Update comments.
[llvm/msp430.git] / lib / Analysis / ScalarEvolutionExpander.cpp
blob9676ea20af5b3b9c3ae13a5a4d4b8eafc83af8d3
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution expander,
11 // which is used to generate the code corresponding to a given scalar evolution
12 // expression.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 using namespace llvm;
20 /// InsertCastOfTo - Insert a cast of V to the specified type, doing what
21 /// we can to share the casts.
22 Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V,
23 const Type *Ty) {
24 // Short-circuit unnecessary bitcasts.
25 if (opcode == Instruction::BitCast && V->getType() == Ty)
26 return V;
28 // Short-circuit unnecessary inttoptr<->ptrtoint casts.
29 if ((opcode == Instruction::PtrToInt || opcode == Instruction::IntToPtr) &&
30 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType()))
31 if (CastInst *CI = dyn_cast<CastInst>(V))
32 if ((CI->getOpcode() == Instruction::PtrToInt ||
33 CI->getOpcode() == Instruction::IntToPtr) &&
34 SE.getTypeSizeInBits(CI->getType()) ==
35 SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
36 return CI->getOperand(0);
38 // FIXME: keep track of the cast instruction.
39 if (Constant *C = dyn_cast<Constant>(V))
40 return ConstantExpr::getCast(opcode, C, Ty);
42 if (Argument *A = dyn_cast<Argument>(V)) {
43 // Check to see if there is already a cast!
44 for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
45 UI != E; ++UI) {
46 if ((*UI)->getType() == Ty)
47 if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
48 if (CI->getOpcode() == opcode) {
49 // If the cast isn't the first instruction of the function, move it.
50 if (BasicBlock::iterator(CI) !=
51 A->getParent()->getEntryBlock().begin()) {
52 // If the CastInst is the insert point, change the insert point.
53 if (CI == InsertPt) ++InsertPt;
54 // Splice the cast at the beginning of the entry block.
55 CI->moveBefore(A->getParent()->getEntryBlock().begin());
57 return CI;
60 return CastInst::Create(opcode, V, Ty, V->getName(),
61 A->getParent()->getEntryBlock().begin());
64 Instruction *I = cast<Instruction>(V);
66 // Check to see if there is already a cast. If there is, use it.
67 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
68 UI != E; ++UI) {
69 if ((*UI)->getType() == Ty)
70 if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
71 if (CI->getOpcode() == opcode) {
72 BasicBlock::iterator It = I; ++It;
73 if (isa<InvokeInst>(I))
74 It = cast<InvokeInst>(I)->getNormalDest()->begin();
75 while (isa<PHINode>(It)) ++It;
76 if (It != BasicBlock::iterator(CI)) {
77 // If the CastInst is the insert point, change the insert point.
78 if (CI == InsertPt) ++InsertPt;
79 // Splice the cast immediately after the operand in question.
80 CI->moveBefore(It);
82 return CI;
85 BasicBlock::iterator IP = I; ++IP;
86 if (InvokeInst *II = dyn_cast<InvokeInst>(I))
87 IP = II->getNormalDest()->begin();
88 while (isa<PHINode>(IP)) ++IP;
89 return CastInst::Create(opcode, V, Ty, V->getName(), IP);
92 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
93 /// which must be possible with a noop cast.
94 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
95 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
96 assert((Op == Instruction::BitCast ||
97 Op == Instruction::PtrToInt ||
98 Op == Instruction::IntToPtr) &&
99 "InsertNoopCastOfTo cannot perform non-noop casts!");
100 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
101 "InsertNoopCastOfTo cannot change sizes!");
102 return InsertCastOfTo(Op, V, Ty);
105 /// InsertBinop - Insert the specified binary operator, doing a small amount
106 /// of work to avoid inserting an obviously redundant operation.
107 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, Value *LHS,
108 Value *RHS, BasicBlock::iterator InsertPt) {
109 // Fold a binop with constant operands.
110 if (Constant *CLHS = dyn_cast<Constant>(LHS))
111 if (Constant *CRHS = dyn_cast<Constant>(RHS))
112 return ConstantExpr::get(Opcode, CLHS, CRHS);
114 // Do a quick scan to see if we have this binop nearby. If so, reuse it.
115 unsigned ScanLimit = 6;
116 BasicBlock::iterator BlockBegin = InsertPt->getParent()->begin();
117 if (InsertPt != BlockBegin) {
118 // Scanning starts from the last instruction before InsertPt.
119 BasicBlock::iterator IP = InsertPt;
120 --IP;
121 for (; ScanLimit; --IP, --ScanLimit) {
122 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(IP))
123 if (BinOp->getOpcode() == Opcode && BinOp->getOperand(0) == LHS &&
124 BinOp->getOperand(1) == RHS)
125 return BinOp;
126 if (IP == BlockBegin) break;
130 // If we haven't found this binop, insert it.
131 return BinaryOperator::Create(Opcode, LHS, RHS, "tmp", InsertPt);
134 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
135 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
136 Value *V = expand(S->getOperand(S->getNumOperands()-1));
137 V = InsertNoopCastOfTo(V, Ty);
139 // Emit a bunch of add instructions
140 for (int i = S->getNumOperands()-2; i >= 0; --i) {
141 Value *W = expand(S->getOperand(i));
142 W = InsertNoopCastOfTo(W, Ty);
143 V = InsertBinop(Instruction::Add, V, W, InsertPt);
145 return V;
148 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
149 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
150 int FirstOp = 0; // Set if we should emit a subtract.
151 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
152 if (SC->getValue()->isAllOnesValue())
153 FirstOp = 1;
155 int i = S->getNumOperands()-2;
156 Value *V = expand(S->getOperand(i+1));
157 V = InsertNoopCastOfTo(V, Ty);
159 // Emit a bunch of multiply instructions
160 for (; i >= FirstOp; --i) {
161 Value *W = expand(S->getOperand(i));
162 W = InsertNoopCastOfTo(W, Ty);
163 V = InsertBinop(Instruction::Mul, V, W, InsertPt);
166 // -1 * ... ---> 0 - ...
167 if (FirstOp == 1)
168 V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V, InsertPt);
169 return V;
172 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
173 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
175 Value *LHS = expand(S->getLHS());
176 LHS = InsertNoopCastOfTo(LHS, Ty);
177 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
178 const APInt &RHS = SC->getValue()->getValue();
179 if (RHS.isPowerOf2())
180 return InsertBinop(Instruction::LShr, LHS,
181 ConstantInt::get(Ty, RHS.logBase2()),
182 InsertPt);
185 Value *RHS = expand(S->getRHS());
186 RHS = InsertNoopCastOfTo(RHS, Ty);
187 return InsertBinop(Instruction::UDiv, LHS, RHS, InsertPt);
190 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
191 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
192 const Loop *L = S->getLoop();
194 // {X,+,F} --> X + {0,+,F}
195 if (!S->getStart()->isZero()) {
196 Value *Start = expand(S->getStart());
197 Start = InsertNoopCastOfTo(Start, Ty);
198 std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
199 NewOps[0] = SE.getIntegerSCEV(0, Ty);
200 Value *Rest = expand(SE.getAddRecExpr(NewOps, L));
201 Rest = InsertNoopCastOfTo(Rest, Ty);
203 // FIXME: look for an existing add to use.
204 return InsertBinop(Instruction::Add, Rest, Start, InsertPt);
207 // {0,+,1} --> Insert a canonical induction variable into the loop!
208 if (S->isAffine() &&
209 S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
210 // Create and insert the PHI node for the induction variable in the
211 // specified loop.
212 BasicBlock *Header = L->getHeader();
213 PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
214 PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
216 pred_iterator HPI = pred_begin(Header);
217 assert(HPI != pred_end(Header) && "Loop with zero preds???");
218 if (!L->contains(*HPI)) ++HPI;
219 assert(HPI != pred_end(Header) && L->contains(*HPI) &&
220 "No backedge in loop?");
222 // Insert a unit add instruction right before the terminator corresponding
223 // to the back-edge.
224 Constant *One = ConstantInt::get(Ty, 1);
225 Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
226 (*HPI)->getTerminator());
228 pred_iterator PI = pred_begin(Header);
229 if (*PI == L->getLoopPreheader())
230 ++PI;
231 PN->addIncoming(Add, *PI);
232 return PN;
235 // Get the canonical induction variable I for this loop.
236 Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
238 // If this is a simple linear addrec, emit it now as a special case.
239 if (S->isAffine()) { // {0,+,F} --> i*F
240 Value *F = expand(S->getOperand(1));
241 F = InsertNoopCastOfTo(F, Ty);
243 // IF the step is by one, just return the inserted IV.
244 if (ConstantInt *CI = dyn_cast<ConstantInt>(F))
245 if (CI->getValue() == 1)
246 return I;
248 // If the insert point is directly inside of the loop, emit the multiply at
249 // the insert point. Otherwise, L is a loop that is a parent of the insert
250 // point loop. If we can, move the multiply to the outer most loop that it
251 // is safe to be in.
252 BasicBlock::iterator MulInsertPt = getInsertionPoint();
253 Loop *InsertPtLoop = LI.getLoopFor(MulInsertPt->getParent());
254 if (InsertPtLoop != L && InsertPtLoop &&
255 L->contains(InsertPtLoop->getHeader())) {
256 do {
257 // If we cannot hoist the multiply out of this loop, don't.
258 if (!InsertPtLoop->isLoopInvariant(F)) break;
260 BasicBlock *InsertPtLoopPH = InsertPtLoop->getLoopPreheader();
262 // If this loop hasn't got a preheader, we aren't able to hoist the
263 // multiply.
264 if (!InsertPtLoopPH)
265 break;
267 // Otherwise, move the insert point to the preheader.
268 MulInsertPt = InsertPtLoopPH->getTerminator();
269 InsertPtLoop = InsertPtLoop->getParentLoop();
270 } while (InsertPtLoop != L);
273 return InsertBinop(Instruction::Mul, I, F, MulInsertPt);
276 // If this is a chain of recurrences, turn it into a closed form, using the
277 // folders, then expandCodeFor the closed form. This allows the folders to
278 // simplify the expression without having to build a bunch of special code
279 // into this folder.
280 SCEVHandle IH = SE.getUnknown(I); // Get I as a "symbolic" SCEV.
282 SCEVHandle V = S->evaluateAtIteration(IH, SE);
283 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
285 return expand(V);
288 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
289 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
290 Value *V = expand(S->getOperand());
291 V = InsertNoopCastOfTo(V, SE.getEffectiveSCEVType(V->getType()));
292 return new TruncInst(V, Ty, "tmp.", InsertPt);
295 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
296 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
297 Value *V = expand(S->getOperand());
298 V = InsertNoopCastOfTo(V, SE.getEffectiveSCEVType(V->getType()));
299 return new ZExtInst(V, Ty, "tmp.", InsertPt);
302 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
303 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
304 Value *V = expand(S->getOperand());
305 V = InsertNoopCastOfTo(V, SE.getEffectiveSCEVType(V->getType()));
306 return new SExtInst(V, Ty, "tmp.", InsertPt);
309 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
310 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
311 Value *LHS = expand(S->getOperand(0));
312 LHS = InsertNoopCastOfTo(LHS, Ty);
313 for (unsigned i = 1; i < S->getNumOperands(); ++i) {
314 Value *RHS = expand(S->getOperand(i));
315 RHS = InsertNoopCastOfTo(RHS, Ty);
316 Value *ICmp = new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS, "tmp", InsertPt);
317 LHS = SelectInst::Create(ICmp, LHS, RHS, "smax", InsertPt);
319 return LHS;
322 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
323 const Type *Ty = SE.getEffectiveSCEVType(S->getType());
324 Value *LHS = expand(S->getOperand(0));
325 LHS = InsertNoopCastOfTo(LHS, Ty);
326 for (unsigned i = 1; i < S->getNumOperands(); ++i) {
327 Value *RHS = expand(S->getOperand(i));
328 RHS = InsertNoopCastOfTo(RHS, Ty);
329 Value *ICmp = new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS, "tmp", InsertPt);
330 LHS = SelectInst::Create(ICmp, LHS, RHS, "umax", InsertPt);
332 return LHS;
335 Value *SCEVExpander::expandCodeFor(SCEVHandle SH, const Type *Ty) {
336 // Expand the code for this SCEV.
337 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
338 "non-trivial casts should be done with the SCEVs directly!");
339 Value *V = expand(SH);
340 return InsertNoopCastOfTo(V, Ty);
343 Value *SCEVExpander::expand(const SCEV *S) {
344 // Check to see if we already expanded this.
345 std::map<SCEVHandle, Value*>::iterator I = InsertedExpressions.find(S);
346 if (I != InsertedExpressions.end())
347 return I->second;
349 Value *V = visit(S);
350 InsertedExpressions[S] = V;
351 return V;