1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the parser class for .ll files.
12 //===----------------------------------------------------------------------===//
15 #include "llvm/AutoUpgrade.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Module.h"
22 #include "llvm/ValueSymbolTable.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/Support/raw_ostream.h"
29 /// ValID - Represents a reference of a definition of some sort with no type.
30 /// There are several cases where we have to parse the value but where the
31 /// type can depend on later context. This may either be a numeric reference
32 /// or a symbolic (%var) reference. This is just a discriminated union.
35 t_LocalID
, t_GlobalID
, // ID in UIntVal.
36 t_LocalName
, t_GlobalName
, // Name in StrVal.
37 t_APSInt
, t_APFloat
, // Value in APSIntVal/APFloatVal.
38 t_Null
, t_Undef
, t_Zero
, // No value.
39 t_EmptyArray
, // No value: []
40 t_Constant
, // Value in ConstantVal.
41 t_InlineAsm
// Value in StrVal/StrVal2/UIntVal.
46 std::string StrVal
, StrVal2
;
49 Constant
*ConstantVal
;
50 ValID() : APFloatVal(0.0) {}
54 /// Run: module ::= toplevelentity*
55 bool LLParser::Run() {
59 return ParseTopLevelEntities() ||
60 ValidateEndOfModule();
63 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
65 bool LLParser::ValidateEndOfModule() {
66 if (!ForwardRefTypes
.empty())
67 return Error(ForwardRefTypes
.begin()->second
.second
,
68 "use of undefined type named '" +
69 ForwardRefTypes
.begin()->first
+ "'");
70 if (!ForwardRefTypeIDs
.empty())
71 return Error(ForwardRefTypeIDs
.begin()->second
.second
,
72 "use of undefined type '%" +
73 utostr(ForwardRefTypeIDs
.begin()->first
) + "'");
75 if (!ForwardRefVals
.empty())
76 return Error(ForwardRefVals
.begin()->second
.second
,
77 "use of undefined value '@" + ForwardRefVals
.begin()->first
+
80 if (!ForwardRefValIDs
.empty())
81 return Error(ForwardRefValIDs
.begin()->second
.second
,
82 "use of undefined value '@" +
83 utostr(ForwardRefValIDs
.begin()->first
) + "'");
85 // Look for intrinsic functions and CallInst that need to be upgraded
86 for (Module::iterator FI
= M
->begin(), FE
= M
->end(); FI
!= FE
; )
87 UpgradeCallsToIntrinsic(FI
++); // must be post-increment, as we remove
92 //===----------------------------------------------------------------------===//
94 //===----------------------------------------------------------------------===//
96 bool LLParser::ParseTopLevelEntities() {
98 switch (Lex
.getKind()) {
99 default: return TokError("expected top-level entity");
100 case lltok::Eof
: return false;
101 //case lltok::kw_define:
102 case lltok::kw_declare
: if (ParseDeclare()) return true; break;
103 case lltok::kw_define
: if (ParseDefine()) return true; break;
104 case lltok::kw_module
: if (ParseModuleAsm()) return true; break;
105 case lltok::kw_target
: if (ParseTargetDefinition()) return true; break;
106 case lltok::kw_deplibs
: if (ParseDepLibs()) return true; break;
107 case lltok::kw_type
: if (ParseUnnamedType()) return true; break;
108 case lltok::StringConstant
: // FIXME: REMOVE IN LLVM 3.0
109 case lltok::LocalVar
: if (ParseNamedType()) return true; break;
110 case lltok::GlobalVar
: if (ParseNamedGlobal()) return true; break;
112 // The Global variable production with no name can have many different
113 // optional leading prefixes, the production is:
114 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
115 // OptionalAddrSpace ('constant'|'global') ...
116 case lltok::kw_private
: // OptionalLinkage
117 case lltok::kw_internal
: // OptionalLinkage
118 case lltok::kw_weak
: // OptionalLinkage
119 case lltok::kw_weak_odr
: // OptionalLinkage
120 case lltok::kw_linkonce
: // OptionalLinkage
121 case lltok::kw_linkonce_odr
: // OptionalLinkage
122 case lltok::kw_appending
: // OptionalLinkage
123 case lltok::kw_dllexport
: // OptionalLinkage
124 case lltok::kw_common
: // OptionalLinkage
125 case lltok::kw_dllimport
: // OptionalLinkage
126 case lltok::kw_extern_weak
: // OptionalLinkage
127 case lltok::kw_external
: { // OptionalLinkage
128 unsigned Linkage
, Visibility
;
129 if (ParseOptionalLinkage(Linkage
) ||
130 ParseOptionalVisibility(Visibility
) ||
131 ParseGlobal("", 0, Linkage
, true, Visibility
))
135 case lltok::kw_default
: // OptionalVisibility
136 case lltok::kw_hidden
: // OptionalVisibility
137 case lltok::kw_protected
: { // OptionalVisibility
139 if (ParseOptionalVisibility(Visibility
) ||
140 ParseGlobal("", 0, 0, false, Visibility
))
145 case lltok::kw_thread_local
: // OptionalThreadLocal
146 case lltok::kw_addrspace
: // OptionalAddrSpace
147 case lltok::kw_constant
: // GlobalType
148 case lltok::kw_global
: // GlobalType
149 if (ParseGlobal("", 0, 0, false, 0)) return true;
157 /// ::= 'module' 'asm' STRINGCONSTANT
158 bool LLParser::ParseModuleAsm() {
159 assert(Lex
.getKind() == lltok::kw_module
);
163 if (ParseToken(lltok::kw_asm
, "expected 'module asm'") ||
164 ParseStringConstant(AsmStr
)) return true;
166 const std::string
&AsmSoFar
= M
->getModuleInlineAsm();
167 if (AsmSoFar
.empty())
168 M
->setModuleInlineAsm(AsmStr
);
170 M
->setModuleInlineAsm(AsmSoFar
+"\n"+AsmStr
);
175 /// ::= 'target' 'triple' '=' STRINGCONSTANT
176 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
177 bool LLParser::ParseTargetDefinition() {
178 assert(Lex
.getKind() == lltok::kw_target
);
181 default: return TokError("unknown target property");
182 case lltok::kw_triple
:
184 if (ParseToken(lltok::equal
, "expected '=' after target triple") ||
185 ParseStringConstant(Str
))
187 M
->setTargetTriple(Str
);
189 case lltok::kw_datalayout
:
191 if (ParseToken(lltok::equal
, "expected '=' after target datalayout") ||
192 ParseStringConstant(Str
))
194 M
->setDataLayout(Str
);
200 /// ::= 'deplibs' '=' '[' ']'
201 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
202 bool LLParser::ParseDepLibs() {
203 assert(Lex
.getKind() == lltok::kw_deplibs
);
205 if (ParseToken(lltok::equal
, "expected '=' after deplibs") ||
206 ParseToken(lltok::lsquare
, "expected '=' after deplibs"))
209 if (EatIfPresent(lltok::rsquare
))
213 if (ParseStringConstant(Str
)) return true;
216 while (EatIfPresent(lltok::comma
)) {
217 if (ParseStringConstant(Str
)) return true;
221 return ParseToken(lltok::rsquare
, "expected ']' at end of list");
226 bool LLParser::ParseUnnamedType() {
227 assert(Lex
.getKind() == lltok::kw_type
);
228 LocTy TypeLoc
= Lex
.getLoc();
229 Lex
.Lex(); // eat kw_type
231 PATypeHolder
Ty(Type::VoidTy
);
232 if (ParseType(Ty
)) return true;
234 unsigned TypeID
= NumberedTypes
.size();
236 // See if this type was previously referenced.
237 std::map
<unsigned, std::pair
<PATypeHolder
, LocTy
> >::iterator
238 FI
= ForwardRefTypeIDs
.find(TypeID
);
239 if (FI
!= ForwardRefTypeIDs
.end()) {
240 if (FI
->second
.first
.get() == Ty
)
241 return Error(TypeLoc
, "self referential type is invalid");
243 cast
<DerivedType
>(FI
->second
.first
.get())->refineAbstractTypeTo(Ty
);
244 Ty
= FI
->second
.first
.get();
245 ForwardRefTypeIDs
.erase(FI
);
248 NumberedTypes
.push_back(Ty
);
254 /// ::= LocalVar '=' 'type' type
255 bool LLParser::ParseNamedType() {
256 std::string Name
= Lex
.getStrVal();
257 LocTy NameLoc
= Lex
.getLoc();
258 Lex
.Lex(); // eat LocalVar.
260 PATypeHolder
Ty(Type::VoidTy
);
262 if (ParseToken(lltok::equal
, "expected '=' after name") ||
263 ParseToken(lltok::kw_type
, "expected 'type' after name") ||
267 // Set the type name, checking for conflicts as we do so.
268 bool AlreadyExists
= M
->addTypeName(Name
, Ty
);
269 if (!AlreadyExists
) return false;
271 // See if this type is a forward reference. We need to eagerly resolve
272 // types to allow recursive type redefinitions below.
273 std::map
<std::string
, std::pair
<PATypeHolder
, LocTy
> >::iterator
274 FI
= ForwardRefTypes
.find(Name
);
275 if (FI
!= ForwardRefTypes
.end()) {
276 if (FI
->second
.first
.get() == Ty
)
277 return Error(NameLoc
, "self referential type is invalid");
279 cast
<DerivedType
>(FI
->second
.first
.get())->refineAbstractTypeTo(Ty
);
280 Ty
= FI
->second
.first
.get();
281 ForwardRefTypes
.erase(FI
);
284 // Inserting a name that is already defined, get the existing name.
285 const Type
*Existing
= M
->getTypeByName(Name
);
286 assert(Existing
&& "Conflict but no matching type?!");
288 // Otherwise, this is an attempt to redefine a type. That's okay if
289 // the redefinition is identical to the original.
290 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
291 if (Existing
== Ty
) return false;
293 // Any other kind of (non-equivalent) redefinition is an error.
294 return Error(NameLoc
, "redefinition of type named '" + Name
+ "' of type '" +
295 Ty
->getDescription() + "'");
300 /// ::= 'declare' FunctionHeader
301 bool LLParser::ParseDeclare() {
302 assert(Lex
.getKind() == lltok::kw_declare
);
306 return ParseFunctionHeader(F
, false);
310 /// ::= 'define' FunctionHeader '{' ...
311 bool LLParser::ParseDefine() {
312 assert(Lex
.getKind() == lltok::kw_define
);
316 return ParseFunctionHeader(F
, true) ||
317 ParseFunctionBody(*F
);
323 bool LLParser::ParseGlobalType(bool &IsConstant
) {
324 if (Lex
.getKind() == lltok::kw_constant
)
326 else if (Lex
.getKind() == lltok::kw_global
)
330 return TokError("expected 'global' or 'constant'");
336 /// ParseNamedGlobal:
337 /// GlobalVar '=' OptionalVisibility ALIAS ...
338 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
339 bool LLParser::ParseNamedGlobal() {
340 assert(Lex
.getKind() == lltok::GlobalVar
);
341 LocTy NameLoc
= Lex
.getLoc();
342 std::string Name
= Lex
.getStrVal();
346 unsigned Linkage
, Visibility
;
347 if (ParseToken(lltok::equal
, "expected '=' in global variable") ||
348 ParseOptionalLinkage(Linkage
, HasLinkage
) ||
349 ParseOptionalVisibility(Visibility
))
352 if (HasLinkage
|| Lex
.getKind() != lltok::kw_alias
)
353 return ParseGlobal(Name
, NameLoc
, Linkage
, HasLinkage
, Visibility
);
354 return ParseAlias(Name
, NameLoc
, Visibility
);
358 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
360 /// ::= TypeAndValue | 'bitcast' '(' TypeAndValue 'to' Type ')'
362 /// Everything through visibility has already been parsed.
364 bool LLParser::ParseAlias(const std::string
&Name
, LocTy NameLoc
,
365 unsigned Visibility
) {
366 assert(Lex
.getKind() == lltok::kw_alias
);
369 LocTy LinkageLoc
= Lex
.getLoc();
370 if (ParseOptionalLinkage(Linkage
))
373 if (Linkage
!= GlobalValue::ExternalLinkage
&&
374 Linkage
!= GlobalValue::WeakAnyLinkage
&&
375 Linkage
!= GlobalValue::WeakODRLinkage
&&
376 Linkage
!= GlobalValue::InternalLinkage
&&
377 Linkage
!= GlobalValue::PrivateLinkage
)
378 return Error(LinkageLoc
, "invalid linkage type for alias");
381 LocTy AliaseeLoc
= Lex
.getLoc();
382 if (Lex
.getKind() != lltok::kw_bitcast
) {
383 if (ParseGlobalTypeAndValue(Aliasee
)) return true;
385 // The bitcast dest type is not present, it is implied by the dest type.
387 if (ParseValID(ID
)) return true;
388 if (ID
.Kind
!= ValID::t_Constant
)
389 return Error(AliaseeLoc
, "invalid aliasee");
390 Aliasee
= ID
.ConstantVal
;
393 if (!isa
<PointerType
>(Aliasee
->getType()))
394 return Error(AliaseeLoc
, "alias must have pointer type");
396 // Okay, create the alias but do not insert it into the module yet.
397 GlobalAlias
* GA
= new GlobalAlias(Aliasee
->getType(),
398 (GlobalValue::LinkageTypes
)Linkage
, Name
,
400 GA
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
402 // See if this value already exists in the symbol table. If so, it is either
403 // a redefinition or a definition of a forward reference.
404 if (GlobalValue
*Val
=
405 cast_or_null
<GlobalValue
>(M
->getValueSymbolTable().lookup(Name
))) {
406 // See if this was a redefinition. If so, there is no entry in
408 std::map
<std::string
, std::pair
<GlobalValue
*, LocTy
> >::iterator
409 I
= ForwardRefVals
.find(Name
);
410 if (I
== ForwardRefVals
.end())
411 return Error(NameLoc
, "redefinition of global named '@" + Name
+ "'");
413 // Otherwise, this was a definition of forward ref. Verify that types
415 if (Val
->getType() != GA
->getType())
416 return Error(NameLoc
,
417 "forward reference and definition of alias have different types");
419 // If they agree, just RAUW the old value with the alias and remove the
421 Val
->replaceAllUsesWith(GA
);
422 Val
->eraseFromParent();
423 ForwardRefVals
.erase(I
);
426 // Insert into the module, we know its name won't collide now.
427 M
->getAliasList().push_back(GA
);
428 assert(GA
->getNameStr() == Name
&& "Should not be a name conflict!");
434 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
435 /// OptionalAddrSpace GlobalType Type Const
436 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
437 /// OptionalAddrSpace GlobalType Type Const
439 /// Everything through visibility has been parsed already.
441 bool LLParser::ParseGlobal(const std::string
&Name
, LocTy NameLoc
,
442 unsigned Linkage
, bool HasLinkage
,
443 unsigned Visibility
) {
445 bool ThreadLocal
, IsConstant
;
448 PATypeHolder
Ty(Type::VoidTy
);
449 if (ParseOptionalToken(lltok::kw_thread_local
, ThreadLocal
) ||
450 ParseOptionalAddrSpace(AddrSpace
) ||
451 ParseGlobalType(IsConstant
) ||
452 ParseType(Ty
, TyLoc
))
455 // If the linkage is specified and is external, then no initializer is
458 if (!HasLinkage
|| (Linkage
!= GlobalValue::DLLImportLinkage
&&
459 Linkage
!= GlobalValue::ExternalWeakLinkage
&&
460 Linkage
!= GlobalValue::ExternalLinkage
)) {
461 if (ParseGlobalValue(Ty
, Init
))
465 if (isa
<FunctionType
>(Ty
) || Ty
== Type::LabelTy
)
466 return Error(TyLoc
, "invalid type for global variable");
468 GlobalVariable
*GV
= 0;
470 // See if the global was forward referenced, if so, use the global.
472 if ((GV
= M
->getGlobalVariable(Name
, true)) &&
473 !ForwardRefVals
.erase(Name
))
474 return Error(NameLoc
, "redefinition of global '@" + Name
+ "'");
476 std::map
<unsigned, std::pair
<GlobalValue
*, LocTy
> >::iterator
477 I
= ForwardRefValIDs
.find(NumberedVals
.size());
478 if (I
!= ForwardRefValIDs
.end()) {
479 GV
= cast
<GlobalVariable
>(I
->second
.first
);
480 ForwardRefValIDs
.erase(I
);
485 GV
= new GlobalVariable(Ty
, false, GlobalValue::ExternalLinkage
, 0, Name
,
486 M
, false, AddrSpace
);
488 if (GV
->getType()->getElementType() != Ty
)
490 "forward reference and definition of global have different types");
492 // Move the forward-reference to the correct spot in the module.
493 M
->getGlobalList().splice(M
->global_end(), M
->getGlobalList(), GV
);
497 NumberedVals
.push_back(GV
);
499 // Set the parsed properties on the global.
501 GV
->setInitializer(Init
);
502 GV
->setConstant(IsConstant
);
503 GV
->setLinkage((GlobalValue::LinkageTypes
)Linkage
);
504 GV
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
505 GV
->setThreadLocal(ThreadLocal
);
507 // Parse attributes on the global.
508 while (Lex
.getKind() == lltok::comma
) {
511 if (Lex
.getKind() == lltok::kw_section
) {
513 GV
->setSection(Lex
.getStrVal());
514 if (ParseToken(lltok::StringConstant
, "expected global section string"))
516 } else if (Lex
.getKind() == lltok::kw_align
) {
518 if (ParseOptionalAlignment(Alignment
)) return true;
519 GV
->setAlignment(Alignment
);
521 TokError("unknown global variable property!");
529 //===----------------------------------------------------------------------===//
530 // GlobalValue Reference/Resolution Routines.
531 //===----------------------------------------------------------------------===//
533 /// GetGlobalVal - Get a value with the specified name or ID, creating a
534 /// forward reference record if needed. This can return null if the value
535 /// exists but does not have the right type.
536 GlobalValue
*LLParser::GetGlobalVal(const std::string
&Name
, const Type
*Ty
,
538 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
540 Error(Loc
, "global variable reference must have pointer type");
544 // Look this name up in the normal function symbol table.
546 cast_or_null
<GlobalValue
>(M
->getValueSymbolTable().lookup(Name
));
548 // If this is a forward reference for the value, see if we already created a
549 // forward ref record.
551 std::map
<std::string
, std::pair
<GlobalValue
*, LocTy
> >::iterator
552 I
= ForwardRefVals
.find(Name
);
553 if (I
!= ForwardRefVals
.end())
554 Val
= I
->second
.first
;
557 // If we have the value in the symbol table or fwd-ref table, return it.
559 if (Val
->getType() == Ty
) return Val
;
560 Error(Loc
, "'@" + Name
+ "' defined with type '" +
561 Val
->getType()->getDescription() + "'");
565 // Otherwise, create a new forward reference for this value and remember it.
567 if (const FunctionType
*FT
= dyn_cast
<FunctionType
>(PTy
->getElementType())) {
568 // Function types can return opaque but functions can't.
569 if (isa
<OpaqueType
>(FT
->getReturnType())) {
570 Error(Loc
, "function may not return opaque type");
574 FwdVal
= Function::Create(FT
, GlobalValue::ExternalWeakLinkage
, Name
, M
);
576 FwdVal
= new GlobalVariable(PTy
->getElementType(), false,
577 GlobalValue::ExternalWeakLinkage
, 0, Name
, M
);
580 ForwardRefVals
[Name
] = std::make_pair(FwdVal
, Loc
);
584 GlobalValue
*LLParser::GetGlobalVal(unsigned ID
, const Type
*Ty
, LocTy Loc
) {
585 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
587 Error(Loc
, "global variable reference must have pointer type");
591 GlobalValue
*Val
= ID
< NumberedVals
.size() ? NumberedVals
[ID
] : 0;
593 // If this is a forward reference for the value, see if we already created a
594 // forward ref record.
596 std::map
<unsigned, std::pair
<GlobalValue
*, LocTy
> >::iterator
597 I
= ForwardRefValIDs
.find(ID
);
598 if (I
!= ForwardRefValIDs
.end())
599 Val
= I
->second
.first
;
602 // If we have the value in the symbol table or fwd-ref table, return it.
604 if (Val
->getType() == Ty
) return Val
;
605 Error(Loc
, "'@" + utostr(ID
) + "' defined with type '" +
606 Val
->getType()->getDescription() + "'");
610 // Otherwise, create a new forward reference for this value and remember it.
612 if (const FunctionType
*FT
= dyn_cast
<FunctionType
>(PTy
->getElementType())) {
613 // Function types can return opaque but functions can't.
614 if (isa
<OpaqueType
>(FT
->getReturnType())) {
615 Error(Loc
, "function may not return opaque type");
618 FwdVal
= Function::Create(FT
, GlobalValue::ExternalWeakLinkage
, "", M
);
620 FwdVal
= new GlobalVariable(PTy
->getElementType(), false,
621 GlobalValue::ExternalWeakLinkage
, 0, "", M
);
624 ForwardRefValIDs
[ID
] = std::make_pair(FwdVal
, Loc
);
629 //===----------------------------------------------------------------------===//
631 //===----------------------------------------------------------------------===//
633 /// ParseToken - If the current token has the specified kind, eat it and return
634 /// success. Otherwise, emit the specified error and return failure.
635 bool LLParser::ParseToken(lltok::Kind T
, const char *ErrMsg
) {
636 if (Lex
.getKind() != T
)
637 return TokError(ErrMsg
);
642 /// ParseStringConstant
643 /// ::= StringConstant
644 bool LLParser::ParseStringConstant(std::string
&Result
) {
645 if (Lex
.getKind() != lltok::StringConstant
)
646 return TokError("expected string constant");
647 Result
= Lex
.getStrVal();
654 bool LLParser::ParseUInt32(unsigned &Val
) {
655 if (Lex
.getKind() != lltok::APSInt
|| Lex
.getAPSIntVal().isSigned())
656 return TokError("expected integer");
657 uint64_t Val64
= Lex
.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL
+1);
658 if (Val64
!= unsigned(Val64
))
659 return TokError("expected 32-bit integer (too large)");
666 /// ParseOptionalAddrSpace
668 /// := 'addrspace' '(' uint32 ')'
669 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace
) {
671 if (!EatIfPresent(lltok::kw_addrspace
))
673 return ParseToken(lltok::lparen
, "expected '(' in address space") ||
674 ParseUInt32(AddrSpace
) ||
675 ParseToken(lltok::rparen
, "expected ')' in address space");
678 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
679 /// indicates what kind of attribute list this is: 0: function arg, 1: result,
680 /// 2: function attr.
681 /// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
682 bool LLParser::ParseOptionalAttrs(unsigned &Attrs
, unsigned AttrKind
) {
683 Attrs
= Attribute::None
;
684 LocTy AttrLoc
= Lex
.getLoc();
687 switch (Lex
.getKind()) {
690 // Treat these as signext/zeroext if they occur in the argument list after
691 // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the
692 // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
694 // FIXME: REMOVE THIS IN LLVM 3.0
696 if (Lex
.getKind() == lltok::kw_sext
)
697 Attrs
|= Attribute::SExt
;
699 Attrs
|= Attribute::ZExt
;
703 default: // End of attributes.
704 if (AttrKind
!= 2 && (Attrs
& Attribute::FunctionOnly
))
705 return Error(AttrLoc
, "invalid use of function-only attribute");
707 if (AttrKind
!= 0 && AttrKind
!= 3 && (Attrs
& Attribute::ParameterOnly
))
708 return Error(AttrLoc
, "invalid use of parameter-only attribute");
711 case lltok::kw_zeroext
: Attrs
|= Attribute::ZExt
; break;
712 case lltok::kw_signext
: Attrs
|= Attribute::SExt
; break;
713 case lltok::kw_inreg
: Attrs
|= Attribute::InReg
; break;
714 case lltok::kw_sret
: Attrs
|= Attribute::StructRet
; break;
715 case lltok::kw_noalias
: Attrs
|= Attribute::NoAlias
; break;
716 case lltok::kw_nocapture
: Attrs
|= Attribute::NoCapture
; break;
717 case lltok::kw_byval
: Attrs
|= Attribute::ByVal
; break;
718 case lltok::kw_nest
: Attrs
|= Attribute::Nest
; break;
720 case lltok::kw_noreturn
: Attrs
|= Attribute::NoReturn
; break;
721 case lltok::kw_nounwind
: Attrs
|= Attribute::NoUnwind
; break;
722 case lltok::kw_noinline
: Attrs
|= Attribute::NoInline
; break;
723 case lltok::kw_readnone
: Attrs
|= Attribute::ReadNone
; break;
724 case lltok::kw_readonly
: Attrs
|= Attribute::ReadOnly
; break;
725 case lltok::kw_alwaysinline
: Attrs
|= Attribute::AlwaysInline
; break;
726 case lltok::kw_optsize
: Attrs
|= Attribute::OptimizeForSize
; break;
727 case lltok::kw_ssp
: Attrs
|= Attribute::StackProtect
; break;
728 case lltok::kw_sspreq
: Attrs
|= Attribute::StackProtectReq
; break;
731 case lltok::kw_align
: {
733 if (ParseOptionalAlignment(Alignment
))
735 Attrs
|= Attribute::constructAlignmentFromInt(Alignment
);
743 /// ParseOptionalLinkage
750 /// ::= 'linkonce_odr'
755 /// ::= 'extern_weak'
757 bool LLParser::ParseOptionalLinkage(unsigned &Res
, bool &HasLinkage
) {
759 switch (Lex
.getKind()) {
760 default: Res
= GlobalValue::ExternalLinkage
; return false;
761 case lltok::kw_private
: Res
= GlobalValue::PrivateLinkage
; break;
762 case lltok::kw_internal
: Res
= GlobalValue::InternalLinkage
; break;
763 case lltok::kw_weak
: Res
= GlobalValue::WeakAnyLinkage
; break;
764 case lltok::kw_weak_odr
: Res
= GlobalValue::WeakODRLinkage
; break;
765 case lltok::kw_linkonce
: Res
= GlobalValue::LinkOnceAnyLinkage
; break;
766 case lltok::kw_linkonce_odr
: Res
= GlobalValue::LinkOnceODRLinkage
; break;
767 case lltok::kw_available_externally
:
768 Res
= GlobalValue::AvailableExternallyLinkage
;
770 case lltok::kw_appending
: Res
= GlobalValue::AppendingLinkage
; break;
771 case lltok::kw_dllexport
: Res
= GlobalValue::DLLExportLinkage
; break;
772 case lltok::kw_common
: Res
= GlobalValue::CommonLinkage
; break;
773 case lltok::kw_dllimport
: Res
= GlobalValue::DLLImportLinkage
; break;
774 case lltok::kw_extern_weak
: Res
= GlobalValue::ExternalWeakLinkage
; break;
775 case lltok::kw_external
: Res
= GlobalValue::ExternalLinkage
; break;
782 /// ParseOptionalVisibility
788 bool LLParser::ParseOptionalVisibility(unsigned &Res
) {
789 switch (Lex
.getKind()) {
790 default: Res
= GlobalValue::DefaultVisibility
; return false;
791 case lltok::kw_default
: Res
= GlobalValue::DefaultVisibility
; break;
792 case lltok::kw_hidden
: Res
= GlobalValue::HiddenVisibility
; break;
793 case lltok::kw_protected
: Res
= GlobalValue::ProtectedVisibility
; break;
799 /// ParseOptionalCallingConv
804 /// ::= 'x86_stdcallcc'
805 /// ::= 'x86_fastcallcc'
808 bool LLParser::ParseOptionalCallingConv(unsigned &CC
) {
809 switch (Lex
.getKind()) {
810 default: CC
= CallingConv::C
; return false;
811 case lltok::kw_ccc
: CC
= CallingConv::C
; break;
812 case lltok::kw_fastcc
: CC
= CallingConv::Fast
; break;
813 case lltok::kw_coldcc
: CC
= CallingConv::Cold
; break;
814 case lltok::kw_x86_stdcallcc
: CC
= CallingConv::X86_StdCall
; break;
815 case lltok::kw_x86_fastcallcc
: CC
= CallingConv::X86_FastCall
; break;
816 case lltok::kw_cc
: Lex
.Lex(); return ParseUInt32(CC
);
822 /// ParseOptionalAlignment
825 bool LLParser::ParseOptionalAlignment(unsigned &Alignment
) {
827 if (!EatIfPresent(lltok::kw_align
))
829 LocTy AlignLoc
= Lex
.getLoc();
830 if (ParseUInt32(Alignment
)) return true;
831 if (!isPowerOf2_32(Alignment
))
832 return Error(AlignLoc
, "alignment is not a power of two");
836 /// ParseOptionalCommaAlignment
838 /// ::= ',' 'align' 4
839 bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment
) {
841 if (!EatIfPresent(lltok::comma
))
843 return ParseToken(lltok::kw_align
, "expected 'align'") ||
844 ParseUInt32(Alignment
);
848 /// ::= (',' uint32)+
849 bool LLParser::ParseIndexList(SmallVectorImpl
<unsigned> &Indices
) {
850 if (Lex
.getKind() != lltok::comma
)
851 return TokError("expected ',' as start of index list");
853 while (EatIfPresent(lltok::comma
)) {
855 if (ParseUInt32(Idx
)) return true;
856 Indices
.push_back(Idx
);
862 //===----------------------------------------------------------------------===//
864 //===----------------------------------------------------------------------===//
866 /// ParseType - Parse and resolve a full type.
867 bool LLParser::ParseType(PATypeHolder
&Result
, bool AllowVoid
) {
868 LocTy TypeLoc
= Lex
.getLoc();
869 if (ParseTypeRec(Result
)) return true;
871 // Verify no unresolved uprefs.
873 return Error(UpRefs
.back().Loc
, "invalid unresolved type up reference");
875 if (!AllowVoid
&& Result
.get() == Type::VoidTy
)
876 return Error(TypeLoc
, "void type only allowed for function results");
881 /// HandleUpRefs - Every time we finish a new layer of types, this function is
882 /// called. It loops through the UpRefs vector, which is a list of the
883 /// currently active types. For each type, if the up-reference is contained in
884 /// the newly completed type, we decrement the level count. When the level
885 /// count reaches zero, the up-referenced type is the type that is passed in:
886 /// thus we can complete the cycle.
888 PATypeHolder
LLParser::HandleUpRefs(const Type
*ty
) {
889 // If Ty isn't abstract, or if there are no up-references in it, then there is
890 // nothing to resolve here.
891 if (!ty
->isAbstract() || UpRefs
.empty()) return ty
;
895 errs() << "Type '" << Ty
->getDescription()
896 << "' newly formed. Resolving upreferences.\n"
897 << UpRefs
.size() << " upreferences active!\n";
900 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
901 // to zero), we resolve them all together before we resolve them to Ty. At
902 // the end of the loop, if there is anything to resolve to Ty, it will be in
904 OpaqueType
*TypeToResolve
= 0;
906 for (unsigned i
= 0; i
!= UpRefs
.size(); ++i
) {
907 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
909 std::find(Ty
->subtype_begin(), Ty
->subtype_end(),
910 UpRefs
[i
].LastContainedTy
) != Ty
->subtype_end();
913 errs() << " UR#" << i
<< " - TypeContains(" << Ty
->getDescription() << ", "
914 << UpRefs
[i
].LastContainedTy
->getDescription() << ") = "
915 << (ContainsType
? "true" : "false")
916 << " level=" << UpRefs
[i
].NestingLevel
<< "\n";
921 // Decrement level of upreference
922 unsigned Level
= --UpRefs
[i
].NestingLevel
;
923 UpRefs
[i
].LastContainedTy
= Ty
;
925 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
930 errs() << " * Resolving upreference for " << UpRefs
[i
].UpRefTy
<< "\n";
933 TypeToResolve
= UpRefs
[i
].UpRefTy
;
935 UpRefs
[i
].UpRefTy
->refineAbstractTypeTo(TypeToResolve
);
936 UpRefs
.erase(UpRefs
.begin()+i
); // Remove from upreference list.
937 --i
; // Do not skip the next element.
941 TypeToResolve
->refineAbstractTypeTo(Ty
);
947 /// ParseTypeRec - The recursive function used to process the internal
948 /// implementation details of types.
949 bool LLParser::ParseTypeRec(PATypeHolder
&Result
) {
950 switch (Lex
.getKind()) {
952 return TokError("expected type");
954 // TypeRec ::= 'float' | 'void' (etc)
955 Result
= Lex
.getTyVal();
958 case lltok::kw_opaque
:
959 // TypeRec ::= 'opaque'
960 Result
= OpaqueType::get();
964 // TypeRec ::= '{' ... '}'
965 if (ParseStructType(Result
, false))
969 // TypeRec ::= '[' ... ']'
970 Lex
.Lex(); // eat the lsquare.
971 if (ParseArrayVectorType(Result
, false))
974 case lltok::less
: // Either vector or packed struct.
975 // TypeRec ::= '<' ... '>'
977 if (Lex
.getKind() == lltok::lbrace
) {
978 if (ParseStructType(Result
, true) ||
979 ParseToken(lltok::greater
, "expected '>' at end of packed struct"))
981 } else if (ParseArrayVectorType(Result
, true))
984 case lltok::LocalVar
:
985 case lltok::StringConstant
: // FIXME: REMOVE IN LLVM 3.0
987 if (const Type
*T
= M
->getTypeByName(Lex
.getStrVal())) {
990 Result
= OpaqueType::get();
991 ForwardRefTypes
.insert(std::make_pair(Lex
.getStrVal(),
992 std::make_pair(Result
,
994 M
->addTypeName(Lex
.getStrVal(), Result
.get());
999 case lltok::LocalVarID
:
1001 if (Lex
.getUIntVal() < NumberedTypes
.size())
1002 Result
= NumberedTypes
[Lex
.getUIntVal()];
1004 std::map
<unsigned, std::pair
<PATypeHolder
, LocTy
> >::iterator
1005 I
= ForwardRefTypeIDs
.find(Lex
.getUIntVal());
1006 if (I
!= ForwardRefTypeIDs
.end())
1007 Result
= I
->second
.first
;
1009 Result
= OpaqueType::get();
1010 ForwardRefTypeIDs
.insert(std::make_pair(Lex
.getUIntVal(),
1011 std::make_pair(Result
,
1017 case lltok::backslash
: {
1018 // TypeRec ::= '\' 4
1021 if (ParseUInt32(Val
)) return true;
1022 OpaqueType
*OT
= OpaqueType::get(); // Use temporary placeholder.
1023 UpRefs
.push_back(UpRefRecord(Lex
.getLoc(), Val
, OT
));
1029 // Parse the type suffixes.
1031 switch (Lex
.getKind()) {
1033 default: return false;
1035 // TypeRec ::= TypeRec '*'
1037 if (Result
.get() == Type::LabelTy
)
1038 return TokError("basic block pointers are invalid");
1039 if (Result
.get() == Type::VoidTy
)
1040 return TokError("pointers to void are invalid; use i8* instead");
1041 Result
= HandleUpRefs(PointerType::getUnqual(Result
.get()));
1045 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1046 case lltok::kw_addrspace
: {
1047 if (Result
.get() == Type::LabelTy
)
1048 return TokError("basic block pointers are invalid");
1049 if (Result
.get() == Type::VoidTy
)
1050 return TokError("pointers to void are invalid; use i8* instead");
1052 if (ParseOptionalAddrSpace(AddrSpace
) ||
1053 ParseToken(lltok::star
, "expected '*' in address space"))
1056 Result
= HandleUpRefs(PointerType::get(Result
.get(), AddrSpace
));
1060 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1062 if (ParseFunctionType(Result
))
1069 /// ParseParameterList
1071 /// ::= '(' Arg (',' Arg)* ')'
1073 /// ::= Type OptionalAttributes Value OptionalAttributes
1074 bool LLParser::ParseParameterList(SmallVectorImpl
<ParamInfo
> &ArgList
,
1075 PerFunctionState
&PFS
) {
1076 if (ParseToken(lltok::lparen
, "expected '(' in call"))
1079 while (Lex
.getKind() != lltok::rparen
) {
1080 // If this isn't the first argument, we need a comma.
1081 if (!ArgList
.empty() &&
1082 ParseToken(lltok::comma
, "expected ',' in argument list"))
1085 // Parse the argument.
1087 PATypeHolder
ArgTy(Type::VoidTy
);
1088 unsigned ArgAttrs1
, ArgAttrs2
;
1090 if (ParseType(ArgTy
, ArgLoc
) ||
1091 ParseOptionalAttrs(ArgAttrs1
, 0) ||
1092 ParseValue(ArgTy
, V
, PFS
) ||
1093 // FIXME: Should not allow attributes after the argument, remove this in
1095 ParseOptionalAttrs(ArgAttrs2
, 3))
1097 ArgList
.push_back(ParamInfo(ArgLoc
, V
, ArgAttrs1
|ArgAttrs2
));
1100 Lex
.Lex(); // Lex the ')'.
1106 /// ParseArgumentList - Parse the argument list for a function type or function
1107 /// prototype. If 'inType' is true then we are parsing a FunctionType.
1108 /// ::= '(' ArgTypeListI ')'
1112 /// ::= ArgTypeList ',' '...'
1113 /// ::= ArgType (',' ArgType)*
1115 bool LLParser::ParseArgumentList(std::vector
<ArgInfo
> &ArgList
,
1116 bool &isVarArg
, bool inType
) {
1118 assert(Lex
.getKind() == lltok::lparen
);
1119 Lex
.Lex(); // eat the (.
1121 if (Lex
.getKind() == lltok::rparen
) {
1123 } else if (Lex
.getKind() == lltok::dotdotdot
) {
1127 LocTy TypeLoc
= Lex
.getLoc();
1128 PATypeHolder
ArgTy(Type::VoidTy
);
1132 // If we're parsing a type, use ParseTypeRec, because we allow recursive
1133 // types (such as a function returning a pointer to itself). If parsing a
1134 // function prototype, we require fully resolved types.
1135 if ((inType
? ParseTypeRec(ArgTy
) : ParseType(ArgTy
)) ||
1136 ParseOptionalAttrs(Attrs
, 0)) return true;
1138 if (ArgTy
== Type::VoidTy
)
1139 return Error(TypeLoc
, "argument can not have void type");
1141 if (Lex
.getKind() == lltok::LocalVar
||
1142 Lex
.getKind() == lltok::StringConstant
) { // FIXME: REMOVE IN LLVM 3.0
1143 Name
= Lex
.getStrVal();
1147 if (!ArgTy
->isFirstClassType() && !isa
<OpaqueType
>(ArgTy
))
1148 return Error(TypeLoc
, "invalid type for function argument");
1150 ArgList
.push_back(ArgInfo(TypeLoc
, ArgTy
, Attrs
, Name
));
1152 while (EatIfPresent(lltok::comma
)) {
1153 // Handle ... at end of arg list.
1154 if (EatIfPresent(lltok::dotdotdot
)) {
1159 // Otherwise must be an argument type.
1160 TypeLoc
= Lex
.getLoc();
1161 if ((inType
? ParseTypeRec(ArgTy
) : ParseType(ArgTy
)) ||
1162 ParseOptionalAttrs(Attrs
, 0)) return true;
1164 if (ArgTy
== Type::VoidTy
)
1165 return Error(TypeLoc
, "argument can not have void type");
1167 if (Lex
.getKind() == lltok::LocalVar
||
1168 Lex
.getKind() == lltok::StringConstant
) { // FIXME: REMOVE IN LLVM 3.0
1169 Name
= Lex
.getStrVal();
1175 if (!ArgTy
->isFirstClassType() && !isa
<OpaqueType
>(ArgTy
))
1176 return Error(TypeLoc
, "invalid type for function argument");
1178 ArgList
.push_back(ArgInfo(TypeLoc
, ArgTy
, Attrs
, Name
));
1182 return ParseToken(lltok::rparen
, "expected ')' at end of argument list");
1185 /// ParseFunctionType
1186 /// ::= Type ArgumentList OptionalAttrs
1187 bool LLParser::ParseFunctionType(PATypeHolder
&Result
) {
1188 assert(Lex
.getKind() == lltok::lparen
);
1190 if (!FunctionType::isValidReturnType(Result
))
1191 return TokError("invalid function return type");
1193 std::vector
<ArgInfo
> ArgList
;
1196 if (ParseArgumentList(ArgList
, isVarArg
, true) ||
1197 // FIXME: Allow, but ignore attributes on function types!
1198 // FIXME: Remove in LLVM 3.0
1199 ParseOptionalAttrs(Attrs
, 2))
1202 // Reject names on the arguments lists.
1203 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
1204 if (!ArgList
[i
].Name
.empty())
1205 return Error(ArgList
[i
].Loc
, "argument name invalid in function type");
1206 if (!ArgList
[i
].Attrs
!= 0) {
1207 // Allow but ignore attributes on function types; this permits
1209 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1213 std::vector
<const Type
*> ArgListTy
;
1214 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
1215 ArgListTy
.push_back(ArgList
[i
].Type
);
1217 Result
= HandleUpRefs(FunctionType::get(Result
.get(), ArgListTy
, isVarArg
));
1221 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1224 /// ::= '{' TypeRec (',' TypeRec)* '}'
1225 /// ::= '<' '{' '}' '>'
1226 /// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1227 bool LLParser::ParseStructType(PATypeHolder
&Result
, bool Packed
) {
1228 assert(Lex
.getKind() == lltok::lbrace
);
1229 Lex
.Lex(); // Consume the '{'
1231 if (EatIfPresent(lltok::rbrace
)) {
1232 Result
= StructType::get(std::vector
<const Type
*>(), Packed
);
1236 std::vector
<PATypeHolder
> ParamsList
;
1237 LocTy EltTyLoc
= Lex
.getLoc();
1238 if (ParseTypeRec(Result
)) return true;
1239 ParamsList
.push_back(Result
);
1241 if (Result
== Type::VoidTy
)
1242 return Error(EltTyLoc
, "struct element can not have void type");
1244 while (EatIfPresent(lltok::comma
)) {
1245 EltTyLoc
= Lex
.getLoc();
1246 if (ParseTypeRec(Result
)) return true;
1248 if (Result
== Type::VoidTy
)
1249 return Error(EltTyLoc
, "struct element can not have void type");
1251 ParamsList
.push_back(Result
);
1254 if (ParseToken(lltok::rbrace
, "expected '}' at end of struct"))
1257 std::vector
<const Type
*> ParamsListTy
;
1258 for (unsigned i
= 0, e
= ParamsList
.size(); i
!= e
; ++i
)
1259 ParamsListTy
.push_back(ParamsList
[i
].get());
1260 Result
= HandleUpRefs(StructType::get(ParamsListTy
, Packed
));
1264 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1265 /// token has already been consumed.
1267 /// ::= '[' APSINTVAL 'x' Types ']'
1268 /// ::= '<' APSINTVAL 'x' Types '>'
1269 bool LLParser::ParseArrayVectorType(PATypeHolder
&Result
, bool isVector
) {
1270 if (Lex
.getKind() != lltok::APSInt
|| Lex
.getAPSIntVal().isSigned() ||
1271 Lex
.getAPSIntVal().getBitWidth() > 64)
1272 return TokError("expected number in address space");
1274 LocTy SizeLoc
= Lex
.getLoc();
1275 uint64_t Size
= Lex
.getAPSIntVal().getZExtValue();
1278 if (ParseToken(lltok::kw_x
, "expected 'x' after element count"))
1281 LocTy TypeLoc
= Lex
.getLoc();
1282 PATypeHolder
EltTy(Type::VoidTy
);
1283 if (ParseTypeRec(EltTy
)) return true;
1285 if (EltTy
== Type::VoidTy
)
1286 return Error(TypeLoc
, "array and vector element type cannot be void");
1288 if (ParseToken(isVector
? lltok::greater
: lltok::rsquare
,
1289 "expected end of sequential type"))
1294 return Error(SizeLoc
, "zero element vector is illegal");
1295 if ((unsigned)Size
!= Size
)
1296 return Error(SizeLoc
, "size too large for vector");
1297 if (!EltTy
->isFloatingPoint() && !EltTy
->isInteger())
1298 return Error(TypeLoc
, "vector element type must be fp or integer");
1299 Result
= VectorType::get(EltTy
, unsigned(Size
));
1301 if (!EltTy
->isFirstClassType() && !isa
<OpaqueType
>(EltTy
))
1302 return Error(TypeLoc
, "invalid array element type");
1303 Result
= HandleUpRefs(ArrayType::get(EltTy
, Size
));
1308 //===----------------------------------------------------------------------===//
1309 // Function Semantic Analysis.
1310 //===----------------------------------------------------------------------===//
1312 LLParser::PerFunctionState::PerFunctionState(LLParser
&p
, Function
&f
)
1315 // Insert unnamed arguments into the NumberedVals list.
1316 for (Function::arg_iterator AI
= F
.arg_begin(), E
= F
.arg_end();
1319 NumberedVals
.push_back(AI
);
1322 LLParser::PerFunctionState::~PerFunctionState() {
1323 // If there were any forward referenced non-basicblock values, delete them.
1324 for (std::map
<std::string
, std::pair
<Value
*, LocTy
> >::iterator
1325 I
= ForwardRefVals
.begin(), E
= ForwardRefVals
.end(); I
!= E
; ++I
)
1326 if (!isa
<BasicBlock
>(I
->second
.first
)) {
1327 I
->second
.first
->replaceAllUsesWith(UndefValue::get(I
->second
.first
1329 delete I
->second
.first
;
1330 I
->second
.first
= 0;
1333 for (std::map
<unsigned, std::pair
<Value
*, LocTy
> >::iterator
1334 I
= ForwardRefValIDs
.begin(), E
= ForwardRefValIDs
.end(); I
!= E
; ++I
)
1335 if (!isa
<BasicBlock
>(I
->second
.first
)) {
1336 I
->second
.first
->replaceAllUsesWith(UndefValue::get(I
->second
.first
1338 delete I
->second
.first
;
1339 I
->second
.first
= 0;
1343 bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1344 if (!ForwardRefVals
.empty())
1345 return P
.Error(ForwardRefVals
.begin()->second
.second
,
1346 "use of undefined value '%" + ForwardRefVals
.begin()->first
+
1348 if (!ForwardRefValIDs
.empty())
1349 return P
.Error(ForwardRefValIDs
.begin()->second
.second
,
1350 "use of undefined value '%" +
1351 utostr(ForwardRefValIDs
.begin()->first
) + "'");
1356 /// GetVal - Get a value with the specified name or ID, creating a
1357 /// forward reference record if needed. This can return null if the value
1358 /// exists but does not have the right type.
1359 Value
*LLParser::PerFunctionState::GetVal(const std::string
&Name
,
1360 const Type
*Ty
, LocTy Loc
) {
1361 // Look this name up in the normal function symbol table.
1362 Value
*Val
= F
.getValueSymbolTable().lookup(Name
);
1364 // If this is a forward reference for the value, see if we already created a
1365 // forward ref record.
1367 std::map
<std::string
, std::pair
<Value
*, LocTy
> >::iterator
1368 I
= ForwardRefVals
.find(Name
);
1369 if (I
!= ForwardRefVals
.end())
1370 Val
= I
->second
.first
;
1373 // If we have the value in the symbol table or fwd-ref table, return it.
1375 if (Val
->getType() == Ty
) return Val
;
1376 if (Ty
== Type::LabelTy
)
1377 P
.Error(Loc
, "'%" + Name
+ "' is not a basic block");
1379 P
.Error(Loc
, "'%" + Name
+ "' defined with type '" +
1380 Val
->getType()->getDescription() + "'");
1384 // Don't make placeholders with invalid type.
1385 if (!Ty
->isFirstClassType() && !isa
<OpaqueType
>(Ty
) && Ty
!= Type::LabelTy
) {
1386 P
.Error(Loc
, "invalid use of a non-first-class type");
1390 // Otherwise, create a new forward reference for this value and remember it.
1392 if (Ty
== Type::LabelTy
)
1393 FwdVal
= BasicBlock::Create(Name
, &F
);
1395 FwdVal
= new Argument(Ty
, Name
);
1397 ForwardRefVals
[Name
] = std::make_pair(FwdVal
, Loc
);
1401 Value
*LLParser::PerFunctionState::GetVal(unsigned ID
, const Type
*Ty
,
1403 // Look this name up in the normal function symbol table.
1404 Value
*Val
= ID
< NumberedVals
.size() ? NumberedVals
[ID
] : 0;
1406 // If this is a forward reference for the value, see if we already created a
1407 // forward ref record.
1409 std::map
<unsigned, std::pair
<Value
*, LocTy
> >::iterator
1410 I
= ForwardRefValIDs
.find(ID
);
1411 if (I
!= ForwardRefValIDs
.end())
1412 Val
= I
->second
.first
;
1415 // If we have the value in the symbol table or fwd-ref table, return it.
1417 if (Val
->getType() == Ty
) return Val
;
1418 if (Ty
== Type::LabelTy
)
1419 P
.Error(Loc
, "'%" + utostr(ID
) + "' is not a basic block");
1421 P
.Error(Loc
, "'%" + utostr(ID
) + "' defined with type '" +
1422 Val
->getType()->getDescription() + "'");
1426 if (!Ty
->isFirstClassType() && !isa
<OpaqueType
>(Ty
) && Ty
!= Type::LabelTy
) {
1427 P
.Error(Loc
, "invalid use of a non-first-class type");
1431 // Otherwise, create a new forward reference for this value and remember it.
1433 if (Ty
== Type::LabelTy
)
1434 FwdVal
= BasicBlock::Create("", &F
);
1436 FwdVal
= new Argument(Ty
);
1438 ForwardRefValIDs
[ID
] = std::make_pair(FwdVal
, Loc
);
1442 /// SetInstName - After an instruction is parsed and inserted into its
1443 /// basic block, this installs its name.
1444 bool LLParser::PerFunctionState::SetInstName(int NameID
,
1445 const std::string
&NameStr
,
1446 LocTy NameLoc
, Instruction
*Inst
) {
1447 // If this instruction has void type, it cannot have a name or ID specified.
1448 if (Inst
->getType() == Type::VoidTy
) {
1449 if (NameID
!= -1 || !NameStr
.empty())
1450 return P
.Error(NameLoc
, "instructions returning void cannot have a name");
1454 // If this was a numbered instruction, verify that the instruction is the
1455 // expected value and resolve any forward references.
1456 if (NameStr
.empty()) {
1457 // If neither a name nor an ID was specified, just use the next ID.
1459 NameID
= NumberedVals
.size();
1461 if (unsigned(NameID
) != NumberedVals
.size())
1462 return P
.Error(NameLoc
, "instruction expected to be numbered '%" +
1463 utostr(NumberedVals
.size()) + "'");
1465 std::map
<unsigned, std::pair
<Value
*, LocTy
> >::iterator FI
=
1466 ForwardRefValIDs
.find(NameID
);
1467 if (FI
!= ForwardRefValIDs
.end()) {
1468 if (FI
->second
.first
->getType() != Inst
->getType())
1469 return P
.Error(NameLoc
, "instruction forward referenced with type '" +
1470 FI
->second
.first
->getType()->getDescription() + "'");
1471 FI
->second
.first
->replaceAllUsesWith(Inst
);
1472 ForwardRefValIDs
.erase(FI
);
1475 NumberedVals
.push_back(Inst
);
1479 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1480 std::map
<std::string
, std::pair
<Value
*, LocTy
> >::iterator
1481 FI
= ForwardRefVals
.find(NameStr
);
1482 if (FI
!= ForwardRefVals
.end()) {
1483 if (FI
->second
.first
->getType() != Inst
->getType())
1484 return P
.Error(NameLoc
, "instruction forward referenced with type '" +
1485 FI
->second
.first
->getType()->getDescription() + "'");
1486 FI
->second
.first
->replaceAllUsesWith(Inst
);
1487 ForwardRefVals
.erase(FI
);
1490 // Set the name on the instruction.
1491 Inst
->setName(NameStr
);
1493 if (Inst
->getNameStr() != NameStr
)
1494 return P
.Error(NameLoc
, "multiple definition of local value named '" +
1499 /// GetBB - Get a basic block with the specified name or ID, creating a
1500 /// forward reference record if needed.
1501 BasicBlock
*LLParser::PerFunctionState::GetBB(const std::string
&Name
,
1503 return cast_or_null
<BasicBlock
>(GetVal(Name
, Type::LabelTy
, Loc
));
1506 BasicBlock
*LLParser::PerFunctionState::GetBB(unsigned ID
, LocTy Loc
) {
1507 return cast_or_null
<BasicBlock
>(GetVal(ID
, Type::LabelTy
, Loc
));
1510 /// DefineBB - Define the specified basic block, which is either named or
1511 /// unnamed. If there is an error, this returns null otherwise it returns
1512 /// the block being defined.
1513 BasicBlock
*LLParser::PerFunctionState::DefineBB(const std::string
&Name
,
1517 BB
= GetBB(NumberedVals
.size(), Loc
);
1519 BB
= GetBB(Name
, Loc
);
1520 if (BB
== 0) return 0; // Already diagnosed error.
1522 // Move the block to the end of the function. Forward ref'd blocks are
1523 // inserted wherever they happen to be referenced.
1524 F
.getBasicBlockList().splice(F
.end(), F
.getBasicBlockList(), BB
);
1526 // Remove the block from forward ref sets.
1528 ForwardRefValIDs
.erase(NumberedVals
.size());
1529 NumberedVals
.push_back(BB
);
1531 // BB forward references are already in the function symbol table.
1532 ForwardRefVals
.erase(Name
);
1538 //===----------------------------------------------------------------------===//
1540 //===----------------------------------------------------------------------===//
1542 /// ParseValID - Parse an abstract value that doesn't necessarily have a
1543 /// type implied. For example, if we parse "4" we don't know what integer type
1544 /// it has. The value will later be combined with its type and checked for
1546 bool LLParser::ParseValID(ValID
&ID
) {
1547 ID
.Loc
= Lex
.getLoc();
1548 switch (Lex
.getKind()) {
1549 default: return TokError("expected value token");
1550 case lltok::GlobalID
: // @42
1551 ID
.UIntVal
= Lex
.getUIntVal();
1552 ID
.Kind
= ValID::t_GlobalID
;
1554 case lltok::GlobalVar
: // @foo
1555 ID
.StrVal
= Lex
.getStrVal();
1556 ID
.Kind
= ValID::t_GlobalName
;
1558 case lltok::LocalVarID
: // %42
1559 ID
.UIntVal
= Lex
.getUIntVal();
1560 ID
.Kind
= ValID::t_LocalID
;
1562 case lltok::LocalVar
: // %foo
1563 case lltok::StringConstant
: // "foo" - FIXME: REMOVE IN LLVM 3.0
1564 ID
.StrVal
= Lex
.getStrVal();
1565 ID
.Kind
= ValID::t_LocalName
;
1567 case lltok::Metadata
: { // !{...} MDNode, !"foo" MDString
1568 ID
.Kind
= ValID::t_Constant
;
1570 if (Lex
.getKind() == lltok::lbrace
) {
1572 // ::= '!' '{' TypeAndValue (',' TypeAndValue)* '}'
1573 SmallVector
<Constant
*, 16> Elts
;
1574 if (ParseMDNodeVector(Elts
) ||
1575 ParseToken(lltok::rbrace
, "expected end of metadata node"))
1578 ID
.ConstantVal
= MDNode::get(&Elts
[0], Elts
.size());
1583 // ::= '!' STRINGCONSTANT
1585 if (ParseStringConstant(Str
)) return true;
1587 ID
.ConstantVal
= MDString::get(Str
.data(), Str
.data() + Str
.size());
1591 ID
.APSIntVal
= Lex
.getAPSIntVal();
1592 ID
.Kind
= ValID::t_APSInt
;
1594 case lltok::APFloat
:
1595 ID
.APFloatVal
= Lex
.getAPFloatVal();
1596 ID
.Kind
= ValID::t_APFloat
;
1598 case lltok::kw_true
:
1599 ID
.ConstantVal
= ConstantInt::getTrue();
1600 ID
.Kind
= ValID::t_Constant
;
1602 case lltok::kw_false
:
1603 ID
.ConstantVal
= ConstantInt::getFalse();
1604 ID
.Kind
= ValID::t_Constant
;
1606 case lltok::kw_null
: ID
.Kind
= ValID::t_Null
; break;
1607 case lltok::kw_undef
: ID
.Kind
= ValID::t_Undef
; break;
1608 case lltok::kw_zeroinitializer
: ID
.Kind
= ValID::t_Zero
; break;
1610 case lltok::lbrace
: {
1611 // ValID ::= '{' ConstVector '}'
1613 SmallVector
<Constant
*, 16> Elts
;
1614 if (ParseGlobalValueVector(Elts
) ||
1615 ParseToken(lltok::rbrace
, "expected end of struct constant"))
1618 ID
.ConstantVal
= ConstantStruct::get(&Elts
[0], Elts
.size(), false);
1619 ID
.Kind
= ValID::t_Constant
;
1623 // ValID ::= '<' ConstVector '>' --> Vector.
1624 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1626 bool isPackedStruct
= EatIfPresent(lltok::lbrace
);
1628 SmallVector
<Constant
*, 16> Elts
;
1629 LocTy FirstEltLoc
= Lex
.getLoc();
1630 if (ParseGlobalValueVector(Elts
) ||
1632 ParseToken(lltok::rbrace
, "expected end of packed struct")) ||
1633 ParseToken(lltok::greater
, "expected end of constant"))
1636 if (isPackedStruct
) {
1637 ID
.ConstantVal
= ConstantStruct::get(&Elts
[0], Elts
.size(), true);
1638 ID
.Kind
= ValID::t_Constant
;
1643 return Error(ID
.Loc
, "constant vector must not be empty");
1645 if (!Elts
[0]->getType()->isInteger() &&
1646 !Elts
[0]->getType()->isFloatingPoint())
1647 return Error(FirstEltLoc
,
1648 "vector elements must have integer or floating point type");
1650 // Verify that all the vector elements have the same type.
1651 for (unsigned i
= 1, e
= Elts
.size(); i
!= e
; ++i
)
1652 if (Elts
[i
]->getType() != Elts
[0]->getType())
1653 return Error(FirstEltLoc
,
1654 "vector element #" + utostr(i
) +
1655 " is not of type '" + Elts
[0]->getType()->getDescription());
1657 ID
.ConstantVal
= ConstantVector::get(&Elts
[0], Elts
.size());
1658 ID
.Kind
= ValID::t_Constant
;
1661 case lltok::lsquare
: { // Array Constant
1663 SmallVector
<Constant
*, 16> Elts
;
1664 LocTy FirstEltLoc
= Lex
.getLoc();
1665 if (ParseGlobalValueVector(Elts
) ||
1666 ParseToken(lltok::rsquare
, "expected end of array constant"))
1669 // Handle empty element.
1671 // Use undef instead of an array because it's inconvenient to determine
1672 // the element type at this point, there being no elements to examine.
1673 ID
.Kind
= ValID::t_EmptyArray
;
1677 if (!Elts
[0]->getType()->isFirstClassType())
1678 return Error(FirstEltLoc
, "invalid array element type: " +
1679 Elts
[0]->getType()->getDescription());
1681 ArrayType
*ATy
= ArrayType::get(Elts
[0]->getType(), Elts
.size());
1683 // Verify all elements are correct type!
1684 for (unsigned i
= 0, e
= Elts
.size(); i
!= e
; ++i
) {
1685 if (Elts
[i
]->getType() != Elts
[0]->getType())
1686 return Error(FirstEltLoc
,
1687 "array element #" + utostr(i
) +
1688 " is not of type '" +Elts
[0]->getType()->getDescription());
1691 ID
.ConstantVal
= ConstantArray::get(ATy
, &Elts
[0], Elts
.size());
1692 ID
.Kind
= ValID::t_Constant
;
1695 case lltok::kw_c
: // c "foo"
1697 ID
.ConstantVal
= ConstantArray::get(Lex
.getStrVal(), false);
1698 if (ParseToken(lltok::StringConstant
, "expected string")) return true;
1699 ID
.Kind
= ValID::t_Constant
;
1702 case lltok::kw_asm
: {
1703 // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1706 if (ParseOptionalToken(lltok::kw_sideeffect
, HasSideEffect
) ||
1707 ParseStringConstant(ID
.StrVal
) ||
1708 ParseToken(lltok::comma
, "expected comma in inline asm expression") ||
1709 ParseToken(lltok::StringConstant
, "expected constraint string"))
1711 ID
.StrVal2
= Lex
.getStrVal();
1712 ID
.UIntVal
= HasSideEffect
;
1713 ID
.Kind
= ValID::t_InlineAsm
;
1717 case lltok::kw_trunc
:
1718 case lltok::kw_zext
:
1719 case lltok::kw_sext
:
1720 case lltok::kw_fptrunc
:
1721 case lltok::kw_fpext
:
1722 case lltok::kw_bitcast
:
1723 case lltok::kw_uitofp
:
1724 case lltok::kw_sitofp
:
1725 case lltok::kw_fptoui
:
1726 case lltok::kw_fptosi
:
1727 case lltok::kw_inttoptr
:
1728 case lltok::kw_ptrtoint
: {
1729 unsigned Opc
= Lex
.getUIntVal();
1730 PATypeHolder
DestTy(Type::VoidTy
);
1733 if (ParseToken(lltok::lparen
, "expected '(' after constantexpr cast") ||
1734 ParseGlobalTypeAndValue(SrcVal
) ||
1735 ParseToken(lltok::kw_to
, "expected 'to' int constantexpr cast") ||
1736 ParseType(DestTy
) ||
1737 ParseToken(lltok::rparen
, "expected ')' at end of constantexpr cast"))
1739 if (!CastInst::castIsValid((Instruction::CastOps
)Opc
, SrcVal
, DestTy
))
1740 return Error(ID
.Loc
, "invalid cast opcode for cast from '" +
1741 SrcVal
->getType()->getDescription() + "' to '" +
1742 DestTy
->getDescription() + "'");
1743 ID
.ConstantVal
= ConstantExpr::getCast((Instruction::CastOps
)Opc
, SrcVal
,
1745 ID
.Kind
= ValID::t_Constant
;
1748 case lltok::kw_extractvalue
: {
1751 SmallVector
<unsigned, 4> Indices
;
1752 if (ParseToken(lltok::lparen
, "expected '(' in extractvalue constantexpr")||
1753 ParseGlobalTypeAndValue(Val
) ||
1754 ParseIndexList(Indices
) ||
1755 ParseToken(lltok::rparen
, "expected ')' in extractvalue constantexpr"))
1757 if (!isa
<StructType
>(Val
->getType()) && !isa
<ArrayType
>(Val
->getType()))
1758 return Error(ID
.Loc
, "extractvalue operand must be array or struct");
1759 if (!ExtractValueInst::getIndexedType(Val
->getType(), Indices
.begin(),
1761 return Error(ID
.Loc
, "invalid indices for extractvalue");
1762 ID
.ConstantVal
= ConstantExpr::getExtractValue(Val
,
1763 &Indices
[0], Indices
.size());
1764 ID
.Kind
= ValID::t_Constant
;
1767 case lltok::kw_insertvalue
: {
1769 Constant
*Val0
, *Val1
;
1770 SmallVector
<unsigned, 4> Indices
;
1771 if (ParseToken(lltok::lparen
, "expected '(' in insertvalue constantexpr")||
1772 ParseGlobalTypeAndValue(Val0
) ||
1773 ParseToken(lltok::comma
, "expected comma in insertvalue constantexpr")||
1774 ParseGlobalTypeAndValue(Val1
) ||
1775 ParseIndexList(Indices
) ||
1776 ParseToken(lltok::rparen
, "expected ')' in insertvalue constantexpr"))
1778 if (!isa
<StructType
>(Val0
->getType()) && !isa
<ArrayType
>(Val0
->getType()))
1779 return Error(ID
.Loc
, "extractvalue operand must be array or struct");
1780 if (!ExtractValueInst::getIndexedType(Val0
->getType(), Indices
.begin(),
1782 return Error(ID
.Loc
, "invalid indices for insertvalue");
1783 ID
.ConstantVal
= ConstantExpr::getInsertValue(Val0
, Val1
,
1784 &Indices
[0], Indices
.size());
1785 ID
.Kind
= ValID::t_Constant
;
1788 case lltok::kw_icmp
:
1789 case lltok::kw_fcmp
:
1790 case lltok::kw_vicmp
:
1791 case lltok::kw_vfcmp
: {
1792 unsigned PredVal
, Opc
= Lex
.getUIntVal();
1793 Constant
*Val0
, *Val1
;
1795 if (ParseCmpPredicate(PredVal
, Opc
) ||
1796 ParseToken(lltok::lparen
, "expected '(' in compare constantexpr") ||
1797 ParseGlobalTypeAndValue(Val0
) ||
1798 ParseToken(lltok::comma
, "expected comma in compare constantexpr") ||
1799 ParseGlobalTypeAndValue(Val1
) ||
1800 ParseToken(lltok::rparen
, "expected ')' in compare constantexpr"))
1803 if (Val0
->getType() != Val1
->getType())
1804 return Error(ID
.Loc
, "compare operands must have the same type");
1806 CmpInst::Predicate Pred
= (CmpInst::Predicate
)PredVal
;
1808 if (Opc
== Instruction::FCmp
) {
1809 if (!Val0
->getType()->isFPOrFPVector())
1810 return Error(ID
.Loc
, "fcmp requires floating point operands");
1811 ID
.ConstantVal
= ConstantExpr::getFCmp(Pred
, Val0
, Val1
);
1812 } else if (Opc
== Instruction::ICmp
) {
1813 if (!Val0
->getType()->isIntOrIntVector() &&
1814 !isa
<PointerType
>(Val0
->getType()))
1815 return Error(ID
.Loc
, "icmp requires pointer or integer operands");
1816 ID
.ConstantVal
= ConstantExpr::getICmp(Pred
, Val0
, Val1
);
1817 } else if (Opc
== Instruction::VFCmp
) {
1818 // FIXME: REMOVE VFCMP Support
1819 if (!Val0
->getType()->isFPOrFPVector() ||
1820 !isa
<VectorType
>(Val0
->getType()))
1821 return Error(ID
.Loc
, "vfcmp requires vector floating point operands");
1822 ID
.ConstantVal
= ConstantExpr::getVFCmp(Pred
, Val0
, Val1
);
1823 } else if (Opc
== Instruction::VICmp
) {
1824 // FIXME: REMOVE VICMP Support
1825 if (!Val0
->getType()->isIntOrIntVector() ||
1826 !isa
<VectorType
>(Val0
->getType()))
1827 return Error(ID
.Loc
, "vicmp requires vector floating point operands");
1828 ID
.ConstantVal
= ConstantExpr::getVICmp(Pred
, Val0
, Val1
);
1830 ID
.Kind
= ValID::t_Constant
;
1834 // Binary Operators.
1838 case lltok::kw_udiv
:
1839 case lltok::kw_sdiv
:
1840 case lltok::kw_fdiv
:
1841 case lltok::kw_urem
:
1842 case lltok::kw_srem
:
1843 case lltok::kw_frem
: {
1844 unsigned Opc
= Lex
.getUIntVal();
1845 Constant
*Val0
, *Val1
;
1847 if (ParseToken(lltok::lparen
, "expected '(' in binary constantexpr") ||
1848 ParseGlobalTypeAndValue(Val0
) ||
1849 ParseToken(lltok::comma
, "expected comma in binary constantexpr") ||
1850 ParseGlobalTypeAndValue(Val1
) ||
1851 ParseToken(lltok::rparen
, "expected ')' in binary constantexpr"))
1853 if (Val0
->getType() != Val1
->getType())
1854 return Error(ID
.Loc
, "operands of constexpr must have same type");
1855 if (!Val0
->getType()->isIntOrIntVector() &&
1856 !Val0
->getType()->isFPOrFPVector())
1857 return Error(ID
.Loc
,"constexpr requires integer, fp, or vector operands");
1858 ID
.ConstantVal
= ConstantExpr::get(Opc
, Val0
, Val1
);
1859 ID
.Kind
= ValID::t_Constant
;
1863 // Logical Operations
1865 case lltok::kw_lshr
:
1866 case lltok::kw_ashr
:
1869 case lltok::kw_xor
: {
1870 unsigned Opc
= Lex
.getUIntVal();
1871 Constant
*Val0
, *Val1
;
1873 if (ParseToken(lltok::lparen
, "expected '(' in logical constantexpr") ||
1874 ParseGlobalTypeAndValue(Val0
) ||
1875 ParseToken(lltok::comma
, "expected comma in logical constantexpr") ||
1876 ParseGlobalTypeAndValue(Val1
) ||
1877 ParseToken(lltok::rparen
, "expected ')' in logical constantexpr"))
1879 if (Val0
->getType() != Val1
->getType())
1880 return Error(ID
.Loc
, "operands of constexpr must have same type");
1881 if (!Val0
->getType()->isIntOrIntVector())
1882 return Error(ID
.Loc
,
1883 "constexpr requires integer or integer vector operands");
1884 ID
.ConstantVal
= ConstantExpr::get(Opc
, Val0
, Val1
);
1885 ID
.Kind
= ValID::t_Constant
;
1889 case lltok::kw_getelementptr
:
1890 case lltok::kw_shufflevector
:
1891 case lltok::kw_insertelement
:
1892 case lltok::kw_extractelement
:
1893 case lltok::kw_select
: {
1894 unsigned Opc
= Lex
.getUIntVal();
1895 SmallVector
<Constant
*, 16> Elts
;
1897 if (ParseToken(lltok::lparen
, "expected '(' in constantexpr") ||
1898 ParseGlobalValueVector(Elts
) ||
1899 ParseToken(lltok::rparen
, "expected ')' in constantexpr"))
1902 if (Opc
== Instruction::GetElementPtr
) {
1903 if (Elts
.size() == 0 || !isa
<PointerType
>(Elts
[0]->getType()))
1904 return Error(ID
.Loc
, "getelementptr requires pointer operand");
1906 if (!GetElementPtrInst::getIndexedType(Elts
[0]->getType(),
1907 (Value
**)&Elts
[1], Elts
.size()-1))
1908 return Error(ID
.Loc
, "invalid indices for getelementptr");
1909 ID
.ConstantVal
= ConstantExpr::getGetElementPtr(Elts
[0],
1910 &Elts
[1], Elts
.size()-1);
1911 } else if (Opc
== Instruction::Select
) {
1912 if (Elts
.size() != 3)
1913 return Error(ID
.Loc
, "expected three operands to select");
1914 if (const char *Reason
= SelectInst::areInvalidOperands(Elts
[0], Elts
[1],
1916 return Error(ID
.Loc
, Reason
);
1917 ID
.ConstantVal
= ConstantExpr::getSelect(Elts
[0], Elts
[1], Elts
[2]);
1918 } else if (Opc
== Instruction::ShuffleVector
) {
1919 if (Elts
.size() != 3)
1920 return Error(ID
.Loc
, "expected three operands to shufflevector");
1921 if (!ShuffleVectorInst::isValidOperands(Elts
[0], Elts
[1], Elts
[2]))
1922 return Error(ID
.Loc
, "invalid operands to shufflevector");
1923 ID
.ConstantVal
= ConstantExpr::getShuffleVector(Elts
[0], Elts
[1],Elts
[2]);
1924 } else if (Opc
== Instruction::ExtractElement
) {
1925 if (Elts
.size() != 2)
1926 return Error(ID
.Loc
, "expected two operands to extractelement");
1927 if (!ExtractElementInst::isValidOperands(Elts
[0], Elts
[1]))
1928 return Error(ID
.Loc
, "invalid extractelement operands");
1929 ID
.ConstantVal
= ConstantExpr::getExtractElement(Elts
[0], Elts
[1]);
1931 assert(Opc
== Instruction::InsertElement
&& "Unknown opcode");
1932 if (Elts
.size() != 3)
1933 return Error(ID
.Loc
, "expected three operands to insertelement");
1934 if (!InsertElementInst::isValidOperands(Elts
[0], Elts
[1], Elts
[2]))
1935 return Error(ID
.Loc
, "invalid insertelement operands");
1936 ID
.ConstantVal
= ConstantExpr::getInsertElement(Elts
[0], Elts
[1],Elts
[2]);
1939 ID
.Kind
= ValID::t_Constant
;
1948 /// ParseGlobalValue - Parse a global value with the specified type.
1949 bool LLParser::ParseGlobalValue(const Type
*Ty
, Constant
*&V
) {
1952 return ParseValID(ID
) ||
1953 ConvertGlobalValIDToValue(Ty
, ID
, V
);
1956 /// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1958 bool LLParser::ConvertGlobalValIDToValue(const Type
*Ty
, ValID
&ID
,
1960 if (isa
<FunctionType
>(Ty
))
1961 return Error(ID
.Loc
, "functions are not values, refer to them as pointers");
1964 default: assert(0 && "Unknown ValID!");
1965 case ValID::t_LocalID
:
1966 case ValID::t_LocalName
:
1967 return Error(ID
.Loc
, "invalid use of function-local name");
1968 case ValID::t_InlineAsm
:
1969 return Error(ID
.Loc
, "inline asm can only be an operand of call/invoke");
1970 case ValID::t_GlobalName
:
1971 V
= GetGlobalVal(ID
.StrVal
, Ty
, ID
.Loc
);
1973 case ValID::t_GlobalID
:
1974 V
= GetGlobalVal(ID
.UIntVal
, Ty
, ID
.Loc
);
1976 case ValID::t_APSInt
:
1977 if (!isa
<IntegerType
>(Ty
))
1978 return Error(ID
.Loc
, "integer constant must have integer type");
1979 ID
.APSIntVal
.extOrTrunc(Ty
->getPrimitiveSizeInBits());
1980 V
= ConstantInt::get(ID
.APSIntVal
);
1982 case ValID::t_APFloat
:
1983 if (!Ty
->isFloatingPoint() ||
1984 !ConstantFP::isValueValidForType(Ty
, ID
.APFloatVal
))
1985 return Error(ID
.Loc
, "floating point constant invalid for type");
1987 // The lexer has no type info, so builds all float and double FP constants
1988 // as double. Fix this here. Long double does not need this.
1989 if (&ID
.APFloatVal
.getSemantics() == &APFloat::IEEEdouble
&&
1990 Ty
== Type::FloatTy
) {
1992 ID
.APFloatVal
.convert(APFloat::IEEEsingle
, APFloat::rmNearestTiesToEven
,
1995 V
= ConstantFP::get(ID
.APFloatVal
);
1997 if (V
->getType() != Ty
)
1998 return Error(ID
.Loc
, "floating point constant does not have type '" +
1999 Ty
->getDescription() + "'");
2003 if (!isa
<PointerType
>(Ty
))
2004 return Error(ID
.Loc
, "null must be a pointer type");
2005 V
= ConstantPointerNull::get(cast
<PointerType
>(Ty
));
2007 case ValID::t_Undef
:
2008 // FIXME: LabelTy should not be a first-class type.
2009 if ((!Ty
->isFirstClassType() || Ty
== Type::LabelTy
) &&
2010 !isa
<OpaqueType
>(Ty
))
2011 return Error(ID
.Loc
, "invalid type for undef constant");
2012 V
= UndefValue::get(Ty
);
2014 case ValID::t_EmptyArray
:
2015 if (!isa
<ArrayType
>(Ty
) || cast
<ArrayType
>(Ty
)->getNumElements() != 0)
2016 return Error(ID
.Loc
, "invalid empty array initializer");
2017 V
= UndefValue::get(Ty
);
2020 // FIXME: LabelTy should not be a first-class type.
2021 if (!Ty
->isFirstClassType() || Ty
== Type::LabelTy
)
2022 return Error(ID
.Loc
, "invalid type for null constant");
2023 V
= Constant::getNullValue(Ty
);
2025 case ValID::t_Constant
:
2026 if (ID
.ConstantVal
->getType() != Ty
)
2027 return Error(ID
.Loc
, "constant expression type mismatch");
2033 bool LLParser::ParseGlobalTypeAndValue(Constant
*&V
) {
2034 PATypeHolder
Type(Type::VoidTy
);
2035 return ParseType(Type
) ||
2036 ParseGlobalValue(Type
, V
);
2039 /// ParseGlobalValueVector
2041 /// ::= TypeAndValue (',' TypeAndValue)*
2042 bool LLParser::ParseGlobalValueVector(SmallVectorImpl
<Constant
*> &Elts
) {
2044 if (Lex
.getKind() == lltok::rbrace
||
2045 Lex
.getKind() == lltok::rsquare
||
2046 Lex
.getKind() == lltok::greater
||
2047 Lex
.getKind() == lltok::rparen
)
2051 if (ParseGlobalTypeAndValue(C
)) return true;
2054 while (EatIfPresent(lltok::comma
)) {
2055 if (ParseGlobalTypeAndValue(C
)) return true;
2063 //===----------------------------------------------------------------------===//
2064 // Function Parsing.
2065 //===----------------------------------------------------------------------===//
2067 bool LLParser::ConvertValIDToValue(const Type
*Ty
, ValID
&ID
, Value
*&V
,
2068 PerFunctionState
&PFS
) {
2069 if (ID
.Kind
== ValID::t_LocalID
)
2070 V
= PFS
.GetVal(ID
.UIntVal
, Ty
, ID
.Loc
);
2071 else if (ID
.Kind
== ValID::t_LocalName
)
2072 V
= PFS
.GetVal(ID
.StrVal
, Ty
, ID
.Loc
);
2073 else if (ID
.Kind
== ValID::t_InlineAsm
) {
2074 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
2075 const FunctionType
*FTy
=
2076 PTy
? dyn_cast
<FunctionType
>(PTy
->getElementType()) : 0;
2077 if (!FTy
|| !InlineAsm::Verify(FTy
, ID
.StrVal2
))
2078 return Error(ID
.Loc
, "invalid type for inline asm constraint string");
2079 V
= InlineAsm::get(FTy
, ID
.StrVal
, ID
.StrVal2
, ID
.UIntVal
);
2083 if (ConvertGlobalValIDToValue(Ty
, ID
, C
)) return true;
2091 bool LLParser::ParseValue(const Type
*Ty
, Value
*&V
, PerFunctionState
&PFS
) {
2094 return ParseValID(ID
) ||
2095 ConvertValIDToValue(Ty
, ID
, V
, PFS
);
2098 bool LLParser::ParseTypeAndValue(Value
*&V
, PerFunctionState
&PFS
) {
2099 PATypeHolder
T(Type::VoidTy
);
2100 return ParseType(T
) ||
2101 ParseValue(T
, V
, PFS
);
2105 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2106 /// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2107 /// OptionalAlign OptGC
2108 bool LLParser::ParseFunctionHeader(Function
*&Fn
, bool isDefine
) {
2109 // Parse the linkage.
2110 LocTy LinkageLoc
= Lex
.getLoc();
2113 unsigned Visibility
, CC
, RetAttrs
;
2114 PATypeHolder
RetType(Type::VoidTy
);
2115 LocTy RetTypeLoc
= Lex
.getLoc();
2116 if (ParseOptionalLinkage(Linkage
) ||
2117 ParseOptionalVisibility(Visibility
) ||
2118 ParseOptionalCallingConv(CC
) ||
2119 ParseOptionalAttrs(RetAttrs
, 1) ||
2120 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/))
2123 // Verify that the linkage is ok.
2124 switch ((GlobalValue::LinkageTypes
)Linkage
) {
2125 case GlobalValue::ExternalLinkage
:
2126 break; // always ok.
2127 case GlobalValue::DLLImportLinkage
:
2128 case GlobalValue::ExternalWeakLinkage
:
2130 return Error(LinkageLoc
, "invalid linkage for function definition");
2132 case GlobalValue::PrivateLinkage
:
2133 case GlobalValue::InternalLinkage
:
2134 case GlobalValue::AvailableExternallyLinkage
:
2135 case GlobalValue::LinkOnceAnyLinkage
:
2136 case GlobalValue::LinkOnceODRLinkage
:
2137 case GlobalValue::WeakAnyLinkage
:
2138 case GlobalValue::WeakODRLinkage
:
2139 case GlobalValue::DLLExportLinkage
:
2141 return Error(LinkageLoc
, "invalid linkage for function declaration");
2143 case GlobalValue::AppendingLinkage
:
2144 case GlobalValue::GhostLinkage
:
2145 case GlobalValue::CommonLinkage
:
2146 return Error(LinkageLoc
, "invalid function linkage type");
2149 if (!FunctionType::isValidReturnType(RetType
) ||
2150 isa
<OpaqueType
>(RetType
))
2151 return Error(RetTypeLoc
, "invalid function return type");
2153 LocTy NameLoc
= Lex
.getLoc();
2155 std::string FunctionName
;
2156 if (Lex
.getKind() == lltok::GlobalVar
) {
2157 FunctionName
= Lex
.getStrVal();
2158 } else if (Lex
.getKind() == lltok::GlobalID
) { // @42 is ok.
2159 unsigned NameID
= Lex
.getUIntVal();
2161 if (NameID
!= NumberedVals
.size())
2162 return TokError("function expected to be numbered '%" +
2163 utostr(NumberedVals
.size()) + "'");
2165 return TokError("expected function name");
2170 if (Lex
.getKind() != lltok::lparen
)
2171 return TokError("expected '(' in function argument list");
2173 std::vector
<ArgInfo
> ArgList
;
2176 std::string Section
;
2180 if (ParseArgumentList(ArgList
, isVarArg
, false) ||
2181 ParseOptionalAttrs(FuncAttrs
, 2) ||
2182 (EatIfPresent(lltok::kw_section
) &&
2183 ParseStringConstant(Section
)) ||
2184 ParseOptionalAlignment(Alignment
) ||
2185 (EatIfPresent(lltok::kw_gc
) &&
2186 ParseStringConstant(GC
)))
2189 // If the alignment was parsed as an attribute, move to the alignment field.
2190 if (FuncAttrs
& Attribute::Alignment
) {
2191 Alignment
= Attribute::getAlignmentFromAttrs(FuncAttrs
);
2192 FuncAttrs
&= ~Attribute::Alignment
;
2195 // Okay, if we got here, the function is syntactically valid. Convert types
2196 // and do semantic checks.
2197 std::vector
<const Type
*> ParamTypeList
;
2198 SmallVector
<AttributeWithIndex
, 8> Attrs
;
2199 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2201 unsigned ObsoleteFuncAttrs
= Attribute::ZExt
|Attribute::SExt
|Attribute::InReg
;
2202 if (FuncAttrs
& ObsoleteFuncAttrs
) {
2203 RetAttrs
|= FuncAttrs
& ObsoleteFuncAttrs
;
2204 FuncAttrs
&= ~ObsoleteFuncAttrs
;
2207 if (RetAttrs
!= Attribute::None
)
2208 Attrs
.push_back(AttributeWithIndex::get(0, RetAttrs
));
2210 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
2211 ParamTypeList
.push_back(ArgList
[i
].Type
);
2212 if (ArgList
[i
].Attrs
!= Attribute::None
)
2213 Attrs
.push_back(AttributeWithIndex::get(i
+1, ArgList
[i
].Attrs
));
2216 if (FuncAttrs
!= Attribute::None
)
2217 Attrs
.push_back(AttributeWithIndex::get(~0, FuncAttrs
));
2219 AttrListPtr PAL
= AttrListPtr::get(Attrs
.begin(), Attrs
.end());
2221 if (PAL
.paramHasAttr(1, Attribute::StructRet
) &&
2222 RetType
!= Type::VoidTy
)
2223 return Error(RetTypeLoc
, "functions with 'sret' argument must return void");
2225 const FunctionType
*FT
= FunctionType::get(RetType
, ParamTypeList
, isVarArg
);
2226 const PointerType
*PFT
= PointerType::getUnqual(FT
);
2229 if (!FunctionName
.empty()) {
2230 // If this was a definition of a forward reference, remove the definition
2231 // from the forward reference table and fill in the forward ref.
2232 std::map
<std::string
, std::pair
<GlobalValue
*, LocTy
> >::iterator FRVI
=
2233 ForwardRefVals
.find(FunctionName
);
2234 if (FRVI
!= ForwardRefVals
.end()) {
2235 Fn
= M
->getFunction(FunctionName
);
2236 ForwardRefVals
.erase(FRVI
);
2237 } else if ((Fn
= M
->getFunction(FunctionName
))) {
2238 // If this function already exists in the symbol table, then it is
2239 // multiply defined. We accept a few cases for old backwards compat.
2240 // FIXME: Remove this stuff for LLVM 3.0.
2241 if (Fn
->getType() != PFT
|| Fn
->getAttributes() != PAL
||
2242 (!Fn
->isDeclaration() && isDefine
)) {
2243 // If the redefinition has different type or different attributes,
2244 // reject it. If both have bodies, reject it.
2245 return Error(NameLoc
, "invalid redefinition of function '" +
2246 FunctionName
+ "'");
2247 } else if (Fn
->isDeclaration()) {
2248 // Make sure to strip off any argument names so we can't get conflicts.
2249 for (Function::arg_iterator AI
= Fn
->arg_begin(), AE
= Fn
->arg_end();
2255 } else if (FunctionName
.empty()) {
2256 // If this is a definition of a forward referenced function, make sure the
2258 std::map
<unsigned, std::pair
<GlobalValue
*, LocTy
> >::iterator I
2259 = ForwardRefValIDs
.find(NumberedVals
.size());
2260 if (I
!= ForwardRefValIDs
.end()) {
2261 Fn
= cast
<Function
>(I
->second
.first
);
2262 if (Fn
->getType() != PFT
)
2263 return Error(NameLoc
, "type of definition and forward reference of '@" +
2264 utostr(NumberedVals
.size()) +"' disagree");
2265 ForwardRefValIDs
.erase(I
);
2270 Fn
= Function::Create(FT
, GlobalValue::ExternalLinkage
, FunctionName
, M
);
2271 else // Move the forward-reference to the correct spot in the module.
2272 M
->getFunctionList().splice(M
->end(), M
->getFunctionList(), Fn
);
2274 if (FunctionName
.empty())
2275 NumberedVals
.push_back(Fn
);
2277 Fn
->setLinkage((GlobalValue::LinkageTypes
)Linkage
);
2278 Fn
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
2279 Fn
->setCallingConv(CC
);
2280 Fn
->setAttributes(PAL
);
2281 Fn
->setAlignment(Alignment
);
2282 Fn
->setSection(Section
);
2283 if (!GC
.empty()) Fn
->setGC(GC
.c_str());
2285 // Add all of the arguments we parsed to the function.
2286 Function::arg_iterator ArgIt
= Fn
->arg_begin();
2287 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
, ++ArgIt
) {
2288 // If the argument has a name, insert it into the argument symbol table.
2289 if (ArgList
[i
].Name
.empty()) continue;
2291 // Set the name, if it conflicted, it will be auto-renamed.
2292 ArgIt
->setName(ArgList
[i
].Name
);
2294 if (ArgIt
->getNameStr() != ArgList
[i
].Name
)
2295 return Error(ArgList
[i
].Loc
, "redefinition of argument '%" +
2296 ArgList
[i
].Name
+ "'");
2303 /// ParseFunctionBody
2304 /// ::= '{' BasicBlock+ '}'
2305 /// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2307 bool LLParser::ParseFunctionBody(Function
&Fn
) {
2308 if (Lex
.getKind() != lltok::lbrace
&& Lex
.getKind() != lltok::kw_begin
)
2309 return TokError("expected '{' in function body");
2310 Lex
.Lex(); // eat the {.
2312 PerFunctionState
PFS(*this, Fn
);
2314 while (Lex
.getKind() != lltok::rbrace
&& Lex
.getKind() != lltok::kw_end
)
2315 if (ParseBasicBlock(PFS
)) return true;
2320 // Verify function is ok.
2321 return PFS
.VerifyFunctionComplete();
2325 /// ::= LabelStr? Instruction*
2326 bool LLParser::ParseBasicBlock(PerFunctionState
&PFS
) {
2327 // If this basic block starts out with a name, remember it.
2329 LocTy NameLoc
= Lex
.getLoc();
2330 if (Lex
.getKind() == lltok::LabelStr
) {
2331 Name
= Lex
.getStrVal();
2335 BasicBlock
*BB
= PFS
.DefineBB(Name
, NameLoc
);
2336 if (BB
== 0) return true;
2338 std::string NameStr
;
2340 // Parse the instructions in this block until we get a terminator.
2343 // This instruction may have three possibilities for a name: a) none
2344 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2345 LocTy NameLoc
= Lex
.getLoc();
2349 if (Lex
.getKind() == lltok::LocalVarID
) {
2350 NameID
= Lex
.getUIntVal();
2352 if (ParseToken(lltok::equal
, "expected '=' after instruction id"))
2354 } else if (Lex
.getKind() == lltok::LocalVar
||
2355 // FIXME: REMOVE IN LLVM 3.0
2356 Lex
.getKind() == lltok::StringConstant
) {
2357 NameStr
= Lex
.getStrVal();
2359 if (ParseToken(lltok::equal
, "expected '=' after instruction name"))
2363 if (ParseInstruction(Inst
, BB
, PFS
)) return true;
2365 BB
->getInstList().push_back(Inst
);
2367 // Set the name on the instruction.
2368 if (PFS
.SetInstName(NameID
, NameStr
, NameLoc
, Inst
)) return true;
2369 } while (!isa
<TerminatorInst
>(Inst
));
2374 //===----------------------------------------------------------------------===//
2375 // Instruction Parsing.
2376 //===----------------------------------------------------------------------===//
2378 /// ParseInstruction - Parse one of the many different instructions.
2380 bool LLParser::ParseInstruction(Instruction
*&Inst
, BasicBlock
*BB
,
2381 PerFunctionState
&PFS
) {
2382 lltok::Kind Token
= Lex
.getKind();
2383 if (Token
== lltok::Eof
)
2384 return TokError("found end of file when expecting more instructions");
2385 LocTy Loc
= Lex
.getLoc();
2386 unsigned KeywordVal
= Lex
.getUIntVal();
2387 Lex
.Lex(); // Eat the keyword.
2390 default: return Error(Loc
, "expected instruction opcode");
2391 // Terminator Instructions.
2392 case lltok::kw_unwind
: Inst
= new UnwindInst(); return false;
2393 case lltok::kw_unreachable
: Inst
= new UnreachableInst(); return false;
2394 case lltok::kw_ret
: return ParseRet(Inst
, BB
, PFS
);
2395 case lltok::kw_br
: return ParseBr(Inst
, PFS
);
2396 case lltok::kw_switch
: return ParseSwitch(Inst
, PFS
);
2397 case lltok::kw_invoke
: return ParseInvoke(Inst
, PFS
);
2398 // Binary Operators.
2401 case lltok::kw_mul
: return ParseArithmetic(Inst
, PFS
, KeywordVal
, 0);
2403 case lltok::kw_udiv
:
2404 case lltok::kw_sdiv
:
2405 case lltok::kw_urem
:
2406 case lltok::kw_srem
: return ParseArithmetic(Inst
, PFS
, KeywordVal
, 1);
2407 case lltok::kw_fdiv
:
2408 case lltok::kw_frem
: return ParseArithmetic(Inst
, PFS
, KeywordVal
, 2);
2410 case lltok::kw_lshr
:
2411 case lltok::kw_ashr
:
2414 case lltok::kw_xor
: return ParseLogical(Inst
, PFS
, KeywordVal
);
2415 case lltok::kw_icmp
:
2416 case lltok::kw_fcmp
:
2417 case lltok::kw_vicmp
:
2418 case lltok::kw_vfcmp
: return ParseCompare(Inst
, PFS
, KeywordVal
);
2420 case lltok::kw_trunc
:
2421 case lltok::kw_zext
:
2422 case lltok::kw_sext
:
2423 case lltok::kw_fptrunc
:
2424 case lltok::kw_fpext
:
2425 case lltok::kw_bitcast
:
2426 case lltok::kw_uitofp
:
2427 case lltok::kw_sitofp
:
2428 case lltok::kw_fptoui
:
2429 case lltok::kw_fptosi
:
2430 case lltok::kw_inttoptr
:
2431 case lltok::kw_ptrtoint
: return ParseCast(Inst
, PFS
, KeywordVal
);
2433 case lltok::kw_select
: return ParseSelect(Inst
, PFS
);
2434 case lltok::kw_va_arg
: return ParseVA_Arg(Inst
, PFS
);
2435 case lltok::kw_extractelement
: return ParseExtractElement(Inst
, PFS
);
2436 case lltok::kw_insertelement
: return ParseInsertElement(Inst
, PFS
);
2437 case lltok::kw_shufflevector
: return ParseShuffleVector(Inst
, PFS
);
2438 case lltok::kw_phi
: return ParsePHI(Inst
, PFS
);
2439 case lltok::kw_call
: return ParseCall(Inst
, PFS
, false);
2440 case lltok::kw_tail
: return ParseCall(Inst
, PFS
, true);
2442 case lltok::kw_alloca
:
2443 case lltok::kw_malloc
: return ParseAlloc(Inst
, PFS
, KeywordVal
);
2444 case lltok::kw_free
: return ParseFree(Inst
, PFS
);
2445 case lltok::kw_load
: return ParseLoad(Inst
, PFS
, false);
2446 case lltok::kw_store
: return ParseStore(Inst
, PFS
, false);
2447 case lltok::kw_volatile
:
2448 if (EatIfPresent(lltok::kw_load
))
2449 return ParseLoad(Inst
, PFS
, true);
2450 else if (EatIfPresent(lltok::kw_store
))
2451 return ParseStore(Inst
, PFS
, true);
2453 return TokError("expected 'load' or 'store'");
2454 case lltok::kw_getresult
: return ParseGetResult(Inst
, PFS
);
2455 case lltok::kw_getelementptr
: return ParseGetElementPtr(Inst
, PFS
);
2456 case lltok::kw_extractvalue
: return ParseExtractValue(Inst
, PFS
);
2457 case lltok::kw_insertvalue
: return ParseInsertValue(Inst
, PFS
);
2461 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2462 bool LLParser::ParseCmpPredicate(unsigned &P
, unsigned Opc
) {
2463 // FIXME: REMOVE vicmp/vfcmp!
2464 if (Opc
== Instruction::FCmp
|| Opc
== Instruction::VFCmp
) {
2465 switch (Lex
.getKind()) {
2466 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2467 case lltok::kw_oeq
: P
= CmpInst::FCMP_OEQ
; break;
2468 case lltok::kw_one
: P
= CmpInst::FCMP_ONE
; break;
2469 case lltok::kw_olt
: P
= CmpInst::FCMP_OLT
; break;
2470 case lltok::kw_ogt
: P
= CmpInst::FCMP_OGT
; break;
2471 case lltok::kw_ole
: P
= CmpInst::FCMP_OLE
; break;
2472 case lltok::kw_oge
: P
= CmpInst::FCMP_OGE
; break;
2473 case lltok::kw_ord
: P
= CmpInst::FCMP_ORD
; break;
2474 case lltok::kw_uno
: P
= CmpInst::FCMP_UNO
; break;
2475 case lltok::kw_ueq
: P
= CmpInst::FCMP_UEQ
; break;
2476 case lltok::kw_une
: P
= CmpInst::FCMP_UNE
; break;
2477 case lltok::kw_ult
: P
= CmpInst::FCMP_ULT
; break;
2478 case lltok::kw_ugt
: P
= CmpInst::FCMP_UGT
; break;
2479 case lltok::kw_ule
: P
= CmpInst::FCMP_ULE
; break;
2480 case lltok::kw_uge
: P
= CmpInst::FCMP_UGE
; break;
2481 case lltok::kw_true
: P
= CmpInst::FCMP_TRUE
; break;
2482 case lltok::kw_false
: P
= CmpInst::FCMP_FALSE
; break;
2485 switch (Lex
.getKind()) {
2486 default: TokError("expected icmp predicate (e.g. 'eq')");
2487 case lltok::kw_eq
: P
= CmpInst::ICMP_EQ
; break;
2488 case lltok::kw_ne
: P
= CmpInst::ICMP_NE
; break;
2489 case lltok::kw_slt
: P
= CmpInst::ICMP_SLT
; break;
2490 case lltok::kw_sgt
: P
= CmpInst::ICMP_SGT
; break;
2491 case lltok::kw_sle
: P
= CmpInst::ICMP_SLE
; break;
2492 case lltok::kw_sge
: P
= CmpInst::ICMP_SGE
; break;
2493 case lltok::kw_ult
: P
= CmpInst::ICMP_ULT
; break;
2494 case lltok::kw_ugt
: P
= CmpInst::ICMP_UGT
; break;
2495 case lltok::kw_ule
: P
= CmpInst::ICMP_ULE
; break;
2496 case lltok::kw_uge
: P
= CmpInst::ICMP_UGE
; break;
2503 //===----------------------------------------------------------------------===//
2504 // Terminator Instructions.
2505 //===----------------------------------------------------------------------===//
2507 /// ParseRet - Parse a return instruction.
2509 /// ::= 'ret' TypeAndValue
2510 /// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]]
2511 bool LLParser::ParseRet(Instruction
*&Inst
, BasicBlock
*BB
,
2512 PerFunctionState
&PFS
) {
2513 PATypeHolder
Ty(Type::VoidTy
);
2514 if (ParseType(Ty
, true /*void allowed*/)) return true;
2516 if (Ty
== Type::VoidTy
) {
2517 Inst
= ReturnInst::Create();
2522 if (ParseValue(Ty
, RV
, PFS
)) return true;
2524 // The normal case is one return value.
2525 if (Lex
.getKind() == lltok::comma
) {
2526 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2527 // of 'ret {i32,i32} {i32 1, i32 2}'
2528 SmallVector
<Value
*, 8> RVs
;
2531 while (EatIfPresent(lltok::comma
)) {
2532 if (ParseTypeAndValue(RV
, PFS
)) return true;
2536 RV
= UndefValue::get(PFS
.getFunction().getReturnType());
2537 for (unsigned i
= 0, e
= RVs
.size(); i
!= e
; ++i
) {
2538 Instruction
*I
= InsertValueInst::Create(RV
, RVs
[i
], i
, "mrv");
2539 BB
->getInstList().push_back(I
);
2543 Inst
= ReturnInst::Create(RV
);
2549 /// ::= 'br' TypeAndValue
2550 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2551 bool LLParser::ParseBr(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2553 Value
*Op0
, *Op1
, *Op2
;
2554 if (ParseTypeAndValue(Op0
, Loc
, PFS
)) return true;
2556 if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(Op0
)) {
2557 Inst
= BranchInst::Create(BB
);
2561 if (Op0
->getType() != Type::Int1Ty
)
2562 return Error(Loc
, "branch condition must have 'i1' type");
2564 if (ParseToken(lltok::comma
, "expected ',' after branch condition") ||
2565 ParseTypeAndValue(Op1
, Loc
, PFS
) ||
2566 ParseToken(lltok::comma
, "expected ',' after true destination") ||
2567 ParseTypeAndValue(Op2
, Loc2
, PFS
))
2570 if (!isa
<BasicBlock
>(Op1
))
2571 return Error(Loc
, "true destination of branch must be a basic block");
2572 if (!isa
<BasicBlock
>(Op2
))
2573 return Error(Loc2
, "true destination of branch must be a basic block");
2575 Inst
= BranchInst::Create(cast
<BasicBlock
>(Op1
), cast
<BasicBlock
>(Op2
), Op0
);
2581 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2583 /// ::= (TypeAndValue ',' TypeAndValue)*
2584 bool LLParser::ParseSwitch(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2585 LocTy CondLoc
, BBLoc
;
2586 Value
*Cond
, *DefaultBB
;
2587 if (ParseTypeAndValue(Cond
, CondLoc
, PFS
) ||
2588 ParseToken(lltok::comma
, "expected ',' after switch condition") ||
2589 ParseTypeAndValue(DefaultBB
, BBLoc
, PFS
) ||
2590 ParseToken(lltok::lsquare
, "expected '[' with switch table"))
2593 if (!isa
<IntegerType
>(Cond
->getType()))
2594 return Error(CondLoc
, "switch condition must have integer type");
2595 if (!isa
<BasicBlock
>(DefaultBB
))
2596 return Error(BBLoc
, "default destination must be a basic block");
2598 // Parse the jump table pairs.
2599 SmallPtrSet
<Value
*, 32> SeenCases
;
2600 SmallVector
<std::pair
<ConstantInt
*, BasicBlock
*>, 32> Table
;
2601 while (Lex
.getKind() != lltok::rsquare
) {
2602 Value
*Constant
, *DestBB
;
2604 if (ParseTypeAndValue(Constant
, CondLoc
, PFS
) ||
2605 ParseToken(lltok::comma
, "expected ',' after case value") ||
2606 ParseTypeAndValue(DestBB
, BBLoc
, PFS
))
2609 if (!SeenCases
.insert(Constant
))
2610 return Error(CondLoc
, "duplicate case value in switch");
2611 if (!isa
<ConstantInt
>(Constant
))
2612 return Error(CondLoc
, "case value is not a constant integer");
2613 if (!isa
<BasicBlock
>(DestBB
))
2614 return Error(BBLoc
, "case destination is not a basic block");
2616 Table
.push_back(std::make_pair(cast
<ConstantInt
>(Constant
),
2617 cast
<BasicBlock
>(DestBB
)));
2620 Lex
.Lex(); // Eat the ']'.
2622 SwitchInst
*SI
= SwitchInst::Create(Cond
, cast
<BasicBlock
>(DefaultBB
),
2624 for (unsigned i
= 0, e
= Table
.size(); i
!= e
; ++i
)
2625 SI
->addCase(Table
[i
].first
, Table
[i
].second
);
2631 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2632 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2633 bool LLParser::ParseInvoke(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2634 LocTy CallLoc
= Lex
.getLoc();
2635 unsigned CC
, RetAttrs
, FnAttrs
;
2636 PATypeHolder
RetType(Type::VoidTy
);
2639 SmallVector
<ParamInfo
, 16> ArgList
;
2641 Value
*NormalBB
, *UnwindBB
;
2642 if (ParseOptionalCallingConv(CC
) ||
2643 ParseOptionalAttrs(RetAttrs
, 1) ||
2644 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/) ||
2645 ParseValID(CalleeID
) ||
2646 ParseParameterList(ArgList
, PFS
) ||
2647 ParseOptionalAttrs(FnAttrs
, 2) ||
2648 ParseToken(lltok::kw_to
, "expected 'to' in invoke") ||
2649 ParseTypeAndValue(NormalBB
, PFS
) ||
2650 ParseToken(lltok::kw_unwind
, "expected 'unwind' in invoke") ||
2651 ParseTypeAndValue(UnwindBB
, PFS
))
2654 if (!isa
<BasicBlock
>(NormalBB
))
2655 return Error(CallLoc
, "normal destination is not a basic block");
2656 if (!isa
<BasicBlock
>(UnwindBB
))
2657 return Error(CallLoc
, "unwind destination is not a basic block");
2659 // If RetType is a non-function pointer type, then this is the short syntax
2660 // for the call, which means that RetType is just the return type. Infer the
2661 // rest of the function argument types from the arguments that are present.
2662 const PointerType
*PFTy
= 0;
2663 const FunctionType
*Ty
= 0;
2664 if (!(PFTy
= dyn_cast
<PointerType
>(RetType
)) ||
2665 !(Ty
= dyn_cast
<FunctionType
>(PFTy
->getElementType()))) {
2666 // Pull out the types of all of the arguments...
2667 std::vector
<const Type
*> ParamTypes
;
2668 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
2669 ParamTypes
.push_back(ArgList
[i
].V
->getType());
2671 if (!FunctionType::isValidReturnType(RetType
))
2672 return Error(RetTypeLoc
, "Invalid result type for LLVM function");
2674 Ty
= FunctionType::get(RetType
, ParamTypes
, false);
2675 PFTy
= PointerType::getUnqual(Ty
);
2678 // Look up the callee.
2680 if (ConvertValIDToValue(PFTy
, CalleeID
, Callee
, PFS
)) return true;
2682 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2683 // function attributes.
2684 unsigned ObsoleteFuncAttrs
= Attribute::ZExt
|Attribute::SExt
|Attribute::InReg
;
2685 if (FnAttrs
& ObsoleteFuncAttrs
) {
2686 RetAttrs
|= FnAttrs
& ObsoleteFuncAttrs
;
2687 FnAttrs
&= ~ObsoleteFuncAttrs
;
2690 // Set up the Attributes for the function.
2691 SmallVector
<AttributeWithIndex
, 8> Attrs
;
2692 if (RetAttrs
!= Attribute::None
)
2693 Attrs
.push_back(AttributeWithIndex::get(0, RetAttrs
));
2695 SmallVector
<Value
*, 8> Args
;
2697 // Loop through FunctionType's arguments and ensure they are specified
2698 // correctly. Also, gather any parameter attributes.
2699 FunctionType::param_iterator I
= Ty
->param_begin();
2700 FunctionType::param_iterator E
= Ty
->param_end();
2701 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
2702 const Type
*ExpectedTy
= 0;
2705 } else if (!Ty
->isVarArg()) {
2706 return Error(ArgList
[i
].Loc
, "too many arguments specified");
2709 if (ExpectedTy
&& ExpectedTy
!= ArgList
[i
].V
->getType())
2710 return Error(ArgList
[i
].Loc
, "argument is not of expected type '" +
2711 ExpectedTy
->getDescription() + "'");
2712 Args
.push_back(ArgList
[i
].V
);
2713 if (ArgList
[i
].Attrs
!= Attribute::None
)
2714 Attrs
.push_back(AttributeWithIndex::get(i
+1, ArgList
[i
].Attrs
));
2718 return Error(CallLoc
, "not enough parameters specified for call");
2720 if (FnAttrs
!= Attribute::None
)
2721 Attrs
.push_back(AttributeWithIndex::get(~0, FnAttrs
));
2723 // Finish off the Attributes and check them
2724 AttrListPtr PAL
= AttrListPtr::get(Attrs
.begin(), Attrs
.end());
2726 InvokeInst
*II
= InvokeInst::Create(Callee
, cast
<BasicBlock
>(NormalBB
),
2727 cast
<BasicBlock
>(UnwindBB
),
2728 Args
.begin(), Args
.end());
2729 II
->setCallingConv(CC
);
2730 II
->setAttributes(PAL
);
2737 //===----------------------------------------------------------------------===//
2738 // Binary Operators.
2739 //===----------------------------------------------------------------------===//
2742 /// ::= ArithmeticOps TypeAndValue ',' Value
2744 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
2745 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
2746 bool LLParser::ParseArithmetic(Instruction
*&Inst
, PerFunctionState
&PFS
,
2747 unsigned Opc
, unsigned OperandType
) {
2748 LocTy Loc
; Value
*LHS
, *RHS
;
2749 if (ParseTypeAndValue(LHS
, Loc
, PFS
) ||
2750 ParseToken(lltok::comma
, "expected ',' in arithmetic operation") ||
2751 ParseValue(LHS
->getType(), RHS
, PFS
))
2755 switch (OperandType
) {
2756 default: assert(0 && "Unknown operand type!");
2757 case 0: // int or FP.
2758 Valid
= LHS
->getType()->isIntOrIntVector() ||
2759 LHS
->getType()->isFPOrFPVector();
2761 case 1: Valid
= LHS
->getType()->isIntOrIntVector(); break;
2762 case 2: Valid
= LHS
->getType()->isFPOrFPVector(); break;
2766 return Error(Loc
, "invalid operand type for instruction");
2768 Inst
= BinaryOperator::Create((Instruction::BinaryOps
)Opc
, LHS
, RHS
);
2773 /// ::= ArithmeticOps TypeAndValue ',' Value {
2774 bool LLParser::ParseLogical(Instruction
*&Inst
, PerFunctionState
&PFS
,
2776 LocTy Loc
; Value
*LHS
, *RHS
;
2777 if (ParseTypeAndValue(LHS
, Loc
, PFS
) ||
2778 ParseToken(lltok::comma
, "expected ',' in logical operation") ||
2779 ParseValue(LHS
->getType(), RHS
, PFS
))
2782 if (!LHS
->getType()->isIntOrIntVector())
2783 return Error(Loc
,"instruction requires integer or integer vector operands");
2785 Inst
= BinaryOperator::Create((Instruction::BinaryOps
)Opc
, LHS
, RHS
);
2791 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
2792 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
2793 /// ::= 'vicmp' IPredicates TypeAndValue ',' Value
2794 /// ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2795 bool LLParser::ParseCompare(Instruction
*&Inst
, PerFunctionState
&PFS
,
2797 // Parse the integer/fp comparison predicate.
2801 if (ParseCmpPredicate(Pred
, Opc
) ||
2802 ParseTypeAndValue(LHS
, Loc
, PFS
) ||
2803 ParseToken(lltok::comma
, "expected ',' after compare value") ||
2804 ParseValue(LHS
->getType(), RHS
, PFS
))
2807 if (Opc
== Instruction::FCmp
) {
2808 if (!LHS
->getType()->isFPOrFPVector())
2809 return Error(Loc
, "fcmp requires floating point operands");
2810 Inst
= new FCmpInst(CmpInst::Predicate(Pred
), LHS
, RHS
);
2811 } else if (Opc
== Instruction::ICmp
) {
2812 if (!LHS
->getType()->isIntOrIntVector() &&
2813 !isa
<PointerType
>(LHS
->getType()))
2814 return Error(Loc
, "icmp requires integer operands");
2815 Inst
= new ICmpInst(CmpInst::Predicate(Pred
), LHS
, RHS
);
2816 } else if (Opc
== Instruction::VFCmp
) {
2817 if (!LHS
->getType()->isFPOrFPVector() || !isa
<VectorType
>(LHS
->getType()))
2818 return Error(Loc
, "vfcmp requires vector floating point operands");
2819 Inst
= new VFCmpInst(CmpInst::Predicate(Pred
), LHS
, RHS
);
2820 } else if (Opc
== Instruction::VICmp
) {
2821 if (!LHS
->getType()->isIntOrIntVector() || !isa
<VectorType
>(LHS
->getType()))
2822 return Error(Loc
, "vicmp requires vector floating point operands");
2823 Inst
= new VICmpInst(CmpInst::Predicate(Pred
), LHS
, RHS
);
2828 //===----------------------------------------------------------------------===//
2829 // Other Instructions.
2830 //===----------------------------------------------------------------------===//
2834 /// ::= CastOpc TypeAndValue 'to' Type
2835 bool LLParser::ParseCast(Instruction
*&Inst
, PerFunctionState
&PFS
,
2837 LocTy Loc
; Value
*Op
;
2838 PATypeHolder
DestTy(Type::VoidTy
);
2839 if (ParseTypeAndValue(Op
, Loc
, PFS
) ||
2840 ParseToken(lltok::kw_to
, "expected 'to' after cast value") ||
2844 if (!CastInst::castIsValid((Instruction::CastOps
)Opc
, Op
, DestTy
)) {
2845 CastInst::castIsValid((Instruction::CastOps
)Opc
, Op
, DestTy
);
2846 return Error(Loc
, "invalid cast opcode for cast from '" +
2847 Op
->getType()->getDescription() + "' to '" +
2848 DestTy
->getDescription() + "'");
2850 Inst
= CastInst::Create((Instruction::CastOps
)Opc
, Op
, DestTy
);
2855 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2856 bool LLParser::ParseSelect(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2858 Value
*Op0
, *Op1
, *Op2
;
2859 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
2860 ParseToken(lltok::comma
, "expected ',' after select condition") ||
2861 ParseTypeAndValue(Op1
, PFS
) ||
2862 ParseToken(lltok::comma
, "expected ',' after select value") ||
2863 ParseTypeAndValue(Op2
, PFS
))
2866 if (const char *Reason
= SelectInst::areInvalidOperands(Op0
, Op1
, Op2
))
2867 return Error(Loc
, Reason
);
2869 Inst
= SelectInst::Create(Op0
, Op1
, Op2
);
2874 /// ::= 'va_arg' TypeAndValue ',' Type
2875 bool LLParser::ParseVA_Arg(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2877 PATypeHolder
EltTy(Type::VoidTy
);
2879 if (ParseTypeAndValue(Op
, PFS
) ||
2880 ParseToken(lltok::comma
, "expected ',' after vaarg operand") ||
2881 ParseType(EltTy
, TypeLoc
))
2884 if (!EltTy
->isFirstClassType())
2885 return Error(TypeLoc
, "va_arg requires operand with first class type");
2887 Inst
= new VAArgInst(Op
, EltTy
);
2891 /// ParseExtractElement
2892 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
2893 bool LLParser::ParseExtractElement(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2896 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
2897 ParseToken(lltok::comma
, "expected ',' after extract value") ||
2898 ParseTypeAndValue(Op1
, PFS
))
2901 if (!ExtractElementInst::isValidOperands(Op0
, Op1
))
2902 return Error(Loc
, "invalid extractelement operands");
2904 Inst
= new ExtractElementInst(Op0
, Op1
);
2908 /// ParseInsertElement
2909 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2910 bool LLParser::ParseInsertElement(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2912 Value
*Op0
, *Op1
, *Op2
;
2913 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
2914 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
2915 ParseTypeAndValue(Op1
, PFS
) ||
2916 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
2917 ParseTypeAndValue(Op2
, PFS
))
2920 if (!InsertElementInst::isValidOperands(Op0
, Op1
, Op2
))
2921 return Error(Loc
, "invalid extractelement operands");
2923 Inst
= InsertElementInst::Create(Op0
, Op1
, Op2
);
2927 /// ParseShuffleVector
2928 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2929 bool LLParser::ParseShuffleVector(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2931 Value
*Op0
, *Op1
, *Op2
;
2932 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
2933 ParseToken(lltok::comma
, "expected ',' after shuffle mask") ||
2934 ParseTypeAndValue(Op1
, PFS
) ||
2935 ParseToken(lltok::comma
, "expected ',' after shuffle value") ||
2936 ParseTypeAndValue(Op2
, PFS
))
2939 if (!ShuffleVectorInst::isValidOperands(Op0
, Op1
, Op2
))
2940 return Error(Loc
, "invalid extractelement operands");
2942 Inst
= new ShuffleVectorInst(Op0
, Op1
, Op2
);
2947 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
2948 bool LLParser::ParsePHI(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2949 PATypeHolder
Ty(Type::VoidTy
);
2951 LocTy TypeLoc
= Lex
.getLoc();
2953 if (ParseType(Ty
) ||
2954 ParseToken(lltok::lsquare
, "expected '[' in phi value list") ||
2955 ParseValue(Ty
, Op0
, PFS
) ||
2956 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
2957 ParseValue(Type::LabelTy
, Op1
, PFS
) ||
2958 ParseToken(lltok::rsquare
, "expected ']' in phi value list"))
2961 SmallVector
<std::pair
<Value
*, BasicBlock
*>, 16> PHIVals
;
2963 PHIVals
.push_back(std::make_pair(Op0
, cast
<BasicBlock
>(Op1
)));
2965 if (!EatIfPresent(lltok::comma
))
2968 if (ParseToken(lltok::lsquare
, "expected '[' in phi value list") ||
2969 ParseValue(Ty
, Op0
, PFS
) ||
2970 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
2971 ParseValue(Type::LabelTy
, Op1
, PFS
) ||
2972 ParseToken(lltok::rsquare
, "expected ']' in phi value list"))
2976 if (!Ty
->isFirstClassType())
2977 return Error(TypeLoc
, "phi node must have first class type");
2979 PHINode
*PN
= PHINode::Create(Ty
);
2980 PN
->reserveOperandSpace(PHIVals
.size());
2981 for (unsigned i
= 0, e
= PHIVals
.size(); i
!= e
; ++i
)
2982 PN
->addIncoming(PHIVals
[i
].first
, PHIVals
[i
].second
);
2988 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
2989 /// ParameterList OptionalAttrs
2990 bool LLParser::ParseCall(Instruction
*&Inst
, PerFunctionState
&PFS
,
2992 unsigned CC
, RetAttrs
, FnAttrs
;
2993 PATypeHolder
RetType(Type::VoidTy
);
2996 SmallVector
<ParamInfo
, 16> ArgList
;
2997 LocTy CallLoc
= Lex
.getLoc();
2999 if ((isTail
&& ParseToken(lltok::kw_call
, "expected 'tail call'")) ||
3000 ParseOptionalCallingConv(CC
) ||
3001 ParseOptionalAttrs(RetAttrs
, 1) ||
3002 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/) ||
3003 ParseValID(CalleeID
) ||
3004 ParseParameterList(ArgList
, PFS
) ||
3005 ParseOptionalAttrs(FnAttrs
, 2))
3008 // If RetType is a non-function pointer type, then this is the short syntax
3009 // for the call, which means that RetType is just the return type. Infer the
3010 // rest of the function argument types from the arguments that are present.
3011 const PointerType
*PFTy
= 0;
3012 const FunctionType
*Ty
= 0;
3013 if (!(PFTy
= dyn_cast
<PointerType
>(RetType
)) ||
3014 !(Ty
= dyn_cast
<FunctionType
>(PFTy
->getElementType()))) {
3015 // Pull out the types of all of the arguments...
3016 std::vector
<const Type
*> ParamTypes
;
3017 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
3018 ParamTypes
.push_back(ArgList
[i
].V
->getType());
3020 if (!FunctionType::isValidReturnType(RetType
))
3021 return Error(RetTypeLoc
, "Invalid result type for LLVM function");
3023 Ty
= FunctionType::get(RetType
, ParamTypes
, false);
3024 PFTy
= PointerType::getUnqual(Ty
);
3027 // Look up the callee.
3029 if (ConvertValIDToValue(PFTy
, CalleeID
, Callee
, PFS
)) return true;
3031 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3032 // function attributes.
3033 unsigned ObsoleteFuncAttrs
= Attribute::ZExt
|Attribute::SExt
|Attribute::InReg
;
3034 if (FnAttrs
& ObsoleteFuncAttrs
) {
3035 RetAttrs
|= FnAttrs
& ObsoleteFuncAttrs
;
3036 FnAttrs
&= ~ObsoleteFuncAttrs
;
3039 // Set up the Attributes for the function.
3040 SmallVector
<AttributeWithIndex
, 8> Attrs
;
3041 if (RetAttrs
!= Attribute::None
)
3042 Attrs
.push_back(AttributeWithIndex::get(0, RetAttrs
));
3044 SmallVector
<Value
*, 8> Args
;
3046 // Loop through FunctionType's arguments and ensure they are specified
3047 // correctly. Also, gather any parameter attributes.
3048 FunctionType::param_iterator I
= Ty
->param_begin();
3049 FunctionType::param_iterator E
= Ty
->param_end();
3050 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
3051 const Type
*ExpectedTy
= 0;
3054 } else if (!Ty
->isVarArg()) {
3055 return Error(ArgList
[i
].Loc
, "too many arguments specified");
3058 if (ExpectedTy
&& ExpectedTy
!= ArgList
[i
].V
->getType())
3059 return Error(ArgList
[i
].Loc
, "argument is not of expected type '" +
3060 ExpectedTy
->getDescription() + "'");
3061 Args
.push_back(ArgList
[i
].V
);
3062 if (ArgList
[i
].Attrs
!= Attribute::None
)
3063 Attrs
.push_back(AttributeWithIndex::get(i
+1, ArgList
[i
].Attrs
));
3067 return Error(CallLoc
, "not enough parameters specified for call");
3069 if (FnAttrs
!= Attribute::None
)
3070 Attrs
.push_back(AttributeWithIndex::get(~0, FnAttrs
));
3072 // Finish off the Attributes and check them
3073 AttrListPtr PAL
= AttrListPtr::get(Attrs
.begin(), Attrs
.end());
3075 CallInst
*CI
= CallInst::Create(Callee
, Args
.begin(), Args
.end());
3076 CI
->setTailCall(isTail
);
3077 CI
->setCallingConv(CC
);
3078 CI
->setAttributes(PAL
);
3083 //===----------------------------------------------------------------------===//
3084 // Memory Instructions.
3085 //===----------------------------------------------------------------------===//
3088 /// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3089 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3090 bool LLParser::ParseAlloc(Instruction
*&Inst
, PerFunctionState
&PFS
,
3092 PATypeHolder
Ty(Type::VoidTy
);
3095 unsigned Alignment
= 0;
3096 if (ParseType(Ty
)) return true;
3098 if (EatIfPresent(lltok::comma
)) {
3099 if (Lex
.getKind() == lltok::kw_align
) {
3100 if (ParseOptionalAlignment(Alignment
)) return true;
3101 } else if (ParseTypeAndValue(Size
, SizeLoc
, PFS
) ||
3102 ParseOptionalCommaAlignment(Alignment
)) {
3107 if (Size
&& Size
->getType() != Type::Int32Ty
)
3108 return Error(SizeLoc
, "element count must be i32");
3110 if (Opc
== Instruction::Malloc
)
3111 Inst
= new MallocInst(Ty
, Size
, Alignment
);
3113 Inst
= new AllocaInst(Ty
, Size
, Alignment
);
3118 /// ::= 'free' TypeAndValue
3119 bool LLParser::ParseFree(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3120 Value
*Val
; LocTy Loc
;
3121 if (ParseTypeAndValue(Val
, Loc
, PFS
)) return true;
3122 if (!isa
<PointerType
>(Val
->getType()))
3123 return Error(Loc
, "operand to free must be a pointer");
3124 Inst
= new FreeInst(Val
);
3129 /// ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
3130 bool LLParser::ParseLoad(Instruction
*&Inst
, PerFunctionState
&PFS
,
3132 Value
*Val
; LocTy Loc
;
3134 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
3135 ParseOptionalCommaAlignment(Alignment
))
3138 if (!isa
<PointerType
>(Val
->getType()) ||
3139 !cast
<PointerType
>(Val
->getType())->getElementType()->isFirstClassType())
3140 return Error(Loc
, "load operand must be a pointer to a first class type");
3142 Inst
= new LoadInst(Val
, "", isVolatile
, Alignment
);
3147 /// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3148 bool LLParser::ParseStore(Instruction
*&Inst
, PerFunctionState
&PFS
,
3150 Value
*Val
, *Ptr
; LocTy Loc
, PtrLoc
;
3152 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
3153 ParseToken(lltok::comma
, "expected ',' after store operand") ||
3154 ParseTypeAndValue(Ptr
, PtrLoc
, PFS
) ||
3155 ParseOptionalCommaAlignment(Alignment
))
3158 if (!isa
<PointerType
>(Ptr
->getType()))
3159 return Error(PtrLoc
, "store operand must be a pointer");
3160 if (!Val
->getType()->isFirstClassType())
3161 return Error(Loc
, "store operand must be a first class value");
3162 if (cast
<PointerType
>(Ptr
->getType())->getElementType() != Val
->getType())
3163 return Error(Loc
, "stored value and pointer type do not match");
3165 Inst
= new StoreInst(Val
, Ptr
, isVolatile
, Alignment
);
3170 /// ::= 'getresult' TypeAndValue ',' uint
3171 /// FIXME: Remove support for getresult in LLVM 3.0
3172 bool LLParser::ParseGetResult(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3173 Value
*Val
; LocTy ValLoc
, EltLoc
;
3175 if (ParseTypeAndValue(Val
, ValLoc
, PFS
) ||
3176 ParseToken(lltok::comma
, "expected ',' after getresult operand") ||
3177 ParseUInt32(Element
, EltLoc
))
3180 if (!isa
<StructType
>(Val
->getType()) && !isa
<ArrayType
>(Val
->getType()))
3181 return Error(ValLoc
, "getresult inst requires an aggregate operand");
3182 if (!ExtractValueInst::getIndexedType(Val
->getType(), Element
))
3183 return Error(EltLoc
, "invalid getresult index for value");
3184 Inst
= ExtractValueInst::Create(Val
, Element
);
3188 /// ParseGetElementPtr
3189 /// ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3190 bool LLParser::ParseGetElementPtr(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3191 Value
*Ptr
, *Val
; LocTy Loc
, EltLoc
;
3192 if (ParseTypeAndValue(Ptr
, Loc
, PFS
)) return true;
3194 if (!isa
<PointerType
>(Ptr
->getType()))
3195 return Error(Loc
, "base of getelementptr must be a pointer");
3197 SmallVector
<Value
*, 16> Indices
;
3198 while (EatIfPresent(lltok::comma
)) {
3199 if (ParseTypeAndValue(Val
, EltLoc
, PFS
)) return true;
3200 if (!isa
<IntegerType
>(Val
->getType()))
3201 return Error(EltLoc
, "getelementptr index must be an integer");
3202 Indices
.push_back(Val
);
3205 if (!GetElementPtrInst::getIndexedType(Ptr
->getType(),
3206 Indices
.begin(), Indices
.end()))
3207 return Error(Loc
, "invalid getelementptr indices");
3208 Inst
= GetElementPtrInst::Create(Ptr
, Indices
.begin(), Indices
.end());
3212 /// ParseExtractValue
3213 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
3214 bool LLParser::ParseExtractValue(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3215 Value
*Val
; LocTy Loc
;
3216 SmallVector
<unsigned, 4> Indices
;
3217 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
3218 ParseIndexList(Indices
))
3221 if (!isa
<StructType
>(Val
->getType()) && !isa
<ArrayType
>(Val
->getType()))
3222 return Error(Loc
, "extractvalue operand must be array or struct");
3224 if (!ExtractValueInst::getIndexedType(Val
->getType(), Indices
.begin(),
3226 return Error(Loc
, "invalid indices for extractvalue");
3227 Inst
= ExtractValueInst::Create(Val
, Indices
.begin(), Indices
.end());
3231 /// ParseInsertValue
3232 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3233 bool LLParser::ParseInsertValue(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3234 Value
*Val0
, *Val1
; LocTy Loc0
, Loc1
;
3235 SmallVector
<unsigned, 4> Indices
;
3236 if (ParseTypeAndValue(Val0
, Loc0
, PFS
) ||
3237 ParseToken(lltok::comma
, "expected comma after insertvalue operand") ||
3238 ParseTypeAndValue(Val1
, Loc1
, PFS
) ||
3239 ParseIndexList(Indices
))
3242 if (!isa
<StructType
>(Val0
->getType()) && !isa
<ArrayType
>(Val0
->getType()))
3243 return Error(Loc0
, "extractvalue operand must be array or struct");
3245 if (!ExtractValueInst::getIndexedType(Val0
->getType(), Indices
.begin(),
3247 return Error(Loc0
, "invalid indices for insertvalue");
3248 Inst
= InsertValueInst::Create(Val0
, Val1
, Indices
.begin(), Indices
.end());
3252 //===----------------------------------------------------------------------===//
3253 // Embedded metadata.
3254 //===----------------------------------------------------------------------===//
3256 /// ParseMDNodeVector
3257 /// ::= TypeAndValue (',' TypeAndValue)*
3258 bool LLParser::ParseMDNodeVector(SmallVectorImpl
<Constant
*> &Elts
) {
3259 assert(Lex
.getKind() == lltok::lbrace
);
3263 if (ParseGlobalTypeAndValue(C
)) return true;
3265 } while (EatIfPresent(lltok::comma
));