Quotes should be printed before private prefix; some code clean up.
[llvm/msp430.git] / lib / Transforms / Scalar / LoopStrengthReduce.cpp
blob4365adc629fcf671dccc48414efe51482750a8e4
1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs a strength reduction on array references inside loops that
11 // have as one or more of their components the loop induction variable.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "loop-reduce"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Type.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/LoopPass.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Support/CFG.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/ValueHandle.h"
36 #include "llvm/Target/TargetLowering.h"
37 #include <algorithm>
38 using namespace llvm;
40 STATISTIC(NumReduced , "Number of IV uses strength reduced");
41 STATISTIC(NumInserted, "Number of PHIs inserted");
42 STATISTIC(NumVariable, "Number of PHIs with variable strides");
43 STATISTIC(NumEliminated, "Number of strides eliminated");
44 STATISTIC(NumShadow, "Number of Shadow IVs optimized");
45 STATISTIC(NumImmSunk, "Number of common expr immediates sunk into uses");
47 static cl::opt<bool> EnableFullLSRMode("enable-full-lsr",
48 cl::init(false),
49 cl::Hidden);
51 namespace {
53 struct BasedUser;
55 /// IVStrideUse - Keep track of one use of a strided induction variable, where
56 /// the stride is stored externally. The Offset member keeps track of the
57 /// offset from the IV, User is the actual user of the operand, and
58 /// 'OperandValToReplace' is the operand of the User that is the use.
59 struct VISIBILITY_HIDDEN IVStrideUse {
60 SCEVHandle Offset;
61 Instruction *User;
62 Value *OperandValToReplace;
64 // isUseOfPostIncrementedValue - True if this should use the
65 // post-incremented version of this IV, not the preincremented version.
66 // This can only be set in special cases, such as the terminating setcc
67 // instruction for a loop or uses dominated by the loop.
68 bool isUseOfPostIncrementedValue;
70 IVStrideUse(const SCEVHandle &Offs, Instruction *U, Value *O)
71 : Offset(Offs), User(U), OperandValToReplace(O),
72 isUseOfPostIncrementedValue(false) {}
75 /// IVUsersOfOneStride - This structure keeps track of all instructions that
76 /// have an operand that is based on the trip count multiplied by some stride.
77 /// The stride for all of these users is common and kept external to this
78 /// structure.
79 struct VISIBILITY_HIDDEN IVUsersOfOneStride {
80 /// Users - Keep track of all of the users of this stride as well as the
81 /// initial value and the operand that uses the IV.
82 std::vector<IVStrideUse> Users;
84 void addUser(const SCEVHandle &Offset,Instruction *User, Value *Operand) {
85 Users.push_back(IVStrideUse(Offset, User, Operand));
89 /// IVInfo - This structure keeps track of one IV expression inserted during
90 /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
91 /// well as the PHI node and increment value created for rewrite.
92 struct VISIBILITY_HIDDEN IVExpr {
93 SCEVHandle Stride;
94 SCEVHandle Base;
95 PHINode *PHI;
97 IVExpr(const SCEVHandle &stride, const SCEVHandle &base, PHINode *phi)
98 : Stride(stride), Base(base), PHI(phi) {}
101 /// IVsOfOneStride - This structure keeps track of all IV expression inserted
102 /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
103 struct VISIBILITY_HIDDEN IVsOfOneStride {
104 std::vector<IVExpr> IVs;
106 void addIV(const SCEVHandle &Stride, const SCEVHandle &Base, PHINode *PHI) {
107 IVs.push_back(IVExpr(Stride, Base, PHI));
111 class VISIBILITY_HIDDEN LoopStrengthReduce : public LoopPass {
112 LoopInfo *LI;
113 DominatorTree *DT;
114 ScalarEvolution *SE;
115 bool Changed;
117 /// IVUsesByStride - Keep track of all uses of induction variables that we
118 /// are interested in. The key of the map is the stride of the access.
119 std::map<SCEVHandle, IVUsersOfOneStride> IVUsesByStride;
121 /// IVsByStride - Keep track of all IVs that have been inserted for a
122 /// particular stride.
123 std::map<SCEVHandle, IVsOfOneStride> IVsByStride;
125 /// StrideOrder - An ordering of the keys in IVUsesByStride that is stable:
126 /// We use this to iterate over the IVUsesByStride collection without being
127 /// dependent on random ordering of pointers in the process.
128 SmallVector<SCEVHandle, 16> StrideOrder;
130 /// DeadInsts - Keep track of instructions we may have made dead, so that
131 /// we can remove them after we are done working.
132 SmallVector<Instruction*, 16> DeadInsts;
134 /// TLI - Keep a pointer of a TargetLowering to consult for determining
135 /// transformation profitability.
136 const TargetLowering *TLI;
138 public:
139 static char ID; // Pass ID, replacement for typeid
140 explicit LoopStrengthReduce(const TargetLowering *tli = NULL) :
141 LoopPass(&ID), TLI(tli) {
144 bool runOnLoop(Loop *L, LPPassManager &LPM);
146 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
147 // We split critical edges, so we change the CFG. However, we do update
148 // many analyses if they are around.
149 AU.addPreservedID(LoopSimplifyID);
150 AU.addPreserved<LoopInfo>();
151 AU.addPreserved<DominanceFrontier>();
152 AU.addPreserved<DominatorTree>();
154 AU.addRequiredID(LoopSimplifyID);
155 AU.addRequired<LoopInfo>();
156 AU.addRequired<DominatorTree>();
157 AU.addRequired<ScalarEvolution>();
158 AU.addPreserved<ScalarEvolution>();
161 private:
162 bool AddUsersIfInteresting(Instruction *I, Loop *L,
163 SmallPtrSet<Instruction*,16> &Processed);
164 ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
165 IVStrideUse* &CondUse,
166 const SCEVHandle* &CondStride);
167 void OptimizeIndvars(Loop *L);
169 /// OptimizeShadowIV - If IV is used in a int-to-float cast
170 /// inside the loop then try to eliminate the cast opeation.
171 void OptimizeShadowIV(Loop *L);
173 /// OptimizeSMax - Rewrite the loop's terminating condition
174 /// if it uses an smax computation.
175 ICmpInst *OptimizeSMax(Loop *L, ICmpInst *Cond,
176 IVStrideUse* &CondUse);
178 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
179 const SCEVHandle *&CondStride);
180 bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
181 SCEVHandle CheckForIVReuse(bool, bool, bool, const SCEVHandle&,
182 IVExpr&, const Type*,
183 const std::vector<BasedUser>& UsersToProcess);
184 bool ValidStride(bool, int64_t,
185 const std::vector<BasedUser>& UsersToProcess);
186 SCEVHandle CollectIVUsers(const SCEVHandle &Stride,
187 IVUsersOfOneStride &Uses,
188 Loop *L,
189 bool &AllUsesAreAddresses,
190 bool &AllUsesAreOutsideLoop,
191 std::vector<BasedUser> &UsersToProcess);
192 bool ShouldUseFullStrengthReductionMode(
193 const std::vector<BasedUser> &UsersToProcess,
194 const Loop *L,
195 bool AllUsesAreAddresses,
196 SCEVHandle Stride);
197 void PrepareToStrengthReduceFully(
198 std::vector<BasedUser> &UsersToProcess,
199 SCEVHandle Stride,
200 SCEVHandle CommonExprs,
201 const Loop *L,
202 SCEVExpander &PreheaderRewriter);
203 void PrepareToStrengthReduceFromSmallerStride(
204 std::vector<BasedUser> &UsersToProcess,
205 Value *CommonBaseV,
206 const IVExpr &ReuseIV,
207 Instruction *PreInsertPt);
208 void PrepareToStrengthReduceWithNewPhi(
209 std::vector<BasedUser> &UsersToProcess,
210 SCEVHandle Stride,
211 SCEVHandle CommonExprs,
212 Value *CommonBaseV,
213 const Loop *L,
214 SCEVExpander &PreheaderRewriter);
215 void StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
216 IVUsersOfOneStride &Uses,
217 Loop *L);
218 void DeleteTriviallyDeadInstructions();
222 char LoopStrengthReduce::ID = 0;
223 static RegisterPass<LoopStrengthReduce>
224 X("loop-reduce", "Loop Strength Reduction");
226 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
227 return new LoopStrengthReduce(TLI);
230 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
231 /// specified set are trivially dead, delete them and see if this makes any of
232 /// their operands subsequently dead.
233 void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
234 if (DeadInsts.empty()) return;
236 // Sort the deadinsts list so that we can trivially eliminate duplicates as we
237 // go. The code below never adds a non-dead instruction to the worklist, but
238 // callers may not be so careful.
239 array_pod_sort(DeadInsts.begin(), DeadInsts.end());
241 // Drop duplicate instructions and those with uses.
242 for (unsigned i = 0, e = DeadInsts.size()-1; i < e; ++i) {
243 Instruction *I = DeadInsts[i];
244 if (!I->use_empty()) DeadInsts[i] = 0;
245 while (i != e && DeadInsts[i+1] == I)
246 DeadInsts[++i] = 0;
249 while (!DeadInsts.empty()) {
250 Instruction *I = DeadInsts.back();
251 DeadInsts.pop_back();
253 if (I == 0 || !isInstructionTriviallyDead(I))
254 continue;
256 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
257 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
258 *OI = 0;
259 if (U->use_empty())
260 DeadInsts.push_back(U);
264 I->eraseFromParent();
265 Changed = true;
269 /// containsAddRecFromDifferentLoop - Determine whether expression S involves a
270 /// subexpression that is an AddRec from a loop other than L. An outer loop
271 /// of L is OK, but not an inner loop nor a disjoint loop.
272 static bool containsAddRecFromDifferentLoop(SCEVHandle S, Loop *L) {
273 // This is very common, put it first.
274 if (isa<SCEVConstant>(S))
275 return false;
276 if (const SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) {
277 for (unsigned int i=0; i< AE->getNumOperands(); i++)
278 if (containsAddRecFromDifferentLoop(AE->getOperand(i), L))
279 return true;
280 return false;
282 if (const SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) {
283 if (const Loop *newLoop = AE->getLoop()) {
284 if (newLoop == L)
285 return false;
286 // if newLoop is an outer loop of L, this is OK.
287 if (!LoopInfoBase<BasicBlock>::isNotAlreadyContainedIn(L, newLoop))
288 return false;
290 return true;
292 if (const SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S))
293 return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
294 containsAddRecFromDifferentLoop(DE->getRHS(), L);
295 #if 0
296 // SCEVSDivExpr has been backed out temporarily, but will be back; we'll
297 // need this when it is.
298 if (const SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S))
299 return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
300 containsAddRecFromDifferentLoop(DE->getRHS(), L);
301 #endif
302 if (const SCEVCastExpr *CE = dyn_cast<SCEVCastExpr>(S))
303 return containsAddRecFromDifferentLoop(CE->getOperand(), L);
304 return false;
307 /// getSCEVStartAndStride - Compute the start and stride of this expression,
308 /// returning false if the expression is not a start/stride pair, or true if it
309 /// is. The stride must be a loop invariant expression, but the start may be
310 /// a mix of loop invariant and loop variant expressions. The start cannot,
311 /// however, contain an AddRec from a different loop, unless that loop is an
312 /// outer loop of the current loop.
313 static bool getSCEVStartAndStride(const SCEVHandle &SH, Loop *L,
314 SCEVHandle &Start, SCEVHandle &Stride,
315 ScalarEvolution *SE, DominatorTree *DT) {
316 SCEVHandle TheAddRec = Start; // Initialize to zero.
318 // If the outer level is an AddExpr, the operands are all start values except
319 // for a nested AddRecExpr.
320 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(SH)) {
321 for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i)
322 if (const SCEVAddRecExpr *AddRec =
323 dyn_cast<SCEVAddRecExpr>(AE->getOperand(i))) {
324 if (AddRec->getLoop() == L)
325 TheAddRec = SE->getAddExpr(AddRec, TheAddRec);
326 else
327 return false; // Nested IV of some sort?
328 } else {
329 Start = SE->getAddExpr(Start, AE->getOperand(i));
332 } else if (isa<SCEVAddRecExpr>(SH)) {
333 TheAddRec = SH;
334 } else {
335 return false; // not analyzable.
338 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(TheAddRec);
339 if (!AddRec || AddRec->getLoop() != L) return false;
341 // FIXME: Generalize to non-affine IV's.
342 if (!AddRec->isAffine()) return false;
344 // If Start contains an SCEVAddRecExpr from a different loop, other than an
345 // outer loop of the current loop, reject it. SCEV has no concept of
346 // operating on more than one loop at a time so don't confuse it with such
347 // expressions.
348 if (containsAddRecFromDifferentLoop(AddRec->getOperand(0), L))
349 return false;
351 Start = SE->getAddExpr(Start, AddRec->getOperand(0));
353 if (!isa<SCEVConstant>(AddRec->getOperand(1))) {
354 // If stride is an instruction, make sure it dominates the loop preheader.
355 // Otherwise we could end up with a use before def situation.
356 BasicBlock *Preheader = L->getLoopPreheader();
357 if (!AddRec->getOperand(1)->dominates(Preheader, DT))
358 return false;
360 DOUT << "[" << L->getHeader()->getName()
361 << "] Variable stride: " << *AddRec << "\n";
364 Stride = AddRec->getOperand(1);
365 return true;
368 /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
369 /// and now we need to decide whether the user should use the preinc or post-inc
370 /// value. If this user should use the post-inc version of the IV, return true.
372 /// Choosing wrong here can break dominance properties (if we choose to use the
373 /// post-inc value when we cannot) or it can end up adding extra live-ranges to
374 /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
375 /// should use the post-inc value).
376 static bool IVUseShouldUsePostIncValue(Instruction *User, Instruction *IV,
377 Loop *L, DominatorTree *DT, Pass *P,
378 SmallVectorImpl<Instruction*> &DeadInsts){
379 // If the user is in the loop, use the preinc value.
380 if (L->contains(User->getParent())) return false;
382 BasicBlock *LatchBlock = L->getLoopLatch();
384 // Ok, the user is outside of the loop. If it is dominated by the latch
385 // block, use the post-inc value.
386 if (DT->dominates(LatchBlock, User->getParent()))
387 return true;
389 // There is one case we have to be careful of: PHI nodes. These little guys
390 // can live in blocks that do not dominate the latch block, but (since their
391 // uses occur in the predecessor block, not the block the PHI lives in) should
392 // still use the post-inc value. Check for this case now.
393 PHINode *PN = dyn_cast<PHINode>(User);
394 if (!PN) return false; // not a phi, not dominated by latch block.
396 // Look at all of the uses of IV by the PHI node. If any use corresponds to
397 // a block that is not dominated by the latch block, give up and use the
398 // preincremented value.
399 unsigned NumUses = 0;
400 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
401 if (PN->getIncomingValue(i) == IV) {
402 ++NumUses;
403 if (!DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
404 return false;
407 // Okay, all uses of IV by PN are in predecessor blocks that really are
408 // dominated by the latch block. Use the post-incremented value.
409 return true;
412 /// isAddressUse - Returns true if the specified instruction is using the
413 /// specified value as an address.
414 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
415 bool isAddress = isa<LoadInst>(Inst);
416 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
417 if (SI->getOperand(1) == OperandVal)
418 isAddress = true;
419 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
420 // Addressing modes can also be folded into prefetches and a variety
421 // of intrinsics.
422 switch (II->getIntrinsicID()) {
423 default: break;
424 case Intrinsic::prefetch:
425 case Intrinsic::x86_sse2_loadu_dq:
426 case Intrinsic::x86_sse2_loadu_pd:
427 case Intrinsic::x86_sse_loadu_ps:
428 case Intrinsic::x86_sse_storeu_ps:
429 case Intrinsic::x86_sse2_storeu_pd:
430 case Intrinsic::x86_sse2_storeu_dq:
431 case Intrinsic::x86_sse2_storel_dq:
432 if (II->getOperand(1) == OperandVal)
433 isAddress = true;
434 break;
437 return isAddress;
440 /// getAccessType - Return the type of the memory being accessed.
441 static const Type *getAccessType(const Instruction *Inst) {
442 const Type *UseTy = Inst->getType();
443 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
444 UseTy = SI->getOperand(0)->getType();
445 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
446 // Addressing modes can also be folded into prefetches and a variety
447 // of intrinsics.
448 switch (II->getIntrinsicID()) {
449 default: break;
450 case Intrinsic::x86_sse_storeu_ps:
451 case Intrinsic::x86_sse2_storeu_pd:
452 case Intrinsic::x86_sse2_storeu_dq:
453 case Intrinsic::x86_sse2_storel_dq:
454 UseTy = II->getOperand(1)->getType();
455 break;
458 return UseTy;
461 /// AddUsersIfInteresting - Inspect the specified instruction. If it is a
462 /// reducible SCEV, recursively add its users to the IVUsesByStride set and
463 /// return true. Otherwise, return false.
464 bool LoopStrengthReduce::AddUsersIfInteresting(Instruction *I, Loop *L,
465 SmallPtrSet<Instruction*,16> &Processed) {
466 if (!SE->isSCEVable(I->getType()))
467 return false; // Void and FP expressions cannot be reduced.
469 // LSR is not APInt clean, do not touch integers bigger than 64-bits.
470 if (SE->getTypeSizeInBits(I->getType()) > 64)
471 return false;
473 if (!Processed.insert(I))
474 return true; // Instruction already handled.
476 // Get the symbolic expression for this instruction.
477 SCEVHandle ISE = SE->getSCEV(I);
478 if (isa<SCEVCouldNotCompute>(ISE)) return false;
480 // Get the start and stride for this expression.
481 SCEVHandle Start = SE->getIntegerSCEV(0, ISE->getType());
482 SCEVHandle Stride = Start;
483 if (!getSCEVStartAndStride(ISE, L, Start, Stride, SE, DT))
484 return false; // Non-reducible symbolic expression, bail out.
486 std::vector<Instruction *> IUsers;
487 // Collect all I uses now because IVUseShouldUsePostIncValue may
488 // invalidate use_iterator.
489 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
490 IUsers.push_back(cast<Instruction>(*UI));
492 for (unsigned iused_index = 0, iused_size = IUsers.size();
493 iused_index != iused_size; ++iused_index) {
495 Instruction *User = IUsers[iused_index];
497 // Do not infinitely recurse on PHI nodes.
498 if (isa<PHINode>(User) && Processed.count(User))
499 continue;
501 // Descend recursively, but not into PHI nodes outside the current loop.
502 // It's important to see the entire expression outside the loop to get
503 // choices that depend on addressing mode use right, although we won't
504 // consider references ouside the loop in all cases.
505 // If User is already in Processed, we don't want to recurse into it again,
506 // but do want to record a second reference in the same instruction.
507 bool AddUserToIVUsers = false;
508 if (LI->getLoopFor(User->getParent()) != L) {
509 if (isa<PHINode>(User) || Processed.count(User) ||
510 !AddUsersIfInteresting(User, L, Processed)) {
511 DOUT << "FOUND USER in other loop: " << *User
512 << " OF SCEV: " << *ISE << "\n";
513 AddUserToIVUsers = true;
515 } else if (Processed.count(User) ||
516 !AddUsersIfInteresting(User, L, Processed)) {
517 DOUT << "FOUND USER: " << *User
518 << " OF SCEV: " << *ISE << "\n";
519 AddUserToIVUsers = true;
522 if (AddUserToIVUsers) {
523 IVUsersOfOneStride &StrideUses = IVUsesByStride[Stride];
524 if (StrideUses.Users.empty()) // First occurrence of this stride?
525 StrideOrder.push_back(Stride);
527 // Okay, we found a user that we cannot reduce. Analyze the instruction
528 // and decide what to do with it. If we are a use inside of the loop, use
529 // the value before incrementation, otherwise use it after incrementation.
530 if (IVUseShouldUsePostIncValue(User, I, L, DT, this, DeadInsts)) {
531 // The value used will be incremented by the stride more than we are
532 // expecting, so subtract this off.
533 SCEVHandle NewStart = SE->getMinusSCEV(Start, Stride);
534 StrideUses.addUser(NewStart, User, I);
535 StrideUses.Users.back().isUseOfPostIncrementedValue = true;
536 DOUT << " USING POSTINC SCEV, START=" << *NewStart<< "\n";
537 } else {
538 StrideUses.addUser(Start, User, I);
542 return true;
545 namespace {
546 /// BasedUser - For a particular base value, keep information about how we've
547 /// partitioned the expression so far.
548 struct BasedUser {
549 /// SE - The current ScalarEvolution object.
550 ScalarEvolution *SE;
552 /// Base - The Base value for the PHI node that needs to be inserted for
553 /// this use. As the use is processed, information gets moved from this
554 /// field to the Imm field (below). BasedUser values are sorted by this
555 /// field.
556 SCEVHandle Base;
558 /// Inst - The instruction using the induction variable.
559 Instruction *Inst;
561 /// OperandValToReplace - The operand value of Inst to replace with the
562 /// EmittedBase.
563 Value *OperandValToReplace;
565 /// Imm - The immediate value that should be added to the base immediately
566 /// before Inst, because it will be folded into the imm field of the
567 /// instruction. This is also sometimes used for loop-variant values that
568 /// must be added inside the loop.
569 SCEVHandle Imm;
571 /// Phi - The induction variable that performs the striding that
572 /// should be used for this user.
573 PHINode *Phi;
575 // isUseOfPostIncrementedValue - True if this should use the
576 // post-incremented version of this IV, not the preincremented version.
577 // This can only be set in special cases, such as the terminating setcc
578 // instruction for a loop and uses outside the loop that are dominated by
579 // the loop.
580 bool isUseOfPostIncrementedValue;
582 BasedUser(IVStrideUse &IVSU, ScalarEvolution *se)
583 : SE(se), Base(IVSU.Offset), Inst(IVSU.User),
584 OperandValToReplace(IVSU.OperandValToReplace),
585 Imm(SE->getIntegerSCEV(0, Base->getType())),
586 isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue) {}
588 // Once we rewrite the code to insert the new IVs we want, update the
589 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
590 // to it.
591 void RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
592 Instruction *InsertPt,
593 SCEVExpander &Rewriter, Loop *L, Pass *P,
594 SmallVectorImpl<Instruction*> &DeadInsts);
596 Value *InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
597 const Type *Ty,
598 SCEVExpander &Rewriter,
599 Instruction *IP, Loop *L);
600 void dump() const;
604 void BasedUser::dump() const {
605 cerr << " Base=" << *Base;
606 cerr << " Imm=" << *Imm;
607 cerr << " Inst: " << *Inst;
610 Value *BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
611 const Type *Ty,
612 SCEVExpander &Rewriter,
613 Instruction *IP, Loop *L) {
614 // Figure out where we *really* want to insert this code. In particular, if
615 // the user is inside of a loop that is nested inside of L, we really don't
616 // want to insert this expression before the user, we'd rather pull it out as
617 // many loops as possible.
618 LoopInfo &LI = Rewriter.getLoopInfo();
619 Instruction *BaseInsertPt = IP;
621 // Figure out the most-nested loop that IP is in.
622 Loop *InsertLoop = LI.getLoopFor(IP->getParent());
624 // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
625 // the preheader of the outer-most loop where NewBase is not loop invariant.
626 if (L->contains(IP->getParent()))
627 while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) {
628 BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator();
629 InsertLoop = InsertLoop->getParentLoop();
632 Value *Base = Rewriter.expandCodeFor(NewBase, Ty, BaseInsertPt);
634 // If there is no immediate value, skip the next part.
635 if (Imm->isZero())
636 return Base;
638 // If we are inserting the base and imm values in the same block, make sure to
639 // adjust the IP position if insertion reused a result.
640 if (IP == BaseInsertPt)
641 IP = Rewriter.getInsertionPoint();
643 // Always emit the immediate (if non-zero) into the same block as the user.
644 SCEVHandle NewValSCEV = SE->getAddExpr(SE->getUnknown(Base), Imm);
645 return Rewriter.expandCodeFor(NewValSCEV, Ty, IP);
649 // Once we rewrite the code to insert the new IVs we want, update the
650 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
651 // to it. NewBasePt is the last instruction which contributes to the
652 // value of NewBase in the case that it's a diffferent instruction from
653 // the PHI that NewBase is computed from, or null otherwise.
655 void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
656 Instruction *NewBasePt,
657 SCEVExpander &Rewriter, Loop *L, Pass *P,
658 SmallVectorImpl<Instruction*> &DeadInsts){
659 if (!isa<PHINode>(Inst)) {
660 // By default, insert code at the user instruction.
661 BasicBlock::iterator InsertPt = Inst;
663 // However, if the Operand is itself an instruction, the (potentially
664 // complex) inserted code may be shared by many users. Because of this, we
665 // want to emit code for the computation of the operand right before its old
666 // computation. This is usually safe, because we obviously used to use the
667 // computation when it was computed in its current block. However, in some
668 // cases (e.g. use of a post-incremented induction variable) the NewBase
669 // value will be pinned to live somewhere after the original computation.
670 // In this case, we have to back off.
672 // If this is a use outside the loop (which means after, since it is based
673 // on a loop indvar) we use the post-incremented value, so that we don't
674 // artificially make the preinc value live out the bottom of the loop.
675 if (!isUseOfPostIncrementedValue && L->contains(Inst->getParent())) {
676 if (NewBasePt && isa<PHINode>(OperandValToReplace)) {
677 InsertPt = NewBasePt;
678 ++InsertPt;
679 } else if (Instruction *OpInst
680 = dyn_cast<Instruction>(OperandValToReplace)) {
681 InsertPt = OpInst;
682 while (isa<PHINode>(InsertPt)) ++InsertPt;
685 Value *NewVal = InsertCodeForBaseAtPosition(NewBase,
686 OperandValToReplace->getType(),
687 Rewriter, InsertPt, L);
688 // Replace the use of the operand Value with the new Phi we just created.
689 Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
691 DOUT << " Replacing with ";
692 DEBUG(WriteAsOperand(*DOUT, NewVal, /*PrintType=*/false));
693 DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n";
694 return;
697 // PHI nodes are more complex. We have to insert one copy of the NewBase+Imm
698 // expression into each operand block that uses it. Note that PHI nodes can
699 // have multiple entries for the same predecessor. We use a map to make sure
700 // that a PHI node only has a single Value* for each predecessor (which also
701 // prevents us from inserting duplicate code in some blocks).
702 DenseMap<BasicBlock*, Value*> InsertedCode;
703 PHINode *PN = cast<PHINode>(Inst);
704 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
705 if (PN->getIncomingValue(i) == OperandValToReplace) {
706 // If the original expression is outside the loop, put the replacement
707 // code in the same place as the original expression,
708 // which need not be an immediate predecessor of this PHI. This way we
709 // need only one copy of it even if it is referenced multiple times in
710 // the PHI. We don't do this when the original expression is inside the
711 // loop because multiple copies sometimes do useful sinking of code in
712 // that case(?).
713 Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
714 if (L->contains(OldLoc->getParent())) {
715 // If this is a critical edge, split the edge so that we do not insert
716 // the code on all predecessor/successor paths. We do this unless this
717 // is the canonical backedge for this loop, as this can make some
718 // inserted code be in an illegal position.
719 BasicBlock *PHIPred = PN->getIncomingBlock(i);
720 if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
721 (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
723 // First step, split the critical edge.
724 SplitCriticalEdge(PHIPred, PN->getParent(), P, false);
726 // Next step: move the basic block. In particular, if the PHI node
727 // is outside of the loop, and PredTI is in the loop, we want to
728 // move the block to be immediately before the PHI block, not
729 // immediately after PredTI.
730 if (L->contains(PHIPred) && !L->contains(PN->getParent())) {
731 BasicBlock *NewBB = PN->getIncomingBlock(i);
732 NewBB->moveBefore(PN->getParent());
735 // Splitting the edge can reduce the number of PHI entries we have.
736 e = PN->getNumIncomingValues();
739 Value *&Code = InsertedCode[PN->getIncomingBlock(i)];
740 if (!Code) {
741 // Insert the code into the end of the predecessor block.
742 Instruction *InsertPt = (L->contains(OldLoc->getParent())) ?
743 PN->getIncomingBlock(i)->getTerminator() :
744 OldLoc->getParent()->getTerminator();
745 Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(),
746 Rewriter, InsertPt, L);
748 DOUT << " Changing PHI use to ";
749 DEBUG(WriteAsOperand(*DOUT, Code, /*PrintType=*/false));
750 DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n";
753 // Replace the use of the operand Value with the new Phi we just created.
754 PN->setIncomingValue(i, Code);
755 Rewriter.clear();
759 // PHI node might have become a constant value after SplitCriticalEdge.
760 DeadInsts.push_back(Inst);
764 /// fitsInAddressMode - Return true if V can be subsumed within an addressing
765 /// mode, and does not need to be put in a register first.
766 static bool fitsInAddressMode(const SCEVHandle &V, const Type *UseTy,
767 const TargetLowering *TLI, bool HasBaseReg) {
768 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
769 int64_t VC = SC->getValue()->getSExtValue();
770 if (TLI) {
771 TargetLowering::AddrMode AM;
772 AM.BaseOffs = VC;
773 AM.HasBaseReg = HasBaseReg;
774 return TLI->isLegalAddressingMode(AM, UseTy);
775 } else {
776 // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
777 return (VC > -(1 << 16) && VC < (1 << 16)-1);
781 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
782 if (GlobalValue *GV = dyn_cast<GlobalValue>(SU->getValue())) {
783 if (TLI) {
784 TargetLowering::AddrMode AM;
785 AM.BaseGV = GV;
786 AM.HasBaseReg = HasBaseReg;
787 return TLI->isLegalAddressingMode(AM, UseTy);
788 } else {
789 // Default: assume global addresses are not legal.
793 return false;
796 /// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
797 /// loop varying to the Imm operand.
798 static void MoveLoopVariantsToImmediateField(SCEVHandle &Val, SCEVHandle &Imm,
799 Loop *L, ScalarEvolution *SE) {
800 if (Val->isLoopInvariant(L)) return; // Nothing to do.
802 if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
803 std::vector<SCEVHandle> NewOps;
804 NewOps.reserve(SAE->getNumOperands());
806 for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
807 if (!SAE->getOperand(i)->isLoopInvariant(L)) {
808 // If this is a loop-variant expression, it must stay in the immediate
809 // field of the expression.
810 Imm = SE->getAddExpr(Imm, SAE->getOperand(i));
811 } else {
812 NewOps.push_back(SAE->getOperand(i));
815 if (NewOps.empty())
816 Val = SE->getIntegerSCEV(0, Val->getType());
817 else
818 Val = SE->getAddExpr(NewOps);
819 } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
820 // Try to pull immediates out of the start value of nested addrec's.
821 SCEVHandle Start = SARE->getStart();
822 MoveLoopVariantsToImmediateField(Start, Imm, L, SE);
824 std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
825 Ops[0] = Start;
826 Val = SE->getAddRecExpr(Ops, SARE->getLoop());
827 } else {
828 // Otherwise, all of Val is variant, move the whole thing over.
829 Imm = SE->getAddExpr(Imm, Val);
830 Val = SE->getIntegerSCEV(0, Val->getType());
835 /// MoveImmediateValues - Look at Val, and pull out any additions of constants
836 /// that can fit into the immediate field of instructions in the target.
837 /// Accumulate these immediate values into the Imm value.
838 static void MoveImmediateValues(const TargetLowering *TLI,
839 const Type *UseTy,
840 SCEVHandle &Val, SCEVHandle &Imm,
841 bool isAddress, Loop *L,
842 ScalarEvolution *SE) {
843 if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
844 std::vector<SCEVHandle> NewOps;
845 NewOps.reserve(SAE->getNumOperands());
847 for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
848 SCEVHandle NewOp = SAE->getOperand(i);
849 MoveImmediateValues(TLI, UseTy, NewOp, Imm, isAddress, L, SE);
851 if (!NewOp->isLoopInvariant(L)) {
852 // If this is a loop-variant expression, it must stay in the immediate
853 // field of the expression.
854 Imm = SE->getAddExpr(Imm, NewOp);
855 } else {
856 NewOps.push_back(NewOp);
860 if (NewOps.empty())
861 Val = SE->getIntegerSCEV(0, Val->getType());
862 else
863 Val = SE->getAddExpr(NewOps);
864 return;
865 } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
866 // Try to pull immediates out of the start value of nested addrec's.
867 SCEVHandle Start = SARE->getStart();
868 MoveImmediateValues(TLI, UseTy, Start, Imm, isAddress, L, SE);
870 if (Start != SARE->getStart()) {
871 std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
872 Ops[0] = Start;
873 Val = SE->getAddRecExpr(Ops, SARE->getLoop());
875 return;
876 } else if (const SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
877 // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
878 if (isAddress && fitsInAddressMode(SME->getOperand(0), UseTy, TLI, false) &&
879 SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {
881 SCEVHandle SubImm = SE->getIntegerSCEV(0, Val->getType());
882 SCEVHandle NewOp = SME->getOperand(1);
883 MoveImmediateValues(TLI, UseTy, NewOp, SubImm, isAddress, L, SE);
885 // If we extracted something out of the subexpressions, see if we can
886 // simplify this!
887 if (NewOp != SME->getOperand(1)) {
888 // Scale SubImm up by "8". If the result is a target constant, we are
889 // good.
890 SubImm = SE->getMulExpr(SubImm, SME->getOperand(0));
891 if (fitsInAddressMode(SubImm, UseTy, TLI, false)) {
892 // Accumulate the immediate.
893 Imm = SE->getAddExpr(Imm, SubImm);
895 // Update what is left of 'Val'.
896 Val = SE->getMulExpr(SME->getOperand(0), NewOp);
897 return;
903 // Loop-variant expressions must stay in the immediate field of the
904 // expression.
905 if ((isAddress && fitsInAddressMode(Val, UseTy, TLI, false)) ||
906 !Val->isLoopInvariant(L)) {
907 Imm = SE->getAddExpr(Imm, Val);
908 Val = SE->getIntegerSCEV(0, Val->getType());
909 return;
912 // Otherwise, no immediates to move.
915 static void MoveImmediateValues(const TargetLowering *TLI,
916 Instruction *User,
917 SCEVHandle &Val, SCEVHandle &Imm,
918 bool isAddress, Loop *L,
919 ScalarEvolution *SE) {
920 const Type *UseTy = getAccessType(User);
921 MoveImmediateValues(TLI, UseTy, Val, Imm, isAddress, L, SE);
924 /// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
925 /// added together. This is used to reassociate common addition subexprs
926 /// together for maximal sharing when rewriting bases.
927 static void SeparateSubExprs(std::vector<SCEVHandle> &SubExprs,
928 SCEVHandle Expr,
929 ScalarEvolution *SE) {
930 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
931 for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
932 SeparateSubExprs(SubExprs, AE->getOperand(j), SE);
933 } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
934 SCEVHandle Zero = SE->getIntegerSCEV(0, Expr->getType());
935 if (SARE->getOperand(0) == Zero) {
936 SubExprs.push_back(Expr);
937 } else {
938 // Compute the addrec with zero as its base.
939 std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
940 Ops[0] = Zero; // Start with zero base.
941 SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop()));
944 SeparateSubExprs(SubExprs, SARE->getOperand(0), SE);
946 } else if (!Expr->isZero()) {
947 // Do not add zero.
948 SubExprs.push_back(Expr);
952 // This is logically local to the following function, but C++ says we have
953 // to make it file scope.
954 struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
956 /// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
957 /// the Uses, removing any common subexpressions, except that if all such
958 /// subexpressions can be folded into an addressing mode for all uses inside
959 /// the loop (this case is referred to as "free" in comments herein) we do
960 /// not remove anything. This looks for things like (a+b+c) and
961 /// (a+c+d) and computes the common (a+c) subexpression. The common expression
962 /// is *removed* from the Bases and returned.
963 static SCEVHandle
964 RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
965 ScalarEvolution *SE, Loop *L,
966 const TargetLowering *TLI) {
967 unsigned NumUses = Uses.size();
969 // Only one use? This is a very common case, so we handle it specially and
970 // cheaply.
971 SCEVHandle Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
972 SCEVHandle Result = Zero;
973 SCEVHandle FreeResult = Zero;
974 if (NumUses == 1) {
975 // If the use is inside the loop, use its base, regardless of what it is:
976 // it is clearly shared across all the IV's. If the use is outside the loop
977 // (which means after it) we don't want to factor anything *into* the loop,
978 // so just use 0 as the base.
979 if (L->contains(Uses[0].Inst->getParent()))
980 std::swap(Result, Uses[0].Base);
981 return Result;
984 // To find common subexpressions, count how many of Uses use each expression.
985 // If any subexpressions are used Uses.size() times, they are common.
986 // Also track whether all uses of each expression can be moved into an
987 // an addressing mode "for free"; such expressions are left within the loop.
988 // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
989 std::map<SCEVHandle, SubExprUseData> SubExpressionUseData;
991 // UniqueSubExprs - Keep track of all of the subexpressions we see in the
992 // order we see them.
993 std::vector<SCEVHandle> UniqueSubExprs;
995 std::vector<SCEVHandle> SubExprs;
996 unsigned NumUsesInsideLoop = 0;
997 for (unsigned i = 0; i != NumUses; ++i) {
998 // If the user is outside the loop, just ignore it for base computation.
999 // Since the user is outside the loop, it must be *after* the loop (if it
1000 // were before, it could not be based on the loop IV). We don't want users
1001 // after the loop to affect base computation of values *inside* the loop,
1002 // because we can always add their offsets to the result IV after the loop
1003 // is done, ensuring we get good code inside the loop.
1004 if (!L->contains(Uses[i].Inst->getParent()))
1005 continue;
1006 NumUsesInsideLoop++;
1008 // If the base is zero (which is common), return zero now, there are no
1009 // CSEs we can find.
1010 if (Uses[i].Base == Zero) return Zero;
1012 // If this use is as an address we may be able to put CSEs in the addressing
1013 // mode rather than hoisting them.
1014 bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace);
1015 // We may need the UseTy below, but only when isAddrUse, so compute it
1016 // only in that case.
1017 const Type *UseTy = 0;
1018 if (isAddrUse)
1019 UseTy = getAccessType(Uses[i].Inst);
1021 // Split the expression into subexprs.
1022 SeparateSubExprs(SubExprs, Uses[i].Base, SE);
1023 // Add one to SubExpressionUseData.Count for each subexpr present, and
1024 // if the subexpr is not a valid immediate within an addressing mode use,
1025 // set SubExpressionUseData.notAllUsesAreFree. We definitely want to
1026 // hoist these out of the loop (if they are common to all uses).
1027 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
1028 if (++SubExpressionUseData[SubExprs[j]].Count == 1)
1029 UniqueSubExprs.push_back(SubExprs[j]);
1030 if (!isAddrUse || !fitsInAddressMode(SubExprs[j], UseTy, TLI, false))
1031 SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true;
1033 SubExprs.clear();
1036 // Now that we know how many times each is used, build Result. Iterate over
1037 // UniqueSubexprs so that we have a stable ordering.
1038 for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
1039 std::map<SCEVHandle, SubExprUseData>::iterator I =
1040 SubExpressionUseData.find(UniqueSubExprs[i]);
1041 assert(I != SubExpressionUseData.end() && "Entry not found?");
1042 if (I->second.Count == NumUsesInsideLoop) { // Found CSE!
1043 if (I->second.notAllUsesAreFree)
1044 Result = SE->getAddExpr(Result, I->first);
1045 else
1046 FreeResult = SE->getAddExpr(FreeResult, I->first);
1047 } else
1048 // Remove non-cse's from SubExpressionUseData.
1049 SubExpressionUseData.erase(I);
1052 if (FreeResult != Zero) {
1053 // We have some subexpressions that can be subsumed into addressing
1054 // modes in every use inside the loop. However, it's possible that
1055 // there are so many of them that the combined FreeResult cannot
1056 // be subsumed, or that the target cannot handle both a FreeResult
1057 // and a Result in the same instruction (for example because it would
1058 // require too many registers). Check this.
1059 for (unsigned i=0; i<NumUses; ++i) {
1060 if (!L->contains(Uses[i].Inst->getParent()))
1061 continue;
1062 // We know this is an addressing mode use; if there are any uses that
1063 // are not, FreeResult would be Zero.
1064 const Type *UseTy = getAccessType(Uses[i].Inst);
1065 if (!fitsInAddressMode(FreeResult, UseTy, TLI, Result!=Zero)) {
1066 // FIXME: could split up FreeResult into pieces here, some hoisted
1067 // and some not. There is no obvious advantage to this.
1068 Result = SE->getAddExpr(Result, FreeResult);
1069 FreeResult = Zero;
1070 break;
1075 // If we found no CSE's, return now.
1076 if (Result == Zero) return Result;
1078 // If we still have a FreeResult, remove its subexpressions from
1079 // SubExpressionUseData. This means they will remain in the use Bases.
1080 if (FreeResult != Zero) {
1081 SeparateSubExprs(SubExprs, FreeResult, SE);
1082 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
1083 std::map<SCEVHandle, SubExprUseData>::iterator I =
1084 SubExpressionUseData.find(SubExprs[j]);
1085 SubExpressionUseData.erase(I);
1087 SubExprs.clear();
1090 // Otherwise, remove all of the CSE's we found from each of the base values.
1091 for (unsigned i = 0; i != NumUses; ++i) {
1092 // Uses outside the loop don't necessarily include the common base, but
1093 // the final IV value coming into those uses does. Instead of trying to
1094 // remove the pieces of the common base, which might not be there,
1095 // subtract off the base to compensate for this.
1096 if (!L->contains(Uses[i].Inst->getParent())) {
1097 Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result);
1098 continue;
1101 // Split the expression into subexprs.
1102 SeparateSubExprs(SubExprs, Uses[i].Base, SE);
1104 // Remove any common subexpressions.
1105 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
1106 if (SubExpressionUseData.count(SubExprs[j])) {
1107 SubExprs.erase(SubExprs.begin()+j);
1108 --j; --e;
1111 // Finally, add the non-shared expressions together.
1112 if (SubExprs.empty())
1113 Uses[i].Base = Zero;
1114 else
1115 Uses[i].Base = SE->getAddExpr(SubExprs);
1116 SubExprs.clear();
1119 return Result;
1122 /// ValidStride - Check whether the given Scale is valid for all loads and
1123 /// stores in UsersToProcess.
1125 bool LoopStrengthReduce::ValidStride(bool HasBaseReg,
1126 int64_t Scale,
1127 const std::vector<BasedUser>& UsersToProcess) {
1128 if (!TLI)
1129 return true;
1131 for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
1132 // If this is a load or other access, pass the type of the access in.
1133 const Type *AccessTy = Type::VoidTy;
1134 if (isAddressUse(UsersToProcess[i].Inst,
1135 UsersToProcess[i].OperandValToReplace))
1136 AccessTy = getAccessType(UsersToProcess[i].Inst);
1137 else if (isa<PHINode>(UsersToProcess[i].Inst))
1138 continue;
1140 TargetLowering::AddrMode AM;
1141 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
1142 AM.BaseOffs = SC->getValue()->getSExtValue();
1143 AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
1144 AM.Scale = Scale;
1146 // If load[imm+r*scale] is illegal, bail out.
1147 if (!TLI->isLegalAddressingMode(AM, AccessTy))
1148 return false;
1150 return true;
1153 /// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
1154 /// a nop.
1155 bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
1156 const Type *Ty2) {
1157 if (Ty1 == Ty2)
1158 return false;
1159 Ty1 = SE->getEffectiveSCEVType(Ty1);
1160 Ty2 = SE->getEffectiveSCEVType(Ty2);
1161 if (Ty1 == Ty2)
1162 return false;
1163 if (Ty1->canLosslesslyBitCastTo(Ty2))
1164 return false;
1165 if (TLI && TLI->isTruncateFree(Ty1, Ty2))
1166 return false;
1167 return true;
1170 /// CheckForIVReuse - Returns the multiple if the stride is the multiple
1171 /// of a previous stride and it is a legal value for the target addressing
1172 /// mode scale component and optional base reg. This allows the users of
1173 /// this stride to be rewritten as prev iv * factor. It returns 0 if no
1174 /// reuse is possible. Factors can be negative on same targets, e.g. ARM.
1176 /// If all uses are outside the loop, we don't require that all multiplies
1177 /// be folded into the addressing mode, nor even that the factor be constant;
1178 /// a multiply (executed once) outside the loop is better than another IV
1179 /// within. Well, usually.
1180 SCEVHandle LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
1181 bool AllUsesAreAddresses,
1182 bool AllUsesAreOutsideLoop,
1183 const SCEVHandle &Stride,
1184 IVExpr &IV, const Type *Ty,
1185 const std::vector<BasedUser>& UsersToProcess) {
1186 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
1187 int64_t SInt = SC->getValue()->getSExtValue();
1188 for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e;
1189 ++NewStride) {
1190 std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
1191 IVsByStride.find(StrideOrder[NewStride]);
1192 if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
1193 continue;
1194 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1195 if (SI->first != Stride &&
1196 (unsigned(abs(SInt)) < SSInt || (SInt % SSInt) != 0))
1197 continue;
1198 int64_t Scale = SInt / SSInt;
1199 // Check that this stride is valid for all the types used for loads and
1200 // stores; if it can be used for some and not others, we might as well use
1201 // the original stride everywhere, since we have to create the IV for it
1202 // anyway. If the scale is 1, then we don't need to worry about folding
1203 // multiplications.
1204 if (Scale == 1 ||
1205 (AllUsesAreAddresses &&
1206 ValidStride(HasBaseReg, Scale, UsersToProcess)))
1207 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1208 IE = SI->second.IVs.end(); II != IE; ++II)
1209 // FIXME: Only handle base == 0 for now.
1210 // Only reuse previous IV if it would not require a type conversion.
1211 if (II->Base->isZero() &&
1212 !RequiresTypeConversion(II->Base->getType(), Ty)) {
1213 IV = *II;
1214 return SE->getIntegerSCEV(Scale, Stride->getType());
1217 } else if (AllUsesAreOutsideLoop) {
1218 // Accept nonconstant strides here; it is really really right to substitute
1219 // an existing IV if we can.
1220 for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e;
1221 ++NewStride) {
1222 std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
1223 IVsByStride.find(StrideOrder[NewStride]);
1224 if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
1225 continue;
1226 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1227 if (SI->first != Stride && SSInt != 1)
1228 continue;
1229 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1230 IE = SI->second.IVs.end(); II != IE; ++II)
1231 // Accept nonzero base here.
1232 // Only reuse previous IV if it would not require a type conversion.
1233 if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
1234 IV = *II;
1235 return Stride;
1238 // Special case, old IV is -1*x and this one is x. Can treat this one as
1239 // -1*old.
1240 for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e;
1241 ++NewStride) {
1242 std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
1243 IVsByStride.find(StrideOrder[NewStride]);
1244 if (SI == IVsByStride.end())
1245 continue;
1246 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first))
1247 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0)))
1248 if (Stride == ME->getOperand(1) &&
1249 SC->getValue()->getSExtValue() == -1LL)
1250 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1251 IE = SI->second.IVs.end(); II != IE; ++II)
1252 // Accept nonzero base here.
1253 // Only reuse previous IV if it would not require type conversion.
1254 if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
1255 IV = *II;
1256 return SE->getIntegerSCEV(-1LL, Stride->getType());
1260 return SE->getIntegerSCEV(0, Stride->getType());
1263 /// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
1264 /// returns true if Val's isUseOfPostIncrementedValue is true.
1265 static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
1266 return Val.isUseOfPostIncrementedValue;
1269 /// isNonConstantNegative - Return true if the specified scev is negated, but
1270 /// not a constant.
1271 static bool isNonConstantNegative(const SCEVHandle &Expr) {
1272 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
1273 if (!Mul) return false;
1275 // If there is a constant factor, it will be first.
1276 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
1277 if (!SC) return false;
1279 // Return true if the value is negative, this matches things like (-42 * V).
1280 return SC->getValue()->getValue().isNegative();
1283 // CollectIVUsers - Transform our list of users and offsets to a bit more
1284 // complex table. In this new vector, each 'BasedUser' contains 'Base', the base
1285 // of the strided accesses, as well as the old information from Uses. We
1286 // progressively move information from the Base field to the Imm field, until
1287 // we eventually have the full access expression to rewrite the use.
1288 SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride,
1289 IVUsersOfOneStride &Uses,
1290 Loop *L,
1291 bool &AllUsesAreAddresses,
1292 bool &AllUsesAreOutsideLoop,
1293 std::vector<BasedUser> &UsersToProcess) {
1294 UsersToProcess.reserve(Uses.Users.size());
1295 for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i) {
1296 UsersToProcess.push_back(BasedUser(Uses.Users[i], SE));
1298 // Move any loop variant operands from the offset field to the immediate
1299 // field of the use, so that we don't try to use something before it is
1300 // computed.
1301 MoveLoopVariantsToImmediateField(UsersToProcess.back().Base,
1302 UsersToProcess.back().Imm, L, SE);
1303 assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
1304 "Base value is not loop invariant!");
1307 // We now have a whole bunch of uses of like-strided induction variables, but
1308 // they might all have different bases. We want to emit one PHI node for this
1309 // stride which we fold as many common expressions (between the IVs) into as
1310 // possible. Start by identifying the common expressions in the base values
1311 // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
1312 // "A+B"), emit it to the preheader, then remove the expression from the
1313 // UsersToProcess base values.
1314 SCEVHandle CommonExprs =
1315 RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI);
1317 // Next, figure out what we can represent in the immediate fields of
1318 // instructions. If we can represent anything there, move it to the imm
1319 // fields of the BasedUsers. We do this so that it increases the commonality
1320 // of the remaining uses.
1321 unsigned NumPHI = 0;
1322 bool HasAddress = false;
1323 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1324 // If the user is not in the current loop, this means it is using the exit
1325 // value of the IV. Do not put anything in the base, make sure it's all in
1326 // the immediate field to allow as much factoring as possible.
1327 if (!L->contains(UsersToProcess[i].Inst->getParent())) {
1328 UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm,
1329 UsersToProcess[i].Base);
1330 UsersToProcess[i].Base =
1331 SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
1332 } else {
1333 // Not all uses are outside the loop.
1334 AllUsesAreOutsideLoop = false;
1336 // Addressing modes can be folded into loads and stores. Be careful that
1337 // the store is through the expression, not of the expression though.
1338 bool isPHI = false;
1339 bool isAddress = isAddressUse(UsersToProcess[i].Inst,
1340 UsersToProcess[i].OperandValToReplace);
1341 if (isa<PHINode>(UsersToProcess[i].Inst)) {
1342 isPHI = true;
1343 ++NumPHI;
1346 if (isAddress)
1347 HasAddress = true;
1349 // If this use isn't an address, then not all uses are addresses.
1350 if (!isAddress && !isPHI)
1351 AllUsesAreAddresses = false;
1353 MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base,
1354 UsersToProcess[i].Imm, isAddress, L, SE);
1358 // If one of the use is a PHI node and all other uses are addresses, still
1359 // allow iv reuse. Essentially we are trading one constant multiplication
1360 // for one fewer iv.
1361 if (NumPHI > 1)
1362 AllUsesAreAddresses = false;
1364 // There are no in-loop address uses.
1365 if (AllUsesAreAddresses && (!HasAddress && !AllUsesAreOutsideLoop))
1366 AllUsesAreAddresses = false;
1368 return CommonExprs;
1371 /// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction
1372 /// is valid and profitable for the given set of users of a stride. In
1373 /// full strength-reduction mode, all addresses at the current stride are
1374 /// strength-reduced all the way down to pointer arithmetic.
1376 bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
1377 const std::vector<BasedUser> &UsersToProcess,
1378 const Loop *L,
1379 bool AllUsesAreAddresses,
1380 SCEVHandle Stride) {
1381 if (!EnableFullLSRMode)
1382 return false;
1384 // The heuristics below aim to avoid increasing register pressure, but
1385 // fully strength-reducing all the addresses increases the number of
1386 // add instructions, so don't do this when optimizing for size.
1387 // TODO: If the loop is large, the savings due to simpler addresses
1388 // may oughtweight the costs of the extra increment instructions.
1389 if (L->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize))
1390 return false;
1392 // TODO: For now, don't do full strength reduction if there could
1393 // potentially be greater-stride multiples of the current stride
1394 // which could reuse the current stride IV.
1395 if (StrideOrder.back() != Stride)
1396 return false;
1398 // Iterate through the uses to find conditions that automatically rule out
1399 // full-lsr mode.
1400 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
1401 const SCEV *Base = UsersToProcess[i].Base;
1402 const SCEV *Imm = UsersToProcess[i].Imm;
1403 // If any users have a loop-variant component, they can't be fully
1404 // strength-reduced.
1405 if (Imm && !Imm->isLoopInvariant(L))
1406 return false;
1407 // If there are to users with the same base and the difference between
1408 // the two Imm values can't be folded into the address, full
1409 // strength reduction would increase register pressure.
1410 do {
1411 const SCEV *CurImm = UsersToProcess[i].Imm;
1412 if ((CurImm || Imm) && CurImm != Imm) {
1413 if (!CurImm) CurImm = SE->getIntegerSCEV(0, Stride->getType());
1414 if (!Imm) Imm = SE->getIntegerSCEV(0, Stride->getType());
1415 const Instruction *Inst = UsersToProcess[i].Inst;
1416 const Type *UseTy = getAccessType(Inst);
1417 SCEVHandle Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
1418 if (!Diff->isZero() &&
1419 (!AllUsesAreAddresses ||
1420 !fitsInAddressMode(Diff, UseTy, TLI, /*HasBaseReg=*/true)))
1421 return false;
1423 } while (++i != e && Base == UsersToProcess[i].Base);
1426 // If there's exactly one user in this stride, fully strength-reducing it
1427 // won't increase register pressure. If it's starting from a non-zero base,
1428 // it'll be simpler this way.
1429 if (UsersToProcess.size() == 1 && !UsersToProcess[0].Base->isZero())
1430 return true;
1432 // Otherwise, if there are any users in this stride that don't require
1433 // a register for their base, full strength-reduction will increase
1434 // register pressure.
1435 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1436 if (UsersToProcess[i].Base->isZero())
1437 return false;
1439 // Otherwise, go for it.
1440 return true;
1443 /// InsertAffinePhi Create and insert a PHI node for an induction variable
1444 /// with the specified start and step values in the specified loop.
1446 /// If NegateStride is true, the stride should be negated by using a
1447 /// subtract instead of an add.
1449 /// Return the created phi node.
1451 static PHINode *InsertAffinePhi(SCEVHandle Start, SCEVHandle Step,
1452 const Loop *L,
1453 SCEVExpander &Rewriter) {
1454 assert(Start->isLoopInvariant(L) && "New PHI start is not loop invariant!");
1455 assert(Step->isLoopInvariant(L) && "New PHI stride is not loop invariant!");
1457 BasicBlock *Header = L->getHeader();
1458 BasicBlock *Preheader = L->getLoopPreheader();
1459 BasicBlock *LatchBlock = L->getLoopLatch();
1460 const Type *Ty = Start->getType();
1461 Ty = Rewriter.SE.getEffectiveSCEVType(Ty);
1463 PHINode *PN = PHINode::Create(Ty, "lsr.iv", Header->begin());
1464 PN->addIncoming(Rewriter.expandCodeFor(Start, Ty, Preheader->getTerminator()),
1465 Preheader);
1467 // If the stride is negative, insert a sub instead of an add for the
1468 // increment.
1469 bool isNegative = isNonConstantNegative(Step);
1470 SCEVHandle IncAmount = Step;
1471 if (isNegative)
1472 IncAmount = Rewriter.SE.getNegativeSCEV(Step);
1474 // Insert an add instruction right before the terminator corresponding
1475 // to the back-edge.
1476 Value *StepV = Rewriter.expandCodeFor(IncAmount, Ty,
1477 Preheader->getTerminator());
1478 Instruction *IncV;
1479 if (isNegative) {
1480 IncV = BinaryOperator::CreateSub(PN, StepV, "lsr.iv.next",
1481 LatchBlock->getTerminator());
1482 } else {
1483 IncV = BinaryOperator::CreateAdd(PN, StepV, "lsr.iv.next",
1484 LatchBlock->getTerminator());
1486 if (!isa<ConstantInt>(StepV)) ++NumVariable;
1488 PN->addIncoming(IncV, LatchBlock);
1490 ++NumInserted;
1491 return PN;
1494 static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) {
1495 // We want to emit code for users inside the loop first. To do this, we
1496 // rearrange BasedUser so that the entries at the end have
1497 // isUseOfPostIncrementedValue = false, because we pop off the end of the
1498 // vector (so we handle them first).
1499 std::partition(UsersToProcess.begin(), UsersToProcess.end(),
1500 PartitionByIsUseOfPostIncrementedValue);
1502 // Sort this by base, so that things with the same base are handled
1503 // together. By partitioning first and stable-sorting later, we are
1504 // guaranteed that within each base we will pop off users from within the
1505 // loop before users outside of the loop with a particular base.
1507 // We would like to use stable_sort here, but we can't. The problem is that
1508 // SCEVHandle's don't have a deterministic ordering w.r.t to each other, so
1509 // we don't have anything to do a '<' comparison on. Because we think the
1510 // number of uses is small, do a horrible bubble sort which just relies on
1511 // ==.
1512 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1513 // Get a base value.
1514 SCEVHandle Base = UsersToProcess[i].Base;
1516 // Compact everything with this base to be consecutive with this one.
1517 for (unsigned j = i+1; j != e; ++j) {
1518 if (UsersToProcess[j].Base == Base) {
1519 std::swap(UsersToProcess[i+1], UsersToProcess[j]);
1520 ++i;
1526 /// PrepareToStrengthReduceFully - Prepare to fully strength-reduce
1527 /// UsersToProcess, meaning lowering addresses all the way down to direct
1528 /// pointer arithmetic.
1530 void
1531 LoopStrengthReduce::PrepareToStrengthReduceFully(
1532 std::vector<BasedUser> &UsersToProcess,
1533 SCEVHandle Stride,
1534 SCEVHandle CommonExprs,
1535 const Loop *L,
1536 SCEVExpander &PreheaderRewriter) {
1537 DOUT << " Fully reducing all users\n";
1539 // Rewrite the UsersToProcess records, creating a separate PHI for each
1540 // unique Base value.
1541 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
1542 // TODO: The uses are grouped by base, but not sorted. We arbitrarily
1543 // pick the first Imm value here to start with, and adjust it for the
1544 // other uses.
1545 SCEVHandle Imm = UsersToProcess[i].Imm;
1546 SCEVHandle Base = UsersToProcess[i].Base;
1547 SCEVHandle Start = SE->getAddExpr(CommonExprs, Base, Imm);
1548 PHINode *Phi = InsertAffinePhi(Start, Stride, L,
1549 PreheaderRewriter);
1550 // Loop over all the users with the same base.
1551 do {
1552 UsersToProcess[i].Base = SE->getIntegerSCEV(0, Stride->getType());
1553 UsersToProcess[i].Imm = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
1554 UsersToProcess[i].Phi = Phi;
1555 assert(UsersToProcess[i].Imm->isLoopInvariant(L) &&
1556 "ShouldUseFullStrengthReductionMode should reject this!");
1557 } while (++i != e && Base == UsersToProcess[i].Base);
1561 /// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the
1562 /// given users to share.
1564 void
1565 LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
1566 std::vector<BasedUser> &UsersToProcess,
1567 SCEVHandle Stride,
1568 SCEVHandle CommonExprs,
1569 Value *CommonBaseV,
1570 const Loop *L,
1571 SCEVExpander &PreheaderRewriter) {
1572 DOUT << " Inserting new PHI:\n";
1574 PHINode *Phi = InsertAffinePhi(SE->getUnknown(CommonBaseV),
1575 Stride, L,
1576 PreheaderRewriter);
1578 // Remember this in case a later stride is multiple of this.
1579 IVsByStride[Stride].addIV(Stride, CommonExprs, Phi);
1581 // All the users will share this new IV.
1582 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1583 UsersToProcess[i].Phi = Phi;
1585 DOUT << " IV=";
1586 DEBUG(WriteAsOperand(*DOUT, Phi, /*PrintType=*/false));
1587 DOUT << "\n";
1590 /// PrepareToStrengthReduceWithNewPhi - Prepare for the given users to reuse
1591 /// an induction variable with a stride that is a factor of the current
1592 /// induction variable.
1594 void
1595 LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
1596 std::vector<BasedUser> &UsersToProcess,
1597 Value *CommonBaseV,
1598 const IVExpr &ReuseIV,
1599 Instruction *PreInsertPt) {
1600 DOUT << " Rewriting in terms of existing IV of STRIDE " << *ReuseIV.Stride
1601 << " and BASE " << *ReuseIV.Base << "\n";
1603 // All the users will share the reused IV.
1604 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1605 UsersToProcess[i].Phi = ReuseIV.PHI;
1607 Constant *C = dyn_cast<Constant>(CommonBaseV);
1608 if (C &&
1609 (!C->isNullValue() &&
1610 !fitsInAddressMode(SE->getUnknown(CommonBaseV), CommonBaseV->getType(),
1611 TLI, false)))
1612 // We want the common base emitted into the preheader! This is just
1613 // using cast as a copy so BitCast (no-op cast) is appropriate
1614 CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(),
1615 "commonbase", PreInsertPt);
1618 static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset,
1619 const Type *AccessTy,
1620 std::vector<BasedUser> &UsersToProcess,
1621 const TargetLowering *TLI) {
1622 SmallVector<Instruction*, 16> AddrModeInsts;
1623 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1624 if (UsersToProcess[i].isUseOfPostIncrementedValue)
1625 continue;
1626 ExtAddrMode AddrMode =
1627 AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace,
1628 AccessTy, UsersToProcess[i].Inst,
1629 AddrModeInsts, *TLI);
1630 if (GV && GV != AddrMode.BaseGV)
1631 return false;
1632 if (Offset && !AddrMode.BaseOffs)
1633 // FIXME: How to accurate check it's immediate offset is folded.
1634 return false;
1635 AddrModeInsts.clear();
1637 return true;
1640 /// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
1641 /// stride of IV. All of the users may have different starting values, and this
1642 /// may not be the only stride.
1643 void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
1644 IVUsersOfOneStride &Uses,
1645 Loop *L) {
1646 // If all the users are moved to another stride, then there is nothing to do.
1647 if (Uses.Users.empty())
1648 return;
1650 // Keep track if every use in UsersToProcess is an address. If they all are,
1651 // we may be able to rewrite the entire collection of them in terms of a
1652 // smaller-stride IV.
1653 bool AllUsesAreAddresses = true;
1655 // Keep track if every use of a single stride is outside the loop. If so,
1656 // we want to be more aggressive about reusing a smaller-stride IV; a
1657 // multiply outside the loop is better than another IV inside. Well, usually.
1658 bool AllUsesAreOutsideLoop = true;
1660 // Transform our list of users and offsets to a bit more complex table. In
1661 // this new vector, each 'BasedUser' contains 'Base' the base of the
1662 // strided accessas well as the old information from Uses. We progressively
1663 // move information from the Base field to the Imm field, until we eventually
1664 // have the full access expression to rewrite the use.
1665 std::vector<BasedUser> UsersToProcess;
1666 SCEVHandle CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
1667 AllUsesAreOutsideLoop,
1668 UsersToProcess);
1670 // Sort the UsersToProcess array so that users with common bases are
1671 // next to each other.
1672 SortUsersToProcess(UsersToProcess);
1674 // If we managed to find some expressions in common, we'll need to carry
1675 // their value in a register and add it in for each use. This will take up
1676 // a register operand, which potentially restricts what stride values are
1677 // valid.
1678 bool HaveCommonExprs = !CommonExprs->isZero();
1679 const Type *ReplacedTy = CommonExprs->getType();
1681 // If all uses are addresses, consider sinking the immediate part of the
1682 // common expression back into uses if they can fit in the immediate fields.
1683 if (TLI && HaveCommonExprs && AllUsesAreAddresses) {
1684 SCEVHandle NewCommon = CommonExprs;
1685 SCEVHandle Imm = SE->getIntegerSCEV(0, ReplacedTy);
1686 MoveImmediateValues(TLI, Type::VoidTy, NewCommon, Imm, true, L, SE);
1687 if (!Imm->isZero()) {
1688 bool DoSink = true;
1690 // If the immediate part of the common expression is a GV, check if it's
1691 // possible to fold it into the target addressing mode.
1692 GlobalValue *GV = 0;
1693 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm))
1694 GV = dyn_cast<GlobalValue>(SU->getValue());
1695 int64_t Offset = 0;
1696 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
1697 Offset = SC->getValue()->getSExtValue();
1698 if (GV || Offset)
1699 // Pass VoidTy as the AccessTy to be conservative, because
1700 // there could be multiple access types among all the uses.
1701 DoSink = IsImmFoldedIntoAddrMode(GV, Offset, Type::VoidTy,
1702 UsersToProcess, TLI);
1704 if (DoSink) {
1705 DOUT << " Sinking " << *Imm << " back down into uses\n";
1706 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1707 UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm);
1708 CommonExprs = NewCommon;
1709 HaveCommonExprs = !CommonExprs->isZero();
1710 ++NumImmSunk;
1715 // Now that we know what we need to do, insert the PHI node itself.
1717 DOUT << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE "
1718 << *Stride << ":\n"
1719 << " Common base: " << *CommonExprs << "\n";
1721 SCEVExpander Rewriter(*SE, *LI);
1722 SCEVExpander PreheaderRewriter(*SE, *LI);
1724 BasicBlock *Preheader = L->getLoopPreheader();
1725 Instruction *PreInsertPt = Preheader->getTerminator();
1726 BasicBlock *LatchBlock = L->getLoopLatch();
1728 Value *CommonBaseV = Constant::getNullValue(ReplacedTy);
1730 SCEVHandle RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy);
1731 IVExpr ReuseIV(SE->getIntegerSCEV(0, Type::Int32Ty),
1732 SE->getIntegerSCEV(0, Type::Int32Ty),
1735 /// Choose a strength-reduction strategy and prepare for it by creating
1736 /// the necessary PHIs and adjusting the bookkeeping.
1737 if (ShouldUseFullStrengthReductionMode(UsersToProcess, L,
1738 AllUsesAreAddresses, Stride)) {
1739 PrepareToStrengthReduceFully(UsersToProcess, Stride, CommonExprs, L,
1740 PreheaderRewriter);
1741 } else {
1742 // Emit the initial base value into the loop preheader.
1743 CommonBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, ReplacedTy,
1744 PreInsertPt);
1746 // If all uses are addresses, check if it is possible to reuse an IV with a
1747 // stride that is a factor of this stride. And that the multiple is a number
1748 // that can be encoded in the scale field of the target addressing mode. And
1749 // that we will have a valid instruction after this substition, including
1750 // the immediate field, if any.
1751 RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses,
1752 AllUsesAreOutsideLoop,
1753 Stride, ReuseIV, ReplacedTy,
1754 UsersToProcess);
1755 if (isa<SCEVConstant>(RewriteFactor) &&
1756 cast<SCEVConstant>(RewriteFactor)->isZero())
1757 PrepareToStrengthReduceWithNewPhi(UsersToProcess, Stride, CommonExprs,
1758 CommonBaseV, L, PreheaderRewriter);
1759 else
1760 PrepareToStrengthReduceFromSmallerStride(UsersToProcess, CommonBaseV,
1761 ReuseIV, PreInsertPt);
1764 // Process all the users now, replacing their strided uses with
1765 // strength-reduced forms. This outer loop handles all bases, the inner
1766 // loop handles all users of a particular base.
1767 while (!UsersToProcess.empty()) {
1768 SCEVHandle Base = UsersToProcess.back().Base;
1769 Instruction *Inst = UsersToProcess.back().Inst;
1771 // Emit the code for Base into the preheader.
1772 Value *BaseV = 0;
1773 if (!Base->isZero()) {
1774 BaseV = PreheaderRewriter.expandCodeFor(Base, Base->getType(),
1775 PreInsertPt);
1777 DOUT << " INSERTING code for BASE = " << *Base << ":";
1778 if (BaseV->hasName())
1779 DOUT << " Result value name = %" << BaseV->getNameStr();
1780 DOUT << "\n";
1782 // If BaseV is a non-zero constant, make sure that it gets inserted into
1783 // the preheader, instead of being forward substituted into the uses. We
1784 // do this by forcing a BitCast (noop cast) to be inserted into the
1785 // preheader in this case.
1786 if (!fitsInAddressMode(Base, getAccessType(Inst), TLI, false)) {
1787 // We want this constant emitted into the preheader! This is just
1788 // using cast as a copy so BitCast (no-op cast) is appropriate
1789 BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
1790 PreInsertPt);
1794 // Emit the code to add the immediate offset to the Phi value, just before
1795 // the instructions that we identified as using this stride and base.
1796 do {
1797 // FIXME: Use emitted users to emit other users.
1798 BasedUser &User = UsersToProcess.back();
1800 DOUT << " Examining use ";
1801 DEBUG(WriteAsOperand(*DOUT, UsersToProcess.back().OperandValToReplace,
1802 /*PrintType=*/false));
1803 DOUT << " in Inst: " << *(User.Inst);
1805 // If this instruction wants to use the post-incremented value, move it
1806 // after the post-inc and use its value instead of the PHI.
1807 Value *RewriteOp = User.Phi;
1808 if (User.isUseOfPostIncrementedValue) {
1809 RewriteOp = User.Phi->getIncomingValueForBlock(LatchBlock);
1811 // If this user is in the loop, make sure it is the last thing in the
1812 // loop to ensure it is dominated by the increment.
1813 if (L->contains(User.Inst->getParent()))
1814 User.Inst->moveBefore(LatchBlock->getTerminator());
1817 SCEVHandle RewriteExpr = SE->getUnknown(RewriteOp);
1819 if (SE->getTypeSizeInBits(RewriteOp->getType()) !=
1820 SE->getTypeSizeInBits(ReplacedTy)) {
1821 assert(SE->getTypeSizeInBits(RewriteOp->getType()) >
1822 SE->getTypeSizeInBits(ReplacedTy) &&
1823 "Unexpected widening cast!");
1824 RewriteExpr = SE->getTruncateExpr(RewriteExpr, ReplacedTy);
1827 // If we had to insert new instructions for RewriteOp, we have to
1828 // consider that they may not have been able to end up immediately
1829 // next to RewriteOp, because non-PHI instructions may never precede
1830 // PHI instructions in a block. In this case, remember where the last
1831 // instruction was inserted so that if we're replacing a different
1832 // PHI node, we can use the later point to expand the final
1833 // RewriteExpr.
1834 Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp);
1835 if (RewriteOp == User.Phi) NewBasePt = 0;
1837 // Clear the SCEVExpander's expression map so that we are guaranteed
1838 // to have the code emitted where we expect it.
1839 Rewriter.clear();
1841 // If we are reusing the iv, then it must be multiplied by a constant
1842 // factor to take advantage of the addressing mode scale component.
1843 if (!RewriteFactor->isZero()) {
1844 // If we're reusing an IV with a nonzero base (currently this happens
1845 // only when all reuses are outside the loop) subtract that base here.
1846 // The base has been used to initialize the PHI node but we don't want
1847 // it here.
1848 if (!ReuseIV.Base->isZero()) {
1849 SCEVHandle typedBase = ReuseIV.Base;
1850 if (SE->getTypeSizeInBits(RewriteExpr->getType()) !=
1851 SE->getTypeSizeInBits(ReuseIV.Base->getType())) {
1852 // It's possible the original IV is a larger type than the new IV,
1853 // in which case we have to truncate the Base. We checked in
1854 // RequiresTypeConversion that this is valid.
1855 assert(SE->getTypeSizeInBits(RewriteExpr->getType()) <
1856 SE->getTypeSizeInBits(ReuseIV.Base->getType()) &&
1857 "Unexpected lengthening conversion!");
1858 typedBase = SE->getTruncateExpr(ReuseIV.Base,
1859 RewriteExpr->getType());
1861 RewriteExpr = SE->getMinusSCEV(RewriteExpr, typedBase);
1864 // Multiply old variable, with base removed, by new scale factor.
1865 RewriteExpr = SE->getMulExpr(RewriteFactor,
1866 RewriteExpr);
1868 // The common base is emitted in the loop preheader. But since we
1869 // are reusing an IV, it has not been used to initialize the PHI node.
1870 // Add it to the expression used to rewrite the uses.
1871 // When this use is outside the loop, we earlier subtracted the
1872 // common base, and are adding it back here. Use the same expression
1873 // as before, rather than CommonBaseV, so DAGCombiner will zap it.
1874 if (!CommonExprs->isZero()) {
1875 if (L->contains(User.Inst->getParent()))
1876 RewriteExpr = SE->getAddExpr(RewriteExpr,
1877 SE->getUnknown(CommonBaseV));
1878 else
1879 RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs);
1883 // Now that we know what we need to do, insert code before User for the
1884 // immediate and any loop-variant expressions.
1885 if (BaseV)
1886 // Add BaseV to the PHI value if needed.
1887 RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV));
1889 User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt,
1890 Rewriter, L, this,
1891 DeadInsts);
1893 // Mark old value we replaced as possibly dead, so that it is eliminated
1894 // if we just replaced the last use of that value.
1895 DeadInsts.push_back(cast<Instruction>(User.OperandValToReplace));
1897 UsersToProcess.pop_back();
1898 ++NumReduced;
1900 // If there are any more users to process with the same base, process them
1901 // now. We sorted by base above, so we just have to check the last elt.
1902 } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
1903 // TODO: Next, find out which base index is the most common, pull it out.
1906 // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
1907 // different starting values, into different PHIs.
1910 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1911 /// set the IV user and stride information and return true, otherwise return
1912 /// false.
1913 bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
1914 const SCEVHandle *&CondStride) {
1915 for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e && !CondUse;
1916 ++Stride) {
1917 std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
1918 IVUsesByStride.find(StrideOrder[Stride]);
1919 assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
1921 for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
1922 E = SI->second.Users.end(); UI != E; ++UI)
1923 if (UI->User == Cond) {
1924 // NOTE: we could handle setcc instructions with multiple uses here, but
1925 // InstCombine does it as well for simple uses, it's not clear that it
1926 // occurs enough in real life to handle.
1927 CondUse = &*UI;
1928 CondStride = &SI->first;
1929 return true;
1932 return false;
1935 namespace {
1936 // Constant strides come first which in turns are sorted by their absolute
1937 // values. If absolute values are the same, then positive strides comes first.
1938 // e.g.
1939 // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
1940 struct StrideCompare {
1941 const ScalarEvolution *SE;
1942 explicit StrideCompare(const ScalarEvolution *se) : SE(se) {}
1944 bool operator()(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1945 const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
1946 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
1947 if (LHSC && RHSC) {
1948 int64_t LV = LHSC->getValue()->getSExtValue();
1949 int64_t RV = RHSC->getValue()->getSExtValue();
1950 uint64_t ALV = (LV < 0) ? -LV : LV;
1951 uint64_t ARV = (RV < 0) ? -RV : RV;
1952 if (ALV == ARV) {
1953 if (LV != RV)
1954 return LV > RV;
1955 } else {
1956 return ALV < ARV;
1959 // If it's the same value but different type, sort by bit width so
1960 // that we emit larger induction variables before smaller
1961 // ones, letting the smaller be re-written in terms of larger ones.
1962 return SE->getTypeSizeInBits(RHS->getType()) <
1963 SE->getTypeSizeInBits(LHS->getType());
1965 return LHSC && !RHSC;
1970 /// ChangeCompareStride - If a loop termination compare instruction is the
1971 /// only use of its stride, and the compaison is against a constant value,
1972 /// try eliminate the stride by moving the compare instruction to another
1973 /// stride and change its constant operand accordingly. e.g.
1975 /// loop:
1976 /// ...
1977 /// v1 = v1 + 3
1978 /// v2 = v2 + 1
1979 /// if (v2 < 10) goto loop
1980 /// =>
1981 /// loop:
1982 /// ...
1983 /// v1 = v1 + 3
1984 /// if (v1 < 30) goto loop
1985 ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
1986 IVStrideUse* &CondUse,
1987 const SCEVHandle* &CondStride) {
1988 if (StrideOrder.size() < 2 ||
1989 IVUsesByStride[*CondStride].Users.size() != 1)
1990 return Cond;
1991 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride);
1992 if (!SC) return Cond;
1994 ICmpInst::Predicate Predicate = Cond->getPredicate();
1995 int64_t CmpSSInt = SC->getValue()->getSExtValue();
1996 unsigned BitWidth = SE->getTypeSizeInBits((*CondStride)->getType());
1997 uint64_t SignBit = 1ULL << (BitWidth-1);
1998 const Type *CmpTy = Cond->getOperand(0)->getType();
1999 const Type *NewCmpTy = NULL;
2000 unsigned TyBits = SE->getTypeSizeInBits(CmpTy);
2001 unsigned NewTyBits = 0;
2002 SCEVHandle *NewStride = NULL;
2003 Value *NewCmpLHS = NULL;
2004 Value *NewCmpRHS = NULL;
2005 int64_t Scale = 1;
2006 SCEVHandle NewOffset = SE->getIntegerSCEV(0, CmpTy);
2008 if (ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1))) {
2009 int64_t CmpVal = C->getValue().getSExtValue();
2011 // Check stride constant and the comparision constant signs to detect
2012 // overflow.
2013 if ((CmpVal & SignBit) != (CmpSSInt & SignBit))
2014 return Cond;
2016 // Look for a suitable stride / iv as replacement.
2017 for (unsigned i = 0, e = StrideOrder.size(); i != e; ++i) {
2018 std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
2019 IVUsesByStride.find(StrideOrder[i]);
2020 if (!isa<SCEVConstant>(SI->first))
2021 continue;
2022 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
2023 if (SSInt == CmpSSInt ||
2024 abs(SSInt) < abs(CmpSSInt) ||
2025 (SSInt % CmpSSInt) != 0)
2026 continue;
2028 Scale = SSInt / CmpSSInt;
2029 int64_t NewCmpVal = CmpVal * Scale;
2030 APInt Mul = APInt(BitWidth, NewCmpVal);
2031 // Check for overflow.
2032 if (Mul.getSExtValue() != NewCmpVal)
2033 continue;
2035 // Watch out for overflow.
2036 if (ICmpInst::isSignedPredicate(Predicate) &&
2037 (CmpVal & SignBit) != (NewCmpVal & SignBit))
2038 continue;
2040 if (NewCmpVal == CmpVal)
2041 continue;
2042 // Pick the best iv to use trying to avoid a cast.
2043 NewCmpLHS = NULL;
2044 for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
2045 E = SI->second.Users.end(); UI != E; ++UI) {
2046 NewCmpLHS = UI->OperandValToReplace;
2047 if (NewCmpLHS->getType() == CmpTy)
2048 break;
2050 if (!NewCmpLHS)
2051 continue;
2053 NewCmpTy = NewCmpLHS->getType();
2054 NewTyBits = SE->getTypeSizeInBits(NewCmpTy);
2055 const Type *NewCmpIntTy = IntegerType::get(NewTyBits);
2056 if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
2057 // Check if it is possible to rewrite it using
2058 // an iv / stride of a smaller integer type.
2059 unsigned Bits = NewTyBits;
2060 if (ICmpInst::isSignedPredicate(Predicate))
2061 --Bits;
2062 uint64_t Mask = (1ULL << Bits) - 1;
2063 if (((uint64_t)NewCmpVal & Mask) != (uint64_t)NewCmpVal)
2064 continue;
2067 // Don't rewrite if use offset is non-constant and the new type is
2068 // of a different type.
2069 // FIXME: too conservative?
2070 if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->Offset))
2071 continue;
2073 bool AllUsesAreAddresses = true;
2074 bool AllUsesAreOutsideLoop = true;
2075 std::vector<BasedUser> UsersToProcess;
2076 SCEVHandle CommonExprs = CollectIVUsers(SI->first, SI->second, L,
2077 AllUsesAreAddresses,
2078 AllUsesAreOutsideLoop,
2079 UsersToProcess);
2080 // Avoid rewriting the compare instruction with an iv of new stride
2081 // if it's likely the new stride uses will be rewritten using the
2082 // stride of the compare instruction.
2083 if (AllUsesAreAddresses &&
2084 ValidStride(!CommonExprs->isZero(), Scale, UsersToProcess))
2085 continue;
2087 // If scale is negative, use swapped predicate unless it's testing
2088 // for equality.
2089 if (Scale < 0 && !Cond->isEquality())
2090 Predicate = ICmpInst::getSwappedPredicate(Predicate);
2092 NewStride = &StrideOrder[i];
2093 if (!isa<PointerType>(NewCmpTy))
2094 NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal);
2095 else {
2096 ConstantInt *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal);
2097 NewCmpRHS = ConstantExpr::getIntToPtr(CI, NewCmpTy);
2099 NewOffset = TyBits == NewTyBits
2100 ? SE->getMulExpr(CondUse->Offset,
2101 SE->getConstant(ConstantInt::get(CmpTy, Scale)))
2102 : SE->getConstant(ConstantInt::get(NewCmpIntTy,
2103 cast<SCEVConstant>(CondUse->Offset)->getValue()->getSExtValue()*Scale));
2104 break;
2108 // Forgo this transformation if it the increment happens to be
2109 // unfortunately positioned after the condition, and the condition
2110 // has multiple uses which prevent it from being moved immediately
2111 // before the branch. See
2112 // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
2113 // for an example of this situation.
2114 if (!Cond->hasOneUse()) {
2115 for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end();
2116 I != E; ++I)
2117 if (I == NewCmpLHS)
2118 return Cond;
2121 if (NewCmpRHS) {
2122 // Create a new compare instruction using new stride / iv.
2123 ICmpInst *OldCond = Cond;
2124 // Insert new compare instruction.
2125 Cond = new ICmpInst(Predicate, NewCmpLHS, NewCmpRHS,
2126 L->getHeader()->getName() + ".termcond",
2127 OldCond);
2129 // Remove the old compare instruction. The old indvar is probably dead too.
2130 DeadInsts.push_back(cast<Instruction>(CondUse->OperandValToReplace));
2131 OldCond->replaceAllUsesWith(Cond);
2132 OldCond->eraseFromParent();
2134 IVUsesByStride[*CondStride].Users.pop_back();
2135 IVUsesByStride[*NewStride].addUser(NewOffset, Cond, NewCmpLHS);
2136 CondUse = &IVUsesByStride[*NewStride].Users.back();
2137 CondStride = NewStride;
2138 ++NumEliminated;
2139 Changed = true;
2142 return Cond;
2145 /// OptimizeSMax - Rewrite the loop's terminating condition if it uses
2146 /// an smax computation.
2148 /// This is a narrow solution to a specific, but acute, problem. For loops
2149 /// like this:
2151 /// i = 0;
2152 /// do {
2153 /// p[i] = 0.0;
2154 /// } while (++i < n);
2156 /// where the comparison is signed, the trip count isn't just 'n', because
2157 /// 'n' could be negative. And unfortunately this can come up even for loops
2158 /// where the user didn't use a C do-while loop. For example, seemingly
2159 /// well-behaved top-test loops will commonly be lowered like this:
2161 /// if (n > 0) {
2162 /// i = 0;
2163 /// do {
2164 /// p[i] = 0.0;
2165 /// } while (++i < n);
2166 /// }
2168 /// and then it's possible for subsequent optimization to obscure the if
2169 /// test in such a way that indvars can't find it.
2171 /// When indvars can't find the if test in loops like this, it creates a
2172 /// signed-max expression, which allows it to give the loop a canonical
2173 /// induction variable:
2175 /// i = 0;
2176 /// smax = n < 1 ? 1 : n;
2177 /// do {
2178 /// p[i] = 0.0;
2179 /// } while (++i != smax);
2181 /// Canonical induction variables are necessary because the loop passes
2182 /// are designed around them. The most obvious example of this is the
2183 /// LoopInfo analysis, which doesn't remember trip count values. It
2184 /// expects to be able to rediscover the trip count each time it is
2185 /// needed, and it does this using a simple analyis that only succeeds if
2186 /// the loop has a canonical induction variable.
2188 /// However, when it comes time to generate code, the maximum operation
2189 /// can be quite costly, especially if it's inside of an outer loop.
2191 /// This function solves this problem by detecting this type of loop and
2192 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2193 /// the instructions for the maximum computation.
2195 ICmpInst *LoopStrengthReduce::OptimizeSMax(Loop *L, ICmpInst *Cond,
2196 IVStrideUse* &CondUse) {
2197 // Check that the loop matches the pattern we're looking for.
2198 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2199 Cond->getPredicate() != CmpInst::ICMP_NE)
2200 return Cond;
2202 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2203 if (!Sel || !Sel->hasOneUse()) return Cond;
2205 SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2206 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2207 return Cond;
2208 SCEVHandle One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
2210 // Add one to the backedge-taken count to get the trip count.
2211 SCEVHandle IterationCount = SE->getAddExpr(BackedgeTakenCount, One);
2213 // Check for a max calculation that matches the pattern.
2214 const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(IterationCount);
2215 if (!SMax || SMax != SE->getSCEV(Sel)) return Cond;
2217 SCEVHandle SMaxLHS = SMax->getOperand(0);
2218 SCEVHandle SMaxRHS = SMax->getOperand(1);
2219 if (!SMaxLHS || SMaxLHS != One) return Cond;
2221 // Check the relevant induction variable for conformance to
2222 // the pattern.
2223 SCEVHandle IV = SE->getSCEV(Cond->getOperand(0));
2224 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2225 if (!AR || !AR->isAffine() ||
2226 AR->getStart() != One ||
2227 AR->getStepRecurrence(*SE) != One)
2228 return Cond;
2230 assert(AR->getLoop() == L &&
2231 "Loop condition operand is an addrec in a different loop!");
2233 // Check the right operand of the select, and remember it, as it will
2234 // be used in the new comparison instruction.
2235 Value *NewRHS = 0;
2236 if (SE->getSCEV(Sel->getOperand(1)) == SMaxRHS)
2237 NewRHS = Sel->getOperand(1);
2238 else if (SE->getSCEV(Sel->getOperand(2)) == SMaxRHS)
2239 NewRHS = Sel->getOperand(2);
2240 if (!NewRHS) return Cond;
2242 // Ok, everything looks ok to change the condition into an SLT or SGE and
2243 // delete the max calculation.
2244 ICmpInst *NewCond =
2245 new ICmpInst(Cond->getPredicate() == CmpInst::ICMP_NE ?
2246 CmpInst::ICMP_SLT :
2247 CmpInst::ICMP_SGE,
2248 Cond->getOperand(0), NewRHS, "scmp", Cond);
2250 // Delete the max calculation instructions.
2251 Cond->replaceAllUsesWith(NewCond);
2252 Cond->eraseFromParent();
2253 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2254 Sel->eraseFromParent();
2255 if (Cmp->use_empty())
2256 Cmp->eraseFromParent();
2257 CondUse->User = NewCond;
2258 return NewCond;
2261 /// OptimizeShadowIV - If IV is used in a int-to-float cast
2262 /// inside the loop then try to eliminate the cast opeation.
2263 void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
2265 SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2266 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2267 return;
2269 for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e;
2270 ++Stride) {
2271 std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
2272 IVUsesByStride.find(StrideOrder[Stride]);
2273 assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
2274 if (!isa<SCEVConstant>(SI->first))
2275 continue;
2277 for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
2278 E = SI->second.Users.end(); UI != E; /* empty */) {
2279 std::vector<IVStrideUse>::iterator CandidateUI = UI;
2280 ++UI;
2281 Instruction *ShadowUse = CandidateUI->User;
2282 const Type *DestTy = NULL;
2284 /* If shadow use is a int->float cast then insert a second IV
2285 to eliminate this cast.
2287 for (unsigned i = 0; i < n; ++i)
2288 foo((double)i);
2290 is transformed into
2292 double d = 0.0;
2293 for (unsigned i = 0; i < n; ++i, ++d)
2294 foo(d);
2296 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->User))
2297 DestTy = UCast->getDestTy();
2298 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->User))
2299 DestTy = SCast->getDestTy();
2300 if (!DestTy) continue;
2302 if (TLI) {
2303 /* If target does not support DestTy natively then do not apply
2304 this transformation. */
2305 MVT DVT = TLI->getValueType(DestTy);
2306 if (!TLI->isTypeLegal(DVT)) continue;
2309 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2310 if (!PH) continue;
2311 if (PH->getNumIncomingValues() != 2) continue;
2313 const Type *SrcTy = PH->getType();
2314 int Mantissa = DestTy->getFPMantissaWidth();
2315 if (Mantissa == -1) continue;
2316 if ((int)SE->getTypeSizeInBits(SrcTy) > Mantissa)
2317 continue;
2319 unsigned Entry, Latch;
2320 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2321 Entry = 0;
2322 Latch = 1;
2323 } else {
2324 Entry = 1;
2325 Latch = 0;
2328 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2329 if (!Init) continue;
2330 ConstantFP *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
2332 BinaryOperator *Incr =
2333 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2334 if (!Incr) continue;
2335 if (Incr->getOpcode() != Instruction::Add
2336 && Incr->getOpcode() != Instruction::Sub)
2337 continue;
2339 /* Initialize new IV, double d = 0.0 in above example. */
2340 ConstantInt *C = NULL;
2341 if (Incr->getOperand(0) == PH)
2342 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2343 else if (Incr->getOperand(1) == PH)
2344 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2345 else
2346 continue;
2348 if (!C) continue;
2350 /* Add new PHINode. */
2351 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
2353 /* create new increment. '++d' in above example. */
2354 ConstantFP *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2355 BinaryOperator *NewIncr =
2356 BinaryOperator::Create(Incr->getOpcode(),
2357 NewPH, CFP, "IV.S.next.", Incr);
2359 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2360 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2362 /* Remove cast operation */
2363 ShadowUse->replaceAllUsesWith(NewPH);
2364 ShadowUse->eraseFromParent();
2365 SI->second.Users.erase(CandidateUI);
2366 NumShadow++;
2367 break;
2372 // OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
2373 // uses in the loop, look to see if we can eliminate some, in favor of using
2374 // common indvars for the different uses.
2375 void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
2376 // TODO: implement optzns here.
2378 OptimizeShadowIV(L);
2380 // Finally, get the terminating condition for the loop if possible. If we
2381 // can, we want to change it to use a post-incremented version of its
2382 // induction variable, to allow coalescing the live ranges for the IV into
2383 // one register value.
2384 PHINode *SomePHI = cast<PHINode>(L->getHeader()->begin());
2385 BasicBlock *Preheader = L->getLoopPreheader();
2386 BasicBlock *LatchBlock =
2387 SomePHI->getIncomingBlock(SomePHI->getIncomingBlock(0) == Preheader);
2388 BranchInst *TermBr = dyn_cast<BranchInst>(LatchBlock->getTerminator());
2389 if (!TermBr || TermBr->isUnconditional() ||
2390 !isa<ICmpInst>(TermBr->getCondition()))
2391 return;
2392 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2394 // Search IVUsesByStride to find Cond's IVUse if there is one.
2395 IVStrideUse *CondUse = 0;
2396 const SCEVHandle *CondStride = 0;
2398 if (!FindIVUserForCond(Cond, CondUse, CondStride))
2399 return; // setcc doesn't use the IV.
2401 // If the trip count is computed in terms of an smax (due to ScalarEvolution
2402 // being unable to find a sufficient guard, for example), change the loop
2403 // comparison to use SLT instead of NE.
2404 Cond = OptimizeSMax(L, Cond, CondUse);
2406 // If possible, change stride and operands of the compare instruction to
2407 // eliminate one stride.
2408 Cond = ChangeCompareStride(L, Cond, CondUse, CondStride);
2410 // It's possible for the setcc instruction to be anywhere in the loop, and
2411 // possible for it to have multiple users. If it is not immediately before
2412 // the latch block branch, move it.
2413 if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
2414 if (Cond->hasOneUse()) { // Condition has a single use, just move it.
2415 Cond->moveBefore(TermBr);
2416 } else {
2417 // Otherwise, clone the terminating condition and insert into the loopend.
2418 Cond = cast<ICmpInst>(Cond->clone());
2419 Cond->setName(L->getHeader()->getName() + ".termcond");
2420 LatchBlock->getInstList().insert(TermBr, Cond);
2422 // Clone the IVUse, as the old use still exists!
2423 IVUsesByStride[*CondStride].addUser(CondUse->Offset, Cond,
2424 CondUse->OperandValToReplace);
2425 CondUse = &IVUsesByStride[*CondStride].Users.back();
2429 // If we get to here, we know that we can transform the setcc instruction to
2430 // use the post-incremented version of the IV, allowing us to coalesce the
2431 // live ranges for the IV correctly.
2432 CondUse->Offset = SE->getMinusSCEV(CondUse->Offset, *CondStride);
2433 CondUse->isUseOfPostIncrementedValue = true;
2434 Changed = true;
2437 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
2439 LI = &getAnalysis<LoopInfo>();
2440 DT = &getAnalysis<DominatorTree>();
2441 SE = &getAnalysis<ScalarEvolution>();
2442 Changed = false;
2444 // Find all uses of induction variables in this loop, and categorize
2445 // them by stride. Start by finding all of the PHI nodes in the header for
2446 // this loop. If they are induction variables, inspect their uses.
2447 SmallPtrSet<Instruction*,16> Processed; // Don't reprocess instructions.
2448 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
2449 AddUsersIfInteresting(I, L, Processed);
2451 if (!IVUsesByStride.empty()) {
2452 #ifndef NDEBUG
2453 DOUT << "\nLSR on \"" << L->getHeader()->getParent()->getNameStart()
2454 << "\" ";
2455 DEBUG(L->dump());
2456 #endif
2458 // Sort the StrideOrder so we process larger strides first.
2459 std::stable_sort(StrideOrder.begin(), StrideOrder.end(), StrideCompare(SE));
2461 // Optimize induction variables. Some indvar uses can be transformed to use
2462 // strides that will be needed for other purposes. A common example of this
2463 // is the exit test for the loop, which can often be rewritten to use the
2464 // computation of some other indvar to decide when to terminate the loop.
2465 OptimizeIndvars(L);
2467 // FIXME: We can widen subreg IV's here for RISC targets. e.g. instead of
2468 // doing computation in byte values, promote to 32-bit values if safe.
2470 // FIXME: Attempt to reuse values across multiple IV's. In particular, we
2471 // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
2472 // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
2473 // Need to be careful that IV's are all the same type. Only works for
2474 // intptr_t indvars.
2476 // IVsByStride keeps IVs for one particular loop.
2477 assert(IVsByStride.empty() && "Stale entries in IVsByStride?");
2479 // Note: this processes each stride/type pair individually. All users
2480 // passed into StrengthReduceStridedIVUsers have the same type AND stride.
2481 // Also, note that we iterate over IVUsesByStride indirectly by using
2482 // StrideOrder. This extra layer of indirection makes the ordering of
2483 // strides deterministic - not dependent on map order.
2484 for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) {
2485 std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
2486 IVUsesByStride.find(StrideOrder[Stride]);
2487 assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
2488 StrengthReduceStridedIVUsers(SI->first, SI->second, L);
2492 // We're done analyzing this loop; release all the state we built up for it.
2493 IVUsesByStride.clear();
2494 IVsByStride.clear();
2495 StrideOrder.clear();
2497 // Clean up after ourselves
2498 if (!DeadInsts.empty())
2499 DeleteTriviallyDeadInstructions();
2501 // At this point, it is worth checking to see if any recurrence PHIs are also
2502 // dead, so that we can remove them as well.
2503 DeleteDeadPHIs(L->getHeader());
2505 return Changed;