Quotes should be printed before private prefix; some code clean up.
[llvm/msp430.git] / lib / Transforms / Scalar / LoopDeletion.cpp
blob96b7a5288a7e912bcc036ca3a01a22fad3717985
1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Dead Loop Deletion Pass. This pass is responsible
11 // for eliminating loops with non-infinite computable trip counts that have no
12 // side effects or volatile instructions, and do not contribute to the
13 // computation of the function's return value.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "loop-delete"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/Analysis/LoopPass.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/SmallVector.h"
25 using namespace llvm;
27 STATISTIC(NumDeleted, "Number of loops deleted");
29 namespace {
30 class VISIBILITY_HIDDEN LoopDeletion : public LoopPass {
31 public:
32 static char ID; // Pass ID, replacement for typeid
33 LoopDeletion() : LoopPass(&ID) {}
35 // Possibly eliminate loop L if it is dead.
36 bool runOnLoop(Loop* L, LPPassManager& LPM);
38 bool SingleDominatingExit(Loop* L,
39 SmallVector<BasicBlock*, 4>& exitingBlocks);
40 bool IsLoopDead(Loop* L, SmallVector<BasicBlock*, 4>& exitingBlocks,
41 SmallVector<BasicBlock*, 4>& exitBlocks);
42 bool IsLoopInvariantInst(Instruction *I, Loop* L);
44 virtual void getAnalysisUsage(AnalysisUsage& AU) const {
45 AU.addRequired<ScalarEvolution>();
46 AU.addRequired<DominatorTree>();
47 AU.addRequired<LoopInfo>();
48 AU.addRequiredID(LoopSimplifyID);
49 AU.addRequiredID(LCSSAID);
51 AU.addPreserved<ScalarEvolution>();
52 AU.addPreserved<DominatorTree>();
53 AU.addPreserved<LoopInfo>();
54 AU.addPreservedID(LoopSimplifyID);
55 AU.addPreservedID(LCSSAID);
56 AU.addPreserved<DominanceFrontier>();
61 char LoopDeletion::ID = 0;
62 static RegisterPass<LoopDeletion> X("loop-deletion", "Delete dead loops");
64 Pass* llvm::createLoopDeletionPass() {
65 return new LoopDeletion();
68 /// SingleDominatingExit - Checks that there is only a single blocks that
69 /// branches out of the loop, and that it also g the latch block. Loops
70 /// with multiple or non-latch-dominating exiting blocks could be dead, but we'd
71 /// have to do more extensive analysis to make sure, for instance, that the
72 /// control flow logic involved was or could be made loop-invariant.
73 bool LoopDeletion::SingleDominatingExit(Loop* L,
74 SmallVector<BasicBlock*, 4>& exitingBlocks) {
76 if (exitingBlocks.size() != 1)
77 return false;
79 BasicBlock* latch = L->getLoopLatch();
80 if (!latch)
81 return false;
83 DominatorTree& DT = getAnalysis<DominatorTree>();
84 return DT.dominates(exitingBlocks[0], latch);
87 /// IsLoopInvariantInst - Checks if an instruction is invariant with respect to
88 /// a loop, which is defined as being true if all of its operands are defined
89 /// outside of the loop. These instructions can be hoisted out of the loop
90 /// if their results are needed. This could be made more aggressive by
91 /// recursively checking the operands for invariance, but it's not clear that
92 /// it's worth it.
93 bool LoopDeletion::IsLoopInvariantInst(Instruction *I, Loop* L) {
94 // PHI nodes are not loop invariant if defined in the loop.
95 if (isa<PHINode>(I) && L->contains(I->getParent()))
96 return false;
98 // The instruction is loop invariant if all of its operands are loop-invariant
99 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
100 if (!L->isLoopInvariant(I->getOperand(i)))
101 return false;
103 // If we got this far, the instruction is loop invariant!
104 return true;
107 /// IsLoopDead - Determined if a loop is dead. This assumes that we've already
108 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
109 /// form.
110 bool LoopDeletion::IsLoopDead(Loop* L,
111 SmallVector<BasicBlock*, 4>& exitingBlocks,
112 SmallVector<BasicBlock*, 4>& exitBlocks) {
113 BasicBlock* exitingBlock = exitingBlocks[0];
114 BasicBlock* exitBlock = exitBlocks[0];
116 // Make sure that all PHI entries coming from the loop are loop invariant.
117 // Because the code is in LCSSA form, any values used outside of the loop
118 // must pass through a PHI in the exit block, meaning that this check is
119 // sufficient to guarantee that no loop-variant values are used outside
120 // of the loop.
121 BasicBlock::iterator BI = exitBlock->begin();
122 while (PHINode* P = dyn_cast<PHINode>(BI)) {
123 Value* incoming = P->getIncomingValueForBlock(exitingBlock);
124 if (Instruction* I = dyn_cast<Instruction>(incoming))
125 if (!IsLoopInvariantInst(I, L))
126 return false;
128 BI++;
131 // Make sure that no instructions in the block have potential side-effects.
132 // This includes instructions that could write to memory, and loads that are
133 // marked volatile. This could be made more aggressive by using aliasing
134 // information to identify readonly and readnone calls.
135 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
136 LI != LE; ++LI) {
137 for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
138 BI != BE; ++BI) {
139 if (BI->mayWriteToMemory())
140 return false;
141 else if (LoadInst* L = dyn_cast<LoadInst>(BI))
142 if (L->isVolatile())
143 return false;
147 return true;
150 /// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
151 /// observable behavior of the program other than finite running time. Note
152 /// we do ensure that this never remove a loop that might be infinite, as doing
153 /// so could change the halting/non-halting nature of a program.
154 /// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
155 /// in order to make various safety checks work.
156 bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
157 // We can only remove the loop if there is a preheader that we can
158 // branch from after removing it.
159 BasicBlock* preheader = L->getLoopPreheader();
160 if (!preheader)
161 return false;
163 // We can't remove loops that contain subloops. If the subloops were dead,
164 // they would already have been removed in earlier executions of this pass.
165 if (L->begin() != L->end())
166 return false;
168 SmallVector<BasicBlock*, 4> exitingBlocks;
169 L->getExitingBlocks(exitingBlocks);
171 SmallVector<BasicBlock*, 4> exitBlocks;
172 L->getUniqueExitBlocks(exitBlocks);
174 // We require that the loop only have a single exit block. Otherwise, we'd
175 // be in the situation of needing to be able to solve statically which exit
176 // block will be branched to, or trying to preserve the branching logic in
177 // a loop invariant manner.
178 if (exitBlocks.size() != 1)
179 return false;
181 // Loops with multiple exits or exits that don't dominate the latch
182 // are too complicated to handle correctly.
183 if (!SingleDominatingExit(L, exitingBlocks))
184 return false;
186 // Finally, we have to check that the loop really is dead.
187 if (!IsLoopDead(L, exitingBlocks, exitBlocks))
188 return false;
190 // Don't remove loops for which we can't solve the trip count.
191 // They could be infinite, in which case we'd be changing program behavior.
192 ScalarEvolution& SE = getAnalysis<ScalarEvolution>();
193 SCEVHandle S = SE.getBackedgeTakenCount(L);
194 if (isa<SCEVCouldNotCompute>(S))
195 return false;
197 // Now that we know the removal is safe, remove the loop by changing the
198 // branch from the preheader to go to the single exit block.
199 BasicBlock* exitBlock = exitBlocks[0];
200 BasicBlock* exitingBlock = exitingBlocks[0];
202 // Because we're deleting a large chunk of code at once, the sequence in which
203 // we remove things is very important to avoid invalidation issues. Don't
204 // mess with this unless you have good reason and know what you're doing.
206 // Move simple loop-invariant expressions out of the loop, since they
207 // might be needed by the exit phis.
208 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
209 LI != LE; ++LI)
210 for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
211 BI != BE; ) {
212 Instruction* I = BI++;
213 if (!I->use_empty() && IsLoopInvariantInst(I, L))
214 I->moveBefore(preheader->getTerminator());
217 // Connect the preheader directly to the exit block.
218 TerminatorInst* TI = preheader->getTerminator();
219 TI->replaceUsesOfWith(L->getHeader(), exitBlock);
221 // Rewrite phis in the exit block to get their inputs from
222 // the preheader instead of the exiting block.
223 BasicBlock::iterator BI = exitBlock->begin();
224 while (PHINode* P = dyn_cast<PHINode>(BI)) {
225 P->replaceUsesOfWith(exitingBlock, preheader);
226 BI++;
229 // Update the dominator tree and remove the instructions and blocks that will
230 // be deleted from the reference counting scheme.
231 DominatorTree& DT = getAnalysis<DominatorTree>();
232 DominanceFrontier* DF = getAnalysisIfAvailable<DominanceFrontier>();
233 SmallPtrSet<DomTreeNode*, 8> ChildNodes;
234 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
235 LI != LE; ++LI) {
236 // Move all of the block's children to be children of the preheader, which
237 // allows us to remove the domtree entry for the block.
238 ChildNodes.insert(DT[*LI]->begin(), DT[*LI]->end());
239 for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = ChildNodes.begin(),
240 DE = ChildNodes.end(); DI != DE; ++DI) {
241 DT.changeImmediateDominator(*DI, DT[preheader]);
242 if (DF) DF->changeImmediateDominator((*DI)->getBlock(), preheader, &DT);
245 ChildNodes.clear();
246 DT.eraseNode(*LI);
247 if (DF) DF->removeBlock(*LI);
249 // Remove the block from the reference counting scheme, so that we can
250 // delete it freely later.
251 (*LI)->dropAllReferences();
254 // Tell ScalarEvolution that the loop is deleted. Do this before
255 // deleting the loop so that ScalarEvolution can look at the loop
256 // to determine what it needs to clean up.
257 SE.forgetLoopBackedgeTakenCount(L);
259 // Erase the instructions and the blocks without having to worry
260 // about ordering because we already dropped the references.
261 // NOTE: This iteration is safe because erasing the block does not remove its
262 // entry from the loop's block list. We do that in the next section.
263 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
264 LI != LE; ++LI)
265 (*LI)->eraseFromParent();
267 // Finally, the blocks from loopinfo. This has to happen late because
268 // otherwise our loop iterators won't work.
269 LoopInfo& loopInfo = getAnalysis<LoopInfo>();
270 SmallPtrSet<BasicBlock*, 8> blocks;
271 blocks.insert(L->block_begin(), L->block_end());
272 for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
273 E = blocks.end(); I != E; ++I)
274 loopInfo.removeBlock(*I);
276 // The last step is to inform the loop pass manager that we've
277 // eliminated this loop.
278 LPM.deleteLoopFromQueue(L);
280 NumDeleted++;
282 return true;