1 ///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the implementation of the FastISel class.
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Function.h"
43 #include "llvm/GlobalVariable.h"
44 #include "llvm/Instructions.h"
45 #include "llvm/IntrinsicInst.h"
46 #include "llvm/CodeGen/FastISel.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineModuleInfo.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/DebugLoc.h"
51 #include "llvm/CodeGen/DwarfWriter.h"
52 #include "llvm/Analysis/DebugInfo.h"
53 #include "llvm/Target/TargetData.h"
54 #include "llvm/Target/TargetInstrInfo.h"
55 #include "llvm/Target/TargetLowering.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include "SelectionDAGBuild.h"
60 unsigned FastISel::getRegForValue(Value
*V
) {
61 MVT RealVT
= TLI
.getValueType(V
->getType(), /*AllowUnknown=*/true);
62 // Don't handle non-simple values in FastISel.
63 if (!RealVT
.isSimple())
66 // Ignore illegal types. We must do this before looking up the value
67 // in ValueMap because Arguments are given virtual registers regardless
68 // of whether FastISel can handle them.
69 MVT::SimpleValueType VT
= RealVT
.getSimpleVT();
70 if (!TLI
.isTypeLegal(VT
)) {
71 // Promote MVT::i1 to a legal type though, because it's common and easy.
73 VT
= TLI
.getTypeToTransformTo(VT
).getSimpleVT();
78 // Look up the value to see if we already have a register for it. We
79 // cache values defined by Instructions across blocks, and other values
80 // only locally. This is because Instructions already have the SSA
81 // def-dominatess-use requirement enforced.
82 if (ValueMap
.count(V
))
84 unsigned Reg
= LocalValueMap
[V
];
88 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
89 if (CI
->getValue().getActiveBits() <= 64)
90 Reg
= FastEmit_i(VT
, VT
, ISD::Constant
, CI
->getZExtValue());
91 } else if (isa
<AllocaInst
>(V
)) {
92 Reg
= TargetMaterializeAlloca(cast
<AllocaInst
>(V
));
93 } else if (isa
<ConstantPointerNull
>(V
)) {
94 // Translate this as an integer zero so that it can be
95 // local-CSE'd with actual integer zeros.
96 Reg
= getRegForValue(Constant::getNullValue(TD
.getIntPtrType()));
97 } else if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(V
)) {
98 Reg
= FastEmit_f(VT
, VT
, ISD::ConstantFP
, CF
);
101 const APFloat
&Flt
= CF
->getValueAPF();
102 MVT IntVT
= TLI
.getPointerTy();
105 uint32_t IntBitWidth
= IntVT
.getSizeInBits();
107 (void) Flt
.convertToInteger(x
, IntBitWidth
, /*isSigned=*/true,
108 APFloat::rmTowardZero
, &isExact
);
110 APInt
IntVal(IntBitWidth
, 2, x
);
112 unsigned IntegerReg
= getRegForValue(ConstantInt::get(IntVal
));
114 Reg
= FastEmit_r(IntVT
.getSimpleVT(), VT
, ISD::SINT_TO_FP
, IntegerReg
);
117 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
118 if (!SelectOperator(CE
, CE
->getOpcode())) return 0;
119 Reg
= LocalValueMap
[CE
];
120 } else if (isa
<UndefValue
>(V
)) {
121 Reg
= createResultReg(TLI
.getRegClassFor(VT
));
122 BuildMI(MBB
, DL
, TII
.get(TargetInstrInfo::IMPLICIT_DEF
), Reg
);
125 // If target-independent code couldn't handle the value, give target-specific
127 if (!Reg
&& isa
<Constant
>(V
))
128 Reg
= TargetMaterializeConstant(cast
<Constant
>(V
));
130 // Don't cache constant materializations in the general ValueMap.
131 // To do so would require tracking what uses they dominate.
133 LocalValueMap
[V
] = Reg
;
137 unsigned FastISel::lookUpRegForValue(Value
*V
) {
138 // Look up the value to see if we already have a register for it. We
139 // cache values defined by Instructions across blocks, and other values
140 // only locally. This is because Instructions already have the SSA
141 // def-dominatess-use requirement enforced.
142 if (ValueMap
.count(V
))
144 return LocalValueMap
[V
];
147 /// UpdateValueMap - Update the value map to include the new mapping for this
148 /// instruction, or insert an extra copy to get the result in a previous
149 /// determined register.
150 /// NOTE: This is only necessary because we might select a block that uses
151 /// a value before we select the block that defines the value. It might be
152 /// possible to fix this by selecting blocks in reverse postorder.
153 unsigned FastISel::UpdateValueMap(Value
* I
, unsigned Reg
) {
154 if (!isa
<Instruction
>(I
)) {
155 LocalValueMap
[I
] = Reg
;
159 unsigned &AssignedReg
= ValueMap
[I
];
160 if (AssignedReg
== 0)
162 else if (Reg
!= AssignedReg
) {
163 const TargetRegisterClass
*RegClass
= MRI
.getRegClass(Reg
);
164 TII
.copyRegToReg(*MBB
, MBB
->end(), AssignedReg
,
165 Reg
, RegClass
, RegClass
);
170 unsigned FastISel::getRegForGEPIndex(Value
*Idx
) {
171 unsigned IdxN
= getRegForValue(Idx
);
173 // Unhandled operand. Halt "fast" selection and bail.
176 // If the index is smaller or larger than intptr_t, truncate or extend it.
177 MVT PtrVT
= TLI
.getPointerTy();
178 MVT IdxVT
= MVT::getMVT(Idx
->getType(), /*HandleUnknown=*/false);
179 if (IdxVT
.bitsLT(PtrVT
))
180 IdxN
= FastEmit_r(IdxVT
.getSimpleVT(), PtrVT
.getSimpleVT(),
181 ISD::SIGN_EXTEND
, IdxN
);
182 else if (IdxVT
.bitsGT(PtrVT
))
183 IdxN
= FastEmit_r(IdxVT
.getSimpleVT(), PtrVT
.getSimpleVT(),
184 ISD::TRUNCATE
, IdxN
);
188 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
189 /// which has an opcode which directly corresponds to the given ISD opcode.
191 bool FastISel::SelectBinaryOp(User
*I
, ISD::NodeType ISDOpcode
) {
192 MVT VT
= MVT::getMVT(I
->getType(), /*HandleUnknown=*/true);
193 if (VT
== MVT::Other
|| !VT
.isSimple())
194 // Unhandled type. Halt "fast" selection and bail.
197 // We only handle legal types. For example, on x86-32 the instruction
198 // selector contains all of the 64-bit instructions from x86-64,
199 // under the assumption that i64 won't be used if the target doesn't
201 if (!TLI
.isTypeLegal(VT
)) {
202 // MVT::i1 is special. Allow AND, OR, or XOR because they
203 // don't require additional zeroing, which makes them easy.
205 (ISDOpcode
== ISD::AND
|| ISDOpcode
== ISD::OR
||
206 ISDOpcode
== ISD::XOR
))
207 VT
= TLI
.getTypeToTransformTo(VT
);
212 unsigned Op0
= getRegForValue(I
->getOperand(0));
214 // Unhandled operand. Halt "fast" selection and bail.
217 // Check if the second operand is a constant and handle it appropriately.
218 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
219 unsigned ResultReg
= FastEmit_ri(VT
.getSimpleVT(), VT
.getSimpleVT(),
220 ISDOpcode
, Op0
, CI
->getZExtValue());
221 if (ResultReg
!= 0) {
222 // We successfully emitted code for the given LLVM Instruction.
223 UpdateValueMap(I
, ResultReg
);
228 // Check if the second operand is a constant float.
229 if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(I
->getOperand(1))) {
230 unsigned ResultReg
= FastEmit_rf(VT
.getSimpleVT(), VT
.getSimpleVT(),
232 if (ResultReg
!= 0) {
233 // We successfully emitted code for the given LLVM Instruction.
234 UpdateValueMap(I
, ResultReg
);
239 unsigned Op1
= getRegForValue(I
->getOperand(1));
241 // Unhandled operand. Halt "fast" selection and bail.
244 // Now we have both operands in registers. Emit the instruction.
245 unsigned ResultReg
= FastEmit_rr(VT
.getSimpleVT(), VT
.getSimpleVT(),
246 ISDOpcode
, Op0
, Op1
);
248 // Target-specific code wasn't able to find a machine opcode for
249 // the given ISD opcode and type. Halt "fast" selection and bail.
252 // We successfully emitted code for the given LLVM Instruction.
253 UpdateValueMap(I
, ResultReg
);
257 bool FastISel::SelectGetElementPtr(User
*I
) {
258 unsigned N
= getRegForValue(I
->getOperand(0));
260 // Unhandled operand. Halt "fast" selection and bail.
263 const Type
*Ty
= I
->getOperand(0)->getType();
264 MVT::SimpleValueType VT
= TLI
.getPointerTy().getSimpleVT();
265 for (GetElementPtrInst::op_iterator OI
= I
->op_begin()+1, E
= I
->op_end();
268 if (const StructType
*StTy
= dyn_cast
<StructType
>(Ty
)) {
269 unsigned Field
= cast
<ConstantInt
>(Idx
)->getZExtValue();
272 uint64_t Offs
= TD
.getStructLayout(StTy
)->getElementOffset(Field
);
273 // FIXME: This can be optimized by combining the add with a
275 N
= FastEmit_ri_(VT
, ISD::ADD
, N
, Offs
, VT
);
277 // Unhandled operand. Halt "fast" selection and bail.
280 Ty
= StTy
->getElementType(Field
);
282 Ty
= cast
<SequentialType
>(Ty
)->getElementType();
284 // If this is a constant subscript, handle it quickly.
285 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx
)) {
286 if (CI
->getZExtValue() == 0) continue;
288 TD
.getTypePaddedSize(Ty
)*cast
<ConstantInt
>(CI
)->getSExtValue();
289 N
= FastEmit_ri_(VT
, ISD::ADD
, N
, Offs
, VT
);
291 // Unhandled operand. Halt "fast" selection and bail.
296 // N = N + Idx * ElementSize;
297 uint64_t ElementSize
= TD
.getTypePaddedSize(Ty
);
298 unsigned IdxN
= getRegForGEPIndex(Idx
);
300 // Unhandled operand. Halt "fast" selection and bail.
303 if (ElementSize
!= 1) {
304 IdxN
= FastEmit_ri_(VT
, ISD::MUL
, IdxN
, ElementSize
, VT
);
306 // Unhandled operand. Halt "fast" selection and bail.
309 N
= FastEmit_rr(VT
, VT
, ISD::ADD
, N
, IdxN
);
311 // Unhandled operand. Halt "fast" selection and bail.
316 // We successfully emitted code for the given LLVM Instruction.
317 UpdateValueMap(I
, N
);
321 bool FastISel::SelectCall(User
*I
) {
322 Function
*F
= cast
<CallInst
>(I
)->getCalledFunction();
323 if (!F
) return false;
325 unsigned IID
= F
->getIntrinsicID();
328 case Intrinsic::dbg_stoppoint
: {
329 DbgStopPointInst
*SPI
= cast
<DbgStopPointInst
>(I
);
330 if (DIDescriptor::ValidDebugInfo(SPI
->getContext(), CodeGenOpt::None
)) {
331 DICompileUnit
CU(cast
<GlobalVariable
>(SPI
->getContext()));
332 unsigned Line
= SPI
->getLine();
333 unsigned Col
= SPI
->getColumn();
334 unsigned Idx
= MF
.getOrCreateDebugLocID(CU
.getGV(), Line
, Col
);
335 setCurDebugLoc(DebugLoc::get(Idx
));
336 if (DW
&& DW
->ShouldEmitDwarfDebug()) {
337 unsigned ID
= DW
->RecordSourceLine(Line
, Col
, CU
);
338 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
339 BuildMI(MBB
, DL
, II
).addImm(ID
);
344 case Intrinsic::dbg_region_start
: {
345 DbgRegionStartInst
*RSI
= cast
<DbgRegionStartInst
>(I
);
346 if (DIDescriptor::ValidDebugInfo(RSI
->getContext(), CodeGenOpt::None
) &&
347 DW
&& DW
->ShouldEmitDwarfDebug()) {
349 DW
->RecordRegionStart(cast
<GlobalVariable
>(RSI
->getContext()));
350 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
351 BuildMI(MBB
, DL
, II
).addImm(ID
);
355 case Intrinsic::dbg_region_end
: {
356 DbgRegionEndInst
*REI
= cast
<DbgRegionEndInst
>(I
);
357 if (DIDescriptor::ValidDebugInfo(REI
->getContext(), CodeGenOpt::None
) &&
358 DW
&& DW
->ShouldEmitDwarfDebug()) {
360 DISubprogram
Subprogram(cast
<GlobalVariable
>(REI
->getContext()));
361 if (!Subprogram
.isNull() && !Subprogram
.describes(MF
.getFunction())) {
362 // This is end of an inlined function.
363 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
364 ID
= DW
->RecordInlinedFnEnd(Subprogram
);
366 // Returned ID is 0 if this is unbalanced "end of inlined
367 // scope". This could happen if optimizer eats dbg intrinsics
368 // or "beginning of inlined scope" is not recoginized due to
369 // missing location info. In such cases, do ignore this region.end.
370 BuildMI(MBB
, DL
, II
).addImm(ID
);
372 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
373 ID
= DW
->RecordRegionEnd(cast
<GlobalVariable
>(REI
->getContext()));
374 BuildMI(MBB
, DL
, II
).addImm(ID
);
379 case Intrinsic::dbg_func_start
: {
380 DbgFuncStartInst
*FSI
= cast
<DbgFuncStartInst
>(I
);
381 Value
*SP
= FSI
->getSubprogram();
382 if (!DIDescriptor::ValidDebugInfo(SP
, CodeGenOpt::None
))
385 // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what
386 // (most?) gdb expects.
387 DebugLoc PrevLoc
= DL
;
388 DISubprogram
Subprogram(cast
<GlobalVariable
>(SP
));
389 DICompileUnit CompileUnit
= Subprogram
.getCompileUnit();
391 if (!Subprogram
.describes(MF
.getFunction())) {
392 // This is a beginning of an inlined function.
394 // If llvm.dbg.func.start is seen in a new block before any
395 // llvm.dbg.stoppoint intrinsic then the location info is unknown.
396 // FIXME : Why DebugLoc is reset at the beginning of each block ?
397 if (PrevLoc
.isUnknown())
399 // Record the source line.
400 unsigned Line
= Subprogram
.getLineNumber();
401 setCurDebugLoc(DebugLoc::get(MF
.getOrCreateDebugLocID(
402 CompileUnit
.getGV(), Line
, 0)));
404 if (DW
&& DW
->ShouldEmitDwarfDebug()) {
405 unsigned LabelID
= DW
->RecordSourceLine(Line
, 0, CompileUnit
);
406 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
407 BuildMI(MBB
, DL
, II
).addImm(LabelID
);
408 DebugLocTuple PrevLocTpl
= MF
.getDebugLocTuple(PrevLoc
);
409 DW
->RecordInlinedFnStart(FSI
, Subprogram
, LabelID
,
410 DICompileUnit(PrevLocTpl
.CompileUnit
),
415 // Record the source line.
416 unsigned Line
= Subprogram
.getLineNumber();
417 setCurDebugLoc(DebugLoc::get(MF
.getOrCreateDebugLocID(
418 CompileUnit
.getGV(), Line
, 0)));
419 if (DW
&& DW
->ShouldEmitDwarfDebug()) {
420 DW
->RecordSourceLine(Line
, 0, CompileUnit
);
421 // llvm.dbg.func_start also defines beginning of function scope.
422 DW
->RecordRegionStart(cast
<GlobalVariable
>(FSI
->getSubprogram()));
428 case Intrinsic::dbg_declare
: {
429 DbgDeclareInst
*DI
= cast
<DbgDeclareInst
>(I
);
430 Value
*Variable
= DI
->getVariable();
431 if (DIDescriptor::ValidDebugInfo(Variable
, CodeGenOpt::None
) &&
432 DW
&& DW
->ShouldEmitDwarfDebug()) {
433 // Determine the address of the declared object.
434 Value
*Address
= DI
->getAddress();
435 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Address
))
436 Address
= BCI
->getOperand(0);
437 AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Address
);
438 // Don't handle byval struct arguments or VLAs, for example.
440 DenseMap
<const AllocaInst
*, int>::iterator SI
=
441 StaticAllocaMap
.find(AI
);
442 if (SI
== StaticAllocaMap
.end()) break; // VLAs.
445 // Determine the debug globalvariable.
446 GlobalValue
*GV
= cast
<GlobalVariable
>(Variable
);
448 // Build the DECLARE instruction.
449 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DECLARE
);
450 MachineInstr
*DeclareMI
451 = BuildMI(MBB
, DL
, II
).addFrameIndex(FI
).addGlobalAddress(GV
);
452 DIVariable
DV(cast
<GlobalVariable
>(GV
));
454 // This is a local variable
455 DW
->RecordVariableScope(DV
, DeclareMI
);
460 case Intrinsic::eh_exception
: {
461 MVT VT
= TLI
.getValueType(I
->getType());
462 switch (TLI
.getOperationAction(ISD::EXCEPTIONADDR
, VT
)) {
464 case TargetLowering::Expand
: {
465 if (!MBB
->isLandingPad()) {
466 // FIXME: Mark exception register as live in. Hack for PR1508.
467 unsigned Reg
= TLI
.getExceptionAddressRegister();
468 if (Reg
) MBB
->addLiveIn(Reg
);
470 unsigned Reg
= TLI
.getExceptionAddressRegister();
471 const TargetRegisterClass
*RC
= TLI
.getRegClassFor(VT
);
472 unsigned ResultReg
= createResultReg(RC
);
473 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
475 assert(InsertedCopy
&& "Can't copy address registers!");
476 InsertedCopy
= InsertedCopy
;
477 UpdateValueMap(I
, ResultReg
);
483 case Intrinsic::eh_selector_i32
:
484 case Intrinsic::eh_selector_i64
: {
485 MVT VT
= TLI
.getValueType(I
->getType());
486 switch (TLI
.getOperationAction(ISD::EHSELECTION
, VT
)) {
488 case TargetLowering::Expand
: {
489 MVT VT
= (IID
== Intrinsic::eh_selector_i32
?
490 MVT::i32
: MVT::i64
);
493 if (MBB
->isLandingPad())
494 AddCatchInfo(*cast
<CallInst
>(I
), MMI
, MBB
);
497 CatchInfoLost
.insert(cast
<CallInst
>(I
));
499 // FIXME: Mark exception selector register as live in. Hack for PR1508.
500 unsigned Reg
= TLI
.getExceptionSelectorRegister();
501 if (Reg
) MBB
->addLiveIn(Reg
);
504 unsigned Reg
= TLI
.getExceptionSelectorRegister();
505 const TargetRegisterClass
*RC
= TLI
.getRegClassFor(VT
);
506 unsigned ResultReg
= createResultReg(RC
);
507 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
509 assert(InsertedCopy
&& "Can't copy address registers!");
510 InsertedCopy
= InsertedCopy
;
511 UpdateValueMap(I
, ResultReg
);
514 getRegForValue(Constant::getNullValue(I
->getType()));
515 UpdateValueMap(I
, ResultReg
);
526 bool FastISel::SelectCast(User
*I
, ISD::NodeType Opcode
) {
527 MVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
528 MVT DstVT
= TLI
.getValueType(I
->getType());
530 if (SrcVT
== MVT::Other
|| !SrcVT
.isSimple() ||
531 DstVT
== MVT::Other
|| !DstVT
.isSimple())
532 // Unhandled type. Halt "fast" selection and bail.
535 // Check if the destination type is legal. Or as a special case,
536 // it may be i1 if we're doing a truncate because that's
537 // easy and somewhat common.
538 if (!TLI
.isTypeLegal(DstVT
))
539 if (DstVT
!= MVT::i1
|| Opcode
!= ISD::TRUNCATE
)
540 // Unhandled type. Halt "fast" selection and bail.
543 // Check if the source operand is legal. Or as a special case,
544 // it may be i1 if we're doing zero-extension because that's
545 // easy and somewhat common.
546 if (!TLI
.isTypeLegal(SrcVT
))
547 if (SrcVT
!= MVT::i1
|| Opcode
!= ISD::ZERO_EXTEND
)
548 // Unhandled type. Halt "fast" selection and bail.
551 unsigned InputReg
= getRegForValue(I
->getOperand(0));
553 // Unhandled operand. Halt "fast" selection and bail.
556 // If the operand is i1, arrange for the high bits in the register to be zero.
557 if (SrcVT
== MVT::i1
) {
558 SrcVT
= TLI
.getTypeToTransformTo(SrcVT
);
559 InputReg
= FastEmitZExtFromI1(SrcVT
.getSimpleVT(), InputReg
);
563 // If the result is i1, truncate to the target's type for i1 first.
564 if (DstVT
== MVT::i1
)
565 DstVT
= TLI
.getTypeToTransformTo(DstVT
);
567 unsigned ResultReg
= FastEmit_r(SrcVT
.getSimpleVT(),
574 UpdateValueMap(I
, ResultReg
);
578 bool FastISel::SelectBitCast(User
*I
) {
579 // If the bitcast doesn't change the type, just use the operand value.
580 if (I
->getType() == I
->getOperand(0)->getType()) {
581 unsigned Reg
= getRegForValue(I
->getOperand(0));
584 UpdateValueMap(I
, Reg
);
588 // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
589 MVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
590 MVT DstVT
= TLI
.getValueType(I
->getType());
592 if (SrcVT
== MVT::Other
|| !SrcVT
.isSimple() ||
593 DstVT
== MVT::Other
|| !DstVT
.isSimple() ||
594 !TLI
.isTypeLegal(SrcVT
) || !TLI
.isTypeLegal(DstVT
))
595 // Unhandled type. Halt "fast" selection and bail.
598 unsigned Op0
= getRegForValue(I
->getOperand(0));
600 // Unhandled operand. Halt "fast" selection and bail.
603 // First, try to perform the bitcast by inserting a reg-reg copy.
604 unsigned ResultReg
= 0;
605 if (SrcVT
.getSimpleVT() == DstVT
.getSimpleVT()) {
606 TargetRegisterClass
* SrcClass
= TLI
.getRegClassFor(SrcVT
);
607 TargetRegisterClass
* DstClass
= TLI
.getRegClassFor(DstVT
);
608 ResultReg
= createResultReg(DstClass
);
610 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
611 Op0
, DstClass
, SrcClass
);
616 // If the reg-reg copy failed, select a BIT_CONVERT opcode.
618 ResultReg
= FastEmit_r(SrcVT
.getSimpleVT(), DstVT
.getSimpleVT(),
619 ISD::BIT_CONVERT
, Op0
);
624 UpdateValueMap(I
, ResultReg
);
629 FastISel::SelectInstruction(Instruction
*I
) {
630 return SelectOperator(I
, I
->getOpcode());
633 /// FastEmitBranch - Emit an unconditional branch to the given block,
634 /// unless it is the immediate (fall-through) successor, and update
637 FastISel::FastEmitBranch(MachineBasicBlock
*MSucc
) {
638 MachineFunction::iterator NextMBB
=
639 next(MachineFunction::iterator(MBB
));
641 if (MBB
->isLayoutSuccessor(MSucc
)) {
642 // The unconditional fall-through case, which needs no instructions.
644 // The unconditional branch case.
645 TII
.InsertBranch(*MBB
, MSucc
, NULL
, SmallVector
<MachineOperand
, 0>());
647 MBB
->addSuccessor(MSucc
);
651 FastISel::SelectOperator(User
*I
, unsigned Opcode
) {
653 case Instruction::Add
: {
654 ISD::NodeType Opc
= I
->getType()->isFPOrFPVector() ? ISD::FADD
: ISD::ADD
;
655 return SelectBinaryOp(I
, Opc
);
657 case Instruction::Sub
: {
658 ISD::NodeType Opc
= I
->getType()->isFPOrFPVector() ? ISD::FSUB
: ISD::SUB
;
659 return SelectBinaryOp(I
, Opc
);
661 case Instruction::Mul
: {
662 ISD::NodeType Opc
= I
->getType()->isFPOrFPVector() ? ISD::FMUL
: ISD::MUL
;
663 return SelectBinaryOp(I
, Opc
);
665 case Instruction::SDiv
:
666 return SelectBinaryOp(I
, ISD::SDIV
);
667 case Instruction::UDiv
:
668 return SelectBinaryOp(I
, ISD::UDIV
);
669 case Instruction::FDiv
:
670 return SelectBinaryOp(I
, ISD::FDIV
);
671 case Instruction::SRem
:
672 return SelectBinaryOp(I
, ISD::SREM
);
673 case Instruction::URem
:
674 return SelectBinaryOp(I
, ISD::UREM
);
675 case Instruction::FRem
:
676 return SelectBinaryOp(I
, ISD::FREM
);
677 case Instruction::Shl
:
678 return SelectBinaryOp(I
, ISD::SHL
);
679 case Instruction::LShr
:
680 return SelectBinaryOp(I
, ISD::SRL
);
681 case Instruction::AShr
:
682 return SelectBinaryOp(I
, ISD::SRA
);
683 case Instruction::And
:
684 return SelectBinaryOp(I
, ISD::AND
);
685 case Instruction::Or
:
686 return SelectBinaryOp(I
, ISD::OR
);
687 case Instruction::Xor
:
688 return SelectBinaryOp(I
, ISD::XOR
);
690 case Instruction::GetElementPtr
:
691 return SelectGetElementPtr(I
);
693 case Instruction::Br
: {
694 BranchInst
*BI
= cast
<BranchInst
>(I
);
696 if (BI
->isUnconditional()) {
697 BasicBlock
*LLVMSucc
= BI
->getSuccessor(0);
698 MachineBasicBlock
*MSucc
= MBBMap
[LLVMSucc
];
699 FastEmitBranch(MSucc
);
703 // Conditional branches are not handed yet.
704 // Halt "fast" selection and bail.
708 case Instruction::Unreachable
:
712 case Instruction::PHI
:
713 // PHI nodes are already emitted.
716 case Instruction::Alloca
:
717 // FunctionLowering has the static-sized case covered.
718 if (StaticAllocaMap
.count(cast
<AllocaInst
>(I
)))
721 // Dynamic-sized alloca is not handled yet.
724 case Instruction::Call
:
725 return SelectCall(I
);
727 case Instruction::BitCast
:
728 return SelectBitCast(I
);
730 case Instruction::FPToSI
:
731 return SelectCast(I
, ISD::FP_TO_SINT
);
732 case Instruction::ZExt
:
733 return SelectCast(I
, ISD::ZERO_EXTEND
);
734 case Instruction::SExt
:
735 return SelectCast(I
, ISD::SIGN_EXTEND
);
736 case Instruction::Trunc
:
737 return SelectCast(I
, ISD::TRUNCATE
);
738 case Instruction::SIToFP
:
739 return SelectCast(I
, ISD::SINT_TO_FP
);
741 case Instruction::IntToPtr
: // Deliberate fall-through.
742 case Instruction::PtrToInt
: {
743 MVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
744 MVT DstVT
= TLI
.getValueType(I
->getType());
745 if (DstVT
.bitsGT(SrcVT
))
746 return SelectCast(I
, ISD::ZERO_EXTEND
);
747 if (DstVT
.bitsLT(SrcVT
))
748 return SelectCast(I
, ISD::TRUNCATE
);
749 unsigned Reg
= getRegForValue(I
->getOperand(0));
750 if (Reg
== 0) return false;
751 UpdateValueMap(I
, Reg
);
756 // Unhandled instruction. Halt "fast" selection and bail.
761 FastISel::FastISel(MachineFunction
&mf
,
762 MachineModuleInfo
*mmi
,
764 DenseMap
<const Value
*, unsigned> &vm
,
765 DenseMap
<const BasicBlock
*, MachineBasicBlock
*> &bm
,
766 DenseMap
<const AllocaInst
*, int> &am
768 , SmallSet
<Instruction
*, 8> &cil
781 MRI(MF
.getRegInfo()),
782 MFI(*MF
.getFrameInfo()),
783 MCP(*MF
.getConstantPool()),
785 TD(*TM
.getTargetData()),
786 TII(*TM
.getInstrInfo()),
787 TLI(*TM
.getTargetLowering()) {
790 FastISel::~FastISel() {}
792 unsigned FastISel::FastEmit_(MVT::SimpleValueType
, MVT::SimpleValueType
,
797 unsigned FastISel::FastEmit_r(MVT::SimpleValueType
, MVT::SimpleValueType
,
798 ISD::NodeType
, unsigned /*Op0*/) {
802 unsigned FastISel::FastEmit_rr(MVT::SimpleValueType
, MVT::SimpleValueType
,
803 ISD::NodeType
, unsigned /*Op0*/,
808 unsigned FastISel::FastEmit_i(MVT::SimpleValueType
, MVT::SimpleValueType
,
809 ISD::NodeType
, uint64_t /*Imm*/) {
813 unsigned FastISel::FastEmit_f(MVT::SimpleValueType
, MVT::SimpleValueType
,
814 ISD::NodeType
, ConstantFP
* /*FPImm*/) {
818 unsigned FastISel::FastEmit_ri(MVT::SimpleValueType
, MVT::SimpleValueType
,
819 ISD::NodeType
, unsigned /*Op0*/,
824 unsigned FastISel::FastEmit_rf(MVT::SimpleValueType
, MVT::SimpleValueType
,
825 ISD::NodeType
, unsigned /*Op0*/,
826 ConstantFP
* /*FPImm*/) {
830 unsigned FastISel::FastEmit_rri(MVT::SimpleValueType
, MVT::SimpleValueType
,
832 unsigned /*Op0*/, unsigned /*Op1*/,
837 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
838 /// to emit an instruction with an immediate operand using FastEmit_ri.
839 /// If that fails, it materializes the immediate into a register and try
840 /// FastEmit_rr instead.
841 unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT
, ISD::NodeType Opcode
,
842 unsigned Op0
, uint64_t Imm
,
843 MVT::SimpleValueType ImmType
) {
844 // First check if immediate type is legal. If not, we can't use the ri form.
845 unsigned ResultReg
= FastEmit_ri(VT
, VT
, Opcode
, Op0
, Imm
);
848 unsigned MaterialReg
= FastEmit_i(ImmType
, ImmType
, ISD::Constant
, Imm
);
849 if (MaterialReg
== 0)
851 return FastEmit_rr(VT
, VT
, Opcode
, Op0
, MaterialReg
);
854 /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
855 /// to emit an instruction with a floating-point immediate operand using
856 /// FastEmit_rf. If that fails, it materializes the immediate into a register
857 /// and try FastEmit_rr instead.
858 unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT
, ISD::NodeType Opcode
,
859 unsigned Op0
, ConstantFP
*FPImm
,
860 MVT::SimpleValueType ImmType
) {
861 // First check if immediate type is legal. If not, we can't use the rf form.
862 unsigned ResultReg
= FastEmit_rf(VT
, VT
, Opcode
, Op0
, FPImm
);
866 // Materialize the constant in a register.
867 unsigned MaterialReg
= FastEmit_f(ImmType
, ImmType
, ISD::ConstantFP
, FPImm
);
868 if (MaterialReg
== 0) {
869 // If the target doesn't have a way to directly enter a floating-point
870 // value into a register, use an alternate approach.
871 // TODO: The current approach only supports floating-point constants
872 // that can be constructed by conversion from integer values. This should
873 // be replaced by code that creates a load from a constant-pool entry,
874 // which will require some target-specific work.
875 const APFloat
&Flt
= FPImm
->getValueAPF();
876 MVT IntVT
= TLI
.getPointerTy();
879 uint32_t IntBitWidth
= IntVT
.getSizeInBits();
881 (void) Flt
.convertToInteger(x
, IntBitWidth
, /*isSigned=*/true,
882 APFloat::rmTowardZero
, &isExact
);
885 APInt
IntVal(IntBitWidth
, 2, x
);
887 unsigned IntegerReg
= FastEmit_i(IntVT
.getSimpleVT(), IntVT
.getSimpleVT(),
888 ISD::Constant
, IntVal
.getZExtValue());
891 MaterialReg
= FastEmit_r(IntVT
.getSimpleVT(), VT
,
892 ISD::SINT_TO_FP
, IntegerReg
);
893 if (MaterialReg
== 0)
896 return FastEmit_rr(VT
, VT
, Opcode
, Op0
, MaterialReg
);
899 unsigned FastISel::createResultReg(const TargetRegisterClass
* RC
) {
900 return MRI
.createVirtualRegister(RC
);
903 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode
,
904 const TargetRegisterClass
* RC
) {
905 unsigned ResultReg
= createResultReg(RC
);
906 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
908 BuildMI(MBB
, DL
, II
, ResultReg
);
912 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode
,
913 const TargetRegisterClass
*RC
,
915 unsigned ResultReg
= createResultReg(RC
);
916 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
918 if (II
.getNumDefs() >= 1)
919 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
);
921 BuildMI(MBB
, DL
, II
).addReg(Op0
);
922 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
923 II
.ImplicitDefs
[0], RC
, RC
);
931 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode
,
932 const TargetRegisterClass
*RC
,
933 unsigned Op0
, unsigned Op1
) {
934 unsigned ResultReg
= createResultReg(RC
);
935 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
937 if (II
.getNumDefs() >= 1)
938 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addReg(Op1
);
940 BuildMI(MBB
, DL
, II
).addReg(Op0
).addReg(Op1
);
941 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
942 II
.ImplicitDefs
[0], RC
, RC
);
949 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode
,
950 const TargetRegisterClass
*RC
,
951 unsigned Op0
, uint64_t Imm
) {
952 unsigned ResultReg
= createResultReg(RC
);
953 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
955 if (II
.getNumDefs() >= 1)
956 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addImm(Imm
);
958 BuildMI(MBB
, DL
, II
).addReg(Op0
).addImm(Imm
);
959 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
960 II
.ImplicitDefs
[0], RC
, RC
);
967 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode
,
968 const TargetRegisterClass
*RC
,
969 unsigned Op0
, ConstantFP
*FPImm
) {
970 unsigned ResultReg
= createResultReg(RC
);
971 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
973 if (II
.getNumDefs() >= 1)
974 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addFPImm(FPImm
);
976 BuildMI(MBB
, DL
, II
).addReg(Op0
).addFPImm(FPImm
);
977 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
978 II
.ImplicitDefs
[0], RC
, RC
);
985 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode
,
986 const TargetRegisterClass
*RC
,
987 unsigned Op0
, unsigned Op1
, uint64_t Imm
) {
988 unsigned ResultReg
= createResultReg(RC
);
989 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
991 if (II
.getNumDefs() >= 1)
992 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addReg(Op1
).addImm(Imm
);
994 BuildMI(MBB
, DL
, II
).addReg(Op0
).addReg(Op1
).addImm(Imm
);
995 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
996 II
.ImplicitDefs
[0], RC
, RC
);
1003 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode
,
1004 const TargetRegisterClass
*RC
,
1006 unsigned ResultReg
= createResultReg(RC
);
1007 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
1009 if (II
.getNumDefs() >= 1)
1010 BuildMI(MBB
, DL
, II
, ResultReg
).addImm(Imm
);
1012 BuildMI(MBB
, DL
, II
).addImm(Imm
);
1013 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
1014 II
.ImplicitDefs
[0], RC
, RC
);
1021 unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT
,
1022 unsigned Op0
, uint32_t Idx
) {
1023 const TargetRegisterClass
* RC
= MRI
.getRegClass(Op0
);
1025 unsigned ResultReg
= createResultReg(TLI
.getRegClassFor(RetVT
));
1026 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::EXTRACT_SUBREG
);
1028 if (II
.getNumDefs() >= 1)
1029 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addImm(Idx
);
1031 BuildMI(MBB
, DL
, II
).addReg(Op0
).addImm(Idx
);
1032 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
1033 II
.ImplicitDefs
[0], RC
, RC
);
1040 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1041 /// with all but the least significant bit set to zero.
1042 unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT
, unsigned Op
) {
1043 return FastEmit_ri(VT
, VT
, ISD::AND
, Op
, 1);