We're not going to spend 100% of time in interrupts, do we? :)
[llvm/msp430.git] / lib / CodeGen / SelectionDAG / SelectionDAG.cpp
blobb33b4691245801189da07b78836c50f3ac1bdb02
1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
12 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "llvm/Constants.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/GlobalAlias.h"
17 #include "llvm/GlobalVariable.h"
18 #include "llvm/Intrinsics.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Assembly/Writer.h"
21 #include "llvm/CallingConv.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallSet.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/StringExtras.h"
41 #include <algorithm>
42 #include <cmath>
43 using namespace llvm;
45 /// makeVTList - Return an instance of the SDVTList struct initialized with the
46 /// specified members.
47 static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48 SDVTList Res = {VTs, NumVTs};
49 return Res;
52 static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53 switch (VT.getSimpleVT()) {
54 default: assert(0 && "Unknown FP format");
55 case MVT::f32: return &APFloat::IEEEsingle;
56 case MVT::f64: return &APFloat::IEEEdouble;
57 case MVT::f80: return &APFloat::x87DoubleExtended;
58 case MVT::f128: return &APFloat::IEEEquad;
59 case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
63 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
65 //===----------------------------------------------------------------------===//
66 // ConstantFPSDNode Class
67 //===----------------------------------------------------------------------===//
69 /// isExactlyValue - We don't rely on operator== working on double values, as
70 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71 /// As such, this method can be used to do an exact bit-for-bit comparison of
72 /// two floating point values.
73 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74 return getValueAPF().bitwiseIsEqual(V);
77 bool ConstantFPSDNode::isValueValidForType(MVT VT,
78 const APFloat& Val) {
79 assert(VT.isFloatingPoint() && "Can only convert between FP types");
81 // PPC long double cannot be converted to any other type.
82 if (VT == MVT::ppcf128 ||
83 &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84 return false;
86 // convert modifies in place, so make a copy.
87 APFloat Val2 = APFloat(Val);
88 bool losesInfo;
89 (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90 &losesInfo);
91 return !losesInfo;
94 //===----------------------------------------------------------------------===//
95 // ISD Namespace
96 //===----------------------------------------------------------------------===//
98 /// isBuildVectorAllOnes - Return true if the specified node is a
99 /// BUILD_VECTOR where all of the elements are ~0 or undef.
100 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101 // Look through a bit convert.
102 if (N->getOpcode() == ISD::BIT_CONVERT)
103 N = N->getOperand(0).getNode();
105 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
107 unsigned i = 0, e = N->getNumOperands();
109 // Skip over all of the undef values.
110 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111 ++i;
113 // Do not accept an all-undef vector.
114 if (i == e) return false;
116 // Do not accept build_vectors that aren't all constants or which have non-~0
117 // elements.
118 SDValue NotZero = N->getOperand(i);
119 if (isa<ConstantSDNode>(NotZero)) {
120 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121 return false;
122 } else if (isa<ConstantFPSDNode>(NotZero)) {
123 if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124 bitcastToAPInt().isAllOnesValue())
125 return false;
126 } else
127 return false;
129 // Okay, we have at least one ~0 value, check to see if the rest match or are
130 // undefs.
131 for (++i; i != e; ++i)
132 if (N->getOperand(i) != NotZero &&
133 N->getOperand(i).getOpcode() != ISD::UNDEF)
134 return false;
135 return true;
139 /// isBuildVectorAllZeros - Return true if the specified node is a
140 /// BUILD_VECTOR where all of the elements are 0 or undef.
141 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142 // Look through a bit convert.
143 if (N->getOpcode() == ISD::BIT_CONVERT)
144 N = N->getOperand(0).getNode();
146 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
148 unsigned i = 0, e = N->getNumOperands();
150 // Skip over all of the undef values.
151 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152 ++i;
154 // Do not accept an all-undef vector.
155 if (i == e) return false;
157 // Do not accept build_vectors that aren't all constants or which have non-~0
158 // elements.
159 SDValue Zero = N->getOperand(i);
160 if (isa<ConstantSDNode>(Zero)) {
161 if (!cast<ConstantSDNode>(Zero)->isNullValue())
162 return false;
163 } else if (isa<ConstantFPSDNode>(Zero)) {
164 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165 return false;
166 } else
167 return false;
169 // Okay, we have at least one ~0 value, check to see if the rest match or are
170 // undefs.
171 for (++i; i != e; ++i)
172 if (N->getOperand(i) != Zero &&
173 N->getOperand(i).getOpcode() != ISD::UNDEF)
174 return false;
175 return true;
178 /// isScalarToVector - Return true if the specified node is a
179 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180 /// element is not an undef.
181 bool ISD::isScalarToVector(const SDNode *N) {
182 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183 return true;
185 if (N->getOpcode() != ISD::BUILD_VECTOR)
186 return false;
187 if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188 return false;
189 unsigned NumElems = N->getNumOperands();
190 for (unsigned i = 1; i < NumElems; ++i) {
191 SDValue V = N->getOperand(i);
192 if (V.getOpcode() != ISD::UNDEF)
193 return false;
195 return true;
199 /// isDebugLabel - Return true if the specified node represents a debug
200 /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201 bool ISD::isDebugLabel(const SDNode *N) {
202 SDValue Zero;
203 if (N->getOpcode() == ISD::DBG_LABEL)
204 return true;
205 if (N->isMachineOpcode() &&
206 N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207 return true;
208 return false;
211 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212 /// when given the operation for (X op Y).
213 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214 // To perform this operation, we just need to swap the L and G bits of the
215 // operation.
216 unsigned OldL = (Operation >> 2) & 1;
217 unsigned OldG = (Operation >> 1) & 1;
218 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
219 (OldL << 1) | // New G bit
220 (OldG << 2)); // New L bit.
223 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224 /// 'op' is a valid SetCC operation.
225 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226 unsigned Operation = Op;
227 if (isInteger)
228 Operation ^= 7; // Flip L, G, E bits, but not U.
229 else
230 Operation ^= 15; // Flip all of the condition bits.
232 if (Operation > ISD::SETTRUE2)
233 Operation &= ~8; // Don't let N and U bits get set.
235 return ISD::CondCode(Operation);
239 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
240 /// signed operation and 2 if the result is an unsigned comparison. Return zero
241 /// if the operation does not depend on the sign of the input (setne and seteq).
242 static int isSignedOp(ISD::CondCode Opcode) {
243 switch (Opcode) {
244 default: assert(0 && "Illegal integer setcc operation!");
245 case ISD::SETEQ:
246 case ISD::SETNE: return 0;
247 case ISD::SETLT:
248 case ISD::SETLE:
249 case ISD::SETGT:
250 case ISD::SETGE: return 1;
251 case ISD::SETULT:
252 case ISD::SETULE:
253 case ISD::SETUGT:
254 case ISD::SETUGE: return 2;
258 /// getSetCCOrOperation - Return the result of a logical OR between different
259 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
260 /// returns SETCC_INVALID if it is not possible to represent the resultant
261 /// comparison.
262 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263 bool isInteger) {
264 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265 // Cannot fold a signed integer setcc with an unsigned integer setcc.
266 return ISD::SETCC_INVALID;
268 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
270 // If the N and U bits get set then the resultant comparison DOES suddenly
271 // care about orderedness, and is true when ordered.
272 if (Op > ISD::SETTRUE2)
273 Op &= ~16; // Clear the U bit if the N bit is set.
275 // Canonicalize illegal integer setcc's.
276 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
277 Op = ISD::SETNE;
279 return ISD::CondCode(Op);
282 /// getSetCCAndOperation - Return the result of a logical AND between different
283 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
284 /// function returns zero if it is not possible to represent the resultant
285 /// comparison.
286 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287 bool isInteger) {
288 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289 // Cannot fold a signed setcc with an unsigned setcc.
290 return ISD::SETCC_INVALID;
292 // Combine all of the condition bits.
293 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
295 // Canonicalize illegal integer setcc's.
296 if (isInteger) {
297 switch (Result) {
298 default: break;
299 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
300 case ISD::SETOEQ: // SETEQ & SETU[LG]E
301 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
302 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
303 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
307 return Result;
310 const TargetMachine &SelectionDAG::getTarget() const {
311 return MF->getTarget();
314 //===----------------------------------------------------------------------===//
315 // SDNode Profile Support
316 //===----------------------------------------------------------------------===//
318 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
320 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
321 ID.AddInteger(OpC);
324 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325 /// solely with their pointer.
326 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327 ID.AddPointer(VTList.VTs);
330 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
332 static void AddNodeIDOperands(FoldingSetNodeID &ID,
333 const SDValue *Ops, unsigned NumOps) {
334 for (; NumOps; --NumOps, ++Ops) {
335 ID.AddPointer(Ops->getNode());
336 ID.AddInteger(Ops->getResNo());
340 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
342 static void AddNodeIDOperands(FoldingSetNodeID &ID,
343 const SDUse *Ops, unsigned NumOps) {
344 for (; NumOps; --NumOps, ++Ops) {
345 ID.AddPointer(Ops->getNode());
346 ID.AddInteger(Ops->getResNo());
350 static void AddNodeIDNode(FoldingSetNodeID &ID,
351 unsigned short OpC, SDVTList VTList,
352 const SDValue *OpList, unsigned N) {
353 AddNodeIDOpcode(ID, OpC);
354 AddNodeIDValueTypes(ID, VTList);
355 AddNodeIDOperands(ID, OpList, N);
358 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359 /// the NodeID data.
360 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361 switch (N->getOpcode()) {
362 default: break; // Normal nodes don't need extra info.
363 case ISD::ARG_FLAGS:
364 ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365 break;
366 case ISD::TargetConstant:
367 case ISD::Constant:
368 ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369 break;
370 case ISD::TargetConstantFP:
371 case ISD::ConstantFP: {
372 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373 break;
375 case ISD::TargetGlobalAddress:
376 case ISD::GlobalAddress:
377 case ISD::TargetGlobalTLSAddress:
378 case ISD::GlobalTLSAddress: {
379 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380 ID.AddPointer(GA->getGlobal());
381 ID.AddInteger(GA->getOffset());
382 break;
384 case ISD::BasicBlock:
385 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386 break;
387 case ISD::Register:
388 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389 break;
390 case ISD::DBG_STOPPOINT: {
391 const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392 ID.AddInteger(DSP->getLine());
393 ID.AddInteger(DSP->getColumn());
394 ID.AddPointer(DSP->getCompileUnit());
395 break;
397 case ISD::SRCVALUE:
398 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399 break;
400 case ISD::MEMOPERAND: {
401 const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402 MO.Profile(ID);
403 break;
405 case ISD::FrameIndex:
406 case ISD::TargetFrameIndex:
407 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408 break;
409 case ISD::JumpTable:
410 case ISD::TargetJumpTable:
411 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412 break;
413 case ISD::ConstantPool:
414 case ISD::TargetConstantPool: {
415 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416 ID.AddInteger(CP->getAlignment());
417 ID.AddInteger(CP->getOffset());
418 if (CP->isMachineConstantPoolEntry())
419 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420 else
421 ID.AddPointer(CP->getConstVal());
422 break;
424 case ISD::CALL: {
425 const CallSDNode *Call = cast<CallSDNode>(N);
426 ID.AddInteger(Call->getCallingConv());
427 ID.AddInteger(Call->isVarArg());
428 break;
430 case ISD::LOAD: {
431 const LoadSDNode *LD = cast<LoadSDNode>(N);
432 ID.AddInteger(LD->getMemoryVT().getRawBits());
433 ID.AddInteger(LD->getRawSubclassData());
434 break;
436 case ISD::STORE: {
437 const StoreSDNode *ST = cast<StoreSDNode>(N);
438 ID.AddInteger(ST->getMemoryVT().getRawBits());
439 ID.AddInteger(ST->getRawSubclassData());
440 break;
442 case ISD::ATOMIC_CMP_SWAP:
443 case ISD::ATOMIC_SWAP:
444 case ISD::ATOMIC_LOAD_ADD:
445 case ISD::ATOMIC_LOAD_SUB:
446 case ISD::ATOMIC_LOAD_AND:
447 case ISD::ATOMIC_LOAD_OR:
448 case ISD::ATOMIC_LOAD_XOR:
449 case ISD::ATOMIC_LOAD_NAND:
450 case ISD::ATOMIC_LOAD_MIN:
451 case ISD::ATOMIC_LOAD_MAX:
452 case ISD::ATOMIC_LOAD_UMIN:
453 case ISD::ATOMIC_LOAD_UMAX: {
454 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455 ID.AddInteger(AT->getMemoryVT().getRawBits());
456 ID.AddInteger(AT->getRawSubclassData());
457 break;
459 case ISD::VECTOR_SHUFFLE: {
460 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
461 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
462 i != e; ++i)
463 ID.AddInteger(SVN->getMaskElt(i));
464 break;
466 } // end switch (N->getOpcode())
469 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
470 /// data.
471 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
472 AddNodeIDOpcode(ID, N->getOpcode());
473 // Add the return value info.
474 AddNodeIDValueTypes(ID, N->getVTList());
475 // Add the operand info.
476 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
478 // Handle SDNode leafs with special info.
479 AddNodeIDCustom(ID, N);
482 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
483 /// the CSE map that carries alignment, volatility, indexing mode, and
484 /// extension/truncation information.
486 static inline unsigned
487 encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
488 bool isVolatile, unsigned Alignment) {
489 assert((ConvType & 3) == ConvType &&
490 "ConvType may not require more than 2 bits!");
491 assert((AM & 7) == AM &&
492 "AM may not require more than 3 bits!");
493 return ConvType |
494 (AM << 2) |
495 (isVolatile << 5) |
496 ((Log2_32(Alignment) + 1) << 6);
499 //===----------------------------------------------------------------------===//
500 // SelectionDAG Class
501 //===----------------------------------------------------------------------===//
503 /// doNotCSE - Return true if CSE should not be performed for this node.
504 static bool doNotCSE(SDNode *N) {
505 if (N->getValueType(0) == MVT::Flag)
506 return true; // Never CSE anything that produces a flag.
508 switch (N->getOpcode()) {
509 default: break;
510 case ISD::HANDLENODE:
511 case ISD::DBG_LABEL:
512 case ISD::DBG_STOPPOINT:
513 case ISD::EH_LABEL:
514 case ISD::DECLARE:
515 return true; // Never CSE these nodes.
518 // Check that remaining values produced are not flags.
519 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
520 if (N->getValueType(i) == MVT::Flag)
521 return true; // Never CSE anything that produces a flag.
523 return false;
526 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
527 /// SelectionDAG.
528 void SelectionDAG::RemoveDeadNodes() {
529 // Create a dummy node (which is not added to allnodes), that adds a reference
530 // to the root node, preventing it from being deleted.
531 HandleSDNode Dummy(getRoot());
533 SmallVector<SDNode*, 128> DeadNodes;
535 // Add all obviously-dead nodes to the DeadNodes worklist.
536 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
537 if (I->use_empty())
538 DeadNodes.push_back(I);
540 RemoveDeadNodes(DeadNodes);
542 // If the root changed (e.g. it was a dead load, update the root).
543 setRoot(Dummy.getValue());
546 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
547 /// given list, and any nodes that become unreachable as a result.
548 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
549 DAGUpdateListener *UpdateListener) {
551 // Process the worklist, deleting the nodes and adding their uses to the
552 // worklist.
553 while (!DeadNodes.empty()) {
554 SDNode *N = DeadNodes.pop_back_val();
556 if (UpdateListener)
557 UpdateListener->NodeDeleted(N, 0);
559 // Take the node out of the appropriate CSE map.
560 RemoveNodeFromCSEMaps(N);
562 // Next, brutally remove the operand list. This is safe to do, as there are
563 // no cycles in the graph.
564 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
565 SDUse &Use = *I++;
566 SDNode *Operand = Use.getNode();
567 Use.set(SDValue());
569 // Now that we removed this operand, see if there are no uses of it left.
570 if (Operand->use_empty())
571 DeadNodes.push_back(Operand);
574 DeallocateNode(N);
578 void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
579 SmallVector<SDNode*, 16> DeadNodes(1, N);
580 RemoveDeadNodes(DeadNodes, UpdateListener);
583 void SelectionDAG::DeleteNode(SDNode *N) {
584 // First take this out of the appropriate CSE map.
585 RemoveNodeFromCSEMaps(N);
587 // Finally, remove uses due to operands of this node, remove from the
588 // AllNodes list, and delete the node.
589 DeleteNodeNotInCSEMaps(N);
592 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
593 assert(N != AllNodes.begin() && "Cannot delete the entry node!");
594 assert(N->use_empty() && "Cannot delete a node that is not dead!");
596 // Drop all of the operands and decrement used node's use counts.
597 N->DropOperands();
599 DeallocateNode(N);
602 void SelectionDAG::DeallocateNode(SDNode *N) {
603 if (N->OperandsNeedDelete)
604 delete[] N->OperandList;
606 // Set the opcode to DELETED_NODE to help catch bugs when node
607 // memory is reallocated.
608 N->NodeType = ISD::DELETED_NODE;
610 NodeAllocator.Deallocate(AllNodes.remove(N));
613 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
614 /// correspond to it. This is useful when we're about to delete or repurpose
615 /// the node. We don't want future request for structurally identical nodes
616 /// to return N anymore.
617 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
618 bool Erased = false;
619 switch (N->getOpcode()) {
620 case ISD::EntryToken:
621 assert(0 && "EntryToken should not be in CSEMaps!");
622 return false;
623 case ISD::HANDLENODE: return false; // noop.
624 case ISD::CONDCODE:
625 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
626 "Cond code doesn't exist!");
627 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
628 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
629 break;
630 case ISD::ExternalSymbol:
631 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
632 break;
633 case ISD::TargetExternalSymbol:
634 Erased =
635 TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
636 break;
637 case ISD::VALUETYPE: {
638 MVT VT = cast<VTSDNode>(N)->getVT();
639 if (VT.isExtended()) {
640 Erased = ExtendedValueTypeNodes.erase(VT);
641 } else {
642 Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
643 ValueTypeNodes[VT.getSimpleVT()] = 0;
645 break;
647 default:
648 // Remove it from the CSE Map.
649 Erased = CSEMap.RemoveNode(N);
650 break;
652 #ifndef NDEBUG
653 // Verify that the node was actually in one of the CSE maps, unless it has a
654 // flag result (which cannot be CSE'd) or is one of the special cases that are
655 // not subject to CSE.
656 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
657 !N->isMachineOpcode() && !doNotCSE(N)) {
658 N->dump(this);
659 cerr << "\n";
660 assert(0 && "Node is not in map!");
662 #endif
663 return Erased;
666 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
667 /// maps and modified in place. Add it back to the CSE maps, unless an identical
668 /// node already exists, in which case transfer all its users to the existing
669 /// node. This transfer can potentially trigger recursive merging.
671 void
672 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
673 DAGUpdateListener *UpdateListener) {
674 // For node types that aren't CSE'd, just act as if no identical node
675 // already exists.
676 if (!doNotCSE(N)) {
677 SDNode *Existing = CSEMap.GetOrInsertNode(N);
678 if (Existing != N) {
679 // If there was already an existing matching node, use ReplaceAllUsesWith
680 // to replace the dead one with the existing one. This can cause
681 // recursive merging of other unrelated nodes down the line.
682 ReplaceAllUsesWith(N, Existing, UpdateListener);
684 // N is now dead. Inform the listener if it exists and delete it.
685 if (UpdateListener)
686 UpdateListener->NodeDeleted(N, Existing);
687 DeleteNodeNotInCSEMaps(N);
688 return;
692 // If the node doesn't already exist, we updated it. Inform a listener if
693 // it exists.
694 if (UpdateListener)
695 UpdateListener->NodeUpdated(N);
698 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
699 /// were replaced with those specified. If this node is never memoized,
700 /// return null, otherwise return a pointer to the slot it would take. If a
701 /// node already exists with these operands, the slot will be non-null.
702 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
703 void *&InsertPos) {
704 if (doNotCSE(N))
705 return 0;
707 SDValue Ops[] = { Op };
708 FoldingSetNodeID ID;
709 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
710 AddNodeIDCustom(ID, N);
711 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
714 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
715 /// were replaced with those specified. If this node is never memoized,
716 /// return null, otherwise return a pointer to the slot it would take. If a
717 /// node already exists with these operands, the slot will be non-null.
718 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
719 SDValue Op1, SDValue Op2,
720 void *&InsertPos) {
721 if (doNotCSE(N))
722 return 0;
724 SDValue Ops[] = { Op1, Op2 };
725 FoldingSetNodeID ID;
726 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
727 AddNodeIDCustom(ID, N);
728 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
732 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
733 /// were replaced with those specified. If this node is never memoized,
734 /// return null, otherwise return a pointer to the slot it would take. If a
735 /// node already exists with these operands, the slot will be non-null.
736 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
737 const SDValue *Ops,unsigned NumOps,
738 void *&InsertPos) {
739 if (doNotCSE(N))
740 return 0;
742 FoldingSetNodeID ID;
743 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
744 AddNodeIDCustom(ID, N);
745 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
748 /// VerifyNode - Sanity check the given node. Aborts if it is invalid.
749 void SelectionDAG::VerifyNode(SDNode *N) {
750 switch (N->getOpcode()) {
751 default:
752 break;
753 case ISD::BUILD_PAIR: {
754 MVT VT = N->getValueType(0);
755 assert(N->getNumValues() == 1 && "Too many results!");
756 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757 "Wrong return type!");
758 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760 "Mismatched operand types!");
761 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762 "Wrong operand type!");
763 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764 "Wrong return type size");
765 break;
767 case ISD::BUILD_VECTOR: {
768 assert(N->getNumValues() == 1 && "Too many results!");
769 assert(N->getValueType(0).isVector() && "Wrong return type!");
770 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771 "Wrong number of operands!");
772 MVT EltVT = N->getValueType(0).getVectorElementType();
773 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774 assert((I->getValueType() == EltVT ||
775 (EltVT.isInteger() && I->getValueType().isInteger() &&
776 EltVT.bitsLE(I->getValueType()))) &&
777 "Wrong operand type!");
778 break;
783 /// getMVTAlignment - Compute the default alignment value for the
784 /// given type.
786 unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
787 const Type *Ty = VT == MVT::iPTR ?
788 PointerType::get(Type::Int8Ty, 0) :
789 VT.getTypeForMVT();
791 return TLI.getTargetData()->getABITypeAlignment(Ty);
794 // EntryNode could meaningfully have debug info if we can find it...
795 SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
796 : TLI(tli), FLI(fli), DW(0),
797 EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
798 getVTList(MVT::Other)), Root(getEntryNode()) {
799 AllNodes.push_back(&EntryNode);
802 void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
803 DwarfWriter *dw) {
804 MF = &mf;
805 MMI = mmi;
806 DW = dw;
809 SelectionDAG::~SelectionDAG() {
810 allnodes_clear();
813 void SelectionDAG::allnodes_clear() {
814 assert(&*AllNodes.begin() == &EntryNode);
815 AllNodes.remove(AllNodes.begin());
816 while (!AllNodes.empty())
817 DeallocateNode(AllNodes.begin());
820 void SelectionDAG::clear() {
821 allnodes_clear();
822 OperandAllocator.Reset();
823 CSEMap.clear();
825 ExtendedValueTypeNodes.clear();
826 ExternalSymbols.clear();
827 TargetExternalSymbols.clear();
828 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
829 static_cast<CondCodeSDNode*>(0));
830 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
831 static_cast<SDNode*>(0));
833 EntryNode.UseList = 0;
834 AllNodes.push_back(&EntryNode);
835 Root = getEntryNode();
838 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
839 if (Op.getValueType() == VT) return Op;
840 APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
841 VT.getSizeInBits());
842 return getNode(ISD::AND, DL, Op.getValueType(), Op,
843 getConstant(Imm, Op.getValueType()));
846 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
848 SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
849 MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
850 SDValue NegOne =
851 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
852 return getNode(ISD::XOR, DL, VT, Val, NegOne);
855 SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
856 MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
857 assert((EltVT.getSizeInBits() >= 64 ||
858 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
859 "getConstant with a uint64_t value that doesn't fit in the type!");
860 return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
863 SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
864 return getConstant(*ConstantInt::get(Val), VT, isT);
867 SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
868 assert(VT.isInteger() && "Cannot create FP integer constant!");
870 MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
871 assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
872 "APInt size does not match type size!");
874 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
875 FoldingSetNodeID ID;
876 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
877 ID.AddPointer(&Val);
878 void *IP = 0;
879 SDNode *N = NULL;
880 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
881 if (!VT.isVector())
882 return SDValue(N, 0);
883 if (!N) {
884 N = NodeAllocator.Allocate<ConstantSDNode>();
885 new (N) ConstantSDNode(isT, &Val, EltVT);
886 CSEMap.InsertNode(N, IP);
887 AllNodes.push_back(N);
890 SDValue Result(N, 0);
891 if (VT.isVector()) {
892 SmallVector<SDValue, 8> Ops;
893 Ops.assign(VT.getVectorNumElements(), Result);
894 Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
895 VT, &Ops[0], Ops.size());
897 return Result;
900 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
901 return getConstant(Val, TLI.getPointerTy(), isTarget);
905 SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
906 return getConstantFP(*ConstantFP::get(V), VT, isTarget);
909 SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
910 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
912 MVT EltVT =
913 VT.isVector() ? VT.getVectorElementType() : VT;
915 // Do the map lookup using the actual bit pattern for the floating point
916 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
917 // we don't have issues with SNANs.
918 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
919 FoldingSetNodeID ID;
920 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
921 ID.AddPointer(&V);
922 void *IP = 0;
923 SDNode *N = NULL;
924 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
925 if (!VT.isVector())
926 return SDValue(N, 0);
927 if (!N) {
928 N = NodeAllocator.Allocate<ConstantFPSDNode>();
929 new (N) ConstantFPSDNode(isTarget, &V, EltVT);
930 CSEMap.InsertNode(N, IP);
931 AllNodes.push_back(N);
934 SDValue Result(N, 0);
935 if (VT.isVector()) {
936 SmallVector<SDValue, 8> Ops;
937 Ops.assign(VT.getVectorNumElements(), Result);
938 // FIXME DebugLoc info might be appropriate here
939 Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
940 VT, &Ops[0], Ops.size());
942 return Result;
945 SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
946 MVT EltVT =
947 VT.isVector() ? VT.getVectorElementType() : VT;
948 if (EltVT==MVT::f32)
949 return getConstantFP(APFloat((float)Val), VT, isTarget);
950 else
951 return getConstantFP(APFloat(Val), VT, isTarget);
954 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
955 MVT VT, int64_t Offset,
956 bool isTargetGA) {
957 unsigned Opc;
959 // Truncate (with sign-extension) the offset value to the pointer size.
960 unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
961 if (BitWidth < 64)
962 Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
964 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
965 if (!GVar) {
966 // If GV is an alias then use the aliasee for determining thread-localness.
967 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
968 GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
971 if (GVar && GVar->isThreadLocal())
972 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
973 else
974 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
976 FoldingSetNodeID ID;
977 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
978 ID.AddPointer(GV);
979 ID.AddInteger(Offset);
980 void *IP = 0;
981 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
982 return SDValue(E, 0);
983 SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
984 new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
985 CSEMap.InsertNode(N, IP);
986 AllNodes.push_back(N);
987 return SDValue(N, 0);
990 SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
991 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
992 FoldingSetNodeID ID;
993 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
994 ID.AddInteger(FI);
995 void *IP = 0;
996 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
997 return SDValue(E, 0);
998 SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
999 new (N) FrameIndexSDNode(FI, VT, isTarget);
1000 CSEMap.InsertNode(N, IP);
1001 AllNodes.push_back(N);
1002 return SDValue(N, 0);
1005 SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1006 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1007 FoldingSetNodeID ID;
1008 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1009 ID.AddInteger(JTI);
1010 void *IP = 0;
1011 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1012 return SDValue(E, 0);
1013 SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1014 new (N) JumpTableSDNode(JTI, VT, isTarget);
1015 CSEMap.InsertNode(N, IP);
1016 AllNodes.push_back(N);
1017 return SDValue(N, 0);
1020 SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1021 unsigned Alignment, int Offset,
1022 bool isTarget) {
1023 if (Alignment == 0)
1024 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1025 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1026 FoldingSetNodeID ID;
1027 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1028 ID.AddInteger(Alignment);
1029 ID.AddInteger(Offset);
1030 ID.AddPointer(C);
1031 void *IP = 0;
1032 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1033 return SDValue(E, 0);
1034 SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1035 new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1036 CSEMap.InsertNode(N, IP);
1037 AllNodes.push_back(N);
1038 return SDValue(N, 0);
1042 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1043 unsigned Alignment, int Offset,
1044 bool isTarget) {
1045 if (Alignment == 0)
1046 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1047 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1048 FoldingSetNodeID ID;
1049 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1050 ID.AddInteger(Alignment);
1051 ID.AddInteger(Offset);
1052 C->AddSelectionDAGCSEId(ID);
1053 void *IP = 0;
1054 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1055 return SDValue(E, 0);
1056 SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1057 new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1058 CSEMap.InsertNode(N, IP);
1059 AllNodes.push_back(N);
1060 return SDValue(N, 0);
1063 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1064 FoldingSetNodeID ID;
1065 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1066 ID.AddPointer(MBB);
1067 void *IP = 0;
1068 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1069 return SDValue(E, 0);
1070 SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1071 new (N) BasicBlockSDNode(MBB);
1072 CSEMap.InsertNode(N, IP);
1073 AllNodes.push_back(N);
1074 return SDValue(N, 0);
1077 SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1078 FoldingSetNodeID ID;
1079 AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1080 ID.AddInteger(Flags.getRawBits());
1081 void *IP = 0;
1082 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1083 return SDValue(E, 0);
1084 SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1085 new (N) ARG_FLAGSSDNode(Flags);
1086 CSEMap.InsertNode(N, IP);
1087 AllNodes.push_back(N);
1088 return SDValue(N, 0);
1091 SDValue SelectionDAG::getValueType(MVT VT) {
1092 if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1093 ValueTypeNodes.resize(VT.getSimpleVT()+1);
1095 SDNode *&N = VT.isExtended() ?
1096 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1098 if (N) return SDValue(N, 0);
1099 N = NodeAllocator.Allocate<VTSDNode>();
1100 new (N) VTSDNode(VT);
1101 AllNodes.push_back(N);
1102 return SDValue(N, 0);
1105 SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1106 SDNode *&N = ExternalSymbols[Sym];
1107 if (N) return SDValue(N, 0);
1108 N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1109 new (N) ExternalSymbolSDNode(false, Sym, VT);
1110 AllNodes.push_back(N);
1111 return SDValue(N, 0);
1114 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1115 SDNode *&N = TargetExternalSymbols[Sym];
1116 if (N) return SDValue(N, 0);
1117 N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1118 new (N) ExternalSymbolSDNode(true, Sym, VT);
1119 AllNodes.push_back(N);
1120 return SDValue(N, 0);
1123 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1124 if ((unsigned)Cond >= CondCodeNodes.size())
1125 CondCodeNodes.resize(Cond+1);
1127 if (CondCodeNodes[Cond] == 0) {
1128 CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1129 new (N) CondCodeSDNode(Cond);
1130 CondCodeNodes[Cond] = N;
1131 AllNodes.push_back(N);
1133 return SDValue(CondCodeNodes[Cond], 0);
1136 // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1137 // the shuffle mask M that point at N1 to point at N2, and indices that point
1138 // N2 to point at N1.
1139 static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1140 std::swap(N1, N2);
1141 int NElts = M.size();
1142 for (int i = 0; i != NElts; ++i) {
1143 if (M[i] >= NElts)
1144 M[i] -= NElts;
1145 else if (M[i] >= 0)
1146 M[i] += NElts;
1150 SDValue SelectionDAG::getVectorShuffle(MVT VT, DebugLoc dl, SDValue N1,
1151 SDValue N2, const int *Mask) {
1152 assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1153 assert(VT.isVector() && N1.getValueType().isVector() &&
1154 "Vector Shuffle VTs must be a vectors");
1155 assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1156 && "Vector Shuffle VTs must have same element type");
1158 // Canonicalize shuffle undef, undef -> undef
1159 if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1160 return N1;
1162 // Validate that all indices in Mask are within the range of the elements
1163 // input to the shuffle.
1164 unsigned NElts = VT.getVectorNumElements();
1165 SmallVector<int, 8> MaskVec;
1166 for (unsigned i = 0; i != NElts; ++i) {
1167 assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1168 MaskVec.push_back(Mask[i]);
1171 // Canonicalize shuffle v, v -> v, undef
1172 if (N1 == N2) {
1173 N2 = getUNDEF(VT);
1174 for (unsigned i = 0; i != NElts; ++i)
1175 if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1178 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1179 if (N1.getOpcode() == ISD::UNDEF)
1180 commuteShuffle(N1, N2, MaskVec);
1182 // Canonicalize all index into lhs, -> shuffle lhs, undef
1183 // Canonicalize all index into rhs, -> shuffle rhs, undef
1184 bool AllLHS = true, AllRHS = true;
1185 bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1186 for (unsigned i = 0; i != NElts; ++i) {
1187 if (MaskVec[i] >= (int)NElts) {
1188 if (N2Undef)
1189 MaskVec[i] = -1;
1190 else
1191 AllLHS = false;
1192 } else if (MaskVec[i] >= 0) {
1193 AllRHS = false;
1196 if (AllLHS && AllRHS)
1197 return getUNDEF(VT);
1198 if (AllLHS && !N2Undef)
1199 N2 = getUNDEF(VT);
1200 if (AllRHS) {
1201 N1 = getUNDEF(VT);
1202 commuteShuffle(N1, N2, MaskVec);
1205 // If Identity shuffle, or all shuffle in to undef, return that node.
1206 bool AllUndef = true;
1207 bool Identity = true;
1208 for (unsigned i = 0; i != NElts; ++i) {
1209 if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1210 if (MaskVec[i] >= 0) AllUndef = false;
1212 if (Identity)
1213 return N1;
1214 if (AllUndef)
1215 return getUNDEF(VT);
1217 FoldingSetNodeID ID;
1218 SDValue Ops[2] = { N1, N2 };
1219 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1220 for (unsigned i = 0; i != NElts; ++i)
1221 ID.AddInteger(MaskVec[i]);
1223 void* IP = 0;
1224 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1225 return SDValue(E, 0);
1227 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1228 // SDNode doesn't have access to it. This memory will be "leaked" when
1229 // the node is deallocated, but recovered when the NodeAllocator is released.
1230 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1231 memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1233 ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1234 new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1235 CSEMap.InsertNode(N, IP);
1236 AllNodes.push_back(N);
1237 return SDValue(N, 0);
1240 SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1241 SDValue Val, SDValue DTy,
1242 SDValue STy, SDValue Rnd, SDValue Sat,
1243 ISD::CvtCode Code) {
1244 // If the src and dest types are the same and the conversion is between
1245 // integer types of the same sign or two floats, no conversion is necessary.
1246 if (DTy == STy &&
1247 (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1248 return Val;
1250 FoldingSetNodeID ID;
1251 void* IP = 0;
1252 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1253 return SDValue(E, 0);
1254 CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1255 SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1256 new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1257 CSEMap.InsertNode(N, IP);
1258 AllNodes.push_back(N);
1259 return SDValue(N, 0);
1262 SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1263 FoldingSetNodeID ID;
1264 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1265 ID.AddInteger(RegNo);
1266 void *IP = 0;
1267 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1268 return SDValue(E, 0);
1269 SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1270 new (N) RegisterSDNode(RegNo, VT);
1271 CSEMap.InsertNode(N, IP);
1272 AllNodes.push_back(N);
1273 return SDValue(N, 0);
1276 SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1277 unsigned Line, unsigned Col,
1278 Value *CU) {
1279 SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1280 new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1281 AllNodes.push_back(N);
1282 return SDValue(N, 0);
1285 SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1286 SDValue Root,
1287 unsigned LabelID) {
1288 FoldingSetNodeID ID;
1289 SDValue Ops[] = { Root };
1290 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1291 ID.AddInteger(LabelID);
1292 void *IP = 0;
1293 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1294 return SDValue(E, 0);
1295 SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1296 new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1297 CSEMap.InsertNode(N, IP);
1298 AllNodes.push_back(N);
1299 return SDValue(N, 0);
1302 SDValue SelectionDAG::getSrcValue(const Value *V) {
1303 assert((!V || isa<PointerType>(V->getType())) &&
1304 "SrcValue is not a pointer?");
1306 FoldingSetNodeID ID;
1307 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1308 ID.AddPointer(V);
1310 void *IP = 0;
1311 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1312 return SDValue(E, 0);
1314 SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1315 new (N) SrcValueSDNode(V);
1316 CSEMap.InsertNode(N, IP);
1317 AllNodes.push_back(N);
1318 return SDValue(N, 0);
1321 SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1322 #ifndef NDEBUG
1323 const Value *v = MO.getValue();
1324 assert((!v || isa<PointerType>(v->getType())) &&
1325 "SrcValue is not a pointer?");
1326 #endif
1328 FoldingSetNodeID ID;
1329 AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1330 MO.Profile(ID);
1332 void *IP = 0;
1333 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1334 return SDValue(E, 0);
1336 SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1337 new (N) MemOperandSDNode(MO);
1338 CSEMap.InsertNode(N, IP);
1339 AllNodes.push_back(N);
1340 return SDValue(N, 0);
1343 /// getShiftAmountOperand - Return the specified value casted to
1344 /// the target's desired shift amount type.
1345 SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1346 MVT OpTy = Op.getValueType();
1347 MVT ShTy = TLI.getShiftAmountTy();
1348 if (OpTy == ShTy || OpTy.isVector()) return Op;
1350 ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
1351 return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1354 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1355 /// specified value type.
1356 SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1357 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1358 unsigned ByteSize = VT.getStoreSizeInBits()/8;
1359 const Type *Ty = VT.getTypeForMVT();
1360 unsigned StackAlign =
1361 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1363 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1364 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1367 /// CreateStackTemporary - Create a stack temporary suitable for holding
1368 /// either of the specified value types.
1369 SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1370 unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1371 VT2.getStoreSizeInBits())/8;
1372 const Type *Ty1 = VT1.getTypeForMVT();
1373 const Type *Ty2 = VT2.getTypeForMVT();
1374 const TargetData *TD = TLI.getTargetData();
1375 unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1376 TD->getPrefTypeAlignment(Ty2));
1378 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1379 int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1380 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1383 SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1384 SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1385 // These setcc operations always fold.
1386 switch (Cond) {
1387 default: break;
1388 case ISD::SETFALSE:
1389 case ISD::SETFALSE2: return getConstant(0, VT);
1390 case ISD::SETTRUE:
1391 case ISD::SETTRUE2: return getConstant(1, VT);
1393 case ISD::SETOEQ:
1394 case ISD::SETOGT:
1395 case ISD::SETOGE:
1396 case ISD::SETOLT:
1397 case ISD::SETOLE:
1398 case ISD::SETONE:
1399 case ISD::SETO:
1400 case ISD::SETUO:
1401 case ISD::SETUEQ:
1402 case ISD::SETUNE:
1403 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1404 break;
1407 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1408 const APInt &C2 = N2C->getAPIntValue();
1409 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1410 const APInt &C1 = N1C->getAPIntValue();
1412 switch (Cond) {
1413 default: assert(0 && "Unknown integer setcc!");
1414 case ISD::SETEQ: return getConstant(C1 == C2, VT);
1415 case ISD::SETNE: return getConstant(C1 != C2, VT);
1416 case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1417 case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1418 case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1419 case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1420 case ISD::SETLT: return getConstant(C1.slt(C2), VT);
1421 case ISD::SETGT: return getConstant(C1.sgt(C2), VT);
1422 case ISD::SETLE: return getConstant(C1.sle(C2), VT);
1423 case ISD::SETGE: return getConstant(C1.sge(C2), VT);
1427 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1428 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1429 // No compile time operations on this type yet.
1430 if (N1C->getValueType(0) == MVT::ppcf128)
1431 return SDValue();
1433 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1434 switch (Cond) {
1435 default: break;
1436 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
1437 return getUNDEF(VT);
1438 // fall through
1439 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1440 case ISD::SETNE: if (R==APFloat::cmpUnordered)
1441 return getUNDEF(VT);
1442 // fall through
1443 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1444 R==APFloat::cmpLessThan, VT);
1445 case ISD::SETLT: if (R==APFloat::cmpUnordered)
1446 return getUNDEF(VT);
1447 // fall through
1448 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1449 case ISD::SETGT: if (R==APFloat::cmpUnordered)
1450 return getUNDEF(VT);
1451 // fall through
1452 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1453 case ISD::SETLE: if (R==APFloat::cmpUnordered)
1454 return getUNDEF(VT);
1455 // fall through
1456 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1457 R==APFloat::cmpEqual, VT);
1458 case ISD::SETGE: if (R==APFloat::cmpUnordered)
1459 return getUNDEF(VT);
1460 // fall through
1461 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1462 R==APFloat::cmpEqual, VT);
1463 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1464 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1465 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1466 R==APFloat::cmpEqual, VT);
1467 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1468 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1469 R==APFloat::cmpLessThan, VT);
1470 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1471 R==APFloat::cmpUnordered, VT);
1472 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1473 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1475 } else {
1476 // Ensure that the constant occurs on the RHS.
1477 return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1481 // Could not fold it.
1482 return SDValue();
1485 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1486 /// use this predicate to simplify operations downstream.
1487 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1488 unsigned BitWidth = Op.getValueSizeInBits();
1489 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1492 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1493 /// this predicate to simplify operations downstream. Mask is known to be zero
1494 /// for bits that V cannot have.
1495 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1496 unsigned Depth) const {
1497 APInt KnownZero, KnownOne;
1498 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1499 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1500 return (KnownZero & Mask) == Mask;
1503 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1504 /// known to be either zero or one and return them in the KnownZero/KnownOne
1505 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1506 /// processing.
1507 void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1508 APInt &KnownZero, APInt &KnownOne,
1509 unsigned Depth) const {
1510 unsigned BitWidth = Mask.getBitWidth();
1511 assert(BitWidth == Op.getValueType().getSizeInBits() &&
1512 "Mask size mismatches value type size!");
1514 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
1515 if (Depth == 6 || Mask == 0)
1516 return; // Limit search depth.
1518 APInt KnownZero2, KnownOne2;
1520 switch (Op.getOpcode()) {
1521 case ISD::Constant:
1522 // We know all of the bits for a constant!
1523 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1524 KnownZero = ~KnownOne & Mask;
1525 return;
1526 case ISD::AND:
1527 // If either the LHS or the RHS are Zero, the result is zero.
1528 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1529 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1530 KnownZero2, KnownOne2, Depth+1);
1531 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1532 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1534 // Output known-1 bits are only known if set in both the LHS & RHS.
1535 KnownOne &= KnownOne2;
1536 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1537 KnownZero |= KnownZero2;
1538 return;
1539 case ISD::OR:
1540 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1541 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1542 KnownZero2, KnownOne2, Depth+1);
1543 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1544 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1546 // Output known-0 bits are only known if clear in both the LHS & RHS.
1547 KnownZero &= KnownZero2;
1548 // Output known-1 are known to be set if set in either the LHS | RHS.
1549 KnownOne |= KnownOne2;
1550 return;
1551 case ISD::XOR: {
1552 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1553 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1554 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1555 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1557 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1558 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1559 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1560 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1561 KnownZero = KnownZeroOut;
1562 return;
1564 case ISD::MUL: {
1565 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1566 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1567 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1568 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1569 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1571 // If low bits are zero in either operand, output low known-0 bits.
1572 // Also compute a conserative estimate for high known-0 bits.
1573 // More trickiness is possible, but this is sufficient for the
1574 // interesting case of alignment computation.
1575 KnownOne.clear();
1576 unsigned TrailZ = KnownZero.countTrailingOnes() +
1577 KnownZero2.countTrailingOnes();
1578 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
1579 KnownZero2.countLeadingOnes(),
1580 BitWidth) - BitWidth;
1582 TrailZ = std::min(TrailZ, BitWidth);
1583 LeadZ = std::min(LeadZ, BitWidth);
1584 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1585 APInt::getHighBitsSet(BitWidth, LeadZ);
1586 KnownZero &= Mask;
1587 return;
1589 case ISD::UDIV: {
1590 // For the purposes of computing leading zeros we can conservatively
1591 // treat a udiv as a logical right shift by the power of 2 known to
1592 // be less than the denominator.
1593 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1594 ComputeMaskedBits(Op.getOperand(0),
1595 AllOnes, KnownZero2, KnownOne2, Depth+1);
1596 unsigned LeadZ = KnownZero2.countLeadingOnes();
1598 KnownOne2.clear();
1599 KnownZero2.clear();
1600 ComputeMaskedBits(Op.getOperand(1),
1601 AllOnes, KnownZero2, KnownOne2, Depth+1);
1602 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1603 if (RHSUnknownLeadingOnes != BitWidth)
1604 LeadZ = std::min(BitWidth,
1605 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1607 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1608 return;
1610 case ISD::SELECT:
1611 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1612 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1613 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1614 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1616 // Only known if known in both the LHS and RHS.
1617 KnownOne &= KnownOne2;
1618 KnownZero &= KnownZero2;
1619 return;
1620 case ISD::SELECT_CC:
1621 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1622 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1623 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1626 // Only known if known in both the LHS and RHS.
1627 KnownOne &= KnownOne2;
1628 KnownZero &= KnownZero2;
1629 return;
1630 case ISD::SADDO:
1631 case ISD::UADDO:
1632 case ISD::SSUBO:
1633 case ISD::USUBO:
1634 case ISD::SMULO:
1635 case ISD::UMULO:
1636 if (Op.getResNo() != 1)
1637 return;
1638 // The boolean result conforms to getBooleanContents. Fall through.
1639 case ISD::SETCC:
1640 // If we know the result of a setcc has the top bits zero, use this info.
1641 if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1642 BitWidth > 1)
1643 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1644 return;
1645 case ISD::SHL:
1646 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1647 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1648 unsigned ShAmt = SA->getZExtValue();
1650 // If the shift count is an invalid immediate, don't do anything.
1651 if (ShAmt >= BitWidth)
1652 return;
1654 ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1655 KnownZero, KnownOne, Depth+1);
1656 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1657 KnownZero <<= ShAmt;
1658 KnownOne <<= ShAmt;
1659 // low bits known zero.
1660 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1662 return;
1663 case ISD::SRL:
1664 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1665 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1666 unsigned ShAmt = SA->getZExtValue();
1668 // If the shift count is an invalid immediate, don't do anything.
1669 if (ShAmt >= BitWidth)
1670 return;
1672 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1673 KnownZero, KnownOne, Depth+1);
1674 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1675 KnownZero = KnownZero.lshr(ShAmt);
1676 KnownOne = KnownOne.lshr(ShAmt);
1678 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1679 KnownZero |= HighBits; // High bits known zero.
1681 return;
1682 case ISD::SRA:
1683 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1684 unsigned ShAmt = SA->getZExtValue();
1686 // If the shift count is an invalid immediate, don't do anything.
1687 if (ShAmt >= BitWidth)
1688 return;
1690 APInt InDemandedMask = (Mask << ShAmt);
1691 // If any of the demanded bits are produced by the sign extension, we also
1692 // demand the input sign bit.
1693 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1694 if (HighBits.getBoolValue())
1695 InDemandedMask |= APInt::getSignBit(BitWidth);
1697 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1698 Depth+1);
1699 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1700 KnownZero = KnownZero.lshr(ShAmt);
1701 KnownOne = KnownOne.lshr(ShAmt);
1703 // Handle the sign bits.
1704 APInt SignBit = APInt::getSignBit(BitWidth);
1705 SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
1707 if (KnownZero.intersects(SignBit)) {
1708 KnownZero |= HighBits; // New bits are known zero.
1709 } else if (KnownOne.intersects(SignBit)) {
1710 KnownOne |= HighBits; // New bits are known one.
1713 return;
1714 case ISD::SIGN_EXTEND_INREG: {
1715 MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1716 unsigned EBits = EVT.getSizeInBits();
1718 // Sign extension. Compute the demanded bits in the result that are not
1719 // present in the input.
1720 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1722 APInt InSignBit = APInt::getSignBit(EBits);
1723 APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1725 // If the sign extended bits are demanded, we know that the sign
1726 // bit is demanded.
1727 InSignBit.zext(BitWidth);
1728 if (NewBits.getBoolValue())
1729 InputDemandedBits |= InSignBit;
1731 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1732 KnownZero, KnownOne, Depth+1);
1733 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1735 // If the sign bit of the input is known set or clear, then we know the
1736 // top bits of the result.
1737 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
1738 KnownZero |= NewBits;
1739 KnownOne &= ~NewBits;
1740 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1741 KnownOne |= NewBits;
1742 KnownZero &= ~NewBits;
1743 } else { // Input sign bit unknown
1744 KnownZero &= ~NewBits;
1745 KnownOne &= ~NewBits;
1747 return;
1749 case ISD::CTTZ:
1750 case ISD::CTLZ:
1751 case ISD::CTPOP: {
1752 unsigned LowBits = Log2_32(BitWidth)+1;
1753 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1754 KnownOne.clear();
1755 return;
1757 case ISD::LOAD: {
1758 if (ISD::isZEXTLoad(Op.getNode())) {
1759 LoadSDNode *LD = cast<LoadSDNode>(Op);
1760 MVT VT = LD->getMemoryVT();
1761 unsigned MemBits = VT.getSizeInBits();
1762 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1764 return;
1766 case ISD::ZERO_EXTEND: {
1767 MVT InVT = Op.getOperand(0).getValueType();
1768 unsigned InBits = InVT.getSizeInBits();
1769 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1770 APInt InMask = Mask;
1771 InMask.trunc(InBits);
1772 KnownZero.trunc(InBits);
1773 KnownOne.trunc(InBits);
1774 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1775 KnownZero.zext(BitWidth);
1776 KnownOne.zext(BitWidth);
1777 KnownZero |= NewBits;
1778 return;
1780 case ISD::SIGN_EXTEND: {
1781 MVT InVT = Op.getOperand(0).getValueType();
1782 unsigned InBits = InVT.getSizeInBits();
1783 APInt InSignBit = APInt::getSignBit(InBits);
1784 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1785 APInt InMask = Mask;
1786 InMask.trunc(InBits);
1788 // If any of the sign extended bits are demanded, we know that the sign
1789 // bit is demanded. Temporarily set this bit in the mask for our callee.
1790 if (NewBits.getBoolValue())
1791 InMask |= InSignBit;
1793 KnownZero.trunc(InBits);
1794 KnownOne.trunc(InBits);
1795 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1797 // Note if the sign bit is known to be zero or one.
1798 bool SignBitKnownZero = KnownZero.isNegative();
1799 bool SignBitKnownOne = KnownOne.isNegative();
1800 assert(!(SignBitKnownZero && SignBitKnownOne) &&
1801 "Sign bit can't be known to be both zero and one!");
1803 // If the sign bit wasn't actually demanded by our caller, we don't
1804 // want it set in the KnownZero and KnownOne result values. Reset the
1805 // mask and reapply it to the result values.
1806 InMask = Mask;
1807 InMask.trunc(InBits);
1808 KnownZero &= InMask;
1809 KnownOne &= InMask;
1811 KnownZero.zext(BitWidth);
1812 KnownOne.zext(BitWidth);
1814 // If the sign bit is known zero or one, the top bits match.
1815 if (SignBitKnownZero)
1816 KnownZero |= NewBits;
1817 else if (SignBitKnownOne)
1818 KnownOne |= NewBits;
1819 return;
1821 case ISD::ANY_EXTEND: {
1822 MVT InVT = Op.getOperand(0).getValueType();
1823 unsigned InBits = InVT.getSizeInBits();
1824 APInt InMask = Mask;
1825 InMask.trunc(InBits);
1826 KnownZero.trunc(InBits);
1827 KnownOne.trunc(InBits);
1828 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1829 KnownZero.zext(BitWidth);
1830 KnownOne.zext(BitWidth);
1831 return;
1833 case ISD::TRUNCATE: {
1834 MVT InVT = Op.getOperand(0).getValueType();
1835 unsigned InBits = InVT.getSizeInBits();
1836 APInt InMask = Mask;
1837 InMask.zext(InBits);
1838 KnownZero.zext(InBits);
1839 KnownOne.zext(InBits);
1840 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1841 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1842 KnownZero.trunc(BitWidth);
1843 KnownOne.trunc(BitWidth);
1844 break;
1846 case ISD::AssertZext: {
1847 MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1848 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1849 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1850 KnownOne, Depth+1);
1851 KnownZero |= (~InMask) & Mask;
1852 return;
1854 case ISD::FGETSIGN:
1855 // All bits are zero except the low bit.
1856 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1857 return;
1859 case ISD::SUB: {
1860 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1861 // We know that the top bits of C-X are clear if X contains less bits
1862 // than C (i.e. no wrap-around can happen). For example, 20-X is
1863 // positive if we can prove that X is >= 0 and < 16.
1864 if (CLHS->getAPIntValue().isNonNegative()) {
1865 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1866 // NLZ can't be BitWidth with no sign bit
1867 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1868 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1869 Depth+1);
1871 // If all of the MaskV bits are known to be zero, then we know the
1872 // output top bits are zero, because we now know that the output is
1873 // from [0-C].
1874 if ((KnownZero2 & MaskV) == MaskV) {
1875 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1876 // Top bits known zero.
1877 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1882 // fall through
1883 case ISD::ADD: {
1884 // Output known-0 bits are known if clear or set in both the low clear bits
1885 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1886 // low 3 bits clear.
1887 APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1888 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1889 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1890 unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1892 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1893 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1894 KnownZeroOut = std::min(KnownZeroOut,
1895 KnownZero2.countTrailingOnes());
1897 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1898 return;
1900 case ISD::SREM:
1901 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1902 const APInt &RA = Rem->getAPIntValue();
1903 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1904 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1905 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1906 ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1908 // If the sign bit of the first operand is zero, the sign bit of
1909 // the result is zero. If the first operand has no one bits below
1910 // the second operand's single 1 bit, its sign will be zero.
1911 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1912 KnownZero2 |= ~LowBits;
1914 KnownZero |= KnownZero2 & Mask;
1916 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1919 return;
1920 case ISD::UREM: {
1921 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1922 const APInt &RA = Rem->getAPIntValue();
1923 if (RA.isPowerOf2()) {
1924 APInt LowBits = (RA - 1);
1925 APInt Mask2 = LowBits & Mask;
1926 KnownZero |= ~LowBits & Mask;
1927 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1928 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1929 break;
1933 // Since the result is less than or equal to either operand, any leading
1934 // zero bits in either operand must also exist in the result.
1935 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1936 ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1937 Depth+1);
1938 ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1939 Depth+1);
1941 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1942 KnownZero2.countLeadingOnes());
1943 KnownOne.clear();
1944 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1945 return;
1947 default:
1948 // Allow the target to implement this method for its nodes.
1949 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1950 case ISD::INTRINSIC_WO_CHAIN:
1951 case ISD::INTRINSIC_W_CHAIN:
1952 case ISD::INTRINSIC_VOID:
1953 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1955 return;
1959 /// ComputeNumSignBits - Return the number of times the sign bit of the
1960 /// register is replicated into the other bits. We know that at least 1 bit
1961 /// is always equal to the sign bit (itself), but other cases can give us
1962 /// information. For example, immediately after an "SRA X, 2", we know that
1963 /// the top 3 bits are all equal to each other, so we return 3.
1964 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1965 MVT VT = Op.getValueType();
1966 assert(VT.isInteger() && "Invalid VT!");
1967 unsigned VTBits = VT.getSizeInBits();
1968 unsigned Tmp, Tmp2;
1969 unsigned FirstAnswer = 1;
1971 if (Depth == 6)
1972 return 1; // Limit search depth.
1974 switch (Op.getOpcode()) {
1975 default: break;
1976 case ISD::AssertSext:
1977 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1978 return VTBits-Tmp+1;
1979 case ISD::AssertZext:
1980 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1981 return VTBits-Tmp;
1983 case ISD::Constant: {
1984 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1985 // If negative, return # leading ones.
1986 if (Val.isNegative())
1987 return Val.countLeadingOnes();
1989 // Return # leading zeros.
1990 return Val.countLeadingZeros();
1993 case ISD::SIGN_EXTEND:
1994 Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1995 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1997 case ISD::SIGN_EXTEND_INREG:
1998 // Max of the input and what this extends.
1999 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2000 Tmp = VTBits-Tmp+1;
2002 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2003 return std::max(Tmp, Tmp2);
2005 case ISD::SRA:
2006 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2007 // SRA X, C -> adds C sign bits.
2008 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2009 Tmp += C->getZExtValue();
2010 if (Tmp > VTBits) Tmp = VTBits;
2012 return Tmp;
2013 case ISD::SHL:
2014 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2015 // shl destroys sign bits.
2016 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2017 if (C->getZExtValue() >= VTBits || // Bad shift.
2018 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
2019 return Tmp - C->getZExtValue();
2021 break;
2022 case ISD::AND:
2023 case ISD::OR:
2024 case ISD::XOR: // NOT is handled here.
2025 // Logical binary ops preserve the number of sign bits at the worst.
2026 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2027 if (Tmp != 1) {
2028 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2029 FirstAnswer = std::min(Tmp, Tmp2);
2030 // We computed what we know about the sign bits as our first
2031 // answer. Now proceed to the generic code that uses
2032 // ComputeMaskedBits, and pick whichever answer is better.
2034 break;
2036 case ISD::SELECT:
2037 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2038 if (Tmp == 1) return 1; // Early out.
2039 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2040 return std::min(Tmp, Tmp2);
2042 case ISD::SADDO:
2043 case ISD::UADDO:
2044 case ISD::SSUBO:
2045 case ISD::USUBO:
2046 case ISD::SMULO:
2047 case ISD::UMULO:
2048 if (Op.getResNo() != 1)
2049 break;
2050 // The boolean result conforms to getBooleanContents. Fall through.
2051 case ISD::SETCC:
2052 // If setcc returns 0/-1, all bits are sign bits.
2053 if (TLI.getBooleanContents() ==
2054 TargetLowering::ZeroOrNegativeOneBooleanContent)
2055 return VTBits;
2056 break;
2057 case ISD::ROTL:
2058 case ISD::ROTR:
2059 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2060 unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2062 // Handle rotate right by N like a rotate left by 32-N.
2063 if (Op.getOpcode() == ISD::ROTR)
2064 RotAmt = (VTBits-RotAmt) & (VTBits-1);
2066 // If we aren't rotating out all of the known-in sign bits, return the
2067 // number that are left. This handles rotl(sext(x), 1) for example.
2068 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2069 if (Tmp > RotAmt+1) return Tmp-RotAmt;
2071 break;
2072 case ISD::ADD:
2073 // Add can have at most one carry bit. Thus we know that the output
2074 // is, at worst, one more bit than the inputs.
2075 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2076 if (Tmp == 1) return 1; // Early out.
2078 // Special case decrementing a value (ADD X, -1):
2079 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2080 if (CRHS->isAllOnesValue()) {
2081 APInt KnownZero, KnownOne;
2082 APInt Mask = APInt::getAllOnesValue(VTBits);
2083 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2085 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2086 // sign bits set.
2087 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2088 return VTBits;
2090 // If we are subtracting one from a positive number, there is no carry
2091 // out of the result.
2092 if (KnownZero.isNegative())
2093 return Tmp;
2096 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2097 if (Tmp2 == 1) return 1;
2098 return std::min(Tmp, Tmp2)-1;
2099 break;
2101 case ISD::SUB:
2102 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2103 if (Tmp2 == 1) return 1;
2105 // Handle NEG.
2106 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2107 if (CLHS->isNullValue()) {
2108 APInt KnownZero, KnownOne;
2109 APInt Mask = APInt::getAllOnesValue(VTBits);
2110 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2111 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2112 // sign bits set.
2113 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2114 return VTBits;
2116 // If the input is known to be positive (the sign bit is known clear),
2117 // the output of the NEG has the same number of sign bits as the input.
2118 if (KnownZero.isNegative())
2119 return Tmp2;
2121 // Otherwise, we treat this like a SUB.
2124 // Sub can have at most one carry bit. Thus we know that the output
2125 // is, at worst, one more bit than the inputs.
2126 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2127 if (Tmp == 1) return 1; // Early out.
2128 return std::min(Tmp, Tmp2)-1;
2129 break;
2130 case ISD::TRUNCATE:
2131 // FIXME: it's tricky to do anything useful for this, but it is an important
2132 // case for targets like X86.
2133 break;
2136 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2137 if (Op.getOpcode() == ISD::LOAD) {
2138 LoadSDNode *LD = cast<LoadSDNode>(Op);
2139 unsigned ExtType = LD->getExtensionType();
2140 switch (ExtType) {
2141 default: break;
2142 case ISD::SEXTLOAD: // '17' bits known
2143 Tmp = LD->getMemoryVT().getSizeInBits();
2144 return VTBits-Tmp+1;
2145 case ISD::ZEXTLOAD: // '16' bits known
2146 Tmp = LD->getMemoryVT().getSizeInBits();
2147 return VTBits-Tmp;
2151 // Allow the target to implement this method for its nodes.
2152 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2153 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2154 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2155 Op.getOpcode() == ISD::INTRINSIC_VOID) {
2156 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2157 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2160 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2161 // use this information.
2162 APInt KnownZero, KnownOne;
2163 APInt Mask = APInt::getAllOnesValue(VTBits);
2164 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2166 if (KnownZero.isNegative()) { // sign bit is 0
2167 Mask = KnownZero;
2168 } else if (KnownOne.isNegative()) { // sign bit is 1;
2169 Mask = KnownOne;
2170 } else {
2171 // Nothing known.
2172 return FirstAnswer;
2175 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2176 // the number of identical bits in the top of the input value.
2177 Mask = ~Mask;
2178 Mask <<= Mask.getBitWidth()-VTBits;
2179 // Return # leading zeros. We use 'min' here in case Val was zero before
2180 // shifting. We don't want to return '64' as for an i32 "0".
2181 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2185 bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2186 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2187 if (!GA) return false;
2188 if (GA->getOffset() != 0) return false;
2189 GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2190 if (!GV) return false;
2191 MachineModuleInfo *MMI = getMachineModuleInfo();
2192 return MMI && MMI->hasDebugInfo();
2196 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
2197 /// element of the result of the vector shuffle.
2198 SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2199 unsigned i) {
2200 MVT VT = N->getValueType(0);
2201 DebugLoc dl = N->getDebugLoc();
2202 if (N->getMaskElt(i) < 0)
2203 return getUNDEF(VT.getVectorElementType());
2204 unsigned Index = N->getMaskElt(i);
2205 unsigned NumElems = VT.getVectorNumElements();
2206 SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2207 Index %= NumElems;
2209 if (V.getOpcode() == ISD::BIT_CONVERT) {
2210 V = V.getOperand(0);
2211 MVT VVT = V.getValueType();
2212 if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2213 return SDValue();
2215 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2216 return (Index == 0) ? V.getOperand(0)
2217 : getUNDEF(VT.getVectorElementType());
2218 if (V.getOpcode() == ISD::BUILD_VECTOR)
2219 return V.getOperand(Index);
2220 if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2221 return getShuffleScalarElt(SVN, Index);
2222 return SDValue();
2226 /// getNode - Gets or creates the specified node.
2228 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2229 FoldingSetNodeID ID;
2230 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2231 void *IP = 0;
2232 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2233 return SDValue(E, 0);
2234 SDNode *N = NodeAllocator.Allocate<SDNode>();
2235 new (N) SDNode(Opcode, DL, getVTList(VT));
2236 CSEMap.InsertNode(N, IP);
2238 AllNodes.push_back(N);
2239 #ifndef NDEBUG
2240 VerifyNode(N);
2241 #endif
2242 return SDValue(N, 0);
2245 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2246 MVT VT, SDValue Operand) {
2247 // Constant fold unary operations with an integer constant operand.
2248 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2249 const APInt &Val = C->getAPIntValue();
2250 unsigned BitWidth = VT.getSizeInBits();
2251 switch (Opcode) {
2252 default: break;
2253 case ISD::SIGN_EXTEND:
2254 return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2255 case ISD::ANY_EXTEND:
2256 case ISD::ZERO_EXTEND:
2257 case ISD::TRUNCATE:
2258 return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2259 case ISD::UINT_TO_FP:
2260 case ISD::SINT_TO_FP: {
2261 const uint64_t zero[] = {0, 0};
2262 // No compile time operations on this type.
2263 if (VT==MVT::ppcf128)
2264 break;
2265 APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2266 (void)apf.convertFromAPInt(Val,
2267 Opcode==ISD::SINT_TO_FP,
2268 APFloat::rmNearestTiesToEven);
2269 return getConstantFP(apf, VT);
2271 case ISD::BIT_CONVERT:
2272 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2273 return getConstantFP(Val.bitsToFloat(), VT);
2274 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2275 return getConstantFP(Val.bitsToDouble(), VT);
2276 break;
2277 case ISD::BSWAP:
2278 return getConstant(Val.byteSwap(), VT);
2279 case ISD::CTPOP:
2280 return getConstant(Val.countPopulation(), VT);
2281 case ISD::CTLZ:
2282 return getConstant(Val.countLeadingZeros(), VT);
2283 case ISD::CTTZ:
2284 return getConstant(Val.countTrailingZeros(), VT);
2288 // Constant fold unary operations with a floating point constant operand.
2289 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2290 APFloat V = C->getValueAPF(); // make copy
2291 if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2292 switch (Opcode) {
2293 case ISD::FNEG:
2294 V.changeSign();
2295 return getConstantFP(V, VT);
2296 case ISD::FABS:
2297 V.clearSign();
2298 return getConstantFP(V, VT);
2299 case ISD::FP_ROUND:
2300 case ISD::FP_EXTEND: {
2301 bool ignored;
2302 // This can return overflow, underflow, or inexact; we don't care.
2303 // FIXME need to be more flexible about rounding mode.
2304 (void)V.convert(*MVTToAPFloatSemantics(VT),
2305 APFloat::rmNearestTiesToEven, &ignored);
2306 return getConstantFP(V, VT);
2308 case ISD::FP_TO_SINT:
2309 case ISD::FP_TO_UINT: {
2310 integerPart x[2];
2311 bool ignored;
2312 assert(integerPartWidth >= 64);
2313 // FIXME need to be more flexible about rounding mode.
2314 APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2315 Opcode==ISD::FP_TO_SINT,
2316 APFloat::rmTowardZero, &ignored);
2317 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
2318 break;
2319 APInt api(VT.getSizeInBits(), 2, x);
2320 return getConstant(api, VT);
2322 case ISD::BIT_CONVERT:
2323 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2324 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2325 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2326 return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2327 break;
2332 unsigned OpOpcode = Operand.getNode()->getOpcode();
2333 switch (Opcode) {
2334 case ISD::TokenFactor:
2335 case ISD::MERGE_VALUES:
2336 case ISD::CONCAT_VECTORS:
2337 return Operand; // Factor, merge or concat of one node? No need.
2338 case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2339 case ISD::FP_EXTEND:
2340 assert(VT.isFloatingPoint() &&
2341 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2342 if (Operand.getValueType() == VT) return Operand; // noop conversion.
2343 if (Operand.getOpcode() == ISD::UNDEF)
2344 return getUNDEF(VT);
2345 break;
2346 case ISD::SIGN_EXTEND:
2347 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2348 "Invalid SIGN_EXTEND!");
2349 if (Operand.getValueType() == VT) return Operand; // noop extension
2350 assert(Operand.getValueType().bitsLT(VT)
2351 && "Invalid sext node, dst < src!");
2352 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2353 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2354 break;
2355 case ISD::ZERO_EXTEND:
2356 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2357 "Invalid ZERO_EXTEND!");
2358 if (Operand.getValueType() == VT) return Operand; // noop extension
2359 assert(Operand.getValueType().bitsLT(VT)
2360 && "Invalid zext node, dst < src!");
2361 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
2362 return getNode(ISD::ZERO_EXTEND, DL, VT,
2363 Operand.getNode()->getOperand(0));
2364 break;
2365 case ISD::ANY_EXTEND:
2366 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2367 "Invalid ANY_EXTEND!");
2368 if (Operand.getValueType() == VT) return Operand; // noop extension
2369 assert(Operand.getValueType().bitsLT(VT)
2370 && "Invalid anyext node, dst < src!");
2371 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2372 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2373 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2374 break;
2375 case ISD::TRUNCATE:
2376 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2377 "Invalid TRUNCATE!");
2378 if (Operand.getValueType() == VT) return Operand; // noop truncate
2379 assert(Operand.getValueType().bitsGT(VT)
2380 && "Invalid truncate node, src < dst!");
2381 if (OpOpcode == ISD::TRUNCATE)
2382 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2383 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2384 OpOpcode == ISD::ANY_EXTEND) {
2385 // If the source is smaller than the dest, we still need an extend.
2386 if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2387 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2388 else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2389 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2390 else
2391 return Operand.getNode()->getOperand(0);
2393 break;
2394 case ISD::BIT_CONVERT:
2395 // Basic sanity checking.
2396 assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2397 && "Cannot BIT_CONVERT between types of different sizes!");
2398 if (VT == Operand.getValueType()) return Operand; // noop conversion.
2399 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
2400 return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2401 if (OpOpcode == ISD::UNDEF)
2402 return getUNDEF(VT);
2403 break;
2404 case ISD::SCALAR_TO_VECTOR:
2405 assert(VT.isVector() && !Operand.getValueType().isVector() &&
2406 (VT.getVectorElementType() == Operand.getValueType() ||
2407 (VT.getVectorElementType().isInteger() &&
2408 Operand.getValueType().isInteger() &&
2409 VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2410 "Illegal SCALAR_TO_VECTOR node!");
2411 if (OpOpcode == ISD::UNDEF)
2412 return getUNDEF(VT);
2413 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2414 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2415 isa<ConstantSDNode>(Operand.getOperand(1)) &&
2416 Operand.getConstantOperandVal(1) == 0 &&
2417 Operand.getOperand(0).getValueType() == VT)
2418 return Operand.getOperand(0);
2419 break;
2420 case ISD::FNEG:
2421 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2422 if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2423 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2424 Operand.getNode()->getOperand(0));
2425 if (OpOpcode == ISD::FNEG) // --X -> X
2426 return Operand.getNode()->getOperand(0);
2427 break;
2428 case ISD::FABS:
2429 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
2430 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2431 break;
2434 SDNode *N;
2435 SDVTList VTs = getVTList(VT);
2436 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2437 FoldingSetNodeID ID;
2438 SDValue Ops[1] = { Operand };
2439 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2440 void *IP = 0;
2441 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2442 return SDValue(E, 0);
2443 N = NodeAllocator.Allocate<UnarySDNode>();
2444 new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2445 CSEMap.InsertNode(N, IP);
2446 } else {
2447 N = NodeAllocator.Allocate<UnarySDNode>();
2448 new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2451 AllNodes.push_back(N);
2452 #ifndef NDEBUG
2453 VerifyNode(N);
2454 #endif
2455 return SDValue(N, 0);
2458 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2459 MVT VT,
2460 ConstantSDNode *Cst1,
2461 ConstantSDNode *Cst2) {
2462 const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2464 switch (Opcode) {
2465 case ISD::ADD: return getConstant(C1 + C2, VT);
2466 case ISD::SUB: return getConstant(C1 - C2, VT);
2467 case ISD::MUL: return getConstant(C1 * C2, VT);
2468 case ISD::UDIV:
2469 if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2470 break;
2471 case ISD::UREM:
2472 if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2473 break;
2474 case ISD::SDIV:
2475 if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2476 break;
2477 case ISD::SREM:
2478 if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2479 break;
2480 case ISD::AND: return getConstant(C1 & C2, VT);
2481 case ISD::OR: return getConstant(C1 | C2, VT);
2482 case ISD::XOR: return getConstant(C1 ^ C2, VT);
2483 case ISD::SHL: return getConstant(C1 << C2, VT);
2484 case ISD::SRL: return getConstant(C1.lshr(C2), VT);
2485 case ISD::SRA: return getConstant(C1.ashr(C2), VT);
2486 case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2487 case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2488 default: break;
2491 return SDValue();
2494 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2495 SDValue N1, SDValue N2) {
2496 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2497 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2498 switch (Opcode) {
2499 default: break;
2500 case ISD::TokenFactor:
2501 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2502 N2.getValueType() == MVT::Other && "Invalid token factor!");
2503 // Fold trivial token factors.
2504 if (N1.getOpcode() == ISD::EntryToken) return N2;
2505 if (N2.getOpcode() == ISD::EntryToken) return N1;
2506 if (N1 == N2) return N1;
2507 break;
2508 case ISD::CONCAT_VECTORS:
2509 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2510 // one big BUILD_VECTOR.
2511 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2512 N2.getOpcode() == ISD::BUILD_VECTOR) {
2513 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2514 Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2515 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2517 break;
2518 case ISD::AND:
2519 assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2520 N1.getValueType() == VT && "Binary operator types must match!");
2521 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2522 // worth handling here.
2523 if (N2C && N2C->isNullValue())
2524 return N2;
2525 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
2526 return N1;
2527 break;
2528 case ISD::OR:
2529 case ISD::XOR:
2530 case ISD::ADD:
2531 case ISD::SUB:
2532 assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2533 N1.getValueType() == VT && "Binary operator types must match!");
2534 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2535 // it's worth handling here.
2536 if (N2C && N2C->isNullValue())
2537 return N1;
2538 break;
2539 case ISD::UDIV:
2540 case ISD::UREM:
2541 case ISD::MULHU:
2542 case ISD::MULHS:
2543 case ISD::MUL:
2544 case ISD::SDIV:
2545 case ISD::SREM:
2546 assert(VT.isInteger() && "This operator does not apply to FP types!");
2547 // fall through
2548 case ISD::FADD:
2549 case ISD::FSUB:
2550 case ISD::FMUL:
2551 case ISD::FDIV:
2552 case ISD::FREM:
2553 if (UnsafeFPMath) {
2554 if (Opcode == ISD::FADD) {
2555 // 0+x --> x
2556 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2557 if (CFP->getValueAPF().isZero())
2558 return N2;
2559 // x+0 --> x
2560 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2561 if (CFP->getValueAPF().isZero())
2562 return N1;
2563 } else if (Opcode == ISD::FSUB) {
2564 // x-0 --> x
2565 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2566 if (CFP->getValueAPF().isZero())
2567 return N1;
2570 assert(N1.getValueType() == N2.getValueType() &&
2571 N1.getValueType() == VT && "Binary operator types must match!");
2572 break;
2573 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
2574 assert(N1.getValueType() == VT &&
2575 N1.getValueType().isFloatingPoint() &&
2576 N2.getValueType().isFloatingPoint() &&
2577 "Invalid FCOPYSIGN!");
2578 break;
2579 case ISD::SHL:
2580 case ISD::SRA:
2581 case ISD::SRL:
2582 case ISD::ROTL:
2583 case ISD::ROTR:
2584 assert(VT == N1.getValueType() &&
2585 "Shift operators return type must be the same as their first arg");
2586 assert(VT.isInteger() && N2.getValueType().isInteger() &&
2587 "Shifts only work on integers");
2589 // Always fold shifts of i1 values so the code generator doesn't need to
2590 // handle them. Since we know the size of the shift has to be less than the
2591 // size of the value, the shift/rotate count is guaranteed to be zero.
2592 if (VT == MVT::i1)
2593 return N1;
2594 break;
2595 case ISD::FP_ROUND_INREG: {
2596 MVT EVT = cast<VTSDNode>(N2)->getVT();
2597 assert(VT == N1.getValueType() && "Not an inreg round!");
2598 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2599 "Cannot FP_ROUND_INREG integer types");
2600 assert(EVT.bitsLE(VT) && "Not rounding down!");
2601 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
2602 break;
2604 case ISD::FP_ROUND:
2605 assert(VT.isFloatingPoint() &&
2606 N1.getValueType().isFloatingPoint() &&
2607 VT.bitsLE(N1.getValueType()) &&
2608 isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2609 if (N1.getValueType() == VT) return N1; // noop conversion.
2610 break;
2611 case ISD::AssertSext:
2612 case ISD::AssertZext: {
2613 MVT EVT = cast<VTSDNode>(N2)->getVT();
2614 assert(VT == N1.getValueType() && "Not an inreg extend!");
2615 assert(VT.isInteger() && EVT.isInteger() &&
2616 "Cannot *_EXTEND_INREG FP types");
2617 assert(EVT.bitsLE(VT) && "Not extending!");
2618 if (VT == EVT) return N1; // noop assertion.
2619 break;
2621 case ISD::SIGN_EXTEND_INREG: {
2622 MVT EVT = cast<VTSDNode>(N2)->getVT();
2623 assert(VT == N1.getValueType() && "Not an inreg extend!");
2624 assert(VT.isInteger() && EVT.isInteger() &&
2625 "Cannot *_EXTEND_INREG FP types");
2626 assert(EVT.bitsLE(VT) && "Not extending!");
2627 if (EVT == VT) return N1; // Not actually extending
2629 if (N1C) {
2630 APInt Val = N1C->getAPIntValue();
2631 unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2632 Val <<= Val.getBitWidth()-FromBits;
2633 Val = Val.ashr(Val.getBitWidth()-FromBits);
2634 return getConstant(Val, VT);
2636 break;
2638 case ISD::EXTRACT_VECTOR_ELT:
2639 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2640 if (N1.getOpcode() == ISD::UNDEF)
2641 return getUNDEF(VT);
2643 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2644 // expanding copies of large vectors from registers.
2645 if (N2C &&
2646 N1.getOpcode() == ISD::CONCAT_VECTORS &&
2647 N1.getNumOperands() > 0) {
2648 unsigned Factor =
2649 N1.getOperand(0).getValueType().getVectorNumElements();
2650 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2651 N1.getOperand(N2C->getZExtValue() / Factor),
2652 getConstant(N2C->getZExtValue() % Factor,
2653 N2.getValueType()));
2656 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2657 // expanding large vector constants.
2658 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2659 SDValue Elt = N1.getOperand(N2C->getZExtValue());
2660 if (Elt.getValueType() != VT) {
2661 // If the vector element type is not legal, the BUILD_VECTOR operands
2662 // are promoted and implicitly truncated. Make that explicit here.
2663 assert(VT.isInteger() && Elt.getValueType().isInteger() &&
2664 VT.bitsLE(Elt.getValueType()) &&
2665 "Bad type for BUILD_VECTOR operand");
2666 Elt = getNode(ISD::TRUNCATE, DL, VT, Elt);
2668 return Elt;
2671 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2672 // operations are lowered to scalars.
2673 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2674 // If the indices are the same, return the inserted element.
2675 if (N1.getOperand(2) == N2)
2676 return N1.getOperand(1);
2677 // If the indices are known different, extract the element from
2678 // the original vector.
2679 else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2680 isa<ConstantSDNode>(N2))
2681 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2683 break;
2684 case ISD::EXTRACT_ELEMENT:
2685 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2686 assert(!N1.getValueType().isVector() && !VT.isVector() &&
2687 (N1.getValueType().isInteger() == VT.isInteger()) &&
2688 "Wrong types for EXTRACT_ELEMENT!");
2690 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2691 // 64-bit integers into 32-bit parts. Instead of building the extract of
2692 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2693 if (N1.getOpcode() == ISD::BUILD_PAIR)
2694 return N1.getOperand(N2C->getZExtValue());
2696 // EXTRACT_ELEMENT of a constant int is also very common.
2697 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2698 unsigned ElementSize = VT.getSizeInBits();
2699 unsigned Shift = ElementSize * N2C->getZExtValue();
2700 APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2701 return getConstant(ShiftedVal.trunc(ElementSize), VT);
2703 break;
2704 case ISD::EXTRACT_SUBVECTOR:
2705 if (N1.getValueType() == VT) // Trivial extraction.
2706 return N1;
2707 break;
2710 if (N1C) {
2711 if (N2C) {
2712 SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2713 if (SV.getNode()) return SV;
2714 } else { // Cannonicalize constant to RHS if commutative
2715 if (isCommutativeBinOp(Opcode)) {
2716 std::swap(N1C, N2C);
2717 std::swap(N1, N2);
2722 // Constant fold FP operations.
2723 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2724 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2725 if (N1CFP) {
2726 if (!N2CFP && isCommutativeBinOp(Opcode)) {
2727 // Cannonicalize constant to RHS if commutative
2728 std::swap(N1CFP, N2CFP);
2729 std::swap(N1, N2);
2730 } else if (N2CFP && VT != MVT::ppcf128) {
2731 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2732 APFloat::opStatus s;
2733 switch (Opcode) {
2734 case ISD::FADD:
2735 s = V1.add(V2, APFloat::rmNearestTiesToEven);
2736 if (s != APFloat::opInvalidOp)
2737 return getConstantFP(V1, VT);
2738 break;
2739 case ISD::FSUB:
2740 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2741 if (s!=APFloat::opInvalidOp)
2742 return getConstantFP(V1, VT);
2743 break;
2744 case ISD::FMUL:
2745 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2746 if (s!=APFloat::opInvalidOp)
2747 return getConstantFP(V1, VT);
2748 break;
2749 case ISD::FDIV:
2750 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2751 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2752 return getConstantFP(V1, VT);
2753 break;
2754 case ISD::FREM :
2755 s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2756 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2757 return getConstantFP(V1, VT);
2758 break;
2759 case ISD::FCOPYSIGN:
2760 V1.copySign(V2);
2761 return getConstantFP(V1, VT);
2762 default: break;
2767 // Canonicalize an UNDEF to the RHS, even over a constant.
2768 if (N1.getOpcode() == ISD::UNDEF) {
2769 if (isCommutativeBinOp(Opcode)) {
2770 std::swap(N1, N2);
2771 } else {
2772 switch (Opcode) {
2773 case ISD::FP_ROUND_INREG:
2774 case ISD::SIGN_EXTEND_INREG:
2775 case ISD::SUB:
2776 case ISD::FSUB:
2777 case ISD::FDIV:
2778 case ISD::FREM:
2779 case ISD::SRA:
2780 return N1; // fold op(undef, arg2) -> undef
2781 case ISD::UDIV:
2782 case ISD::SDIV:
2783 case ISD::UREM:
2784 case ISD::SREM:
2785 case ISD::SRL:
2786 case ISD::SHL:
2787 if (!VT.isVector())
2788 return getConstant(0, VT); // fold op(undef, arg2) -> 0
2789 // For vectors, we can't easily build an all zero vector, just return
2790 // the LHS.
2791 return N2;
2796 // Fold a bunch of operators when the RHS is undef.
2797 if (N2.getOpcode() == ISD::UNDEF) {
2798 switch (Opcode) {
2799 case ISD::XOR:
2800 if (N1.getOpcode() == ISD::UNDEF)
2801 // Handle undef ^ undef -> 0 special case. This is a common
2802 // idiom (misuse).
2803 return getConstant(0, VT);
2804 // fallthrough
2805 case ISD::ADD:
2806 case ISD::ADDC:
2807 case ISD::ADDE:
2808 case ISD::SUB:
2809 case ISD::FADD:
2810 case ISD::FSUB:
2811 case ISD::FMUL:
2812 case ISD::FDIV:
2813 case ISD::FREM:
2814 case ISD::UDIV:
2815 case ISD::SDIV:
2816 case ISD::UREM:
2817 case ISD::SREM:
2818 return N2; // fold op(arg1, undef) -> undef
2819 case ISD::MUL:
2820 case ISD::AND:
2821 case ISD::SRL:
2822 case ISD::SHL:
2823 if (!VT.isVector())
2824 return getConstant(0, VT); // fold op(arg1, undef) -> 0
2825 // For vectors, we can't easily build an all zero vector, just return
2826 // the LHS.
2827 return N1;
2828 case ISD::OR:
2829 if (!VT.isVector())
2830 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2831 // For vectors, we can't easily build an all one vector, just return
2832 // the LHS.
2833 return N1;
2834 case ISD::SRA:
2835 return N1;
2839 // Memoize this node if possible.
2840 SDNode *N;
2841 SDVTList VTs = getVTList(VT);
2842 if (VT != MVT::Flag) {
2843 SDValue Ops[] = { N1, N2 };
2844 FoldingSetNodeID ID;
2845 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2846 void *IP = 0;
2847 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2848 return SDValue(E, 0);
2849 N = NodeAllocator.Allocate<BinarySDNode>();
2850 new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2851 CSEMap.InsertNode(N, IP);
2852 } else {
2853 N = NodeAllocator.Allocate<BinarySDNode>();
2854 new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2857 AllNodes.push_back(N);
2858 #ifndef NDEBUG
2859 VerifyNode(N);
2860 #endif
2861 return SDValue(N, 0);
2864 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2865 SDValue N1, SDValue N2, SDValue N3) {
2866 // Perform various simplifications.
2867 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2868 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2869 switch (Opcode) {
2870 case ISD::CONCAT_VECTORS:
2871 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2872 // one big BUILD_VECTOR.
2873 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2874 N2.getOpcode() == ISD::BUILD_VECTOR &&
2875 N3.getOpcode() == ISD::BUILD_VECTOR) {
2876 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2877 Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2878 Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2879 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2881 break;
2882 case ISD::SETCC: {
2883 // Use FoldSetCC to simplify SETCC's.
2884 SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2885 if (Simp.getNode()) return Simp;
2886 break;
2888 case ISD::SELECT:
2889 if (N1C) {
2890 if (N1C->getZExtValue())
2891 return N2; // select true, X, Y -> X
2892 else
2893 return N3; // select false, X, Y -> Y
2896 if (N2 == N3) return N2; // select C, X, X -> X
2897 break;
2898 case ISD::BRCOND:
2899 if (N2C) {
2900 if (N2C->getZExtValue()) // Unconditional branch
2901 return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2902 else
2903 return N1; // Never-taken branch
2905 break;
2906 case ISD::VECTOR_SHUFFLE:
2907 assert(0 && "should use getVectorShuffle constructor!");
2908 break;
2909 case ISD::BIT_CONVERT:
2910 // Fold bit_convert nodes from a type to themselves.
2911 if (N1.getValueType() == VT)
2912 return N1;
2913 break;
2916 // Memoize node if it doesn't produce a flag.
2917 SDNode *N;
2918 SDVTList VTs = getVTList(VT);
2919 if (VT != MVT::Flag) {
2920 SDValue Ops[] = { N1, N2, N3 };
2921 FoldingSetNodeID ID;
2922 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2923 void *IP = 0;
2924 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2925 return SDValue(E, 0);
2926 N = NodeAllocator.Allocate<TernarySDNode>();
2927 new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2928 CSEMap.InsertNode(N, IP);
2929 } else {
2930 N = NodeAllocator.Allocate<TernarySDNode>();
2931 new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2933 AllNodes.push_back(N);
2934 #ifndef NDEBUG
2935 VerifyNode(N);
2936 #endif
2937 return SDValue(N, 0);
2940 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2941 SDValue N1, SDValue N2, SDValue N3,
2942 SDValue N4) {
2943 SDValue Ops[] = { N1, N2, N3, N4 };
2944 return getNode(Opcode, DL, VT, Ops, 4);
2947 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2948 SDValue N1, SDValue N2, SDValue N3,
2949 SDValue N4, SDValue N5) {
2950 SDValue Ops[] = { N1, N2, N3, N4, N5 };
2951 return getNode(Opcode, DL, VT, Ops, 5);
2954 /// getMemsetValue - Vectorized representation of the memset value
2955 /// operand.
2956 static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2957 DebugLoc dl) {
2958 unsigned NumBits = VT.isVector() ?
2959 VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2960 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2961 APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2962 unsigned Shift = 8;
2963 for (unsigned i = NumBits; i > 8; i >>= 1) {
2964 Val = (Val << Shift) | Val;
2965 Shift <<= 1;
2967 if (VT.isInteger())
2968 return DAG.getConstant(Val, VT);
2969 return DAG.getConstantFP(APFloat(Val), VT);
2972 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2973 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2974 unsigned Shift = 8;
2975 for (unsigned i = NumBits; i > 8; i >>= 1) {
2976 Value = DAG.getNode(ISD::OR, dl, VT,
2977 DAG.getNode(ISD::SHL, dl, VT, Value,
2978 DAG.getConstant(Shift,
2979 TLI.getShiftAmountTy())),
2980 Value);
2981 Shift <<= 1;
2984 return Value;
2987 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2988 /// used when a memcpy is turned into a memset when the source is a constant
2989 /// string ptr.
2990 static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2991 const TargetLowering &TLI,
2992 std::string &Str, unsigned Offset) {
2993 // Handle vector with all elements zero.
2994 if (Str.empty()) {
2995 if (VT.isInteger())
2996 return DAG.getConstant(0, VT);
2997 unsigned NumElts = VT.getVectorNumElements();
2998 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2999 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3000 DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
3003 assert(!VT.isVector() && "Can't handle vector type here!");
3004 unsigned NumBits = VT.getSizeInBits();
3005 unsigned MSB = NumBits / 8;
3006 uint64_t Val = 0;
3007 if (TLI.isLittleEndian())
3008 Offset = Offset + MSB - 1;
3009 for (unsigned i = 0; i != MSB; ++i) {
3010 Val = (Val << 8) | (unsigned char)Str[Offset];
3011 Offset += TLI.isLittleEndian() ? -1 : 1;
3013 return DAG.getConstant(Val, VT);
3016 /// getMemBasePlusOffset - Returns base and offset node for the
3018 static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3019 SelectionDAG &DAG) {
3020 MVT VT = Base.getValueType();
3021 return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3022 VT, Base, DAG.getConstant(Offset, VT));
3025 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
3027 static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3028 unsigned SrcDelta = 0;
3029 GlobalAddressSDNode *G = NULL;
3030 if (Src.getOpcode() == ISD::GlobalAddress)
3031 G = cast<GlobalAddressSDNode>(Src);
3032 else if (Src.getOpcode() == ISD::ADD &&
3033 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3034 Src.getOperand(1).getOpcode() == ISD::Constant) {
3035 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3036 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3038 if (!G)
3039 return false;
3041 GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3042 if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3043 return true;
3045 return false;
3048 /// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3049 /// to replace the memset / memcpy is below the threshold. It also returns the
3050 /// types of the sequence of memory ops to perform memset / memcpy.
3051 static
3052 bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
3053 SDValue Dst, SDValue Src,
3054 unsigned Limit, uint64_t Size, unsigned &Align,
3055 std::string &Str, bool &isSrcStr,
3056 SelectionDAG &DAG,
3057 const TargetLowering &TLI) {
3058 isSrcStr = isMemSrcFromString(Src, Str);
3059 bool isSrcConst = isa<ConstantSDNode>(Src);
3060 bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3061 MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
3062 if (VT != MVT::iAny) {
3063 unsigned NewAlign = (unsigned)
3064 TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
3065 // If source is a string constant, this will require an unaligned load.
3066 if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3067 if (Dst.getOpcode() != ISD::FrameIndex) {
3068 // Can't change destination alignment. It requires a unaligned store.
3069 if (AllowUnalign)
3070 VT = MVT::iAny;
3071 } else {
3072 int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3073 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3074 if (MFI->isFixedObjectIndex(FI)) {
3075 // Can't change destination alignment. It requires a unaligned store.
3076 if (AllowUnalign)
3077 VT = MVT::iAny;
3078 } else {
3079 // Give the stack frame object a larger alignment if needed.
3080 if (MFI->getObjectAlignment(FI) < NewAlign)
3081 MFI->setObjectAlignment(FI, NewAlign);
3082 Align = NewAlign;
3088 if (VT == MVT::iAny) {
3089 if (AllowUnalign) {
3090 VT = MVT::i64;
3091 } else {
3092 switch (Align & 7) {
3093 case 0: VT = MVT::i64; break;
3094 case 4: VT = MVT::i32; break;
3095 case 2: VT = MVT::i16; break;
3096 default: VT = MVT::i8; break;
3100 MVT LVT = MVT::i64;
3101 while (!TLI.isTypeLegal(LVT))
3102 LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3103 assert(LVT.isInteger());
3105 if (VT.bitsGT(LVT))
3106 VT = LVT;
3109 unsigned NumMemOps = 0;
3110 while (Size != 0) {
3111 unsigned VTSize = VT.getSizeInBits() / 8;
3112 while (VTSize > Size) {
3113 // For now, only use non-vector load / store's for the left-over pieces.
3114 if (VT.isVector()) {
3115 VT = MVT::i64;
3116 while (!TLI.isTypeLegal(VT))
3117 VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3118 VTSize = VT.getSizeInBits() / 8;
3119 } else {
3120 VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3121 VTSize >>= 1;
3125 if (++NumMemOps > Limit)
3126 return false;
3127 MemOps.push_back(VT);
3128 Size -= VTSize;
3131 return true;
3134 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3135 SDValue Chain, SDValue Dst,
3136 SDValue Src, uint64_t Size,
3137 unsigned Align, bool AlwaysInline,
3138 const Value *DstSV, uint64_t DstSVOff,
3139 const Value *SrcSV, uint64_t SrcSVOff){
3140 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3142 // Expand memcpy to a series of load and store ops if the size operand falls
3143 // below a certain threshold.
3144 std::vector<MVT> MemOps;
3145 uint64_t Limit = -1ULL;
3146 if (!AlwaysInline)
3147 Limit = TLI.getMaxStoresPerMemcpy();
3148 unsigned DstAlign = Align; // Destination alignment can change.
3149 std::string Str;
3150 bool CopyFromStr;
3151 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3152 Str, CopyFromStr, DAG, TLI))
3153 return SDValue();
3156 bool isZeroStr = CopyFromStr && Str.empty();
3157 SmallVector<SDValue, 8> OutChains;
3158 unsigned NumMemOps = MemOps.size();
3159 uint64_t SrcOff = 0, DstOff = 0;
3160 for (unsigned i = 0; i < NumMemOps; i++) {
3161 MVT VT = MemOps[i];
3162 unsigned VTSize = VT.getSizeInBits() / 8;
3163 SDValue Value, Store;
3165 if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3166 // It's unlikely a store of a vector immediate can be done in a single
3167 // instruction. It would require a load from a constantpool first.
3168 // We also handle store a vector with all zero's.
3169 // FIXME: Handle other cases where store of vector immediate is done in
3170 // a single instruction.
3171 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3172 Store = DAG.getStore(Chain, dl, Value,
3173 getMemBasePlusOffset(Dst, DstOff, DAG),
3174 DstSV, DstSVOff + DstOff, false, DstAlign);
3175 } else {
3176 Value = DAG.getLoad(VT, dl, Chain,
3177 getMemBasePlusOffset(Src, SrcOff, DAG),
3178 SrcSV, SrcSVOff + SrcOff, false, Align);
3179 Store = DAG.getStore(Chain, dl, Value,
3180 getMemBasePlusOffset(Dst, DstOff, DAG),
3181 DstSV, DstSVOff + DstOff, false, DstAlign);
3183 OutChains.push_back(Store);
3184 SrcOff += VTSize;
3185 DstOff += VTSize;
3188 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3189 &OutChains[0], OutChains.size());
3192 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3193 SDValue Chain, SDValue Dst,
3194 SDValue Src, uint64_t Size,
3195 unsigned Align, bool AlwaysInline,
3196 const Value *DstSV, uint64_t DstSVOff,
3197 const Value *SrcSV, uint64_t SrcSVOff){
3198 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3200 // Expand memmove to a series of load and store ops if the size operand falls
3201 // below a certain threshold.
3202 std::vector<MVT> MemOps;
3203 uint64_t Limit = -1ULL;
3204 if (!AlwaysInline)
3205 Limit = TLI.getMaxStoresPerMemmove();
3206 unsigned DstAlign = Align; // Destination alignment can change.
3207 std::string Str;
3208 bool CopyFromStr;
3209 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3210 Str, CopyFromStr, DAG, TLI))
3211 return SDValue();
3213 uint64_t SrcOff = 0, DstOff = 0;
3215 SmallVector<SDValue, 8> LoadValues;
3216 SmallVector<SDValue, 8> LoadChains;
3217 SmallVector<SDValue, 8> OutChains;
3218 unsigned NumMemOps = MemOps.size();
3219 for (unsigned i = 0; i < NumMemOps; i++) {
3220 MVT VT = MemOps[i];
3221 unsigned VTSize = VT.getSizeInBits() / 8;
3222 SDValue Value, Store;
3224 Value = DAG.getLoad(VT, dl, Chain,
3225 getMemBasePlusOffset(Src, SrcOff, DAG),
3226 SrcSV, SrcSVOff + SrcOff, false, Align);
3227 LoadValues.push_back(Value);
3228 LoadChains.push_back(Value.getValue(1));
3229 SrcOff += VTSize;
3231 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3232 &LoadChains[0], LoadChains.size());
3233 OutChains.clear();
3234 for (unsigned i = 0; i < NumMemOps; i++) {
3235 MVT VT = MemOps[i];
3236 unsigned VTSize = VT.getSizeInBits() / 8;
3237 SDValue Value, Store;
3239 Store = DAG.getStore(Chain, dl, LoadValues[i],
3240 getMemBasePlusOffset(Dst, DstOff, DAG),
3241 DstSV, DstSVOff + DstOff, false, DstAlign);
3242 OutChains.push_back(Store);
3243 DstOff += VTSize;
3246 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3247 &OutChains[0], OutChains.size());
3250 static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3251 SDValue Chain, SDValue Dst,
3252 SDValue Src, uint64_t Size,
3253 unsigned Align,
3254 const Value *DstSV, uint64_t DstSVOff) {
3255 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3257 // Expand memset to a series of load/store ops if the size operand
3258 // falls below a certain threshold.
3259 std::vector<MVT> MemOps;
3260 std::string Str;
3261 bool CopyFromStr;
3262 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3263 Size, Align, Str, CopyFromStr, DAG, TLI))
3264 return SDValue();
3266 SmallVector<SDValue, 8> OutChains;
3267 uint64_t DstOff = 0;
3269 unsigned NumMemOps = MemOps.size();
3270 for (unsigned i = 0; i < NumMemOps; i++) {
3271 MVT VT = MemOps[i];
3272 unsigned VTSize = VT.getSizeInBits() / 8;
3273 SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3274 SDValue Store = DAG.getStore(Chain, dl, Value,
3275 getMemBasePlusOffset(Dst, DstOff, DAG),
3276 DstSV, DstSVOff + DstOff);
3277 OutChains.push_back(Store);
3278 DstOff += VTSize;
3281 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3282 &OutChains[0], OutChains.size());
3285 SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3286 SDValue Src, SDValue Size,
3287 unsigned Align, bool AlwaysInline,
3288 const Value *DstSV, uint64_t DstSVOff,
3289 const Value *SrcSV, uint64_t SrcSVOff) {
3291 // Check to see if we should lower the memcpy to loads and stores first.
3292 // For cases within the target-specified limits, this is the best choice.
3293 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3294 if (ConstantSize) {
3295 // Memcpy with size zero? Just return the original chain.
3296 if (ConstantSize->isNullValue())
3297 return Chain;
3299 SDValue Result =
3300 getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3301 ConstantSize->getZExtValue(),
3302 Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3303 if (Result.getNode())
3304 return Result;
3307 // Then check to see if we should lower the memcpy with target-specific
3308 // code. If the target chooses to do this, this is the next best.
3309 SDValue Result =
3310 TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3311 AlwaysInline,
3312 DstSV, DstSVOff, SrcSV, SrcSVOff);
3313 if (Result.getNode())
3314 return Result;
3316 // If we really need inline code and the target declined to provide it,
3317 // use a (potentially long) sequence of loads and stores.
3318 if (AlwaysInline) {
3319 assert(ConstantSize && "AlwaysInline requires a constant size!");
3320 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3321 ConstantSize->getZExtValue(), Align, true,
3322 DstSV, DstSVOff, SrcSV, SrcSVOff);
3325 // Emit a library call.
3326 TargetLowering::ArgListTy Args;
3327 TargetLowering::ArgListEntry Entry;
3328 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3329 Entry.Node = Dst; Args.push_back(Entry);
3330 Entry.Node = Src; Args.push_back(Entry);
3331 Entry.Node = Size; Args.push_back(Entry);
3332 // FIXME: pass in DebugLoc
3333 std::pair<SDValue,SDValue> CallResult =
3334 TLI.LowerCallTo(Chain, Type::VoidTy,
3335 false, false, false, false, CallingConv::C, false,
3336 getExternalSymbol("memcpy", TLI.getPointerTy()),
3337 Args, *this, dl);
3338 return CallResult.second;
3341 SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3342 SDValue Src, SDValue Size,
3343 unsigned Align,
3344 const Value *DstSV, uint64_t DstSVOff,
3345 const Value *SrcSV, uint64_t SrcSVOff) {
3347 // Check to see if we should lower the memmove to loads and stores first.
3348 // For cases within the target-specified limits, this is the best choice.
3349 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3350 if (ConstantSize) {
3351 // Memmove with size zero? Just return the original chain.
3352 if (ConstantSize->isNullValue())
3353 return Chain;
3355 SDValue Result =
3356 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3357 ConstantSize->getZExtValue(),
3358 Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3359 if (Result.getNode())
3360 return Result;
3363 // Then check to see if we should lower the memmove with target-specific
3364 // code. If the target chooses to do this, this is the next best.
3365 SDValue Result =
3366 TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3367 DstSV, DstSVOff, SrcSV, SrcSVOff);
3368 if (Result.getNode())
3369 return Result;
3371 // Emit a library call.
3372 TargetLowering::ArgListTy Args;
3373 TargetLowering::ArgListEntry Entry;
3374 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3375 Entry.Node = Dst; Args.push_back(Entry);
3376 Entry.Node = Src; Args.push_back(Entry);
3377 Entry.Node = Size; Args.push_back(Entry);
3378 // FIXME: pass in DebugLoc
3379 std::pair<SDValue,SDValue> CallResult =
3380 TLI.LowerCallTo(Chain, Type::VoidTy,
3381 false, false, false, false, CallingConv::C, false,
3382 getExternalSymbol("memmove", TLI.getPointerTy()),
3383 Args, *this, dl);
3384 return CallResult.second;
3387 SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3388 SDValue Src, SDValue Size,
3389 unsigned Align,
3390 const Value *DstSV, uint64_t DstSVOff) {
3392 // Check to see if we should lower the memset to stores first.
3393 // For cases within the target-specified limits, this is the best choice.
3394 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3395 if (ConstantSize) {
3396 // Memset with size zero? Just return the original chain.
3397 if (ConstantSize->isNullValue())
3398 return Chain;
3400 SDValue Result =
3401 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3402 Align, DstSV, DstSVOff);
3403 if (Result.getNode())
3404 return Result;
3407 // Then check to see if we should lower the memset with target-specific
3408 // code. If the target chooses to do this, this is the next best.
3409 SDValue Result =
3410 TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3411 DstSV, DstSVOff);
3412 if (Result.getNode())
3413 return Result;
3415 // Emit a library call.
3416 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3417 TargetLowering::ArgListTy Args;
3418 TargetLowering::ArgListEntry Entry;
3419 Entry.Node = Dst; Entry.Ty = IntPtrTy;
3420 Args.push_back(Entry);
3421 // Extend or truncate the argument to be an i32 value for the call.
3422 if (Src.getValueType().bitsGT(MVT::i32))
3423 Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3424 else
3425 Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3426 Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3427 Args.push_back(Entry);
3428 Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3429 Args.push_back(Entry);
3430 // FIXME: pass in DebugLoc
3431 std::pair<SDValue,SDValue> CallResult =
3432 TLI.LowerCallTo(Chain, Type::VoidTy,
3433 false, false, false, false, CallingConv::C, false,
3434 getExternalSymbol("memset", TLI.getPointerTy()),
3435 Args, *this, dl);
3436 return CallResult.second;
3439 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3440 SDValue Chain,
3441 SDValue Ptr, SDValue Cmp,
3442 SDValue Swp, const Value* PtrVal,
3443 unsigned Alignment) {
3444 assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3445 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3447 MVT VT = Cmp.getValueType();
3449 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3450 Alignment = getMVTAlignment(MemVT);
3452 SDVTList VTs = getVTList(VT, MVT::Other);
3453 FoldingSetNodeID ID;
3454 ID.AddInteger(MemVT.getRawBits());
3455 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3456 AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3457 void* IP = 0;
3458 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3459 return SDValue(E, 0);
3460 SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3461 new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3462 Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3463 CSEMap.InsertNode(N, IP);
3464 AllNodes.push_back(N);
3465 return SDValue(N, 0);
3468 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3469 SDValue Chain,
3470 SDValue Ptr, SDValue Val,
3471 const Value* PtrVal,
3472 unsigned Alignment) {
3473 assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3474 Opcode == ISD::ATOMIC_LOAD_SUB ||
3475 Opcode == ISD::ATOMIC_LOAD_AND ||
3476 Opcode == ISD::ATOMIC_LOAD_OR ||
3477 Opcode == ISD::ATOMIC_LOAD_XOR ||
3478 Opcode == ISD::ATOMIC_LOAD_NAND ||
3479 Opcode == ISD::ATOMIC_LOAD_MIN ||
3480 Opcode == ISD::ATOMIC_LOAD_MAX ||
3481 Opcode == ISD::ATOMIC_LOAD_UMIN ||
3482 Opcode == ISD::ATOMIC_LOAD_UMAX ||
3483 Opcode == ISD::ATOMIC_SWAP) &&
3484 "Invalid Atomic Op");
3486 MVT VT = Val.getValueType();
3488 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3489 Alignment = getMVTAlignment(MemVT);
3491 SDVTList VTs = getVTList(VT, MVT::Other);
3492 FoldingSetNodeID ID;
3493 ID.AddInteger(MemVT.getRawBits());
3494 SDValue Ops[] = {Chain, Ptr, Val};
3495 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3496 void* IP = 0;
3497 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3498 return SDValue(E, 0);
3499 SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3500 new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3501 Chain, Ptr, Val, PtrVal, Alignment);
3502 CSEMap.InsertNode(N, IP);
3503 AllNodes.push_back(N);
3504 return SDValue(N, 0);
3507 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
3508 /// Allowed to return something different (and simpler) if Simplify is true.
3509 SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3510 DebugLoc dl) {
3511 if (NumOps == 1)
3512 return Ops[0];
3514 SmallVector<MVT, 4> VTs;
3515 VTs.reserve(NumOps);
3516 for (unsigned i = 0; i < NumOps; ++i)
3517 VTs.push_back(Ops[i].getValueType());
3518 return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3519 Ops, NumOps);
3522 SDValue
3523 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3524 const MVT *VTs, unsigned NumVTs,
3525 const SDValue *Ops, unsigned NumOps,
3526 MVT MemVT, const Value *srcValue, int SVOff,
3527 unsigned Align, bool Vol,
3528 bool ReadMem, bool WriteMem) {
3529 return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3530 MemVT, srcValue, SVOff, Align, Vol,
3531 ReadMem, WriteMem);
3534 SDValue
3535 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3536 const SDValue *Ops, unsigned NumOps,
3537 MVT MemVT, const Value *srcValue, int SVOff,
3538 unsigned Align, bool Vol,
3539 bool ReadMem, bool WriteMem) {
3540 // Memoize the node unless it returns a flag.
3541 MemIntrinsicSDNode *N;
3542 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3543 FoldingSetNodeID ID;
3544 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3545 void *IP = 0;
3546 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3547 return SDValue(E, 0);
3549 N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3550 new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3551 srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3552 CSEMap.InsertNode(N, IP);
3553 } else {
3554 N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3555 new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3556 srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3558 AllNodes.push_back(N);
3559 return SDValue(N, 0);
3562 SDValue
3563 SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3564 bool IsTailCall, bool IsInreg, SDVTList VTs,
3565 const SDValue *Operands, unsigned NumOperands) {
3566 // Do not include isTailCall in the folding set profile.
3567 FoldingSetNodeID ID;
3568 AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3569 ID.AddInteger(CallingConv);
3570 ID.AddInteger(IsVarArgs);
3571 void *IP = 0;
3572 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3573 // Instead of including isTailCall in the folding set, we just
3574 // set the flag of the existing node.
3575 if (!IsTailCall)
3576 cast<CallSDNode>(E)->setNotTailCall();
3577 return SDValue(E, 0);
3579 SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3580 new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3581 VTs, Operands, NumOperands);
3582 CSEMap.InsertNode(N, IP);
3583 AllNodes.push_back(N);
3584 return SDValue(N, 0);
3587 SDValue
3588 SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3589 ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3590 SDValue Ptr, SDValue Offset,
3591 const Value *SV, int SVOffset, MVT EVT,
3592 bool isVolatile, unsigned Alignment) {
3593 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3594 Alignment = getMVTAlignment(VT);
3596 if (VT == EVT) {
3597 ExtType = ISD::NON_EXTLOAD;
3598 } else if (ExtType == ISD::NON_EXTLOAD) {
3599 assert(VT == EVT && "Non-extending load from different memory type!");
3600 } else {
3601 // Extending load.
3602 if (VT.isVector())
3603 assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3604 "Invalid vector extload!");
3605 else
3606 assert(EVT.bitsLT(VT) &&
3607 "Should only be an extending load, not truncating!");
3608 assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3609 "Cannot sign/zero extend a FP/Vector load!");
3610 assert(VT.isInteger() == EVT.isInteger() &&
3611 "Cannot convert from FP to Int or Int -> FP!");
3614 bool Indexed = AM != ISD::UNINDEXED;
3615 assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3616 "Unindexed load with an offset!");
3618 SDVTList VTs = Indexed ?
3619 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3620 SDValue Ops[] = { Chain, Ptr, Offset };
3621 FoldingSetNodeID ID;
3622 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3623 ID.AddInteger(EVT.getRawBits());
3624 ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3625 void *IP = 0;
3626 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3627 return SDValue(E, 0);
3628 SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3629 new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3630 Alignment, isVolatile);
3631 CSEMap.InsertNode(N, IP);
3632 AllNodes.push_back(N);
3633 return SDValue(N, 0);
3636 SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3637 SDValue Chain, SDValue Ptr,
3638 const Value *SV, int SVOffset,
3639 bool isVolatile, unsigned Alignment) {
3640 SDValue Undef = getUNDEF(Ptr.getValueType());
3641 return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3642 SV, SVOffset, VT, isVolatile, Alignment);
3645 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3646 SDValue Chain, SDValue Ptr,
3647 const Value *SV,
3648 int SVOffset, MVT EVT,
3649 bool isVolatile, unsigned Alignment) {
3650 SDValue Undef = getUNDEF(Ptr.getValueType());
3651 return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3652 SV, SVOffset, EVT, isVolatile, Alignment);
3655 SDValue
3656 SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3657 SDValue Offset, ISD::MemIndexedMode AM) {
3658 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3659 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3660 "Load is already a indexed load!");
3661 return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3662 LD->getChain(), Base, Offset, LD->getSrcValue(),
3663 LD->getSrcValueOffset(), LD->getMemoryVT(),
3664 LD->isVolatile(), LD->getAlignment());
3667 SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3668 SDValue Ptr, const Value *SV, int SVOffset,
3669 bool isVolatile, unsigned Alignment) {
3670 MVT VT = Val.getValueType();
3672 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3673 Alignment = getMVTAlignment(VT);
3675 SDVTList VTs = getVTList(MVT::Other);
3676 SDValue Undef = getUNDEF(Ptr.getValueType());
3677 SDValue Ops[] = { Chain, Val, Ptr, Undef };
3678 FoldingSetNodeID ID;
3679 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3680 ID.AddInteger(VT.getRawBits());
3681 ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3682 isVolatile, Alignment));
3683 void *IP = 0;
3684 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3685 return SDValue(E, 0);
3686 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3687 new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3688 VT, SV, SVOffset, Alignment, isVolatile);
3689 CSEMap.InsertNode(N, IP);
3690 AllNodes.push_back(N);
3691 return SDValue(N, 0);
3694 SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3695 SDValue Ptr, const Value *SV,
3696 int SVOffset, MVT SVT,
3697 bool isVolatile, unsigned Alignment) {
3698 MVT VT = Val.getValueType();
3700 if (VT == SVT)
3701 return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3703 assert(VT.bitsGT(SVT) && "Not a truncation?");
3704 assert(VT.isInteger() == SVT.isInteger() &&
3705 "Can't do FP-INT conversion!");
3707 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3708 Alignment = getMVTAlignment(VT);
3710 SDVTList VTs = getVTList(MVT::Other);
3711 SDValue Undef = getUNDEF(Ptr.getValueType());
3712 SDValue Ops[] = { Chain, Val, Ptr, Undef };
3713 FoldingSetNodeID ID;
3714 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3715 ID.AddInteger(SVT.getRawBits());
3716 ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3717 isVolatile, Alignment));
3718 void *IP = 0;
3719 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3720 return SDValue(E, 0);
3721 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3722 new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3723 SVT, SV, SVOffset, Alignment, isVolatile);
3724 CSEMap.InsertNode(N, IP);
3725 AllNodes.push_back(N);
3726 return SDValue(N, 0);
3729 SDValue
3730 SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3731 SDValue Offset, ISD::MemIndexedMode AM) {
3732 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3733 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3734 "Store is already a indexed store!");
3735 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3736 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3737 FoldingSetNodeID ID;
3738 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3739 ID.AddInteger(ST->getMemoryVT().getRawBits());
3740 ID.AddInteger(ST->getRawSubclassData());
3741 void *IP = 0;
3742 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3743 return SDValue(E, 0);
3744 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3745 new (N) StoreSDNode(Ops, dl, VTs, AM,
3746 ST->isTruncatingStore(), ST->getMemoryVT(),
3747 ST->getSrcValue(), ST->getSrcValueOffset(),
3748 ST->getAlignment(), ST->isVolatile());
3749 CSEMap.InsertNode(N, IP);
3750 AllNodes.push_back(N);
3751 return SDValue(N, 0);
3754 SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3755 SDValue Chain, SDValue Ptr,
3756 SDValue SV) {
3757 SDValue Ops[] = { Chain, Ptr, SV };
3758 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3761 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3762 const SDUse *Ops, unsigned NumOps) {
3763 switch (NumOps) {
3764 case 0: return getNode(Opcode, DL, VT);
3765 case 1: return getNode(Opcode, DL, VT, Ops[0]);
3766 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3767 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3768 default: break;
3771 // Copy from an SDUse array into an SDValue array for use with
3772 // the regular getNode logic.
3773 SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3774 return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3777 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3778 const SDValue *Ops, unsigned NumOps) {
3779 switch (NumOps) {
3780 case 0: return getNode(Opcode, DL, VT);
3781 case 1: return getNode(Opcode, DL, VT, Ops[0]);
3782 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3783 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3784 default: break;
3787 switch (Opcode) {
3788 default: break;
3789 case ISD::SELECT_CC: {
3790 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3791 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3792 "LHS and RHS of condition must have same type!");
3793 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3794 "True and False arms of SelectCC must have same type!");
3795 assert(Ops[2].getValueType() == VT &&
3796 "select_cc node must be of same type as true and false value!");
3797 break;
3799 case ISD::BR_CC: {
3800 assert(NumOps == 5 && "BR_CC takes 5 operands!");
3801 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3802 "LHS/RHS of comparison should match types!");
3803 break;
3807 // Memoize nodes.
3808 SDNode *N;
3809 SDVTList VTs = getVTList(VT);
3811 if (VT != MVT::Flag) {
3812 FoldingSetNodeID ID;
3813 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3814 void *IP = 0;
3816 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3817 return SDValue(E, 0);
3819 N = NodeAllocator.Allocate<SDNode>();
3820 new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3821 CSEMap.InsertNode(N, IP);
3822 } else {
3823 N = NodeAllocator.Allocate<SDNode>();
3824 new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3827 AllNodes.push_back(N);
3828 #ifndef NDEBUG
3829 VerifyNode(N);
3830 #endif
3831 return SDValue(N, 0);
3834 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3835 const std::vector<MVT> &ResultTys,
3836 const SDValue *Ops, unsigned NumOps) {
3837 return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3838 Ops, NumOps);
3841 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3842 const MVT *VTs, unsigned NumVTs,
3843 const SDValue *Ops, unsigned NumOps) {
3844 if (NumVTs == 1)
3845 return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3846 return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3849 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3850 const SDValue *Ops, unsigned NumOps) {
3851 if (VTList.NumVTs == 1)
3852 return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3854 switch (Opcode) {
3855 // FIXME: figure out how to safely handle things like
3856 // int foo(int x) { return 1 << (x & 255); }
3857 // int bar() { return foo(256); }
3858 #if 0
3859 case ISD::SRA_PARTS:
3860 case ISD::SRL_PARTS:
3861 case ISD::SHL_PARTS:
3862 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3863 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3864 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3865 else if (N3.getOpcode() == ISD::AND)
3866 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3867 // If the and is only masking out bits that cannot effect the shift,
3868 // eliminate the and.
3869 unsigned NumBits = VT.getSizeInBits()*2;
3870 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3871 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3873 break;
3874 #endif
3877 // Memoize the node unless it returns a flag.
3878 SDNode *N;
3879 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3880 FoldingSetNodeID ID;
3881 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3882 void *IP = 0;
3883 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3884 return SDValue(E, 0);
3885 if (NumOps == 1) {
3886 N = NodeAllocator.Allocate<UnarySDNode>();
3887 new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3888 } else if (NumOps == 2) {
3889 N = NodeAllocator.Allocate<BinarySDNode>();
3890 new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3891 } else if (NumOps == 3) {
3892 N = NodeAllocator.Allocate<TernarySDNode>();
3893 new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3894 } else {
3895 N = NodeAllocator.Allocate<SDNode>();
3896 new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3898 CSEMap.InsertNode(N, IP);
3899 } else {
3900 if (NumOps == 1) {
3901 N = NodeAllocator.Allocate<UnarySDNode>();
3902 new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3903 } else if (NumOps == 2) {
3904 N = NodeAllocator.Allocate<BinarySDNode>();
3905 new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3906 } else if (NumOps == 3) {
3907 N = NodeAllocator.Allocate<TernarySDNode>();
3908 new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3909 } else {
3910 N = NodeAllocator.Allocate<SDNode>();
3911 new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3914 AllNodes.push_back(N);
3915 #ifndef NDEBUG
3916 VerifyNode(N);
3917 #endif
3918 return SDValue(N, 0);
3921 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3922 return getNode(Opcode, DL, VTList, 0, 0);
3925 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3926 SDValue N1) {
3927 SDValue Ops[] = { N1 };
3928 return getNode(Opcode, DL, VTList, Ops, 1);
3931 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3932 SDValue N1, SDValue N2) {
3933 SDValue Ops[] = { N1, N2 };
3934 return getNode(Opcode, DL, VTList, Ops, 2);
3937 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3938 SDValue N1, SDValue N2, SDValue N3) {
3939 SDValue Ops[] = { N1, N2, N3 };
3940 return getNode(Opcode, DL, VTList, Ops, 3);
3943 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3944 SDValue N1, SDValue N2, SDValue N3,
3945 SDValue N4) {
3946 SDValue Ops[] = { N1, N2, N3, N4 };
3947 return getNode(Opcode, DL, VTList, Ops, 4);
3950 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3951 SDValue N1, SDValue N2, SDValue N3,
3952 SDValue N4, SDValue N5) {
3953 SDValue Ops[] = { N1, N2, N3, N4, N5 };
3954 return getNode(Opcode, DL, VTList, Ops, 5);
3957 SDVTList SelectionDAG::getVTList(MVT VT) {
3958 return makeVTList(SDNode::getValueTypeList(VT), 1);
3961 SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3962 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3963 E = VTList.rend(); I != E; ++I)
3964 if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3965 return *I;
3967 MVT *Array = Allocator.Allocate<MVT>(2);
3968 Array[0] = VT1;
3969 Array[1] = VT2;
3970 SDVTList Result = makeVTList(Array, 2);
3971 VTList.push_back(Result);
3972 return Result;
3975 SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3976 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3977 E = VTList.rend(); I != E; ++I)
3978 if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3979 I->VTs[2] == VT3)
3980 return *I;
3982 MVT *Array = Allocator.Allocate<MVT>(3);
3983 Array[0] = VT1;
3984 Array[1] = VT2;
3985 Array[2] = VT3;
3986 SDVTList Result = makeVTList(Array, 3);
3987 VTList.push_back(Result);
3988 return Result;
3991 SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3992 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3993 E = VTList.rend(); I != E; ++I)
3994 if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3995 I->VTs[2] == VT3 && I->VTs[3] == VT4)
3996 return *I;
3998 MVT *Array = Allocator.Allocate<MVT>(3);
3999 Array[0] = VT1;
4000 Array[1] = VT2;
4001 Array[2] = VT3;
4002 Array[3] = VT4;
4003 SDVTList Result = makeVTList(Array, 4);
4004 VTList.push_back(Result);
4005 return Result;
4008 SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
4009 switch (NumVTs) {
4010 case 0: assert(0 && "Cannot have nodes without results!");
4011 case 1: return getVTList(VTs[0]);
4012 case 2: return getVTList(VTs[0], VTs[1]);
4013 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4014 default: break;
4017 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4018 E = VTList.rend(); I != E; ++I) {
4019 if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4020 continue;
4022 bool NoMatch = false;
4023 for (unsigned i = 2; i != NumVTs; ++i)
4024 if (VTs[i] != I->VTs[i]) {
4025 NoMatch = true;
4026 break;
4028 if (!NoMatch)
4029 return *I;
4032 MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4033 std::copy(VTs, VTs+NumVTs, Array);
4034 SDVTList Result = makeVTList(Array, NumVTs);
4035 VTList.push_back(Result);
4036 return Result;
4040 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4041 /// specified operands. If the resultant node already exists in the DAG,
4042 /// this does not modify the specified node, instead it returns the node that
4043 /// already exists. If the resultant node does not exist in the DAG, the
4044 /// input node is returned. As a degenerate case, if you specify the same
4045 /// input operands as the node already has, the input node is returned.
4046 SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4047 SDNode *N = InN.getNode();
4048 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4050 // Check to see if there is no change.
4051 if (Op == N->getOperand(0)) return InN;
4053 // See if the modified node already exists.
4054 void *InsertPos = 0;
4055 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4056 return SDValue(Existing, InN.getResNo());
4058 // Nope it doesn't. Remove the node from its current place in the maps.
4059 if (InsertPos)
4060 if (!RemoveNodeFromCSEMaps(N))
4061 InsertPos = 0;
4063 // Now we update the operands.
4064 N->OperandList[0].set(Op);
4066 // If this gets put into a CSE map, add it.
4067 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4068 return InN;
4071 SDValue SelectionDAG::
4072 UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4073 SDNode *N = InN.getNode();
4074 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4076 // Check to see if there is no change.
4077 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4078 return InN; // No operands changed, just return the input node.
4080 // See if the modified node already exists.
4081 void *InsertPos = 0;
4082 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4083 return SDValue(Existing, InN.getResNo());
4085 // Nope it doesn't. Remove the node from its current place in the maps.
4086 if (InsertPos)
4087 if (!RemoveNodeFromCSEMaps(N))
4088 InsertPos = 0;
4090 // Now we update the operands.
4091 if (N->OperandList[0] != Op1)
4092 N->OperandList[0].set(Op1);
4093 if (N->OperandList[1] != Op2)
4094 N->OperandList[1].set(Op2);
4096 // If this gets put into a CSE map, add it.
4097 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4098 return InN;
4101 SDValue SelectionDAG::
4102 UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4103 SDValue Ops[] = { Op1, Op2, Op3 };
4104 return UpdateNodeOperands(N, Ops, 3);
4107 SDValue SelectionDAG::
4108 UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4109 SDValue Op3, SDValue Op4) {
4110 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4111 return UpdateNodeOperands(N, Ops, 4);
4114 SDValue SelectionDAG::
4115 UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4116 SDValue Op3, SDValue Op4, SDValue Op5) {
4117 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4118 return UpdateNodeOperands(N, Ops, 5);
4121 SDValue SelectionDAG::
4122 UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4123 SDNode *N = InN.getNode();
4124 assert(N->getNumOperands() == NumOps &&
4125 "Update with wrong number of operands");
4127 // Check to see if there is no change.
4128 bool AnyChange = false;
4129 for (unsigned i = 0; i != NumOps; ++i) {
4130 if (Ops[i] != N->getOperand(i)) {
4131 AnyChange = true;
4132 break;
4136 // No operands changed, just return the input node.
4137 if (!AnyChange) return InN;
4139 // See if the modified node already exists.
4140 void *InsertPos = 0;
4141 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4142 return SDValue(Existing, InN.getResNo());
4144 // Nope it doesn't. Remove the node from its current place in the maps.
4145 if (InsertPos)
4146 if (!RemoveNodeFromCSEMaps(N))
4147 InsertPos = 0;
4149 // Now we update the operands.
4150 for (unsigned i = 0; i != NumOps; ++i)
4151 if (N->OperandList[i] != Ops[i])
4152 N->OperandList[i].set(Ops[i]);
4154 // If this gets put into a CSE map, add it.
4155 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4156 return InN;
4159 /// DropOperands - Release the operands and set this node to have
4160 /// zero operands.
4161 void SDNode::DropOperands() {
4162 // Unlike the code in MorphNodeTo that does this, we don't need to
4163 // watch for dead nodes here.
4164 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4165 SDUse &Use = *I++;
4166 Use.set(SDValue());
4170 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4171 /// machine opcode.
4173 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4174 MVT VT) {
4175 SDVTList VTs = getVTList(VT);
4176 return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4179 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4180 MVT VT, SDValue Op1) {
4181 SDVTList VTs = getVTList(VT);
4182 SDValue Ops[] = { Op1 };
4183 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4186 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4187 MVT VT, SDValue Op1,
4188 SDValue Op2) {
4189 SDVTList VTs = getVTList(VT);
4190 SDValue Ops[] = { Op1, Op2 };
4191 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4194 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4195 MVT VT, SDValue Op1,
4196 SDValue Op2, SDValue Op3) {
4197 SDVTList VTs = getVTList(VT);
4198 SDValue Ops[] = { Op1, Op2, Op3 };
4199 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4202 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4203 MVT VT, const SDValue *Ops,
4204 unsigned NumOps) {
4205 SDVTList VTs = getVTList(VT);
4206 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4209 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4210 MVT VT1, MVT VT2, const SDValue *Ops,
4211 unsigned NumOps) {
4212 SDVTList VTs = getVTList(VT1, VT2);
4213 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4216 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4217 MVT VT1, MVT VT2) {
4218 SDVTList VTs = getVTList(VT1, VT2);
4219 return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4222 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4223 MVT VT1, MVT VT2, MVT VT3,
4224 const SDValue *Ops, unsigned NumOps) {
4225 SDVTList VTs = getVTList(VT1, VT2, VT3);
4226 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4229 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4230 MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4231 const SDValue *Ops, unsigned NumOps) {
4232 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4233 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4236 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4237 MVT VT1, MVT VT2,
4238 SDValue Op1) {
4239 SDVTList VTs = getVTList(VT1, VT2);
4240 SDValue Ops[] = { Op1 };
4241 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4244 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4245 MVT VT1, MVT VT2,
4246 SDValue Op1, SDValue Op2) {
4247 SDVTList VTs = getVTList(VT1, VT2);
4248 SDValue Ops[] = { Op1, Op2 };
4249 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4252 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4253 MVT VT1, MVT VT2,
4254 SDValue Op1, SDValue Op2,
4255 SDValue Op3) {
4256 SDVTList VTs = getVTList(VT1, VT2);
4257 SDValue Ops[] = { Op1, Op2, Op3 };
4258 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4261 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4262 MVT VT1, MVT VT2, MVT VT3,
4263 SDValue Op1, SDValue Op2,
4264 SDValue Op3) {
4265 SDVTList VTs = getVTList(VT1, VT2, VT3);
4266 SDValue Ops[] = { Op1, Op2, Op3 };
4267 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4270 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4271 SDVTList VTs, const SDValue *Ops,
4272 unsigned NumOps) {
4273 return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4276 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4277 MVT VT) {
4278 SDVTList VTs = getVTList(VT);
4279 return MorphNodeTo(N, Opc, VTs, 0, 0);
4282 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4283 MVT VT, SDValue Op1) {
4284 SDVTList VTs = getVTList(VT);
4285 SDValue Ops[] = { Op1 };
4286 return MorphNodeTo(N, Opc, VTs, Ops, 1);
4289 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4290 MVT VT, SDValue Op1,
4291 SDValue Op2) {
4292 SDVTList VTs = getVTList(VT);
4293 SDValue Ops[] = { Op1, Op2 };
4294 return MorphNodeTo(N, Opc, VTs, Ops, 2);
4297 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4298 MVT VT, SDValue Op1,
4299 SDValue Op2, SDValue Op3) {
4300 SDVTList VTs = getVTList(VT);
4301 SDValue Ops[] = { Op1, Op2, Op3 };
4302 return MorphNodeTo(N, Opc, VTs, Ops, 3);
4305 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4306 MVT VT, const SDValue *Ops,
4307 unsigned NumOps) {
4308 SDVTList VTs = getVTList(VT);
4309 return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4312 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4313 MVT VT1, MVT VT2, const SDValue *Ops,
4314 unsigned NumOps) {
4315 SDVTList VTs = getVTList(VT1, VT2);
4316 return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4319 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4320 MVT VT1, MVT VT2) {
4321 SDVTList VTs = getVTList(VT1, VT2);
4322 return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4325 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4326 MVT VT1, MVT VT2, MVT VT3,
4327 const SDValue *Ops, unsigned NumOps) {
4328 SDVTList VTs = getVTList(VT1, VT2, VT3);
4329 return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4332 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4333 MVT VT1, MVT VT2,
4334 SDValue Op1) {
4335 SDVTList VTs = getVTList(VT1, VT2);
4336 SDValue Ops[] = { Op1 };
4337 return MorphNodeTo(N, Opc, VTs, Ops, 1);
4340 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4341 MVT VT1, MVT VT2,
4342 SDValue Op1, SDValue Op2) {
4343 SDVTList VTs = getVTList(VT1, VT2);
4344 SDValue Ops[] = { Op1, Op2 };
4345 return MorphNodeTo(N, Opc, VTs, Ops, 2);
4348 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4349 MVT VT1, MVT VT2,
4350 SDValue Op1, SDValue Op2,
4351 SDValue Op3) {
4352 SDVTList VTs = getVTList(VT1, VT2);
4353 SDValue Ops[] = { Op1, Op2, Op3 };
4354 return MorphNodeTo(N, Opc, VTs, Ops, 3);
4357 /// MorphNodeTo - These *mutate* the specified node to have the specified
4358 /// return type, opcode, and operands.
4360 /// Note that MorphNodeTo returns the resultant node. If there is already a
4361 /// node of the specified opcode and operands, it returns that node instead of
4362 /// the current one. Note that the DebugLoc need not be the same.
4364 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4365 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4366 /// node, and because it doesn't require CSE recalculation for any of
4367 /// the node's users.
4369 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4370 SDVTList VTs, const SDValue *Ops,
4371 unsigned NumOps) {
4372 // If an identical node already exists, use it.
4373 void *IP = 0;
4374 if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4375 FoldingSetNodeID ID;
4376 AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4377 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4378 return ON;
4381 if (!RemoveNodeFromCSEMaps(N))
4382 IP = 0;
4384 // Start the morphing.
4385 N->NodeType = Opc;
4386 N->ValueList = VTs.VTs;
4387 N->NumValues = VTs.NumVTs;
4389 // Clear the operands list, updating used nodes to remove this from their
4390 // use list. Keep track of any operands that become dead as a result.
4391 SmallPtrSet<SDNode*, 16> DeadNodeSet;
4392 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4393 SDUse &Use = *I++;
4394 SDNode *Used = Use.getNode();
4395 Use.set(SDValue());
4396 if (Used->use_empty())
4397 DeadNodeSet.insert(Used);
4400 // If NumOps is larger than the # of operands we currently have, reallocate
4401 // the operand list.
4402 if (NumOps > N->NumOperands) {
4403 if (N->OperandsNeedDelete)
4404 delete[] N->OperandList;
4406 if (N->isMachineOpcode()) {
4407 // We're creating a final node that will live unmorphed for the
4408 // remainder of the current SelectionDAG iteration, so we can allocate
4409 // the operands directly out of a pool with no recycling metadata.
4410 N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4411 N->OperandsNeedDelete = false;
4412 } else {
4413 N->OperandList = new SDUse[NumOps];
4414 N->OperandsNeedDelete = true;
4418 // Assign the new operands.
4419 N->NumOperands = NumOps;
4420 for (unsigned i = 0, e = NumOps; i != e; ++i) {
4421 N->OperandList[i].setUser(N);
4422 N->OperandList[i].setInitial(Ops[i]);
4425 // Delete any nodes that are still dead after adding the uses for the
4426 // new operands.
4427 SmallVector<SDNode *, 16> DeadNodes;
4428 for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4429 E = DeadNodeSet.end(); I != E; ++I)
4430 if ((*I)->use_empty())
4431 DeadNodes.push_back(*I);
4432 RemoveDeadNodes(DeadNodes);
4434 if (IP)
4435 CSEMap.InsertNode(N, IP); // Memoize the new node.
4436 return N;
4440 /// getTargetNode - These are used for target selectors to create a new node
4441 /// with specified return type(s), target opcode, and operands.
4443 /// Note that getTargetNode returns the resultant node. If there is already a
4444 /// node of the specified opcode and operands, it returns that node instead of
4445 /// the current one.
4446 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4447 return getNode(~Opcode, dl, VT).getNode();
4450 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4451 SDValue Op1) {
4452 return getNode(~Opcode, dl, VT, Op1).getNode();
4455 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4456 SDValue Op1, SDValue Op2) {
4457 return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4460 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4461 SDValue Op1, SDValue Op2,
4462 SDValue Op3) {
4463 return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4466 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4467 const SDValue *Ops, unsigned NumOps) {
4468 return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4471 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4472 MVT VT1, MVT VT2) {
4473 SDVTList VTs = getVTList(VT1, VT2);
4474 SDValue Op;
4475 return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4478 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4479 MVT VT2, SDValue Op1) {
4480 SDVTList VTs = getVTList(VT1, VT2);
4481 return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4484 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4485 MVT VT2, SDValue Op1,
4486 SDValue Op2) {
4487 SDVTList VTs = getVTList(VT1, VT2);
4488 SDValue Ops[] = { Op1, Op2 };
4489 return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4492 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4493 MVT VT2, SDValue Op1,
4494 SDValue Op2, SDValue Op3) {
4495 SDVTList VTs = getVTList(VT1, VT2);
4496 SDValue Ops[] = { Op1, Op2, Op3 };
4497 return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4500 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4501 MVT VT1, MVT VT2,
4502 const SDValue *Ops, unsigned NumOps) {
4503 SDVTList VTs = getVTList(VT1, VT2);
4504 return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4507 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4508 MVT VT1, MVT VT2, MVT VT3,
4509 SDValue Op1, SDValue Op2) {
4510 SDVTList VTs = getVTList(VT1, VT2, VT3);
4511 SDValue Ops[] = { Op1, Op2 };
4512 return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4515 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4516 MVT VT1, MVT VT2, MVT VT3,
4517 SDValue Op1, SDValue Op2,
4518 SDValue Op3) {
4519 SDVTList VTs = getVTList(VT1, VT2, VT3);
4520 SDValue Ops[] = { Op1, Op2, Op3 };
4521 return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4524 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4525 MVT VT1, MVT VT2, MVT VT3,
4526 const SDValue *Ops, unsigned NumOps) {
4527 SDVTList VTs = getVTList(VT1, VT2, VT3);
4528 return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4531 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4532 MVT VT2, MVT VT3, MVT VT4,
4533 const SDValue *Ops, unsigned NumOps) {
4534 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4535 return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4538 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4539 const std::vector<MVT> &ResultTys,
4540 const SDValue *Ops, unsigned NumOps) {
4541 return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4544 /// getNodeIfExists - Get the specified node if it's already available, or
4545 /// else return NULL.
4546 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4547 const SDValue *Ops, unsigned NumOps) {
4548 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4549 FoldingSetNodeID ID;
4550 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4551 void *IP = 0;
4552 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4553 return E;
4555 return NULL;
4558 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4559 /// This can cause recursive merging of nodes in the DAG.
4561 /// This version assumes From has a single result value.
4563 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4564 DAGUpdateListener *UpdateListener) {
4565 SDNode *From = FromN.getNode();
4566 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4567 "Cannot replace with this method!");
4568 assert(From != To.getNode() && "Cannot replace uses of with self");
4570 // Iterate over all the existing uses of From. New uses will be added
4571 // to the beginning of the use list, which we avoid visiting.
4572 // This specifically avoids visiting uses of From that arise while the
4573 // replacement is happening, because any such uses would be the result
4574 // of CSE: If an existing node looks like From after one of its operands
4575 // is replaced by To, we don't want to replace of all its users with To
4576 // too. See PR3018 for more info.
4577 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4578 while (UI != UE) {
4579 SDNode *User = *UI;
4581 // This node is about to morph, remove its old self from the CSE maps.
4582 RemoveNodeFromCSEMaps(User);
4584 // A user can appear in a use list multiple times, and when this
4585 // happens the uses are usually next to each other in the list.
4586 // To help reduce the number of CSE recomputations, process all
4587 // the uses of this user that we can find this way.
4588 do {
4589 SDUse &Use = UI.getUse();
4590 ++UI;
4591 Use.set(To);
4592 } while (UI != UE && *UI == User);
4594 // Now that we have modified User, add it back to the CSE maps. If it
4595 // already exists there, recursively merge the results together.
4596 AddModifiedNodeToCSEMaps(User, UpdateListener);
4600 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4601 /// This can cause recursive merging of nodes in the DAG.
4603 /// This version assumes that for each value of From, there is a
4604 /// corresponding value in To in the same position with the same type.
4606 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4607 DAGUpdateListener *UpdateListener) {
4608 #ifndef NDEBUG
4609 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4610 assert((!From->hasAnyUseOfValue(i) ||
4611 From->getValueType(i) == To->getValueType(i)) &&
4612 "Cannot use this version of ReplaceAllUsesWith!");
4613 #endif
4615 // Handle the trivial case.
4616 if (From == To)
4617 return;
4619 // Iterate over just the existing users of From. See the comments in
4620 // the ReplaceAllUsesWith above.
4621 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4622 while (UI != UE) {
4623 SDNode *User = *UI;
4625 // This node is about to morph, remove its old self from the CSE maps.
4626 RemoveNodeFromCSEMaps(User);
4628 // A user can appear in a use list multiple times, and when this
4629 // happens the uses are usually next to each other in the list.
4630 // To help reduce the number of CSE recomputations, process all
4631 // the uses of this user that we can find this way.
4632 do {
4633 SDUse &Use = UI.getUse();
4634 ++UI;
4635 Use.setNode(To);
4636 } while (UI != UE && *UI == User);
4638 // Now that we have modified User, add it back to the CSE maps. If it
4639 // already exists there, recursively merge the results together.
4640 AddModifiedNodeToCSEMaps(User, UpdateListener);
4644 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4645 /// This can cause recursive merging of nodes in the DAG.
4647 /// This version can replace From with any result values. To must match the
4648 /// number and types of values returned by From.
4649 void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4650 const SDValue *To,
4651 DAGUpdateListener *UpdateListener) {
4652 if (From->getNumValues() == 1) // Handle the simple case efficiently.
4653 return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4655 // Iterate over just the existing users of From. See the comments in
4656 // the ReplaceAllUsesWith above.
4657 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4658 while (UI != UE) {
4659 SDNode *User = *UI;
4661 // This node is about to morph, remove its old self from the CSE maps.
4662 RemoveNodeFromCSEMaps(User);
4664 // A user can appear in a use list multiple times, and when this
4665 // happens the uses are usually next to each other in the list.
4666 // To help reduce the number of CSE recomputations, process all
4667 // the uses of this user that we can find this way.
4668 do {
4669 SDUse &Use = UI.getUse();
4670 const SDValue &ToOp = To[Use.getResNo()];
4671 ++UI;
4672 Use.set(ToOp);
4673 } while (UI != UE && *UI == User);
4675 // Now that we have modified User, add it back to the CSE maps. If it
4676 // already exists there, recursively merge the results together.
4677 AddModifiedNodeToCSEMaps(User, UpdateListener);
4681 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4682 /// uses of other values produced by From.getNode() alone. The Deleted
4683 /// vector is handled the same way as for ReplaceAllUsesWith.
4684 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4685 DAGUpdateListener *UpdateListener){
4686 // Handle the really simple, really trivial case efficiently.
4687 if (From == To) return;
4689 // Handle the simple, trivial, case efficiently.
4690 if (From.getNode()->getNumValues() == 1) {
4691 ReplaceAllUsesWith(From, To, UpdateListener);
4692 return;
4695 // Iterate over just the existing users of From. See the comments in
4696 // the ReplaceAllUsesWith above.
4697 SDNode::use_iterator UI = From.getNode()->use_begin(),
4698 UE = From.getNode()->use_end();
4699 while (UI != UE) {
4700 SDNode *User = *UI;
4701 bool UserRemovedFromCSEMaps = false;
4703 // A user can appear in a use list multiple times, and when this
4704 // happens the uses are usually next to each other in the list.
4705 // To help reduce the number of CSE recomputations, process all
4706 // the uses of this user that we can find this way.
4707 do {
4708 SDUse &Use = UI.getUse();
4710 // Skip uses of different values from the same node.
4711 if (Use.getResNo() != From.getResNo()) {
4712 ++UI;
4713 continue;
4716 // If this node hasn't been modified yet, it's still in the CSE maps,
4717 // so remove its old self from the CSE maps.
4718 if (!UserRemovedFromCSEMaps) {
4719 RemoveNodeFromCSEMaps(User);
4720 UserRemovedFromCSEMaps = true;
4723 ++UI;
4724 Use.set(To);
4725 } while (UI != UE && *UI == User);
4727 // We are iterating over all uses of the From node, so if a use
4728 // doesn't use the specific value, no changes are made.
4729 if (!UserRemovedFromCSEMaps)
4730 continue;
4732 // Now that we have modified User, add it back to the CSE maps. If it
4733 // already exists there, recursively merge the results together.
4734 AddModifiedNodeToCSEMaps(User, UpdateListener);
4738 namespace {
4739 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4740 /// to record information about a use.
4741 struct UseMemo {
4742 SDNode *User;
4743 unsigned Index;
4744 SDUse *Use;
4747 /// operator< - Sort Memos by User.
4748 bool operator<(const UseMemo &L, const UseMemo &R) {
4749 return (intptr_t)L.User < (intptr_t)R.User;
4753 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4754 /// uses of other values produced by From.getNode() alone. The same value
4755 /// may appear in both the From and To list. The Deleted vector is
4756 /// handled the same way as for ReplaceAllUsesWith.
4757 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4758 const SDValue *To,
4759 unsigned Num,
4760 DAGUpdateListener *UpdateListener){
4761 // Handle the simple, trivial case efficiently.
4762 if (Num == 1)
4763 return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4765 // Read up all the uses and make records of them. This helps
4766 // processing new uses that are introduced during the
4767 // replacement process.
4768 SmallVector<UseMemo, 4> Uses;
4769 for (unsigned i = 0; i != Num; ++i) {
4770 unsigned FromResNo = From[i].getResNo();
4771 SDNode *FromNode = From[i].getNode();
4772 for (SDNode::use_iterator UI = FromNode->use_begin(),
4773 E = FromNode->use_end(); UI != E; ++UI) {
4774 SDUse &Use = UI.getUse();
4775 if (Use.getResNo() == FromResNo) {
4776 UseMemo Memo = { *UI, i, &Use };
4777 Uses.push_back(Memo);
4782 // Sort the uses, so that all the uses from a given User are together.
4783 std::sort(Uses.begin(), Uses.end());
4785 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4786 UseIndex != UseIndexEnd; ) {
4787 // We know that this user uses some value of From. If it is the right
4788 // value, update it.
4789 SDNode *User = Uses[UseIndex].User;
4791 // This node is about to morph, remove its old self from the CSE maps.
4792 RemoveNodeFromCSEMaps(User);
4794 // The Uses array is sorted, so all the uses for a given User
4795 // are next to each other in the list.
4796 // To help reduce the number of CSE recomputations, process all
4797 // the uses of this user that we can find this way.
4798 do {
4799 unsigned i = Uses[UseIndex].Index;
4800 SDUse &Use = *Uses[UseIndex].Use;
4801 ++UseIndex;
4803 Use.set(To[i]);
4804 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4806 // Now that we have modified User, add it back to the CSE maps. If it
4807 // already exists there, recursively merge the results together.
4808 AddModifiedNodeToCSEMaps(User, UpdateListener);
4812 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4813 /// based on their topological order. It returns the maximum id and a vector
4814 /// of the SDNodes* in assigned order by reference.
4815 unsigned SelectionDAG::AssignTopologicalOrder() {
4817 unsigned DAGSize = 0;
4819 // SortedPos tracks the progress of the algorithm. Nodes before it are
4820 // sorted, nodes after it are unsorted. When the algorithm completes
4821 // it is at the end of the list.
4822 allnodes_iterator SortedPos = allnodes_begin();
4824 // Visit all the nodes. Move nodes with no operands to the front of
4825 // the list immediately. Annotate nodes that do have operands with their
4826 // operand count. Before we do this, the Node Id fields of the nodes
4827 // may contain arbitrary values. After, the Node Id fields for nodes
4828 // before SortedPos will contain the topological sort index, and the
4829 // Node Id fields for nodes At SortedPos and after will contain the
4830 // count of outstanding operands.
4831 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4832 SDNode *N = I++;
4833 unsigned Degree = N->getNumOperands();
4834 if (Degree == 0) {
4835 // A node with no uses, add it to the result array immediately.
4836 N->setNodeId(DAGSize++);
4837 allnodes_iterator Q = N;
4838 if (Q != SortedPos)
4839 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4840 ++SortedPos;
4841 } else {
4842 // Temporarily use the Node Id as scratch space for the degree count.
4843 N->setNodeId(Degree);
4847 // Visit all the nodes. As we iterate, moves nodes into sorted order,
4848 // such that by the time the end is reached all nodes will be sorted.
4849 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4850 SDNode *N = I;
4851 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4852 UI != UE; ++UI) {
4853 SDNode *P = *UI;
4854 unsigned Degree = P->getNodeId();
4855 --Degree;
4856 if (Degree == 0) {
4857 // All of P's operands are sorted, so P may sorted now.
4858 P->setNodeId(DAGSize++);
4859 if (P != SortedPos)
4860 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4861 ++SortedPos;
4862 } else {
4863 // Update P's outstanding operand count.
4864 P->setNodeId(Degree);
4869 assert(SortedPos == AllNodes.end() &&
4870 "Topological sort incomplete!");
4871 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4872 "First node in topological sort is not the entry token!");
4873 assert(AllNodes.front().getNodeId() == 0 &&
4874 "First node in topological sort has non-zero id!");
4875 assert(AllNodes.front().getNumOperands() == 0 &&
4876 "First node in topological sort has operands!");
4877 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4878 "Last node in topologic sort has unexpected id!");
4879 assert(AllNodes.back().use_empty() &&
4880 "Last node in topologic sort has users!");
4881 assert(DAGSize == allnodes_size() && "Node count mismatch!");
4882 return DAGSize;
4887 //===----------------------------------------------------------------------===//
4888 // SDNode Class
4889 //===----------------------------------------------------------------------===//
4891 HandleSDNode::~HandleSDNode() {
4892 DropOperands();
4895 GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4896 MVT VT, int64_t o)
4897 : SDNode(isa<GlobalVariable>(GA) &&
4898 cast<GlobalVariable>(GA)->isThreadLocal() ?
4899 // Thread Local
4900 (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4901 // Non Thread Local
4902 (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4903 DebugLoc::getUnknownLoc(), getSDVTList(VT)), Offset(o) {
4904 TheGlobal = const_cast<GlobalValue*>(GA);
4907 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4908 const Value *srcValue, int SVO,
4909 unsigned alignment, bool vol)
4910 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4911 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4912 assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4913 assert(getAlignment() == alignment && "Alignment representation error!");
4914 assert(isVolatile() == vol && "Volatile representation error!");
4917 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4918 const SDValue *Ops,
4919 unsigned NumOps, MVT memvt, const Value *srcValue,
4920 int SVO, unsigned alignment, bool vol)
4921 : SDNode(Opc, dl, VTs, Ops, NumOps),
4922 MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4923 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4924 assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4925 assert(getAlignment() == alignment && "Alignment representation error!");
4926 assert(isVolatile() == vol && "Volatile representation error!");
4929 /// getMemOperand - Return a MachineMemOperand object describing the memory
4930 /// reference performed by this memory reference.
4931 MachineMemOperand MemSDNode::getMemOperand() const {
4932 int Flags = 0;
4933 if (isa<LoadSDNode>(this))
4934 Flags = MachineMemOperand::MOLoad;
4935 else if (isa<StoreSDNode>(this))
4936 Flags = MachineMemOperand::MOStore;
4937 else if (isa<AtomicSDNode>(this)) {
4938 Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4940 else {
4941 const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4942 assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4943 if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4944 if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4947 int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4948 if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4950 // Check if the memory reference references a frame index
4951 const FrameIndexSDNode *FI =
4952 dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4953 if (!getSrcValue() && FI)
4954 return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4955 Flags, 0, Size, getAlignment());
4956 else
4957 return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4958 Size, getAlignment());
4961 /// Profile - Gather unique data for the node.
4963 void SDNode::Profile(FoldingSetNodeID &ID) const {
4964 AddNodeIDNode(ID, this);
4967 /// getValueTypeList - Return a pointer to the specified value type.
4969 const MVT *SDNode::getValueTypeList(MVT VT) {
4970 if (VT.isExtended()) {
4971 static std::set<MVT, MVT::compareRawBits> EVTs;
4972 return &(*EVTs.insert(VT).first);
4973 } else {
4974 static MVT VTs[MVT::LAST_VALUETYPE];
4975 VTs[VT.getSimpleVT()] = VT;
4976 return &VTs[VT.getSimpleVT()];
4980 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4981 /// indicated value. This method ignores uses of other values defined by this
4982 /// operation.
4983 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4984 assert(Value < getNumValues() && "Bad value!");
4986 // TODO: Only iterate over uses of a given value of the node
4987 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4988 if (UI.getUse().getResNo() == Value) {
4989 if (NUses == 0)
4990 return false;
4991 --NUses;
4995 // Found exactly the right number of uses?
4996 return NUses == 0;
5000 /// hasAnyUseOfValue - Return true if there are any use of the indicated
5001 /// value. This method ignores uses of other values defined by this operation.
5002 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5003 assert(Value < getNumValues() && "Bad value!");
5005 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5006 if (UI.getUse().getResNo() == Value)
5007 return true;
5009 return false;
5013 /// isOnlyUserOf - Return true if this node is the only use of N.
5015 bool SDNode::isOnlyUserOf(SDNode *N) const {
5016 bool Seen = false;
5017 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5018 SDNode *User = *I;
5019 if (User == this)
5020 Seen = true;
5021 else
5022 return false;
5025 return Seen;
5028 /// isOperand - Return true if this node is an operand of N.
5030 bool SDValue::isOperandOf(SDNode *N) const {
5031 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5032 if (*this == N->getOperand(i))
5033 return true;
5034 return false;
5037 bool SDNode::isOperandOf(SDNode *N) const {
5038 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5039 if (this == N->OperandList[i].getNode())
5040 return true;
5041 return false;
5044 /// reachesChainWithoutSideEffects - Return true if this operand (which must
5045 /// be a chain) reaches the specified operand without crossing any
5046 /// side-effecting instructions. In practice, this looks through token
5047 /// factors and non-volatile loads. In order to remain efficient, this only
5048 /// looks a couple of nodes in, it does not do an exhaustive search.
5049 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5050 unsigned Depth) const {
5051 if (*this == Dest) return true;
5053 // Don't search too deeply, we just want to be able to see through
5054 // TokenFactor's etc.
5055 if (Depth == 0) return false;
5057 // If this is a token factor, all inputs to the TF happen in parallel. If any
5058 // of the operands of the TF reach dest, then we can do the xform.
5059 if (getOpcode() == ISD::TokenFactor) {
5060 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5061 if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5062 return true;
5063 return false;
5066 // Loads don't have side effects, look through them.
5067 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5068 if (!Ld->isVolatile())
5069 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5071 return false;
5075 static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5076 SmallPtrSet<SDNode *, 32> &Visited) {
5077 if (found || !Visited.insert(N))
5078 return;
5080 for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5081 SDNode *Op = N->getOperand(i).getNode();
5082 if (Op == P) {
5083 found = true;
5084 return;
5086 findPredecessor(Op, P, found, Visited);
5090 /// isPredecessorOf - Return true if this node is a predecessor of N. This node
5091 /// is either an operand of N or it can be reached by recursively traversing
5092 /// up the operands.
5093 /// NOTE: this is an expensive method. Use it carefully.
5094 bool SDNode::isPredecessorOf(SDNode *N) const {
5095 SmallPtrSet<SDNode *, 32> Visited;
5096 bool found = false;
5097 findPredecessor(N, this, found, Visited);
5098 return found;
5101 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5102 assert(Num < NumOperands && "Invalid child # of SDNode!");
5103 return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5106 std::string SDNode::getOperationName(const SelectionDAG *G) const {
5107 switch (getOpcode()) {
5108 default:
5109 if (getOpcode() < ISD::BUILTIN_OP_END)
5110 return "<<Unknown DAG Node>>";
5111 if (isMachineOpcode()) {
5112 if (G)
5113 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5114 if (getMachineOpcode() < TII->getNumOpcodes())
5115 return TII->get(getMachineOpcode()).getName();
5116 return "<<Unknown Machine Node>>";
5118 if (G) {
5119 const TargetLowering &TLI = G->getTargetLoweringInfo();
5120 const char *Name = TLI.getTargetNodeName(getOpcode());
5121 if (Name) return Name;
5122 return "<<Unknown Target Node>>";
5124 return "<<Unknown Node>>";
5126 #ifndef NDEBUG
5127 case ISD::DELETED_NODE:
5128 return "<<Deleted Node!>>";
5129 #endif
5130 case ISD::PREFETCH: return "Prefetch";
5131 case ISD::MEMBARRIER: return "MemBarrier";
5132 case ISD::ATOMIC_CMP_SWAP: return "AtomicCmpSwap";
5133 case ISD::ATOMIC_SWAP: return "AtomicSwap";
5134 case ISD::ATOMIC_LOAD_ADD: return "AtomicLoadAdd";
5135 case ISD::ATOMIC_LOAD_SUB: return "AtomicLoadSub";
5136 case ISD::ATOMIC_LOAD_AND: return "AtomicLoadAnd";
5137 case ISD::ATOMIC_LOAD_OR: return "AtomicLoadOr";
5138 case ISD::ATOMIC_LOAD_XOR: return "AtomicLoadXor";
5139 case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
5140 case ISD::ATOMIC_LOAD_MIN: return "AtomicLoadMin";
5141 case ISD::ATOMIC_LOAD_MAX: return "AtomicLoadMax";
5142 case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
5143 case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
5144 case ISD::PCMARKER: return "PCMarker";
5145 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5146 case ISD::SRCVALUE: return "SrcValue";
5147 case ISD::MEMOPERAND: return "MemOperand";
5148 case ISD::EntryToken: return "EntryToken";
5149 case ISD::TokenFactor: return "TokenFactor";
5150 case ISD::AssertSext: return "AssertSext";
5151 case ISD::AssertZext: return "AssertZext";
5153 case ISD::BasicBlock: return "BasicBlock";
5154 case ISD::ARG_FLAGS: return "ArgFlags";
5155 case ISD::VALUETYPE: return "ValueType";
5156 case ISD::Register: return "Register";
5158 case ISD::Constant: return "Constant";
5159 case ISD::ConstantFP: return "ConstantFP";
5160 case ISD::GlobalAddress: return "GlobalAddress";
5161 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5162 case ISD::FrameIndex: return "FrameIndex";
5163 case ISD::JumpTable: return "JumpTable";
5164 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5165 case ISD::RETURNADDR: return "RETURNADDR";
5166 case ISD::FRAMEADDR: return "FRAMEADDR";
5167 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5168 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5169 case ISD::EHSELECTION: return "EHSELECTION";
5170 case ISD::EH_RETURN: return "EH_RETURN";
5171 case ISD::ConstantPool: return "ConstantPool";
5172 case ISD::ExternalSymbol: return "ExternalSymbol";
5173 case ISD::INTRINSIC_WO_CHAIN: {
5174 unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5175 return Intrinsic::getName((Intrinsic::ID)IID);
5177 case ISD::INTRINSIC_VOID:
5178 case ISD::INTRINSIC_W_CHAIN: {
5179 unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5180 return Intrinsic::getName((Intrinsic::ID)IID);
5183 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
5184 case ISD::TargetConstant: return "TargetConstant";
5185 case ISD::TargetConstantFP:return "TargetConstantFP";
5186 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5187 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5188 case ISD::TargetFrameIndex: return "TargetFrameIndex";
5189 case ISD::TargetJumpTable: return "TargetJumpTable";
5190 case ISD::TargetConstantPool: return "TargetConstantPool";
5191 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5193 case ISD::CopyToReg: return "CopyToReg";
5194 case ISD::CopyFromReg: return "CopyFromReg";
5195 case ISD::UNDEF: return "undef";
5196 case ISD::MERGE_VALUES: return "merge_values";
5197 case ISD::INLINEASM: return "inlineasm";
5198 case ISD::DBG_LABEL: return "dbg_label";
5199 case ISD::EH_LABEL: return "eh_label";
5200 case ISD::DECLARE: return "declare";
5201 case ISD::HANDLENODE: return "handlenode";
5202 case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5203 case ISD::CALL: return "call";
5205 // Unary operators
5206 case ISD::FABS: return "fabs";
5207 case ISD::FNEG: return "fneg";
5208 case ISD::FSQRT: return "fsqrt";
5209 case ISD::FSIN: return "fsin";
5210 case ISD::FCOS: return "fcos";
5211 case ISD::FPOWI: return "fpowi";
5212 case ISD::FPOW: return "fpow";
5213 case ISD::FTRUNC: return "ftrunc";
5214 case ISD::FFLOOR: return "ffloor";
5215 case ISD::FCEIL: return "fceil";
5216 case ISD::FRINT: return "frint";
5217 case ISD::FNEARBYINT: return "fnearbyint";
5219 // Binary operators
5220 case ISD::ADD: return "add";
5221 case ISD::SUB: return "sub";
5222 case ISD::MUL: return "mul";
5223 case ISD::MULHU: return "mulhu";
5224 case ISD::MULHS: return "mulhs";
5225 case ISD::SDIV: return "sdiv";
5226 case ISD::UDIV: return "udiv";
5227 case ISD::SREM: return "srem";
5228 case ISD::UREM: return "urem";
5229 case ISD::SMUL_LOHI: return "smul_lohi";
5230 case ISD::UMUL_LOHI: return "umul_lohi";
5231 case ISD::SDIVREM: return "sdivrem";
5232 case ISD::UDIVREM: return "udivrem";
5233 case ISD::AND: return "and";
5234 case ISD::OR: return "or";
5235 case ISD::XOR: return "xor";
5236 case ISD::SHL: return "shl";
5237 case ISD::SRA: return "sra";
5238 case ISD::SRL: return "srl";
5239 case ISD::ROTL: return "rotl";
5240 case ISD::ROTR: return "rotr";
5241 case ISD::FADD: return "fadd";
5242 case ISD::FSUB: return "fsub";
5243 case ISD::FMUL: return "fmul";
5244 case ISD::FDIV: return "fdiv";
5245 case ISD::FREM: return "frem";
5246 case ISD::FCOPYSIGN: return "fcopysign";
5247 case ISD::FGETSIGN: return "fgetsign";
5249 case ISD::SETCC: return "setcc";
5250 case ISD::VSETCC: return "vsetcc";
5251 case ISD::SELECT: return "select";
5252 case ISD::SELECT_CC: return "select_cc";
5253 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
5254 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
5255 case ISD::CONCAT_VECTORS: return "concat_vectors";
5256 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
5257 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
5258 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
5259 case ISD::CARRY_FALSE: return "carry_false";
5260 case ISD::ADDC: return "addc";
5261 case ISD::ADDE: return "adde";
5262 case ISD::SADDO: return "saddo";
5263 case ISD::UADDO: return "uaddo";
5264 case ISD::SSUBO: return "ssubo";
5265 case ISD::USUBO: return "usubo";
5266 case ISD::SMULO: return "smulo";
5267 case ISD::UMULO: return "umulo";
5268 case ISD::SUBC: return "subc";
5269 case ISD::SUBE: return "sube";
5270 case ISD::SHL_PARTS: return "shl_parts";
5271 case ISD::SRA_PARTS: return "sra_parts";
5272 case ISD::SRL_PARTS: return "srl_parts";
5274 // Conversion operators.
5275 case ISD::SIGN_EXTEND: return "sign_extend";
5276 case ISD::ZERO_EXTEND: return "zero_extend";
5277 case ISD::ANY_EXTEND: return "any_extend";
5278 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5279 case ISD::TRUNCATE: return "truncate";
5280 case ISD::FP_ROUND: return "fp_round";
5281 case ISD::FLT_ROUNDS_: return "flt_rounds";
5282 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5283 case ISD::FP_EXTEND: return "fp_extend";
5285 case ISD::SINT_TO_FP: return "sint_to_fp";
5286 case ISD::UINT_TO_FP: return "uint_to_fp";
5287 case ISD::FP_TO_SINT: return "fp_to_sint";
5288 case ISD::FP_TO_UINT: return "fp_to_uint";
5289 case ISD::BIT_CONVERT: return "bit_convert";
5291 case ISD::CONVERT_RNDSAT: {
5292 switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5293 default: assert(0 && "Unknown cvt code!");
5294 case ISD::CVT_FF: return "cvt_ff";
5295 case ISD::CVT_FS: return "cvt_fs";
5296 case ISD::CVT_FU: return "cvt_fu";
5297 case ISD::CVT_SF: return "cvt_sf";
5298 case ISD::CVT_UF: return "cvt_uf";
5299 case ISD::CVT_SS: return "cvt_ss";
5300 case ISD::CVT_SU: return "cvt_su";
5301 case ISD::CVT_US: return "cvt_us";
5302 case ISD::CVT_UU: return "cvt_uu";
5306 // Control flow instructions
5307 case ISD::BR: return "br";
5308 case ISD::BRIND: return "brind";
5309 case ISD::BR_JT: return "br_jt";
5310 case ISD::BRCOND: return "brcond";
5311 case ISD::BR_CC: return "br_cc";
5312 case ISD::RET: return "ret";
5313 case ISD::CALLSEQ_START: return "callseq_start";
5314 case ISD::CALLSEQ_END: return "callseq_end";
5316 // Other operators
5317 case ISD::LOAD: return "load";
5318 case ISD::STORE: return "store";
5319 case ISD::VAARG: return "vaarg";
5320 case ISD::VACOPY: return "vacopy";
5321 case ISD::VAEND: return "vaend";
5322 case ISD::VASTART: return "vastart";
5323 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5324 case ISD::EXTRACT_ELEMENT: return "extract_element";
5325 case ISD::BUILD_PAIR: return "build_pair";
5326 case ISD::STACKSAVE: return "stacksave";
5327 case ISD::STACKRESTORE: return "stackrestore";
5328 case ISD::TRAP: return "trap";
5330 // Bit manipulation
5331 case ISD::BSWAP: return "bswap";
5332 case ISD::CTPOP: return "ctpop";
5333 case ISD::CTTZ: return "cttz";
5334 case ISD::CTLZ: return "ctlz";
5336 // Debug info
5337 case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5338 case ISD::DEBUG_LOC: return "debug_loc";
5340 // Trampolines
5341 case ISD::TRAMPOLINE: return "trampoline";
5343 case ISD::CONDCODE:
5344 switch (cast<CondCodeSDNode>(this)->get()) {
5345 default: assert(0 && "Unknown setcc condition!");
5346 case ISD::SETOEQ: return "setoeq";
5347 case ISD::SETOGT: return "setogt";
5348 case ISD::SETOGE: return "setoge";
5349 case ISD::SETOLT: return "setolt";
5350 case ISD::SETOLE: return "setole";
5351 case ISD::SETONE: return "setone";
5353 case ISD::SETO: return "seto";
5354 case ISD::SETUO: return "setuo";
5355 case ISD::SETUEQ: return "setue";
5356 case ISD::SETUGT: return "setugt";
5357 case ISD::SETUGE: return "setuge";
5358 case ISD::SETULT: return "setult";
5359 case ISD::SETULE: return "setule";
5360 case ISD::SETUNE: return "setune";
5362 case ISD::SETEQ: return "seteq";
5363 case ISD::SETGT: return "setgt";
5364 case ISD::SETGE: return "setge";
5365 case ISD::SETLT: return "setlt";
5366 case ISD::SETLE: return "setle";
5367 case ISD::SETNE: return "setne";
5372 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5373 switch (AM) {
5374 default:
5375 return "";
5376 case ISD::PRE_INC:
5377 return "<pre-inc>";
5378 case ISD::PRE_DEC:
5379 return "<pre-dec>";
5380 case ISD::POST_INC:
5381 return "<post-inc>";
5382 case ISD::POST_DEC:
5383 return "<post-dec>";
5387 std::string ISD::ArgFlagsTy::getArgFlagsString() {
5388 std::string S = "< ";
5390 if (isZExt())
5391 S += "zext ";
5392 if (isSExt())
5393 S += "sext ";
5394 if (isInReg())
5395 S += "inreg ";
5396 if (isSRet())
5397 S += "sret ";
5398 if (isByVal())
5399 S += "byval ";
5400 if (isNest())
5401 S += "nest ";
5402 if (getByValAlign())
5403 S += "byval-align:" + utostr(getByValAlign()) + " ";
5404 if (getOrigAlign())
5405 S += "orig-align:" + utostr(getOrigAlign()) + " ";
5406 if (getByValSize())
5407 S += "byval-size:" + utostr(getByValSize()) + " ";
5408 return S + ">";
5411 void SDNode::dump() const { dump(0); }
5412 void SDNode::dump(const SelectionDAG *G) const {
5413 print(errs(), G);
5416 void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5417 OS << (void*)this << ": ";
5419 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5420 if (i) OS << ",";
5421 if (getValueType(i) == MVT::Other)
5422 OS << "ch";
5423 else
5424 OS << getValueType(i).getMVTString();
5426 OS << " = " << getOperationName(G);
5429 void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5430 if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5431 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(this);
5432 OS << "<";
5433 for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5434 int Idx = SVN->getMaskElt(i);
5435 if (i) OS << ",";
5436 if (Idx < 0)
5437 OS << "u";
5438 else
5439 OS << Idx;
5441 OS << ">";
5444 if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5445 OS << '<' << CSDN->getAPIntValue() << '>';
5446 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5447 if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5448 OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5449 else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5450 OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5451 else {
5452 OS << "<APFloat(";
5453 CSDN->getValueAPF().bitcastToAPInt().dump();
5454 OS << ")>";
5456 } else if (const GlobalAddressSDNode *GADN =
5457 dyn_cast<GlobalAddressSDNode>(this)) {
5458 int64_t offset = GADN->getOffset();
5459 OS << '<';
5460 WriteAsOperand(OS, GADN->getGlobal());
5461 OS << '>';
5462 if (offset > 0)
5463 OS << " + " << offset;
5464 else
5465 OS << " " << offset;
5466 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5467 OS << "<" << FIDN->getIndex() << ">";
5468 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5469 OS << "<" << JTDN->getIndex() << ">";
5470 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5471 int offset = CP->getOffset();
5472 if (CP->isMachineConstantPoolEntry())
5473 OS << "<" << *CP->getMachineCPVal() << ">";
5474 else
5475 OS << "<" << *CP->getConstVal() << ">";
5476 if (offset > 0)
5477 OS << " + " << offset;
5478 else
5479 OS << " " << offset;
5480 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5481 OS << "<";
5482 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5483 if (LBB)
5484 OS << LBB->getName() << " ";
5485 OS << (const void*)BBDN->getBasicBlock() << ">";
5486 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5487 if (G && R->getReg() &&
5488 TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5489 OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5490 } else {
5491 OS << " #" << R->getReg();
5493 } else if (const ExternalSymbolSDNode *ES =
5494 dyn_cast<ExternalSymbolSDNode>(this)) {
5495 OS << "'" << ES->getSymbol() << "'";
5496 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5497 if (M->getValue())
5498 OS << "<" << M->getValue() << ">";
5499 else
5500 OS << "<null>";
5501 } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5502 if (M->MO.getValue())
5503 OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5504 else
5505 OS << "<null:" << M->MO.getOffset() << ">";
5506 } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5507 OS << N->getArgFlags().getArgFlagsString();
5508 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5509 OS << ":" << N->getVT().getMVTString();
5511 else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5512 const Value *SrcValue = LD->getSrcValue();
5513 int SrcOffset = LD->getSrcValueOffset();
5514 OS << " <";
5515 if (SrcValue)
5516 OS << SrcValue;
5517 else
5518 OS << "null";
5519 OS << ":" << SrcOffset << ">";
5521 bool doExt = true;
5522 switch (LD->getExtensionType()) {
5523 default: doExt = false; break;
5524 case ISD::EXTLOAD: OS << " <anyext "; break;
5525 case ISD::SEXTLOAD: OS << " <sext "; break;
5526 case ISD::ZEXTLOAD: OS << " <zext "; break;
5528 if (doExt)
5529 OS << LD->getMemoryVT().getMVTString() << ">";
5531 const char *AM = getIndexedModeName(LD->getAddressingMode());
5532 if (*AM)
5533 OS << " " << AM;
5534 if (LD->isVolatile())
5535 OS << " <volatile>";
5536 OS << " alignment=" << LD->getAlignment();
5537 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5538 const Value *SrcValue = ST->getSrcValue();
5539 int SrcOffset = ST->getSrcValueOffset();
5540 OS << " <";
5541 if (SrcValue)
5542 OS << SrcValue;
5543 else
5544 OS << "null";
5545 OS << ":" << SrcOffset << ">";
5547 if (ST->isTruncatingStore())
5548 OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5550 const char *AM = getIndexedModeName(ST->getAddressingMode());
5551 if (*AM)
5552 OS << " " << AM;
5553 if (ST->isVolatile())
5554 OS << " <volatile>";
5555 OS << " alignment=" << ST->getAlignment();
5556 } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5557 const Value *SrcValue = AT->getSrcValue();
5558 int SrcOffset = AT->getSrcValueOffset();
5559 OS << " <";
5560 if (SrcValue)
5561 OS << SrcValue;
5562 else
5563 OS << "null";
5564 OS << ":" << SrcOffset << ">";
5565 if (AT->isVolatile())
5566 OS << " <volatile>";
5567 OS << " alignment=" << AT->getAlignment();
5571 void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5572 print_types(OS, G);
5573 OS << " ";
5574 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5575 if (i) OS << ", ";
5576 OS << (void*)getOperand(i).getNode();
5577 if (unsigned RN = getOperand(i).getResNo())
5578 OS << ":" << RN;
5580 print_details(OS, G);
5583 static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5584 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5585 if (N->getOperand(i).getNode()->hasOneUse())
5586 DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5587 else
5588 cerr << "\n" << std::string(indent+2, ' ')
5589 << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5592 cerr << "\n" << std::string(indent, ' ');
5593 N->dump(G);
5596 void SelectionDAG::dump() const {
5597 cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5599 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5600 I != E; ++I) {
5601 const SDNode *N = I;
5602 if (!N->hasOneUse() && N != getRoot().getNode())
5603 DumpNodes(N, 2, this);
5606 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5608 cerr << "\n\n";
5611 void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5612 print_types(OS, G);
5613 print_details(OS, G);
5616 typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5617 static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5618 const SelectionDAG *G, VisitedSDNodeSet &once) {
5619 if (!once.insert(N)) // If we've been here before, return now.
5620 return;
5621 // Dump the current SDNode, but don't end the line yet.
5622 OS << std::string(indent, ' ');
5623 N->printr(OS, G);
5624 // Having printed this SDNode, walk the children:
5625 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5626 const SDNode *child = N->getOperand(i).getNode();
5627 if (i) OS << ",";
5628 OS << " ";
5629 if (child->getNumOperands() == 0) {
5630 // This child has no grandchildren; print it inline right here.
5631 child->printr(OS, G);
5632 once.insert(child);
5633 } else { // Just the address. FIXME: also print the child's opcode
5634 OS << (void*)child;
5635 if (unsigned RN = N->getOperand(i).getResNo())
5636 OS << ":" << RN;
5639 OS << "\n";
5640 // Dump children that have grandchildren on their own line(s).
5641 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5642 const SDNode *child = N->getOperand(i).getNode();
5643 DumpNodesr(OS, child, indent+2, G, once);
5647 void SDNode::dumpr() const {
5648 VisitedSDNodeSet once;
5649 DumpNodesr(errs(), this, 0, 0, once);
5653 // getAddressSpace - Return the address space this GlobalAddress belongs to.
5654 unsigned GlobalAddressSDNode::getAddressSpace() const {
5655 return getGlobal()->getType()->getAddressSpace();
5659 const Type *ConstantPoolSDNode::getType() const {
5660 if (isMachineConstantPoolEntry())
5661 return Val.MachineCPVal->getType();
5662 return Val.ConstVal->getType();
5665 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5666 APInt &SplatUndef,
5667 unsigned &SplatBitSize,
5668 bool &HasAnyUndefs,
5669 unsigned MinSplatBits) {
5670 MVT VT = getValueType(0);
5671 assert(VT.isVector() && "Expected a vector type");
5672 unsigned sz = VT.getSizeInBits();
5673 if (MinSplatBits > sz)
5674 return false;
5676 SplatValue = APInt(sz, 0);
5677 SplatUndef = APInt(sz, 0);
5679 // Get the bits. Bits with undefined values (when the corresponding element
5680 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5681 // in SplatValue. If any of the values are not constant, give up and return
5682 // false.
5683 unsigned int nOps = getNumOperands();
5684 assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5685 unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5686 for (unsigned i = 0; i < nOps; ++i) {
5687 SDValue OpVal = getOperand(i);
5688 unsigned BitPos = i * EltBitSize;
5690 if (OpVal.getOpcode() == ISD::UNDEF)
5691 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5692 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5693 SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5694 zextOrTrunc(sz) << BitPos);
5695 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5696 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5697 else
5698 return false;
5701 // The build_vector is all constants or undefs. Find the smallest element
5702 // size that splats the vector.
5704 HasAnyUndefs = (SplatUndef != 0);
5705 while (sz > 8) {
5707 unsigned HalfSize = sz / 2;
5708 APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5709 APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5710 APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5711 APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5713 // If the two halves do not match (ignoring undef bits), stop here.
5714 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5715 MinSplatBits > HalfSize)
5716 break;
5718 SplatValue = HighValue | LowValue;
5719 SplatUndef = HighUndef & LowUndef;
5721 sz = HalfSize;
5724 SplatBitSize = sz;
5725 return true;
5728 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, MVT VT) {
5729 // Find the first non-undef value in the shuffle mask.
5730 unsigned i, e;
5731 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5732 /* search */;
5734 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5736 // Make sure all remaining elements are either undef or the same as the first
5737 // non-undef value.
5738 for (int Idx = Mask[i]; i != e; ++i)
5739 if (Mask[i] >= 0 && Mask[i] != Idx)
5740 return false;
5741 return true;