator())));
210 // Okay, merge "B1" into the same value number as "B0".
211 if (BValNo
!= ValLR
->valno
) {
212 IntB
.addKills(ValLR
->valno
, BValNo
->kills
);
213 IntB
.MergeValueNumberInto(BValNo
, ValLR
->valno
);
215 DOUT
<< " result = "; IntB
.print(DOUT
, tri_
);
218 // If the source instruction was killing the source register before the
219 // merge, unset the isKill marker given the live range has been extended.
220 int UIdx
= ValLREndInst
->findRegisterUseOperandIdx(IntB
.reg
, true);
222 ValLREndInst
->getOperand(UIdx
).setIsKill(false);
223 IntB
.removeKill(ValLR
->valno
, FillerStart
);
230 /// HasOtherReachingDefs - Return true if there are definitions of IntB
231 /// other than BValNo val# that can reach uses of AValno val# of IntA.
232 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval
&IntA
,
236 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
238 if (AI
->valno
!= AValNo
) continue;
239 LiveInterval::Ranges::iterator BI
=
240 std::upper_bound(IntB
.ranges
.begin(), IntB
.ranges
.end(), AI
->start
);
241 if (BI
!= IntB
.ranges
.begin())
243 for (; BI
!= IntB
.ranges
.end() && AI
->end
>= BI
->start
; ++BI
) {
244 if (BI
->valno
== BValNo
)
246 if (BI
->start
<= AI
->start
&& BI
->end
> AI
->start
)
248 if (BI
->start
> AI
->start
&& BI
->start
< AI
->end
)
255 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
256 /// being the source and IntB being the dest, thus this defines a value number
257 /// in IntB. If the source value number (in IntA) is defined by a commutable
258 /// instruction and its other operand is coalesced to the copy dest register,
259 /// see if we can transform the copy into a noop by commuting the definition. For
262 /// A3 = op A2 B0<kill>
264 /// B1 = A3 <- this copy
266 /// = op A3 <- more uses
270 /// B2 = op B0 A2<kill>
272 /// B1 = B2 <- now an identify copy
274 /// = op B2 <- more uses
276 /// This returns true if an interval was modified.
278 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval
&IntA
,
280 MachineInstr
*CopyMI
) {
281 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
283 // FIXME: For now, only eliminate the copy by commuting its def when the
284 // source register is a virtual register. We want to guard against cases
285 // where the copy is a back edge copy and commuting the def lengthen the
286 // live interval of the source register to the entire loop.
287 if (TargetRegisterInfo::isPhysicalRegister(IntA
.reg
))
290 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
291 // the example above.
292 LiveInterval::iterator BLR
= IntB
.FindLiveRangeContaining(CopyIdx
);
293 assert(BLR
!= IntB
.end() && "Live range not found!");
294 VNInfo
*BValNo
= BLR
->valno
;
296 // Get the location that B is defined at. Two options: either this value has
297 // an unknown definition point or it is defined at CopyIdx. If unknown, we
299 if (!BValNo
->copy
) return false;
300 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
302 // AValNo is the value number in A that defines the copy, A3 in the example.
303 LiveInterval::iterator ALR
= IntA
.FindLiveRangeContaining(CopyIdx
-1);
304 assert(ALR
!= IntA
.end() && "Live range not found!");
305 VNInfo
*AValNo
= ALR
->valno
;
306 // If other defs can reach uses of this def, then it's not safe to perform
308 if (AValNo
->def
== ~0U || AValNo
->def
== ~1U || AValNo
->hasPHIKill
)
310 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(AValNo
->def
);
311 const TargetInstrDesc
&TID
= DefMI
->getDesc();
313 if (!TID
.isCommutable() ||
314 !tii_
->CommuteChangesDestination(DefMI
, NewDstIdx
))
317 MachineOperand
&NewDstMO
= DefMI
->getOperand(NewDstIdx
);
318 unsigned NewReg
= NewDstMO
.getReg();
319 if (NewReg
!= IntB
.reg
|| !NewDstMO
.isKill())
322 // Make sure there are no other definitions of IntB that would reach the
323 // uses which the new definition can reach.
324 if (HasOtherReachingDefs(IntA
, IntB
, AValNo
, BValNo
))
327 // If some of the uses of IntA.reg is already coalesced away, return false.
328 // It's not possible to determine whether it's safe to perform the coalescing.
329 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(IntA
.reg
),
330 UE
= mri_
->use_end(); UI
!= UE
; ++UI
) {
331 MachineInstr
*UseMI
= &*UI
;
332 unsigned UseIdx
= li_
->getInstructionIndex(UseMI
);
333 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
334 if (ULR
== IntA
.end())
336 if (ULR
->valno
== AValNo
&& JoinedCopies
.count(UseMI
))
340 // At this point we have decided that it is legal to do this
341 // transformation. Start by commuting the instruction.
342 MachineBasicBlock
*MBB
= DefMI
->getParent();
343 MachineInstr
*NewMI
= tii_
->commuteInstruction(DefMI
);
346 if (NewMI
!= DefMI
) {
347 li_
->ReplaceMachineInstrInMaps(DefMI
, NewMI
);
348 MBB
->insert(DefMI
, NewMI
);
351 unsigned OpIdx
= NewMI
->findRegisterUseOperandIdx(IntA
.reg
, false);
352 NewMI
->getOperand(OpIdx
).setIsKill();
354 bool BHasPHIKill
= BValNo
->hasPHIKill
;
355 SmallVector
<VNInfo
*, 4> BDeadValNos
;
356 SmallVector
<unsigned, 4> BKills
;
357 std::map
<unsigned, unsigned> BExtend
;
359 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
368 // then do not add kills of A to the newly created B interval.
369 bool Extended
= BLR
->end
> ALR
->end
&& ALR
->end
!= ALR
->start
;
371 BExtend
[ALR
->end
] = BLR
->end
;
373 // Update uses of IntA of the specific Val# with IntB.
374 bool BHasSubRegs
= false;
375 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
))
376 BHasSubRegs
= *tri_
->getSubRegisters(IntB
.reg
);
377 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(IntA
.reg
),
378 UE
= mri_
->use_end(); UI
!= UE
;) {
379 MachineOperand
&UseMO
= UI
.getOperand();
380 MachineInstr
*UseMI
= &*UI
;
382 if (JoinedCopies
.count(UseMI
))
384 unsigned UseIdx
= li_
->getInstructionIndex(UseMI
);
385 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
386 if (ULR
== IntA
.end() || ULR
->valno
!= AValNo
)
388 UseMO
.setReg(NewReg
);
391 if (UseMO
.isKill()) {
393 UseMO
.setIsKill(false);
395 BKills
.push_back(li_
->getUseIndex(UseIdx
)+1);
397 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
398 if (!tii_
->isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
400 if (DstReg
== IntB
.reg
) {
401 // This copy will become a noop. If it's defining a new val#,
402 // remove that val# as well. However this live range is being
403 // extended to the end of the existing live range defined by the copy.
404 unsigned DefIdx
= li_
->getDefIndex(UseIdx
);
405 const LiveRange
*DLR
= IntB
.getLiveRangeContaining(DefIdx
);
406 BHasPHIKill
|= DLR
->valno
->hasPHIKill
;
407 assert(DLR
->valno
->def
== DefIdx
);
408 BDeadValNos
.push_back(DLR
->valno
);
409 BExtend
[DLR
->start
] = DLR
->end
;
410 JoinedCopies
.insert(UseMI
);
411 // If this is a kill but it's going to be removed, the last use
412 // of the same val# is the new kill.
418 // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
419 // simply extend BLR if CopyMI doesn't end the range.
420 DOUT
<< "\nExtending: "; IntB
.print(DOUT
, tri_
);
422 // Remove val#'s defined by copies that will be coalesced away.
423 for (unsigned i
= 0, e
= BDeadValNos
.size(); i
!= e
; ++i
) {
424 VNInfo
*DeadVNI
= BDeadValNos
[i
];
426 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
427 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
428 const LiveRange
*SRLR
= SRLI
.getLiveRangeContaining(DeadVNI
->def
);
429 SRLI
.removeValNo(SRLR
->valno
);
432 IntB
.removeValNo(BDeadValNos
[i
]);
435 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
436 // is updated. Kills are also updated.
437 VNInfo
*ValNo
= BValNo
;
438 ValNo
->def
= AValNo
->def
;
440 for (unsigned j
= 0, ee
= ValNo
->kills
.size(); j
!= ee
; ++j
) {
441 unsigned Kill
= ValNo
->kills
[j
];
442 if (Kill
!= BLR
->end
)
443 BKills
.push_back(Kill
);
445 ValNo
->kills
.clear();
446 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
448 if (AI
->valno
!= AValNo
) continue;
449 unsigned End
= AI
->end
;
450 std::map
<unsigned, unsigned>::iterator EI
= BExtend
.find(End
);
451 if (EI
!= BExtend
.end())
453 IntB
.addRange(LiveRange(AI
->start
, End
, ValNo
));
455 // If the IntB live range is assigned to a physical register, and if that
456 // physreg has sub-registers, update their live intervals as well.
458 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
459 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
460 SRLI
.MergeInClobberRange(AI
->start
, End
, li_
->getVNInfoAllocator());
464 IntB
.addKills(ValNo
, BKills
);
465 ValNo
->hasPHIKill
= BHasPHIKill
;
467 DOUT
<< " result = "; IntB
.print(DOUT
, tri_
);
470 DOUT
<< "\nShortening: "; IntA
.print(DOUT
, tri_
);
471 IntA
.removeValNo(AValNo
);
472 DOUT
<< " result = "; IntA
.print(DOUT
, tri_
);
479 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
480 /// fallthoughs to SuccMBB.
481 static bool isSameOrFallThroughBB(MachineBasicBlock
*MBB
,
482 MachineBasicBlock
*SuccMBB
,
483 const TargetInstrInfo
*tii_
) {
486 MachineBasicBlock
*TBB
= 0, *FBB
= 0;
487 SmallVector
<MachineOperand
, 4> Cond
;
488 return !tii_
->AnalyzeBranch(*MBB
, TBB
, FBB
, Cond
) && !TBB
&& !FBB
&&
489 MBB
->isSuccessor(SuccMBB
);
492 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
493 /// from a physical register live interval as well as from the live intervals
494 /// of its sub-registers.
495 static void removeRange(LiveInterval
&li
, unsigned Start
, unsigned End
,
496 LiveIntervals
*li_
, const TargetRegisterInfo
*tri_
) {
497 li
.removeRange(Start
, End
, true);
498 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
)) {
499 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
500 if (!li_
->hasInterval(*SR
))
502 LiveInterval
&sli
= li_
->getInterval(*SR
);
503 unsigned RemoveEnd
= Start
;
504 while (RemoveEnd
!= End
) {
505 LiveInterval::iterator LR
= sli
.FindLiveRangeContaining(Start
);
508 RemoveEnd
= (LR
->end
< End
) ? LR
->end
: End
;
509 sli
.removeRange(Start
, RemoveEnd
, true);
516 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
517 /// as the copy instruction, trim the live interval to the last use and return
520 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx
,
521 MachineBasicBlock
*CopyMBB
,
523 const LiveRange
*LR
) {
524 unsigned MBBStart
= li_
->getMBBStartIdx(CopyMBB
);
526 MachineOperand
*LastUse
= lastRegisterUse(LR
->start
, CopyIdx
-1, li
.reg
,
529 MachineInstr
*LastUseMI
= LastUse
->getParent();
530 if (!isSameOrFallThroughBB(LastUseMI
->getParent(), CopyMBB
, tii_
)) {
537 // r1025<dead> = r1024<kill>
538 if (MBBStart
< LR
->end
)
539 removeRange(li
, MBBStart
, LR
->end
, li_
, tri_
);
543 // There are uses before the copy, just shorten the live range to the end
545 LastUse
->setIsKill();
546 removeRange(li
, li_
->getDefIndex(LastUseIdx
), LR
->end
, li_
, tri_
);
547 li
.addKill(LR
->valno
, LastUseIdx
+1);
548 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
549 if (tii_
->isMoveInstr(*LastUseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
551 // Last use is itself an identity code.
552 int DeadIdx
= LastUseMI
->findRegisterDefOperandIdx(li
.reg
, false, tri_
);
553 LastUseMI
->getOperand(DeadIdx
).setIsDead();
559 if (LR
->start
<= MBBStart
&& LR
->end
> MBBStart
) {
560 if (LR
->start
== 0) {
561 assert(TargetRegisterInfo::isPhysicalRegister(li
.reg
));
562 // Live-in to the function but dead. Remove it from entry live-in set.
563 mf_
->begin()->removeLiveIn(li
.reg
);
565 // FIXME: Shorten intervals in BBs that reaches this BB.
571 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
572 /// computation, replace the copy by rematerialize the definition.
573 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval
&SrcInt
,
575 MachineInstr
*CopyMI
) {
576 unsigned CopyIdx
= li_
->getUseIndex(li_
->getInstructionIndex(CopyMI
));
577 LiveInterval::iterator SrcLR
= SrcInt
.FindLiveRangeContaining(CopyIdx
);
578 assert(SrcLR
!= SrcInt
.end() && "Live range not found!");
579 VNInfo
*ValNo
= SrcLR
->valno
;
580 // If other defs can reach uses of this def, then it's not safe to perform
582 if (ValNo
->def
== ~0U || ValNo
->def
== ~1U || ValNo
->hasPHIKill
)
584 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(ValNo
->def
);
585 const TargetInstrDesc
&TID
= DefMI
->getDesc();
586 if (!TID
.isAsCheapAsAMove())
588 if (!DefMI
->getDesc().isRematerializable() ||
589 !tii_
->isTriviallyReMaterializable(DefMI
))
591 bool SawStore
= false;
592 if (!DefMI
->isSafeToMove(tii_
, SawStore
))
595 unsigned DefIdx
= li_
->getDefIndex(CopyIdx
);
596 const LiveRange
*DLR
= li_
->getInterval(DstReg
).getLiveRangeContaining(DefIdx
);
597 DLR
->valno
->copy
= NULL
;
598 // Don't forget to update sub-register intervals.
599 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
600 for (const unsigned* SR
= tri_
->getSubRegisters(DstReg
); *SR
; ++SR
) {
601 if (!li_
->hasInterval(*SR
))
603 DLR
= li_
->getInterval(*SR
).getLiveRangeContaining(DefIdx
);
604 if (DLR
&& DLR
->valno
->copy
== CopyMI
)
605 DLR
->valno
->copy
= NULL
;
609 // If copy kills the source register, find the last use and propagate
611 MachineBasicBlock
*MBB
= CopyMI
->getParent();
612 if (CopyMI
->killsRegister(SrcInt
.reg
))
613 TrimLiveIntervalToLastUse(CopyIdx
, MBB
, SrcInt
, SrcLR
);
615 MachineBasicBlock::iterator MII
= next(MachineBasicBlock::iterator(CopyMI
));
616 CopyMI
->removeFromParent();
617 tii_
->reMaterialize(*MBB
, MII
, DstReg
, DefMI
);
618 MachineInstr
*NewMI
= prior(MII
);
619 // CopyMI may have implicit operands, transfer them over to the newly
620 // rematerialized instruction. And update implicit def interval valnos.
621 for (unsigned i
= CopyMI
->getDesc().getNumOperands(),
622 e
= CopyMI
->getNumOperands(); i
!= e
; ++i
) {
623 MachineOperand
&MO
= CopyMI
->getOperand(i
);
624 if (MO
.isReg() && MO
.isImplicit())
625 NewMI
->addOperand(MO
);
626 if (MO
.isDef() && li_
->hasInterval(MO
.getReg())) {
627 unsigned Reg
= MO
.getReg();
628 DLR
= li_
->getInterval(Reg
).getLiveRangeContaining(DefIdx
);
629 if (DLR
&& DLR
->valno
->copy
== CopyMI
)
630 DLR
->valno
->copy
= NULL
;
634 li_
->ReplaceMachineInstrInMaps(CopyMI
, NewMI
);
635 MBB
->getParent()->DeleteMachineInstr(CopyMI
);
636 ReMatCopies
.insert(CopyMI
);
637 ReMatDefs
.insert(DefMI
);
642 /// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
644 bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr
*CopyMI
,
645 unsigned DstReg
) const {
646 MachineBasicBlock
*MBB
= CopyMI
->getParent();
647 const MachineLoop
*L
= loopInfo
->getLoopFor(MBB
);
650 if (MBB
!= L
->getLoopLatch())
653 LiveInterval
&LI
= li_
->getInterval(DstReg
);
654 unsigned DefIdx
= li_
->getInstructionIndex(CopyMI
);
655 LiveInterval::const_iterator DstLR
=
656 LI
.FindLiveRangeContaining(li_
->getDefIndex(DefIdx
));
657 if (DstLR
== LI
.end())
659 unsigned KillIdx
= li_
->getMBBEndIdx(MBB
) + 1;
660 if (DstLR
->valno
->kills
.size() == 1 &&
661 DstLR
->valno
->kills
[0] == KillIdx
&& DstLR
->valno
->hasPHIKill
)
666 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
667 /// update the subregister number if it is not zero. If DstReg is a
668 /// physical register and the existing subregister number of the def / use
669 /// being updated is not zero, make sure to set it to the correct physical
672 SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg
, unsigned DstReg
,
674 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
675 if (DstIsPhys
&& SubIdx
) {
676 // Figure out the real physical register we are updating with.
677 DstReg
= tri_
->getSubReg(DstReg
, SubIdx
);
681 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(SrcReg
),
682 E
= mri_
->reg_end(); I
!= E
; ) {
683 MachineOperand
&O
= I
.getOperand();
684 MachineInstr
*UseMI
= &*I
;
686 unsigned OldSubIdx
= O
.getSubReg();
688 unsigned UseDstReg
= DstReg
;
690 UseDstReg
= tri_
->getSubReg(DstReg
, OldSubIdx
);
692 unsigned CopySrcReg
, CopyDstReg
, CopySrcSubIdx
, CopyDstSubIdx
;
693 if (tii_
->isMoveInstr(*UseMI
, CopySrcReg
, CopyDstReg
,
694 CopySrcSubIdx
, CopyDstSubIdx
) &&
695 CopySrcReg
!= CopyDstReg
&&
696 CopySrcReg
== SrcReg
&& CopyDstReg
!= UseDstReg
) {
697 // If the use is a copy and it won't be coalesced away, and its source
698 // is defined by a trivial computation, try to rematerialize it instead.
699 if (ReMaterializeTrivialDef(li_
->getInterval(SrcReg
), CopyDstReg
,UseMI
))
708 // Sub-register indexes goes from small to large. e.g.
709 // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
710 // EAX: 1 -> AL, 2 -> AX
711 // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
712 // sub-register 2 is also AX.
713 if (SubIdx
&& OldSubIdx
&& SubIdx
!= OldSubIdx
)
714 assert(OldSubIdx
< SubIdx
&& "Conflicting sub-register index!");
717 // Remove would-be duplicated kill marker.
718 if (O
.isKill() && UseMI
->killsRegister(DstReg
))
722 // After updating the operand, check if the machine instruction has
723 // become a copy. If so, update its val# information.
724 const TargetInstrDesc
&TID
= UseMI
->getDesc();
725 unsigned CopySrcReg
, CopyDstReg
, CopySrcSubIdx
, CopyDstSubIdx
;
726 if (TID
.getNumDefs() == 1 && TID
.getNumOperands() > 2 &&
727 tii_
->isMoveInstr(*UseMI
, CopySrcReg
, CopyDstReg
,
728 CopySrcSubIdx
, CopyDstSubIdx
) &&
729 CopySrcReg
!= CopyDstReg
&&
730 (TargetRegisterInfo::isVirtualRegister(CopyDstReg
) ||
731 allocatableRegs_
[CopyDstReg
])) {
732 LiveInterval
&LI
= li_
->getInterval(CopyDstReg
);
733 unsigned DefIdx
= li_
->getDefIndex(li_
->getInstructionIndex(UseMI
));
734 const LiveRange
*DLR
= LI
.getLiveRangeContaining(DefIdx
);
735 if (DLR
->valno
->def
== DefIdx
)
736 DLR
->valno
->copy
= UseMI
;
741 /// RemoveDeadImpDef - Remove implicit_def instructions which are "re-defining"
742 /// registers due to insert_subreg coalescing. e.g.
744 /// r1025 = implicit_def
745 /// r1025 = insert_subreg r1025, r1024
749 /// r1025 = implicit_def
750 /// r1025 = insert_subreg r1025, r1025
753 SimpleRegisterCoalescing::RemoveDeadImpDef(unsigned Reg
, LiveInterval
&LI
) {
754 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(Reg
),
755 E
= mri_
->reg_end(); I
!= E
; ) {
756 MachineOperand
&O
= I
.getOperand();
757 MachineInstr
*DefMI
= &*I
;
761 if (DefMI
->getOpcode() != TargetInstrInfo::IMPLICIT_DEF
)
763 if (!LI
.liveBeforeAndAt(li_
->getInstructionIndex(DefMI
)))
765 li_
->RemoveMachineInstrFromMaps(DefMI
);
766 DefMI
->eraseFromParent();
770 /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
771 /// due to live range lengthening as the result of coalescing.
772 void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg
,
774 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(Reg
),
775 UE
= mri_
->use_end(); UI
!= UE
; ++UI
) {
776 MachineOperand
&UseMO
= UI
.getOperand();
777 if (UseMO
.isKill()) {
778 MachineInstr
*UseMI
= UseMO
.getParent();
779 unsigned UseIdx
= li_
->getUseIndex(li_
->getInstructionIndex(UseMI
));
780 const LiveRange
*UI
= LI
.getLiveRangeContaining(UseIdx
);
781 if (!UI
|| !LI
.isKill(UI
->valno
, UseIdx
+1))
782 UseMO
.setIsKill(false);
787 /// removeIntervalIfEmpty - Check if the live interval of a physical register
788 /// is empty, if so remove it and also remove the empty intervals of its
789 /// sub-registers. Return true if live interval is removed.
790 static bool removeIntervalIfEmpty(LiveInterval
&li
, LiveIntervals
*li_
,
791 const TargetRegisterInfo
*tri_
) {
793 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
))
794 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
795 if (!li_
->hasInterval(*SR
))
797 LiveInterval
&sli
= li_
->getInterval(*SR
);
799 li_
->removeInterval(*SR
);
801 li_
->removeInterval(li
.reg
);
807 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
808 /// Return true if live interval is removed.
809 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval
&li
,
810 MachineInstr
*CopyMI
) {
811 unsigned CopyIdx
= li_
->getInstructionIndex(CopyMI
);
812 LiveInterval::iterator MLR
=
813 li
.FindLiveRangeContaining(li_
->getDefIndex(CopyIdx
));
815 return false; // Already removed by ShortenDeadCopySrcLiveRange.
816 unsigned RemoveStart
= MLR
->start
;
817 unsigned RemoveEnd
= MLR
->end
;
818 // Remove the liverange that's defined by this.
819 if (RemoveEnd
== li_
->getDefIndex(CopyIdx
)+1) {
820 removeRange(li
, RemoveStart
, RemoveEnd
, li_
, tri_
);
821 return removeIntervalIfEmpty(li
, li_
, tri_
);
826 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
827 /// the val# it defines. If the live interval becomes empty, remove it as well.
828 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval
&li
,
829 MachineInstr
*DefMI
) {
830 unsigned DefIdx
= li_
->getDefIndex(li_
->getInstructionIndex(DefMI
));
831 LiveInterval::iterator MLR
= li
.FindLiveRangeContaining(DefIdx
);
832 if (DefIdx
!= MLR
->valno
->def
)
834 li
.removeValNo(MLR
->valno
);
835 return removeIntervalIfEmpty(li
, li_
, tri_
);
838 /// PropagateDeadness - Propagate the dead marker to the instruction which
839 /// defines the val#.
840 static void PropagateDeadness(LiveInterval
&li
, MachineInstr
*CopyMI
,
841 unsigned &LRStart
, LiveIntervals
*li_
,
842 const TargetRegisterInfo
* tri_
) {
843 MachineInstr
*DefMI
=
844 li_
->getInstructionFromIndex(li_
->getDefIndex(LRStart
));
845 if (DefMI
&& DefMI
!= CopyMI
) {
846 int DeadIdx
= DefMI
->findRegisterDefOperandIdx(li
.reg
, false, tri_
);
848 DefMI
->getOperand(DeadIdx
).setIsDead();
849 // A dead def should have a single cycle interval.
855 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
856 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
857 /// ends the live range there. If there isn't another use, then this live range
858 /// is dead. Return true if live interval is removed.
860 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval
&li
,
861 MachineInstr
*CopyMI
) {
862 unsigned CopyIdx
= li_
->getInstructionIndex(CopyMI
);
864 // FIXME: special case: function live in. It can be a general case if the
865 // first instruction index starts at > 0 value.
866 assert(TargetRegisterInfo::isPhysicalRegister(li
.reg
));
867 // Live-in to the function but dead. Remove it from entry live-in set.
868 if (mf_
->begin()->isLiveIn(li
.reg
))
869 mf_
->begin()->removeLiveIn(li
.reg
);
870 const LiveRange
*LR
= li
.getLiveRangeContaining(CopyIdx
);
871 removeRange(li
, LR
->start
, LR
->end
, li_
, tri_
);
872 return removeIntervalIfEmpty(li
, li_
, tri_
);
875 LiveInterval::iterator LR
= li
.FindLiveRangeContaining(CopyIdx
-1);
877 // Livein but defined by a phi.
880 unsigned RemoveStart
= LR
->start
;
881 unsigned RemoveEnd
= li_
->getDefIndex(CopyIdx
)+1;
882 if (LR
->end
> RemoveEnd
)
883 // More uses past this copy? Nothing to do.
886 // If there is a last use in the same bb, we can't remove the live range.
887 // Shorten the live interval and return.
888 MachineBasicBlock
*CopyMBB
= CopyMI
->getParent();
889 if (TrimLiveIntervalToLastUse(CopyIdx
, CopyMBB
, li
, LR
))
892 MachineBasicBlock
*StartMBB
= li_
->getMBBFromIndex(RemoveStart
);
893 if (!isSameOrFallThroughBB(StartMBB
, CopyMBB
, tii_
))
894 // If the live range starts in another mbb and the copy mbb is not a fall
895 // through mbb, then we can only cut the range from the beginning of the
897 RemoveStart
= li_
->getMBBStartIdx(CopyMBB
) + 1;
899 if (LR
->valno
->def
== RemoveStart
) {
900 // If the def MI defines the val# and this copy is the only kill of the
901 // val#, then propagate the dead marker.
902 if (li
.isOnlyLROfValNo(LR
)) {
903 PropagateDeadness(li
, CopyMI
, RemoveStart
, li_
, tri_
);
906 if (li
.isKill(LR
->valno
, RemoveEnd
))
907 li
.removeKill(LR
->valno
, RemoveEnd
);
910 removeRange(li
, RemoveStart
, RemoveEnd
, li_
, tri_
);
911 return removeIntervalIfEmpty(li
, li_
, tri_
);
914 /// CanCoalesceWithImpDef - Returns true if the specified copy instruction
915 /// from an implicit def to another register can be coalesced away.
916 bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr
*CopyMI
,
918 LiveInterval
&ImpLi
) const{
919 if (!CopyMI
->killsRegister(ImpLi
.reg
))
921 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
922 LiveInterval::iterator LR
= li
.FindLiveRangeContaining(CopyIdx
);
925 if (LR
->valno
->hasPHIKill
)
927 if (LR
->valno
->def
!= CopyIdx
)
929 // Make sure all of val# uses are copies.
930 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(li
.reg
),
931 UE
= mri_
->use_end(); UI
!= UE
;) {
932 MachineInstr
*UseMI
= &*UI
;
934 if (JoinedCopies
.count(UseMI
))
936 unsigned UseIdx
= li_
->getUseIndex(li_
->getInstructionIndex(UseMI
));
937 LiveInterval::iterator ULR
= li
.FindLiveRangeContaining(UseIdx
);
938 if (ULR
== li
.end() || ULR
->valno
!= LR
->valno
)
940 // If the use is not a use, then it's not safe to coalesce the move.
941 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
942 if (!tii_
->isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
)) {
943 if (UseMI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
&&
944 UseMI
->getOperand(1).getReg() == li
.reg
)
953 /// RemoveCopiesFromValNo - The specified value# is defined by an implicit
954 /// def and it is being removed. Turn all copies from this value# into
955 /// identity copies so they will be removed.
956 void SimpleRegisterCoalescing::RemoveCopiesFromValNo(LiveInterval
&li
,
958 SmallVector
<MachineInstr
*, 4> ImpDefs
;
959 MachineOperand
*LastUse
= NULL
;
960 unsigned LastUseIdx
= li_
->getUseIndex(VNI
->def
);
961 for (MachineRegisterInfo::reg_iterator RI
= mri_
->reg_begin(li
.reg
),
962 RE
= mri_
->reg_end(); RI
!= RE
;) {
963 MachineOperand
*MO
= &RI
.getOperand();
964 MachineInstr
*MI
= &*RI
;
967 if (MI
->getOpcode() == TargetInstrInfo::IMPLICIT_DEF
) {
968 ImpDefs
.push_back(MI
);
972 if (JoinedCopies
.count(MI
))
974 unsigned UseIdx
= li_
->getUseIndex(li_
->getInstructionIndex(MI
));
975 LiveInterval::iterator ULR
= li
.FindLiveRangeContaining(UseIdx
);
976 if (ULR
== li
.end() || ULR
->valno
!= VNI
)
978 // If the use is a copy, turn it into an identity copy.
979 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
980 if (tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
982 // Each use MI may have multiple uses of this register. Change them all.
983 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
984 MachineOperand
&MO
= MI
->getOperand(i
);
985 if (MO
.isReg() && MO
.getReg() == li
.reg
)
988 JoinedCopies
.insert(MI
);
989 } else if (UseIdx
> LastUseIdx
) {
995 LastUse
->setIsKill();
996 li
.addKill(VNI
, LastUseIdx
+1);
998 // Remove dead implicit_def's.
999 while (!ImpDefs
.empty()) {
1000 MachineInstr
*ImpDef
= ImpDefs
.back();
1002 li_
->RemoveMachineInstrFromMaps(ImpDef
);
1003 ImpDef
->eraseFromParent();
1008 /// isWinToJoinVRWithSrcPhysReg - Return true if it's worth while to join a
1009 /// a virtual destination register with physical source register.
1011 SimpleRegisterCoalescing::isWinToJoinVRWithSrcPhysReg(MachineInstr
*CopyMI
,
1012 MachineBasicBlock
*CopyMBB
,
1013 LiveInterval
&DstInt
,
1014 LiveInterval
&SrcInt
) {
1015 // If the virtual register live interval is long but it has low use desity,
1016 // do not join them, instead mark the physical register as its allocation
1018 const TargetRegisterClass
*RC
= mri_
->getRegClass(DstInt
.reg
);
1019 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1020 unsigned Length
= li_
->getApproximateInstructionCount(DstInt
);
1021 if (Length
> Threshold
&&
1022 (((float)std::distance(mri_
->use_begin(DstInt
.reg
),
1023 mri_
->use_end()) / Length
) < (1.0 / Threshold
)))
1026 // If the virtual register live interval extends into a loop, turn down
1028 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
1029 const MachineLoop
*L
= loopInfo
->getLoopFor(CopyMBB
);
1031 // Let's see if the virtual register live interval extends into the loop.
1032 LiveInterval::iterator DLR
= DstInt
.FindLiveRangeContaining(CopyIdx
);
1033 assert(DLR
!= DstInt
.end() && "Live range not found!");
1034 DLR
= DstInt
.FindLiveRangeContaining(DLR
->end
+1);
1035 if (DLR
!= DstInt
.end()) {
1036 CopyMBB
= li_
->getMBBFromIndex(DLR
->start
);
1037 L
= loopInfo
->getLoopFor(CopyMBB
);
1041 if (!L
|| Length
<= Threshold
)
1044 unsigned UseIdx
= li_
->getUseIndex(CopyIdx
);
1045 LiveInterval::iterator SLR
= SrcInt
.FindLiveRangeContaining(UseIdx
);
1046 MachineBasicBlock
*SMBB
= li_
->getMBBFromIndex(SLR
->start
);
1047 if (loopInfo
->getLoopFor(SMBB
) != L
) {
1048 if (!loopInfo
->isLoopHeader(CopyMBB
))
1050 // If vr's live interval extends pass the loop header, do not join.
1051 for (MachineBasicBlock::succ_iterator SI
= CopyMBB
->succ_begin(),
1052 SE
= CopyMBB
->succ_end(); SI
!= SE
; ++SI
) {
1053 MachineBasicBlock
*SuccMBB
= *SI
;
1054 if (SuccMBB
== CopyMBB
)
1056 if (DstInt
.overlaps(li_
->getMBBStartIdx(SuccMBB
),
1057 li_
->getMBBEndIdx(SuccMBB
)+1))
1064 /// isWinToJoinVRWithDstPhysReg - Return true if it's worth while to join a
1065 /// copy from a virtual source register to a physical destination register.
1067 SimpleRegisterCoalescing::isWinToJoinVRWithDstPhysReg(MachineInstr
*CopyMI
,
1068 MachineBasicBlock
*CopyMBB
,
1069 LiveInterval
&DstInt
,
1070 LiveInterval
&SrcInt
) {
1071 // If the virtual register live interval is long but it has low use desity,
1072 // do not join them, instead mark the physical register as its allocation
1074 const TargetRegisterClass
*RC
= mri_
->getRegClass(SrcInt
.reg
);
1075 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1076 unsigned Length
= li_
->getApproximateInstructionCount(SrcInt
);
1077 if (Length
> Threshold
&&
1078 (((float)std::distance(mri_
->use_begin(SrcInt
.reg
),
1079 mri_
->use_end()) / Length
) < (1.0 / Threshold
)))
1083 // Must be implicit_def.
1086 // If the virtual register live interval is defined or cross a loop, turn
1087 // down aggressiveness.
1088 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
1089 unsigned UseIdx
= li_
->getUseIndex(CopyIdx
);
1090 LiveInterval::iterator SLR
= SrcInt
.FindLiveRangeContaining(UseIdx
);
1091 assert(SLR
!= SrcInt
.end() && "Live range not found!");
1092 SLR
= SrcInt
.FindLiveRangeContaining(SLR
->start
-1);
1093 if (SLR
== SrcInt
.end())
1095 MachineBasicBlock
*SMBB
= li_
->getMBBFromIndex(SLR
->start
);
1096 const MachineLoop
*L
= loopInfo
->getLoopFor(SMBB
);
1098 if (!L
|| Length
<= Threshold
)
1101 if (loopInfo
->getLoopFor(CopyMBB
) != L
) {
1102 if (SMBB
!= L
->getLoopLatch())
1104 // If vr's live interval is extended from before the loop latch, do not
1106 for (MachineBasicBlock::pred_iterator PI
= SMBB
->pred_begin(),
1107 PE
= SMBB
->pred_end(); PI
!= PE
; ++PI
) {
1108 MachineBasicBlock
*PredMBB
= *PI
;
1109 if (PredMBB
== SMBB
)
1111 if (SrcInt
.overlaps(li_
->getMBBStartIdx(PredMBB
),
1112 li_
->getMBBEndIdx(PredMBB
)+1))
1119 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1120 /// two virtual registers from different register classes.
1122 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned LargeReg
,
1124 unsigned Threshold
) {
1125 // Then make sure the intervals are *short*.
1126 LiveInterval
&LargeInt
= li_
->getInterval(LargeReg
);
1127 LiveInterval
&SmallInt
= li_
->getInterval(SmallReg
);
1128 unsigned LargeSize
= li_
->getApproximateInstructionCount(LargeInt
);
1129 unsigned SmallSize
= li_
->getApproximateInstructionCount(SmallInt
);
1130 if (SmallSize
> Threshold
|| LargeSize
> Threshold
)
1131 if ((float)std::distance(mri_
->use_begin(SmallReg
),
1132 mri_
->use_end()) / SmallSize
<
1133 (float)std::distance(mri_
->use_begin(LargeReg
),
1134 mri_
->use_end()) / LargeSize
)
1139 /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
1140 /// register with a physical register, check if any of the virtual register
1141 /// operand is a sub-register use or def. If so, make sure it won't result
1142 /// in an illegal extract_subreg or insert_subreg instruction. e.g.
1143 /// vr1024 = extract_subreg vr1025, 1
1145 /// vr1024 = mov8rr AH
1146 /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
1147 /// AH does not have a super-reg whose sub-register 1 is AH.
1149 SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr
*CopyMI
,
1152 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(VirtReg
),
1153 E
= mri_
->reg_end(); I
!= E
; ++I
) {
1154 MachineOperand
&O
= I
.getOperand();
1155 MachineInstr
*MI
= &*I
;
1156 if (MI
== CopyMI
|| JoinedCopies
.count(MI
))
1158 unsigned SubIdx
= O
.getSubReg();
1159 if (SubIdx
&& !tri_
->getSubReg(PhysReg
, SubIdx
))
1161 if (MI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
) {
1162 SubIdx
= MI
->getOperand(2).getImm();
1163 if (O
.isUse() && !tri_
->getSubReg(PhysReg
, SubIdx
))
1166 unsigned SrcReg
= MI
->getOperand(1).getReg();
1167 const TargetRegisterClass
*RC
=
1168 TargetRegisterInfo::isPhysicalRegister(SrcReg
)
1169 ? tri_
->getPhysicalRegisterRegClass(SrcReg
)
1170 : mri_
->getRegClass(SrcReg
);
1171 if (!tri_
->getMatchingSuperReg(PhysReg
, SubIdx
, RC
))
1175 if (MI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
1176 MI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) {
1177 SubIdx
= MI
->getOperand(3).getImm();
1178 if (VirtReg
== MI
->getOperand(0).getReg()) {
1179 if (!tri_
->getSubReg(PhysReg
, SubIdx
))
1182 unsigned DstReg
= MI
->getOperand(0).getReg();
1183 const TargetRegisterClass
*RC
=
1184 TargetRegisterInfo::isPhysicalRegister(DstReg
)
1185 ? tri_
->getPhysicalRegisterRegClass(DstReg
)
1186 : mri_
->getRegClass(DstReg
);
1187 if (!tri_
->getMatchingSuperReg(PhysReg
, SubIdx
, RC
))
1196 /// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
1197 /// an extract_subreg where dst is a physical register, e.g.
1198 /// cl = EXTRACT_SUBREG reg1024, 1
1200 SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg
,
1201 unsigned SrcReg
, unsigned SubIdx
,
1202 unsigned &RealDstReg
) {
1203 const TargetRegisterClass
*RC
= mri_
->getRegClass(SrcReg
);
1204 RealDstReg
= tri_
->getMatchingSuperReg(DstReg
, SubIdx
, RC
);
1205 assert(RealDstReg
&& "Invalid extract_subreg instruction!");
1207 // For this type of EXTRACT_SUBREG, conservatively
1208 // check if the live interval of the source register interfere with the
1209 // actual super physical register we are trying to coalesce with.
1210 LiveInterval
&RHS
= li_
->getInterval(SrcReg
);
1211 if (li_
->hasInterval(RealDstReg
) &&
1212 RHS
.overlaps(li_
->getInterval(RealDstReg
))) {
1213 DOUT
<< "Interfere with register ";
1214 DEBUG(li_
->getInterval(RealDstReg
).print(DOUT
, tri_
));
1215 return false; // Not coalescable
1217 for (const unsigned* SR
= tri_
->getSubRegisters(RealDstReg
); *SR
; ++SR
)
1218 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
1219 DOUT
<< "Interfere with sub-register ";
1220 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
1221 return false; // Not coalescable
1226 /// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
1227 /// an insert_subreg where src is a physical register, e.g.
1228 /// reg1024 = INSERT_SUBREG reg1024, c1, 0
1230 SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg
,
1231 unsigned SrcReg
, unsigned SubIdx
,
1232 unsigned &RealSrcReg
) {
1233 const TargetRegisterClass
*RC
= mri_
->getRegClass(DstReg
);
1234 RealSrcReg
= tri_
->getMatchingSuperReg(SrcReg
, SubIdx
, RC
);
1235 assert(RealSrcReg
&& "Invalid extract_subreg instruction!");
1237 LiveInterval
&RHS
= li_
->getInterval(DstReg
);
1238 if (li_
->hasInterval(RealSrcReg
) &&
1239 RHS
.overlaps(li_
->getInterval(RealSrcReg
))) {
1240 DOUT
<< "Interfere with register ";
1241 DEBUG(li_
->getInterval(RealSrcReg
).print(DOUT
, tri_
));
1242 return false; // Not coalescable
1244 for (const unsigned* SR
= tri_
->getSubRegisters(RealSrcReg
); *SR
; ++SR
)
1245 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
1246 DOUT
<< "Interfere with sub-register ";
1247 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
1248 return false; // Not coalescable
1253 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1254 /// which are the src/dst of the copy instruction CopyMI. This returns true
1255 /// if the copy was successfully coalesced away. If it is not currently
1256 /// possible to coalesce this interval, but it may be possible if other
1257 /// things get coalesced, then it returns true by reference in 'Again'.
1258 bool SimpleRegisterCoalescing::JoinCopy(CopyRec
&TheCopy
, bool &Again
) {
1259 MachineInstr
*CopyMI
= TheCopy
.MI
;
1262 if (JoinedCopies
.count(CopyMI
) || ReMatCopies
.count(CopyMI
))
1263 return false; // Already done.
1265 DOUT
<< li_
->getInstructionIndex(CopyMI
) << '\t' << *CopyMI
;
1267 unsigned SrcReg
, DstReg
, SrcSubIdx
= 0, DstSubIdx
= 0;
1268 bool isExtSubReg
= CopyMI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
;
1269 bool isInsSubReg
= CopyMI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
;
1270 bool isSubRegToReg
= CopyMI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
;
1271 unsigned SubIdx
= 0;
1273 DstReg
= CopyMI
->getOperand(0).getReg();
1274 DstSubIdx
= CopyMI
->getOperand(0).getSubReg();
1275 SrcReg
= CopyMI
->getOperand(1).getReg();
1276 SrcSubIdx
= CopyMI
->getOperand(2).getImm();
1277 } else if (isInsSubReg
|| isSubRegToReg
) {
1278 if (CopyMI
->getOperand(2).getSubReg()) {
1279 DOUT
<< "\tSource of insert_subreg is already coalesced "
1280 << "to another register.\n";
1281 return false; // Not coalescable.
1283 DstReg
= CopyMI
->getOperand(0).getReg();
1284 DstSubIdx
= CopyMI
->getOperand(3).getImm();
1285 SrcReg
= CopyMI
->getOperand(2).getReg();
1286 } else if (!tii_
->isMoveInstr(*CopyMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
)){
1287 assert(0 && "Unrecognized copy instruction!");
1291 // If they are already joined we continue.
1292 if (SrcReg
== DstReg
) {
1293 DOUT
<< "\tCopy already coalesced.\n";
1294 return false; // Not coalescable.
1297 bool SrcIsPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
1298 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
1300 // If they are both physical registers, we cannot join them.
1301 if (SrcIsPhys
&& DstIsPhys
) {
1302 DOUT
<< "\tCan not coalesce physregs.\n";
1303 return false; // Not coalescable.
1306 // We only join virtual registers with allocatable physical registers.
1307 if (SrcIsPhys
&& !allocatableRegs_
[SrcReg
]) {
1308 DOUT
<< "\tSrc reg is unallocatable physreg.\n";
1309 return false; // Not coalescable.
1311 if (DstIsPhys
&& !allocatableRegs_
[DstReg
]) {
1312 DOUT
<< "\tDst reg is unallocatable physreg.\n";
1313 return false; // Not coalescable.
1316 // Check that a physical source register is compatible with dst regclass
1318 unsigned SrcSubReg
= SrcSubIdx
?
1319 tri_
->getSubReg(SrcReg
, SrcSubIdx
) : SrcReg
;
1320 const TargetRegisterClass
*DstRC
= mri_
->getRegClass(DstReg
);
1321 const TargetRegisterClass
*DstSubRC
= DstRC
;
1323 DstSubRC
= DstRC
->getSubRegisterRegClass(DstSubIdx
);
1324 assert(DstSubRC
&& "Illegal subregister index");
1325 if (!DstSubRC
->contains(SrcSubReg
)) {
1326 DOUT
<< "\tIncompatible destination regclass: "
1327 << tri_
->getName(SrcSubReg
) << " not in " << DstSubRC
->getName()
1329 return false; // Not coalescable.
1333 // Check that a physical dst register is compatible with source regclass
1335 unsigned DstSubReg
= DstSubIdx
?
1336 tri_
->getSubReg(DstReg
, DstSubIdx
) : DstReg
;
1337 const TargetRegisterClass
*SrcRC
= mri_
->getRegClass(SrcReg
);
1338 const TargetRegisterClass
*SrcSubRC
= SrcRC
;
1340 SrcSubRC
= SrcRC
->getSubRegisterRegClass(SrcSubIdx
);
1341 assert(SrcSubRC
&& "Illegal subregister index");
1342 if (!SrcSubRC
->contains(DstReg
)) {
1343 DOUT
<< "\tIncompatible source regclass: "
1344 << tri_
->getName(DstSubReg
) << " not in " << SrcSubRC
->getName()
1346 return false; // Not coalescable.
1350 // Should be non-null only when coalescing to a sub-register class.
1351 bool CrossRC
= false;
1352 const TargetRegisterClass
*NewRC
= NULL
;
1353 MachineBasicBlock
*CopyMBB
= CopyMI
->getParent();
1354 unsigned RealDstReg
= 0;
1355 unsigned RealSrcReg
= 0;
1356 if (isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) {
1357 SubIdx
= CopyMI
->getOperand(isExtSubReg
? 2 : 3).getImm();
1358 if (SrcIsPhys
&& isExtSubReg
) {
1359 // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
1360 // coalesced with AX.
1361 unsigned DstSubIdx
= CopyMI
->getOperand(0).getSubReg();
1363 // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
1364 // coalesced to a larger register so the subreg indices cancel out.
1365 if (DstSubIdx
!= SubIdx
) {
1366 DOUT
<< "\t Sub-register indices mismatch.\n";
1367 return false; // Not coalescable.
1370 SrcReg
= tri_
->getSubReg(SrcReg
, SubIdx
);
1372 } else if (DstIsPhys
&& (isInsSubReg
|| isSubRegToReg
)) {
1373 // EAX = INSERT_SUBREG EAX, r1024, 0
1374 unsigned SrcSubIdx
= CopyMI
->getOperand(2).getSubReg();
1376 // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
1377 // coalesced to a larger register so the subreg indices cancel out.
1378 if (SrcSubIdx
!= SubIdx
) {
1379 DOUT
<< "\t Sub-register indices mismatch.\n";
1380 return false; // Not coalescable.
1383 DstReg
= tri_
->getSubReg(DstReg
, SubIdx
);
1385 } else if ((DstIsPhys
&& isExtSubReg
) ||
1386 (SrcIsPhys
&& (isInsSubReg
|| isSubRegToReg
))) {
1387 if (!isSubRegToReg
&& CopyMI
->getOperand(1).getSubReg()) {
1388 DOUT
<< "\tSrc of extract_subreg already coalesced with reg"
1389 << " of a super-class.\n";
1390 return false; // Not coalescable.
1394 if (!CanJoinExtractSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealDstReg
))
1395 return false; // Not coalescable
1397 if (!CanJoinInsertSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealSrcReg
))
1398 return false; // Not coalescable
1402 unsigned OldSubIdx
= isExtSubReg
? CopyMI
->getOperand(0).getSubReg()
1403 : CopyMI
->getOperand(2).getSubReg();
1405 if (OldSubIdx
== SubIdx
&& !differingRegisterClasses(SrcReg
, DstReg
))
1406 // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
1407 // coalesced to a larger register so the subreg indices cancel out.
1408 // Also check if the other larger register is of the same register
1409 // class as the would be resulting register.
1412 DOUT
<< "\t Sub-register indices mismatch.\n";
1413 return false; // Not coalescable.
1417 unsigned LargeReg
= isExtSubReg
? SrcReg
: DstReg
;
1418 unsigned SmallReg
= isExtSubReg
? DstReg
: SrcReg
;
1419 unsigned Limit
= allocatableRCRegs_
[mri_
->getRegClass(SmallReg
)].count();
1420 if (!isWinToJoinCrossClass(LargeReg
, SmallReg
, Limit
)) {
1421 Again
= true; // May be possible to coalesce later.
1426 } else if (differingRegisterClasses(SrcReg
, DstReg
)) {
1427 if (!CrossClassJoin
)
1431 // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
1432 // with another? If it's the resulting destination register, then
1433 // the subidx must be propagated to uses (but only those defined
1434 // by the EXTRACT_SUBREG). If it's being coalesced into another
1435 // register, it should be safe because register is assumed to have
1436 // the register class of the super-register.
1438 // Process moves where one of the registers have a sub-register index.
1439 MachineOperand
*DstMO
= CopyMI
->findRegisterDefOperand(DstReg
);
1440 MachineOperand
*SrcMO
= CopyMI
->findRegisterUseOperand(SrcReg
);
1441 SubIdx
= DstMO
->getSubReg();
1443 if (SrcMO
->getSubReg())
1444 // FIXME: can we handle this?
1446 // This is not an insert_subreg but it looks like one.
1447 // e.g. %reg1024:4 = MOV32rr %EAX
1450 if (!CanJoinInsertSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
, RealSrcReg
))
1451 return false; // Not coalescable
1455 SubIdx
= SrcMO
->getSubReg();
1457 // This is not a extract_subreg but it looks like one.
1458 // e.g. %cl = MOV16rr %reg1024:1
1461 if (!CanJoinExtractSubRegToPhysReg(DstReg
, SrcReg
, SubIdx
,RealDstReg
))
1462 return false; // Not coalescable
1468 const TargetRegisterClass
*SrcRC
= SrcIsPhys
? 0 : mri_
->getRegClass(SrcReg
);
1469 const TargetRegisterClass
*DstRC
= DstIsPhys
? 0 : mri_
->getRegClass(DstReg
);
1470 unsigned LargeReg
= SrcReg
;
1471 unsigned SmallReg
= DstReg
;
1474 // Now determine the register class of the joined register.
1476 if (SubIdx
&& DstRC
&& DstRC
->isASubClass()) {
1477 // This is a move to a sub-register class. However, the source is a
1478 // sub-register of a larger register class. We don't know what should
1479 // the register class be. FIXME.
1483 Limit
= allocatableRCRegs_
[DstRC
].count();
1484 } else if (!SrcIsPhys
&& !DstIsPhys
) {
1485 NewRC
= getCommonSubClass(SrcRC
, DstRC
);
1487 DOUT
<< "\tDisjoint regclasses: "
1488 << SrcRC
->getName() << ", "
1489 << DstRC
->getName() << ".\n";
1490 return false; // Not coalescable.
1492 if (DstRC
->getSize() > SrcRC
->getSize())
1493 std::swap(LargeReg
, SmallReg
);
1496 // If we are joining two virtual registers and the resulting register
1497 // class is more restrictive (fewer register, smaller size). Check if it's
1498 // worth doing the merge.
1499 if (!SrcIsPhys
&& !DstIsPhys
&&
1500 (isExtSubReg
|| DstRC
->isASubClass()) &&
1501 !isWinToJoinCrossClass(LargeReg
, SmallReg
,
1502 allocatableRCRegs_
[NewRC
].count())) {
1503 DOUT
<< "\tSrc/Dest are different register classes.\n";
1504 // Allow the coalescer to try again in case either side gets coalesced to
1505 // a physical register that's compatible with the other side. e.g.
1506 // r1024 = MOV32to32_ r1025
1507 // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
1508 Again
= true; // May be possible to coalesce later.
1513 // Will it create illegal extract_subreg / insert_subreg?
1514 if (SrcIsPhys
&& HasIncompatibleSubRegDefUse(CopyMI
, DstReg
, SrcReg
))
1516 if (DstIsPhys
&& HasIncompatibleSubRegDefUse(CopyMI
, SrcReg
, DstReg
))
1519 LiveInterval
&SrcInt
= li_
->getInterval(SrcReg
);
1520 LiveInterval
&DstInt
= li_
->getInterval(DstReg
);
1521 assert(SrcInt
.reg
== SrcReg
&& DstInt
.reg
== DstReg
&&
1522 "Register mapping is horribly broken!");
1524 DOUT
<< "\t\tInspecting "; SrcInt
.print(DOUT
, tri_
);
1525 DOUT
<< " and "; DstInt
.print(DOUT
, tri_
);
1528 // Save a copy of the virtual register live interval. We'll manually
1529 // merge this into the "real" physical register live interval this is
1531 LiveInterval
*SavedLI
= 0;
1533 SavedLI
= li_
->dupInterval(&SrcInt
);
1534 else if (RealSrcReg
)
1535 SavedLI
= li_
->dupInterval(&DstInt
);
1537 // Check if it is necessary to propagate "isDead" property.
1538 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
) {
1539 MachineOperand
*mopd
= CopyMI
->findRegisterDefOperand(DstReg
, false);
1540 bool isDead
= mopd
->isDead();
1542 // We need to be careful about coalescing a source physical register with a
1543 // virtual register. Once the coalescing is done, it cannot be broken and
1544 // these are not spillable! If the destination interval uses are far away,
1545 // think twice about coalescing them!
1546 if (!isDead
&& (SrcIsPhys
|| DstIsPhys
)) {
1547 // If the copy is in a loop, take care not to coalesce aggressively if the
1548 // src is coming in from outside the loop (or the dst is out of the loop).
1549 // If it's not in a loop, then determine whether to join them base purely
1550 // by the length of the interval.
1551 if (PhysJoinTweak
) {
1553 if (!isWinToJoinVRWithSrcPhysReg(CopyMI
, CopyMBB
, DstInt
, SrcInt
)) {
1554 DstInt
.preference
= SrcReg
;
1556 DOUT
<< "\tMay tie down a physical register, abort!\n";
1557 Again
= true; // May be possible to coalesce later.
1561 if (!isWinToJoinVRWithDstPhysReg(CopyMI
, CopyMBB
, DstInt
, SrcInt
)) {
1562 SrcInt
.preference
= DstReg
;
1564 DOUT
<< "\tMay tie down a physical register, abort!\n";
1565 Again
= true; // May be possible to coalesce later.
1570 // If the virtual register live interval is long but it has low use desity,
1571 // do not join them, instead mark the physical register as its allocation
1573 LiveInterval
&JoinVInt
= SrcIsPhys
? DstInt
: SrcInt
;
1574 unsigned JoinVReg
= SrcIsPhys
? DstReg
: SrcReg
;
1575 unsigned JoinPReg
= SrcIsPhys
? SrcReg
: DstReg
;
1576 const TargetRegisterClass
*RC
= mri_
->getRegClass(JoinVReg
);
1577 unsigned Threshold
= allocatableRCRegs_
[RC
].count() * 2;
1578 if (TheCopy
.isBackEdge
)
1579 Threshold
*= 2; // Favors back edge copies.
1581 unsigned Length
= li_
->getApproximateInstructionCount(JoinVInt
);
1582 float Ratio
= 1.0 / Threshold
;
1583 if (Length
> Threshold
&&
1584 (((float)std::distance(mri_
->use_begin(JoinVReg
),
1585 mri_
->use_end()) / Length
) < Ratio
)) {
1586 JoinVInt
.preference
= JoinPReg
;
1588 DOUT
<< "\tMay tie down a physical register, abort!\n";
1589 Again
= true; // May be possible to coalesce later.
1596 // Okay, attempt to join these two intervals. On failure, this returns false.
1597 // Otherwise, if one of the intervals being joined is a physreg, this method
1598 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1599 // been modified, so we can use this information below to update aliases.
1600 bool Swapped
= false;
1601 // If SrcInt is implicitly defined, it's safe to coalesce.
1602 bool isEmpty
= SrcInt
.empty();
1603 if (isEmpty
&& !CanCoalesceWithImpDef(CopyMI
, DstInt
, SrcInt
)) {
1604 // Only coalesce an empty interval (defined by implicit_def) with
1605 // another interval which has a valno defined by the CopyMI and the CopyMI
1606 // is a kill of the implicit def.
1607 DOUT
<< "Not profitable!\n";
1611 if (!isEmpty
&& !JoinIntervals(DstInt
, SrcInt
, Swapped
)) {
1612 // Coalescing failed.
1614 // If definition of source is defined by trivial computation, try
1615 // rematerializing it.
1616 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
&&
1617 ReMaterializeTrivialDef(SrcInt
, DstInt
.reg
, CopyMI
))
1620 // If we can eliminate the copy without merging the live ranges, do so now.
1621 if (!isExtSubReg
&& !isInsSubReg
&& !isSubRegToReg
&&
1622 (AdjustCopiesBackFrom(SrcInt
, DstInt
, CopyMI
) ||
1623 RemoveCopyByCommutingDef(SrcInt
, DstInt
, CopyMI
))) {
1624 JoinedCopies
.insert(CopyMI
);
1628 // Otherwise, we are unable to join the intervals.
1629 DOUT
<< "Interference!\n";
1630 Again
= true; // May be possible to coalesce later.
1634 LiveInterval
*ResSrcInt
= &SrcInt
;
1635 LiveInterval
*ResDstInt
= &DstInt
;
1637 std::swap(SrcReg
, DstReg
);
1638 std::swap(ResSrcInt
, ResDstInt
);
1640 assert(TargetRegisterInfo::isVirtualRegister(SrcReg
) &&
1641 "LiveInterval::join didn't work right!");
1643 // If we're about to merge live ranges into a physical register live interval,
1644 // we have to update any aliased register's live ranges to indicate that they
1645 // have clobbered values for this range.
1646 if (TargetRegisterInfo::isPhysicalRegister(DstReg
)) {
1647 // If this is a extract_subreg where dst is a physical register, e.g.
1648 // cl = EXTRACT_SUBREG reg1024, 1
1649 // then create and update the actual physical register allocated to RHS.
1650 if (RealDstReg
|| RealSrcReg
) {
1651 LiveInterval
&RealInt
=
1652 li_
->getOrCreateInterval(RealDstReg
? RealDstReg
: RealSrcReg
);
1653 for (LiveInterval::const_vni_iterator I
= SavedLI
->vni_begin(),
1654 E
= SavedLI
->vni_end(); I
!= E
; ++I
) {
1655 const VNInfo
*ValNo
= *I
;
1656 VNInfo
*NewValNo
= RealInt
.getNextValue(ValNo
->def
, ValNo
->copy
,
1657 li_
->getVNInfoAllocator());
1658 NewValNo
->hasPHIKill
= ValNo
->hasPHIKill
;
1659 NewValNo
->redefByEC
= ValNo
->redefByEC
;
1660 RealInt
.addKills(NewValNo
, ValNo
->kills
);
1661 RealInt
.MergeValueInAsValue(*SavedLI
, ValNo
, NewValNo
);
1663 RealInt
.weight
+= SavedLI
->weight
;
1664 DstReg
= RealDstReg
? RealDstReg
: RealSrcReg
;
1667 // Update the liveintervals of sub-registers.
1668 for (const unsigned *AS
= tri_
->getSubRegisters(DstReg
); *AS
; ++AS
)
1669 li_
->getOrCreateInterval(*AS
).MergeInClobberRanges(*ResSrcInt
,
1670 li_
->getVNInfoAllocator());
1673 // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
1674 // larger super-register.
1675 if ((isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) &&
1676 !SrcIsPhys
&& !DstIsPhys
) {
1677 if ((isExtSubReg
&& !Swapped
) ||
1678 ((isInsSubReg
|| isSubRegToReg
) && Swapped
)) {
1679 ResSrcInt
->Copy(*ResDstInt
, li_
->getVNInfoAllocator());
1680 std::swap(SrcReg
, DstReg
);
1681 std::swap(ResSrcInt
, ResDstInt
);
1685 // Coalescing to a virtual register that is of a sub-register class of the
1686 // other. Make sure the resulting register is set to the right register class.
1690 mri_
->setRegClass(DstReg
, NewRC
);
1694 // Add all copies that define val# in the source interval into the queue.
1695 for (LiveInterval::const_vni_iterator i
= ResSrcInt
->vni_begin(),
1696 e
= ResSrcInt
->vni_end(); i
!= e
; ++i
) {
1697 const VNInfo
*vni
= *i
;
1698 if (!vni
->def
|| vni
->def
== ~1U || vni
->def
== ~0U)
1700 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
1701 unsigned NewSrcReg
, NewDstReg
, NewSrcSubIdx
, NewDstSubIdx
;
1703 JoinedCopies
.count(CopyMI
) == 0 &&
1704 tii_
->isMoveInstr(*CopyMI
, NewSrcReg
, NewDstReg
,
1705 NewSrcSubIdx
, NewDstSubIdx
)) {
1706 unsigned LoopDepth
= loopInfo
->getLoopDepth(CopyMBB
);
1707 JoinQueue
->push(CopyRec(CopyMI
, LoopDepth
,
1708 isBackEdgeCopy(CopyMI
, DstReg
)));
1713 // Remember to delete the copy instruction.
1714 JoinedCopies
.insert(CopyMI
);
1716 // Some live range has been lengthened due to colaescing, eliminate the
1717 // unnecessary kills.
1718 RemoveUnnecessaryKills(SrcReg
, *ResDstInt
);
1719 if (TargetRegisterInfo::isVirtualRegister(DstReg
))
1720 RemoveUnnecessaryKills(DstReg
, *ResDstInt
);
1725 // r1024 = implicit_def
1728 RemoveDeadImpDef(DstReg
, *ResDstInt
);
1729 UpdateRegDefsUses(SrcReg
, DstReg
, SubIdx
);
1731 // SrcReg is guarateed to be the register whose live interval that is
1733 li_
->removeInterval(SrcReg
);
1735 // Manually deleted the live interval copy.
1742 // Now the copy is being coalesced away, the val# previously defined
1743 // by the copy is being defined by an IMPLICIT_DEF which defines a zero
1744 // length interval. Remove the val#.
1745 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
1746 const LiveRange
*LR
= ResDstInt
->getLiveRangeContaining(CopyIdx
);
1747 VNInfo
*ImpVal
= LR
->valno
;
1748 assert(ImpVal
->def
== CopyIdx
);
1749 unsigned NextDef
= LR
->end
;
1750 RemoveCopiesFromValNo(*ResDstInt
, ImpVal
);
1751 ResDstInt
->removeValNo(ImpVal
);
1752 LR
= ResDstInt
->FindLiveRangeContaining(NextDef
);
1753 if (LR
!= ResDstInt
->end() && LR
->valno
->def
== NextDef
) {
1754 // Special case: vr1024 = implicit_def
1755 // vr1024 = insert_subreg vr1024, vr1025, c
1756 // The insert_subreg becomes a "copy" that defines a val# which can itself
1757 // be coalesced away.
1758 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(NextDef
);
1759 if (DefMI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
)
1760 LR
->valno
->copy
= DefMI
;
1764 // If resulting interval has a preference that no longer fits because of subreg
1765 // coalescing, just clear the preference.
1766 if (ResDstInt
->preference
&& (isExtSubReg
|| isInsSubReg
|| isSubRegToReg
) &&
1767 TargetRegisterInfo::isVirtualRegister(ResDstInt
->reg
)) {
1768 const TargetRegisterClass
*RC
= mri_
->getRegClass(ResDstInt
->reg
);
1769 if (!RC
->contains(ResDstInt
->preference
))
1770 ResDstInt
->preference
= 0;
1773 DOUT
<< "\n\t\tJoined. Result = "; ResDstInt
->print(DOUT
, tri_
);
1780 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1781 /// compute what the resultant value numbers for each value in the input two
1782 /// ranges will be. This is complicated by copies between the two which can
1783 /// and will commonly cause multiple value numbers to be merged into one.
1785 /// VN is the value number that we're trying to resolve. InstDefiningValue
1786 /// keeps track of the new InstDefiningValue assignment for the result
1787 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1788 /// whether a value in this or other is a copy from the opposite set.
1789 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1790 /// already been assigned.
1792 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1793 /// contains the value number the copy is from.
1795 static unsigned ComputeUltimateVN(VNInfo
*VNI
,
1796 SmallVector
<VNInfo
*, 16> &NewVNInfo
,
1797 DenseMap
<VNInfo
*, VNInfo
*> &ThisFromOther
,
1798 DenseMap
<VNInfo
*, VNInfo
*> &OtherFromThis
,
1799 SmallVector
<int, 16> &ThisValNoAssignments
,
1800 SmallVector
<int, 16> &OtherValNoAssignments
) {
1801 unsigned VN
= VNI
->id
;
1803 // If the VN has already been computed, just return it.
1804 if (ThisValNoAssignments
[VN
] >= 0)
1805 return ThisValNoAssignments
[VN
];
1806 // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1808 // If this val is not a copy from the other val, then it must be a new value
1809 // number in the destination.
1810 DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= ThisFromOther
.find(VNI
);
1811 if (I
== ThisFromOther
.end()) {
1812 NewVNInfo
.push_back(VNI
);
1813 return ThisValNoAssignments
[VN
] = NewVNInfo
.size()-1;
1815 VNInfo
*OtherValNo
= I
->second
;
1817 // Otherwise, this *is* a copy from the RHS. If the other side has already
1818 // been computed, return it.
1819 if (OtherValNoAssignments
[OtherValNo
->id
] >= 0)
1820 return ThisValNoAssignments
[VN
] = OtherValNoAssignments
[OtherValNo
->id
];
1822 // Mark this value number as currently being computed, then ask what the
1823 // ultimate value # of the other value is.
1824 ThisValNoAssignments
[VN
] = -2;
1825 unsigned UltimateVN
=
1826 ComputeUltimateVN(OtherValNo
, NewVNInfo
, OtherFromThis
, ThisFromOther
,
1827 OtherValNoAssignments
, ThisValNoAssignments
);
1828 return ThisValNoAssignments
[VN
] = UltimateVN
;
1831 static bool InVector(VNInfo
*Val
, const SmallVector
<VNInfo
*, 8> &V
) {
1832 return std::find(V
.begin(), V
.end(), Val
) != V
.end();
1835 /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
1836 /// the specified live interval is defined by a copy from the specified
1838 bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval
&li
,
1841 unsigned SrcReg
= li_
->getVNInfoSourceReg(LR
->valno
);
1844 if (LR
->valno
->def
== ~0U &&
1845 TargetRegisterInfo::isPhysicalRegister(li
.reg
) &&
1846 *tri_
->getSuperRegisters(li
.reg
)) {
1847 // It's a sub-register live interval, we may not have precise information.
1849 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(LR
->start
);
1850 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
1852 tii_
->isMoveInstr(*DefMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
1853 DstReg
== li
.reg
&& SrcReg
== Reg
) {
1854 // Cache computed info.
1855 LR
->valno
->def
= LR
->start
;
1856 LR
->valno
->copy
= DefMI
;
1863 /// SimpleJoin - Attempt to joint the specified interval into this one. The
1864 /// caller of this method must guarantee that the RHS only contains a single
1865 /// value number and that the RHS is not defined by a copy from this
1866 /// interval. This returns false if the intervals are not joinable, or it
1867 /// joins them and returns true.
1868 bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval
&LHS
, LiveInterval
&RHS
){
1869 assert(RHS
.containsOneValue());
1871 // Some number (potentially more than one) value numbers in the current
1872 // interval may be defined as copies from the RHS. Scan the overlapping
1873 // portions of the LHS and RHS, keeping track of this and looking for
1874 // overlapping live ranges that are NOT defined as copies. If these exist, we
1877 LiveInterval::iterator LHSIt
= LHS
.begin(), LHSEnd
= LHS
.end();
1878 LiveInterval::iterator RHSIt
= RHS
.begin(), RHSEnd
= RHS
.end();
1880 if (LHSIt
->start
< RHSIt
->start
) {
1881 LHSIt
= std::upper_bound(LHSIt
, LHSEnd
, RHSIt
->start
);
1882 if (LHSIt
!= LHS
.begin()) --LHSIt
;
1883 } else if (RHSIt
->start
< LHSIt
->start
) {
1884 RHSIt
= std::upper_bound(RHSIt
, RHSEnd
, LHSIt
->start
);
1885 if (RHSIt
!= RHS
.begin()) --RHSIt
;
1888 SmallVector
<VNInfo
*, 8> EliminatedLHSVals
;
1891 // Determine if these live intervals overlap.
1892 bool Overlaps
= false;
1893 if (LHSIt
->start
<= RHSIt
->start
)
1894 Overlaps
= LHSIt
->end
> RHSIt
->start
;
1896 Overlaps
= RHSIt
->end
> LHSIt
->start
;
1898 // If the live intervals overlap, there are two interesting cases: if the
1899 // LHS interval is defined by a copy from the RHS, it's ok and we record
1900 // that the LHS value # is the same as the RHS. If it's not, then we cannot
1901 // coalesce these live ranges and we bail out.
1903 // If we haven't already recorded that this value # is safe, check it.
1904 if (!InVector(LHSIt
->valno
, EliminatedLHSVals
)) {
1905 // Copy from the RHS?
1906 if (!RangeIsDefinedByCopyFromReg(LHS
, LHSIt
, RHS
.reg
))
1907 return false; // Nope, bail out.
1909 if (LHSIt
->contains(RHSIt
->valno
->def
))
1910 // Here is an interesting situation:
1912 // vr1025 = copy vr1024
1917 // Even though vr1025 is copied from vr1024, it's not safe to
1918 // coalesce them since the live range of vr1025 intersects the
1919 // def of vr1024. This happens because vr1025 is assigned the
1920 // value of the previous iteration of vr1024.
1922 EliminatedLHSVals
.push_back(LHSIt
->valno
);
1925 // We know this entire LHS live range is okay, so skip it now.
1926 if (++LHSIt
== LHSEnd
) break;
1930 if (LHSIt
->end
< RHSIt
->end
) {
1931 if (++LHSIt
== LHSEnd
) break;
1933 // One interesting case to check here. It's possible that we have
1934 // something like "X3 = Y" which defines a new value number in the LHS,
1935 // and is the last use of this liverange of the RHS. In this case, we
1936 // want to notice this copy (so that it gets coalesced away) even though
1937 // the live ranges don't actually overlap.
1938 if (LHSIt
->start
== RHSIt
->end
) {
1939 if (InVector(LHSIt
->valno
, EliminatedLHSVals
)) {
1940 // We already know that this value number is going to be merged in
1941 // if coalescing succeeds. Just skip the liverange.
1942 if (++LHSIt
== LHSEnd
) break;
1944 // Otherwise, if this is a copy from the RHS, mark it as being merged
1946 if (RangeIsDefinedByCopyFromReg(LHS
, LHSIt
, RHS
.reg
)) {
1947 if (LHSIt
->contains(RHSIt
->valno
->def
))
1948 // Here is an interesting situation:
1950 // vr1025 = copy vr1024
1955 // Even though vr1025 is copied from vr1024, it's not safe to
1956 // coalesced them since live range of vr1025 intersects the
1957 // def of vr1024. This happens because vr1025 is assigned the
1958 // value of the previous iteration of vr1024.
1960 EliminatedLHSVals
.push_back(LHSIt
->valno
);
1962 // We know this entire LHS live range is okay, so skip it now.
1963 if (++LHSIt
== LHSEnd
) break;
1968 if (++RHSIt
== RHSEnd
) break;
1972 // If we got here, we know that the coalescing will be successful and that
1973 // the value numbers in EliminatedLHSVals will all be merged together. Since
1974 // the most common case is that EliminatedLHSVals has a single number, we
1975 // optimize for it: if there is more than one value, we merge them all into
1976 // the lowest numbered one, then handle the interval as if we were merging
1977 // with one value number.
1978 VNInfo
*LHSValNo
= NULL
;
1979 if (EliminatedLHSVals
.size() > 1) {
1980 // Loop through all the equal value numbers merging them into the smallest
1982 VNInfo
*Smallest
= EliminatedLHSVals
[0];
1983 for (unsigned i
= 1, e
= EliminatedLHSVals
.size(); i
!= e
; ++i
) {
1984 if (EliminatedLHSVals
[i
]->id
< Smallest
->id
) {
1985 // Merge the current notion of the smallest into the smaller one.
1986 LHS
.MergeValueNumberInto(Smallest
, EliminatedLHSVals
[i
]);
1987 Smallest
= EliminatedLHSVals
[i
];
1989 // Merge into the smallest.
1990 LHS
.MergeValueNumberInto(EliminatedLHSVals
[i
], Smallest
);
1993 LHSValNo
= Smallest
;
1994 } else if (EliminatedLHSVals
.empty()) {
1995 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
) &&
1996 *tri_
->getSuperRegisters(LHS
.reg
))
1997 // Imprecise sub-register information. Can't handle it.
1999 assert(0 && "No copies from the RHS?");
2001 LHSValNo
= EliminatedLHSVals
[0];
2004 // Okay, now that there is a single LHS value number that we're merging the
2005 // RHS into, update the value number info for the LHS to indicate that the
2006 // value number is defined where the RHS value number was.
2007 const VNInfo
*VNI
= RHS
.getValNumInfo(0);
2008 LHSValNo
->def
= VNI
->def
;
2009 LHSValNo
->copy
= VNI
->copy
;
2011 // Okay, the final step is to loop over the RHS live intervals, adding them to
2013 LHSValNo
->hasPHIKill
|= VNI
->hasPHIKill
;
2014 LHS
.addKills(LHSValNo
, VNI
->kills
);
2015 LHS
.MergeRangesInAsValue(RHS
, LHSValNo
);
2016 LHS
.weight
+= RHS
.weight
;
2017 if (RHS
.preference
&& !LHS
.preference
)
2018 LHS
.preference
= RHS
.preference
;
2020 // Update the liveintervals of sub-registers.
2021 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
))
2022 for (const unsigned *AS
= tri_
->getSubRegisters(LHS
.reg
); *AS
; ++AS
)
2023 li_
->getOrCreateInterval(*AS
).MergeInClobberRanges(LHS
,
2024 li_
->getVNInfoAllocator());
2029 /// JoinIntervals - Attempt to join these two intervals. On failure, this
2030 /// returns false. Otherwise, if one of the intervals being joined is a
2031 /// physreg, this method always canonicalizes LHS to be it. The output
2032 /// "RHS" will not have been modified, so we can use this information
2033 /// below to update aliases.
2035 SimpleRegisterCoalescing::JoinIntervals(LiveInterval
&LHS
, LiveInterval
&RHS
,
2037 // Compute the final value assignment, assuming that the live ranges can be
2039 SmallVector
<int, 16> LHSValNoAssignments
;
2040 SmallVector
<int, 16> RHSValNoAssignments
;
2041 DenseMap
<VNInfo
*, VNInfo
*> LHSValsDefinedFromRHS
;
2042 DenseMap
<VNInfo
*, VNInfo
*> RHSValsDefinedFromLHS
;
2043 SmallVector
<VNInfo
*, 16> NewVNInfo
;
2045 // If a live interval is a physical register, conservatively check if any
2046 // of its sub-registers is overlapping the live interval of the virtual
2047 // register. If so, do not coalesce.
2048 if (TargetRegisterInfo::isPhysicalRegister(LHS
.reg
) &&
2049 *tri_
->getSubRegisters(LHS
.reg
)) {
2050 // If it's coalescing a virtual register to a physical register, estimate
2051 // its live interval length. This is the *cost* of scanning an entire live
2052 // interval. If the cost is low, we'll do an exhaustive check instead.
2054 // If this is something like this:
2062 // That is, the live interval of v1024 crosses a bb. Then we can't rely on
2063 // less conservative check. It's possible a sub-register is defined before
2064 // v1024 (or live in) and live out of BB1.
2065 if (RHS
.containsOneValue() &&
2066 li_
->intervalIsInOneMBB(RHS
) &&
2067 li_
->getApproximateInstructionCount(RHS
) <= 10) {
2068 // Perform a more exhaustive check for some common cases.
2069 if (li_
->conflictsWithPhysRegRef(RHS
, LHS
.reg
, true, JoinedCopies
))
2072 for (const unsigned* SR
= tri_
->getSubRegisters(LHS
.reg
); *SR
; ++SR
)
2073 if (li_
->hasInterval(*SR
) && RHS
.overlaps(li_
->getInterval(*SR
))) {
2074 DOUT
<< "Interfere with sub-register ";
2075 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
2079 } else if (TargetRegisterInfo::isPhysicalRegister(RHS
.reg
) &&
2080 *tri_
->getSubRegisters(RHS
.reg
)) {
2081 if (LHS
.containsOneValue() &&
2082 li_
->getApproximateInstructionCount(LHS
) <= 10) {
2083 // Perform a more exhaustive check for some common cases.
2084 if (li_
->conflictsWithPhysRegRef(LHS
, RHS
.reg
, false, JoinedCopies
))
2087 for (const unsigned* SR
= tri_
->getSubRegisters(RHS
.reg
); *SR
; ++SR
)
2088 if (li_
->hasInterval(*SR
) && LHS
.overlaps(li_
->getInterval(*SR
))) {
2089 DOUT
<< "Interfere with sub-register ";
2090 DEBUG(li_
->getInterval(*SR
).print(DOUT
, tri_
));
2096 // Compute ultimate value numbers for the LHS and RHS values.
2097 if (RHS
.containsOneValue()) {
2098 // Copies from a liveinterval with a single value are simple to handle and
2099 // very common, handle the special case here. This is important, because
2100 // often RHS is small and LHS is large (e.g. a physreg).
2102 // Find out if the RHS is defined as a copy from some value in the LHS.
2103 int RHSVal0DefinedFromLHS
= -1;
2105 VNInfo
*RHSValNoInfo
= NULL
;
2106 VNInfo
*RHSValNoInfo0
= RHS
.getValNumInfo(0);
2107 unsigned RHSSrcReg
= li_
->getVNInfoSourceReg(RHSValNoInfo0
);
2108 if (RHSSrcReg
== 0 || RHSSrcReg
!= LHS
.reg
) {
2109 // If RHS is not defined as a copy from the LHS, we can use simpler and
2110 // faster checks to see if the live ranges are coalescable. This joiner
2111 // can't swap the LHS/RHS intervals though.
2112 if (!TargetRegisterInfo::isPhysicalRegister(RHS
.reg
)) {
2113 return SimpleJoin(LHS
, RHS
);
2115 RHSValNoInfo
= RHSValNoInfo0
;
2118 // It was defined as a copy from the LHS, find out what value # it is.
2119 RHSValNoInfo
= LHS
.getLiveRangeContaining(RHSValNoInfo0
->def
-1)->valno
;
2120 RHSValID
= RHSValNoInfo
->id
;
2121 RHSVal0DefinedFromLHS
= RHSValID
;
2124 LHSValNoAssignments
.resize(LHS
.getNumValNums(), -1);
2125 RHSValNoAssignments
.resize(RHS
.getNumValNums(), -1);
2126 NewVNInfo
.resize(LHS
.getNumValNums(), NULL
);
2128 // Okay, *all* of the values in LHS that are defined as a copy from RHS
2129 // should now get updated.
2130 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2133 unsigned VN
= VNI
->id
;
2134 if (unsigned LHSSrcReg
= li_
->getVNInfoSourceReg(VNI
)) {
2135 if (LHSSrcReg
!= RHS
.reg
) {
2136 // If this is not a copy from the RHS, its value number will be
2137 // unmodified by the coalescing.
2138 NewVNInfo
[VN
] = VNI
;
2139 LHSValNoAssignments
[VN
] = VN
;
2140 } else if (RHSValID
== -1) {
2141 // Otherwise, it is a copy from the RHS, and we don't already have a
2142 // value# for it. Keep the current value number, but remember it.
2143 LHSValNoAssignments
[VN
] = RHSValID
= VN
;
2144 NewVNInfo
[VN
] = RHSValNoInfo
;
2145 LHSValsDefinedFromRHS
[VNI
] = RHSValNoInfo0
;
2147 // Otherwise, use the specified value #.
2148 LHSValNoAssignments
[VN
] = RHSValID
;
2149 if (VN
== (unsigned)RHSValID
) { // Else this val# is dead.
2150 NewVNInfo
[VN
] = RHSValNoInfo
;
2151 LHSValsDefinedFromRHS
[VNI
] = RHSValNoInfo0
;
2155 NewVNInfo
[VN
] = VNI
;
2156 LHSValNoAssignments
[VN
] = VN
;
2160 assert(RHSValID
!= -1 && "Didn't find value #?");
2161 RHSValNoAssignments
[0] = RHSValID
;
2162 if (RHSVal0DefinedFromLHS
!= -1) {
2163 // This path doesn't go through ComputeUltimateVN so just set
2165 RHSValsDefinedFromLHS
[RHSValNoInfo0
] = (VNInfo
*)1;
2168 // Loop over the value numbers of the LHS, seeing if any are defined from
2170 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2173 if (VNI
->def
== ~1U || VNI
->copy
== 0) // Src not defined by a copy?
2176 // DstReg is known to be a register in the LHS interval. If the src is
2177 // from the RHS interval, we can use its value #.
2178 if (li_
->getVNInfoSourceReg(VNI
) != RHS
.reg
)
2181 // Figure out the value # from the RHS.
2182 LHSValsDefinedFromRHS
[VNI
]=RHS
.getLiveRangeContaining(VNI
->def
-1)->valno
;
2185 // Loop over the value numbers of the RHS, seeing if any are defined from
2187 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
2190 if (VNI
->def
== ~1U || VNI
->copy
== 0) // Src not defined by a copy?
2193 // DstReg is known to be a register in the RHS interval. If the src is
2194 // from the LHS interval, we can use its value #.
2195 if (li_
->getVNInfoSourceReg(VNI
) != LHS
.reg
)
2198 // Figure out the value # from the LHS.
2199 RHSValsDefinedFromLHS
[VNI
]=LHS
.getLiveRangeContaining(VNI
->def
-1)->valno
;
2202 LHSValNoAssignments
.resize(LHS
.getNumValNums(), -1);
2203 RHSValNoAssignments
.resize(RHS
.getNumValNums(), -1);
2204 NewVNInfo
.reserve(LHS
.getNumValNums() + RHS
.getNumValNums());
2206 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
2209 unsigned VN
= VNI
->id
;
2210 if (LHSValNoAssignments
[VN
] >= 0 || VNI
->def
== ~1U)
2212 ComputeUltimateVN(VNI
, NewVNInfo
,
2213 LHSValsDefinedFromRHS
, RHSValsDefinedFromLHS
,
2214 LHSValNoAssignments
, RHSValNoAssignments
);
2216 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
2219 unsigned VN
= VNI
->id
;
2220 if (RHSValNoAssignments
[VN
] >= 0 || VNI
->def
== ~1U)
2222 // If this value number isn't a copy from the LHS, it's a new number.
2223 if (RHSValsDefinedFromLHS
.find(VNI
) == RHSValsDefinedFromLHS
.end()) {
2224 NewVNInfo
.push_back(VNI
);
2225 RHSValNoAssignments
[VN
] = NewVNInfo
.size()-1;
2229 ComputeUltimateVN(VNI
, NewVNInfo
,
2230 RHSValsDefinedFromLHS
, LHSValsDefinedFromRHS
,
2231 RHSValNoAssignments
, LHSValNoAssignments
);
2235 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
2236 // interval lists to see if these intervals are coalescable.
2237 LiveInterval::const_iterator I
= LHS
.begin();
2238 LiveInterval::const_iterator IE
= LHS
.end();
2239 LiveInterval::const_iterator J
= RHS
.begin();
2240 LiveInterval::const_iterator JE
= RHS
.end();
2242 // Skip ahead until the first place of potential sharing.
2243 if (I
->start
< J
->start
) {
2244 I
= std::upper_bound(I
, IE
, J
->start
);
2245 if (I
!= LHS
.begin()) --I
;
2246 } else if (J
->start
< I
->start
) {
2247 J
= std::upper_bound(J
, JE
, I
->start
);
2248 if (J
!= RHS
.begin()) --J
;
2252 // Determine if these two live ranges overlap.
2254 if (I
->start
< J
->start
) {
2255 Overlaps
= I
->end
> J
->start
;
2257 Overlaps
= J
->end
> I
->start
;
2260 // If so, check value # info to determine if they are really different.
2262 // If the live range overlap will map to the same value number in the
2263 // result liverange, we can still coalesce them. If not, we can't.
2264 if (LHSValNoAssignments
[I
->valno
->id
] !=
2265 RHSValNoAssignments
[J
->valno
->id
])
2269 if (I
->end
< J
->end
) {
2278 // Update kill info. Some live ranges are extended due to copy coalescing.
2279 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= LHSValsDefinedFromRHS
.begin(),
2280 E
= LHSValsDefinedFromRHS
.end(); I
!= E
; ++I
) {
2281 VNInfo
*VNI
= I
->first
;
2282 unsigned LHSValID
= LHSValNoAssignments
[VNI
->id
];
2283 LiveInterval::removeKill(NewVNInfo
[LHSValID
], VNI
->def
);
2284 NewVNInfo
[LHSValID
]->hasPHIKill
|= VNI
->hasPHIKill
;
2285 RHS
.addKills(NewVNInfo
[LHSValID
], VNI
->kills
);
2288 // Update kill info. Some live ranges are extended due to copy coalescing.
2289 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= RHSValsDefinedFromLHS
.begin(),
2290 E
= RHSValsDefinedFromLHS
.end(); I
!= E
; ++I
) {
2291 VNInfo
*VNI
= I
->first
;
2292 unsigned RHSValID
= RHSValNoAssignments
[VNI
->id
];
2293 LiveInterval::removeKill(NewVNInfo
[RHSValID
], VNI
->def
);
2294 NewVNInfo
[RHSValID
]->hasPHIKill
|= VNI
->hasPHIKill
;
2295 LHS
.addKills(NewVNInfo
[RHSValID
], VNI
->kills
);
2298 // If we get here, we know that we can coalesce the live ranges. Ask the
2299 // intervals to coalesce themselves now.
2300 if ((RHS
.ranges
.size() > LHS
.ranges
.size() &&
2301 TargetRegisterInfo::isVirtualRegister(LHS
.reg
)) ||
2302 TargetRegisterInfo::isPhysicalRegister(RHS
.reg
)) {
2303 RHS
.join(LHS
, &RHSValNoAssignments
[0], &LHSValNoAssignments
[0], NewVNInfo
);
2306 LHS
.join(RHS
, &LHSValNoAssignments
[0], &RHSValNoAssignments
[0], NewVNInfo
);
2313 // DepthMBBCompare - Comparison predicate that sort first based on the loop
2314 // depth of the basic block (the unsigned), and then on the MBB number.
2315 struct DepthMBBCompare
{
2316 typedef std::pair
<unsigned, MachineBasicBlock
*> DepthMBBPair
;
2317 bool operator()(const DepthMBBPair
&LHS
, const DepthMBBPair
&RHS
) const {
2318 if (LHS
.first
> RHS
.first
) return true; // Deeper loops first
2319 return LHS
.first
== RHS
.first
&&
2320 LHS
.second
->getNumber() < RHS
.second
->getNumber();
2325 /// getRepIntervalSize - Returns the size of the interval that represents the
2326 /// specified register.
2328 unsigned JoinPriorityQueue
<SF
>::getRepIntervalSize(unsigned Reg
) {
2329 return Rc
->getRepIntervalSize(Reg
);
2332 /// CopyRecSort::operator - Join priority queue sorting function.
2334 bool CopyRecSort::operator()(CopyRec left
, CopyRec right
) const {
2335 // Inner loops first.
2336 if (left
.LoopDepth
> right
.LoopDepth
)
2338 else if (left
.LoopDepth
== right
.LoopDepth
)
2339 if (left
.isBackEdge
&& !right
.isBackEdge
)
2344 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock
*MBB
,
2345 std::vector
<CopyRec
> &TryAgain
) {
2346 DOUT
<< ((Value
*)MBB
->getBasicBlock())->getName() << ":\n";
2348 std::vector
<CopyRec
> VirtCopies
;
2349 std::vector
<CopyRec
> PhysCopies
;
2350 std::vector
<CopyRec
> ImpDefCopies
;
2351 unsigned LoopDepth
= loopInfo
->getLoopDepth(MBB
);
2352 for (MachineBasicBlock::iterator MII
= MBB
->begin(), E
= MBB
->end();
2354 MachineInstr
*Inst
= MII
++;
2356 // If this isn't a copy nor a extract_subreg, we can't join intervals.
2357 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2358 if (Inst
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
) {
2359 DstReg
= Inst
->getOperand(0).getReg();
2360 SrcReg
= Inst
->getOperand(1).getReg();
2361 } else if (Inst
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
2362 Inst
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) {
2363 DstReg
= Inst
->getOperand(0).getReg();
2364 SrcReg
= Inst
->getOperand(2).getReg();
2365 } else if (!tii_
->isMoveInstr(*Inst
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
2368 bool SrcIsPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
2369 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
2371 JoinQueue
->push(CopyRec(Inst
, LoopDepth
, isBackEdgeCopy(Inst
, DstReg
)));
2373 if (li_
->hasInterval(SrcReg
) && li_
->getInterval(SrcReg
).empty())
2374 ImpDefCopies
.push_back(CopyRec(Inst
, 0, false));
2375 else if (SrcIsPhys
|| DstIsPhys
)
2376 PhysCopies
.push_back(CopyRec(Inst
, 0, false));
2378 VirtCopies
.push_back(CopyRec(Inst
, 0, false));
2385 // Try coalescing implicit copies first, followed by copies to / from
2386 // physical registers, then finally copies from virtual registers to
2387 // virtual registers.
2388 for (unsigned i
= 0, e
= ImpDefCopies
.size(); i
!= e
; ++i
) {
2389 CopyRec
&TheCopy
= ImpDefCopies
[i
];
2391 if (!JoinCopy(TheCopy
, Again
))
2393 TryAgain
.push_back(TheCopy
);
2395 for (unsigned i
= 0, e
= PhysCopies
.size(); i
!= e
; ++i
) {
2396 CopyRec
&TheCopy
= PhysCopies
[i
];
2398 if (!JoinCopy(TheCopy
, Again
))
2400 TryAgain
.push_back(TheCopy
);
2402 for (unsigned i
= 0, e
= VirtCopies
.size(); i
!= e
; ++i
) {
2403 CopyRec
&TheCopy
= VirtCopies
[i
];
2405 if (!JoinCopy(TheCopy
, Again
))
2407 TryAgain
.push_back(TheCopy
);
2411 void SimpleRegisterCoalescing::joinIntervals() {
2412 DOUT
<< "********** JOINING INTERVALS ***********\n";
2415 JoinQueue
= new JoinPriorityQueue
<CopyRecSort
>(this);
2417 std::vector
<CopyRec
> TryAgainList
;
2418 if (loopInfo
->empty()) {
2419 // If there are no loops in the function, join intervals in function order.
2420 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();
2422 CopyCoalesceInMBB(I
, TryAgainList
);
2424 // Otherwise, join intervals in inner loops before other intervals.
2425 // Unfortunately we can't just iterate over loop hierarchy here because
2426 // there may be more MBB's than BB's. Collect MBB's for sorting.
2428 // Join intervals in the function prolog first. We want to join physical
2429 // registers with virtual registers before the intervals got too long.
2430 std::vector
<std::pair
<unsigned, MachineBasicBlock
*> > MBBs
;
2431 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();I
!= E
;++I
){
2432 MachineBasicBlock
*MBB
= I
;
2433 MBBs
.push_back(std::make_pair(loopInfo
->getLoopDepth(MBB
), I
));
2436 // Sort by loop depth.
2437 std::sort(MBBs
.begin(), MBBs
.end(), DepthMBBCompare());
2439 // Finally, join intervals in loop nest order.
2440 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
)
2441 CopyCoalesceInMBB(MBBs
[i
].second
, TryAgainList
);
2444 // Joining intervals can allow other intervals to be joined. Iteratively join
2445 // until we make no progress.
2447 SmallVector
<CopyRec
, 16> TryAgain
;
2448 bool ProgressMade
= true;
2449 while (ProgressMade
) {
2450 ProgressMade
= false;
2451 while (!JoinQueue
->empty()) {
2452 CopyRec R
= JoinQueue
->pop();
2454 bool Success
= JoinCopy(R
, Again
);
2456 ProgressMade
= true;
2458 TryAgain
.push_back(R
);
2462 while (!TryAgain
.empty()) {
2463 JoinQueue
->push(TryAgain
.back());
2464 TryAgain
.pop_back();
2469 bool ProgressMade
= true;
2470 while (ProgressMade
) {
2471 ProgressMade
= false;
2473 for (unsigned i
= 0, e
= TryAgainList
.size(); i
!= e
; ++i
) {
2474 CopyRec
&TheCopy
= TryAgainList
[i
];
2477 bool Success
= JoinCopy(TheCopy
, Again
);
2478 if (Success
|| !Again
) {
2479 TheCopy
.MI
= 0; // Mark this one as done.
2480 ProgressMade
= true;
2491 /// Return true if the two specified registers belong to different register
2492 /// classes. The registers may be either phys or virt regs.
2494 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA
,
2495 unsigned RegB
) const {
2496 // Get the register classes for the first reg.
2497 if (TargetRegisterInfo::isPhysicalRegister(RegA
)) {
2498 assert(TargetRegisterInfo::isVirtualRegister(RegB
) &&
2499 "Shouldn't consider two physregs!");
2500 return !mri_
->getRegClass(RegB
)->contains(RegA
);
2503 // Compare against the regclass for the second reg.
2504 const TargetRegisterClass
*RegClassA
= mri_
->getRegClass(RegA
);
2505 if (TargetRegisterInfo::isVirtualRegister(RegB
)) {
2506 const TargetRegisterClass
*RegClassB
= mri_
->getRegClass(RegB
);
2507 return RegClassA
!= RegClassB
;
2509 return !RegClassA
->contains(RegB
);
2512 /// lastRegisterUse - Returns the last use of the specific register between
2513 /// cycles Start and End or NULL if there are no uses.
2515 SimpleRegisterCoalescing::lastRegisterUse(unsigned Start
, unsigned End
,
2516 unsigned Reg
, unsigned &UseIdx
) const{
2518 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
2519 MachineOperand
*LastUse
= NULL
;
2520 for (MachineRegisterInfo::use_iterator I
= mri_
->use_begin(Reg
),
2521 E
= mri_
->use_end(); I
!= E
; ++I
) {
2522 MachineOperand
&Use
= I
.getOperand();
2523 MachineInstr
*UseMI
= Use
.getParent();
2524 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2525 if (tii_
->isMoveInstr(*UseMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
2527 // Ignore identity copies.
2529 unsigned Idx
= li_
->getInstructionIndex(UseMI
);
2530 if (Idx
>= Start
&& Idx
< End
&& Idx
>= UseIdx
) {
2532 UseIdx
= li_
->getUseIndex(Idx
);
2538 int e
= (End
-1) / InstrSlots::NUM
* InstrSlots::NUM
;
2541 // Skip deleted instructions
2542 MachineInstr
*MI
= li_
->getInstructionFromIndex(e
);
2543 while ((e
- InstrSlots::NUM
) >= s
&& !MI
) {
2544 e
-= InstrSlots::NUM
;
2545 MI
= li_
->getInstructionFromIndex(e
);
2547 if (e
< s
|| MI
== NULL
)
2550 // Ignore identity copies.
2551 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2552 if (!(tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
) &&
2554 for (unsigned i
= 0, NumOps
= MI
->getNumOperands(); i
!= NumOps
; ++i
) {
2555 MachineOperand
&Use
= MI
->getOperand(i
);
2556 if (Use
.isReg() && Use
.isUse() && Use
.getReg() &&
2557 tri_
->regsOverlap(Use
.getReg(), Reg
)) {
2558 UseIdx
= li_
->getUseIndex(e
);
2563 e
-= InstrSlots::NUM
;
2570 void SimpleRegisterCoalescing::printRegName(unsigned reg
) const {
2571 if (TargetRegisterInfo::isPhysicalRegister(reg
))
2572 cerr
<< tri_
->getName(reg
);
2574 cerr
<< "%reg" << reg
;
2577 void SimpleRegisterCoalescing::releaseMemory() {
2578 JoinedCopies
.clear();
2579 ReMatCopies
.clear();
2583 static bool isZeroLengthInterval(LiveInterval
*li
) {
2584 for (LiveInterval::Ranges::const_iterator
2585 i
= li
->ranges
.begin(), e
= li
->ranges
.end(); i
!= e
; ++i
)
2586 if (i
->end
- i
->start
> LiveIntervals::InstrSlots::NUM
)
2591 /// TurnCopyIntoImpDef - If source of the specified copy is an implicit def,
2592 /// turn the copy into an implicit def.
2594 SimpleRegisterCoalescing::TurnCopyIntoImpDef(MachineBasicBlock::iterator
&I
,
2595 MachineBasicBlock
*MBB
,
2596 unsigned DstReg
, unsigned SrcReg
) {
2597 MachineInstr
*CopyMI
= &*I
;
2598 unsigned CopyIdx
= li_
->getDefIndex(li_
->getInstructionIndex(CopyMI
));
2599 if (!li_
->hasInterval(SrcReg
))
2601 LiveInterval
&SrcInt
= li_
->getInterval(SrcReg
);
2602 if (!SrcInt
.empty())
2604 if (!li_
->hasInterval(DstReg
))
2606 LiveInterval
&DstInt
= li_
->getInterval(DstReg
);
2607 const LiveRange
*DstLR
= DstInt
.getLiveRangeContaining(CopyIdx
);
2608 DstInt
.removeValNo(DstLR
->valno
);
2609 CopyMI
->setDesc(tii_
->get(TargetInstrInfo::IMPLICIT_DEF
));
2610 for (int i
= CopyMI
->getNumOperands() - 1, e
= 0; i
> e
; --i
)
2611 CopyMI
->RemoveOperand(i
);
2612 bool NoUse
= mri_
->use_empty(SrcReg
);
2614 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(SrcReg
),
2615 E
= mri_
->reg_end(); I
!= E
; ) {
2616 assert(I
.getOperand().isDef());
2617 MachineInstr
*DefMI
= &*I
;
2619 // The implicit_def source has no other uses, delete it.
2620 assert(DefMI
->getOpcode() == TargetInstrInfo::IMPLICIT_DEF
);
2621 li_
->RemoveMachineInstrFromMaps(DefMI
);
2622 DefMI
->eraseFromParent();
2630 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction
&fn
) {
2632 mri_
= &fn
.getRegInfo();
2633 tm_
= &fn
.getTarget();
2634 tri_
= tm_
->getRegisterInfo();
2635 tii_
= tm_
->getInstrInfo();
2636 li_
= &getAnalysis
<LiveIntervals
>();
2637 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
2639 DOUT
<< "********** SIMPLE REGISTER COALESCING **********\n"
2640 << "********** Function: "
2641 << ((Value
*)mf_
->getFunction())->getName() << '\n';
2643 allocatableRegs_
= tri_
->getAllocatableSet(fn
);
2644 for (TargetRegisterInfo::regclass_iterator I
= tri_
->regclass_begin(),
2645 E
= tri_
->regclass_end(); I
!= E
; ++I
)
2646 allocatableRCRegs_
.insert(std::make_pair(*I
,
2647 tri_
->getAllocatableSet(fn
, *I
)));
2649 // Join (coalesce) intervals if requested.
2650 if (EnableJoining
) {
2653 DOUT
<< "********** INTERVALS POST JOINING **********\n";
2654 for (LiveIntervals::iterator I
= li_
->begin(), E
= li_
->end(); I
!= E
; ++I
){
2655 I
->second
->print(DOUT
, tri_
);
2661 // Perform a final pass over the instructions and compute spill weights
2662 // and remove identity moves.
2663 SmallVector
<unsigned, 4> DeadDefs
;
2664 for (MachineFunction::iterator mbbi
= mf_
->begin(), mbbe
= mf_
->end();
2665 mbbi
!= mbbe
; ++mbbi
) {
2666 MachineBasicBlock
* mbb
= mbbi
;
2667 unsigned loopDepth
= loopInfo
->getLoopDepth(mbb
);
2669 for (MachineBasicBlock::iterator mii
= mbb
->begin(), mie
= mbb
->end();
2671 MachineInstr
*MI
= mii
;
2672 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
2673 if (JoinedCopies
.count(MI
)) {
2674 // Delete all coalesced copies.
2675 if (!tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
)) {
2676 assert((MI
->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG
||
2677 MI
->getOpcode() == TargetInstrInfo::INSERT_SUBREG
||
2678 MI
->getOpcode() == TargetInstrInfo::SUBREG_TO_REG
) &&
2679 "Unrecognized copy instruction");
2680 DstReg
= MI
->getOperand(0).getReg();
2682 if (MI
->registerDefIsDead(DstReg
)) {
2683 LiveInterval
&li
= li_
->getInterval(DstReg
);
2684 if (!ShortenDeadCopySrcLiveRange(li
, MI
))
2685 ShortenDeadCopyLiveRange(li
, MI
);
2687 li_
->RemoveMachineInstrFromMaps(MI
);
2688 mii
= mbbi
->erase(mii
);
2693 // Now check if this is a remat'ed def instruction which is now dead.
2694 if (ReMatDefs
.count(MI
)) {
2696 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2697 const MachineOperand
&MO
= MI
->getOperand(i
);
2700 unsigned Reg
= MO
.getReg();
2703 if (TargetRegisterInfo::isVirtualRegister(Reg
))
2704 DeadDefs
.push_back(Reg
);
2707 if (TargetRegisterInfo::isPhysicalRegister(Reg
) ||
2708 !mri_
->use_empty(Reg
)) {
2714 while (!DeadDefs
.empty()) {
2715 unsigned DeadDef
= DeadDefs
.back();
2716 DeadDefs
.pop_back();
2717 RemoveDeadDef(li_
->getInterval(DeadDef
), MI
);
2719 li_
->RemoveMachineInstrFromMaps(mii
);
2720 mii
= mbbi
->erase(mii
);
2726 // If the move will be an identity move delete it
2727 bool isMove
= tii_
->isMoveInstr(*MI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
);
2728 if (isMove
&& SrcReg
== DstReg
) {
2729 if (li_
->hasInterval(SrcReg
)) {
2730 LiveInterval
&RegInt
= li_
->getInterval(SrcReg
);
2731 // If def of this move instruction is dead, remove its live range
2732 // from the dstination register's live interval.
2733 if (MI
->registerDefIsDead(DstReg
)) {
2734 if (!ShortenDeadCopySrcLiveRange(RegInt
, MI
))
2735 ShortenDeadCopyLiveRange(RegInt
, MI
);
2738 li_
->RemoveMachineInstrFromMaps(MI
);
2739 mii
= mbbi
->erase(mii
);
2741 } else if (!isMove
|| !TurnCopyIntoImpDef(mii
, mbb
, DstReg
, SrcReg
)) {
2742 SmallSet
<unsigned, 4> UniqueUses
;
2743 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2744 const MachineOperand
&mop
= MI
->getOperand(i
);
2745 if (mop
.isReg() && mop
.getReg() &&
2746 TargetRegisterInfo::isVirtualRegister(mop
.getReg())) {
2747 unsigned reg
= mop
.getReg();
2748 // Multiple uses of reg by the same instruction. It should not
2749 // contribute to spill weight again.
2750 if (UniqueUses
.count(reg
) != 0)
2752 LiveInterval
&RegInt
= li_
->getInterval(reg
);
2754 li_
->getSpillWeight(mop
.isDef(), mop
.isUse(), loopDepth
);
2755 UniqueUses
.insert(reg
);
2763 for (LiveIntervals::iterator I
= li_
->begin(), E
= li_
->end(); I
!= E
; ++I
) {
2764 LiveInterval
&LI
= *I
->second
;
2765 if (TargetRegisterInfo::isVirtualRegister(LI
.reg
)) {
2766 // If the live interval length is essentially zero, i.e. in every live
2767 // range the use follows def immediately, it doesn't make sense to spill
2768 // it and hope it will be easier to allocate for this li.
2769 if (isZeroLengthInterval(&LI
))
2770 LI
.weight
= HUGE_VALF
;
2772 bool isLoad
= false;
2773 SmallVector
<LiveInterval
*, 4> SpillIs
;
2774 if (li_
->isReMaterializable(LI
, SpillIs
, isLoad
)) {
2775 // If all of the definitions of the interval are re-materializable,
2776 // it is a preferred candidate for spilling. If non of the defs are
2777 // loads, then it's potentially very cheap to re-materialize.
2778 // FIXME: this gets much more complicated once we support non-trivial
2779 // re-materialization.
2787 // Slightly prefer live interval that has been assigned a preferred reg.
2791 // Divide the weight of the interval by its size. This encourages
2792 // spilling of intervals that are large and have few uses, and
2793 // discourages spilling of small intervals with many uses.
2794 LI
.weight
/= li_
->getApproximateInstructionCount(LI
) * InstrSlots::NUM
;
2802 /// print - Implement the dump method.
2803 void SimpleRegisterCoalescing::print(std::ostream
&O
, const Module
* m
) const {
2807 RegisterCoalescer
* llvm::createSimpleRegisterCoalescer() {
2808 return new SimpleRegisterCoalescing();
2811 // Make sure that anything that uses RegisterCoalescer pulls in this file...
2812 DEFINING_FILE_FOR(SimpleRegisterCoalescing
)