Update comments.
[llvm/msp430.git] / lib / CodeGen / SelectionDAG / SelectionDAG.cpp
blobedd985ed1ad7dfde7866bc9fa89788418d534fb1
1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
12 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "llvm/Constants.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/GlobalAlias.h"
17 #include "llvm/GlobalVariable.h"
18 #include "llvm/Intrinsics.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Assembly/Writer.h"
21 #include "llvm/CallingConv.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallSet.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/StringExtras.h"
41 #include <algorithm>
42 #include <cmath>
43 using namespace llvm;
45 /// makeVTList - Return an instance of the SDVTList struct initialized with the
46 /// specified members.
47 static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48 SDVTList Res = {VTs, NumVTs};
49 return Res;
52 static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53 switch (VT.getSimpleVT()) {
54 default: assert(0 && "Unknown FP format");
55 case MVT::f32: return &APFloat::IEEEsingle;
56 case MVT::f64: return &APFloat::IEEEdouble;
57 case MVT::f80: return &APFloat::x87DoubleExtended;
58 case MVT::f128: return &APFloat::IEEEquad;
59 case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
63 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
65 //===----------------------------------------------------------------------===//
66 // ConstantFPSDNode Class
67 //===----------------------------------------------------------------------===//
69 /// isExactlyValue - We don't rely on operator== working on double values, as
70 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71 /// As such, this method can be used to do an exact bit-for-bit comparison of
72 /// two floating point values.
73 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74 return getValueAPF().bitwiseIsEqual(V);
77 bool ConstantFPSDNode::isValueValidForType(MVT VT,
78 const APFloat& Val) {
79 assert(VT.isFloatingPoint() && "Can only convert between FP types");
81 // PPC long double cannot be converted to any other type.
82 if (VT == MVT::ppcf128 ||
83 &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84 return false;
86 // convert modifies in place, so make a copy.
87 APFloat Val2 = APFloat(Val);
88 bool losesInfo;
89 (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90 &losesInfo);
91 return !losesInfo;
94 //===----------------------------------------------------------------------===//
95 // ISD Namespace
96 //===----------------------------------------------------------------------===//
98 /// isBuildVectorAllOnes - Return true if the specified node is a
99 /// BUILD_VECTOR where all of the elements are ~0 or undef.
100 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101 // Look through a bit convert.
102 if (N->getOpcode() == ISD::BIT_CONVERT)
103 N = N->getOperand(0).getNode();
105 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
107 unsigned i = 0, e = N->getNumOperands();
109 // Skip over all of the undef values.
110 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111 ++i;
113 // Do not accept an all-undef vector.
114 if (i == e) return false;
116 // Do not accept build_vectors that aren't all constants or which have non-~0
117 // elements.
118 SDValue NotZero = N->getOperand(i);
119 if (isa<ConstantSDNode>(NotZero)) {
120 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121 return false;
122 } else if (isa<ConstantFPSDNode>(NotZero)) {
123 if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124 bitcastToAPInt().isAllOnesValue())
125 return false;
126 } else
127 return false;
129 // Okay, we have at least one ~0 value, check to see if the rest match or are
130 // undefs.
131 for (++i; i != e; ++i)
132 if (N->getOperand(i) != NotZero &&
133 N->getOperand(i).getOpcode() != ISD::UNDEF)
134 return false;
135 return true;
139 /// isBuildVectorAllZeros - Return true if the specified node is a
140 /// BUILD_VECTOR where all of the elements are 0 or undef.
141 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142 // Look through a bit convert.
143 if (N->getOpcode() == ISD::BIT_CONVERT)
144 N = N->getOperand(0).getNode();
146 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
148 unsigned i = 0, e = N->getNumOperands();
150 // Skip over all of the undef values.
151 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152 ++i;
154 // Do not accept an all-undef vector.
155 if (i == e) return false;
157 // Do not accept build_vectors that aren't all constants or which have non-~0
158 // elements.
159 SDValue Zero = N->getOperand(i);
160 if (isa<ConstantSDNode>(Zero)) {
161 if (!cast<ConstantSDNode>(Zero)->isNullValue())
162 return false;
163 } else if (isa<ConstantFPSDNode>(Zero)) {
164 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165 return false;
166 } else
167 return false;
169 // Okay, we have at least one ~0 value, check to see if the rest match or are
170 // undefs.
171 for (++i; i != e; ++i)
172 if (N->getOperand(i) != Zero &&
173 N->getOperand(i).getOpcode() != ISD::UNDEF)
174 return false;
175 return true;
178 /// isScalarToVector - Return true if the specified node is a
179 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180 /// element is not an undef.
181 bool ISD::isScalarToVector(const SDNode *N) {
182 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183 return true;
185 if (N->getOpcode() != ISD::BUILD_VECTOR)
186 return false;
187 if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188 return false;
189 unsigned NumElems = N->getNumOperands();
190 for (unsigned i = 1; i < NumElems; ++i) {
191 SDValue V = N->getOperand(i);
192 if (V.getOpcode() != ISD::UNDEF)
193 return false;
195 return true;
199 /// isDebugLabel - Return true if the specified node represents a debug
200 /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201 bool ISD::isDebugLabel(const SDNode *N) {
202 SDValue Zero;
203 if (N->getOpcode() == ISD::DBG_LABEL)
204 return true;
205 if (N->isMachineOpcode() &&
206 N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207 return true;
208 return false;
211 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212 /// when given the operation for (X op Y).
213 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214 // To perform this operation, we just need to swap the L and G bits of the
215 // operation.
216 unsigned OldL = (Operation >> 2) & 1;
217 unsigned OldG = (Operation >> 1) & 1;
218 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
219 (OldL << 1) | // New G bit
220 (OldG << 2)); // New L bit.
223 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224 /// 'op' is a valid SetCC operation.
225 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226 unsigned Operation = Op;
227 if (isInteger)
228 Operation ^= 7; // Flip L, G, E bits, but not U.
229 else
230 Operation ^= 15; // Flip all of the condition bits.
232 if (Operation > ISD::SETTRUE2)
233 Operation &= ~8; // Don't let N and U bits get set.
235 return ISD::CondCode(Operation);
239 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
240 /// signed operation and 2 if the result is an unsigned comparison. Return zero
241 /// if the operation does not depend on the sign of the input (setne and seteq).
242 static int isSignedOp(ISD::CondCode Opcode) {
243 switch (Opcode) {
244 default: assert(0 && "Illegal integer setcc operation!");
245 case ISD::SETEQ:
246 case ISD::SETNE: return 0;
247 case ISD::SETLT:
248 case ISD::SETLE:
249 case ISD::SETGT:
250 case ISD::SETGE: return 1;
251 case ISD::SETULT:
252 case ISD::SETULE:
253 case ISD::SETUGT:
254 case ISD::SETUGE: return 2;
258 /// getSetCCOrOperation - Return the result of a logical OR between different
259 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
260 /// returns SETCC_INVALID if it is not possible to represent the resultant
261 /// comparison.
262 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263 bool isInteger) {
264 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265 // Cannot fold a signed integer setcc with an unsigned integer setcc.
266 return ISD::SETCC_INVALID;
268 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
270 // If the N and U bits get set then the resultant comparison DOES suddenly
271 // care about orderedness, and is true when ordered.
272 if (Op > ISD::SETTRUE2)
273 Op &= ~16; // Clear the U bit if the N bit is set.
275 // Canonicalize illegal integer setcc's.
276 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
277 Op = ISD::SETNE;
279 return ISD::CondCode(Op);
282 /// getSetCCAndOperation - Return the result of a logical AND between different
283 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
284 /// function returns zero if it is not possible to represent the resultant
285 /// comparison.
286 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287 bool isInteger) {
288 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289 // Cannot fold a signed setcc with an unsigned setcc.
290 return ISD::SETCC_INVALID;
292 // Combine all of the condition bits.
293 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
295 // Canonicalize illegal integer setcc's.
296 if (isInteger) {
297 switch (Result) {
298 default: break;
299 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
300 case ISD::SETOEQ: // SETEQ & SETU[LG]E
301 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
302 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
303 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
307 return Result;
310 const TargetMachine &SelectionDAG::getTarget() const {
311 return MF->getTarget();
314 //===----------------------------------------------------------------------===//
315 // SDNode Profile Support
316 //===----------------------------------------------------------------------===//
318 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
320 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
321 ID.AddInteger(OpC);
324 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325 /// solely with their pointer.
326 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327 ID.AddPointer(VTList.VTs);
330 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
332 static void AddNodeIDOperands(FoldingSetNodeID &ID,
333 const SDValue *Ops, unsigned NumOps) {
334 for (; NumOps; --NumOps, ++Ops) {
335 ID.AddPointer(Ops->getNode());
336 ID.AddInteger(Ops->getResNo());
340 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
342 static void AddNodeIDOperands(FoldingSetNodeID &ID,
343 const SDUse *Ops, unsigned NumOps) {
344 for (; NumOps; --NumOps, ++Ops) {
345 ID.AddPointer(Ops->getNode());
346 ID.AddInteger(Ops->getResNo());
350 static void AddNodeIDNode(FoldingSetNodeID &ID,
351 unsigned short OpC, SDVTList VTList,
352 const SDValue *OpList, unsigned N) {
353 AddNodeIDOpcode(ID, OpC);
354 AddNodeIDValueTypes(ID, VTList);
355 AddNodeIDOperands(ID, OpList, N);
358 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359 /// the NodeID data.
360 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361 switch (N->getOpcode()) {
362 default: break; // Normal nodes don't need extra info.
363 case ISD::ARG_FLAGS:
364 ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365 break;
366 case ISD::TargetConstant:
367 case ISD::Constant:
368 ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369 break;
370 case ISD::TargetConstantFP:
371 case ISD::ConstantFP: {
372 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373 break;
375 case ISD::TargetGlobalAddress:
376 case ISD::GlobalAddress:
377 case ISD::TargetGlobalTLSAddress:
378 case ISD::GlobalTLSAddress: {
379 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380 ID.AddPointer(GA->getGlobal());
381 ID.AddInteger(GA->getOffset());
382 break;
384 case ISD::BasicBlock:
385 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386 break;
387 case ISD::Register:
388 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389 break;
390 case ISD::DBG_STOPPOINT: {
391 const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392 ID.AddInteger(DSP->getLine());
393 ID.AddInteger(DSP->getColumn());
394 ID.AddPointer(DSP->getCompileUnit());
395 break;
397 case ISD::SRCVALUE:
398 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399 break;
400 case ISD::MEMOPERAND: {
401 const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402 MO.Profile(ID);
403 break;
405 case ISD::FrameIndex:
406 case ISD::TargetFrameIndex:
407 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408 break;
409 case ISD::JumpTable:
410 case ISD::TargetJumpTable:
411 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412 break;
413 case ISD::ConstantPool:
414 case ISD::TargetConstantPool: {
415 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416 ID.AddInteger(CP->getAlignment());
417 ID.AddInteger(CP->getOffset());
418 if (CP->isMachineConstantPoolEntry())
419 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420 else
421 ID.AddPointer(CP->getConstVal());
422 break;
424 case ISD::CALL: {
425 const CallSDNode *Call = cast<CallSDNode>(N);
426 ID.AddInteger(Call->getCallingConv());
427 ID.AddInteger(Call->isVarArg());
428 break;
430 case ISD::LOAD: {
431 const LoadSDNode *LD = cast<LoadSDNode>(N);
432 ID.AddInteger(LD->getMemoryVT().getRawBits());
433 ID.AddInteger(LD->getRawSubclassData());
434 break;
436 case ISD::STORE: {
437 const StoreSDNode *ST = cast<StoreSDNode>(N);
438 ID.AddInteger(ST->getMemoryVT().getRawBits());
439 ID.AddInteger(ST->getRawSubclassData());
440 break;
442 case ISD::ATOMIC_CMP_SWAP:
443 case ISD::ATOMIC_SWAP:
444 case ISD::ATOMIC_LOAD_ADD:
445 case ISD::ATOMIC_LOAD_SUB:
446 case ISD::ATOMIC_LOAD_AND:
447 case ISD::ATOMIC_LOAD_OR:
448 case ISD::ATOMIC_LOAD_XOR:
449 case ISD::ATOMIC_LOAD_NAND:
450 case ISD::ATOMIC_LOAD_MIN:
451 case ISD::ATOMIC_LOAD_MAX:
452 case ISD::ATOMIC_LOAD_UMIN:
453 case ISD::ATOMIC_LOAD_UMAX: {
454 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455 ID.AddInteger(AT->getMemoryVT().getRawBits());
456 ID.AddInteger(AT->getRawSubclassData());
457 break;
459 } // end switch (N->getOpcode())
462 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
463 /// data.
464 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
465 AddNodeIDOpcode(ID, N->getOpcode());
466 // Add the return value info.
467 AddNodeIDValueTypes(ID, N->getVTList());
468 // Add the operand info.
469 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
471 // Handle SDNode leafs with special info.
472 AddNodeIDCustom(ID, N);
475 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
476 /// the CSE map that carries alignment, volatility, indexing mode, and
477 /// extension/truncation information.
479 static inline unsigned
480 encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
481 bool isVolatile, unsigned Alignment) {
482 assert((ConvType & 3) == ConvType &&
483 "ConvType may not require more than 2 bits!");
484 assert((AM & 7) == AM &&
485 "AM may not require more than 3 bits!");
486 return ConvType |
487 (AM << 2) |
488 (isVolatile << 5) |
489 ((Log2_32(Alignment) + 1) << 6);
492 //===----------------------------------------------------------------------===//
493 // SelectionDAG Class
494 //===----------------------------------------------------------------------===//
496 /// doNotCSE - Return true if CSE should not be performed for this node.
497 static bool doNotCSE(SDNode *N) {
498 if (N->getValueType(0) == MVT::Flag)
499 return true; // Never CSE anything that produces a flag.
501 switch (N->getOpcode()) {
502 default: break;
503 case ISD::HANDLENODE:
504 case ISD::DBG_LABEL:
505 case ISD::DBG_STOPPOINT:
506 case ISD::EH_LABEL:
507 case ISD::DECLARE:
508 return true; // Never CSE these nodes.
511 // Check that remaining values produced are not flags.
512 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513 if (N->getValueType(i) == MVT::Flag)
514 return true; // Never CSE anything that produces a flag.
516 return false;
519 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
520 /// SelectionDAG.
521 void SelectionDAG::RemoveDeadNodes() {
522 // Create a dummy node (which is not added to allnodes), that adds a reference
523 // to the root node, preventing it from being deleted.
524 HandleSDNode Dummy(getRoot());
526 SmallVector<SDNode*, 128> DeadNodes;
528 // Add all obviously-dead nodes to the DeadNodes worklist.
529 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
530 if (I->use_empty())
531 DeadNodes.push_back(I);
533 RemoveDeadNodes(DeadNodes);
535 // If the root changed (e.g. it was a dead load, update the root).
536 setRoot(Dummy.getValue());
539 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
540 /// given list, and any nodes that become unreachable as a result.
541 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
542 DAGUpdateListener *UpdateListener) {
544 // Process the worklist, deleting the nodes and adding their uses to the
545 // worklist.
546 while (!DeadNodes.empty()) {
547 SDNode *N = DeadNodes.pop_back_val();
549 if (UpdateListener)
550 UpdateListener->NodeDeleted(N, 0);
552 // Take the node out of the appropriate CSE map.
553 RemoveNodeFromCSEMaps(N);
555 // Next, brutally remove the operand list. This is safe to do, as there are
556 // no cycles in the graph.
557 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
558 SDUse &Use = *I++;
559 SDNode *Operand = Use.getNode();
560 Use.set(SDValue());
562 // Now that we removed this operand, see if there are no uses of it left.
563 if (Operand->use_empty())
564 DeadNodes.push_back(Operand);
567 DeallocateNode(N);
571 void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572 SmallVector<SDNode*, 16> DeadNodes(1, N);
573 RemoveDeadNodes(DeadNodes, UpdateListener);
576 void SelectionDAG::DeleteNode(SDNode *N) {
577 // First take this out of the appropriate CSE map.
578 RemoveNodeFromCSEMaps(N);
580 // Finally, remove uses due to operands of this node, remove from the
581 // AllNodes list, and delete the node.
582 DeleteNodeNotInCSEMaps(N);
585 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586 assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587 assert(N->use_empty() && "Cannot delete a node that is not dead!");
589 // Drop all of the operands and decrement used node's use counts.
590 N->DropOperands();
592 DeallocateNode(N);
595 void SelectionDAG::DeallocateNode(SDNode *N) {
596 if (N->OperandsNeedDelete)
597 delete[] N->OperandList;
599 // Set the opcode to DELETED_NODE to help catch bugs when node
600 // memory is reallocated.
601 N->NodeType = ISD::DELETED_NODE;
603 NodeAllocator.Deallocate(AllNodes.remove(N));
606 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607 /// correspond to it. This is useful when we're about to delete or repurpose
608 /// the node. We don't want future request for structurally identical nodes
609 /// to return N anymore.
610 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611 bool Erased = false;
612 switch (N->getOpcode()) {
613 case ISD::EntryToken:
614 assert(0 && "EntryToken should not be in CSEMaps!");
615 return false;
616 case ISD::HANDLENODE: return false; // noop.
617 case ISD::CONDCODE:
618 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619 "Cond code doesn't exist!");
620 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622 break;
623 case ISD::ExternalSymbol:
624 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625 break;
626 case ISD::TargetExternalSymbol:
627 Erased =
628 TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
629 break;
630 case ISD::VALUETYPE: {
631 MVT VT = cast<VTSDNode>(N)->getVT();
632 if (VT.isExtended()) {
633 Erased = ExtendedValueTypeNodes.erase(VT);
634 } else {
635 Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
636 ValueTypeNodes[VT.getSimpleVT()] = 0;
638 break;
640 default:
641 // Remove it from the CSE Map.
642 Erased = CSEMap.RemoveNode(N);
643 break;
645 #ifndef NDEBUG
646 // Verify that the node was actually in one of the CSE maps, unless it has a
647 // flag result (which cannot be CSE'd) or is one of the special cases that are
648 // not subject to CSE.
649 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650 !N->isMachineOpcode() && !doNotCSE(N)) {
651 N->dump(this);
652 cerr << "\n";
653 assert(0 && "Node is not in map!");
655 #endif
656 return Erased;
659 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660 /// maps and modified in place. Add it back to the CSE maps, unless an identical
661 /// node already exists, in which case transfer all its users to the existing
662 /// node. This transfer can potentially trigger recursive merging.
664 void
665 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666 DAGUpdateListener *UpdateListener) {
667 // For node types that aren't CSE'd, just act as if no identical node
668 // already exists.
669 if (!doNotCSE(N)) {
670 SDNode *Existing = CSEMap.GetOrInsertNode(N);
671 if (Existing != N) {
672 // If there was already an existing matching node, use ReplaceAllUsesWith
673 // to replace the dead one with the existing one. This can cause
674 // recursive merging of other unrelated nodes down the line.
675 ReplaceAllUsesWith(N, Existing, UpdateListener);
677 // N is now dead. Inform the listener if it exists and delete it.
678 if (UpdateListener)
679 UpdateListener->NodeDeleted(N, Existing);
680 DeleteNodeNotInCSEMaps(N);
681 return;
685 // If the node doesn't already exist, we updated it. Inform a listener if
686 // it exists.
687 if (UpdateListener)
688 UpdateListener->NodeUpdated(N);
691 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692 /// were replaced with those specified. If this node is never memoized,
693 /// return null, otherwise return a pointer to the slot it would take. If a
694 /// node already exists with these operands, the slot will be non-null.
695 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696 void *&InsertPos) {
697 if (doNotCSE(N))
698 return 0;
700 SDValue Ops[] = { Op };
701 FoldingSetNodeID ID;
702 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703 AddNodeIDCustom(ID, N);
704 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708 /// were replaced with those specified. If this node is never memoized,
709 /// return null, otherwise return a pointer to the slot it would take. If a
710 /// node already exists with these operands, the slot will be non-null.
711 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
712 SDValue Op1, SDValue Op2,
713 void *&InsertPos) {
714 if (doNotCSE(N))
715 return 0;
717 SDValue Ops[] = { Op1, Op2 };
718 FoldingSetNodeID ID;
719 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
720 AddNodeIDCustom(ID, N);
721 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726 /// were replaced with those specified. If this node is never memoized,
727 /// return null, otherwise return a pointer to the slot it would take. If a
728 /// node already exists with these operands, the slot will be non-null.
729 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730 const SDValue *Ops,unsigned NumOps,
731 void *&InsertPos) {
732 if (doNotCSE(N))
733 return 0;
735 FoldingSetNodeID ID;
736 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737 AddNodeIDCustom(ID, N);
738 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
741 /// VerifyNode - Sanity check the given node. Aborts if it is invalid.
742 void SelectionDAG::VerifyNode(SDNode *N) {
743 switch (N->getOpcode()) {
744 default:
745 break;
746 case ISD::BUILD_PAIR: {
747 MVT VT = N->getValueType(0);
748 assert(N->getNumValues() == 1 && "Too many results!");
749 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
750 "Wrong return type!");
751 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
752 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
753 "Mismatched operand types!");
754 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
755 "Wrong operand type!");
756 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
757 "Wrong return type size");
758 break;
760 case ISD::BUILD_VECTOR: {
761 assert(N->getNumValues() == 1 && "Too many results!");
762 assert(N->getValueType(0).isVector() && "Wrong return type!");
763 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
764 "Wrong number of operands!");
765 MVT EltVT = N->getValueType(0).getVectorElementType();
766 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
767 assert((I->getValueType() == EltVT ||
768 (EltVT.isInteger() && I->getValueType().isInteger() &&
769 EltVT.bitsLE(I->getValueType()))) &&
770 "Wrong operand type!");
771 break;
776 /// getMVTAlignment - Compute the default alignment value for the
777 /// given type.
779 unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
780 const Type *Ty = VT == MVT::iPTR ?
781 PointerType::get(Type::Int8Ty, 0) :
782 VT.getTypeForMVT();
784 return TLI.getTargetData()->getABITypeAlignment(Ty);
787 // EntryNode could meaningfully have debug info if we can find it...
788 SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
789 : TLI(tli), FLI(fli), DW(0),
790 EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
791 getVTList(MVT::Other)), Root(getEntryNode()) {
792 AllNodes.push_back(&EntryNode);
795 void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
796 DwarfWriter *dw) {
797 MF = &mf;
798 MMI = mmi;
799 DW = dw;
802 SelectionDAG::~SelectionDAG() {
803 allnodes_clear();
806 void SelectionDAG::allnodes_clear() {
807 assert(&*AllNodes.begin() == &EntryNode);
808 AllNodes.remove(AllNodes.begin());
809 while (!AllNodes.empty())
810 DeallocateNode(AllNodes.begin());
813 void SelectionDAG::clear() {
814 allnodes_clear();
815 OperandAllocator.Reset();
816 CSEMap.clear();
818 ExtendedValueTypeNodes.clear();
819 ExternalSymbols.clear();
820 TargetExternalSymbols.clear();
821 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
822 static_cast<CondCodeSDNode*>(0));
823 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
824 static_cast<SDNode*>(0));
826 EntryNode.UseList = 0;
827 AllNodes.push_back(&EntryNode);
828 Root = getEntryNode();
831 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
832 if (Op.getValueType() == VT) return Op;
833 APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
834 VT.getSizeInBits());
835 return getNode(ISD::AND, DL, Op.getValueType(), Op,
836 getConstant(Imm, Op.getValueType()));
839 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
841 SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
842 MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
843 SDValue NegOne =
844 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
845 return getNode(ISD::XOR, DL, VT, Val, NegOne);
848 SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
849 MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
850 assert((EltVT.getSizeInBits() >= 64 ||
851 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
852 "getConstant with a uint64_t value that doesn't fit in the type!");
853 return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
856 SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
857 return getConstant(*ConstantInt::get(Val), VT, isT);
860 SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
861 assert(VT.isInteger() && "Cannot create FP integer constant!");
863 MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
864 assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
865 "APInt size does not match type size!");
867 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
868 FoldingSetNodeID ID;
869 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
870 ID.AddPointer(&Val);
871 void *IP = 0;
872 SDNode *N = NULL;
873 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
874 if (!VT.isVector())
875 return SDValue(N, 0);
876 if (!N) {
877 N = NodeAllocator.Allocate<ConstantSDNode>();
878 new (N) ConstantSDNode(isT, &Val, EltVT);
879 CSEMap.InsertNode(N, IP);
880 AllNodes.push_back(N);
883 SDValue Result(N, 0);
884 if (VT.isVector()) {
885 SmallVector<SDValue, 8> Ops;
886 Ops.assign(VT.getVectorNumElements(), Result);
887 Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
888 VT, &Ops[0], Ops.size());
890 return Result;
893 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
894 return getConstant(Val, TLI.getPointerTy(), isTarget);
898 SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
899 return getConstantFP(*ConstantFP::get(V), VT, isTarget);
902 SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
903 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
905 MVT EltVT =
906 VT.isVector() ? VT.getVectorElementType() : VT;
908 // Do the map lookup using the actual bit pattern for the floating point
909 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
910 // we don't have issues with SNANs.
911 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
912 FoldingSetNodeID ID;
913 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
914 ID.AddPointer(&V);
915 void *IP = 0;
916 SDNode *N = NULL;
917 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
918 if (!VT.isVector())
919 return SDValue(N, 0);
920 if (!N) {
921 N = NodeAllocator.Allocate<ConstantFPSDNode>();
922 new (N) ConstantFPSDNode(isTarget, &V, EltVT);
923 CSEMap.InsertNode(N, IP);
924 AllNodes.push_back(N);
927 SDValue Result(N, 0);
928 if (VT.isVector()) {
929 SmallVector<SDValue, 8> Ops;
930 Ops.assign(VT.getVectorNumElements(), Result);
931 // FIXME DebugLoc info might be appropriate here
932 Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
933 VT, &Ops[0], Ops.size());
935 return Result;
938 SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
939 MVT EltVT =
940 VT.isVector() ? VT.getVectorElementType() : VT;
941 if (EltVT==MVT::f32)
942 return getConstantFP(APFloat((float)Val), VT, isTarget);
943 else
944 return getConstantFP(APFloat(Val), VT, isTarget);
947 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
948 MVT VT, int64_t Offset,
949 bool isTargetGA) {
950 unsigned Opc;
952 // Truncate (with sign-extension) the offset value to the pointer size.
953 unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
954 if (BitWidth < 64)
955 Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
957 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
958 if (!GVar) {
959 // If GV is an alias then use the aliasee for determining thread-localness.
960 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
961 GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
964 if (GVar && GVar->isThreadLocal())
965 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
966 else
967 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
969 FoldingSetNodeID ID;
970 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
971 ID.AddPointer(GV);
972 ID.AddInteger(Offset);
973 void *IP = 0;
974 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
975 return SDValue(E, 0);
976 SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
977 new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
978 CSEMap.InsertNode(N, IP);
979 AllNodes.push_back(N);
980 return SDValue(N, 0);
983 SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
984 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
985 FoldingSetNodeID ID;
986 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
987 ID.AddInteger(FI);
988 void *IP = 0;
989 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
990 return SDValue(E, 0);
991 SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
992 new (N) FrameIndexSDNode(FI, VT, isTarget);
993 CSEMap.InsertNode(N, IP);
994 AllNodes.push_back(N);
995 return SDValue(N, 0);
998 SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
999 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1000 FoldingSetNodeID ID;
1001 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1002 ID.AddInteger(JTI);
1003 void *IP = 0;
1004 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1005 return SDValue(E, 0);
1006 SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1007 new (N) JumpTableSDNode(JTI, VT, isTarget);
1008 CSEMap.InsertNode(N, IP);
1009 AllNodes.push_back(N);
1010 return SDValue(N, 0);
1013 SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1014 unsigned Alignment, int Offset,
1015 bool isTarget) {
1016 if (Alignment == 0)
1017 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1018 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1019 FoldingSetNodeID ID;
1020 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1021 ID.AddInteger(Alignment);
1022 ID.AddInteger(Offset);
1023 ID.AddPointer(C);
1024 void *IP = 0;
1025 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1026 return SDValue(E, 0);
1027 SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1028 new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1029 CSEMap.InsertNode(N, IP);
1030 AllNodes.push_back(N);
1031 return SDValue(N, 0);
1035 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1036 unsigned Alignment, int Offset,
1037 bool isTarget) {
1038 if (Alignment == 0)
1039 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1040 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1041 FoldingSetNodeID ID;
1042 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1043 ID.AddInteger(Alignment);
1044 ID.AddInteger(Offset);
1045 C->AddSelectionDAGCSEId(ID);
1046 void *IP = 0;
1047 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1048 return SDValue(E, 0);
1049 SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1050 new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1051 CSEMap.InsertNode(N, IP);
1052 AllNodes.push_back(N);
1053 return SDValue(N, 0);
1056 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1057 FoldingSetNodeID ID;
1058 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1059 ID.AddPointer(MBB);
1060 void *IP = 0;
1061 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1062 return SDValue(E, 0);
1063 SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1064 new (N) BasicBlockSDNode(MBB);
1065 CSEMap.InsertNode(N, IP);
1066 AllNodes.push_back(N);
1067 return SDValue(N, 0);
1070 SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1071 FoldingSetNodeID ID;
1072 AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1073 ID.AddInteger(Flags.getRawBits());
1074 void *IP = 0;
1075 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1076 return SDValue(E, 0);
1077 SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1078 new (N) ARG_FLAGSSDNode(Flags);
1079 CSEMap.InsertNode(N, IP);
1080 AllNodes.push_back(N);
1081 return SDValue(N, 0);
1084 SDValue SelectionDAG::getValueType(MVT VT) {
1085 if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1086 ValueTypeNodes.resize(VT.getSimpleVT()+1);
1088 SDNode *&N = VT.isExtended() ?
1089 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1091 if (N) return SDValue(N, 0);
1092 N = NodeAllocator.Allocate<VTSDNode>();
1093 new (N) VTSDNode(VT);
1094 AllNodes.push_back(N);
1095 return SDValue(N, 0);
1098 SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1099 SDNode *&N = ExternalSymbols[Sym];
1100 if (N) return SDValue(N, 0);
1101 N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1102 new (N) ExternalSymbolSDNode(false, Sym, VT);
1103 AllNodes.push_back(N);
1104 return SDValue(N, 0);
1107 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1108 SDNode *&N = TargetExternalSymbols[Sym];
1109 if (N) return SDValue(N, 0);
1110 N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1111 new (N) ExternalSymbolSDNode(true, Sym, VT);
1112 AllNodes.push_back(N);
1113 return SDValue(N, 0);
1116 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1117 if ((unsigned)Cond >= CondCodeNodes.size())
1118 CondCodeNodes.resize(Cond+1);
1120 if (CondCodeNodes[Cond] == 0) {
1121 CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1122 new (N) CondCodeSDNode(Cond);
1123 CondCodeNodes[Cond] = N;
1124 AllNodes.push_back(N);
1126 return SDValue(CondCodeNodes[Cond], 0);
1129 SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1130 SDValue Val, SDValue DTy,
1131 SDValue STy, SDValue Rnd, SDValue Sat,
1132 ISD::CvtCode Code) {
1133 // If the src and dest types are the same and the conversion is between
1134 // integer types of the same sign or two floats, no conversion is necessary.
1135 if (DTy == STy &&
1136 (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1137 return Val;
1139 FoldingSetNodeID ID;
1140 void* IP = 0;
1141 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1142 return SDValue(E, 0);
1143 CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1144 SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1145 new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1146 CSEMap.InsertNode(N, IP);
1147 AllNodes.push_back(N);
1148 return SDValue(N, 0);
1151 SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1152 FoldingSetNodeID ID;
1153 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1154 ID.AddInteger(RegNo);
1155 void *IP = 0;
1156 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1157 return SDValue(E, 0);
1158 SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1159 new (N) RegisterSDNode(RegNo, VT);
1160 CSEMap.InsertNode(N, IP);
1161 AllNodes.push_back(N);
1162 return SDValue(N, 0);
1165 SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1166 unsigned Line, unsigned Col,
1167 Value *CU) {
1168 SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1169 new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1170 AllNodes.push_back(N);
1171 return SDValue(N, 0);
1174 SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1175 SDValue Root,
1176 unsigned LabelID) {
1177 FoldingSetNodeID ID;
1178 SDValue Ops[] = { Root };
1179 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1180 ID.AddInteger(LabelID);
1181 void *IP = 0;
1182 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1183 return SDValue(E, 0);
1184 SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1185 new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1186 CSEMap.InsertNode(N, IP);
1187 AllNodes.push_back(N);
1188 return SDValue(N, 0);
1191 SDValue SelectionDAG::getSrcValue(const Value *V) {
1192 assert((!V || isa<PointerType>(V->getType())) &&
1193 "SrcValue is not a pointer?");
1195 FoldingSetNodeID ID;
1196 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1197 ID.AddPointer(V);
1199 void *IP = 0;
1200 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1201 return SDValue(E, 0);
1203 SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1204 new (N) SrcValueSDNode(V);
1205 CSEMap.InsertNode(N, IP);
1206 AllNodes.push_back(N);
1207 return SDValue(N, 0);
1210 SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1211 #ifndef NDEBUG
1212 const Value *v = MO.getValue();
1213 assert((!v || isa<PointerType>(v->getType())) &&
1214 "SrcValue is not a pointer?");
1215 #endif
1217 FoldingSetNodeID ID;
1218 AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1219 MO.Profile(ID);
1221 void *IP = 0;
1222 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1223 return SDValue(E, 0);
1225 SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1226 new (N) MemOperandSDNode(MO);
1227 CSEMap.InsertNode(N, IP);
1228 AllNodes.push_back(N);
1229 return SDValue(N, 0);
1232 /// getShiftAmountOperand - Return the specified value casted to
1233 /// the target's desired shift amount type.
1234 SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1235 MVT OpTy = Op.getValueType();
1236 MVT ShTy = TLI.getShiftAmountTy();
1237 if (OpTy == ShTy || OpTy.isVector()) return Op;
1239 ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
1240 return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1243 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1244 /// specified value type.
1245 SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1246 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1247 unsigned ByteSize = VT.getStoreSizeInBits()/8;
1248 const Type *Ty = VT.getTypeForMVT();
1249 unsigned StackAlign =
1250 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1252 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1253 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1256 /// CreateStackTemporary - Create a stack temporary suitable for holding
1257 /// either of the specified value types.
1258 SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1259 unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1260 VT2.getStoreSizeInBits())/8;
1261 const Type *Ty1 = VT1.getTypeForMVT();
1262 const Type *Ty2 = VT2.getTypeForMVT();
1263 const TargetData *TD = TLI.getTargetData();
1264 unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1265 TD->getPrefTypeAlignment(Ty2));
1267 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1268 int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1269 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1272 SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1273 SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1274 // These setcc operations always fold.
1275 switch (Cond) {
1276 default: break;
1277 case ISD::SETFALSE:
1278 case ISD::SETFALSE2: return getConstant(0, VT);
1279 case ISD::SETTRUE:
1280 case ISD::SETTRUE2: return getConstant(1, VT);
1282 case ISD::SETOEQ:
1283 case ISD::SETOGT:
1284 case ISD::SETOGE:
1285 case ISD::SETOLT:
1286 case ISD::SETOLE:
1287 case ISD::SETONE:
1288 case ISD::SETO:
1289 case ISD::SETUO:
1290 case ISD::SETUEQ:
1291 case ISD::SETUNE:
1292 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1293 break;
1296 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1297 const APInt &C2 = N2C->getAPIntValue();
1298 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1299 const APInt &C1 = N1C->getAPIntValue();
1301 switch (Cond) {
1302 default: assert(0 && "Unknown integer setcc!");
1303 case ISD::SETEQ: return getConstant(C1 == C2, VT);
1304 case ISD::SETNE: return getConstant(C1 != C2, VT);
1305 case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1306 case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1307 case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1308 case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1309 case ISD::SETLT: return getConstant(C1.slt(C2), VT);
1310 case ISD::SETGT: return getConstant(C1.sgt(C2), VT);
1311 case ISD::SETLE: return getConstant(C1.sle(C2), VT);
1312 case ISD::SETGE: return getConstant(C1.sge(C2), VT);
1316 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1317 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1318 // No compile time operations on this type yet.
1319 if (N1C->getValueType(0) == MVT::ppcf128)
1320 return SDValue();
1322 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1323 switch (Cond) {
1324 default: break;
1325 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
1326 return getUNDEF(VT);
1327 // fall through
1328 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1329 case ISD::SETNE: if (R==APFloat::cmpUnordered)
1330 return getUNDEF(VT);
1331 // fall through
1332 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1333 R==APFloat::cmpLessThan, VT);
1334 case ISD::SETLT: if (R==APFloat::cmpUnordered)
1335 return getUNDEF(VT);
1336 // fall through
1337 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1338 case ISD::SETGT: if (R==APFloat::cmpUnordered)
1339 return getUNDEF(VT);
1340 // fall through
1341 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1342 case ISD::SETLE: if (R==APFloat::cmpUnordered)
1343 return getUNDEF(VT);
1344 // fall through
1345 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1346 R==APFloat::cmpEqual, VT);
1347 case ISD::SETGE: if (R==APFloat::cmpUnordered)
1348 return getUNDEF(VT);
1349 // fall through
1350 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1351 R==APFloat::cmpEqual, VT);
1352 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1353 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1354 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1355 R==APFloat::cmpEqual, VT);
1356 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1357 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1358 R==APFloat::cmpLessThan, VT);
1359 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1360 R==APFloat::cmpUnordered, VT);
1361 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1362 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1364 } else {
1365 // Ensure that the constant occurs on the RHS.
1366 return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1370 // Could not fold it.
1371 return SDValue();
1374 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1375 /// use this predicate to simplify operations downstream.
1376 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1377 unsigned BitWidth = Op.getValueSizeInBits();
1378 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1381 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1382 /// this predicate to simplify operations downstream. Mask is known to be zero
1383 /// for bits that V cannot have.
1384 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1385 unsigned Depth) const {
1386 APInt KnownZero, KnownOne;
1387 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1388 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1389 return (KnownZero & Mask) == Mask;
1392 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1393 /// known to be either zero or one and return them in the KnownZero/KnownOne
1394 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1395 /// processing.
1396 void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1397 APInt &KnownZero, APInt &KnownOne,
1398 unsigned Depth) const {
1399 unsigned BitWidth = Mask.getBitWidth();
1400 assert(BitWidth == Op.getValueType().getSizeInBits() &&
1401 "Mask size mismatches value type size!");
1403 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
1404 if (Depth == 6 || Mask == 0)
1405 return; // Limit search depth.
1407 APInt KnownZero2, KnownOne2;
1409 switch (Op.getOpcode()) {
1410 case ISD::Constant:
1411 // We know all of the bits for a constant!
1412 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1413 KnownZero = ~KnownOne & Mask;
1414 return;
1415 case ISD::AND:
1416 // If either the LHS or the RHS are Zero, the result is zero.
1417 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1418 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1419 KnownZero2, KnownOne2, Depth+1);
1420 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1421 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1423 // Output known-1 bits are only known if set in both the LHS & RHS.
1424 KnownOne &= KnownOne2;
1425 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1426 KnownZero |= KnownZero2;
1427 return;
1428 case ISD::OR:
1429 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1430 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1431 KnownZero2, KnownOne2, Depth+1);
1432 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1433 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1435 // Output known-0 bits are only known if clear in both the LHS & RHS.
1436 KnownZero &= KnownZero2;
1437 // Output known-1 are known to be set if set in either the LHS | RHS.
1438 KnownOne |= KnownOne2;
1439 return;
1440 case ISD::XOR: {
1441 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1442 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1443 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1444 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1446 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1447 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1448 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1449 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1450 KnownZero = KnownZeroOut;
1451 return;
1453 case ISD::MUL: {
1454 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1455 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1456 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1457 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1458 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1460 // If low bits are zero in either operand, output low known-0 bits.
1461 // Also compute a conserative estimate for high known-0 bits.
1462 // More trickiness is possible, but this is sufficient for the
1463 // interesting case of alignment computation.
1464 KnownOne.clear();
1465 unsigned TrailZ = KnownZero.countTrailingOnes() +
1466 KnownZero2.countTrailingOnes();
1467 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
1468 KnownZero2.countLeadingOnes(),
1469 BitWidth) - BitWidth;
1471 TrailZ = std::min(TrailZ, BitWidth);
1472 LeadZ = std::min(LeadZ, BitWidth);
1473 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1474 APInt::getHighBitsSet(BitWidth, LeadZ);
1475 KnownZero &= Mask;
1476 return;
1478 case ISD::UDIV: {
1479 // For the purposes of computing leading zeros we can conservatively
1480 // treat a udiv as a logical right shift by the power of 2 known to
1481 // be less than the denominator.
1482 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1483 ComputeMaskedBits(Op.getOperand(0),
1484 AllOnes, KnownZero2, KnownOne2, Depth+1);
1485 unsigned LeadZ = KnownZero2.countLeadingOnes();
1487 KnownOne2.clear();
1488 KnownZero2.clear();
1489 ComputeMaskedBits(Op.getOperand(1),
1490 AllOnes, KnownZero2, KnownOne2, Depth+1);
1491 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1492 if (RHSUnknownLeadingOnes != BitWidth)
1493 LeadZ = std::min(BitWidth,
1494 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1496 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1497 return;
1499 case ISD::SELECT:
1500 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1501 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1502 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1503 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1505 // Only known if known in both the LHS and RHS.
1506 KnownOne &= KnownOne2;
1507 KnownZero &= KnownZero2;
1508 return;
1509 case ISD::SELECT_CC:
1510 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1511 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1512 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1513 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1515 // Only known if known in both the LHS and RHS.
1516 KnownOne &= KnownOne2;
1517 KnownZero &= KnownZero2;
1518 return;
1519 case ISD::SADDO:
1520 case ISD::UADDO:
1521 case ISD::SSUBO:
1522 case ISD::USUBO:
1523 case ISD::SMULO:
1524 case ISD::UMULO:
1525 if (Op.getResNo() != 1)
1526 return;
1527 // The boolean result conforms to getBooleanContents. Fall through.
1528 case ISD::SETCC:
1529 // If we know the result of a setcc has the top bits zero, use this info.
1530 if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1531 BitWidth > 1)
1532 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1533 return;
1534 case ISD::SHL:
1535 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1536 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1537 unsigned ShAmt = SA->getZExtValue();
1539 // If the shift count is an invalid immediate, don't do anything.
1540 if (ShAmt >= BitWidth)
1541 return;
1543 ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1544 KnownZero, KnownOne, Depth+1);
1545 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1546 KnownZero <<= ShAmt;
1547 KnownOne <<= ShAmt;
1548 // low bits known zero.
1549 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1551 return;
1552 case ISD::SRL:
1553 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1554 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1555 unsigned ShAmt = SA->getZExtValue();
1557 // If the shift count is an invalid immediate, don't do anything.
1558 if (ShAmt >= BitWidth)
1559 return;
1561 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1562 KnownZero, KnownOne, Depth+1);
1563 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1564 KnownZero = KnownZero.lshr(ShAmt);
1565 KnownOne = KnownOne.lshr(ShAmt);
1567 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1568 KnownZero |= HighBits; // High bits known zero.
1570 return;
1571 case ISD::SRA:
1572 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1573 unsigned ShAmt = SA->getZExtValue();
1575 // If the shift count is an invalid immediate, don't do anything.
1576 if (ShAmt >= BitWidth)
1577 return;
1579 APInt InDemandedMask = (Mask << ShAmt);
1580 // If any of the demanded bits are produced by the sign extension, we also
1581 // demand the input sign bit.
1582 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1583 if (HighBits.getBoolValue())
1584 InDemandedMask |= APInt::getSignBit(BitWidth);
1586 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1587 Depth+1);
1588 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1589 KnownZero = KnownZero.lshr(ShAmt);
1590 KnownOne = KnownOne.lshr(ShAmt);
1592 // Handle the sign bits.
1593 APInt SignBit = APInt::getSignBit(BitWidth);
1594 SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
1596 if (KnownZero.intersects(SignBit)) {
1597 KnownZero |= HighBits; // New bits are known zero.
1598 } else if (KnownOne.intersects(SignBit)) {
1599 KnownOne |= HighBits; // New bits are known one.
1602 return;
1603 case ISD::SIGN_EXTEND_INREG: {
1604 MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1605 unsigned EBits = EVT.getSizeInBits();
1607 // Sign extension. Compute the demanded bits in the result that are not
1608 // present in the input.
1609 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1611 APInt InSignBit = APInt::getSignBit(EBits);
1612 APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1614 // If the sign extended bits are demanded, we know that the sign
1615 // bit is demanded.
1616 InSignBit.zext(BitWidth);
1617 if (NewBits.getBoolValue())
1618 InputDemandedBits |= InSignBit;
1620 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1621 KnownZero, KnownOne, Depth+1);
1622 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624 // If the sign bit of the input is known set or clear, then we know the
1625 // top bits of the result.
1626 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
1627 KnownZero |= NewBits;
1628 KnownOne &= ~NewBits;
1629 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1630 KnownOne |= NewBits;
1631 KnownZero &= ~NewBits;
1632 } else { // Input sign bit unknown
1633 KnownZero &= ~NewBits;
1634 KnownOne &= ~NewBits;
1636 return;
1638 case ISD::CTTZ:
1639 case ISD::CTLZ:
1640 case ISD::CTPOP: {
1641 unsigned LowBits = Log2_32(BitWidth)+1;
1642 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1643 KnownOne.clear();
1644 return;
1646 case ISD::LOAD: {
1647 if (ISD::isZEXTLoad(Op.getNode())) {
1648 LoadSDNode *LD = cast<LoadSDNode>(Op);
1649 MVT VT = LD->getMemoryVT();
1650 unsigned MemBits = VT.getSizeInBits();
1651 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1653 return;
1655 case ISD::ZERO_EXTEND: {
1656 MVT InVT = Op.getOperand(0).getValueType();
1657 unsigned InBits = InVT.getSizeInBits();
1658 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1659 APInt InMask = Mask;
1660 InMask.trunc(InBits);
1661 KnownZero.trunc(InBits);
1662 KnownOne.trunc(InBits);
1663 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1664 KnownZero.zext(BitWidth);
1665 KnownOne.zext(BitWidth);
1666 KnownZero |= NewBits;
1667 return;
1669 case ISD::SIGN_EXTEND: {
1670 MVT InVT = Op.getOperand(0).getValueType();
1671 unsigned InBits = InVT.getSizeInBits();
1672 APInt InSignBit = APInt::getSignBit(InBits);
1673 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1674 APInt InMask = Mask;
1675 InMask.trunc(InBits);
1677 // If any of the sign extended bits are demanded, we know that the sign
1678 // bit is demanded. Temporarily set this bit in the mask for our callee.
1679 if (NewBits.getBoolValue())
1680 InMask |= InSignBit;
1682 KnownZero.trunc(InBits);
1683 KnownOne.trunc(InBits);
1684 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1686 // Note if the sign bit is known to be zero or one.
1687 bool SignBitKnownZero = KnownZero.isNegative();
1688 bool SignBitKnownOne = KnownOne.isNegative();
1689 assert(!(SignBitKnownZero && SignBitKnownOne) &&
1690 "Sign bit can't be known to be both zero and one!");
1692 // If the sign bit wasn't actually demanded by our caller, we don't
1693 // want it set in the KnownZero and KnownOne result values. Reset the
1694 // mask and reapply it to the result values.
1695 InMask = Mask;
1696 InMask.trunc(InBits);
1697 KnownZero &= InMask;
1698 KnownOne &= InMask;
1700 KnownZero.zext(BitWidth);
1701 KnownOne.zext(BitWidth);
1703 // If the sign bit is known zero or one, the top bits match.
1704 if (SignBitKnownZero)
1705 KnownZero |= NewBits;
1706 else if (SignBitKnownOne)
1707 KnownOne |= NewBits;
1708 return;
1710 case ISD::ANY_EXTEND: {
1711 MVT InVT = Op.getOperand(0).getValueType();
1712 unsigned InBits = InVT.getSizeInBits();
1713 APInt InMask = Mask;
1714 InMask.trunc(InBits);
1715 KnownZero.trunc(InBits);
1716 KnownOne.trunc(InBits);
1717 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1718 KnownZero.zext(BitWidth);
1719 KnownOne.zext(BitWidth);
1720 return;
1722 case ISD::TRUNCATE: {
1723 MVT InVT = Op.getOperand(0).getValueType();
1724 unsigned InBits = InVT.getSizeInBits();
1725 APInt InMask = Mask;
1726 InMask.zext(InBits);
1727 KnownZero.zext(InBits);
1728 KnownOne.zext(InBits);
1729 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1730 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1731 KnownZero.trunc(BitWidth);
1732 KnownOne.trunc(BitWidth);
1733 break;
1735 case ISD::AssertZext: {
1736 MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1737 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1738 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1739 KnownOne, Depth+1);
1740 KnownZero |= (~InMask) & Mask;
1741 return;
1743 case ISD::FGETSIGN:
1744 // All bits are zero except the low bit.
1745 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1746 return;
1748 case ISD::SUB: {
1749 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1750 // We know that the top bits of C-X are clear if X contains less bits
1751 // than C (i.e. no wrap-around can happen). For example, 20-X is
1752 // positive if we can prove that X is >= 0 and < 16.
1753 if (CLHS->getAPIntValue().isNonNegative()) {
1754 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1755 // NLZ can't be BitWidth with no sign bit
1756 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1757 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1758 Depth+1);
1760 // If all of the MaskV bits are known to be zero, then we know the
1761 // output top bits are zero, because we now know that the output is
1762 // from [0-C].
1763 if ((KnownZero2 & MaskV) == MaskV) {
1764 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1765 // Top bits known zero.
1766 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1771 // fall through
1772 case ISD::ADD: {
1773 // Output known-0 bits are known if clear or set in both the low clear bits
1774 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1775 // low 3 bits clear.
1776 APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1777 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1778 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1779 unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1781 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1782 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1783 KnownZeroOut = std::min(KnownZeroOut,
1784 KnownZero2.countTrailingOnes());
1786 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1787 return;
1789 case ISD::SREM:
1790 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1791 const APInt &RA = Rem->getAPIntValue();
1792 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1793 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1794 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1795 ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1797 // If the sign bit of the first operand is zero, the sign bit of
1798 // the result is zero. If the first operand has no one bits below
1799 // the second operand's single 1 bit, its sign will be zero.
1800 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1801 KnownZero2 |= ~LowBits;
1803 KnownZero |= KnownZero2 & Mask;
1805 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1808 return;
1809 case ISD::UREM: {
1810 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1811 const APInt &RA = Rem->getAPIntValue();
1812 if (RA.isPowerOf2()) {
1813 APInt LowBits = (RA - 1);
1814 APInt Mask2 = LowBits & Mask;
1815 KnownZero |= ~LowBits & Mask;
1816 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1817 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1818 break;
1822 // Since the result is less than or equal to either operand, any leading
1823 // zero bits in either operand must also exist in the result.
1824 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1825 ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1826 Depth+1);
1827 ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1828 Depth+1);
1830 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1831 KnownZero2.countLeadingOnes());
1832 KnownOne.clear();
1833 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1834 return;
1836 default:
1837 // Allow the target to implement this method for its nodes.
1838 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1839 case ISD::INTRINSIC_WO_CHAIN:
1840 case ISD::INTRINSIC_W_CHAIN:
1841 case ISD::INTRINSIC_VOID:
1842 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1844 return;
1848 /// ComputeNumSignBits - Return the number of times the sign bit of the
1849 /// register is replicated into the other bits. We know that at least 1 bit
1850 /// is always equal to the sign bit (itself), but other cases can give us
1851 /// information. For example, immediately after an "SRA X, 2", we know that
1852 /// the top 3 bits are all equal to each other, so we return 3.
1853 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1854 MVT VT = Op.getValueType();
1855 assert(VT.isInteger() && "Invalid VT!");
1856 unsigned VTBits = VT.getSizeInBits();
1857 unsigned Tmp, Tmp2;
1858 unsigned FirstAnswer = 1;
1860 if (Depth == 6)
1861 return 1; // Limit search depth.
1863 switch (Op.getOpcode()) {
1864 default: break;
1865 case ISD::AssertSext:
1866 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1867 return VTBits-Tmp+1;
1868 case ISD::AssertZext:
1869 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1870 return VTBits-Tmp;
1872 case ISD::Constant: {
1873 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1874 // If negative, return # leading ones.
1875 if (Val.isNegative())
1876 return Val.countLeadingOnes();
1878 // Return # leading zeros.
1879 return Val.countLeadingZeros();
1882 case ISD::SIGN_EXTEND:
1883 Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1884 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1886 case ISD::SIGN_EXTEND_INREG:
1887 // Max of the input and what this extends.
1888 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1889 Tmp = VTBits-Tmp+1;
1891 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1892 return std::max(Tmp, Tmp2);
1894 case ISD::SRA:
1895 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1896 // SRA X, C -> adds C sign bits.
1897 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1898 Tmp += C->getZExtValue();
1899 if (Tmp > VTBits) Tmp = VTBits;
1901 return Tmp;
1902 case ISD::SHL:
1903 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1904 // shl destroys sign bits.
1905 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1906 if (C->getZExtValue() >= VTBits || // Bad shift.
1907 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
1908 return Tmp - C->getZExtValue();
1910 break;
1911 case ISD::AND:
1912 case ISD::OR:
1913 case ISD::XOR: // NOT is handled here.
1914 // Logical binary ops preserve the number of sign bits at the worst.
1915 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1916 if (Tmp != 1) {
1917 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1918 FirstAnswer = std::min(Tmp, Tmp2);
1919 // We computed what we know about the sign bits as our first
1920 // answer. Now proceed to the generic code that uses
1921 // ComputeMaskedBits, and pick whichever answer is better.
1923 break;
1925 case ISD::SELECT:
1926 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1927 if (Tmp == 1) return 1; // Early out.
1928 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1929 return std::min(Tmp, Tmp2);
1931 case ISD::SADDO:
1932 case ISD::UADDO:
1933 case ISD::SSUBO:
1934 case ISD::USUBO:
1935 case ISD::SMULO:
1936 case ISD::UMULO:
1937 if (Op.getResNo() != 1)
1938 break;
1939 // The boolean result conforms to getBooleanContents. Fall through.
1940 case ISD::SETCC:
1941 // If setcc returns 0/-1, all bits are sign bits.
1942 if (TLI.getBooleanContents() ==
1943 TargetLowering::ZeroOrNegativeOneBooleanContent)
1944 return VTBits;
1945 break;
1946 case ISD::ROTL:
1947 case ISD::ROTR:
1948 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1949 unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1951 // Handle rotate right by N like a rotate left by 32-N.
1952 if (Op.getOpcode() == ISD::ROTR)
1953 RotAmt = (VTBits-RotAmt) & (VTBits-1);
1955 // If we aren't rotating out all of the known-in sign bits, return the
1956 // number that are left. This handles rotl(sext(x), 1) for example.
1957 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1958 if (Tmp > RotAmt+1) return Tmp-RotAmt;
1960 break;
1961 case ISD::ADD:
1962 // Add can have at most one carry bit. Thus we know that the output
1963 // is, at worst, one more bit than the inputs.
1964 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1965 if (Tmp == 1) return 1; // Early out.
1967 // Special case decrementing a value (ADD X, -1):
1968 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1969 if (CRHS->isAllOnesValue()) {
1970 APInt KnownZero, KnownOne;
1971 APInt Mask = APInt::getAllOnesValue(VTBits);
1972 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1974 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1975 // sign bits set.
1976 if ((KnownZero | APInt(VTBits, 1)) == Mask)
1977 return VTBits;
1979 // If we are subtracting one from a positive number, there is no carry
1980 // out of the result.
1981 if (KnownZero.isNegative())
1982 return Tmp;
1985 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1986 if (Tmp2 == 1) return 1;
1987 return std::min(Tmp, Tmp2)-1;
1988 break;
1990 case ISD::SUB:
1991 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1992 if (Tmp2 == 1) return 1;
1994 // Handle NEG.
1995 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1996 if (CLHS->isNullValue()) {
1997 APInt KnownZero, KnownOne;
1998 APInt Mask = APInt::getAllOnesValue(VTBits);
1999 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2000 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2001 // sign bits set.
2002 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2003 return VTBits;
2005 // If the input is known to be positive (the sign bit is known clear),
2006 // the output of the NEG has the same number of sign bits as the input.
2007 if (KnownZero.isNegative())
2008 return Tmp2;
2010 // Otherwise, we treat this like a SUB.
2013 // Sub can have at most one carry bit. Thus we know that the output
2014 // is, at worst, one more bit than the inputs.
2015 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2016 if (Tmp == 1) return 1; // Early out.
2017 return std::min(Tmp, Tmp2)-1;
2018 break;
2019 case ISD::TRUNCATE:
2020 // FIXME: it's tricky to do anything useful for this, but it is an important
2021 // case for targets like X86.
2022 break;
2025 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2026 if (Op.getOpcode() == ISD::LOAD) {
2027 LoadSDNode *LD = cast<LoadSDNode>(Op);
2028 unsigned ExtType = LD->getExtensionType();
2029 switch (ExtType) {
2030 default: break;
2031 case ISD::SEXTLOAD: // '17' bits known
2032 Tmp = LD->getMemoryVT().getSizeInBits();
2033 return VTBits-Tmp+1;
2034 case ISD::ZEXTLOAD: // '16' bits known
2035 Tmp = LD->getMemoryVT().getSizeInBits();
2036 return VTBits-Tmp;
2040 // Allow the target to implement this method for its nodes.
2041 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2042 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2043 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2044 Op.getOpcode() == ISD::INTRINSIC_VOID) {
2045 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2046 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2049 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2050 // use this information.
2051 APInt KnownZero, KnownOne;
2052 APInt Mask = APInt::getAllOnesValue(VTBits);
2053 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2055 if (KnownZero.isNegative()) { // sign bit is 0
2056 Mask = KnownZero;
2057 } else if (KnownOne.isNegative()) { // sign bit is 1;
2058 Mask = KnownOne;
2059 } else {
2060 // Nothing known.
2061 return FirstAnswer;
2064 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2065 // the number of identical bits in the top of the input value.
2066 Mask = ~Mask;
2067 Mask <<= Mask.getBitWidth()-VTBits;
2068 // Return # leading zeros. We use 'min' here in case Val was zero before
2069 // shifting. We don't want to return '64' as for an i32 "0".
2070 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2074 bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2075 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2076 if (!GA) return false;
2077 if (GA->getOffset() != 0) return false;
2078 GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2079 if (!GV) return false;
2080 MachineModuleInfo *MMI = getMachineModuleInfo();
2081 return MMI && MMI->hasDebugInfo();
2085 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
2086 /// element of the result of the vector shuffle.
2087 SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2088 MVT VT = N->getValueType(0);
2089 DebugLoc dl = N->getDebugLoc();
2090 SDValue PermMask = N->getOperand(2);
2091 SDValue Idx = PermMask.getOperand(i);
2092 if (Idx.getOpcode() == ISD::UNDEF)
2093 return getUNDEF(VT.getVectorElementType());
2094 unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2095 unsigned NumElems = PermMask.getNumOperands();
2096 SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2097 Index %= NumElems;
2099 if (V.getOpcode() == ISD::BIT_CONVERT) {
2100 V = V.getOperand(0);
2101 MVT VVT = V.getValueType();
2102 if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2103 return SDValue();
2105 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2106 return (Index == 0) ? V.getOperand(0)
2107 : getUNDEF(VT.getVectorElementType());
2108 if (V.getOpcode() == ISD::BUILD_VECTOR)
2109 return V.getOperand(Index);
2110 if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2111 return getShuffleScalarElt(V.getNode(), Index);
2112 return SDValue();
2116 /// getNode - Gets or creates the specified node.
2118 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2119 FoldingSetNodeID ID;
2120 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2121 void *IP = 0;
2122 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2123 return SDValue(E, 0);
2124 SDNode *N = NodeAllocator.Allocate<SDNode>();
2125 new (N) SDNode(Opcode, DL, getVTList(VT));
2126 CSEMap.InsertNode(N, IP);
2128 AllNodes.push_back(N);
2129 #ifndef NDEBUG
2130 VerifyNode(N);
2131 #endif
2132 return SDValue(N, 0);
2135 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2136 MVT VT, SDValue Operand) {
2137 // Constant fold unary operations with an integer constant operand.
2138 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2139 const APInt &Val = C->getAPIntValue();
2140 unsigned BitWidth = VT.getSizeInBits();
2141 switch (Opcode) {
2142 default: break;
2143 case ISD::SIGN_EXTEND:
2144 return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2145 case ISD::ANY_EXTEND:
2146 case ISD::ZERO_EXTEND:
2147 case ISD::TRUNCATE:
2148 return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2149 case ISD::UINT_TO_FP:
2150 case ISD::SINT_TO_FP: {
2151 const uint64_t zero[] = {0, 0};
2152 // No compile time operations on this type.
2153 if (VT==MVT::ppcf128)
2154 break;
2155 APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2156 (void)apf.convertFromAPInt(Val,
2157 Opcode==ISD::SINT_TO_FP,
2158 APFloat::rmNearestTiesToEven);
2159 return getConstantFP(apf, VT);
2161 case ISD::BIT_CONVERT:
2162 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2163 return getConstantFP(Val.bitsToFloat(), VT);
2164 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2165 return getConstantFP(Val.bitsToDouble(), VT);
2166 break;
2167 case ISD::BSWAP:
2168 return getConstant(Val.byteSwap(), VT);
2169 case ISD::CTPOP:
2170 return getConstant(Val.countPopulation(), VT);
2171 case ISD::CTLZ:
2172 return getConstant(Val.countLeadingZeros(), VT);
2173 case ISD::CTTZ:
2174 return getConstant(Val.countTrailingZeros(), VT);
2178 // Constant fold unary operations with a floating point constant operand.
2179 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2180 APFloat V = C->getValueAPF(); // make copy
2181 if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2182 switch (Opcode) {
2183 case ISD::FNEG:
2184 V.changeSign();
2185 return getConstantFP(V, VT);
2186 case ISD::FABS:
2187 V.clearSign();
2188 return getConstantFP(V, VT);
2189 case ISD::FP_ROUND:
2190 case ISD::FP_EXTEND: {
2191 bool ignored;
2192 // This can return overflow, underflow, or inexact; we don't care.
2193 // FIXME need to be more flexible about rounding mode.
2194 (void)V.convert(*MVTToAPFloatSemantics(VT),
2195 APFloat::rmNearestTiesToEven, &ignored);
2196 return getConstantFP(V, VT);
2198 case ISD::FP_TO_SINT:
2199 case ISD::FP_TO_UINT: {
2200 integerPart x;
2201 bool ignored;
2202 assert(integerPartWidth >= 64);
2203 // FIXME need to be more flexible about rounding mode.
2204 APFloat::opStatus s = V.convertToInteger(&x, 64U,
2205 Opcode==ISD::FP_TO_SINT,
2206 APFloat::rmTowardZero, &ignored);
2207 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
2208 break;
2209 return getConstant(x, VT);
2211 case ISD::BIT_CONVERT:
2212 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2213 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2214 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2215 return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2216 break;
2221 unsigned OpOpcode = Operand.getNode()->getOpcode();
2222 switch (Opcode) {
2223 case ISD::TokenFactor:
2224 case ISD::MERGE_VALUES:
2225 case ISD::CONCAT_VECTORS:
2226 return Operand; // Factor, merge or concat of one node? No need.
2227 case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2228 case ISD::FP_EXTEND:
2229 assert(VT.isFloatingPoint() &&
2230 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2231 if (Operand.getValueType() == VT) return Operand; // noop conversion.
2232 if (Operand.getOpcode() == ISD::UNDEF)
2233 return getUNDEF(VT);
2234 break;
2235 case ISD::SIGN_EXTEND:
2236 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2237 "Invalid SIGN_EXTEND!");
2238 if (Operand.getValueType() == VT) return Operand; // noop extension
2239 assert(Operand.getValueType().bitsLT(VT)
2240 && "Invalid sext node, dst < src!");
2241 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2242 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2243 break;
2244 case ISD::ZERO_EXTEND:
2245 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2246 "Invalid ZERO_EXTEND!");
2247 if (Operand.getValueType() == VT) return Operand; // noop extension
2248 assert(Operand.getValueType().bitsLT(VT)
2249 && "Invalid zext node, dst < src!");
2250 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
2251 return getNode(ISD::ZERO_EXTEND, DL, VT,
2252 Operand.getNode()->getOperand(0));
2253 break;
2254 case ISD::ANY_EXTEND:
2255 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2256 "Invalid ANY_EXTEND!");
2257 if (Operand.getValueType() == VT) return Operand; // noop extension
2258 assert(Operand.getValueType().bitsLT(VT)
2259 && "Invalid anyext node, dst < src!");
2260 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2261 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2262 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2263 break;
2264 case ISD::TRUNCATE:
2265 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2266 "Invalid TRUNCATE!");
2267 if (Operand.getValueType() == VT) return Operand; // noop truncate
2268 assert(Operand.getValueType().bitsGT(VT)
2269 && "Invalid truncate node, src < dst!");
2270 if (OpOpcode == ISD::TRUNCATE)
2271 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2272 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2273 OpOpcode == ISD::ANY_EXTEND) {
2274 // If the source is smaller than the dest, we still need an extend.
2275 if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2276 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2277 else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2278 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2279 else
2280 return Operand.getNode()->getOperand(0);
2282 break;
2283 case ISD::BIT_CONVERT:
2284 // Basic sanity checking.
2285 assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2286 && "Cannot BIT_CONVERT between types of different sizes!");
2287 if (VT == Operand.getValueType()) return Operand; // noop conversion.
2288 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
2289 return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2290 if (OpOpcode == ISD::UNDEF)
2291 return getUNDEF(VT);
2292 break;
2293 case ISD::SCALAR_TO_VECTOR:
2294 assert(VT.isVector() && !Operand.getValueType().isVector() &&
2295 (VT.getVectorElementType() == Operand.getValueType() ||
2296 (VT.getVectorElementType().isInteger() &&
2297 Operand.getValueType().isInteger() &&
2298 VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2299 "Illegal SCALAR_TO_VECTOR node!");
2300 if (OpOpcode == ISD::UNDEF)
2301 return getUNDEF(VT);
2302 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2303 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2304 isa<ConstantSDNode>(Operand.getOperand(1)) &&
2305 Operand.getConstantOperandVal(1) == 0 &&
2306 Operand.getOperand(0).getValueType() == VT)
2307 return Operand.getOperand(0);
2308 break;
2309 case ISD::FNEG:
2310 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2311 if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2312 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2313 Operand.getNode()->getOperand(0));
2314 if (OpOpcode == ISD::FNEG) // --X -> X
2315 return Operand.getNode()->getOperand(0);
2316 break;
2317 case ISD::FABS:
2318 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
2319 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2320 break;
2323 SDNode *N;
2324 SDVTList VTs = getVTList(VT);
2325 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2326 FoldingSetNodeID ID;
2327 SDValue Ops[1] = { Operand };
2328 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2329 void *IP = 0;
2330 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2331 return SDValue(E, 0);
2332 N = NodeAllocator.Allocate<UnarySDNode>();
2333 new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2334 CSEMap.InsertNode(N, IP);
2335 } else {
2336 N = NodeAllocator.Allocate<UnarySDNode>();
2337 new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2340 AllNodes.push_back(N);
2341 #ifndef NDEBUG
2342 VerifyNode(N);
2343 #endif
2344 return SDValue(N, 0);
2347 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2348 MVT VT,
2349 ConstantSDNode *Cst1,
2350 ConstantSDNode *Cst2) {
2351 const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2353 switch (Opcode) {
2354 case ISD::ADD: return getConstant(C1 + C2, VT);
2355 case ISD::SUB: return getConstant(C1 - C2, VT);
2356 case ISD::MUL: return getConstant(C1 * C2, VT);
2357 case ISD::UDIV:
2358 if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2359 break;
2360 case ISD::UREM:
2361 if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2362 break;
2363 case ISD::SDIV:
2364 if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2365 break;
2366 case ISD::SREM:
2367 if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2368 break;
2369 case ISD::AND: return getConstant(C1 & C2, VT);
2370 case ISD::OR: return getConstant(C1 | C2, VT);
2371 case ISD::XOR: return getConstant(C1 ^ C2, VT);
2372 case ISD::SHL: return getConstant(C1 << C2, VT);
2373 case ISD::SRL: return getConstant(C1.lshr(C2), VT);
2374 case ISD::SRA: return getConstant(C1.ashr(C2), VT);
2375 case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2376 case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2377 default: break;
2380 return SDValue();
2383 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2384 SDValue N1, SDValue N2) {
2385 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2386 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2387 switch (Opcode) {
2388 default: break;
2389 case ISD::TokenFactor:
2390 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2391 N2.getValueType() == MVT::Other && "Invalid token factor!");
2392 // Fold trivial token factors.
2393 if (N1.getOpcode() == ISD::EntryToken) return N2;
2394 if (N2.getOpcode() == ISD::EntryToken) return N1;
2395 if (N1 == N2) return N1;
2396 break;
2397 case ISD::CONCAT_VECTORS:
2398 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2399 // one big BUILD_VECTOR.
2400 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2401 N2.getOpcode() == ISD::BUILD_VECTOR) {
2402 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2403 Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2404 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2406 break;
2407 case ISD::AND:
2408 assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2409 N1.getValueType() == VT && "Binary operator types must match!");
2410 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2411 // worth handling here.
2412 if (N2C && N2C->isNullValue())
2413 return N2;
2414 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
2415 return N1;
2416 break;
2417 case ISD::OR:
2418 case ISD::XOR:
2419 case ISD::ADD:
2420 case ISD::SUB:
2421 assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2422 N1.getValueType() == VT && "Binary operator types must match!");
2423 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2424 // it's worth handling here.
2425 if (N2C && N2C->isNullValue())
2426 return N1;
2427 break;
2428 case ISD::UDIV:
2429 case ISD::UREM:
2430 case ISD::MULHU:
2431 case ISD::MULHS:
2432 case ISD::MUL:
2433 case ISD::SDIV:
2434 case ISD::SREM:
2435 assert(VT.isInteger() && "This operator does not apply to FP types!");
2436 // fall through
2437 case ISD::FADD:
2438 case ISD::FSUB:
2439 case ISD::FMUL:
2440 case ISD::FDIV:
2441 case ISD::FREM:
2442 if (UnsafeFPMath) {
2443 if (Opcode == ISD::FADD) {
2444 // 0+x --> x
2445 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2446 if (CFP->getValueAPF().isZero())
2447 return N2;
2448 // x+0 --> x
2449 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2450 if (CFP->getValueAPF().isZero())
2451 return N1;
2452 } else if (Opcode == ISD::FSUB) {
2453 // x-0 --> x
2454 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2455 if (CFP->getValueAPF().isZero())
2456 return N1;
2459 assert(N1.getValueType() == N2.getValueType() &&
2460 N1.getValueType() == VT && "Binary operator types must match!");
2461 break;
2462 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
2463 assert(N1.getValueType() == VT &&
2464 N1.getValueType().isFloatingPoint() &&
2465 N2.getValueType().isFloatingPoint() &&
2466 "Invalid FCOPYSIGN!");
2467 break;
2468 case ISD::SHL:
2469 case ISD::SRA:
2470 case ISD::SRL:
2471 case ISD::ROTL:
2472 case ISD::ROTR:
2473 assert(VT == N1.getValueType() &&
2474 "Shift operators return type must be the same as their first arg");
2475 assert(VT.isInteger() && N2.getValueType().isInteger() &&
2476 "Shifts only work on integers");
2478 // Always fold shifts of i1 values so the code generator doesn't need to
2479 // handle them. Since we know the size of the shift has to be less than the
2480 // size of the value, the shift/rotate count is guaranteed to be zero.
2481 if (VT == MVT::i1)
2482 return N1;
2483 break;
2484 case ISD::FP_ROUND_INREG: {
2485 MVT EVT = cast<VTSDNode>(N2)->getVT();
2486 assert(VT == N1.getValueType() && "Not an inreg round!");
2487 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2488 "Cannot FP_ROUND_INREG integer types");
2489 assert(EVT.bitsLE(VT) && "Not rounding down!");
2490 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
2491 break;
2493 case ISD::FP_ROUND:
2494 assert(VT.isFloatingPoint() &&
2495 N1.getValueType().isFloatingPoint() &&
2496 VT.bitsLE(N1.getValueType()) &&
2497 isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2498 if (N1.getValueType() == VT) return N1; // noop conversion.
2499 break;
2500 case ISD::AssertSext:
2501 case ISD::AssertZext: {
2502 MVT EVT = cast<VTSDNode>(N2)->getVT();
2503 assert(VT == N1.getValueType() && "Not an inreg extend!");
2504 assert(VT.isInteger() && EVT.isInteger() &&
2505 "Cannot *_EXTEND_INREG FP types");
2506 assert(EVT.bitsLE(VT) && "Not extending!");
2507 if (VT == EVT) return N1; // noop assertion.
2508 break;
2510 case ISD::SIGN_EXTEND_INREG: {
2511 MVT EVT = cast<VTSDNode>(N2)->getVT();
2512 assert(VT == N1.getValueType() && "Not an inreg extend!");
2513 assert(VT.isInteger() && EVT.isInteger() &&
2514 "Cannot *_EXTEND_INREG FP types");
2515 assert(EVT.bitsLE(VT) && "Not extending!");
2516 if (EVT == VT) return N1; // Not actually extending
2518 if (N1C) {
2519 APInt Val = N1C->getAPIntValue();
2520 unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2521 Val <<= Val.getBitWidth()-FromBits;
2522 Val = Val.ashr(Val.getBitWidth()-FromBits);
2523 return getConstant(Val, VT);
2525 break;
2527 case ISD::EXTRACT_VECTOR_ELT:
2528 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2529 if (N1.getOpcode() == ISD::UNDEF)
2530 return getUNDEF(VT);
2532 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2533 // expanding copies of large vectors from registers.
2534 if (N2C &&
2535 N1.getOpcode() == ISD::CONCAT_VECTORS &&
2536 N1.getNumOperands() > 0) {
2537 unsigned Factor =
2538 N1.getOperand(0).getValueType().getVectorNumElements();
2539 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2540 N1.getOperand(N2C->getZExtValue() / Factor),
2541 getConstant(N2C->getZExtValue() % Factor,
2542 N2.getValueType()));
2545 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2546 // expanding large vector constants.
2547 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2548 SDValue Elt = N1.getOperand(N2C->getZExtValue());
2549 if (Elt.getValueType() != VT) {
2550 // If the vector element type is not legal, the BUILD_VECTOR operands
2551 // are promoted and implicitly truncated. Make that explicit here.
2552 assert(VT.isInteger() && Elt.getValueType().isInteger() &&
2553 VT.bitsLE(Elt.getValueType()) &&
2554 "Bad type for BUILD_VECTOR operand");
2555 Elt = getNode(ISD::TRUNCATE, DL, VT, Elt);
2557 return Elt;
2560 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2561 // operations are lowered to scalars.
2562 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2563 // If the indices are the same, return the inserted element.
2564 if (N1.getOperand(2) == N2)
2565 return N1.getOperand(1);
2566 // If the indices are known different, extract the element from
2567 // the original vector.
2568 else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2569 isa<ConstantSDNode>(N2))
2570 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2572 break;
2573 case ISD::EXTRACT_ELEMENT:
2574 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2575 assert(!N1.getValueType().isVector() && !VT.isVector() &&
2576 (N1.getValueType().isInteger() == VT.isInteger()) &&
2577 "Wrong types for EXTRACT_ELEMENT!");
2579 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2580 // 64-bit integers into 32-bit parts. Instead of building the extract of
2581 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2582 if (N1.getOpcode() == ISD::BUILD_PAIR)
2583 return N1.getOperand(N2C->getZExtValue());
2585 // EXTRACT_ELEMENT of a constant int is also very common.
2586 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2587 unsigned ElementSize = VT.getSizeInBits();
2588 unsigned Shift = ElementSize * N2C->getZExtValue();
2589 APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2590 return getConstant(ShiftedVal.trunc(ElementSize), VT);
2592 break;
2593 case ISD::EXTRACT_SUBVECTOR:
2594 if (N1.getValueType() == VT) // Trivial extraction.
2595 return N1;
2596 break;
2599 if (N1C) {
2600 if (N2C) {
2601 SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2602 if (SV.getNode()) return SV;
2603 } else { // Cannonicalize constant to RHS if commutative
2604 if (isCommutativeBinOp(Opcode)) {
2605 std::swap(N1C, N2C);
2606 std::swap(N1, N2);
2611 // Constant fold FP operations.
2612 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2613 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2614 if (N1CFP) {
2615 if (!N2CFP && isCommutativeBinOp(Opcode)) {
2616 // Cannonicalize constant to RHS if commutative
2617 std::swap(N1CFP, N2CFP);
2618 std::swap(N1, N2);
2619 } else if (N2CFP && VT != MVT::ppcf128) {
2620 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2621 APFloat::opStatus s;
2622 switch (Opcode) {
2623 case ISD::FADD:
2624 s = V1.add(V2, APFloat::rmNearestTiesToEven);
2625 if (s != APFloat::opInvalidOp)
2626 return getConstantFP(V1, VT);
2627 break;
2628 case ISD::FSUB:
2629 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2630 if (s!=APFloat::opInvalidOp)
2631 return getConstantFP(V1, VT);
2632 break;
2633 case ISD::FMUL:
2634 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2635 if (s!=APFloat::opInvalidOp)
2636 return getConstantFP(V1, VT);
2637 break;
2638 case ISD::FDIV:
2639 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2640 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2641 return getConstantFP(V1, VT);
2642 break;
2643 case ISD::FREM :
2644 s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2645 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2646 return getConstantFP(V1, VT);
2647 break;
2648 case ISD::FCOPYSIGN:
2649 V1.copySign(V2);
2650 return getConstantFP(V1, VT);
2651 default: break;
2656 // Canonicalize an UNDEF to the RHS, even over a constant.
2657 if (N1.getOpcode() == ISD::UNDEF) {
2658 if (isCommutativeBinOp(Opcode)) {
2659 std::swap(N1, N2);
2660 } else {
2661 switch (Opcode) {
2662 case ISD::FP_ROUND_INREG:
2663 case ISD::SIGN_EXTEND_INREG:
2664 case ISD::SUB:
2665 case ISD::FSUB:
2666 case ISD::FDIV:
2667 case ISD::FREM:
2668 case ISD::SRA:
2669 return N1; // fold op(undef, arg2) -> undef
2670 case ISD::UDIV:
2671 case ISD::SDIV:
2672 case ISD::UREM:
2673 case ISD::SREM:
2674 case ISD::SRL:
2675 case ISD::SHL:
2676 if (!VT.isVector())
2677 return getConstant(0, VT); // fold op(undef, arg2) -> 0
2678 // For vectors, we can't easily build an all zero vector, just return
2679 // the LHS.
2680 return N2;
2685 // Fold a bunch of operators when the RHS is undef.
2686 if (N2.getOpcode() == ISD::UNDEF) {
2687 switch (Opcode) {
2688 case ISD::XOR:
2689 if (N1.getOpcode() == ISD::UNDEF)
2690 // Handle undef ^ undef -> 0 special case. This is a common
2691 // idiom (misuse).
2692 return getConstant(0, VT);
2693 // fallthrough
2694 case ISD::ADD:
2695 case ISD::ADDC:
2696 case ISD::ADDE:
2697 case ISD::SUB:
2698 case ISD::FADD:
2699 case ISD::FSUB:
2700 case ISD::FMUL:
2701 case ISD::FDIV:
2702 case ISD::FREM:
2703 case ISD::UDIV:
2704 case ISD::SDIV:
2705 case ISD::UREM:
2706 case ISD::SREM:
2707 return N2; // fold op(arg1, undef) -> undef
2708 case ISD::MUL:
2709 case ISD::AND:
2710 case ISD::SRL:
2711 case ISD::SHL:
2712 if (!VT.isVector())
2713 return getConstant(0, VT); // fold op(arg1, undef) -> 0
2714 // For vectors, we can't easily build an all zero vector, just return
2715 // the LHS.
2716 return N1;
2717 case ISD::OR:
2718 if (!VT.isVector())
2719 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2720 // For vectors, we can't easily build an all one vector, just return
2721 // the LHS.
2722 return N1;
2723 case ISD::SRA:
2724 return N1;
2728 // Memoize this node if possible.
2729 SDNode *N;
2730 SDVTList VTs = getVTList(VT);
2731 if (VT != MVT::Flag) {
2732 SDValue Ops[] = { N1, N2 };
2733 FoldingSetNodeID ID;
2734 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2735 void *IP = 0;
2736 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2737 return SDValue(E, 0);
2738 N = NodeAllocator.Allocate<BinarySDNode>();
2739 new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2740 CSEMap.InsertNode(N, IP);
2741 } else {
2742 N = NodeAllocator.Allocate<BinarySDNode>();
2743 new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2746 AllNodes.push_back(N);
2747 #ifndef NDEBUG
2748 VerifyNode(N);
2749 #endif
2750 return SDValue(N, 0);
2753 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2754 SDValue N1, SDValue N2, SDValue N3) {
2755 // Perform various simplifications.
2756 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2757 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2758 switch (Opcode) {
2759 case ISD::CONCAT_VECTORS:
2760 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2761 // one big BUILD_VECTOR.
2762 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2763 N2.getOpcode() == ISD::BUILD_VECTOR &&
2764 N3.getOpcode() == ISD::BUILD_VECTOR) {
2765 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2766 Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2767 Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2768 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2770 break;
2771 case ISD::SETCC: {
2772 // Use FoldSetCC to simplify SETCC's.
2773 SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2774 if (Simp.getNode()) return Simp;
2775 break;
2777 case ISD::SELECT:
2778 if (N1C) {
2779 if (N1C->getZExtValue())
2780 return N2; // select true, X, Y -> X
2781 else
2782 return N3; // select false, X, Y -> Y
2785 if (N2 == N3) return N2; // select C, X, X -> X
2786 break;
2787 case ISD::BRCOND:
2788 if (N2C) {
2789 if (N2C->getZExtValue()) // Unconditional branch
2790 return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2791 else
2792 return N1; // Never-taken branch
2794 break;
2795 case ISD::VECTOR_SHUFFLE:
2796 assert(N1.getValueType() == N2.getValueType() &&
2797 N1.getValueType().isVector() &&
2798 VT.isVector() && N3.getValueType().isVector() &&
2799 N3.getOpcode() == ISD::BUILD_VECTOR &&
2800 VT.getVectorNumElements() == N3.getNumOperands() &&
2801 "Illegal VECTOR_SHUFFLE node!");
2802 break;
2803 case ISD::BIT_CONVERT:
2804 // Fold bit_convert nodes from a type to themselves.
2805 if (N1.getValueType() == VT)
2806 return N1;
2807 break;
2810 // Memoize node if it doesn't produce a flag.
2811 SDNode *N;
2812 SDVTList VTs = getVTList(VT);
2813 if (VT != MVT::Flag) {
2814 SDValue Ops[] = { N1, N2, N3 };
2815 FoldingSetNodeID ID;
2816 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2817 void *IP = 0;
2818 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2819 return SDValue(E, 0);
2820 N = NodeAllocator.Allocate<TernarySDNode>();
2821 new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2822 CSEMap.InsertNode(N, IP);
2823 } else {
2824 N = NodeAllocator.Allocate<TernarySDNode>();
2825 new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2827 AllNodes.push_back(N);
2828 #ifndef NDEBUG
2829 VerifyNode(N);
2830 #endif
2831 return SDValue(N, 0);
2834 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2835 SDValue N1, SDValue N2, SDValue N3,
2836 SDValue N4) {
2837 SDValue Ops[] = { N1, N2, N3, N4 };
2838 return getNode(Opcode, DL, VT, Ops, 4);
2841 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2842 SDValue N1, SDValue N2, SDValue N3,
2843 SDValue N4, SDValue N5) {
2844 SDValue Ops[] = { N1, N2, N3, N4, N5 };
2845 return getNode(Opcode, DL, VT, Ops, 5);
2848 /// getMemsetValue - Vectorized representation of the memset value
2849 /// operand.
2850 static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2851 DebugLoc dl) {
2852 unsigned NumBits = VT.isVector() ?
2853 VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2854 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2855 APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2856 unsigned Shift = 8;
2857 for (unsigned i = NumBits; i > 8; i >>= 1) {
2858 Val = (Val << Shift) | Val;
2859 Shift <<= 1;
2861 if (VT.isInteger())
2862 return DAG.getConstant(Val, VT);
2863 return DAG.getConstantFP(APFloat(Val), VT);
2866 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2867 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2868 unsigned Shift = 8;
2869 for (unsigned i = NumBits; i > 8; i >>= 1) {
2870 Value = DAG.getNode(ISD::OR, dl, VT,
2871 DAG.getNode(ISD::SHL, dl, VT, Value,
2872 DAG.getConstant(Shift,
2873 TLI.getShiftAmountTy())),
2874 Value);
2875 Shift <<= 1;
2878 return Value;
2881 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2882 /// used when a memcpy is turned into a memset when the source is a constant
2883 /// string ptr.
2884 static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2885 const TargetLowering &TLI,
2886 std::string &Str, unsigned Offset) {
2887 // Handle vector with all elements zero.
2888 if (Str.empty()) {
2889 if (VT.isInteger())
2890 return DAG.getConstant(0, VT);
2891 unsigned NumElts = VT.getVectorNumElements();
2892 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2893 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
2894 DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2897 assert(!VT.isVector() && "Can't handle vector type here!");
2898 unsigned NumBits = VT.getSizeInBits();
2899 unsigned MSB = NumBits / 8;
2900 uint64_t Val = 0;
2901 if (TLI.isLittleEndian())
2902 Offset = Offset + MSB - 1;
2903 for (unsigned i = 0; i != MSB; ++i) {
2904 Val = (Val << 8) | (unsigned char)Str[Offset];
2905 Offset += TLI.isLittleEndian() ? -1 : 1;
2907 return DAG.getConstant(Val, VT);
2910 /// getMemBasePlusOffset - Returns base and offset node for the
2912 static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2913 SelectionDAG &DAG) {
2914 MVT VT = Base.getValueType();
2915 return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
2916 VT, Base, DAG.getConstant(Offset, VT));
2919 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
2921 static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2922 unsigned SrcDelta = 0;
2923 GlobalAddressSDNode *G = NULL;
2924 if (Src.getOpcode() == ISD::GlobalAddress)
2925 G = cast<GlobalAddressSDNode>(Src);
2926 else if (Src.getOpcode() == ISD::ADD &&
2927 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2928 Src.getOperand(1).getOpcode() == ISD::Constant) {
2929 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2930 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2932 if (!G)
2933 return false;
2935 GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2936 if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2937 return true;
2939 return false;
2942 /// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2943 /// to replace the memset / memcpy is below the threshold. It also returns the
2944 /// types of the sequence of memory ops to perform memset / memcpy.
2945 static
2946 bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2947 SDValue Dst, SDValue Src,
2948 unsigned Limit, uint64_t Size, unsigned &Align,
2949 std::string &Str, bool &isSrcStr,
2950 SelectionDAG &DAG,
2951 const TargetLowering &TLI) {
2952 isSrcStr = isMemSrcFromString(Src, Str);
2953 bool isSrcConst = isa<ConstantSDNode>(Src);
2954 bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2955 MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2956 if (VT != MVT::iAny) {
2957 unsigned NewAlign = (unsigned)
2958 TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2959 // If source is a string constant, this will require an unaligned load.
2960 if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2961 if (Dst.getOpcode() != ISD::FrameIndex) {
2962 // Can't change destination alignment. It requires a unaligned store.
2963 if (AllowUnalign)
2964 VT = MVT::iAny;
2965 } else {
2966 int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2967 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2968 if (MFI->isFixedObjectIndex(FI)) {
2969 // Can't change destination alignment. It requires a unaligned store.
2970 if (AllowUnalign)
2971 VT = MVT::iAny;
2972 } else {
2973 // Give the stack frame object a larger alignment if needed.
2974 if (MFI->getObjectAlignment(FI) < NewAlign)
2975 MFI->setObjectAlignment(FI, NewAlign);
2976 Align = NewAlign;
2982 if (VT == MVT::iAny) {
2983 if (AllowUnalign) {
2984 VT = MVT::i64;
2985 } else {
2986 switch (Align & 7) {
2987 case 0: VT = MVT::i64; break;
2988 case 4: VT = MVT::i32; break;
2989 case 2: VT = MVT::i16; break;
2990 default: VT = MVT::i8; break;
2994 MVT LVT = MVT::i64;
2995 while (!TLI.isTypeLegal(LVT))
2996 LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2997 assert(LVT.isInteger());
2999 if (VT.bitsGT(LVT))
3000 VT = LVT;
3003 unsigned NumMemOps = 0;
3004 while (Size != 0) {
3005 unsigned VTSize = VT.getSizeInBits() / 8;
3006 while (VTSize > Size) {
3007 // For now, only use non-vector load / store's for the left-over pieces.
3008 if (VT.isVector()) {
3009 VT = MVT::i64;
3010 while (!TLI.isTypeLegal(VT))
3011 VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3012 VTSize = VT.getSizeInBits() / 8;
3013 } else {
3014 VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3015 VTSize >>= 1;
3019 if (++NumMemOps > Limit)
3020 return false;
3021 MemOps.push_back(VT);
3022 Size -= VTSize;
3025 return true;
3028 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3029 SDValue Chain, SDValue Dst,
3030 SDValue Src, uint64_t Size,
3031 unsigned Align, bool AlwaysInline,
3032 const Value *DstSV, uint64_t DstSVOff,
3033 const Value *SrcSV, uint64_t SrcSVOff){
3034 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3036 // Expand memcpy to a series of load and store ops if the size operand falls
3037 // below a certain threshold.
3038 std::vector<MVT> MemOps;
3039 uint64_t Limit = -1ULL;
3040 if (!AlwaysInline)
3041 Limit = TLI.getMaxStoresPerMemcpy();
3042 unsigned DstAlign = Align; // Destination alignment can change.
3043 std::string Str;
3044 bool CopyFromStr;
3045 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3046 Str, CopyFromStr, DAG, TLI))
3047 return SDValue();
3050 bool isZeroStr = CopyFromStr && Str.empty();
3051 SmallVector<SDValue, 8> OutChains;
3052 unsigned NumMemOps = MemOps.size();
3053 uint64_t SrcOff = 0, DstOff = 0;
3054 for (unsigned i = 0; i < NumMemOps; i++) {
3055 MVT VT = MemOps[i];
3056 unsigned VTSize = VT.getSizeInBits() / 8;
3057 SDValue Value, Store;
3059 if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3060 // It's unlikely a store of a vector immediate can be done in a single
3061 // instruction. It would require a load from a constantpool first.
3062 // We also handle store a vector with all zero's.
3063 // FIXME: Handle other cases where store of vector immediate is done in
3064 // a single instruction.
3065 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3066 Store = DAG.getStore(Chain, dl, Value,
3067 getMemBasePlusOffset(Dst, DstOff, DAG),
3068 DstSV, DstSVOff + DstOff, false, DstAlign);
3069 } else {
3070 Value = DAG.getLoad(VT, dl, Chain,
3071 getMemBasePlusOffset(Src, SrcOff, DAG),
3072 SrcSV, SrcSVOff + SrcOff, false, Align);
3073 Store = DAG.getStore(Chain, dl, Value,
3074 getMemBasePlusOffset(Dst, DstOff, DAG),
3075 DstSV, DstSVOff + DstOff, false, DstAlign);
3077 OutChains.push_back(Store);
3078 SrcOff += VTSize;
3079 DstOff += VTSize;
3082 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3083 &OutChains[0], OutChains.size());
3086 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3087 SDValue Chain, SDValue Dst,
3088 SDValue Src, uint64_t Size,
3089 unsigned Align, bool AlwaysInline,
3090 const Value *DstSV, uint64_t DstSVOff,
3091 const Value *SrcSV, uint64_t SrcSVOff){
3092 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3094 // Expand memmove to a series of load and store ops if the size operand falls
3095 // below a certain threshold.
3096 std::vector<MVT> MemOps;
3097 uint64_t Limit = -1ULL;
3098 if (!AlwaysInline)
3099 Limit = TLI.getMaxStoresPerMemmove();
3100 unsigned DstAlign = Align; // Destination alignment can change.
3101 std::string Str;
3102 bool CopyFromStr;
3103 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3104 Str, CopyFromStr, DAG, TLI))
3105 return SDValue();
3107 uint64_t SrcOff = 0, DstOff = 0;
3109 SmallVector<SDValue, 8> LoadValues;
3110 SmallVector<SDValue, 8> LoadChains;
3111 SmallVector<SDValue, 8> OutChains;
3112 unsigned NumMemOps = MemOps.size();
3113 for (unsigned i = 0; i < NumMemOps; i++) {
3114 MVT VT = MemOps[i];
3115 unsigned VTSize = VT.getSizeInBits() / 8;
3116 SDValue Value, Store;
3118 Value = DAG.getLoad(VT, dl, Chain,
3119 getMemBasePlusOffset(Src, SrcOff, DAG),
3120 SrcSV, SrcSVOff + SrcOff, false, Align);
3121 LoadValues.push_back(Value);
3122 LoadChains.push_back(Value.getValue(1));
3123 SrcOff += VTSize;
3125 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3126 &LoadChains[0], LoadChains.size());
3127 OutChains.clear();
3128 for (unsigned i = 0; i < NumMemOps; i++) {
3129 MVT VT = MemOps[i];
3130 unsigned VTSize = VT.getSizeInBits() / 8;
3131 SDValue Value, Store;
3133 Store = DAG.getStore(Chain, dl, LoadValues[i],
3134 getMemBasePlusOffset(Dst, DstOff, DAG),
3135 DstSV, DstSVOff + DstOff, false, DstAlign);
3136 OutChains.push_back(Store);
3137 DstOff += VTSize;
3140 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3141 &OutChains[0], OutChains.size());
3144 static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3145 SDValue Chain, SDValue Dst,
3146 SDValue Src, uint64_t Size,
3147 unsigned Align,
3148 const Value *DstSV, uint64_t DstSVOff) {
3149 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3151 // Expand memset to a series of load/store ops if the size operand
3152 // falls below a certain threshold.
3153 std::vector<MVT> MemOps;
3154 std::string Str;
3155 bool CopyFromStr;
3156 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3157 Size, Align, Str, CopyFromStr, DAG, TLI))
3158 return SDValue();
3160 SmallVector<SDValue, 8> OutChains;
3161 uint64_t DstOff = 0;
3163 unsigned NumMemOps = MemOps.size();
3164 for (unsigned i = 0; i < NumMemOps; i++) {
3165 MVT VT = MemOps[i];
3166 unsigned VTSize = VT.getSizeInBits() / 8;
3167 SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3168 SDValue Store = DAG.getStore(Chain, dl, Value,
3169 getMemBasePlusOffset(Dst, DstOff, DAG),
3170 DstSV, DstSVOff + DstOff);
3171 OutChains.push_back(Store);
3172 DstOff += VTSize;
3175 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3176 &OutChains[0], OutChains.size());
3179 SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3180 SDValue Src, SDValue Size,
3181 unsigned Align, bool AlwaysInline,
3182 const Value *DstSV, uint64_t DstSVOff,
3183 const Value *SrcSV, uint64_t SrcSVOff) {
3185 // Check to see if we should lower the memcpy to loads and stores first.
3186 // For cases within the target-specified limits, this is the best choice.
3187 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3188 if (ConstantSize) {
3189 // Memcpy with size zero? Just return the original chain.
3190 if (ConstantSize->isNullValue())
3191 return Chain;
3193 SDValue Result =
3194 getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3195 ConstantSize->getZExtValue(),
3196 Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3197 if (Result.getNode())
3198 return Result;
3201 // Then check to see if we should lower the memcpy with target-specific
3202 // code. If the target chooses to do this, this is the next best.
3203 SDValue Result =
3204 TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3205 AlwaysInline,
3206 DstSV, DstSVOff, SrcSV, SrcSVOff);
3207 if (Result.getNode())
3208 return Result;
3210 // If we really need inline code and the target declined to provide it,
3211 // use a (potentially long) sequence of loads and stores.
3212 if (AlwaysInline) {
3213 assert(ConstantSize && "AlwaysInline requires a constant size!");
3214 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3215 ConstantSize->getZExtValue(), Align, true,
3216 DstSV, DstSVOff, SrcSV, SrcSVOff);
3219 // Emit a library call.
3220 TargetLowering::ArgListTy Args;
3221 TargetLowering::ArgListEntry Entry;
3222 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3223 Entry.Node = Dst; Args.push_back(Entry);
3224 Entry.Node = Src; Args.push_back(Entry);
3225 Entry.Node = Size; Args.push_back(Entry);
3226 // FIXME: pass in DebugLoc
3227 std::pair<SDValue,SDValue> CallResult =
3228 TLI.LowerCallTo(Chain, Type::VoidTy,
3229 false, false, false, false, CallingConv::C, false,
3230 getExternalSymbol("memcpy", TLI.getPointerTy()),
3231 Args, *this, dl);
3232 return CallResult.second;
3235 SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3236 SDValue Src, SDValue Size,
3237 unsigned Align,
3238 const Value *DstSV, uint64_t DstSVOff,
3239 const Value *SrcSV, uint64_t SrcSVOff) {
3241 // Check to see if we should lower the memmove to loads and stores first.
3242 // For cases within the target-specified limits, this is the best choice.
3243 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3244 if (ConstantSize) {
3245 // Memmove with size zero? Just return the original chain.
3246 if (ConstantSize->isNullValue())
3247 return Chain;
3249 SDValue Result =
3250 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3251 ConstantSize->getZExtValue(),
3252 Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3253 if (Result.getNode())
3254 return Result;
3257 // Then check to see if we should lower the memmove with target-specific
3258 // code. If the target chooses to do this, this is the next best.
3259 SDValue Result =
3260 TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3261 DstSV, DstSVOff, SrcSV, SrcSVOff);
3262 if (Result.getNode())
3263 return Result;
3265 // Emit a library call.
3266 TargetLowering::ArgListTy Args;
3267 TargetLowering::ArgListEntry Entry;
3268 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3269 Entry.Node = Dst; Args.push_back(Entry);
3270 Entry.Node = Src; Args.push_back(Entry);
3271 Entry.Node = Size; Args.push_back(Entry);
3272 // FIXME: pass in DebugLoc
3273 std::pair<SDValue,SDValue> CallResult =
3274 TLI.LowerCallTo(Chain, Type::VoidTy,
3275 false, false, false, false, CallingConv::C, false,
3276 getExternalSymbol("memmove", TLI.getPointerTy()),
3277 Args, *this, dl);
3278 return CallResult.second;
3281 SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3282 SDValue Src, SDValue Size,
3283 unsigned Align,
3284 const Value *DstSV, uint64_t DstSVOff) {
3286 // Check to see if we should lower the memset to stores first.
3287 // For cases within the target-specified limits, this is the best choice.
3288 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3289 if (ConstantSize) {
3290 // Memset with size zero? Just return the original chain.
3291 if (ConstantSize->isNullValue())
3292 return Chain;
3294 SDValue Result =
3295 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3296 Align, DstSV, DstSVOff);
3297 if (Result.getNode())
3298 return Result;
3301 // Then check to see if we should lower the memset with target-specific
3302 // code. If the target chooses to do this, this is the next best.
3303 SDValue Result =
3304 TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3305 DstSV, DstSVOff);
3306 if (Result.getNode())
3307 return Result;
3309 // Emit a library call.
3310 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3311 TargetLowering::ArgListTy Args;
3312 TargetLowering::ArgListEntry Entry;
3313 Entry.Node = Dst; Entry.Ty = IntPtrTy;
3314 Args.push_back(Entry);
3315 // Extend or truncate the argument to be an i32 value for the call.
3316 if (Src.getValueType().bitsGT(MVT::i32))
3317 Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3318 else
3319 Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3320 Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3321 Args.push_back(Entry);
3322 Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3323 Args.push_back(Entry);
3324 // FIXME: pass in DebugLoc
3325 std::pair<SDValue,SDValue> CallResult =
3326 TLI.LowerCallTo(Chain, Type::VoidTy,
3327 false, false, false, false, CallingConv::C, false,
3328 getExternalSymbol("memset", TLI.getPointerTy()),
3329 Args, *this, dl);
3330 return CallResult.second;
3333 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3334 SDValue Chain,
3335 SDValue Ptr, SDValue Cmp,
3336 SDValue Swp, const Value* PtrVal,
3337 unsigned Alignment) {
3338 assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3339 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3341 MVT VT = Cmp.getValueType();
3343 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3344 Alignment = getMVTAlignment(MemVT);
3346 SDVTList VTs = getVTList(VT, MVT::Other);
3347 FoldingSetNodeID ID;
3348 ID.AddInteger(MemVT.getRawBits());
3349 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3350 AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3351 void* IP = 0;
3352 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3353 return SDValue(E, 0);
3354 SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3355 new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3356 Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3357 CSEMap.InsertNode(N, IP);
3358 AllNodes.push_back(N);
3359 return SDValue(N, 0);
3362 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3363 SDValue Chain,
3364 SDValue Ptr, SDValue Val,
3365 const Value* PtrVal,
3366 unsigned Alignment) {
3367 assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3368 Opcode == ISD::ATOMIC_LOAD_SUB ||
3369 Opcode == ISD::ATOMIC_LOAD_AND ||
3370 Opcode == ISD::ATOMIC_LOAD_OR ||
3371 Opcode == ISD::ATOMIC_LOAD_XOR ||
3372 Opcode == ISD::ATOMIC_LOAD_NAND ||
3373 Opcode == ISD::ATOMIC_LOAD_MIN ||
3374 Opcode == ISD::ATOMIC_LOAD_MAX ||
3375 Opcode == ISD::ATOMIC_LOAD_UMIN ||
3376 Opcode == ISD::ATOMIC_LOAD_UMAX ||
3377 Opcode == ISD::ATOMIC_SWAP) &&
3378 "Invalid Atomic Op");
3380 MVT VT = Val.getValueType();
3382 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3383 Alignment = getMVTAlignment(MemVT);
3385 SDVTList VTs = getVTList(VT, MVT::Other);
3386 FoldingSetNodeID ID;
3387 ID.AddInteger(MemVT.getRawBits());
3388 SDValue Ops[] = {Chain, Ptr, Val};
3389 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3390 void* IP = 0;
3391 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3392 return SDValue(E, 0);
3393 SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3394 new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3395 Chain, Ptr, Val, PtrVal, Alignment);
3396 CSEMap.InsertNode(N, IP);
3397 AllNodes.push_back(N);
3398 return SDValue(N, 0);
3401 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
3402 /// Allowed to return something different (and simpler) if Simplify is true.
3403 SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3404 DebugLoc dl) {
3405 if (NumOps == 1)
3406 return Ops[0];
3408 SmallVector<MVT, 4> VTs;
3409 VTs.reserve(NumOps);
3410 for (unsigned i = 0; i < NumOps; ++i)
3411 VTs.push_back(Ops[i].getValueType());
3412 return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3413 Ops, NumOps);
3416 SDValue
3417 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3418 const MVT *VTs, unsigned NumVTs,
3419 const SDValue *Ops, unsigned NumOps,
3420 MVT MemVT, const Value *srcValue, int SVOff,
3421 unsigned Align, bool Vol,
3422 bool ReadMem, bool WriteMem) {
3423 return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3424 MemVT, srcValue, SVOff, Align, Vol,
3425 ReadMem, WriteMem);
3428 SDValue
3429 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3430 const SDValue *Ops, unsigned NumOps,
3431 MVT MemVT, const Value *srcValue, int SVOff,
3432 unsigned Align, bool Vol,
3433 bool ReadMem, bool WriteMem) {
3434 // Memoize the node unless it returns a flag.
3435 MemIntrinsicSDNode *N;
3436 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3437 FoldingSetNodeID ID;
3438 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3439 void *IP = 0;
3440 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3441 return SDValue(E, 0);
3443 N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3444 new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3445 srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3446 CSEMap.InsertNode(N, IP);
3447 } else {
3448 N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3449 new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3450 srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3452 AllNodes.push_back(N);
3453 return SDValue(N, 0);
3456 SDValue
3457 SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3458 bool IsTailCall, bool IsInreg, SDVTList VTs,
3459 const SDValue *Operands, unsigned NumOperands) {
3460 // Do not include isTailCall in the folding set profile.
3461 FoldingSetNodeID ID;
3462 AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3463 ID.AddInteger(CallingConv);
3464 ID.AddInteger(IsVarArgs);
3465 void *IP = 0;
3466 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3467 // Instead of including isTailCall in the folding set, we just
3468 // set the flag of the existing node.
3469 if (!IsTailCall)
3470 cast<CallSDNode>(E)->setNotTailCall();
3471 return SDValue(E, 0);
3473 SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3474 new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3475 VTs, Operands, NumOperands);
3476 CSEMap.InsertNode(N, IP);
3477 AllNodes.push_back(N);
3478 return SDValue(N, 0);
3481 SDValue
3482 SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3483 ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3484 SDValue Ptr, SDValue Offset,
3485 const Value *SV, int SVOffset, MVT EVT,
3486 bool isVolatile, unsigned Alignment) {
3487 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3488 Alignment = getMVTAlignment(VT);
3490 if (VT == EVT) {
3491 ExtType = ISD::NON_EXTLOAD;
3492 } else if (ExtType == ISD::NON_EXTLOAD) {
3493 assert(VT == EVT && "Non-extending load from different memory type!");
3494 } else {
3495 // Extending load.
3496 if (VT.isVector())
3497 assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3498 "Invalid vector extload!");
3499 else
3500 assert(EVT.bitsLT(VT) &&
3501 "Should only be an extending load, not truncating!");
3502 assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3503 "Cannot sign/zero extend a FP/Vector load!");
3504 assert(VT.isInteger() == EVT.isInteger() &&
3505 "Cannot convert from FP to Int or Int -> FP!");
3508 bool Indexed = AM != ISD::UNINDEXED;
3509 assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3510 "Unindexed load with an offset!");
3512 SDVTList VTs = Indexed ?
3513 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3514 SDValue Ops[] = { Chain, Ptr, Offset };
3515 FoldingSetNodeID ID;
3516 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3517 ID.AddInteger(EVT.getRawBits());
3518 ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3519 void *IP = 0;
3520 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3521 return SDValue(E, 0);
3522 SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3523 new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3524 Alignment, isVolatile);
3525 CSEMap.InsertNode(N, IP);
3526 AllNodes.push_back(N);
3527 return SDValue(N, 0);
3530 SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3531 SDValue Chain, SDValue Ptr,
3532 const Value *SV, int SVOffset,
3533 bool isVolatile, unsigned Alignment) {
3534 SDValue Undef = getUNDEF(Ptr.getValueType());
3535 return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3536 SV, SVOffset, VT, isVolatile, Alignment);
3539 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3540 SDValue Chain, SDValue Ptr,
3541 const Value *SV,
3542 int SVOffset, MVT EVT,
3543 bool isVolatile, unsigned Alignment) {
3544 SDValue Undef = getUNDEF(Ptr.getValueType());
3545 return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3546 SV, SVOffset, EVT, isVolatile, Alignment);
3549 SDValue
3550 SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3551 SDValue Offset, ISD::MemIndexedMode AM) {
3552 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3553 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3554 "Load is already a indexed load!");
3555 return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3556 LD->getChain(), Base, Offset, LD->getSrcValue(),
3557 LD->getSrcValueOffset(), LD->getMemoryVT(),
3558 LD->isVolatile(), LD->getAlignment());
3561 SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3562 SDValue Ptr, const Value *SV, int SVOffset,
3563 bool isVolatile, unsigned Alignment) {
3564 MVT VT = Val.getValueType();
3566 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3567 Alignment = getMVTAlignment(VT);
3569 SDVTList VTs = getVTList(MVT::Other);
3570 SDValue Undef = getUNDEF(Ptr.getValueType());
3571 SDValue Ops[] = { Chain, Val, Ptr, Undef };
3572 FoldingSetNodeID ID;
3573 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3574 ID.AddInteger(VT.getRawBits());
3575 ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3576 isVolatile, Alignment));
3577 void *IP = 0;
3578 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3579 return SDValue(E, 0);
3580 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3581 new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3582 VT, SV, SVOffset, Alignment, isVolatile);
3583 CSEMap.InsertNode(N, IP);
3584 AllNodes.push_back(N);
3585 return SDValue(N, 0);
3588 SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3589 SDValue Ptr, const Value *SV,
3590 int SVOffset, MVT SVT,
3591 bool isVolatile, unsigned Alignment) {
3592 MVT VT = Val.getValueType();
3594 if (VT == SVT)
3595 return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3597 assert(VT.bitsGT(SVT) && "Not a truncation?");
3598 assert(VT.isInteger() == SVT.isInteger() &&
3599 "Can't do FP-INT conversion!");
3601 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3602 Alignment = getMVTAlignment(VT);
3604 SDVTList VTs = getVTList(MVT::Other);
3605 SDValue Undef = getUNDEF(Ptr.getValueType());
3606 SDValue Ops[] = { Chain, Val, Ptr, Undef };
3607 FoldingSetNodeID ID;
3608 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3609 ID.AddInteger(SVT.getRawBits());
3610 ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3611 isVolatile, Alignment));
3612 void *IP = 0;
3613 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3614 return SDValue(E, 0);
3615 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3616 new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3617 SVT, SV, SVOffset, Alignment, isVolatile);
3618 CSEMap.InsertNode(N, IP);
3619 AllNodes.push_back(N);
3620 return SDValue(N, 0);
3623 SDValue
3624 SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3625 SDValue Offset, ISD::MemIndexedMode AM) {
3626 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3627 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3628 "Store is already a indexed store!");
3629 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3630 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3631 FoldingSetNodeID ID;
3632 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3633 ID.AddInteger(ST->getMemoryVT().getRawBits());
3634 ID.AddInteger(ST->getRawSubclassData());
3635 void *IP = 0;
3636 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3637 return SDValue(E, 0);
3638 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3639 new (N) StoreSDNode(Ops, dl, VTs, AM,
3640 ST->isTruncatingStore(), ST->getMemoryVT(),
3641 ST->getSrcValue(), ST->getSrcValueOffset(),
3642 ST->getAlignment(), ST->isVolatile());
3643 CSEMap.InsertNode(N, IP);
3644 AllNodes.push_back(N);
3645 return SDValue(N, 0);
3648 SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3649 SDValue Chain, SDValue Ptr,
3650 SDValue SV) {
3651 SDValue Ops[] = { Chain, Ptr, SV };
3652 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3655 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3656 const SDUse *Ops, unsigned NumOps) {
3657 switch (NumOps) {
3658 case 0: return getNode(Opcode, DL, VT);
3659 case 1: return getNode(Opcode, DL, VT, Ops[0]);
3660 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3661 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3662 default: break;
3665 // Copy from an SDUse array into an SDValue array for use with
3666 // the regular getNode logic.
3667 SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3668 return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3671 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3672 const SDValue *Ops, unsigned NumOps) {
3673 switch (NumOps) {
3674 case 0: return getNode(Opcode, DL, VT);
3675 case 1: return getNode(Opcode, DL, VT, Ops[0]);
3676 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3677 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3678 default: break;
3681 switch (Opcode) {
3682 default: break;
3683 case ISD::SELECT_CC: {
3684 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3685 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3686 "LHS and RHS of condition must have same type!");
3687 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3688 "True and False arms of SelectCC must have same type!");
3689 assert(Ops[2].getValueType() == VT &&
3690 "select_cc node must be of same type as true and false value!");
3691 break;
3693 case ISD::BR_CC: {
3694 assert(NumOps == 5 && "BR_CC takes 5 operands!");
3695 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3696 "LHS/RHS of comparison should match types!");
3697 break;
3701 // Memoize nodes.
3702 SDNode *N;
3703 SDVTList VTs = getVTList(VT);
3705 if (VT != MVT::Flag) {
3706 FoldingSetNodeID ID;
3707 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3708 void *IP = 0;
3710 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3711 return SDValue(E, 0);
3713 N = NodeAllocator.Allocate<SDNode>();
3714 new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3715 CSEMap.InsertNode(N, IP);
3716 } else {
3717 N = NodeAllocator.Allocate<SDNode>();
3718 new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3721 AllNodes.push_back(N);
3722 #ifndef NDEBUG
3723 VerifyNode(N);
3724 #endif
3725 return SDValue(N, 0);
3728 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3729 const std::vector<MVT> &ResultTys,
3730 const SDValue *Ops, unsigned NumOps) {
3731 return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3732 Ops, NumOps);
3735 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3736 const MVT *VTs, unsigned NumVTs,
3737 const SDValue *Ops, unsigned NumOps) {
3738 if (NumVTs == 1)
3739 return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3740 return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3743 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3744 const SDValue *Ops, unsigned NumOps) {
3745 if (VTList.NumVTs == 1)
3746 return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3748 switch (Opcode) {
3749 // FIXME: figure out how to safely handle things like
3750 // int foo(int x) { return 1 << (x & 255); }
3751 // int bar() { return foo(256); }
3752 #if 0
3753 case ISD::SRA_PARTS:
3754 case ISD::SRL_PARTS:
3755 case ISD::SHL_PARTS:
3756 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3757 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3758 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3759 else if (N3.getOpcode() == ISD::AND)
3760 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3761 // If the and is only masking out bits that cannot effect the shift,
3762 // eliminate the and.
3763 unsigned NumBits = VT.getSizeInBits()*2;
3764 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3765 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3767 break;
3768 #endif
3771 // Memoize the node unless it returns a flag.
3772 SDNode *N;
3773 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3774 FoldingSetNodeID ID;
3775 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3776 void *IP = 0;
3777 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3778 return SDValue(E, 0);
3779 if (NumOps == 1) {
3780 N = NodeAllocator.Allocate<UnarySDNode>();
3781 new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3782 } else if (NumOps == 2) {
3783 N = NodeAllocator.Allocate<BinarySDNode>();
3784 new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3785 } else if (NumOps == 3) {
3786 N = NodeAllocator.Allocate<TernarySDNode>();
3787 new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3788 } else {
3789 N = NodeAllocator.Allocate<SDNode>();
3790 new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3792 CSEMap.InsertNode(N, IP);
3793 } else {
3794 if (NumOps == 1) {
3795 N = NodeAllocator.Allocate<UnarySDNode>();
3796 new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3797 } else if (NumOps == 2) {
3798 N = NodeAllocator.Allocate<BinarySDNode>();
3799 new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3800 } else if (NumOps == 3) {
3801 N = NodeAllocator.Allocate<TernarySDNode>();
3802 new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3803 } else {
3804 N = NodeAllocator.Allocate<SDNode>();
3805 new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3808 AllNodes.push_back(N);
3809 #ifndef NDEBUG
3810 VerifyNode(N);
3811 #endif
3812 return SDValue(N, 0);
3815 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3816 return getNode(Opcode, DL, VTList, 0, 0);
3819 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3820 SDValue N1) {
3821 SDValue Ops[] = { N1 };
3822 return getNode(Opcode, DL, VTList, Ops, 1);
3825 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3826 SDValue N1, SDValue N2) {
3827 SDValue Ops[] = { N1, N2 };
3828 return getNode(Opcode, DL, VTList, Ops, 2);
3831 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3832 SDValue N1, SDValue N2, SDValue N3) {
3833 SDValue Ops[] = { N1, N2, N3 };
3834 return getNode(Opcode, DL, VTList, Ops, 3);
3837 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3838 SDValue N1, SDValue N2, SDValue N3,
3839 SDValue N4) {
3840 SDValue Ops[] = { N1, N2, N3, N4 };
3841 return getNode(Opcode, DL, VTList, Ops, 4);
3844 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3845 SDValue N1, SDValue N2, SDValue N3,
3846 SDValue N4, SDValue N5) {
3847 SDValue Ops[] = { N1, N2, N3, N4, N5 };
3848 return getNode(Opcode, DL, VTList, Ops, 5);
3851 SDVTList SelectionDAG::getVTList(MVT VT) {
3852 return makeVTList(SDNode::getValueTypeList(VT), 1);
3855 SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3856 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3857 E = VTList.rend(); I != E; ++I)
3858 if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3859 return *I;
3861 MVT *Array = Allocator.Allocate<MVT>(2);
3862 Array[0] = VT1;
3863 Array[1] = VT2;
3864 SDVTList Result = makeVTList(Array, 2);
3865 VTList.push_back(Result);
3866 return Result;
3869 SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3870 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3871 E = VTList.rend(); I != E; ++I)
3872 if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3873 I->VTs[2] == VT3)
3874 return *I;
3876 MVT *Array = Allocator.Allocate<MVT>(3);
3877 Array[0] = VT1;
3878 Array[1] = VT2;
3879 Array[2] = VT3;
3880 SDVTList Result = makeVTList(Array, 3);
3881 VTList.push_back(Result);
3882 return Result;
3885 SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3886 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3887 E = VTList.rend(); I != E; ++I)
3888 if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3889 I->VTs[2] == VT3 && I->VTs[3] == VT4)
3890 return *I;
3892 MVT *Array = Allocator.Allocate<MVT>(3);
3893 Array[0] = VT1;
3894 Array[1] = VT2;
3895 Array[2] = VT3;
3896 Array[3] = VT4;
3897 SDVTList Result = makeVTList(Array, 4);
3898 VTList.push_back(Result);
3899 return Result;
3902 SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3903 switch (NumVTs) {
3904 case 0: assert(0 && "Cannot have nodes without results!");
3905 case 1: return getVTList(VTs[0]);
3906 case 2: return getVTList(VTs[0], VTs[1]);
3907 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3908 default: break;
3911 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3912 E = VTList.rend(); I != E; ++I) {
3913 if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3914 continue;
3916 bool NoMatch = false;
3917 for (unsigned i = 2; i != NumVTs; ++i)
3918 if (VTs[i] != I->VTs[i]) {
3919 NoMatch = true;
3920 break;
3922 if (!NoMatch)
3923 return *I;
3926 MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3927 std::copy(VTs, VTs+NumVTs, Array);
3928 SDVTList Result = makeVTList(Array, NumVTs);
3929 VTList.push_back(Result);
3930 return Result;
3934 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3935 /// specified operands. If the resultant node already exists in the DAG,
3936 /// this does not modify the specified node, instead it returns the node that
3937 /// already exists. If the resultant node does not exist in the DAG, the
3938 /// input node is returned. As a degenerate case, if you specify the same
3939 /// input operands as the node already has, the input node is returned.
3940 SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3941 SDNode *N = InN.getNode();
3942 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3944 // Check to see if there is no change.
3945 if (Op == N->getOperand(0)) return InN;
3947 // See if the modified node already exists.
3948 void *InsertPos = 0;
3949 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3950 return SDValue(Existing, InN.getResNo());
3952 // Nope it doesn't. Remove the node from its current place in the maps.
3953 if (InsertPos)
3954 if (!RemoveNodeFromCSEMaps(N))
3955 InsertPos = 0;
3957 // Now we update the operands.
3958 N->OperandList[0].set(Op);
3960 // If this gets put into a CSE map, add it.
3961 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3962 return InN;
3965 SDValue SelectionDAG::
3966 UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3967 SDNode *N = InN.getNode();
3968 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3970 // Check to see if there is no change.
3971 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3972 return InN; // No operands changed, just return the input node.
3974 // See if the modified node already exists.
3975 void *InsertPos = 0;
3976 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3977 return SDValue(Existing, InN.getResNo());
3979 // Nope it doesn't. Remove the node from its current place in the maps.
3980 if (InsertPos)
3981 if (!RemoveNodeFromCSEMaps(N))
3982 InsertPos = 0;
3984 // Now we update the operands.
3985 if (N->OperandList[0] != Op1)
3986 N->OperandList[0].set(Op1);
3987 if (N->OperandList[1] != Op2)
3988 N->OperandList[1].set(Op2);
3990 // If this gets put into a CSE map, add it.
3991 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3992 return InN;
3995 SDValue SelectionDAG::
3996 UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3997 SDValue Ops[] = { Op1, Op2, Op3 };
3998 return UpdateNodeOperands(N, Ops, 3);
4001 SDValue SelectionDAG::
4002 UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4003 SDValue Op3, SDValue Op4) {
4004 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4005 return UpdateNodeOperands(N, Ops, 4);
4008 SDValue SelectionDAG::
4009 UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4010 SDValue Op3, SDValue Op4, SDValue Op5) {
4011 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4012 return UpdateNodeOperands(N, Ops, 5);
4015 SDValue SelectionDAG::
4016 UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4017 SDNode *N = InN.getNode();
4018 assert(N->getNumOperands() == NumOps &&
4019 "Update with wrong number of operands");
4021 // Check to see if there is no change.
4022 bool AnyChange = false;
4023 for (unsigned i = 0; i != NumOps; ++i) {
4024 if (Ops[i] != N->getOperand(i)) {
4025 AnyChange = true;
4026 break;
4030 // No operands changed, just return the input node.
4031 if (!AnyChange) return InN;
4033 // See if the modified node already exists.
4034 void *InsertPos = 0;
4035 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4036 return SDValue(Existing, InN.getResNo());
4038 // Nope it doesn't. Remove the node from its current place in the maps.
4039 if (InsertPos)
4040 if (!RemoveNodeFromCSEMaps(N))
4041 InsertPos = 0;
4043 // Now we update the operands.
4044 for (unsigned i = 0; i != NumOps; ++i)
4045 if (N->OperandList[i] != Ops[i])
4046 N->OperandList[i].set(Ops[i]);
4048 // If this gets put into a CSE map, add it.
4049 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4050 return InN;
4053 /// DropOperands - Release the operands and set this node to have
4054 /// zero operands.
4055 void SDNode::DropOperands() {
4056 // Unlike the code in MorphNodeTo that does this, we don't need to
4057 // watch for dead nodes here.
4058 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4059 SDUse &Use = *I++;
4060 Use.set(SDValue());
4064 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4065 /// machine opcode.
4067 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4068 MVT VT) {
4069 SDVTList VTs = getVTList(VT);
4070 return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4073 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4074 MVT VT, SDValue Op1) {
4075 SDVTList VTs = getVTList(VT);
4076 SDValue Ops[] = { Op1 };
4077 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4080 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4081 MVT VT, SDValue Op1,
4082 SDValue Op2) {
4083 SDVTList VTs = getVTList(VT);
4084 SDValue Ops[] = { Op1, Op2 };
4085 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4088 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4089 MVT VT, SDValue Op1,
4090 SDValue Op2, SDValue Op3) {
4091 SDVTList VTs = getVTList(VT);
4092 SDValue Ops[] = { Op1, Op2, Op3 };
4093 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4096 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4097 MVT VT, const SDValue *Ops,
4098 unsigned NumOps) {
4099 SDVTList VTs = getVTList(VT);
4100 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4103 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4104 MVT VT1, MVT VT2, const SDValue *Ops,
4105 unsigned NumOps) {
4106 SDVTList VTs = getVTList(VT1, VT2);
4107 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4110 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4111 MVT VT1, MVT VT2) {
4112 SDVTList VTs = getVTList(VT1, VT2);
4113 return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4116 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4117 MVT VT1, MVT VT2, MVT VT3,
4118 const SDValue *Ops, unsigned NumOps) {
4119 SDVTList VTs = getVTList(VT1, VT2, VT3);
4120 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4123 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4124 MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4125 const SDValue *Ops, unsigned NumOps) {
4126 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4127 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4130 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4131 MVT VT1, MVT VT2,
4132 SDValue Op1) {
4133 SDVTList VTs = getVTList(VT1, VT2);
4134 SDValue Ops[] = { Op1 };
4135 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4138 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4139 MVT VT1, MVT VT2,
4140 SDValue Op1, SDValue Op2) {
4141 SDVTList VTs = getVTList(VT1, VT2);
4142 SDValue Ops[] = { Op1, Op2 };
4143 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4146 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4147 MVT VT1, MVT VT2,
4148 SDValue Op1, SDValue Op2,
4149 SDValue Op3) {
4150 SDVTList VTs = getVTList(VT1, VT2);
4151 SDValue Ops[] = { Op1, Op2, Op3 };
4152 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4155 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4156 MVT VT1, MVT VT2, MVT VT3,
4157 SDValue Op1, SDValue Op2,
4158 SDValue Op3) {
4159 SDVTList VTs = getVTList(VT1, VT2, VT3);
4160 SDValue Ops[] = { Op1, Op2, Op3 };
4161 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4164 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4165 SDVTList VTs, const SDValue *Ops,
4166 unsigned NumOps) {
4167 return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4170 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4171 MVT VT) {
4172 SDVTList VTs = getVTList(VT);
4173 return MorphNodeTo(N, Opc, VTs, 0, 0);
4176 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4177 MVT VT, SDValue Op1) {
4178 SDVTList VTs = getVTList(VT);
4179 SDValue Ops[] = { Op1 };
4180 return MorphNodeTo(N, Opc, VTs, Ops, 1);
4183 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4184 MVT VT, SDValue Op1,
4185 SDValue Op2) {
4186 SDVTList VTs = getVTList(VT);
4187 SDValue Ops[] = { Op1, Op2 };
4188 return MorphNodeTo(N, Opc, VTs, Ops, 2);
4191 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4192 MVT VT, SDValue Op1,
4193 SDValue Op2, SDValue Op3) {
4194 SDVTList VTs = getVTList(VT);
4195 SDValue Ops[] = { Op1, Op2, Op3 };
4196 return MorphNodeTo(N, Opc, VTs, Ops, 3);
4199 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4200 MVT VT, const SDValue *Ops,
4201 unsigned NumOps) {
4202 SDVTList VTs = getVTList(VT);
4203 return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4206 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4207 MVT VT1, MVT VT2, const SDValue *Ops,
4208 unsigned NumOps) {
4209 SDVTList VTs = getVTList(VT1, VT2);
4210 return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4213 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4214 MVT VT1, MVT VT2) {
4215 SDVTList VTs = getVTList(VT1, VT2);
4216 return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4219 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4220 MVT VT1, MVT VT2, MVT VT3,
4221 const SDValue *Ops, unsigned NumOps) {
4222 SDVTList VTs = getVTList(VT1, VT2, VT3);
4223 return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4226 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4227 MVT VT1, MVT VT2,
4228 SDValue Op1) {
4229 SDVTList VTs = getVTList(VT1, VT2);
4230 SDValue Ops[] = { Op1 };
4231 return MorphNodeTo(N, Opc, VTs, Ops, 1);
4234 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4235 MVT VT1, MVT VT2,
4236 SDValue Op1, SDValue Op2) {
4237 SDVTList VTs = getVTList(VT1, VT2);
4238 SDValue Ops[] = { Op1, Op2 };
4239 return MorphNodeTo(N, Opc, VTs, Ops, 2);
4242 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4243 MVT VT1, MVT VT2,
4244 SDValue Op1, SDValue Op2,
4245 SDValue Op3) {
4246 SDVTList VTs = getVTList(VT1, VT2);
4247 SDValue Ops[] = { Op1, Op2, Op3 };
4248 return MorphNodeTo(N, Opc, VTs, Ops, 3);
4251 /// MorphNodeTo - These *mutate* the specified node to have the specified
4252 /// return type, opcode, and operands.
4254 /// Note that MorphNodeTo returns the resultant node. If there is already a
4255 /// node of the specified opcode and operands, it returns that node instead of
4256 /// the current one. Note that the DebugLoc need not be the same.
4258 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4259 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4260 /// node, and because it doesn't require CSE recalculation for any of
4261 /// the node's users.
4263 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4264 SDVTList VTs, const SDValue *Ops,
4265 unsigned NumOps) {
4266 // If an identical node already exists, use it.
4267 void *IP = 0;
4268 if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4269 FoldingSetNodeID ID;
4270 AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4271 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4272 return ON;
4275 if (!RemoveNodeFromCSEMaps(N))
4276 IP = 0;
4278 // Start the morphing.
4279 N->NodeType = Opc;
4280 N->ValueList = VTs.VTs;
4281 N->NumValues = VTs.NumVTs;
4283 // Clear the operands list, updating used nodes to remove this from their
4284 // use list. Keep track of any operands that become dead as a result.
4285 SmallPtrSet<SDNode*, 16> DeadNodeSet;
4286 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4287 SDUse &Use = *I++;
4288 SDNode *Used = Use.getNode();
4289 Use.set(SDValue());
4290 if (Used->use_empty())
4291 DeadNodeSet.insert(Used);
4294 // If NumOps is larger than the # of operands we currently have, reallocate
4295 // the operand list.
4296 if (NumOps > N->NumOperands) {
4297 if (N->OperandsNeedDelete)
4298 delete[] N->OperandList;
4300 if (N->isMachineOpcode()) {
4301 // We're creating a final node that will live unmorphed for the
4302 // remainder of the current SelectionDAG iteration, so we can allocate
4303 // the operands directly out of a pool with no recycling metadata.
4304 N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4305 N->OperandsNeedDelete = false;
4306 } else {
4307 N->OperandList = new SDUse[NumOps];
4308 N->OperandsNeedDelete = true;
4312 // Assign the new operands.
4313 N->NumOperands = NumOps;
4314 for (unsigned i = 0, e = NumOps; i != e; ++i) {
4315 N->OperandList[i].setUser(N);
4316 N->OperandList[i].setInitial(Ops[i]);
4319 // Delete any nodes that are still dead after adding the uses for the
4320 // new operands.
4321 SmallVector<SDNode *, 16> DeadNodes;
4322 for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4323 E = DeadNodeSet.end(); I != E; ++I)
4324 if ((*I)->use_empty())
4325 DeadNodes.push_back(*I);
4326 RemoveDeadNodes(DeadNodes);
4328 if (IP)
4329 CSEMap.InsertNode(N, IP); // Memoize the new node.
4330 return N;
4334 /// getTargetNode - These are used for target selectors to create a new node
4335 /// with specified return type(s), target opcode, and operands.
4337 /// Note that getTargetNode returns the resultant node. If there is already a
4338 /// node of the specified opcode and operands, it returns that node instead of
4339 /// the current one.
4340 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4341 return getNode(~Opcode, dl, VT).getNode();
4344 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4345 SDValue Op1) {
4346 return getNode(~Opcode, dl, VT, Op1).getNode();
4349 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4350 SDValue Op1, SDValue Op2) {
4351 return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4354 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4355 SDValue Op1, SDValue Op2,
4356 SDValue Op3) {
4357 return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4360 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4361 const SDValue *Ops, unsigned NumOps) {
4362 return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4365 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4366 MVT VT1, MVT VT2) {
4367 SDVTList VTs = getVTList(VT1, VT2);
4368 SDValue Op;
4369 return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4372 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4373 MVT VT2, SDValue Op1) {
4374 SDVTList VTs = getVTList(VT1, VT2);
4375 return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4378 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4379 MVT VT2, SDValue Op1,
4380 SDValue Op2) {
4381 SDVTList VTs = getVTList(VT1, VT2);
4382 SDValue Ops[] = { Op1, Op2 };
4383 return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4386 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4387 MVT VT2, SDValue Op1,
4388 SDValue Op2, SDValue Op3) {
4389 SDVTList VTs = getVTList(VT1, VT2);
4390 SDValue Ops[] = { Op1, Op2, Op3 };
4391 return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4394 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4395 MVT VT1, MVT VT2,
4396 const SDValue *Ops, unsigned NumOps) {
4397 SDVTList VTs = getVTList(VT1, VT2);
4398 return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4401 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4402 MVT VT1, MVT VT2, MVT VT3,
4403 SDValue Op1, SDValue Op2) {
4404 SDVTList VTs = getVTList(VT1, VT2, VT3);
4405 SDValue Ops[] = { Op1, Op2 };
4406 return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4409 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4410 MVT VT1, MVT VT2, MVT VT3,
4411 SDValue Op1, SDValue Op2,
4412 SDValue Op3) {
4413 SDVTList VTs = getVTList(VT1, VT2, VT3);
4414 SDValue Ops[] = { Op1, Op2, Op3 };
4415 return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4418 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4419 MVT VT1, MVT VT2, MVT VT3,
4420 const SDValue *Ops, unsigned NumOps) {
4421 SDVTList VTs = getVTList(VT1, VT2, VT3);
4422 return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4425 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4426 MVT VT2, MVT VT3, MVT VT4,
4427 const SDValue *Ops, unsigned NumOps) {
4428 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4429 return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4432 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4433 const std::vector<MVT> &ResultTys,
4434 const SDValue *Ops, unsigned NumOps) {
4435 return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4438 /// getNodeIfExists - Get the specified node if it's already available, or
4439 /// else return NULL.
4440 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4441 const SDValue *Ops, unsigned NumOps) {
4442 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4443 FoldingSetNodeID ID;
4444 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4445 void *IP = 0;
4446 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4447 return E;
4449 return NULL;
4452 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4453 /// This can cause recursive merging of nodes in the DAG.
4455 /// This version assumes From has a single result value.
4457 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4458 DAGUpdateListener *UpdateListener) {
4459 SDNode *From = FromN.getNode();
4460 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4461 "Cannot replace with this method!");
4462 assert(From != To.getNode() && "Cannot replace uses of with self");
4464 // Iterate over all the existing uses of From. New uses will be added
4465 // to the beginning of the use list, which we avoid visiting.
4466 // This specifically avoids visiting uses of From that arise while the
4467 // replacement is happening, because any such uses would be the result
4468 // of CSE: If an existing node looks like From after one of its operands
4469 // is replaced by To, we don't want to replace of all its users with To
4470 // too. See PR3018 for more info.
4471 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4472 while (UI != UE) {
4473 SDNode *User = *UI;
4475 // This node is about to morph, remove its old self from the CSE maps.
4476 RemoveNodeFromCSEMaps(User);
4478 // A user can appear in a use list multiple times, and when this
4479 // happens the uses are usually next to each other in the list.
4480 // To help reduce the number of CSE recomputations, process all
4481 // the uses of this user that we can find this way.
4482 do {
4483 SDUse &Use = UI.getUse();
4484 ++UI;
4485 Use.set(To);
4486 } while (UI != UE && *UI == User);
4488 // Now that we have modified User, add it back to the CSE maps. If it
4489 // already exists there, recursively merge the results together.
4490 AddModifiedNodeToCSEMaps(User, UpdateListener);
4494 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4495 /// This can cause recursive merging of nodes in the DAG.
4497 /// This version assumes that for each value of From, there is a
4498 /// corresponding value in To in the same position with the same type.
4500 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4501 DAGUpdateListener *UpdateListener) {
4502 #ifndef NDEBUG
4503 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4504 assert((!From->hasAnyUseOfValue(i) ||
4505 From->getValueType(i) == To->getValueType(i)) &&
4506 "Cannot use this version of ReplaceAllUsesWith!");
4507 #endif
4509 // Handle the trivial case.
4510 if (From == To)
4511 return;
4513 // Iterate over just the existing users of From. See the comments in
4514 // the ReplaceAllUsesWith above.
4515 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4516 while (UI != UE) {
4517 SDNode *User = *UI;
4519 // This node is about to morph, remove its old self from the CSE maps.
4520 RemoveNodeFromCSEMaps(User);
4522 // A user can appear in a use list multiple times, and when this
4523 // happens the uses are usually next to each other in the list.
4524 // To help reduce the number of CSE recomputations, process all
4525 // the uses of this user that we can find this way.
4526 do {
4527 SDUse &Use = UI.getUse();
4528 ++UI;
4529 Use.setNode(To);
4530 } while (UI != UE && *UI == User);
4532 // Now that we have modified User, add it back to the CSE maps. If it
4533 // already exists there, recursively merge the results together.
4534 AddModifiedNodeToCSEMaps(User, UpdateListener);
4538 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4539 /// This can cause recursive merging of nodes in the DAG.
4541 /// This version can replace From with any result values. To must match the
4542 /// number and types of values returned by From.
4543 void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4544 const SDValue *To,
4545 DAGUpdateListener *UpdateListener) {
4546 if (From->getNumValues() == 1) // Handle the simple case efficiently.
4547 return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4549 // Iterate over just the existing users of From. See the comments in
4550 // the ReplaceAllUsesWith above.
4551 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4552 while (UI != UE) {
4553 SDNode *User = *UI;
4555 // This node is about to morph, remove its old self from the CSE maps.
4556 RemoveNodeFromCSEMaps(User);
4558 // A user can appear in a use list multiple times, and when this
4559 // happens the uses are usually next to each other in the list.
4560 // To help reduce the number of CSE recomputations, process all
4561 // the uses of this user that we can find this way.
4562 do {
4563 SDUse &Use = UI.getUse();
4564 const SDValue &ToOp = To[Use.getResNo()];
4565 ++UI;
4566 Use.set(ToOp);
4567 } while (UI != UE && *UI == User);
4569 // Now that we have modified User, add it back to the CSE maps. If it
4570 // already exists there, recursively merge the results together.
4571 AddModifiedNodeToCSEMaps(User, UpdateListener);
4575 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4576 /// uses of other values produced by From.getNode() alone. The Deleted
4577 /// vector is handled the same way as for ReplaceAllUsesWith.
4578 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4579 DAGUpdateListener *UpdateListener){
4580 // Handle the really simple, really trivial case efficiently.
4581 if (From == To) return;
4583 // Handle the simple, trivial, case efficiently.
4584 if (From.getNode()->getNumValues() == 1) {
4585 ReplaceAllUsesWith(From, To, UpdateListener);
4586 return;
4589 // Iterate over just the existing users of From. See the comments in
4590 // the ReplaceAllUsesWith above.
4591 SDNode::use_iterator UI = From.getNode()->use_begin(),
4592 UE = From.getNode()->use_end();
4593 while (UI != UE) {
4594 SDNode *User = *UI;
4595 bool UserRemovedFromCSEMaps = false;
4597 // A user can appear in a use list multiple times, and when this
4598 // happens the uses are usually next to each other in the list.
4599 // To help reduce the number of CSE recomputations, process all
4600 // the uses of this user that we can find this way.
4601 do {
4602 SDUse &Use = UI.getUse();
4604 // Skip uses of different values from the same node.
4605 if (Use.getResNo() != From.getResNo()) {
4606 ++UI;
4607 continue;
4610 // If this node hasn't been modified yet, it's still in the CSE maps,
4611 // so remove its old self from the CSE maps.
4612 if (!UserRemovedFromCSEMaps) {
4613 RemoveNodeFromCSEMaps(User);
4614 UserRemovedFromCSEMaps = true;
4617 ++UI;
4618 Use.set(To);
4619 } while (UI != UE && *UI == User);
4621 // We are iterating over all uses of the From node, so if a use
4622 // doesn't use the specific value, no changes are made.
4623 if (!UserRemovedFromCSEMaps)
4624 continue;
4626 // Now that we have modified User, add it back to the CSE maps. If it
4627 // already exists there, recursively merge the results together.
4628 AddModifiedNodeToCSEMaps(User, UpdateListener);
4632 namespace {
4633 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4634 /// to record information about a use.
4635 struct UseMemo {
4636 SDNode *User;
4637 unsigned Index;
4638 SDUse *Use;
4641 /// operator< - Sort Memos by User.
4642 bool operator<(const UseMemo &L, const UseMemo &R) {
4643 return (intptr_t)L.User < (intptr_t)R.User;
4647 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4648 /// uses of other values produced by From.getNode() alone. The same value
4649 /// may appear in both the From and To list. The Deleted vector is
4650 /// handled the same way as for ReplaceAllUsesWith.
4651 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4652 const SDValue *To,
4653 unsigned Num,
4654 DAGUpdateListener *UpdateListener){
4655 // Handle the simple, trivial case efficiently.
4656 if (Num == 1)
4657 return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4659 // Read up all the uses and make records of them. This helps
4660 // processing new uses that are introduced during the
4661 // replacement process.
4662 SmallVector<UseMemo, 4> Uses;
4663 for (unsigned i = 0; i != Num; ++i) {
4664 unsigned FromResNo = From[i].getResNo();
4665 SDNode *FromNode = From[i].getNode();
4666 for (SDNode::use_iterator UI = FromNode->use_begin(),
4667 E = FromNode->use_end(); UI != E; ++UI) {
4668 SDUse &Use = UI.getUse();
4669 if (Use.getResNo() == FromResNo) {
4670 UseMemo Memo = { *UI, i, &Use };
4671 Uses.push_back(Memo);
4676 // Sort the uses, so that all the uses from a given User are together.
4677 std::sort(Uses.begin(), Uses.end());
4679 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4680 UseIndex != UseIndexEnd; ) {
4681 // We know that this user uses some value of From. If it is the right
4682 // value, update it.
4683 SDNode *User = Uses[UseIndex].User;
4685 // This node is about to morph, remove its old self from the CSE maps.
4686 RemoveNodeFromCSEMaps(User);
4688 // The Uses array is sorted, so all the uses for a given User
4689 // are next to each other in the list.
4690 // To help reduce the number of CSE recomputations, process all
4691 // the uses of this user that we can find this way.
4692 do {
4693 unsigned i = Uses[UseIndex].Index;
4694 SDUse &Use = *Uses[UseIndex].Use;
4695 ++UseIndex;
4697 Use.set(To[i]);
4698 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4700 // Now that we have modified User, add it back to the CSE maps. If it
4701 // already exists there, recursively merge the results together.
4702 AddModifiedNodeToCSEMaps(User, UpdateListener);
4706 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4707 /// based on their topological order. It returns the maximum id and a vector
4708 /// of the SDNodes* in assigned order by reference.
4709 unsigned SelectionDAG::AssignTopologicalOrder() {
4711 unsigned DAGSize = 0;
4713 // SortedPos tracks the progress of the algorithm. Nodes before it are
4714 // sorted, nodes after it are unsorted. When the algorithm completes
4715 // it is at the end of the list.
4716 allnodes_iterator SortedPos = allnodes_begin();
4718 // Visit all the nodes. Move nodes with no operands to the front of
4719 // the list immediately. Annotate nodes that do have operands with their
4720 // operand count. Before we do this, the Node Id fields of the nodes
4721 // may contain arbitrary values. After, the Node Id fields for nodes
4722 // before SortedPos will contain the topological sort index, and the
4723 // Node Id fields for nodes At SortedPos and after will contain the
4724 // count of outstanding operands.
4725 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4726 SDNode *N = I++;
4727 unsigned Degree = N->getNumOperands();
4728 if (Degree == 0) {
4729 // A node with no uses, add it to the result array immediately.
4730 N->setNodeId(DAGSize++);
4731 allnodes_iterator Q = N;
4732 if (Q != SortedPos)
4733 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4734 ++SortedPos;
4735 } else {
4736 // Temporarily use the Node Id as scratch space for the degree count.
4737 N->setNodeId(Degree);
4741 // Visit all the nodes. As we iterate, moves nodes into sorted order,
4742 // such that by the time the end is reached all nodes will be sorted.
4743 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4744 SDNode *N = I;
4745 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4746 UI != UE; ++UI) {
4747 SDNode *P = *UI;
4748 unsigned Degree = P->getNodeId();
4749 --Degree;
4750 if (Degree == 0) {
4751 // All of P's operands are sorted, so P may sorted now.
4752 P->setNodeId(DAGSize++);
4753 if (P != SortedPos)
4754 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4755 ++SortedPos;
4756 } else {
4757 // Update P's outstanding operand count.
4758 P->setNodeId(Degree);
4763 assert(SortedPos == AllNodes.end() &&
4764 "Topological sort incomplete!");
4765 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4766 "First node in topological sort is not the entry token!");
4767 assert(AllNodes.front().getNodeId() == 0 &&
4768 "First node in topological sort has non-zero id!");
4769 assert(AllNodes.front().getNumOperands() == 0 &&
4770 "First node in topological sort has operands!");
4771 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4772 "Last node in topologic sort has unexpected id!");
4773 assert(AllNodes.back().use_empty() &&
4774 "Last node in topologic sort has users!");
4775 assert(DAGSize == allnodes_size() && "Node count mismatch!");
4776 return DAGSize;
4781 //===----------------------------------------------------------------------===//
4782 // SDNode Class
4783 //===----------------------------------------------------------------------===//
4785 HandleSDNode::~HandleSDNode() {
4786 DropOperands();
4789 GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4790 MVT VT, int64_t o)
4791 : SDNode(isa<GlobalVariable>(GA) &&
4792 cast<GlobalVariable>(GA)->isThreadLocal() ?
4793 // Thread Local
4794 (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4795 // Non Thread Local
4796 (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4797 DebugLoc::getUnknownLoc(), getSDVTList(VT)), Offset(o) {
4798 TheGlobal = const_cast<GlobalValue*>(GA);
4801 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4802 const Value *srcValue, int SVO,
4803 unsigned alignment, bool vol)
4804 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4805 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4806 assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4807 assert(getAlignment() == alignment && "Alignment representation error!");
4808 assert(isVolatile() == vol && "Volatile representation error!");
4811 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4812 const SDValue *Ops,
4813 unsigned NumOps, MVT memvt, const Value *srcValue,
4814 int SVO, unsigned alignment, bool vol)
4815 : SDNode(Opc, dl, VTs, Ops, NumOps),
4816 MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4817 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4818 assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4819 assert(getAlignment() == alignment && "Alignment representation error!");
4820 assert(isVolatile() == vol && "Volatile representation error!");
4823 /// getMemOperand - Return a MachineMemOperand object describing the memory
4824 /// reference performed by this memory reference.
4825 MachineMemOperand MemSDNode::getMemOperand() const {
4826 int Flags = 0;
4827 if (isa<LoadSDNode>(this))
4828 Flags = MachineMemOperand::MOLoad;
4829 else if (isa<StoreSDNode>(this))
4830 Flags = MachineMemOperand::MOStore;
4831 else if (isa<AtomicSDNode>(this)) {
4832 Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4834 else {
4835 const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4836 assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4837 if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4838 if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4841 int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4842 if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4844 // Check if the memory reference references a frame index
4845 const FrameIndexSDNode *FI =
4846 dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4847 if (!getSrcValue() && FI)
4848 return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4849 Flags, 0, Size, getAlignment());
4850 else
4851 return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4852 Size, getAlignment());
4855 /// Profile - Gather unique data for the node.
4857 void SDNode::Profile(FoldingSetNodeID &ID) const {
4858 AddNodeIDNode(ID, this);
4861 /// getValueTypeList - Return a pointer to the specified value type.
4863 const MVT *SDNode::getValueTypeList(MVT VT) {
4864 if (VT.isExtended()) {
4865 static std::set<MVT, MVT::compareRawBits> EVTs;
4866 return &(*EVTs.insert(VT).first);
4867 } else {
4868 static MVT VTs[MVT::LAST_VALUETYPE];
4869 VTs[VT.getSimpleVT()] = VT;
4870 return &VTs[VT.getSimpleVT()];
4874 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4875 /// indicated value. This method ignores uses of other values defined by this
4876 /// operation.
4877 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4878 assert(Value < getNumValues() && "Bad value!");
4880 // TODO: Only iterate over uses of a given value of the node
4881 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4882 if (UI.getUse().getResNo() == Value) {
4883 if (NUses == 0)
4884 return false;
4885 --NUses;
4889 // Found exactly the right number of uses?
4890 return NUses == 0;
4894 /// hasAnyUseOfValue - Return true if there are any use of the indicated
4895 /// value. This method ignores uses of other values defined by this operation.
4896 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4897 assert(Value < getNumValues() && "Bad value!");
4899 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4900 if (UI.getUse().getResNo() == Value)
4901 return true;
4903 return false;
4907 /// isOnlyUserOf - Return true if this node is the only use of N.
4909 bool SDNode::isOnlyUserOf(SDNode *N) const {
4910 bool Seen = false;
4911 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4912 SDNode *User = *I;
4913 if (User == this)
4914 Seen = true;
4915 else
4916 return false;
4919 return Seen;
4922 /// isOperand - Return true if this node is an operand of N.
4924 bool SDValue::isOperandOf(SDNode *N) const {
4925 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4926 if (*this == N->getOperand(i))
4927 return true;
4928 return false;
4931 bool SDNode::isOperandOf(SDNode *N) const {
4932 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4933 if (this == N->OperandList[i].getNode())
4934 return true;
4935 return false;
4938 /// reachesChainWithoutSideEffects - Return true if this operand (which must
4939 /// be a chain) reaches the specified operand without crossing any
4940 /// side-effecting instructions. In practice, this looks through token
4941 /// factors and non-volatile loads. In order to remain efficient, this only
4942 /// looks a couple of nodes in, it does not do an exhaustive search.
4943 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4944 unsigned Depth) const {
4945 if (*this == Dest) return true;
4947 // Don't search too deeply, we just want to be able to see through
4948 // TokenFactor's etc.
4949 if (Depth == 0) return false;
4951 // If this is a token factor, all inputs to the TF happen in parallel. If any
4952 // of the operands of the TF reach dest, then we can do the xform.
4953 if (getOpcode() == ISD::TokenFactor) {
4954 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4955 if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4956 return true;
4957 return false;
4960 // Loads don't have side effects, look through them.
4961 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4962 if (!Ld->isVolatile())
4963 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4965 return false;
4969 static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4970 SmallPtrSet<SDNode *, 32> &Visited) {
4971 if (found || !Visited.insert(N))
4972 return;
4974 for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4975 SDNode *Op = N->getOperand(i).getNode();
4976 if (Op == P) {
4977 found = true;
4978 return;
4980 findPredecessor(Op, P, found, Visited);
4984 /// isPredecessorOf - Return true if this node is a predecessor of N. This node
4985 /// is either an operand of N or it can be reached by recursively traversing
4986 /// up the operands.
4987 /// NOTE: this is an expensive method. Use it carefully.
4988 bool SDNode::isPredecessorOf(SDNode *N) const {
4989 SmallPtrSet<SDNode *, 32> Visited;
4990 bool found = false;
4991 findPredecessor(N, this, found, Visited);
4992 return found;
4995 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4996 assert(Num < NumOperands && "Invalid child # of SDNode!");
4997 return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5000 std::string SDNode::getOperationName(const SelectionDAG *G) const {
5001 switch (getOpcode()) {
5002 default:
5003 if (getOpcode() < ISD::BUILTIN_OP_END)
5004 return "<<Unknown DAG Node>>";
5005 if (isMachineOpcode()) {
5006 if (G)
5007 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5008 if (getMachineOpcode() < TII->getNumOpcodes())
5009 return TII->get(getMachineOpcode()).getName();
5010 return "<<Unknown Machine Node>>";
5012 if (G) {
5013 const TargetLowering &TLI = G->getTargetLoweringInfo();
5014 const char *Name = TLI.getTargetNodeName(getOpcode());
5015 if (Name) return Name;
5016 return "<<Unknown Target Node>>";
5018 return "<<Unknown Node>>";
5020 #ifndef NDEBUG
5021 case ISD::DELETED_NODE:
5022 return "<<Deleted Node!>>";
5023 #endif
5024 case ISD::PREFETCH: return "Prefetch";
5025 case ISD::MEMBARRIER: return "MemBarrier";
5026 case ISD::ATOMIC_CMP_SWAP: return "AtomicCmpSwap";
5027 case ISD::ATOMIC_SWAP: return "AtomicSwap";
5028 case ISD::ATOMIC_LOAD_ADD: return "AtomicLoadAdd";
5029 case ISD::ATOMIC_LOAD_SUB: return "AtomicLoadSub";
5030 case ISD::ATOMIC_LOAD_AND: return "AtomicLoadAnd";
5031 case ISD::ATOMIC_LOAD_OR: return "AtomicLoadOr";
5032 case ISD::ATOMIC_LOAD_XOR: return "AtomicLoadXor";
5033 case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
5034 case ISD::ATOMIC_LOAD_MIN: return "AtomicLoadMin";
5035 case ISD::ATOMIC_LOAD_MAX: return "AtomicLoadMax";
5036 case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
5037 case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
5038 case ISD::PCMARKER: return "PCMarker";
5039 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5040 case ISD::SRCVALUE: return "SrcValue";
5041 case ISD::MEMOPERAND: return "MemOperand";
5042 case ISD::EntryToken: return "EntryToken";
5043 case ISD::TokenFactor: return "TokenFactor";
5044 case ISD::AssertSext: return "AssertSext";
5045 case ISD::AssertZext: return "AssertZext";
5047 case ISD::BasicBlock: return "BasicBlock";
5048 case ISD::ARG_FLAGS: return "ArgFlags";
5049 case ISD::VALUETYPE: return "ValueType";
5050 case ISD::Register: return "Register";
5052 case ISD::Constant: return "Constant";
5053 case ISD::ConstantFP: return "ConstantFP";
5054 case ISD::GlobalAddress: return "GlobalAddress";
5055 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5056 case ISD::FrameIndex: return "FrameIndex";
5057 case ISD::JumpTable: return "JumpTable";
5058 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5059 case ISD::RETURNADDR: return "RETURNADDR";
5060 case ISD::FRAMEADDR: return "FRAMEADDR";
5061 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5062 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5063 case ISD::EHSELECTION: return "EHSELECTION";
5064 case ISD::EH_RETURN: return "EH_RETURN";
5065 case ISD::ConstantPool: return "ConstantPool";
5066 case ISD::ExternalSymbol: return "ExternalSymbol";
5067 case ISD::INTRINSIC_WO_CHAIN: {
5068 unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5069 return Intrinsic::getName((Intrinsic::ID)IID);
5071 case ISD::INTRINSIC_VOID:
5072 case ISD::INTRINSIC_W_CHAIN: {
5073 unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5074 return Intrinsic::getName((Intrinsic::ID)IID);
5077 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
5078 case ISD::TargetConstant: return "TargetConstant";
5079 case ISD::TargetConstantFP:return "TargetConstantFP";
5080 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5081 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5082 case ISD::TargetFrameIndex: return "TargetFrameIndex";
5083 case ISD::TargetJumpTable: return "TargetJumpTable";
5084 case ISD::TargetConstantPool: return "TargetConstantPool";
5085 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5087 case ISD::CopyToReg: return "CopyToReg";
5088 case ISD::CopyFromReg: return "CopyFromReg";
5089 case ISD::UNDEF: return "undef";
5090 case ISD::MERGE_VALUES: return "merge_values";
5091 case ISD::INLINEASM: return "inlineasm";
5092 case ISD::DBG_LABEL: return "dbg_label";
5093 case ISD::EH_LABEL: return "eh_label";
5094 case ISD::DECLARE: return "declare";
5095 case ISD::HANDLENODE: return "handlenode";
5096 case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5097 case ISD::CALL: return "call";
5099 // Unary operators
5100 case ISD::FABS: return "fabs";
5101 case ISD::FNEG: return "fneg";
5102 case ISD::FSQRT: return "fsqrt";
5103 case ISD::FSIN: return "fsin";
5104 case ISD::FCOS: return "fcos";
5105 case ISD::FPOWI: return "fpowi";
5106 case ISD::FPOW: return "fpow";
5107 case ISD::FTRUNC: return "ftrunc";
5108 case ISD::FFLOOR: return "ffloor";
5109 case ISD::FCEIL: return "fceil";
5110 case ISD::FRINT: return "frint";
5111 case ISD::FNEARBYINT: return "fnearbyint";
5113 // Binary operators
5114 case ISD::ADD: return "add";
5115 case ISD::SUB: return "sub";
5116 case ISD::MUL: return "mul";
5117 case ISD::MULHU: return "mulhu";
5118 case ISD::MULHS: return "mulhs";
5119 case ISD::SDIV: return "sdiv";
5120 case ISD::UDIV: return "udiv";
5121 case ISD::SREM: return "srem";
5122 case ISD::UREM: return "urem";
5123 case ISD::SMUL_LOHI: return "smul_lohi";
5124 case ISD::UMUL_LOHI: return "umul_lohi";
5125 case ISD::SDIVREM: return "sdivrem";
5126 case ISD::UDIVREM: return "udivrem";
5127 case ISD::AND: return "and";
5128 case ISD::OR: return "or";
5129 case ISD::XOR: return "xor";
5130 case ISD::SHL: return "shl";
5131 case ISD::SRA: return "sra";
5132 case ISD::SRL: return "srl";
5133 case ISD::ROTL: return "rotl";
5134 case ISD::ROTR: return "rotr";
5135 case ISD::FADD: return "fadd";
5136 case ISD::FSUB: return "fsub";
5137 case ISD::FMUL: return "fmul";
5138 case ISD::FDIV: return "fdiv";
5139 case ISD::FREM: return "frem";
5140 case ISD::FCOPYSIGN: return "fcopysign";
5141 case ISD::FGETSIGN: return "fgetsign";
5143 case ISD::SETCC: return "setcc";
5144 case ISD::VSETCC: return "vsetcc";
5145 case ISD::SELECT: return "select";
5146 case ISD::SELECT_CC: return "select_cc";
5147 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
5148 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
5149 case ISD::CONCAT_VECTORS: return "concat_vectors";
5150 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
5151 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
5152 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
5153 case ISD::CARRY_FALSE: return "carry_false";
5154 case ISD::ADDC: return "addc";
5155 case ISD::ADDE: return "adde";
5156 case ISD::SADDO: return "saddo";
5157 case ISD::UADDO: return "uaddo";
5158 case ISD::SSUBO: return "ssubo";
5159 case ISD::USUBO: return "usubo";
5160 case ISD::SMULO: return "smulo";
5161 case ISD::UMULO: return "umulo";
5162 case ISD::SUBC: return "subc";
5163 case ISD::SUBE: return "sube";
5164 case ISD::SHL_PARTS: return "shl_parts";
5165 case ISD::SRA_PARTS: return "sra_parts";
5166 case ISD::SRL_PARTS: return "srl_parts";
5168 // Conversion operators.
5169 case ISD::SIGN_EXTEND: return "sign_extend";
5170 case ISD::ZERO_EXTEND: return "zero_extend";
5171 case ISD::ANY_EXTEND: return "any_extend";
5172 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5173 case ISD::TRUNCATE: return "truncate";
5174 case ISD::FP_ROUND: return "fp_round";
5175 case ISD::FLT_ROUNDS_: return "flt_rounds";
5176 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5177 case ISD::FP_EXTEND: return "fp_extend";
5179 case ISD::SINT_TO_FP: return "sint_to_fp";
5180 case ISD::UINT_TO_FP: return "uint_to_fp";
5181 case ISD::FP_TO_SINT: return "fp_to_sint";
5182 case ISD::FP_TO_UINT: return "fp_to_uint";
5183 case ISD::BIT_CONVERT: return "bit_convert";
5185 case ISD::CONVERT_RNDSAT: {
5186 switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5187 default: assert(0 && "Unknown cvt code!");
5188 case ISD::CVT_FF: return "cvt_ff";
5189 case ISD::CVT_FS: return "cvt_fs";
5190 case ISD::CVT_FU: return "cvt_fu";
5191 case ISD::CVT_SF: return "cvt_sf";
5192 case ISD::CVT_UF: return "cvt_uf";
5193 case ISD::CVT_SS: return "cvt_ss";
5194 case ISD::CVT_SU: return "cvt_su";
5195 case ISD::CVT_US: return "cvt_us";
5196 case ISD::CVT_UU: return "cvt_uu";
5200 // Control flow instructions
5201 case ISD::BR: return "br";
5202 case ISD::BRIND: return "brind";
5203 case ISD::BR_JT: return "br_jt";
5204 case ISD::BRCOND: return "brcond";
5205 case ISD::BR_CC: return "br_cc";
5206 case ISD::RET: return "ret";
5207 case ISD::CALLSEQ_START: return "callseq_start";
5208 case ISD::CALLSEQ_END: return "callseq_end";
5210 // Other operators
5211 case ISD::LOAD: return "load";
5212 case ISD::STORE: return "store";
5213 case ISD::VAARG: return "vaarg";
5214 case ISD::VACOPY: return "vacopy";
5215 case ISD::VAEND: return "vaend";
5216 case ISD::VASTART: return "vastart";
5217 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5218 case ISD::EXTRACT_ELEMENT: return "extract_element";
5219 case ISD::BUILD_PAIR: return "build_pair";
5220 case ISD::STACKSAVE: return "stacksave";
5221 case ISD::STACKRESTORE: return "stackrestore";
5222 case ISD::TRAP: return "trap";
5224 // Bit manipulation
5225 case ISD::BSWAP: return "bswap";
5226 case ISD::CTPOP: return "ctpop";
5227 case ISD::CTTZ: return "cttz";
5228 case ISD::CTLZ: return "ctlz";
5230 // Debug info
5231 case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5232 case ISD::DEBUG_LOC: return "debug_loc";
5234 // Trampolines
5235 case ISD::TRAMPOLINE: return "trampoline";
5237 case ISD::CONDCODE:
5238 switch (cast<CondCodeSDNode>(this)->get()) {
5239 default: assert(0 && "Unknown setcc condition!");
5240 case ISD::SETOEQ: return "setoeq";
5241 case ISD::SETOGT: return "setogt";
5242 case ISD::SETOGE: return "setoge";
5243 case ISD::SETOLT: return "setolt";
5244 case ISD::SETOLE: return "setole";
5245 case ISD::SETONE: return "setone";
5247 case ISD::SETO: return "seto";
5248 case ISD::SETUO: return "setuo";
5249 case ISD::SETUEQ: return "setue";
5250 case ISD::SETUGT: return "setugt";
5251 case ISD::SETUGE: return "setuge";
5252 case ISD::SETULT: return "setult";
5253 case ISD::SETULE: return "setule";
5254 case ISD::SETUNE: return "setune";
5256 case ISD::SETEQ: return "seteq";
5257 case ISD::SETGT: return "setgt";
5258 case ISD::SETGE: return "setge";
5259 case ISD::SETLT: return "setlt";
5260 case ISD::SETLE: return "setle";
5261 case ISD::SETNE: return "setne";
5266 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5267 switch (AM) {
5268 default:
5269 return "";
5270 case ISD::PRE_INC:
5271 return "<pre-inc>";
5272 case ISD::PRE_DEC:
5273 return "<pre-dec>";
5274 case ISD::POST_INC:
5275 return "<post-inc>";
5276 case ISD::POST_DEC:
5277 return "<post-dec>";
5281 std::string ISD::ArgFlagsTy::getArgFlagsString() {
5282 std::string S = "< ";
5284 if (isZExt())
5285 S += "zext ";
5286 if (isSExt())
5287 S += "sext ";
5288 if (isInReg())
5289 S += "inreg ";
5290 if (isSRet())
5291 S += "sret ";
5292 if (isByVal())
5293 S += "byval ";
5294 if (isNest())
5295 S += "nest ";
5296 if (getByValAlign())
5297 S += "byval-align:" + utostr(getByValAlign()) + " ";
5298 if (getOrigAlign())
5299 S += "orig-align:" + utostr(getOrigAlign()) + " ";
5300 if (getByValSize())
5301 S += "byval-size:" + utostr(getByValSize()) + " ";
5302 return S + ">";
5305 void SDNode::dump() const { dump(0); }
5306 void SDNode::dump(const SelectionDAG *G) const {
5307 print(errs(), G);
5310 void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5311 OS << (void*)this << ": ";
5313 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5314 if (i) OS << ",";
5315 if (getValueType(i) == MVT::Other)
5316 OS << "ch";
5317 else
5318 OS << getValueType(i).getMVTString();
5320 OS << " = " << getOperationName(G);
5323 void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5324 if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5325 SDNode *Mask = getOperand(2).getNode();
5326 OS << "<";
5327 for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5328 if (i) OS << ",";
5329 if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5330 OS << "u";
5331 else
5332 OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5334 OS << ">";
5337 if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5338 OS << '<' << CSDN->getAPIntValue() << '>';
5339 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5340 if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5341 OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5342 else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5343 OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5344 else {
5345 OS << "<APFloat(";
5346 CSDN->getValueAPF().bitcastToAPInt().dump();
5347 OS << ")>";
5349 } else if (const GlobalAddressSDNode *GADN =
5350 dyn_cast<GlobalAddressSDNode>(this)) {
5351 int64_t offset = GADN->getOffset();
5352 OS << '<';
5353 WriteAsOperand(OS, GADN->getGlobal());
5354 OS << '>';
5355 if (offset > 0)
5356 OS << " + " << offset;
5357 else
5358 OS << " " << offset;
5359 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5360 OS << "<" << FIDN->getIndex() << ">";
5361 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5362 OS << "<" << JTDN->getIndex() << ">";
5363 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5364 int offset = CP->getOffset();
5365 if (CP->isMachineConstantPoolEntry())
5366 OS << "<" << *CP->getMachineCPVal() << ">";
5367 else
5368 OS << "<" << *CP->getConstVal() << ">";
5369 if (offset > 0)
5370 OS << " + " << offset;
5371 else
5372 OS << " " << offset;
5373 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5374 OS << "<";
5375 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5376 if (LBB)
5377 OS << LBB->getName() << " ";
5378 OS << (const void*)BBDN->getBasicBlock() << ">";
5379 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5380 if (G && R->getReg() &&
5381 TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5382 OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5383 } else {
5384 OS << " #" << R->getReg();
5386 } else if (const ExternalSymbolSDNode *ES =
5387 dyn_cast<ExternalSymbolSDNode>(this)) {
5388 OS << "'" << ES->getSymbol() << "'";
5389 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5390 if (M->getValue())
5391 OS << "<" << M->getValue() << ">";
5392 else
5393 OS << "<null>";
5394 } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5395 if (M->MO.getValue())
5396 OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5397 else
5398 OS << "<null:" << M->MO.getOffset() << ">";
5399 } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5400 OS << N->getArgFlags().getArgFlagsString();
5401 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5402 OS << ":" << N->getVT().getMVTString();
5404 else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5405 const Value *SrcValue = LD->getSrcValue();
5406 int SrcOffset = LD->getSrcValueOffset();
5407 OS << " <";
5408 if (SrcValue)
5409 OS << SrcValue;
5410 else
5411 OS << "null";
5412 OS << ":" << SrcOffset << ">";
5414 bool doExt = true;
5415 switch (LD->getExtensionType()) {
5416 default: doExt = false; break;
5417 case ISD::EXTLOAD: OS << " <anyext "; break;
5418 case ISD::SEXTLOAD: OS << " <sext "; break;
5419 case ISD::ZEXTLOAD: OS << " <zext "; break;
5421 if (doExt)
5422 OS << LD->getMemoryVT().getMVTString() << ">";
5424 const char *AM = getIndexedModeName(LD->getAddressingMode());
5425 if (*AM)
5426 OS << " " << AM;
5427 if (LD->isVolatile())
5428 OS << " <volatile>";
5429 OS << " alignment=" << LD->getAlignment();
5430 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5431 const Value *SrcValue = ST->getSrcValue();
5432 int SrcOffset = ST->getSrcValueOffset();
5433 OS << " <";
5434 if (SrcValue)
5435 OS << SrcValue;
5436 else
5437 OS << "null";
5438 OS << ":" << SrcOffset << ">";
5440 if (ST->isTruncatingStore())
5441 OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5443 const char *AM = getIndexedModeName(ST->getAddressingMode());
5444 if (*AM)
5445 OS << " " << AM;
5446 if (ST->isVolatile())
5447 OS << " <volatile>";
5448 OS << " alignment=" << ST->getAlignment();
5449 } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5450 const Value *SrcValue = AT->getSrcValue();
5451 int SrcOffset = AT->getSrcValueOffset();
5452 OS << " <";
5453 if (SrcValue)
5454 OS << SrcValue;
5455 else
5456 OS << "null";
5457 OS << ":" << SrcOffset << ">";
5458 if (AT->isVolatile())
5459 OS << " <volatile>";
5460 OS << " alignment=" << AT->getAlignment();
5464 void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5465 print_types(OS, G);
5466 OS << " ";
5467 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5468 if (i) OS << ", ";
5469 OS << (void*)getOperand(i).getNode();
5470 if (unsigned RN = getOperand(i).getResNo())
5471 OS << ":" << RN;
5473 print_details(OS, G);
5476 static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5477 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5478 if (N->getOperand(i).getNode()->hasOneUse())
5479 DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5480 else
5481 cerr << "\n" << std::string(indent+2, ' ')
5482 << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5485 cerr << "\n" << std::string(indent, ' ');
5486 N->dump(G);
5489 void SelectionDAG::dump() const {
5490 cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5492 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5493 I != E; ++I) {
5494 const SDNode *N = I;
5495 if (!N->hasOneUse() && N != getRoot().getNode())
5496 DumpNodes(N, 2, this);
5499 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5501 cerr << "\n\n";
5504 void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5505 print_types(OS, G);
5506 print_details(OS, G);
5509 typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5510 static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5511 const SelectionDAG *G, VisitedSDNodeSet &once) {
5512 if (!once.insert(N)) // If we've been here before, return now.
5513 return;
5514 // Dump the current SDNode, but don't end the line yet.
5515 OS << std::string(indent, ' ');
5516 N->printr(OS, G);
5517 // Having printed this SDNode, walk the children:
5518 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5519 const SDNode *child = N->getOperand(i).getNode();
5520 if (i) OS << ",";
5521 OS << " ";
5522 if (child->getNumOperands() == 0) {
5523 // This child has no grandchildren; print it inline right here.
5524 child->printr(OS, G);
5525 once.insert(child);
5526 } else { // Just the address. FIXME: also print the child's opcode
5527 OS << (void*)child;
5528 if (unsigned RN = N->getOperand(i).getResNo())
5529 OS << ":" << RN;
5532 OS << "\n";
5533 // Dump children that have grandchildren on their own line(s).
5534 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5535 const SDNode *child = N->getOperand(i).getNode();
5536 DumpNodesr(OS, child, indent+2, G, once);
5540 void SDNode::dumpr() const {
5541 VisitedSDNodeSet once;
5542 DumpNodesr(errs(), this, 0, 0, once);
5545 const Type *ConstantPoolSDNode::getType() const {
5546 if (isMachineConstantPoolEntry())
5547 return Val.MachineCPVal->getType();
5548 return Val.ConstVal->getType();
5551 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5552 APInt &SplatUndef,
5553 unsigned &SplatBitSize,
5554 bool &HasAnyUndefs,
5555 unsigned MinSplatBits) {
5556 MVT VT = getValueType(0);
5557 assert(VT.isVector() && "Expected a vector type");
5558 unsigned sz = VT.getSizeInBits();
5559 if (MinSplatBits > sz)
5560 return false;
5562 SplatValue = APInt(sz, 0);
5563 SplatUndef = APInt(sz, 0);
5565 // Get the bits. Bits with undefined values (when the corresponding element
5566 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5567 // in SplatValue. If any of the values are not constant, give up and return
5568 // false.
5569 unsigned int nOps = getNumOperands();
5570 assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5571 unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5572 for (unsigned i = 0; i < nOps; ++i) {
5573 SDValue OpVal = getOperand(i);
5574 unsigned BitPos = i * EltBitSize;
5576 if (OpVal.getOpcode() == ISD::UNDEF)
5577 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5578 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5579 SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5580 zextOrTrunc(sz) << BitPos);
5581 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5582 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5583 else
5584 return false;
5587 // The build_vector is all constants or undefs. Find the smallest element
5588 // size that splats the vector.
5590 HasAnyUndefs = (SplatUndef != 0);
5591 while (sz > 8) {
5593 unsigned HalfSize = sz / 2;
5594 APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5595 APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5596 APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5597 APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5599 // If the two halves do not match (ignoring undef bits), stop here.
5600 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5601 MinSplatBits > HalfSize)
5602 break;
5604 SplatValue = HighValue | LowValue;
5605 SplatUndef = HighUndef & LowUndef;
5607 sz = HalfSize;
5610 SplatBitSize = sz;
5611 return true;