We're not going to spend 100% of time in interrupts, do we? :)
[llvm/msp430.git] / lib / CodeGen / SelectionDAG / FastISel.cpp
blobafcda1f82e0c5133661dd9abccef6ae8314f58d1
1 ///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Function.h"
43 #include "llvm/GlobalVariable.h"
44 #include "llvm/Instructions.h"
45 #include "llvm/IntrinsicInst.h"
46 #include "llvm/CodeGen/FastISel.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineModuleInfo.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/DebugLoc.h"
51 #include "llvm/CodeGen/DwarfWriter.h"
52 #include "llvm/Analysis/DebugInfo.h"
53 #include "llvm/Target/TargetData.h"
54 #include "llvm/Target/TargetInstrInfo.h"
55 #include "llvm/Target/TargetLowering.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include "SelectionDAGBuild.h"
58 using namespace llvm;
60 unsigned FastISel::getRegForValue(Value *V) {
61 MVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
62 // Don't handle non-simple values in FastISel.
63 if (!RealVT.isSimple())
64 return 0;
66 // Ignore illegal types. We must do this before looking up the value
67 // in ValueMap because Arguments are given virtual registers regardless
68 // of whether FastISel can handle them.
69 MVT::SimpleValueType VT = RealVT.getSimpleVT();
70 if (!TLI.isTypeLegal(VT)) {
71 // Promote MVT::i1 to a legal type though, because it's common and easy.
72 if (VT == MVT::i1)
73 VT = TLI.getTypeToTransformTo(VT).getSimpleVT();
74 else
75 return 0;
78 // Look up the value to see if we already have a register for it. We
79 // cache values defined by Instructions across blocks, and other values
80 // only locally. This is because Instructions already have the SSA
81 // def-dominatess-use requirement enforced.
82 if (ValueMap.count(V))
83 return ValueMap[V];
84 unsigned Reg = LocalValueMap[V];
85 if (Reg != 0)
86 return Reg;
88 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
89 if (CI->getValue().getActiveBits() <= 64)
90 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
91 } else if (isa<AllocaInst>(V)) {
92 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
93 } else if (isa<ConstantPointerNull>(V)) {
94 // Translate this as an integer zero so that it can be
95 // local-CSE'd with actual integer zeros.
96 Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType()));
97 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
98 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
100 if (!Reg) {
101 const APFloat &Flt = CF->getValueAPF();
102 MVT IntVT = TLI.getPointerTy();
104 uint64_t x[2];
105 uint32_t IntBitWidth = IntVT.getSizeInBits();
106 bool isExact;
107 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
108 APFloat::rmTowardZero, &isExact);
109 if (isExact) {
110 APInt IntVal(IntBitWidth, 2, x);
112 unsigned IntegerReg = getRegForValue(ConstantInt::get(IntVal));
113 if (IntegerReg != 0)
114 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
117 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
118 if (!SelectOperator(CE, CE->getOpcode())) return 0;
119 Reg = LocalValueMap[CE];
120 } else if (isa<UndefValue>(V)) {
121 Reg = createResultReg(TLI.getRegClassFor(VT));
122 BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
125 // If target-independent code couldn't handle the value, give target-specific
126 // code a try.
127 if (!Reg && isa<Constant>(V))
128 Reg = TargetMaterializeConstant(cast<Constant>(V));
130 // Don't cache constant materializations in the general ValueMap.
131 // To do so would require tracking what uses they dominate.
132 if (Reg != 0)
133 LocalValueMap[V] = Reg;
134 return Reg;
137 unsigned FastISel::lookUpRegForValue(Value *V) {
138 // Look up the value to see if we already have a register for it. We
139 // cache values defined by Instructions across blocks, and other values
140 // only locally. This is because Instructions already have the SSA
141 // def-dominatess-use requirement enforced.
142 if (ValueMap.count(V))
143 return ValueMap[V];
144 return LocalValueMap[V];
147 /// UpdateValueMap - Update the value map to include the new mapping for this
148 /// instruction, or insert an extra copy to get the result in a previous
149 /// determined register.
150 /// NOTE: This is only necessary because we might select a block that uses
151 /// a value before we select the block that defines the value. It might be
152 /// possible to fix this by selecting blocks in reverse postorder.
153 unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
154 if (!isa<Instruction>(I)) {
155 LocalValueMap[I] = Reg;
156 return Reg;
159 unsigned &AssignedReg = ValueMap[I];
160 if (AssignedReg == 0)
161 AssignedReg = Reg;
162 else if (Reg != AssignedReg) {
163 const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
164 TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
165 Reg, RegClass, RegClass);
167 return AssignedReg;
170 unsigned FastISel::getRegForGEPIndex(Value *Idx) {
171 unsigned IdxN = getRegForValue(Idx);
172 if (IdxN == 0)
173 // Unhandled operand. Halt "fast" selection and bail.
174 return 0;
176 // If the index is smaller or larger than intptr_t, truncate or extend it.
177 MVT PtrVT = TLI.getPointerTy();
178 MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
179 if (IdxVT.bitsLT(PtrVT))
180 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
181 ISD::SIGN_EXTEND, IdxN);
182 else if (IdxVT.bitsGT(PtrVT))
183 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
184 ISD::TRUNCATE, IdxN);
185 return IdxN;
188 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
189 /// which has an opcode which directly corresponds to the given ISD opcode.
191 bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
192 MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
193 if (VT == MVT::Other || !VT.isSimple())
194 // Unhandled type. Halt "fast" selection and bail.
195 return false;
197 // We only handle legal types. For example, on x86-32 the instruction
198 // selector contains all of the 64-bit instructions from x86-64,
199 // under the assumption that i64 won't be used if the target doesn't
200 // support it.
201 if (!TLI.isTypeLegal(VT)) {
202 // MVT::i1 is special. Allow AND, OR, or XOR because they
203 // don't require additional zeroing, which makes them easy.
204 if (VT == MVT::i1 &&
205 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
206 ISDOpcode == ISD::XOR))
207 VT = TLI.getTypeToTransformTo(VT);
208 else
209 return false;
212 unsigned Op0 = getRegForValue(I->getOperand(0));
213 if (Op0 == 0)
214 // Unhandled operand. Halt "fast" selection and bail.
215 return false;
217 // Check if the second operand is a constant and handle it appropriately.
218 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
219 unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
220 ISDOpcode, Op0, CI->getZExtValue());
221 if (ResultReg != 0) {
222 // We successfully emitted code for the given LLVM Instruction.
223 UpdateValueMap(I, ResultReg);
224 return true;
228 // Check if the second operand is a constant float.
229 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
230 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
231 ISDOpcode, Op0, CF);
232 if (ResultReg != 0) {
233 // We successfully emitted code for the given LLVM Instruction.
234 UpdateValueMap(I, ResultReg);
235 return true;
239 unsigned Op1 = getRegForValue(I->getOperand(1));
240 if (Op1 == 0)
241 // Unhandled operand. Halt "fast" selection and bail.
242 return false;
244 // Now we have both operands in registers. Emit the instruction.
245 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
246 ISDOpcode, Op0, Op1);
247 if (ResultReg == 0)
248 // Target-specific code wasn't able to find a machine opcode for
249 // the given ISD opcode and type. Halt "fast" selection and bail.
250 return false;
252 // We successfully emitted code for the given LLVM Instruction.
253 UpdateValueMap(I, ResultReg);
254 return true;
257 bool FastISel::SelectGetElementPtr(User *I) {
258 unsigned N = getRegForValue(I->getOperand(0));
259 if (N == 0)
260 // Unhandled operand. Halt "fast" selection and bail.
261 return false;
263 const Type *Ty = I->getOperand(0)->getType();
264 MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
265 for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
266 OI != E; ++OI) {
267 Value *Idx = *OI;
268 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
269 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
270 if (Field) {
271 // N = N + Offset
272 uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
273 // FIXME: This can be optimized by combining the add with a
274 // subsequent one.
275 N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
276 if (N == 0)
277 // Unhandled operand. Halt "fast" selection and bail.
278 return false;
280 Ty = StTy->getElementType(Field);
281 } else {
282 Ty = cast<SequentialType>(Ty)->getElementType();
284 // If this is a constant subscript, handle it quickly.
285 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
286 if (CI->getZExtValue() == 0) continue;
287 uint64_t Offs =
288 TD.getTypePaddedSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
289 N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
290 if (N == 0)
291 // Unhandled operand. Halt "fast" selection and bail.
292 return false;
293 continue;
296 // N = N + Idx * ElementSize;
297 uint64_t ElementSize = TD.getTypePaddedSize(Ty);
298 unsigned IdxN = getRegForGEPIndex(Idx);
299 if (IdxN == 0)
300 // Unhandled operand. Halt "fast" selection and bail.
301 return false;
303 if (ElementSize != 1) {
304 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
305 if (IdxN == 0)
306 // Unhandled operand. Halt "fast" selection and bail.
307 return false;
309 N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
310 if (N == 0)
311 // Unhandled operand. Halt "fast" selection and bail.
312 return false;
316 // We successfully emitted code for the given LLVM Instruction.
317 UpdateValueMap(I, N);
318 return true;
321 bool FastISel::SelectCall(User *I) {
322 Function *F = cast<CallInst>(I)->getCalledFunction();
323 if (!F) return false;
325 unsigned IID = F->getIntrinsicID();
326 switch (IID) {
327 default: break;
328 case Intrinsic::dbg_stoppoint: {
329 DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
330 if (DIDescriptor::ValidDebugInfo(SPI->getContext(), CodeGenOpt::None)) {
331 DICompileUnit CU(cast<GlobalVariable>(SPI->getContext()));
332 unsigned Line = SPI->getLine();
333 unsigned Col = SPI->getColumn();
334 unsigned Idx = MF.getOrCreateDebugLocID(CU.getGV(), Line, Col);
335 setCurDebugLoc(DebugLoc::get(Idx));
336 if (DW && DW->ShouldEmitDwarfDebug()) {
337 unsigned ID = DW->RecordSourceLine(Line, Col, CU);
338 const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
339 BuildMI(MBB, DL, II).addImm(ID);
342 return true;
344 case Intrinsic::dbg_region_start: {
345 DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
346 if (DIDescriptor::ValidDebugInfo(RSI->getContext(), CodeGenOpt::None) &&
347 DW && DW->ShouldEmitDwarfDebug()) {
348 unsigned ID =
349 DW->RecordRegionStart(cast<GlobalVariable>(RSI->getContext()));
350 const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
351 BuildMI(MBB, DL, II).addImm(ID);
353 return true;
355 case Intrinsic::dbg_region_end: {
356 DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
357 if (DIDescriptor::ValidDebugInfo(REI->getContext(), CodeGenOpt::None) &&
358 DW && DW->ShouldEmitDwarfDebug()) {
359 unsigned ID = 0;
360 DISubprogram Subprogram(cast<GlobalVariable>(REI->getContext()));
361 if (!Subprogram.isNull() && !Subprogram.describes(MF.getFunction())) {
362 // This is end of an inlined function.
363 const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
364 ID = DW->RecordInlinedFnEnd(Subprogram);
365 if (ID)
366 // Returned ID is 0 if this is unbalanced "end of inlined
367 // scope". This could happen if optimizer eats dbg intrinsics
368 // or "beginning of inlined scope" is not recoginized due to
369 // missing location info. In such cases, do ignore this region.end.
370 BuildMI(MBB, DL, II).addImm(ID);
371 } else {
372 const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
373 ID = DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext()));
374 BuildMI(MBB, DL, II).addImm(ID);
377 return true;
379 case Intrinsic::dbg_func_start: {
380 DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
381 Value *SP = FSI->getSubprogram();
382 if (!DIDescriptor::ValidDebugInfo(SP, CodeGenOpt::None))
383 return true;
385 // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what
386 // (most?) gdb expects.
387 DebugLoc PrevLoc = DL;
388 DISubprogram Subprogram(cast<GlobalVariable>(SP));
389 DICompileUnit CompileUnit = Subprogram.getCompileUnit();
391 if (!Subprogram.describes(MF.getFunction())) {
392 // This is a beginning of an inlined function.
394 // If llvm.dbg.func.start is seen in a new block before any
395 // llvm.dbg.stoppoint intrinsic then the location info is unknown.
396 // FIXME : Why DebugLoc is reset at the beginning of each block ?
397 if (PrevLoc.isUnknown())
398 return true;
399 // Record the source line.
400 unsigned Line = Subprogram.getLineNumber();
401 setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(
402 CompileUnit.getGV(), Line, 0)));
404 if (DW && DW->ShouldEmitDwarfDebug()) {
405 unsigned LabelID = DW->RecordSourceLine(Line, 0, CompileUnit);
406 const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
407 BuildMI(MBB, DL, II).addImm(LabelID);
408 DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
409 DW->RecordInlinedFnStart(FSI, Subprogram, LabelID,
410 DICompileUnit(PrevLocTpl.CompileUnit),
411 PrevLocTpl.Line,
412 PrevLocTpl.Col);
414 } else {
415 // Record the source line.
416 unsigned Line = Subprogram.getLineNumber();
417 setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(
418 CompileUnit.getGV(), Line, 0)));
419 if (DW && DW->ShouldEmitDwarfDebug()) {
420 DW->RecordSourceLine(Line, 0, CompileUnit);
421 // llvm.dbg.func_start also defines beginning of function scope.
422 DW->RecordRegionStart(cast<GlobalVariable>(FSI->getSubprogram()));
426 return true;
428 case Intrinsic::dbg_declare: {
429 DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
430 Value *Variable = DI->getVariable();
431 if (DIDescriptor::ValidDebugInfo(Variable, CodeGenOpt::None) &&
432 DW && DW->ShouldEmitDwarfDebug()) {
433 // Determine the address of the declared object.
434 Value *Address = DI->getAddress();
435 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
436 Address = BCI->getOperand(0);
437 AllocaInst *AI = dyn_cast<AllocaInst>(Address);
438 // Don't handle byval struct arguments or VLAs, for example.
439 if (!AI) break;
440 DenseMap<const AllocaInst*, int>::iterator SI =
441 StaticAllocaMap.find(AI);
442 if (SI == StaticAllocaMap.end()) break; // VLAs.
443 int FI = SI->second;
445 // Determine the debug globalvariable.
446 GlobalValue *GV = cast<GlobalVariable>(Variable);
448 // Build the DECLARE instruction.
449 const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
450 MachineInstr *DeclareMI
451 = BuildMI(MBB, DL, II).addFrameIndex(FI).addGlobalAddress(GV);
452 DIVariable DV(cast<GlobalVariable>(GV));
453 if (!DV.isNull()) {
454 // This is a local variable
455 DW->RecordVariableScope(DV, DeclareMI);
458 return true;
460 case Intrinsic::eh_exception: {
461 MVT VT = TLI.getValueType(I->getType());
462 switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
463 default: break;
464 case TargetLowering::Expand: {
465 if (!MBB->isLandingPad()) {
466 // FIXME: Mark exception register as live in. Hack for PR1508.
467 unsigned Reg = TLI.getExceptionAddressRegister();
468 if (Reg) MBB->addLiveIn(Reg);
470 unsigned Reg = TLI.getExceptionAddressRegister();
471 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
472 unsigned ResultReg = createResultReg(RC);
473 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
474 Reg, RC, RC);
475 assert(InsertedCopy && "Can't copy address registers!");
476 InsertedCopy = InsertedCopy;
477 UpdateValueMap(I, ResultReg);
478 return true;
481 break;
483 case Intrinsic::eh_selector_i32:
484 case Intrinsic::eh_selector_i64: {
485 MVT VT = TLI.getValueType(I->getType());
486 switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
487 default: break;
488 case TargetLowering::Expand: {
489 MVT VT = (IID == Intrinsic::eh_selector_i32 ?
490 MVT::i32 : MVT::i64);
492 if (MMI) {
493 if (MBB->isLandingPad())
494 AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
495 else {
496 #ifndef NDEBUG
497 CatchInfoLost.insert(cast<CallInst>(I));
498 #endif
499 // FIXME: Mark exception selector register as live in. Hack for PR1508.
500 unsigned Reg = TLI.getExceptionSelectorRegister();
501 if (Reg) MBB->addLiveIn(Reg);
504 unsigned Reg = TLI.getExceptionSelectorRegister();
505 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
506 unsigned ResultReg = createResultReg(RC);
507 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
508 Reg, RC, RC);
509 assert(InsertedCopy && "Can't copy address registers!");
510 InsertedCopy = InsertedCopy;
511 UpdateValueMap(I, ResultReg);
512 } else {
513 unsigned ResultReg =
514 getRegForValue(Constant::getNullValue(I->getType()));
515 UpdateValueMap(I, ResultReg);
517 return true;
520 break;
523 return false;
526 bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
527 MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
528 MVT DstVT = TLI.getValueType(I->getType());
530 if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
531 DstVT == MVT::Other || !DstVT.isSimple())
532 // Unhandled type. Halt "fast" selection and bail.
533 return false;
535 // Check if the destination type is legal. Or as a special case,
536 // it may be i1 if we're doing a truncate because that's
537 // easy and somewhat common.
538 if (!TLI.isTypeLegal(DstVT))
539 if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
540 // Unhandled type. Halt "fast" selection and bail.
541 return false;
543 // Check if the source operand is legal. Or as a special case,
544 // it may be i1 if we're doing zero-extension because that's
545 // easy and somewhat common.
546 if (!TLI.isTypeLegal(SrcVT))
547 if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
548 // Unhandled type. Halt "fast" selection and bail.
549 return false;
551 unsigned InputReg = getRegForValue(I->getOperand(0));
552 if (!InputReg)
553 // Unhandled operand. Halt "fast" selection and bail.
554 return false;
556 // If the operand is i1, arrange for the high bits in the register to be zero.
557 if (SrcVT == MVT::i1) {
558 SrcVT = TLI.getTypeToTransformTo(SrcVT);
559 InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
560 if (!InputReg)
561 return false;
563 // If the result is i1, truncate to the target's type for i1 first.
564 if (DstVT == MVT::i1)
565 DstVT = TLI.getTypeToTransformTo(DstVT);
567 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
568 DstVT.getSimpleVT(),
569 Opcode,
570 InputReg);
571 if (!ResultReg)
572 return false;
574 UpdateValueMap(I, ResultReg);
575 return true;
578 bool FastISel::SelectBitCast(User *I) {
579 // If the bitcast doesn't change the type, just use the operand value.
580 if (I->getType() == I->getOperand(0)->getType()) {
581 unsigned Reg = getRegForValue(I->getOperand(0));
582 if (Reg == 0)
583 return false;
584 UpdateValueMap(I, Reg);
585 return true;
588 // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
589 MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
590 MVT DstVT = TLI.getValueType(I->getType());
592 if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
593 DstVT == MVT::Other || !DstVT.isSimple() ||
594 !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
595 // Unhandled type. Halt "fast" selection and bail.
596 return false;
598 unsigned Op0 = getRegForValue(I->getOperand(0));
599 if (Op0 == 0)
600 // Unhandled operand. Halt "fast" selection and bail.
601 return false;
603 // First, try to perform the bitcast by inserting a reg-reg copy.
604 unsigned ResultReg = 0;
605 if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
606 TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
607 TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
608 ResultReg = createResultReg(DstClass);
610 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
611 Op0, DstClass, SrcClass);
612 if (!InsertedCopy)
613 ResultReg = 0;
616 // If the reg-reg copy failed, select a BIT_CONVERT opcode.
617 if (!ResultReg)
618 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
619 ISD::BIT_CONVERT, Op0);
621 if (!ResultReg)
622 return false;
624 UpdateValueMap(I, ResultReg);
625 return true;
628 bool
629 FastISel::SelectInstruction(Instruction *I) {
630 return SelectOperator(I, I->getOpcode());
633 /// FastEmitBranch - Emit an unconditional branch to the given block,
634 /// unless it is the immediate (fall-through) successor, and update
635 /// the CFG.
636 void
637 FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
638 MachineFunction::iterator NextMBB =
639 next(MachineFunction::iterator(MBB));
641 if (MBB->isLayoutSuccessor(MSucc)) {
642 // The unconditional fall-through case, which needs no instructions.
643 } else {
644 // The unconditional branch case.
645 TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
647 MBB->addSuccessor(MSucc);
650 bool
651 FastISel::SelectOperator(User *I, unsigned Opcode) {
652 switch (Opcode) {
653 case Instruction::Add: {
654 ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD;
655 return SelectBinaryOp(I, Opc);
657 case Instruction::Sub: {
658 ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB;
659 return SelectBinaryOp(I, Opc);
661 case Instruction::Mul: {
662 ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL;
663 return SelectBinaryOp(I, Opc);
665 case Instruction::SDiv:
666 return SelectBinaryOp(I, ISD::SDIV);
667 case Instruction::UDiv:
668 return SelectBinaryOp(I, ISD::UDIV);
669 case Instruction::FDiv:
670 return SelectBinaryOp(I, ISD::FDIV);
671 case Instruction::SRem:
672 return SelectBinaryOp(I, ISD::SREM);
673 case Instruction::URem:
674 return SelectBinaryOp(I, ISD::UREM);
675 case Instruction::FRem:
676 return SelectBinaryOp(I, ISD::FREM);
677 case Instruction::Shl:
678 return SelectBinaryOp(I, ISD::SHL);
679 case Instruction::LShr:
680 return SelectBinaryOp(I, ISD::SRL);
681 case Instruction::AShr:
682 return SelectBinaryOp(I, ISD::SRA);
683 case Instruction::And:
684 return SelectBinaryOp(I, ISD::AND);
685 case Instruction::Or:
686 return SelectBinaryOp(I, ISD::OR);
687 case Instruction::Xor:
688 return SelectBinaryOp(I, ISD::XOR);
690 case Instruction::GetElementPtr:
691 return SelectGetElementPtr(I);
693 case Instruction::Br: {
694 BranchInst *BI = cast<BranchInst>(I);
696 if (BI->isUnconditional()) {
697 BasicBlock *LLVMSucc = BI->getSuccessor(0);
698 MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
699 FastEmitBranch(MSucc);
700 return true;
703 // Conditional branches are not handed yet.
704 // Halt "fast" selection and bail.
705 return false;
708 case Instruction::Unreachable:
709 // Nothing to emit.
710 return true;
712 case Instruction::PHI:
713 // PHI nodes are already emitted.
714 return true;
716 case Instruction::Alloca:
717 // FunctionLowering has the static-sized case covered.
718 if (StaticAllocaMap.count(cast<AllocaInst>(I)))
719 return true;
721 // Dynamic-sized alloca is not handled yet.
722 return false;
724 case Instruction::Call:
725 return SelectCall(I);
727 case Instruction::BitCast:
728 return SelectBitCast(I);
730 case Instruction::FPToSI:
731 return SelectCast(I, ISD::FP_TO_SINT);
732 case Instruction::ZExt:
733 return SelectCast(I, ISD::ZERO_EXTEND);
734 case Instruction::SExt:
735 return SelectCast(I, ISD::SIGN_EXTEND);
736 case Instruction::Trunc:
737 return SelectCast(I, ISD::TRUNCATE);
738 case Instruction::SIToFP:
739 return SelectCast(I, ISD::SINT_TO_FP);
741 case Instruction::IntToPtr: // Deliberate fall-through.
742 case Instruction::PtrToInt: {
743 MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
744 MVT DstVT = TLI.getValueType(I->getType());
745 if (DstVT.bitsGT(SrcVT))
746 return SelectCast(I, ISD::ZERO_EXTEND);
747 if (DstVT.bitsLT(SrcVT))
748 return SelectCast(I, ISD::TRUNCATE);
749 unsigned Reg = getRegForValue(I->getOperand(0));
750 if (Reg == 0) return false;
751 UpdateValueMap(I, Reg);
752 return true;
755 default:
756 // Unhandled instruction. Halt "fast" selection and bail.
757 return false;
761 FastISel::FastISel(MachineFunction &mf,
762 MachineModuleInfo *mmi,
763 DwarfWriter *dw,
764 DenseMap<const Value *, unsigned> &vm,
765 DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
766 DenseMap<const AllocaInst *, int> &am
767 #ifndef NDEBUG
768 , SmallSet<Instruction*, 8> &cil
769 #endif
771 : MBB(0),
772 ValueMap(vm),
773 MBBMap(bm),
774 StaticAllocaMap(am),
775 #ifndef NDEBUG
776 CatchInfoLost(cil),
777 #endif
778 MF(mf),
779 MMI(mmi),
780 DW(dw),
781 MRI(MF.getRegInfo()),
782 MFI(*MF.getFrameInfo()),
783 MCP(*MF.getConstantPool()),
784 TM(MF.getTarget()),
785 TD(*TM.getTargetData()),
786 TII(*TM.getInstrInfo()),
787 TLI(*TM.getTargetLowering()) {
790 FastISel::~FastISel() {}
792 unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
793 ISD::NodeType) {
794 return 0;
797 unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
798 ISD::NodeType, unsigned /*Op0*/) {
799 return 0;
802 unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
803 ISD::NodeType, unsigned /*Op0*/,
804 unsigned /*Op0*/) {
805 return 0;
808 unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
809 ISD::NodeType, uint64_t /*Imm*/) {
810 return 0;
813 unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
814 ISD::NodeType, ConstantFP * /*FPImm*/) {
815 return 0;
818 unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
819 ISD::NodeType, unsigned /*Op0*/,
820 uint64_t /*Imm*/) {
821 return 0;
824 unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
825 ISD::NodeType, unsigned /*Op0*/,
826 ConstantFP * /*FPImm*/) {
827 return 0;
830 unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
831 ISD::NodeType,
832 unsigned /*Op0*/, unsigned /*Op1*/,
833 uint64_t /*Imm*/) {
834 return 0;
837 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
838 /// to emit an instruction with an immediate operand using FastEmit_ri.
839 /// If that fails, it materializes the immediate into a register and try
840 /// FastEmit_rr instead.
841 unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
842 unsigned Op0, uint64_t Imm,
843 MVT::SimpleValueType ImmType) {
844 // First check if immediate type is legal. If not, we can't use the ri form.
845 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
846 if (ResultReg != 0)
847 return ResultReg;
848 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
849 if (MaterialReg == 0)
850 return 0;
851 return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
854 /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
855 /// to emit an instruction with a floating-point immediate operand using
856 /// FastEmit_rf. If that fails, it materializes the immediate into a register
857 /// and try FastEmit_rr instead.
858 unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
859 unsigned Op0, ConstantFP *FPImm,
860 MVT::SimpleValueType ImmType) {
861 // First check if immediate type is legal. If not, we can't use the rf form.
862 unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
863 if (ResultReg != 0)
864 return ResultReg;
866 // Materialize the constant in a register.
867 unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
868 if (MaterialReg == 0) {
869 // If the target doesn't have a way to directly enter a floating-point
870 // value into a register, use an alternate approach.
871 // TODO: The current approach only supports floating-point constants
872 // that can be constructed by conversion from integer values. This should
873 // be replaced by code that creates a load from a constant-pool entry,
874 // which will require some target-specific work.
875 const APFloat &Flt = FPImm->getValueAPF();
876 MVT IntVT = TLI.getPointerTy();
878 uint64_t x[2];
879 uint32_t IntBitWidth = IntVT.getSizeInBits();
880 bool isExact;
881 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
882 APFloat::rmTowardZero, &isExact);
883 if (!isExact)
884 return 0;
885 APInt IntVal(IntBitWidth, 2, x);
887 unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
888 ISD::Constant, IntVal.getZExtValue());
889 if (IntegerReg == 0)
890 return 0;
891 MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
892 ISD::SINT_TO_FP, IntegerReg);
893 if (MaterialReg == 0)
894 return 0;
896 return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
899 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
900 return MRI.createVirtualRegister(RC);
903 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
904 const TargetRegisterClass* RC) {
905 unsigned ResultReg = createResultReg(RC);
906 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
908 BuildMI(MBB, DL, II, ResultReg);
909 return ResultReg;
912 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
913 const TargetRegisterClass *RC,
914 unsigned Op0) {
915 unsigned ResultReg = createResultReg(RC);
916 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
918 if (II.getNumDefs() >= 1)
919 BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
920 else {
921 BuildMI(MBB, DL, II).addReg(Op0);
922 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
923 II.ImplicitDefs[0], RC, RC);
924 if (!InsertedCopy)
925 ResultReg = 0;
928 return ResultReg;
931 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
932 const TargetRegisterClass *RC,
933 unsigned Op0, unsigned Op1) {
934 unsigned ResultReg = createResultReg(RC);
935 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
937 if (II.getNumDefs() >= 1)
938 BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
939 else {
940 BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
941 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
942 II.ImplicitDefs[0], RC, RC);
943 if (!InsertedCopy)
944 ResultReg = 0;
946 return ResultReg;
949 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
950 const TargetRegisterClass *RC,
951 unsigned Op0, uint64_t Imm) {
952 unsigned ResultReg = createResultReg(RC);
953 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
955 if (II.getNumDefs() >= 1)
956 BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
957 else {
958 BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
959 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
960 II.ImplicitDefs[0], RC, RC);
961 if (!InsertedCopy)
962 ResultReg = 0;
964 return ResultReg;
967 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
968 const TargetRegisterClass *RC,
969 unsigned Op0, ConstantFP *FPImm) {
970 unsigned ResultReg = createResultReg(RC);
971 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
973 if (II.getNumDefs() >= 1)
974 BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
975 else {
976 BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
977 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
978 II.ImplicitDefs[0], RC, RC);
979 if (!InsertedCopy)
980 ResultReg = 0;
982 return ResultReg;
985 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
986 const TargetRegisterClass *RC,
987 unsigned Op0, unsigned Op1, uint64_t Imm) {
988 unsigned ResultReg = createResultReg(RC);
989 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
991 if (II.getNumDefs() >= 1)
992 BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
993 else {
994 BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
995 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
996 II.ImplicitDefs[0], RC, RC);
997 if (!InsertedCopy)
998 ResultReg = 0;
1000 return ResultReg;
1003 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1004 const TargetRegisterClass *RC,
1005 uint64_t Imm) {
1006 unsigned ResultReg = createResultReg(RC);
1007 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1009 if (II.getNumDefs() >= 1)
1010 BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
1011 else {
1012 BuildMI(MBB, DL, II).addImm(Imm);
1013 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1014 II.ImplicitDefs[0], RC, RC);
1015 if (!InsertedCopy)
1016 ResultReg = 0;
1018 return ResultReg;
1021 unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT,
1022 unsigned Op0, uint32_t Idx) {
1023 const TargetRegisterClass* RC = MRI.getRegClass(Op0);
1025 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1026 const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
1028 if (II.getNumDefs() >= 1)
1029 BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
1030 else {
1031 BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
1032 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1033 II.ImplicitDefs[0], RC, RC);
1034 if (!InsertedCopy)
1035 ResultReg = 0;
1037 return ResultReg;
1040 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1041 /// with all but the least significant bit set to zero.
1042 unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT, unsigned Op) {
1043 return FastEmit_ri(VT, VT, ISD::AND, Op, 1);