1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the SelectionDAG class.
12 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "llvm/Constants.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/GlobalAlias.h"
17 #include "llvm/GlobalVariable.h"
18 #include "llvm/Intrinsics.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Assembly/Writer.h"
21 #include "llvm/CallingConv.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallSet.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/StringExtras.h"
45 /// makeVTList - Return an instance of the SDVTList struct initialized with the
46 /// specified members.
47 static SDVTList
makeVTList(const MVT
*VTs
, unsigned NumVTs
) {
48 SDVTList Res
= {VTs
, NumVTs
};
52 static const fltSemantics
*MVTToAPFloatSemantics(MVT VT
) {
53 switch (VT
.getSimpleVT()) {
54 default: assert(0 && "Unknown FP format");
55 case MVT::f32
: return &APFloat::IEEEsingle
;
56 case MVT::f64
: return &APFloat::IEEEdouble
;
57 case MVT::f80
: return &APFloat::x87DoubleExtended
;
58 case MVT::f128
: return &APFloat::IEEEquad
;
59 case MVT::ppcf128
: return &APFloat::PPCDoubleDouble
;
63 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
65 //===----------------------------------------------------------------------===//
66 // ConstantFPSDNode Class
67 //===----------------------------------------------------------------------===//
69 /// isExactlyValue - We don't rely on operator== working on double values, as
70 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71 /// As such, this method can be used to do an exact bit-for-bit comparison of
72 /// two floating point values.
73 bool ConstantFPSDNode::isExactlyValue(const APFloat
& V
) const {
74 return getValueAPF().bitwiseIsEqual(V
);
77 bool ConstantFPSDNode::isValueValidForType(MVT VT
,
79 assert(VT
.isFloatingPoint() && "Can only convert between FP types");
81 // PPC long double cannot be converted to any other type.
82 if (VT
== MVT::ppcf128
||
83 &Val
.getSemantics() == &APFloat::PPCDoubleDouble
)
86 // convert modifies in place, so make a copy.
87 APFloat Val2
= APFloat(Val
);
89 (void) Val2
.convert(*MVTToAPFloatSemantics(VT
), APFloat::rmNearestTiesToEven
,
94 //===----------------------------------------------------------------------===//
96 //===----------------------------------------------------------------------===//
98 /// isBuildVectorAllOnes - Return true if the specified node is a
99 /// BUILD_VECTOR where all of the elements are ~0 or undef.
100 bool ISD::isBuildVectorAllOnes(const SDNode
*N
) {
101 // Look through a bit convert.
102 if (N
->getOpcode() == ISD::BIT_CONVERT
)
103 N
= N
->getOperand(0).getNode();
105 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
107 unsigned i
= 0, e
= N
->getNumOperands();
109 // Skip over all of the undef values.
110 while (i
!= e
&& N
->getOperand(i
).getOpcode() == ISD::UNDEF
)
113 // Do not accept an all-undef vector.
114 if (i
== e
) return false;
116 // Do not accept build_vectors that aren't all constants or which have non-~0
118 SDValue NotZero
= N
->getOperand(i
);
119 if (isa
<ConstantSDNode
>(NotZero
)) {
120 if (!cast
<ConstantSDNode
>(NotZero
)->isAllOnesValue())
122 } else if (isa
<ConstantFPSDNode
>(NotZero
)) {
123 if (!cast
<ConstantFPSDNode
>(NotZero
)->getValueAPF().
124 bitcastToAPInt().isAllOnesValue())
129 // Okay, we have at least one ~0 value, check to see if the rest match or are
131 for (++i
; i
!= e
; ++i
)
132 if (N
->getOperand(i
) != NotZero
&&
133 N
->getOperand(i
).getOpcode() != ISD::UNDEF
)
139 /// isBuildVectorAllZeros - Return true if the specified node is a
140 /// BUILD_VECTOR where all of the elements are 0 or undef.
141 bool ISD::isBuildVectorAllZeros(const SDNode
*N
) {
142 // Look through a bit convert.
143 if (N
->getOpcode() == ISD::BIT_CONVERT
)
144 N
= N
->getOperand(0).getNode();
146 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
148 unsigned i
= 0, e
= N
->getNumOperands();
150 // Skip over all of the undef values.
151 while (i
!= e
&& N
->getOperand(i
).getOpcode() == ISD::UNDEF
)
154 // Do not accept an all-undef vector.
155 if (i
== e
) return false;
157 // Do not accept build_vectors that aren't all constants or which have non-~0
159 SDValue Zero
= N
->getOperand(i
);
160 if (isa
<ConstantSDNode
>(Zero
)) {
161 if (!cast
<ConstantSDNode
>(Zero
)->isNullValue())
163 } else if (isa
<ConstantFPSDNode
>(Zero
)) {
164 if (!cast
<ConstantFPSDNode
>(Zero
)->getValueAPF().isPosZero())
169 // Okay, we have at least one ~0 value, check to see if the rest match or are
171 for (++i
; i
!= e
; ++i
)
172 if (N
->getOperand(i
) != Zero
&&
173 N
->getOperand(i
).getOpcode() != ISD::UNDEF
)
178 /// isScalarToVector - Return true if the specified node is a
179 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180 /// element is not an undef.
181 bool ISD::isScalarToVector(const SDNode
*N
) {
182 if (N
->getOpcode() == ISD::SCALAR_TO_VECTOR
)
185 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
187 if (N
->getOperand(0).getOpcode() == ISD::UNDEF
)
189 unsigned NumElems
= N
->getNumOperands();
190 for (unsigned i
= 1; i
< NumElems
; ++i
) {
191 SDValue V
= N
->getOperand(i
);
192 if (V
.getOpcode() != ISD::UNDEF
)
199 /// isDebugLabel - Return true if the specified node represents a debug
200 /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201 bool ISD::isDebugLabel(const SDNode
*N
) {
203 if (N
->getOpcode() == ISD::DBG_LABEL
)
205 if (N
->isMachineOpcode() &&
206 N
->getMachineOpcode() == TargetInstrInfo::DBG_LABEL
)
211 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212 /// when given the operation for (X op Y).
213 ISD::CondCode
ISD::getSetCCSwappedOperands(ISD::CondCode Operation
) {
214 // To perform this operation, we just need to swap the L and G bits of the
216 unsigned OldL
= (Operation
>> 2) & 1;
217 unsigned OldG
= (Operation
>> 1) & 1;
218 return ISD::CondCode((Operation
& ~6) | // Keep the N, U, E bits
219 (OldL
<< 1) | // New G bit
220 (OldG
<< 2)); // New L bit.
223 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224 /// 'op' is a valid SetCC operation.
225 ISD::CondCode
ISD::getSetCCInverse(ISD::CondCode Op
, bool isInteger
) {
226 unsigned Operation
= Op
;
228 Operation
^= 7; // Flip L, G, E bits, but not U.
230 Operation
^= 15; // Flip all of the condition bits.
232 if (Operation
> ISD::SETTRUE2
)
233 Operation
&= ~8; // Don't let N and U bits get set.
235 return ISD::CondCode(Operation
);
239 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
240 /// signed operation and 2 if the result is an unsigned comparison. Return zero
241 /// if the operation does not depend on the sign of the input (setne and seteq).
242 static int isSignedOp(ISD::CondCode Opcode
) {
244 default: assert(0 && "Illegal integer setcc operation!");
246 case ISD::SETNE
: return 0;
250 case ISD::SETGE
: return 1;
254 case ISD::SETUGE
: return 2;
258 /// getSetCCOrOperation - Return the result of a logical OR between different
259 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
260 /// returns SETCC_INVALID if it is not possible to represent the resultant
262 ISD::CondCode
ISD::getSetCCOrOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
264 if (isInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
265 // Cannot fold a signed integer setcc with an unsigned integer setcc.
266 return ISD::SETCC_INVALID
;
268 unsigned Op
= Op1
| Op2
; // Combine all of the condition bits.
270 // If the N and U bits get set then the resultant comparison DOES suddenly
271 // care about orderedness, and is true when ordered.
272 if (Op
> ISD::SETTRUE2
)
273 Op
&= ~16; // Clear the U bit if the N bit is set.
275 // Canonicalize illegal integer setcc's.
276 if (isInteger
&& Op
== ISD::SETUNE
) // e.g. SETUGT | SETULT
279 return ISD::CondCode(Op
);
282 /// getSetCCAndOperation - Return the result of a logical AND between different
283 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
284 /// function returns zero if it is not possible to represent the resultant
286 ISD::CondCode
ISD::getSetCCAndOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
288 if (isInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
289 // Cannot fold a signed setcc with an unsigned setcc.
290 return ISD::SETCC_INVALID
;
292 // Combine all of the condition bits.
293 ISD::CondCode Result
= ISD::CondCode(Op1
& Op2
);
295 // Canonicalize illegal integer setcc's.
299 case ISD::SETUO
: Result
= ISD::SETFALSE
; break; // SETUGT & SETULT
300 case ISD::SETOEQ
: // SETEQ & SETU[LG]E
301 case ISD::SETUEQ
: Result
= ISD::SETEQ
; break; // SETUGE & SETULE
302 case ISD::SETOLT
: Result
= ISD::SETULT
; break; // SETULT & SETNE
303 case ISD::SETOGT
: Result
= ISD::SETUGT
; break; // SETUGT & SETNE
310 const TargetMachine
&SelectionDAG::getTarget() const {
311 return MF
->getTarget();
314 //===----------------------------------------------------------------------===//
315 // SDNode Profile Support
316 //===----------------------------------------------------------------------===//
318 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
320 static void AddNodeIDOpcode(FoldingSetNodeID
&ID
, unsigned OpC
) {
324 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325 /// solely with their pointer.
326 static void AddNodeIDValueTypes(FoldingSetNodeID
&ID
, SDVTList VTList
) {
327 ID
.AddPointer(VTList
.VTs
);
330 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
332 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
333 const SDValue
*Ops
, unsigned NumOps
) {
334 for (; NumOps
; --NumOps
, ++Ops
) {
335 ID
.AddPointer(Ops
->getNode());
336 ID
.AddInteger(Ops
->getResNo());
340 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
342 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
343 const SDUse
*Ops
, unsigned NumOps
) {
344 for (; NumOps
; --NumOps
, ++Ops
) {
345 ID
.AddPointer(Ops
->getNode());
346 ID
.AddInteger(Ops
->getResNo());
350 static void AddNodeIDNode(FoldingSetNodeID
&ID
,
351 unsigned short OpC
, SDVTList VTList
,
352 const SDValue
*OpList
, unsigned N
) {
353 AddNodeIDOpcode(ID
, OpC
);
354 AddNodeIDValueTypes(ID
, VTList
);
355 AddNodeIDOperands(ID
, OpList
, N
);
358 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
360 static void AddNodeIDCustom(FoldingSetNodeID
&ID
, const SDNode
*N
) {
361 switch (N
->getOpcode()) {
362 default: break; // Normal nodes don't need extra info.
364 ID
.AddInteger(cast
<ARG_FLAGSSDNode
>(N
)->getArgFlags().getRawBits());
366 case ISD::TargetConstant
:
368 ID
.AddPointer(cast
<ConstantSDNode
>(N
)->getConstantIntValue());
370 case ISD::TargetConstantFP
:
371 case ISD::ConstantFP
: {
372 ID
.AddPointer(cast
<ConstantFPSDNode
>(N
)->getConstantFPValue());
375 case ISD::TargetGlobalAddress
:
376 case ISD::GlobalAddress
:
377 case ISD::TargetGlobalTLSAddress
:
378 case ISD::GlobalTLSAddress
: {
379 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(N
);
380 ID
.AddPointer(GA
->getGlobal());
381 ID
.AddInteger(GA
->getOffset());
384 case ISD::BasicBlock
:
385 ID
.AddPointer(cast
<BasicBlockSDNode
>(N
)->getBasicBlock());
388 ID
.AddInteger(cast
<RegisterSDNode
>(N
)->getReg());
390 case ISD::DBG_STOPPOINT
: {
391 const DbgStopPointSDNode
*DSP
= cast
<DbgStopPointSDNode
>(N
);
392 ID
.AddInteger(DSP
->getLine());
393 ID
.AddInteger(DSP
->getColumn());
394 ID
.AddPointer(DSP
->getCompileUnit());
398 ID
.AddPointer(cast
<SrcValueSDNode
>(N
)->getValue());
400 case ISD::MEMOPERAND
: {
401 const MachineMemOperand
&MO
= cast
<MemOperandSDNode
>(N
)->MO
;
405 case ISD::FrameIndex
:
406 case ISD::TargetFrameIndex
:
407 ID
.AddInteger(cast
<FrameIndexSDNode
>(N
)->getIndex());
410 case ISD::TargetJumpTable
:
411 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getIndex());
413 case ISD::ConstantPool
:
414 case ISD::TargetConstantPool
: {
415 const ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(N
);
416 ID
.AddInteger(CP
->getAlignment());
417 ID
.AddInteger(CP
->getOffset());
418 if (CP
->isMachineConstantPoolEntry())
419 CP
->getMachineCPVal()->AddSelectionDAGCSEId(ID
);
421 ID
.AddPointer(CP
->getConstVal());
425 const CallSDNode
*Call
= cast
<CallSDNode
>(N
);
426 ID
.AddInteger(Call
->getCallingConv());
427 ID
.AddInteger(Call
->isVarArg());
431 const LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
432 ID
.AddInteger(LD
->getMemoryVT().getRawBits());
433 ID
.AddInteger(LD
->getRawSubclassData());
437 const StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
438 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
439 ID
.AddInteger(ST
->getRawSubclassData());
442 case ISD::ATOMIC_CMP_SWAP
:
443 case ISD::ATOMIC_SWAP
:
444 case ISD::ATOMIC_LOAD_ADD
:
445 case ISD::ATOMIC_LOAD_SUB
:
446 case ISD::ATOMIC_LOAD_AND
:
447 case ISD::ATOMIC_LOAD_OR
:
448 case ISD::ATOMIC_LOAD_XOR
:
449 case ISD::ATOMIC_LOAD_NAND
:
450 case ISD::ATOMIC_LOAD_MIN
:
451 case ISD::ATOMIC_LOAD_MAX
:
452 case ISD::ATOMIC_LOAD_UMIN
:
453 case ISD::ATOMIC_LOAD_UMAX
: {
454 const AtomicSDNode
*AT
= cast
<AtomicSDNode
>(N
);
455 ID
.AddInteger(AT
->getMemoryVT().getRawBits());
456 ID
.AddInteger(AT
->getRawSubclassData());
459 } // end switch (N->getOpcode())
462 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
464 static void AddNodeIDNode(FoldingSetNodeID
&ID
, const SDNode
*N
) {
465 AddNodeIDOpcode(ID
, N
->getOpcode());
466 // Add the return value info.
467 AddNodeIDValueTypes(ID
, N
->getVTList());
468 // Add the operand info.
469 AddNodeIDOperands(ID
, N
->op_begin(), N
->getNumOperands());
471 // Handle SDNode leafs with special info.
472 AddNodeIDCustom(ID
, N
);
475 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
476 /// the CSE map that carries alignment, volatility, indexing mode, and
477 /// extension/truncation information.
479 static inline unsigned
480 encodeMemSDNodeFlags(int ConvType
, ISD::MemIndexedMode AM
,
481 bool isVolatile
, unsigned Alignment
) {
482 assert((ConvType
& 3) == ConvType
&&
483 "ConvType may not require more than 2 bits!");
484 assert((AM
& 7) == AM
&&
485 "AM may not require more than 3 bits!");
489 ((Log2_32(Alignment
) + 1) << 6);
492 //===----------------------------------------------------------------------===//
493 // SelectionDAG Class
494 //===----------------------------------------------------------------------===//
496 /// doNotCSE - Return true if CSE should not be performed for this node.
497 static bool doNotCSE(SDNode
*N
) {
498 if (N
->getValueType(0) == MVT::Flag
)
499 return true; // Never CSE anything that produces a flag.
501 switch (N
->getOpcode()) {
503 case ISD::HANDLENODE
:
505 case ISD::DBG_STOPPOINT
:
508 return true; // Never CSE these nodes.
511 // Check that remaining values produced are not flags.
512 for (unsigned i
= 1, e
= N
->getNumValues(); i
!= e
; ++i
)
513 if (N
->getValueType(i
) == MVT::Flag
)
514 return true; // Never CSE anything that produces a flag.
519 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
521 void SelectionDAG::RemoveDeadNodes() {
522 // Create a dummy node (which is not added to allnodes), that adds a reference
523 // to the root node, preventing it from being deleted.
524 HandleSDNode
Dummy(getRoot());
526 SmallVector
<SDNode
*, 128> DeadNodes
;
528 // Add all obviously-dead nodes to the DeadNodes worklist.
529 for (allnodes_iterator I
= allnodes_begin(), E
= allnodes_end(); I
!= E
; ++I
)
531 DeadNodes
.push_back(I
);
533 RemoveDeadNodes(DeadNodes
);
535 // If the root changed (e.g. it was a dead load, update the root).
536 setRoot(Dummy
.getValue());
539 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
540 /// given list, and any nodes that become unreachable as a result.
541 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl
<SDNode
*> &DeadNodes
,
542 DAGUpdateListener
*UpdateListener
) {
544 // Process the worklist, deleting the nodes and adding their uses to the
546 while (!DeadNodes
.empty()) {
547 SDNode
*N
= DeadNodes
.pop_back_val();
550 UpdateListener
->NodeDeleted(N
, 0);
552 // Take the node out of the appropriate CSE map.
553 RemoveNodeFromCSEMaps(N
);
555 // Next, brutally remove the operand list. This is safe to do, as there are
556 // no cycles in the graph.
557 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
559 SDNode
*Operand
= Use
.getNode();
562 // Now that we removed this operand, see if there are no uses of it left.
563 if (Operand
->use_empty())
564 DeadNodes
.push_back(Operand
);
571 void SelectionDAG::RemoveDeadNode(SDNode
*N
, DAGUpdateListener
*UpdateListener
){
572 SmallVector
<SDNode
*, 16> DeadNodes(1, N
);
573 RemoveDeadNodes(DeadNodes
, UpdateListener
);
576 void SelectionDAG::DeleteNode(SDNode
*N
) {
577 // First take this out of the appropriate CSE map.
578 RemoveNodeFromCSEMaps(N
);
580 // Finally, remove uses due to operands of this node, remove from the
581 // AllNodes list, and delete the node.
582 DeleteNodeNotInCSEMaps(N
);
585 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode
*N
) {
586 assert(N
!= AllNodes
.begin() && "Cannot delete the entry node!");
587 assert(N
->use_empty() && "Cannot delete a node that is not dead!");
589 // Drop all of the operands and decrement used node's use counts.
595 void SelectionDAG::DeallocateNode(SDNode
*N
) {
596 if (N
->OperandsNeedDelete
)
597 delete[] N
->OperandList
;
599 // Set the opcode to DELETED_NODE to help catch bugs when node
600 // memory is reallocated.
601 N
->NodeType
= ISD::DELETED_NODE
;
603 NodeAllocator
.Deallocate(AllNodes
.remove(N
));
606 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607 /// correspond to it. This is useful when we're about to delete or repurpose
608 /// the node. We don't want future request for structurally identical nodes
609 /// to return N anymore.
610 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode
*N
) {
612 switch (N
->getOpcode()) {
613 case ISD::EntryToken
:
614 assert(0 && "EntryToken should not be in CSEMaps!");
616 case ISD::HANDLENODE
: return false; // noop.
618 assert(CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] &&
619 "Cond code doesn't exist!");
620 Erased
= CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] != 0;
621 CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] = 0;
623 case ISD::ExternalSymbol
:
624 Erased
= ExternalSymbols
.erase(cast
<ExternalSymbolSDNode
>(N
)->getSymbol());
626 case ISD::TargetExternalSymbol
:
628 TargetExternalSymbols
.erase(cast
<ExternalSymbolSDNode
>(N
)->getSymbol());
630 case ISD::VALUETYPE
: {
631 MVT VT
= cast
<VTSDNode
>(N
)->getVT();
632 if (VT
.isExtended()) {
633 Erased
= ExtendedValueTypeNodes
.erase(VT
);
635 Erased
= ValueTypeNodes
[VT
.getSimpleVT()] != 0;
636 ValueTypeNodes
[VT
.getSimpleVT()] = 0;
641 // Remove it from the CSE Map.
642 Erased
= CSEMap
.RemoveNode(N
);
646 // Verify that the node was actually in one of the CSE maps, unless it has a
647 // flag result (which cannot be CSE'd) or is one of the special cases that are
648 // not subject to CSE.
649 if (!Erased
&& N
->getValueType(N
->getNumValues()-1) != MVT::Flag
&&
650 !N
->isMachineOpcode() && !doNotCSE(N
)) {
653 assert(0 && "Node is not in map!");
659 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660 /// maps and modified in place. Add it back to the CSE maps, unless an identical
661 /// node already exists, in which case transfer all its users to the existing
662 /// node. This transfer can potentially trigger recursive merging.
665 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode
*N
,
666 DAGUpdateListener
*UpdateListener
) {
667 // For node types that aren't CSE'd, just act as if no identical node
670 SDNode
*Existing
= CSEMap
.GetOrInsertNode(N
);
672 // If there was already an existing matching node, use ReplaceAllUsesWith
673 // to replace the dead one with the existing one. This can cause
674 // recursive merging of other unrelated nodes down the line.
675 ReplaceAllUsesWith(N
, Existing
, UpdateListener
);
677 // N is now dead. Inform the listener if it exists and delete it.
679 UpdateListener
->NodeDeleted(N
, Existing
);
680 DeleteNodeNotInCSEMaps(N
);
685 // If the node doesn't already exist, we updated it. Inform a listener if
688 UpdateListener
->NodeUpdated(N
);
691 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692 /// were replaced with those specified. If this node is never memoized,
693 /// return null, otherwise return a pointer to the slot it would take. If a
694 /// node already exists with these operands, the slot will be non-null.
695 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
, SDValue Op
,
700 SDValue Ops
[] = { Op
};
702 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, 1);
703 AddNodeIDCustom(ID
, N
);
704 return CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
707 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708 /// were replaced with those specified. If this node is never memoized,
709 /// return null, otherwise return a pointer to the slot it would take. If a
710 /// node already exists with these operands, the slot will be non-null.
711 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
712 SDValue Op1
, SDValue Op2
,
717 SDValue Ops
[] = { Op1
, Op2
};
719 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, 2);
720 AddNodeIDCustom(ID
, N
);
721 return CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
725 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726 /// were replaced with those specified. If this node is never memoized,
727 /// return null, otherwise return a pointer to the slot it would take. If a
728 /// node already exists with these operands, the slot will be non-null.
729 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
730 const SDValue
*Ops
,unsigned NumOps
,
736 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, NumOps
);
737 AddNodeIDCustom(ID
, N
);
738 return CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
741 /// VerifyNode - Sanity check the given node. Aborts if it is invalid.
742 void SelectionDAG::VerifyNode(SDNode
*N
) {
743 switch (N
->getOpcode()) {
746 case ISD::BUILD_PAIR
: {
747 MVT VT
= N
->getValueType(0);
748 assert(N
->getNumValues() == 1 && "Too many results!");
749 assert(!VT
.isVector() && (VT
.isInteger() || VT
.isFloatingPoint()) &&
750 "Wrong return type!");
751 assert(N
->getNumOperands() == 2 && "Wrong number of operands!");
752 assert(N
->getOperand(0).getValueType() == N
->getOperand(1).getValueType() &&
753 "Mismatched operand types!");
754 assert(N
->getOperand(0).getValueType().isInteger() == VT
.isInteger() &&
755 "Wrong operand type!");
756 assert(VT
.getSizeInBits() == 2 * N
->getOperand(0).getValueSizeInBits() &&
757 "Wrong return type size");
760 case ISD::BUILD_VECTOR
: {
761 assert(N
->getNumValues() == 1 && "Too many results!");
762 assert(N
->getValueType(0).isVector() && "Wrong return type!");
763 assert(N
->getNumOperands() == N
->getValueType(0).getVectorNumElements() &&
764 "Wrong number of operands!");
765 MVT EltVT
= N
->getValueType(0).getVectorElementType();
766 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ++I
)
767 assert((I
->getValueType() == EltVT
||
768 (EltVT
.isInteger() && I
->getValueType().isInteger() &&
769 EltVT
.bitsLE(I
->getValueType()))) &&
770 "Wrong operand type!");
776 /// getMVTAlignment - Compute the default alignment value for the
779 unsigned SelectionDAG::getMVTAlignment(MVT VT
) const {
780 const Type
*Ty
= VT
== MVT::iPTR
?
781 PointerType::get(Type::Int8Ty
, 0) :
784 return TLI
.getTargetData()->getABITypeAlignment(Ty
);
787 // EntryNode could meaningfully have debug info if we can find it...
788 SelectionDAG::SelectionDAG(TargetLowering
&tli
, FunctionLoweringInfo
&fli
)
789 : TLI(tli
), FLI(fli
), DW(0),
790 EntryNode(ISD::EntryToken
, DebugLoc::getUnknownLoc(),
791 getVTList(MVT::Other
)), Root(getEntryNode()) {
792 AllNodes
.push_back(&EntryNode
);
795 void SelectionDAG::init(MachineFunction
&mf
, MachineModuleInfo
*mmi
,
802 SelectionDAG::~SelectionDAG() {
806 void SelectionDAG::allnodes_clear() {
807 assert(&*AllNodes
.begin() == &EntryNode
);
808 AllNodes
.remove(AllNodes
.begin());
809 while (!AllNodes
.empty())
810 DeallocateNode(AllNodes
.begin());
813 void SelectionDAG::clear() {
815 OperandAllocator
.Reset();
818 ExtendedValueTypeNodes
.clear();
819 ExternalSymbols
.clear();
820 TargetExternalSymbols
.clear();
821 std::fill(CondCodeNodes
.begin(), CondCodeNodes
.end(),
822 static_cast<CondCodeSDNode
*>(0));
823 std::fill(ValueTypeNodes
.begin(), ValueTypeNodes
.end(),
824 static_cast<SDNode
*>(0));
826 EntryNode
.UseList
= 0;
827 AllNodes
.push_back(&EntryNode
);
828 Root
= getEntryNode();
831 SDValue
SelectionDAG::getZeroExtendInReg(SDValue Op
, DebugLoc DL
, MVT VT
) {
832 if (Op
.getValueType() == VT
) return Op
;
833 APInt Imm
= APInt::getLowBitsSet(Op
.getValueSizeInBits(),
835 return getNode(ISD::AND
, DL
, Op
.getValueType(), Op
,
836 getConstant(Imm
, Op
.getValueType()));
839 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
841 SDValue
SelectionDAG::getNOT(DebugLoc DL
, SDValue Val
, MVT VT
) {
842 MVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
844 getConstant(APInt::getAllOnesValue(EltVT
.getSizeInBits()), VT
);
845 return getNode(ISD::XOR
, DL
, VT
, Val
, NegOne
);
848 SDValue
SelectionDAG::getConstant(uint64_t Val
, MVT VT
, bool isT
) {
849 MVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
850 assert((EltVT
.getSizeInBits() >= 64 ||
851 (uint64_t)((int64_t)Val
>> EltVT
.getSizeInBits()) + 1 < 2) &&
852 "getConstant with a uint64_t value that doesn't fit in the type!");
853 return getConstant(APInt(EltVT
.getSizeInBits(), Val
), VT
, isT
);
856 SDValue
SelectionDAG::getConstant(const APInt
&Val
, MVT VT
, bool isT
) {
857 return getConstant(*ConstantInt::get(Val
), VT
, isT
);
860 SDValue
SelectionDAG::getConstant(const ConstantInt
&Val
, MVT VT
, bool isT
) {
861 assert(VT
.isInteger() && "Cannot create FP integer constant!");
863 MVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
864 assert(Val
.getBitWidth() == EltVT
.getSizeInBits() &&
865 "APInt size does not match type size!");
867 unsigned Opc
= isT
? ISD::TargetConstant
: ISD::Constant
;
869 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), 0, 0);
873 if ((N
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)))
875 return SDValue(N
, 0);
877 N
= NodeAllocator
.Allocate
<ConstantSDNode
>();
878 new (N
) ConstantSDNode(isT
, &Val
, EltVT
);
879 CSEMap
.InsertNode(N
, IP
);
880 AllNodes
.push_back(N
);
883 SDValue
Result(N
, 0);
885 SmallVector
<SDValue
, 8> Ops
;
886 Ops
.assign(VT
.getVectorNumElements(), Result
);
887 Result
= getNode(ISD::BUILD_VECTOR
, DebugLoc::getUnknownLoc(),
888 VT
, &Ops
[0], Ops
.size());
893 SDValue
SelectionDAG::getIntPtrConstant(uint64_t Val
, bool isTarget
) {
894 return getConstant(Val
, TLI
.getPointerTy(), isTarget
);
898 SDValue
SelectionDAG::getConstantFP(const APFloat
& V
, MVT VT
, bool isTarget
) {
899 return getConstantFP(*ConstantFP::get(V
), VT
, isTarget
);
902 SDValue
SelectionDAG::getConstantFP(const ConstantFP
& V
, MVT VT
, bool isTarget
){
903 assert(VT
.isFloatingPoint() && "Cannot create integer FP constant!");
906 VT
.isVector() ? VT
.getVectorElementType() : VT
;
908 // Do the map lookup using the actual bit pattern for the floating point
909 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
910 // we don't have issues with SNANs.
911 unsigned Opc
= isTarget
? ISD::TargetConstantFP
: ISD::ConstantFP
;
913 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), 0, 0);
917 if ((N
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)))
919 return SDValue(N
, 0);
921 N
= NodeAllocator
.Allocate
<ConstantFPSDNode
>();
922 new (N
) ConstantFPSDNode(isTarget
, &V
, EltVT
);
923 CSEMap
.InsertNode(N
, IP
);
924 AllNodes
.push_back(N
);
927 SDValue
Result(N
, 0);
929 SmallVector
<SDValue
, 8> Ops
;
930 Ops
.assign(VT
.getVectorNumElements(), Result
);
931 // FIXME DebugLoc info might be appropriate here
932 Result
= getNode(ISD::BUILD_VECTOR
, DebugLoc::getUnknownLoc(),
933 VT
, &Ops
[0], Ops
.size());
938 SDValue
SelectionDAG::getConstantFP(double Val
, MVT VT
, bool isTarget
) {
940 VT
.isVector() ? VT
.getVectorElementType() : VT
;
942 return getConstantFP(APFloat((float)Val
), VT
, isTarget
);
944 return getConstantFP(APFloat(Val
), VT
, isTarget
);
947 SDValue
SelectionDAG::getGlobalAddress(const GlobalValue
*GV
,
948 MVT VT
, int64_t Offset
,
952 // Truncate (with sign-extension) the offset value to the pointer size.
953 unsigned BitWidth
= TLI
.getPointerTy().getSizeInBits();
955 Offset
= (Offset
<< (64 - BitWidth
) >> (64 - BitWidth
));
957 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
959 // If GV is an alias then use the aliasee for determining thread-localness.
960 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
961 GVar
= dyn_cast_or_null
<GlobalVariable
>(GA
->resolveAliasedGlobal(false));
964 if (GVar
&& GVar
->isThreadLocal())
965 Opc
= isTargetGA
? ISD::TargetGlobalTLSAddress
: ISD::GlobalTLSAddress
;
967 Opc
= isTargetGA
? ISD::TargetGlobalAddress
: ISD::GlobalAddress
;
970 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
972 ID
.AddInteger(Offset
);
974 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
975 return SDValue(E
, 0);
976 SDNode
*N
= NodeAllocator
.Allocate
<GlobalAddressSDNode
>();
977 new (N
) GlobalAddressSDNode(isTargetGA
, GV
, VT
, Offset
);
978 CSEMap
.InsertNode(N
, IP
);
979 AllNodes
.push_back(N
);
980 return SDValue(N
, 0);
983 SDValue
SelectionDAG::getFrameIndex(int FI
, MVT VT
, bool isTarget
) {
984 unsigned Opc
= isTarget
? ISD::TargetFrameIndex
: ISD::FrameIndex
;
986 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
989 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
990 return SDValue(E
, 0);
991 SDNode
*N
= NodeAllocator
.Allocate
<FrameIndexSDNode
>();
992 new (N
) FrameIndexSDNode(FI
, VT
, isTarget
);
993 CSEMap
.InsertNode(N
, IP
);
994 AllNodes
.push_back(N
);
995 return SDValue(N
, 0);
998 SDValue
SelectionDAG::getJumpTable(int JTI
, MVT VT
, bool isTarget
){
999 unsigned Opc
= isTarget
? ISD::TargetJumpTable
: ISD::JumpTable
;
1000 FoldingSetNodeID ID
;
1001 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1004 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1005 return SDValue(E
, 0);
1006 SDNode
*N
= NodeAllocator
.Allocate
<JumpTableSDNode
>();
1007 new (N
) JumpTableSDNode(JTI
, VT
, isTarget
);
1008 CSEMap
.InsertNode(N
, IP
);
1009 AllNodes
.push_back(N
);
1010 return SDValue(N
, 0);
1013 SDValue
SelectionDAG::getConstantPool(Constant
*C
, MVT VT
,
1014 unsigned Alignment
, int Offset
,
1017 Alignment
= TLI
.getTargetData()->getPrefTypeAlignment(C
->getType());
1018 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1019 FoldingSetNodeID ID
;
1020 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1021 ID
.AddInteger(Alignment
);
1022 ID
.AddInteger(Offset
);
1025 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1026 return SDValue(E
, 0);
1027 SDNode
*N
= NodeAllocator
.Allocate
<ConstantPoolSDNode
>();
1028 new (N
) ConstantPoolSDNode(isTarget
, C
, VT
, Offset
, Alignment
);
1029 CSEMap
.InsertNode(N
, IP
);
1030 AllNodes
.push_back(N
);
1031 return SDValue(N
, 0);
1035 SDValue
SelectionDAG::getConstantPool(MachineConstantPoolValue
*C
, MVT VT
,
1036 unsigned Alignment
, int Offset
,
1039 Alignment
= TLI
.getTargetData()->getPrefTypeAlignment(C
->getType());
1040 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1041 FoldingSetNodeID ID
;
1042 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1043 ID
.AddInteger(Alignment
);
1044 ID
.AddInteger(Offset
);
1045 C
->AddSelectionDAGCSEId(ID
);
1047 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1048 return SDValue(E
, 0);
1049 SDNode
*N
= NodeAllocator
.Allocate
<ConstantPoolSDNode
>();
1050 new (N
) ConstantPoolSDNode(isTarget
, C
, VT
, Offset
, Alignment
);
1051 CSEMap
.InsertNode(N
, IP
);
1052 AllNodes
.push_back(N
);
1053 return SDValue(N
, 0);
1056 SDValue
SelectionDAG::getBasicBlock(MachineBasicBlock
*MBB
) {
1057 FoldingSetNodeID ID
;
1058 AddNodeIDNode(ID
, ISD::BasicBlock
, getVTList(MVT::Other
), 0, 0);
1061 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1062 return SDValue(E
, 0);
1063 SDNode
*N
= NodeAllocator
.Allocate
<BasicBlockSDNode
>();
1064 new (N
) BasicBlockSDNode(MBB
);
1065 CSEMap
.InsertNode(N
, IP
);
1066 AllNodes
.push_back(N
);
1067 return SDValue(N
, 0);
1070 SDValue
SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags
) {
1071 FoldingSetNodeID ID
;
1072 AddNodeIDNode(ID
, ISD::ARG_FLAGS
, getVTList(MVT::Other
), 0, 0);
1073 ID
.AddInteger(Flags
.getRawBits());
1075 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1076 return SDValue(E
, 0);
1077 SDNode
*N
= NodeAllocator
.Allocate
<ARG_FLAGSSDNode
>();
1078 new (N
) ARG_FLAGSSDNode(Flags
);
1079 CSEMap
.InsertNode(N
, IP
);
1080 AllNodes
.push_back(N
);
1081 return SDValue(N
, 0);
1084 SDValue
SelectionDAG::getValueType(MVT VT
) {
1085 if (VT
.isSimple() && (unsigned)VT
.getSimpleVT() >= ValueTypeNodes
.size())
1086 ValueTypeNodes
.resize(VT
.getSimpleVT()+1);
1088 SDNode
*&N
= VT
.isExtended() ?
1089 ExtendedValueTypeNodes
[VT
] : ValueTypeNodes
[VT
.getSimpleVT()];
1091 if (N
) return SDValue(N
, 0);
1092 N
= NodeAllocator
.Allocate
<VTSDNode
>();
1093 new (N
) VTSDNode(VT
);
1094 AllNodes
.push_back(N
);
1095 return SDValue(N
, 0);
1098 SDValue
SelectionDAG::getExternalSymbol(const char *Sym
, MVT VT
) {
1099 SDNode
*&N
= ExternalSymbols
[Sym
];
1100 if (N
) return SDValue(N
, 0);
1101 N
= NodeAllocator
.Allocate
<ExternalSymbolSDNode
>();
1102 new (N
) ExternalSymbolSDNode(false, Sym
, VT
);
1103 AllNodes
.push_back(N
);
1104 return SDValue(N
, 0);
1107 SDValue
SelectionDAG::getTargetExternalSymbol(const char *Sym
, MVT VT
) {
1108 SDNode
*&N
= TargetExternalSymbols
[Sym
];
1109 if (N
) return SDValue(N
, 0);
1110 N
= NodeAllocator
.Allocate
<ExternalSymbolSDNode
>();
1111 new (N
) ExternalSymbolSDNode(true, Sym
, VT
);
1112 AllNodes
.push_back(N
);
1113 return SDValue(N
, 0);
1116 SDValue
SelectionDAG::getCondCode(ISD::CondCode Cond
) {
1117 if ((unsigned)Cond
>= CondCodeNodes
.size())
1118 CondCodeNodes
.resize(Cond
+1);
1120 if (CondCodeNodes
[Cond
] == 0) {
1121 CondCodeSDNode
*N
= NodeAllocator
.Allocate
<CondCodeSDNode
>();
1122 new (N
) CondCodeSDNode(Cond
);
1123 CondCodeNodes
[Cond
] = N
;
1124 AllNodes
.push_back(N
);
1126 return SDValue(CondCodeNodes
[Cond
], 0);
1129 SDValue
SelectionDAG::getConvertRndSat(MVT VT
, DebugLoc dl
,
1130 SDValue Val
, SDValue DTy
,
1131 SDValue STy
, SDValue Rnd
, SDValue Sat
,
1132 ISD::CvtCode Code
) {
1133 // If the src and dest types are the same and the conversion is between
1134 // integer types of the same sign or two floats, no conversion is necessary.
1136 (Code
== ISD::CVT_UU
|| Code
== ISD::CVT_SS
|| Code
== ISD::CVT_FF
))
1139 FoldingSetNodeID ID
;
1141 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1142 return SDValue(E
, 0);
1143 CvtRndSatSDNode
*N
= NodeAllocator
.Allocate
<CvtRndSatSDNode
>();
1144 SDValue Ops
[] = { Val
, DTy
, STy
, Rnd
, Sat
};
1145 new (N
) CvtRndSatSDNode(VT
, dl
, Ops
, 5, Code
);
1146 CSEMap
.InsertNode(N
, IP
);
1147 AllNodes
.push_back(N
);
1148 return SDValue(N
, 0);
1151 SDValue
SelectionDAG::getRegister(unsigned RegNo
, MVT VT
) {
1152 FoldingSetNodeID ID
;
1153 AddNodeIDNode(ID
, ISD::Register
, getVTList(VT
), 0, 0);
1154 ID
.AddInteger(RegNo
);
1156 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1157 return SDValue(E
, 0);
1158 SDNode
*N
= NodeAllocator
.Allocate
<RegisterSDNode
>();
1159 new (N
) RegisterSDNode(RegNo
, VT
);
1160 CSEMap
.InsertNode(N
, IP
);
1161 AllNodes
.push_back(N
);
1162 return SDValue(N
, 0);
1165 SDValue
SelectionDAG::getDbgStopPoint(SDValue Root
,
1166 unsigned Line
, unsigned Col
,
1168 SDNode
*N
= NodeAllocator
.Allocate
<DbgStopPointSDNode
>();
1169 new (N
) DbgStopPointSDNode(Root
, Line
, Col
, CU
);
1170 AllNodes
.push_back(N
);
1171 return SDValue(N
, 0);
1174 SDValue
SelectionDAG::getLabel(unsigned Opcode
, DebugLoc dl
,
1177 FoldingSetNodeID ID
;
1178 SDValue Ops
[] = { Root
};
1179 AddNodeIDNode(ID
, Opcode
, getVTList(MVT::Other
), &Ops
[0], 1);
1180 ID
.AddInteger(LabelID
);
1182 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1183 return SDValue(E
, 0);
1184 SDNode
*N
= NodeAllocator
.Allocate
<LabelSDNode
>();
1185 new (N
) LabelSDNode(Opcode
, dl
, Root
, LabelID
);
1186 CSEMap
.InsertNode(N
, IP
);
1187 AllNodes
.push_back(N
);
1188 return SDValue(N
, 0);
1191 SDValue
SelectionDAG::getSrcValue(const Value
*V
) {
1192 assert((!V
|| isa
<PointerType
>(V
->getType())) &&
1193 "SrcValue is not a pointer?");
1195 FoldingSetNodeID ID
;
1196 AddNodeIDNode(ID
, ISD::SRCVALUE
, getVTList(MVT::Other
), 0, 0);
1200 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1201 return SDValue(E
, 0);
1203 SDNode
*N
= NodeAllocator
.Allocate
<SrcValueSDNode
>();
1204 new (N
) SrcValueSDNode(V
);
1205 CSEMap
.InsertNode(N
, IP
);
1206 AllNodes
.push_back(N
);
1207 return SDValue(N
, 0);
1210 SDValue
SelectionDAG::getMemOperand(const MachineMemOperand
&MO
) {
1212 const Value
*v
= MO
.getValue();
1213 assert((!v
|| isa
<PointerType
>(v
->getType())) &&
1214 "SrcValue is not a pointer?");
1217 FoldingSetNodeID ID
;
1218 AddNodeIDNode(ID
, ISD::MEMOPERAND
, getVTList(MVT::Other
), 0, 0);
1222 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1223 return SDValue(E
, 0);
1225 SDNode
*N
= NodeAllocator
.Allocate
<MemOperandSDNode
>();
1226 new (N
) MemOperandSDNode(MO
);
1227 CSEMap
.InsertNode(N
, IP
);
1228 AllNodes
.push_back(N
);
1229 return SDValue(N
, 0);
1232 /// getShiftAmountOperand - Return the specified value casted to
1233 /// the target's desired shift amount type.
1234 SDValue
SelectionDAG::getShiftAmountOperand(SDValue Op
) {
1235 MVT OpTy
= Op
.getValueType();
1236 MVT ShTy
= TLI
.getShiftAmountTy();
1237 if (OpTy
== ShTy
|| OpTy
.isVector()) return Op
;
1239 ISD::NodeType Opcode
= OpTy
.bitsGT(ShTy
) ? ISD::TRUNCATE
: ISD::ZERO_EXTEND
;
1240 return getNode(Opcode
, Op
.getDebugLoc(), ShTy
, Op
);
1243 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1244 /// specified value type.
1245 SDValue
SelectionDAG::CreateStackTemporary(MVT VT
, unsigned minAlign
) {
1246 MachineFrameInfo
*FrameInfo
= getMachineFunction().getFrameInfo();
1247 unsigned ByteSize
= VT
.getStoreSizeInBits()/8;
1248 const Type
*Ty
= VT
.getTypeForMVT();
1249 unsigned StackAlign
=
1250 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
), minAlign
);
1252 int FrameIdx
= FrameInfo
->CreateStackObject(ByteSize
, StackAlign
);
1253 return getFrameIndex(FrameIdx
, TLI
.getPointerTy());
1256 /// CreateStackTemporary - Create a stack temporary suitable for holding
1257 /// either of the specified value types.
1258 SDValue
SelectionDAG::CreateStackTemporary(MVT VT1
, MVT VT2
) {
1259 unsigned Bytes
= std::max(VT1
.getStoreSizeInBits(),
1260 VT2
.getStoreSizeInBits())/8;
1261 const Type
*Ty1
= VT1
.getTypeForMVT();
1262 const Type
*Ty2
= VT2
.getTypeForMVT();
1263 const TargetData
*TD
= TLI
.getTargetData();
1264 unsigned Align
= std::max(TD
->getPrefTypeAlignment(Ty1
),
1265 TD
->getPrefTypeAlignment(Ty2
));
1267 MachineFrameInfo
*FrameInfo
= getMachineFunction().getFrameInfo();
1268 int FrameIdx
= FrameInfo
->CreateStackObject(Bytes
, Align
);
1269 return getFrameIndex(FrameIdx
, TLI
.getPointerTy());
1272 SDValue
SelectionDAG::FoldSetCC(MVT VT
, SDValue N1
,
1273 SDValue N2
, ISD::CondCode Cond
, DebugLoc dl
) {
1274 // These setcc operations always fold.
1278 case ISD::SETFALSE2
: return getConstant(0, VT
);
1280 case ISD::SETTRUE2
: return getConstant(1, VT
);
1292 assert(!N1
.getValueType().isInteger() && "Illegal setcc for integer!");
1296 if (ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode())) {
1297 const APInt
&C2
= N2C
->getAPIntValue();
1298 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
1299 const APInt
&C1
= N1C
->getAPIntValue();
1302 default: assert(0 && "Unknown integer setcc!");
1303 case ISD::SETEQ
: return getConstant(C1
== C2
, VT
);
1304 case ISD::SETNE
: return getConstant(C1
!= C2
, VT
);
1305 case ISD::SETULT
: return getConstant(C1
.ult(C2
), VT
);
1306 case ISD::SETUGT
: return getConstant(C1
.ugt(C2
), VT
);
1307 case ISD::SETULE
: return getConstant(C1
.ule(C2
), VT
);
1308 case ISD::SETUGE
: return getConstant(C1
.uge(C2
), VT
);
1309 case ISD::SETLT
: return getConstant(C1
.slt(C2
), VT
);
1310 case ISD::SETGT
: return getConstant(C1
.sgt(C2
), VT
);
1311 case ISD::SETLE
: return getConstant(C1
.sle(C2
), VT
);
1312 case ISD::SETGE
: return getConstant(C1
.sge(C2
), VT
);
1316 if (ConstantFPSDNode
*N1C
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode())) {
1317 if (ConstantFPSDNode
*N2C
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode())) {
1318 // No compile time operations on this type yet.
1319 if (N1C
->getValueType(0) == MVT::ppcf128
)
1322 APFloat::cmpResult R
= N1C
->getValueAPF().compare(N2C
->getValueAPF());
1325 case ISD::SETEQ
: if (R
==APFloat::cmpUnordered
)
1326 return getUNDEF(VT
);
1328 case ISD::SETOEQ
: return getConstant(R
==APFloat::cmpEqual
, VT
);
1329 case ISD::SETNE
: if (R
==APFloat::cmpUnordered
)
1330 return getUNDEF(VT
);
1332 case ISD::SETONE
: return getConstant(R
==APFloat::cmpGreaterThan
||
1333 R
==APFloat::cmpLessThan
, VT
);
1334 case ISD::SETLT
: if (R
==APFloat::cmpUnordered
)
1335 return getUNDEF(VT
);
1337 case ISD::SETOLT
: return getConstant(R
==APFloat::cmpLessThan
, VT
);
1338 case ISD::SETGT
: if (R
==APFloat::cmpUnordered
)
1339 return getUNDEF(VT
);
1341 case ISD::SETOGT
: return getConstant(R
==APFloat::cmpGreaterThan
, VT
);
1342 case ISD::SETLE
: if (R
==APFloat::cmpUnordered
)
1343 return getUNDEF(VT
);
1345 case ISD::SETOLE
: return getConstant(R
==APFloat::cmpLessThan
||
1346 R
==APFloat::cmpEqual
, VT
);
1347 case ISD::SETGE
: if (R
==APFloat::cmpUnordered
)
1348 return getUNDEF(VT
);
1350 case ISD::SETOGE
: return getConstant(R
==APFloat::cmpGreaterThan
||
1351 R
==APFloat::cmpEqual
, VT
);
1352 case ISD::SETO
: return getConstant(R
!=APFloat::cmpUnordered
, VT
);
1353 case ISD::SETUO
: return getConstant(R
==APFloat::cmpUnordered
, VT
);
1354 case ISD::SETUEQ
: return getConstant(R
==APFloat::cmpUnordered
||
1355 R
==APFloat::cmpEqual
, VT
);
1356 case ISD::SETUNE
: return getConstant(R
!=APFloat::cmpEqual
, VT
);
1357 case ISD::SETULT
: return getConstant(R
==APFloat::cmpUnordered
||
1358 R
==APFloat::cmpLessThan
, VT
);
1359 case ISD::SETUGT
: return getConstant(R
==APFloat::cmpGreaterThan
||
1360 R
==APFloat::cmpUnordered
, VT
);
1361 case ISD::SETULE
: return getConstant(R
!=APFloat::cmpGreaterThan
, VT
);
1362 case ISD::SETUGE
: return getConstant(R
!=APFloat::cmpLessThan
, VT
);
1365 // Ensure that the constant occurs on the RHS.
1366 return getSetCC(dl
, VT
, N2
, N1
, ISD::getSetCCSwappedOperands(Cond
));
1370 // Could not fold it.
1374 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1375 /// use this predicate to simplify operations downstream.
1376 bool SelectionDAG::SignBitIsZero(SDValue Op
, unsigned Depth
) const {
1377 unsigned BitWidth
= Op
.getValueSizeInBits();
1378 return MaskedValueIsZero(Op
, APInt::getSignBit(BitWidth
), Depth
);
1381 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1382 /// this predicate to simplify operations downstream. Mask is known to be zero
1383 /// for bits that V cannot have.
1384 bool SelectionDAG::MaskedValueIsZero(SDValue Op
, const APInt
&Mask
,
1385 unsigned Depth
) const {
1386 APInt KnownZero
, KnownOne
;
1387 ComputeMaskedBits(Op
, Mask
, KnownZero
, KnownOne
, Depth
);
1388 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1389 return (KnownZero
& Mask
) == Mask
;
1392 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1393 /// known to be either zero or one and return them in the KnownZero/KnownOne
1394 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1396 void SelectionDAG::ComputeMaskedBits(SDValue Op
, const APInt
&Mask
,
1397 APInt
&KnownZero
, APInt
&KnownOne
,
1398 unsigned Depth
) const {
1399 unsigned BitWidth
= Mask
.getBitWidth();
1400 assert(BitWidth
== Op
.getValueType().getSizeInBits() &&
1401 "Mask size mismatches value type size!");
1403 KnownZero
= KnownOne
= APInt(BitWidth
, 0); // Don't know anything.
1404 if (Depth
== 6 || Mask
== 0)
1405 return; // Limit search depth.
1407 APInt KnownZero2
, KnownOne2
;
1409 switch (Op
.getOpcode()) {
1411 // We know all of the bits for a constant!
1412 KnownOne
= cast
<ConstantSDNode
>(Op
)->getAPIntValue() & Mask
;
1413 KnownZero
= ~KnownOne
& Mask
;
1416 // If either the LHS or the RHS are Zero, the result is zero.
1417 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1418 ComputeMaskedBits(Op
.getOperand(0), Mask
& ~KnownZero
,
1419 KnownZero2
, KnownOne2
, Depth
+1);
1420 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1421 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1423 // Output known-1 bits are only known if set in both the LHS & RHS.
1424 KnownOne
&= KnownOne2
;
1425 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1426 KnownZero
|= KnownZero2
;
1429 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1430 ComputeMaskedBits(Op
.getOperand(0), Mask
& ~KnownOne
,
1431 KnownZero2
, KnownOne2
, Depth
+1);
1432 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1433 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1435 // Output known-0 bits are only known if clear in both the LHS & RHS.
1436 KnownZero
&= KnownZero2
;
1437 // Output known-1 are known to be set if set in either the LHS | RHS.
1438 KnownOne
|= KnownOne2
;
1441 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1442 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1443 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1444 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1446 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1447 APInt KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
1448 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1449 KnownOne
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
1450 KnownZero
= KnownZeroOut
;
1454 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
1455 ComputeMaskedBits(Op
.getOperand(1), Mask2
, KnownZero
, KnownOne
, Depth
+1);
1456 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1457 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1458 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1460 // If low bits are zero in either operand, output low known-0 bits.
1461 // Also compute a conserative estimate for high known-0 bits.
1462 // More trickiness is possible, but this is sufficient for the
1463 // interesting case of alignment computation.
1465 unsigned TrailZ
= KnownZero
.countTrailingOnes() +
1466 KnownZero2
.countTrailingOnes();
1467 unsigned LeadZ
= std::max(KnownZero
.countLeadingOnes() +
1468 KnownZero2
.countLeadingOnes(),
1469 BitWidth
) - BitWidth
;
1471 TrailZ
= std::min(TrailZ
, BitWidth
);
1472 LeadZ
= std::min(LeadZ
, BitWidth
);
1473 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) |
1474 APInt::getHighBitsSet(BitWidth
, LeadZ
);
1479 // For the purposes of computing leading zeros we can conservatively
1480 // treat a udiv as a logical right shift by the power of 2 known to
1481 // be less than the denominator.
1482 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
1483 ComputeMaskedBits(Op
.getOperand(0),
1484 AllOnes
, KnownZero2
, KnownOne2
, Depth
+1);
1485 unsigned LeadZ
= KnownZero2
.countLeadingOnes();
1489 ComputeMaskedBits(Op
.getOperand(1),
1490 AllOnes
, KnownZero2
, KnownOne2
, Depth
+1);
1491 unsigned RHSUnknownLeadingOnes
= KnownOne2
.countLeadingZeros();
1492 if (RHSUnknownLeadingOnes
!= BitWidth
)
1493 LeadZ
= std::min(BitWidth
,
1494 LeadZ
+ BitWidth
- RHSUnknownLeadingOnes
- 1);
1496 KnownZero
= APInt::getHighBitsSet(BitWidth
, LeadZ
) & Mask
;
1500 ComputeMaskedBits(Op
.getOperand(2), Mask
, KnownZero
, KnownOne
, Depth
+1);
1501 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1502 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1503 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1505 // Only known if known in both the LHS and RHS.
1506 KnownOne
&= KnownOne2
;
1507 KnownZero
&= KnownZero2
;
1509 case ISD::SELECT_CC
:
1510 ComputeMaskedBits(Op
.getOperand(3), Mask
, KnownZero
, KnownOne
, Depth
+1);
1511 ComputeMaskedBits(Op
.getOperand(2), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1512 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1513 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1515 // Only known if known in both the LHS and RHS.
1516 KnownOne
&= KnownOne2
;
1517 KnownZero
&= KnownZero2
;
1525 if (Op
.getResNo() != 1)
1527 // The boolean result conforms to getBooleanContents. Fall through.
1529 // If we know the result of a setcc has the top bits zero, use this info.
1530 if (TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
&&
1532 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
1535 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1536 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1537 unsigned ShAmt
= SA
->getZExtValue();
1539 // If the shift count is an invalid immediate, don't do anything.
1540 if (ShAmt
>= BitWidth
)
1543 ComputeMaskedBits(Op
.getOperand(0), Mask
.lshr(ShAmt
),
1544 KnownZero
, KnownOne
, Depth
+1);
1545 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1546 KnownZero
<<= ShAmt
;
1548 // low bits known zero.
1549 KnownZero
|= APInt::getLowBitsSet(BitWidth
, ShAmt
);
1553 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1554 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1555 unsigned ShAmt
= SA
->getZExtValue();
1557 // If the shift count is an invalid immediate, don't do anything.
1558 if (ShAmt
>= BitWidth
)
1561 ComputeMaskedBits(Op
.getOperand(0), (Mask
<< ShAmt
),
1562 KnownZero
, KnownOne
, Depth
+1);
1563 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1564 KnownZero
= KnownZero
.lshr(ShAmt
);
1565 KnownOne
= KnownOne
.lshr(ShAmt
);
1567 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
) & Mask
;
1568 KnownZero
|= HighBits
; // High bits known zero.
1572 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1573 unsigned ShAmt
= SA
->getZExtValue();
1575 // If the shift count is an invalid immediate, don't do anything.
1576 if (ShAmt
>= BitWidth
)
1579 APInt InDemandedMask
= (Mask
<< ShAmt
);
1580 // If any of the demanded bits are produced by the sign extension, we also
1581 // demand the input sign bit.
1582 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
) & Mask
;
1583 if (HighBits
.getBoolValue())
1584 InDemandedMask
|= APInt::getSignBit(BitWidth
);
1586 ComputeMaskedBits(Op
.getOperand(0), InDemandedMask
, KnownZero
, KnownOne
,
1588 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1589 KnownZero
= KnownZero
.lshr(ShAmt
);
1590 KnownOne
= KnownOne
.lshr(ShAmt
);
1592 // Handle the sign bits.
1593 APInt SignBit
= APInt::getSignBit(BitWidth
);
1594 SignBit
= SignBit
.lshr(ShAmt
); // Adjust to where it is now in the mask.
1596 if (KnownZero
.intersects(SignBit
)) {
1597 KnownZero
|= HighBits
; // New bits are known zero.
1598 } else if (KnownOne
.intersects(SignBit
)) {
1599 KnownOne
|= HighBits
; // New bits are known one.
1603 case ISD::SIGN_EXTEND_INREG
: {
1604 MVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1605 unsigned EBits
= EVT
.getSizeInBits();
1607 // Sign extension. Compute the demanded bits in the result that are not
1608 // present in the input.
1609 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- EBits
) & Mask
;
1611 APInt InSignBit
= APInt::getSignBit(EBits
);
1612 APInt InputDemandedBits
= Mask
& APInt::getLowBitsSet(BitWidth
, EBits
);
1614 // If the sign extended bits are demanded, we know that the sign
1616 InSignBit
.zext(BitWidth
);
1617 if (NewBits
.getBoolValue())
1618 InputDemandedBits
|= InSignBit
;
1620 ComputeMaskedBits(Op
.getOperand(0), InputDemandedBits
,
1621 KnownZero
, KnownOne
, Depth
+1);
1622 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1624 // If the sign bit of the input is known set or clear, then we know the
1625 // top bits of the result.
1626 if (KnownZero
.intersects(InSignBit
)) { // Input sign bit known clear
1627 KnownZero
|= NewBits
;
1628 KnownOne
&= ~NewBits
;
1629 } else if (KnownOne
.intersects(InSignBit
)) { // Input sign bit known set
1630 KnownOne
|= NewBits
;
1631 KnownZero
&= ~NewBits
;
1632 } else { // Input sign bit unknown
1633 KnownZero
&= ~NewBits
;
1634 KnownOne
&= ~NewBits
;
1641 unsigned LowBits
= Log2_32(BitWidth
)+1;
1642 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- LowBits
);
1647 if (ISD::isZEXTLoad(Op
.getNode())) {
1648 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
1649 MVT VT
= LD
->getMemoryVT();
1650 unsigned MemBits
= VT
.getSizeInBits();
1651 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
) & Mask
;
1655 case ISD::ZERO_EXTEND
: {
1656 MVT InVT
= Op
.getOperand(0).getValueType();
1657 unsigned InBits
= InVT
.getSizeInBits();
1658 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- InBits
) & Mask
;
1659 APInt InMask
= Mask
;
1660 InMask
.trunc(InBits
);
1661 KnownZero
.trunc(InBits
);
1662 KnownOne
.trunc(InBits
);
1663 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1664 KnownZero
.zext(BitWidth
);
1665 KnownOne
.zext(BitWidth
);
1666 KnownZero
|= NewBits
;
1669 case ISD::SIGN_EXTEND
: {
1670 MVT InVT
= Op
.getOperand(0).getValueType();
1671 unsigned InBits
= InVT
.getSizeInBits();
1672 APInt InSignBit
= APInt::getSignBit(InBits
);
1673 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- InBits
) & Mask
;
1674 APInt InMask
= Mask
;
1675 InMask
.trunc(InBits
);
1677 // If any of the sign extended bits are demanded, we know that the sign
1678 // bit is demanded. Temporarily set this bit in the mask for our callee.
1679 if (NewBits
.getBoolValue())
1680 InMask
|= InSignBit
;
1682 KnownZero
.trunc(InBits
);
1683 KnownOne
.trunc(InBits
);
1684 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1686 // Note if the sign bit is known to be zero or one.
1687 bool SignBitKnownZero
= KnownZero
.isNegative();
1688 bool SignBitKnownOne
= KnownOne
.isNegative();
1689 assert(!(SignBitKnownZero
&& SignBitKnownOne
) &&
1690 "Sign bit can't be known to be both zero and one!");
1692 // If the sign bit wasn't actually demanded by our caller, we don't
1693 // want it set in the KnownZero and KnownOne result values. Reset the
1694 // mask and reapply it to the result values.
1696 InMask
.trunc(InBits
);
1697 KnownZero
&= InMask
;
1700 KnownZero
.zext(BitWidth
);
1701 KnownOne
.zext(BitWidth
);
1703 // If the sign bit is known zero or one, the top bits match.
1704 if (SignBitKnownZero
)
1705 KnownZero
|= NewBits
;
1706 else if (SignBitKnownOne
)
1707 KnownOne
|= NewBits
;
1710 case ISD::ANY_EXTEND
: {
1711 MVT InVT
= Op
.getOperand(0).getValueType();
1712 unsigned InBits
= InVT
.getSizeInBits();
1713 APInt InMask
= Mask
;
1714 InMask
.trunc(InBits
);
1715 KnownZero
.trunc(InBits
);
1716 KnownOne
.trunc(InBits
);
1717 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1718 KnownZero
.zext(BitWidth
);
1719 KnownOne
.zext(BitWidth
);
1722 case ISD::TRUNCATE
: {
1723 MVT InVT
= Op
.getOperand(0).getValueType();
1724 unsigned InBits
= InVT
.getSizeInBits();
1725 APInt InMask
= Mask
;
1726 InMask
.zext(InBits
);
1727 KnownZero
.zext(InBits
);
1728 KnownOne
.zext(InBits
);
1729 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1730 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1731 KnownZero
.trunc(BitWidth
);
1732 KnownOne
.trunc(BitWidth
);
1735 case ISD::AssertZext
: {
1736 MVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1737 APInt InMask
= APInt::getLowBitsSet(BitWidth
, VT
.getSizeInBits());
1738 ComputeMaskedBits(Op
.getOperand(0), Mask
& InMask
, KnownZero
,
1740 KnownZero
|= (~InMask
) & Mask
;
1744 // All bits are zero except the low bit.
1745 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
1749 if (ConstantSDNode
*CLHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0))) {
1750 // We know that the top bits of C-X are clear if X contains less bits
1751 // than C (i.e. no wrap-around can happen). For example, 20-X is
1752 // positive if we can prove that X is >= 0 and < 16.
1753 if (CLHS
->getAPIntValue().isNonNegative()) {
1754 unsigned NLZ
= (CLHS
->getAPIntValue()+1).countLeadingZeros();
1755 // NLZ can't be BitWidth with no sign bit
1756 APInt MaskV
= APInt::getHighBitsSet(BitWidth
, NLZ
+1);
1757 ComputeMaskedBits(Op
.getOperand(1), MaskV
, KnownZero2
, KnownOne2
,
1760 // If all of the MaskV bits are known to be zero, then we know the
1761 // output top bits are zero, because we now know that the output is
1763 if ((KnownZero2
& MaskV
) == MaskV
) {
1764 unsigned NLZ2
= CLHS
->getAPIntValue().countLeadingZeros();
1765 // Top bits known zero.
1766 KnownZero
= APInt::getHighBitsSet(BitWidth
, NLZ2
) & Mask
;
1773 // Output known-0 bits are known if clear or set in both the low clear bits
1774 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1775 // low 3 bits clear.
1776 APInt Mask2
= APInt::getLowBitsSet(BitWidth
, Mask
.countTrailingOnes());
1777 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1778 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1779 unsigned KnownZeroOut
= KnownZero2
.countTrailingOnes();
1781 ComputeMaskedBits(Op
.getOperand(1), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1782 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1783 KnownZeroOut
= std::min(KnownZeroOut
,
1784 KnownZero2
.countTrailingOnes());
1786 KnownZero
|= APInt::getLowBitsSet(BitWidth
, KnownZeroOut
);
1790 if (ConstantSDNode
*Rem
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1791 const APInt
&RA
= Rem
->getAPIntValue();
1792 if (RA
.isPowerOf2() || (-RA
).isPowerOf2()) {
1793 APInt LowBits
= RA
.isStrictlyPositive() ? (RA
- 1) : ~RA
;
1794 APInt Mask2
= LowBits
| APInt::getSignBit(BitWidth
);
1795 ComputeMaskedBits(Op
.getOperand(0), Mask2
,KnownZero2
,KnownOne2
,Depth
+1);
1797 // If the sign bit of the first operand is zero, the sign bit of
1798 // the result is zero. If the first operand has no one bits below
1799 // the second operand's single 1 bit, its sign will be zero.
1800 if (KnownZero2
[BitWidth
-1] || ((KnownZero2
& LowBits
) == LowBits
))
1801 KnownZero2
|= ~LowBits
;
1803 KnownZero
|= KnownZero2
& Mask
;
1805 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
1810 if (ConstantSDNode
*Rem
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1811 const APInt
&RA
= Rem
->getAPIntValue();
1812 if (RA
.isPowerOf2()) {
1813 APInt LowBits
= (RA
- 1);
1814 APInt Mask2
= LowBits
& Mask
;
1815 KnownZero
|= ~LowBits
& Mask
;
1816 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero
, KnownOne
,Depth
+1);
1817 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
1822 // Since the result is less than or equal to either operand, any leading
1823 // zero bits in either operand must also exist in the result.
1824 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
1825 ComputeMaskedBits(Op
.getOperand(0), AllOnes
, KnownZero
, KnownOne
,
1827 ComputeMaskedBits(Op
.getOperand(1), AllOnes
, KnownZero2
, KnownOne2
,
1830 uint32_t Leaders
= std::max(KnownZero
.countLeadingOnes(),
1831 KnownZero2
.countLeadingOnes());
1833 KnownZero
= APInt::getHighBitsSet(BitWidth
, Leaders
) & Mask
;
1837 // Allow the target to implement this method for its nodes.
1838 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
) {
1839 case ISD::INTRINSIC_WO_CHAIN
:
1840 case ISD::INTRINSIC_W_CHAIN
:
1841 case ISD::INTRINSIC_VOID
:
1842 TLI
.computeMaskedBitsForTargetNode(Op
, Mask
, KnownZero
, KnownOne
, *this);
1848 /// ComputeNumSignBits - Return the number of times the sign bit of the
1849 /// register is replicated into the other bits. We know that at least 1 bit
1850 /// is always equal to the sign bit (itself), but other cases can give us
1851 /// information. For example, immediately after an "SRA X, 2", we know that
1852 /// the top 3 bits are all equal to each other, so we return 3.
1853 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op
, unsigned Depth
) const{
1854 MVT VT
= Op
.getValueType();
1855 assert(VT
.isInteger() && "Invalid VT!");
1856 unsigned VTBits
= VT
.getSizeInBits();
1858 unsigned FirstAnswer
= 1;
1861 return 1; // Limit search depth.
1863 switch (Op
.getOpcode()) {
1865 case ISD::AssertSext
:
1866 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
1867 return VTBits
-Tmp
+1;
1868 case ISD::AssertZext
:
1869 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
1872 case ISD::Constant
: {
1873 const APInt
&Val
= cast
<ConstantSDNode
>(Op
)->getAPIntValue();
1874 // If negative, return # leading ones.
1875 if (Val
.isNegative())
1876 return Val
.countLeadingOnes();
1878 // Return # leading zeros.
1879 return Val
.countLeadingZeros();
1882 case ISD::SIGN_EXTEND
:
1883 Tmp
= VTBits
-Op
.getOperand(0).getValueType().getSizeInBits();
1884 return ComputeNumSignBits(Op
.getOperand(0), Depth
+1) + Tmp
;
1886 case ISD::SIGN_EXTEND_INREG
:
1887 // Max of the input and what this extends.
1888 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
1891 Tmp2
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
1892 return std::max(Tmp
, Tmp2
);
1895 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
1896 // SRA X, C -> adds C sign bits.
1897 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1898 Tmp
+= C
->getZExtValue();
1899 if (Tmp
> VTBits
) Tmp
= VTBits
;
1903 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1904 // shl destroys sign bits.
1905 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
1906 if (C
->getZExtValue() >= VTBits
|| // Bad shift.
1907 C
->getZExtValue() >= Tmp
) break; // Shifted all sign bits out.
1908 return Tmp
- C
->getZExtValue();
1913 case ISD::XOR
: // NOT is handled here.
1914 // Logical binary ops preserve the number of sign bits at the worst.
1915 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
1917 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
1918 FirstAnswer
= std::min(Tmp
, Tmp2
);
1919 // We computed what we know about the sign bits as our first
1920 // answer. Now proceed to the generic code that uses
1921 // ComputeMaskedBits, and pick whichever answer is better.
1926 Tmp
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
1927 if (Tmp
== 1) return 1; // Early out.
1928 Tmp2
= ComputeNumSignBits(Op
.getOperand(2), Depth
+1);
1929 return std::min(Tmp
, Tmp2
);
1937 if (Op
.getResNo() != 1)
1939 // The boolean result conforms to getBooleanContents. Fall through.
1941 // If setcc returns 0/-1, all bits are sign bits.
1942 if (TLI
.getBooleanContents() ==
1943 TargetLowering::ZeroOrNegativeOneBooleanContent
)
1948 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1949 unsigned RotAmt
= C
->getZExtValue() & (VTBits
-1);
1951 // Handle rotate right by N like a rotate left by 32-N.
1952 if (Op
.getOpcode() == ISD::ROTR
)
1953 RotAmt
= (VTBits
-RotAmt
) & (VTBits
-1);
1955 // If we aren't rotating out all of the known-in sign bits, return the
1956 // number that are left. This handles rotl(sext(x), 1) for example.
1957 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
1958 if (Tmp
> RotAmt
+1) return Tmp
-RotAmt
;
1962 // Add can have at most one carry bit. Thus we know that the output
1963 // is, at worst, one more bit than the inputs.
1964 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
1965 if (Tmp
== 1) return 1; // Early out.
1967 // Special case decrementing a value (ADD X, -1):
1968 if (ConstantSDNode
*CRHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1969 if (CRHS
->isAllOnesValue()) {
1970 APInt KnownZero
, KnownOne
;
1971 APInt Mask
= APInt::getAllOnesValue(VTBits
);
1972 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero
, KnownOne
, Depth
+1);
1974 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1976 if ((KnownZero
| APInt(VTBits
, 1)) == Mask
)
1979 // If we are subtracting one from a positive number, there is no carry
1980 // out of the result.
1981 if (KnownZero
.isNegative())
1985 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
1986 if (Tmp2
== 1) return 1;
1987 return std::min(Tmp
, Tmp2
)-1;
1991 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
1992 if (Tmp2
== 1) return 1;
1995 if (ConstantSDNode
*CLHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0)))
1996 if (CLHS
->isNullValue()) {
1997 APInt KnownZero
, KnownOne
;
1998 APInt Mask
= APInt::getAllOnesValue(VTBits
);
1999 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
2000 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2002 if ((KnownZero
| APInt(VTBits
, 1)) == Mask
)
2005 // If the input is known to be positive (the sign bit is known clear),
2006 // the output of the NEG has the same number of sign bits as the input.
2007 if (KnownZero
.isNegative())
2010 // Otherwise, we treat this like a SUB.
2013 // Sub can have at most one carry bit. Thus we know that the output
2014 // is, at worst, one more bit than the inputs.
2015 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2016 if (Tmp
== 1) return 1; // Early out.
2017 return std::min(Tmp
, Tmp2
)-1;
2020 // FIXME: it's tricky to do anything useful for this, but it is an important
2021 // case for targets like X86.
2025 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2026 if (Op
.getOpcode() == ISD::LOAD
) {
2027 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2028 unsigned ExtType
= LD
->getExtensionType();
2031 case ISD::SEXTLOAD
: // '17' bits known
2032 Tmp
= LD
->getMemoryVT().getSizeInBits();
2033 return VTBits
-Tmp
+1;
2034 case ISD::ZEXTLOAD
: // '16' bits known
2035 Tmp
= LD
->getMemoryVT().getSizeInBits();
2040 // Allow the target to implement this method for its nodes.
2041 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2042 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2043 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2044 Op
.getOpcode() == ISD::INTRINSIC_VOID
) {
2045 unsigned NumBits
= TLI
.ComputeNumSignBitsForTargetNode(Op
, Depth
);
2046 if (NumBits
> 1) FirstAnswer
= std::max(FirstAnswer
, NumBits
);
2049 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2050 // use this information.
2051 APInt KnownZero
, KnownOne
;
2052 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2053 ComputeMaskedBits(Op
, Mask
, KnownZero
, KnownOne
, Depth
);
2055 if (KnownZero
.isNegative()) { // sign bit is 0
2057 } else if (KnownOne
.isNegative()) { // sign bit is 1;
2064 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2065 // the number of identical bits in the top of the input value.
2067 Mask
<<= Mask
.getBitWidth()-VTBits
;
2068 // Return # leading zeros. We use 'min' here in case Val was zero before
2069 // shifting. We don't want to return '64' as for an i32 "0".
2070 return std::max(FirstAnswer
, std::min(VTBits
, Mask
.countLeadingZeros()));
2074 bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op
) const {
2075 GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
);
2076 if (!GA
) return false;
2077 if (GA
->getOffset() != 0) return false;
2078 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GA
->getGlobal());
2079 if (!GV
) return false;
2080 MachineModuleInfo
*MMI
= getMachineModuleInfo();
2081 return MMI
&& MMI
->hasDebugInfo();
2085 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
2086 /// element of the result of the vector shuffle.
2087 SDValue
SelectionDAG::getShuffleScalarElt(const SDNode
*N
, unsigned i
) {
2088 MVT VT
= N
->getValueType(0);
2089 DebugLoc dl
= N
->getDebugLoc();
2090 SDValue PermMask
= N
->getOperand(2);
2091 SDValue Idx
= PermMask
.getOperand(i
);
2092 if (Idx
.getOpcode() == ISD::UNDEF
)
2093 return getUNDEF(VT
.getVectorElementType());
2094 unsigned Index
= cast
<ConstantSDNode
>(Idx
)->getZExtValue();
2095 unsigned NumElems
= PermMask
.getNumOperands();
2096 SDValue V
= (Index
< NumElems
) ? N
->getOperand(0) : N
->getOperand(1);
2099 if (V
.getOpcode() == ISD::BIT_CONVERT
) {
2100 V
= V
.getOperand(0);
2101 MVT VVT
= V
.getValueType();
2102 if (!VVT
.isVector() || VVT
.getVectorNumElements() != NumElems
)
2105 if (V
.getOpcode() == ISD::SCALAR_TO_VECTOR
)
2106 return (Index
== 0) ? V
.getOperand(0)
2107 : getUNDEF(VT
.getVectorElementType());
2108 if (V
.getOpcode() == ISD::BUILD_VECTOR
)
2109 return V
.getOperand(Index
);
2110 if (V
.getOpcode() == ISD::VECTOR_SHUFFLE
)
2111 return getShuffleScalarElt(V
.getNode(), Index
);
2116 /// getNode - Gets or creates the specified node.
2118 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
) {
2119 FoldingSetNodeID ID
;
2120 AddNodeIDNode(ID
, Opcode
, getVTList(VT
), 0, 0);
2122 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2123 return SDValue(E
, 0);
2124 SDNode
*N
= NodeAllocator
.Allocate
<SDNode
>();
2125 new (N
) SDNode(Opcode
, DL
, getVTList(VT
));
2126 CSEMap
.InsertNode(N
, IP
);
2128 AllNodes
.push_back(N
);
2132 return SDValue(N
, 0);
2135 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
2136 MVT VT
, SDValue Operand
) {
2137 // Constant fold unary operations with an integer constant operand.
2138 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Operand
.getNode())) {
2139 const APInt
&Val
= C
->getAPIntValue();
2140 unsigned BitWidth
= VT
.getSizeInBits();
2143 case ISD::SIGN_EXTEND
:
2144 return getConstant(APInt(Val
).sextOrTrunc(BitWidth
), VT
);
2145 case ISD::ANY_EXTEND
:
2146 case ISD::ZERO_EXTEND
:
2148 return getConstant(APInt(Val
).zextOrTrunc(BitWidth
), VT
);
2149 case ISD::UINT_TO_FP
:
2150 case ISD::SINT_TO_FP
: {
2151 const uint64_t zero
[] = {0, 0};
2152 // No compile time operations on this type.
2153 if (VT
==MVT::ppcf128
)
2155 APFloat apf
= APFloat(APInt(BitWidth
, 2, zero
));
2156 (void)apf
.convertFromAPInt(Val
,
2157 Opcode
==ISD::SINT_TO_FP
,
2158 APFloat::rmNearestTiesToEven
);
2159 return getConstantFP(apf
, VT
);
2161 case ISD::BIT_CONVERT
:
2162 if (VT
== MVT::f32
&& C
->getValueType(0) == MVT::i32
)
2163 return getConstantFP(Val
.bitsToFloat(), VT
);
2164 else if (VT
== MVT::f64
&& C
->getValueType(0) == MVT::i64
)
2165 return getConstantFP(Val
.bitsToDouble(), VT
);
2168 return getConstant(Val
.byteSwap(), VT
);
2170 return getConstant(Val
.countPopulation(), VT
);
2172 return getConstant(Val
.countLeadingZeros(), VT
);
2174 return getConstant(Val
.countTrailingZeros(), VT
);
2178 // Constant fold unary operations with a floating point constant operand.
2179 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Operand
.getNode())) {
2180 APFloat V
= C
->getValueAPF(); // make copy
2181 if (VT
!= MVT::ppcf128
&& Operand
.getValueType() != MVT::ppcf128
) {
2185 return getConstantFP(V
, VT
);
2188 return getConstantFP(V
, VT
);
2190 case ISD::FP_EXTEND
: {
2192 // This can return overflow, underflow, or inexact; we don't care.
2193 // FIXME need to be more flexible about rounding mode.
2194 (void)V
.convert(*MVTToAPFloatSemantics(VT
),
2195 APFloat::rmNearestTiesToEven
, &ignored
);
2196 return getConstantFP(V
, VT
);
2198 case ISD::FP_TO_SINT
:
2199 case ISD::FP_TO_UINT
: {
2202 assert(integerPartWidth
>= 64);
2203 // FIXME need to be more flexible about rounding mode.
2204 APFloat::opStatus s
= V
.convertToInteger(&x
, 64U,
2205 Opcode
==ISD::FP_TO_SINT
,
2206 APFloat::rmTowardZero
, &ignored
);
2207 if (s
==APFloat::opInvalidOp
) // inexact is OK, in fact usual
2209 return getConstant(x
, VT
);
2211 case ISD::BIT_CONVERT
:
2212 if (VT
== MVT::i32
&& C
->getValueType(0) == MVT::f32
)
2213 return getConstant((uint32_t)V
.bitcastToAPInt().getZExtValue(), VT
);
2214 else if (VT
== MVT::i64
&& C
->getValueType(0) == MVT::f64
)
2215 return getConstant(V
.bitcastToAPInt().getZExtValue(), VT
);
2221 unsigned OpOpcode
= Operand
.getNode()->getOpcode();
2223 case ISD::TokenFactor
:
2224 case ISD::MERGE_VALUES
:
2225 case ISD::CONCAT_VECTORS
:
2226 return Operand
; // Factor, merge or concat of one node? No need.
2227 case ISD::FP_ROUND
: assert(0 && "Invalid method to make FP_ROUND node");
2228 case ISD::FP_EXTEND
:
2229 assert(VT
.isFloatingPoint() &&
2230 Operand
.getValueType().isFloatingPoint() && "Invalid FP cast!");
2231 if (Operand
.getValueType() == VT
) return Operand
; // noop conversion.
2232 if (Operand
.getOpcode() == ISD::UNDEF
)
2233 return getUNDEF(VT
);
2235 case ISD::SIGN_EXTEND
:
2236 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2237 "Invalid SIGN_EXTEND!");
2238 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2239 assert(Operand
.getValueType().bitsLT(VT
)
2240 && "Invalid sext node, dst < src!");
2241 if (OpOpcode
== ISD::SIGN_EXTEND
|| OpOpcode
== ISD::ZERO_EXTEND
)
2242 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2244 case ISD::ZERO_EXTEND
:
2245 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2246 "Invalid ZERO_EXTEND!");
2247 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2248 assert(Operand
.getValueType().bitsLT(VT
)
2249 && "Invalid zext node, dst < src!");
2250 if (OpOpcode
== ISD::ZERO_EXTEND
) // (zext (zext x)) -> (zext x)
2251 return getNode(ISD::ZERO_EXTEND
, DL
, VT
,
2252 Operand
.getNode()->getOperand(0));
2254 case ISD::ANY_EXTEND
:
2255 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2256 "Invalid ANY_EXTEND!");
2257 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2258 assert(Operand
.getValueType().bitsLT(VT
)
2259 && "Invalid anyext node, dst < src!");
2260 if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
)
2261 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2262 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2265 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2266 "Invalid TRUNCATE!");
2267 if (Operand
.getValueType() == VT
) return Operand
; // noop truncate
2268 assert(Operand
.getValueType().bitsGT(VT
)
2269 && "Invalid truncate node, src < dst!");
2270 if (OpOpcode
== ISD::TRUNCATE
)
2271 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getNode()->getOperand(0));
2272 else if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
||
2273 OpOpcode
== ISD::ANY_EXTEND
) {
2274 // If the source is smaller than the dest, we still need an extend.
2275 if (Operand
.getNode()->getOperand(0).getValueType().bitsLT(VT
))
2276 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2277 else if (Operand
.getNode()->getOperand(0).getValueType().bitsGT(VT
))
2278 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getNode()->getOperand(0));
2280 return Operand
.getNode()->getOperand(0);
2283 case ISD::BIT_CONVERT
:
2284 // Basic sanity checking.
2285 assert(VT
.getSizeInBits() == Operand
.getValueType().getSizeInBits()
2286 && "Cannot BIT_CONVERT between types of different sizes!");
2287 if (VT
== Operand
.getValueType()) return Operand
; // noop conversion.
2288 if (OpOpcode
== ISD::BIT_CONVERT
) // bitconv(bitconv(x)) -> bitconv(x)
2289 return getNode(ISD::BIT_CONVERT
, DL
, VT
, Operand
.getOperand(0));
2290 if (OpOpcode
== ISD::UNDEF
)
2291 return getUNDEF(VT
);
2293 case ISD::SCALAR_TO_VECTOR
:
2294 assert(VT
.isVector() && !Operand
.getValueType().isVector() &&
2295 (VT
.getVectorElementType() == Operand
.getValueType() ||
2296 (VT
.getVectorElementType().isInteger() &&
2297 Operand
.getValueType().isInteger() &&
2298 VT
.getVectorElementType().bitsLE(Operand
.getValueType()))) &&
2299 "Illegal SCALAR_TO_VECTOR node!");
2300 if (OpOpcode
== ISD::UNDEF
)
2301 return getUNDEF(VT
);
2302 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2303 if (OpOpcode
== ISD::EXTRACT_VECTOR_ELT
&&
2304 isa
<ConstantSDNode
>(Operand
.getOperand(1)) &&
2305 Operand
.getConstantOperandVal(1) == 0 &&
2306 Operand
.getOperand(0).getValueType() == VT
)
2307 return Operand
.getOperand(0);
2310 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2311 if (UnsafeFPMath
&& OpOpcode
== ISD::FSUB
)
2312 return getNode(ISD::FSUB
, DL
, VT
, Operand
.getNode()->getOperand(1),
2313 Operand
.getNode()->getOperand(0));
2314 if (OpOpcode
== ISD::FNEG
) // --X -> X
2315 return Operand
.getNode()->getOperand(0);
2318 if (OpOpcode
== ISD::FNEG
) // abs(-X) -> abs(X)
2319 return getNode(ISD::FABS
, DL
, VT
, Operand
.getNode()->getOperand(0));
2324 SDVTList VTs
= getVTList(VT
);
2325 if (VT
!= MVT::Flag
) { // Don't CSE flag producing nodes
2326 FoldingSetNodeID ID
;
2327 SDValue Ops
[1] = { Operand
};
2328 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 1);
2330 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2331 return SDValue(E
, 0);
2332 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
2333 new (N
) UnarySDNode(Opcode
, DL
, VTs
, Operand
);
2334 CSEMap
.InsertNode(N
, IP
);
2336 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
2337 new (N
) UnarySDNode(Opcode
, DL
, VTs
, Operand
);
2340 AllNodes
.push_back(N
);
2344 return SDValue(N
, 0);
2347 SDValue
SelectionDAG::FoldConstantArithmetic(unsigned Opcode
,
2349 ConstantSDNode
*Cst1
,
2350 ConstantSDNode
*Cst2
) {
2351 const APInt
&C1
= Cst1
->getAPIntValue(), &C2
= Cst2
->getAPIntValue();
2354 case ISD::ADD
: return getConstant(C1
+ C2
, VT
);
2355 case ISD::SUB
: return getConstant(C1
- C2
, VT
);
2356 case ISD::MUL
: return getConstant(C1
* C2
, VT
);
2358 if (C2
.getBoolValue()) return getConstant(C1
.udiv(C2
), VT
);
2361 if (C2
.getBoolValue()) return getConstant(C1
.urem(C2
), VT
);
2364 if (C2
.getBoolValue()) return getConstant(C1
.sdiv(C2
), VT
);
2367 if (C2
.getBoolValue()) return getConstant(C1
.srem(C2
), VT
);
2369 case ISD::AND
: return getConstant(C1
& C2
, VT
);
2370 case ISD::OR
: return getConstant(C1
| C2
, VT
);
2371 case ISD::XOR
: return getConstant(C1
^ C2
, VT
);
2372 case ISD::SHL
: return getConstant(C1
<< C2
, VT
);
2373 case ISD::SRL
: return getConstant(C1
.lshr(C2
), VT
);
2374 case ISD::SRA
: return getConstant(C1
.ashr(C2
), VT
);
2375 case ISD::ROTL
: return getConstant(C1
.rotl(C2
), VT
);
2376 case ISD::ROTR
: return getConstant(C1
.rotr(C2
), VT
);
2383 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
2384 SDValue N1
, SDValue N2
) {
2385 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
2386 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
2389 case ISD::TokenFactor
:
2390 assert(VT
== MVT::Other
&& N1
.getValueType() == MVT::Other
&&
2391 N2
.getValueType() == MVT::Other
&& "Invalid token factor!");
2392 // Fold trivial token factors.
2393 if (N1
.getOpcode() == ISD::EntryToken
) return N2
;
2394 if (N2
.getOpcode() == ISD::EntryToken
) return N1
;
2395 if (N1
== N2
) return N1
;
2397 case ISD::CONCAT_VECTORS
:
2398 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2399 // one big BUILD_VECTOR.
2400 if (N1
.getOpcode() == ISD::BUILD_VECTOR
&&
2401 N2
.getOpcode() == ISD::BUILD_VECTOR
) {
2402 SmallVector
<SDValue
, 16> Elts(N1
.getNode()->op_begin(), N1
.getNode()->op_end());
2403 Elts
.insert(Elts
.end(), N2
.getNode()->op_begin(), N2
.getNode()->op_end());
2404 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, &Elts
[0], Elts
.size());
2408 assert(VT
.isInteger() && N1
.getValueType() == N2
.getValueType() &&
2409 N1
.getValueType() == VT
&& "Binary operator types must match!");
2410 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2411 // worth handling here.
2412 if (N2C
&& N2C
->isNullValue())
2414 if (N2C
&& N2C
->isAllOnesValue()) // X & -1 -> X
2421 assert(VT
.isInteger() && N1
.getValueType() == N2
.getValueType() &&
2422 N1
.getValueType() == VT
&& "Binary operator types must match!");
2423 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2424 // it's worth handling here.
2425 if (N2C
&& N2C
->isNullValue())
2435 assert(VT
.isInteger() && "This operator does not apply to FP types!");
2443 if (Opcode
== ISD::FADD
) {
2445 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
))
2446 if (CFP
->getValueAPF().isZero())
2449 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N2
))
2450 if (CFP
->getValueAPF().isZero())
2452 } else if (Opcode
== ISD::FSUB
) {
2454 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N2
))
2455 if (CFP
->getValueAPF().isZero())
2459 assert(N1
.getValueType() == N2
.getValueType() &&
2460 N1
.getValueType() == VT
&& "Binary operator types must match!");
2462 case ISD::FCOPYSIGN
: // N1 and result must match. N1/N2 need not match.
2463 assert(N1
.getValueType() == VT
&&
2464 N1
.getValueType().isFloatingPoint() &&
2465 N2
.getValueType().isFloatingPoint() &&
2466 "Invalid FCOPYSIGN!");
2473 assert(VT
== N1
.getValueType() &&
2474 "Shift operators return type must be the same as their first arg");
2475 assert(VT
.isInteger() && N2
.getValueType().isInteger() &&
2476 "Shifts only work on integers");
2478 // Always fold shifts of i1 values so the code generator doesn't need to
2479 // handle them. Since we know the size of the shift has to be less than the
2480 // size of the value, the shift/rotate count is guaranteed to be zero.
2484 case ISD::FP_ROUND_INREG
: {
2485 MVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2486 assert(VT
== N1
.getValueType() && "Not an inreg round!");
2487 assert(VT
.isFloatingPoint() && EVT
.isFloatingPoint() &&
2488 "Cannot FP_ROUND_INREG integer types");
2489 assert(EVT
.bitsLE(VT
) && "Not rounding down!");
2490 if (cast
<VTSDNode
>(N2
)->getVT() == VT
) return N1
; // Not actually rounding.
2494 assert(VT
.isFloatingPoint() &&
2495 N1
.getValueType().isFloatingPoint() &&
2496 VT
.bitsLE(N1
.getValueType()) &&
2497 isa
<ConstantSDNode
>(N2
) && "Invalid FP_ROUND!");
2498 if (N1
.getValueType() == VT
) return N1
; // noop conversion.
2500 case ISD::AssertSext
:
2501 case ISD::AssertZext
: {
2502 MVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2503 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
2504 assert(VT
.isInteger() && EVT
.isInteger() &&
2505 "Cannot *_EXTEND_INREG FP types");
2506 assert(EVT
.bitsLE(VT
) && "Not extending!");
2507 if (VT
== EVT
) return N1
; // noop assertion.
2510 case ISD::SIGN_EXTEND_INREG
: {
2511 MVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2512 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
2513 assert(VT
.isInteger() && EVT
.isInteger() &&
2514 "Cannot *_EXTEND_INREG FP types");
2515 assert(EVT
.bitsLE(VT
) && "Not extending!");
2516 if (EVT
== VT
) return N1
; // Not actually extending
2519 APInt Val
= N1C
->getAPIntValue();
2520 unsigned FromBits
= cast
<VTSDNode
>(N2
)->getVT().getSizeInBits();
2521 Val
<<= Val
.getBitWidth()-FromBits
;
2522 Val
= Val
.ashr(Val
.getBitWidth()-FromBits
);
2523 return getConstant(Val
, VT
);
2527 case ISD::EXTRACT_VECTOR_ELT
:
2528 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2529 if (N1
.getOpcode() == ISD::UNDEF
)
2530 return getUNDEF(VT
);
2532 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2533 // expanding copies of large vectors from registers.
2535 N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
2536 N1
.getNumOperands() > 0) {
2538 N1
.getOperand(0).getValueType().getVectorNumElements();
2539 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
,
2540 N1
.getOperand(N2C
->getZExtValue() / Factor
),
2541 getConstant(N2C
->getZExtValue() % Factor
,
2542 N2
.getValueType()));
2545 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2546 // expanding large vector constants.
2547 if (N2C
&& N1
.getOpcode() == ISD::BUILD_VECTOR
) {
2548 SDValue Elt
= N1
.getOperand(N2C
->getZExtValue());
2549 if (Elt
.getValueType() != VT
) {
2550 // If the vector element type is not legal, the BUILD_VECTOR operands
2551 // are promoted and implicitly truncated. Make that explicit here.
2552 assert(VT
.isInteger() && Elt
.getValueType().isInteger() &&
2553 VT
.bitsLE(Elt
.getValueType()) &&
2554 "Bad type for BUILD_VECTOR operand");
2555 Elt
= getNode(ISD::TRUNCATE
, DL
, VT
, Elt
);
2560 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2561 // operations are lowered to scalars.
2562 if (N1
.getOpcode() == ISD::INSERT_VECTOR_ELT
) {
2563 // If the indices are the same, return the inserted element.
2564 if (N1
.getOperand(2) == N2
)
2565 return N1
.getOperand(1);
2566 // If the indices are known different, extract the element from
2567 // the original vector.
2568 else if (isa
<ConstantSDNode
>(N1
.getOperand(2)) &&
2569 isa
<ConstantSDNode
>(N2
))
2570 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, N1
.getOperand(0), N2
);
2573 case ISD::EXTRACT_ELEMENT
:
2574 assert(N2C
&& (unsigned)N2C
->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2575 assert(!N1
.getValueType().isVector() && !VT
.isVector() &&
2576 (N1
.getValueType().isInteger() == VT
.isInteger()) &&
2577 "Wrong types for EXTRACT_ELEMENT!");
2579 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2580 // 64-bit integers into 32-bit parts. Instead of building the extract of
2581 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2582 if (N1
.getOpcode() == ISD::BUILD_PAIR
)
2583 return N1
.getOperand(N2C
->getZExtValue());
2585 // EXTRACT_ELEMENT of a constant int is also very common.
2586 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
2587 unsigned ElementSize
= VT
.getSizeInBits();
2588 unsigned Shift
= ElementSize
* N2C
->getZExtValue();
2589 APInt ShiftedVal
= C
->getAPIntValue().lshr(Shift
);
2590 return getConstant(ShiftedVal
.trunc(ElementSize
), VT
);
2593 case ISD::EXTRACT_SUBVECTOR
:
2594 if (N1
.getValueType() == VT
) // Trivial extraction.
2601 SDValue SV
= FoldConstantArithmetic(Opcode
, VT
, N1C
, N2C
);
2602 if (SV
.getNode()) return SV
;
2603 } else { // Cannonicalize constant to RHS if commutative
2604 if (isCommutativeBinOp(Opcode
)) {
2605 std::swap(N1C
, N2C
);
2611 // Constant fold FP operations.
2612 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode());
2613 ConstantFPSDNode
*N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode());
2615 if (!N2CFP
&& isCommutativeBinOp(Opcode
)) {
2616 // Cannonicalize constant to RHS if commutative
2617 std::swap(N1CFP
, N2CFP
);
2619 } else if (N2CFP
&& VT
!= MVT::ppcf128
) {
2620 APFloat V1
= N1CFP
->getValueAPF(), V2
= N2CFP
->getValueAPF();
2621 APFloat::opStatus s
;
2624 s
= V1
.add(V2
, APFloat::rmNearestTiesToEven
);
2625 if (s
!= APFloat::opInvalidOp
)
2626 return getConstantFP(V1
, VT
);
2629 s
= V1
.subtract(V2
, APFloat::rmNearestTiesToEven
);
2630 if (s
!=APFloat::opInvalidOp
)
2631 return getConstantFP(V1
, VT
);
2634 s
= V1
.multiply(V2
, APFloat::rmNearestTiesToEven
);
2635 if (s
!=APFloat::opInvalidOp
)
2636 return getConstantFP(V1
, VT
);
2639 s
= V1
.divide(V2
, APFloat::rmNearestTiesToEven
);
2640 if (s
!=APFloat::opInvalidOp
&& s
!=APFloat::opDivByZero
)
2641 return getConstantFP(V1
, VT
);
2644 s
= V1
.mod(V2
, APFloat::rmNearestTiesToEven
);
2645 if (s
!=APFloat::opInvalidOp
&& s
!=APFloat::opDivByZero
)
2646 return getConstantFP(V1
, VT
);
2648 case ISD::FCOPYSIGN
:
2650 return getConstantFP(V1
, VT
);
2656 // Canonicalize an UNDEF to the RHS, even over a constant.
2657 if (N1
.getOpcode() == ISD::UNDEF
) {
2658 if (isCommutativeBinOp(Opcode
)) {
2662 case ISD::FP_ROUND_INREG
:
2663 case ISD::SIGN_EXTEND_INREG
:
2669 return N1
; // fold op(undef, arg2) -> undef
2677 return getConstant(0, VT
); // fold op(undef, arg2) -> 0
2678 // For vectors, we can't easily build an all zero vector, just return
2685 // Fold a bunch of operators when the RHS is undef.
2686 if (N2
.getOpcode() == ISD::UNDEF
) {
2689 if (N1
.getOpcode() == ISD::UNDEF
)
2690 // Handle undef ^ undef -> 0 special case. This is a common
2692 return getConstant(0, VT
);
2707 return N2
; // fold op(arg1, undef) -> undef
2713 return getConstant(0, VT
); // fold op(arg1, undef) -> 0
2714 // For vectors, we can't easily build an all zero vector, just return
2719 return getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), VT
);
2720 // For vectors, we can't easily build an all one vector, just return
2728 // Memoize this node if possible.
2730 SDVTList VTs
= getVTList(VT
);
2731 if (VT
!= MVT::Flag
) {
2732 SDValue Ops
[] = { N1
, N2
};
2733 FoldingSetNodeID ID
;
2734 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 2);
2736 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2737 return SDValue(E
, 0);
2738 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
2739 new (N
) BinarySDNode(Opcode
, DL
, VTs
, N1
, N2
);
2740 CSEMap
.InsertNode(N
, IP
);
2742 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
2743 new (N
) BinarySDNode(Opcode
, DL
, VTs
, N1
, N2
);
2746 AllNodes
.push_back(N
);
2750 return SDValue(N
, 0);
2753 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
2754 SDValue N1
, SDValue N2
, SDValue N3
) {
2755 // Perform various simplifications.
2756 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
2757 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
2759 case ISD::CONCAT_VECTORS
:
2760 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2761 // one big BUILD_VECTOR.
2762 if (N1
.getOpcode() == ISD::BUILD_VECTOR
&&
2763 N2
.getOpcode() == ISD::BUILD_VECTOR
&&
2764 N3
.getOpcode() == ISD::BUILD_VECTOR
) {
2765 SmallVector
<SDValue
, 16> Elts(N1
.getNode()->op_begin(), N1
.getNode()->op_end());
2766 Elts
.insert(Elts
.end(), N2
.getNode()->op_begin(), N2
.getNode()->op_end());
2767 Elts
.insert(Elts
.end(), N3
.getNode()->op_begin(), N3
.getNode()->op_end());
2768 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, &Elts
[0], Elts
.size());
2772 // Use FoldSetCC to simplify SETCC's.
2773 SDValue Simp
= FoldSetCC(VT
, N1
, N2
, cast
<CondCodeSDNode
>(N3
)->get(), DL
);
2774 if (Simp
.getNode()) return Simp
;
2779 if (N1C
->getZExtValue())
2780 return N2
; // select true, X, Y -> X
2782 return N3
; // select false, X, Y -> Y
2785 if (N2
== N3
) return N2
; // select C, X, X -> X
2789 if (N2C
->getZExtValue()) // Unconditional branch
2790 return getNode(ISD::BR
, DL
, MVT::Other
, N1
, N3
);
2792 return N1
; // Never-taken branch
2795 case ISD::VECTOR_SHUFFLE
:
2796 assert(N1
.getValueType() == N2
.getValueType() &&
2797 N1
.getValueType().isVector() &&
2798 VT
.isVector() && N3
.getValueType().isVector() &&
2799 N3
.getOpcode() == ISD::BUILD_VECTOR
&&
2800 VT
.getVectorNumElements() == N3
.getNumOperands() &&
2801 "Illegal VECTOR_SHUFFLE node!");
2803 case ISD::BIT_CONVERT
:
2804 // Fold bit_convert nodes from a type to themselves.
2805 if (N1
.getValueType() == VT
)
2810 // Memoize node if it doesn't produce a flag.
2812 SDVTList VTs
= getVTList(VT
);
2813 if (VT
!= MVT::Flag
) {
2814 SDValue Ops
[] = { N1
, N2
, N3
};
2815 FoldingSetNodeID ID
;
2816 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 3);
2818 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2819 return SDValue(E
, 0);
2820 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
2821 new (N
) TernarySDNode(Opcode
, DL
, VTs
, N1
, N2
, N3
);
2822 CSEMap
.InsertNode(N
, IP
);
2824 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
2825 new (N
) TernarySDNode(Opcode
, DL
, VTs
, N1
, N2
, N3
);
2827 AllNodes
.push_back(N
);
2831 return SDValue(N
, 0);
2834 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
2835 SDValue N1
, SDValue N2
, SDValue N3
,
2837 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
2838 return getNode(Opcode
, DL
, VT
, Ops
, 4);
2841 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
2842 SDValue N1
, SDValue N2
, SDValue N3
,
2843 SDValue N4
, SDValue N5
) {
2844 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
2845 return getNode(Opcode
, DL
, VT
, Ops
, 5);
2848 /// getMemsetValue - Vectorized representation of the memset value
2850 static SDValue
getMemsetValue(SDValue Value
, MVT VT
, SelectionDAG
&DAG
,
2852 unsigned NumBits
= VT
.isVector() ?
2853 VT
.getVectorElementType().getSizeInBits() : VT
.getSizeInBits();
2854 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Value
)) {
2855 APInt Val
= APInt(NumBits
, C
->getZExtValue() & 255);
2857 for (unsigned i
= NumBits
; i
> 8; i
>>= 1) {
2858 Val
= (Val
<< Shift
) | Val
;
2862 return DAG
.getConstant(Val
, VT
);
2863 return DAG
.getConstantFP(APFloat(Val
), VT
);
2866 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2867 Value
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Value
);
2869 for (unsigned i
= NumBits
; i
> 8; i
>>= 1) {
2870 Value
= DAG
.getNode(ISD::OR
, dl
, VT
,
2871 DAG
.getNode(ISD::SHL
, dl
, VT
, Value
,
2872 DAG
.getConstant(Shift
,
2873 TLI
.getShiftAmountTy())),
2881 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2882 /// used when a memcpy is turned into a memset when the source is a constant
2884 static SDValue
getMemsetStringVal(MVT VT
, DebugLoc dl
, SelectionDAG
&DAG
,
2885 const TargetLowering
&TLI
,
2886 std::string
&Str
, unsigned Offset
) {
2887 // Handle vector with all elements zero.
2890 return DAG
.getConstant(0, VT
);
2891 unsigned NumElts
= VT
.getVectorNumElements();
2892 MVT EltVT
= (VT
.getVectorElementType() == MVT::f32
) ? MVT::i32
: MVT::i64
;
2893 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
2894 DAG
.getConstant(0, MVT::getVectorVT(EltVT
, NumElts
)));
2897 assert(!VT
.isVector() && "Can't handle vector type here!");
2898 unsigned NumBits
= VT
.getSizeInBits();
2899 unsigned MSB
= NumBits
/ 8;
2901 if (TLI
.isLittleEndian())
2902 Offset
= Offset
+ MSB
- 1;
2903 for (unsigned i
= 0; i
!= MSB
; ++i
) {
2904 Val
= (Val
<< 8) | (unsigned char)Str
[Offset
];
2905 Offset
+= TLI
.isLittleEndian() ? -1 : 1;
2907 return DAG
.getConstant(Val
, VT
);
2910 /// getMemBasePlusOffset - Returns base and offset node for the
2912 static SDValue
getMemBasePlusOffset(SDValue Base
, unsigned Offset
,
2913 SelectionDAG
&DAG
) {
2914 MVT VT
= Base
.getValueType();
2915 return DAG
.getNode(ISD::ADD
, Base
.getDebugLoc(),
2916 VT
, Base
, DAG
.getConstant(Offset
, VT
));
2919 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
2921 static bool isMemSrcFromString(SDValue Src
, std::string
&Str
) {
2922 unsigned SrcDelta
= 0;
2923 GlobalAddressSDNode
*G
= NULL
;
2924 if (Src
.getOpcode() == ISD::GlobalAddress
)
2925 G
= cast
<GlobalAddressSDNode
>(Src
);
2926 else if (Src
.getOpcode() == ISD::ADD
&&
2927 Src
.getOperand(0).getOpcode() == ISD::GlobalAddress
&&
2928 Src
.getOperand(1).getOpcode() == ISD::Constant
) {
2929 G
= cast
<GlobalAddressSDNode
>(Src
.getOperand(0));
2930 SrcDelta
= cast
<ConstantSDNode
>(Src
.getOperand(1))->getZExtValue();
2935 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(G
->getGlobal());
2936 if (GV
&& GetConstantStringInfo(GV
, Str
, SrcDelta
, false))
2942 /// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2943 /// to replace the memset / memcpy is below the threshold. It also returns the
2944 /// types of the sequence of memory ops to perform memset / memcpy.
2946 bool MeetsMaxMemopRequirement(std::vector
<MVT
> &MemOps
,
2947 SDValue Dst
, SDValue Src
,
2948 unsigned Limit
, uint64_t Size
, unsigned &Align
,
2949 std::string
&Str
, bool &isSrcStr
,
2951 const TargetLowering
&TLI
) {
2952 isSrcStr
= isMemSrcFromString(Src
, Str
);
2953 bool isSrcConst
= isa
<ConstantSDNode
>(Src
);
2954 bool AllowUnalign
= TLI
.allowsUnalignedMemoryAccesses();
2955 MVT VT
= TLI
.getOptimalMemOpType(Size
, Align
, isSrcConst
, isSrcStr
);
2956 if (VT
!= MVT::iAny
) {
2957 unsigned NewAlign
= (unsigned)
2958 TLI
.getTargetData()->getABITypeAlignment(VT
.getTypeForMVT());
2959 // If source is a string constant, this will require an unaligned load.
2960 if (NewAlign
> Align
&& (isSrcConst
|| AllowUnalign
)) {
2961 if (Dst
.getOpcode() != ISD::FrameIndex
) {
2962 // Can't change destination alignment. It requires a unaligned store.
2966 int FI
= cast
<FrameIndexSDNode
>(Dst
)->getIndex();
2967 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
2968 if (MFI
->isFixedObjectIndex(FI
)) {
2969 // Can't change destination alignment. It requires a unaligned store.
2973 // Give the stack frame object a larger alignment if needed.
2974 if (MFI
->getObjectAlignment(FI
) < NewAlign
)
2975 MFI
->setObjectAlignment(FI
, NewAlign
);
2982 if (VT
== MVT::iAny
) {
2986 switch (Align
& 7) {
2987 case 0: VT
= MVT::i64
; break;
2988 case 4: VT
= MVT::i32
; break;
2989 case 2: VT
= MVT::i16
; break;
2990 default: VT
= MVT::i8
; break;
2995 while (!TLI
.isTypeLegal(LVT
))
2996 LVT
= (MVT::SimpleValueType
)(LVT
.getSimpleVT() - 1);
2997 assert(LVT
.isInteger());
3003 unsigned NumMemOps
= 0;
3005 unsigned VTSize
= VT
.getSizeInBits() / 8;
3006 while (VTSize
> Size
) {
3007 // For now, only use non-vector load / store's for the left-over pieces.
3008 if (VT
.isVector()) {
3010 while (!TLI
.isTypeLegal(VT
))
3011 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT() - 1);
3012 VTSize
= VT
.getSizeInBits() / 8;
3014 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT() - 1);
3019 if (++NumMemOps
> Limit
)
3021 MemOps
.push_back(VT
);
3028 static SDValue
getMemcpyLoadsAndStores(SelectionDAG
&DAG
, DebugLoc dl
,
3029 SDValue Chain
, SDValue Dst
,
3030 SDValue Src
, uint64_t Size
,
3031 unsigned Align
, bool AlwaysInline
,
3032 const Value
*DstSV
, uint64_t DstSVOff
,
3033 const Value
*SrcSV
, uint64_t SrcSVOff
){
3034 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3036 // Expand memcpy to a series of load and store ops if the size operand falls
3037 // below a certain threshold.
3038 std::vector
<MVT
> MemOps
;
3039 uint64_t Limit
= -1ULL;
3041 Limit
= TLI
.getMaxStoresPerMemcpy();
3042 unsigned DstAlign
= Align
; // Destination alignment can change.
3045 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, Limit
, Size
, DstAlign
,
3046 Str
, CopyFromStr
, DAG
, TLI
))
3050 bool isZeroStr
= CopyFromStr
&& Str
.empty();
3051 SmallVector
<SDValue
, 8> OutChains
;
3052 unsigned NumMemOps
= MemOps
.size();
3053 uint64_t SrcOff
= 0, DstOff
= 0;
3054 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3056 unsigned VTSize
= VT
.getSizeInBits() / 8;
3057 SDValue Value
, Store
;
3059 if (CopyFromStr
&& (isZeroStr
|| !VT
.isVector())) {
3060 // It's unlikely a store of a vector immediate can be done in a single
3061 // instruction. It would require a load from a constantpool first.
3062 // We also handle store a vector with all zero's.
3063 // FIXME: Handle other cases where store of vector immediate is done in
3064 // a single instruction.
3065 Value
= getMemsetStringVal(VT
, dl
, DAG
, TLI
, Str
, SrcOff
);
3066 Store
= DAG
.getStore(Chain
, dl
, Value
,
3067 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3068 DstSV
, DstSVOff
+ DstOff
, false, DstAlign
);
3070 Value
= DAG
.getLoad(VT
, dl
, Chain
,
3071 getMemBasePlusOffset(Src
, SrcOff
, DAG
),
3072 SrcSV
, SrcSVOff
+ SrcOff
, false, Align
);
3073 Store
= DAG
.getStore(Chain
, dl
, Value
,
3074 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3075 DstSV
, DstSVOff
+ DstOff
, false, DstAlign
);
3077 OutChains
.push_back(Store
);
3082 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3083 &OutChains
[0], OutChains
.size());
3086 static SDValue
getMemmoveLoadsAndStores(SelectionDAG
&DAG
, DebugLoc dl
,
3087 SDValue Chain
, SDValue Dst
,
3088 SDValue Src
, uint64_t Size
,
3089 unsigned Align
, bool AlwaysInline
,
3090 const Value
*DstSV
, uint64_t DstSVOff
,
3091 const Value
*SrcSV
, uint64_t SrcSVOff
){
3092 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3094 // Expand memmove to a series of load and store ops if the size operand falls
3095 // below a certain threshold.
3096 std::vector
<MVT
> MemOps
;
3097 uint64_t Limit
= -1ULL;
3099 Limit
= TLI
.getMaxStoresPerMemmove();
3100 unsigned DstAlign
= Align
; // Destination alignment can change.
3103 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, Limit
, Size
, DstAlign
,
3104 Str
, CopyFromStr
, DAG
, TLI
))
3107 uint64_t SrcOff
= 0, DstOff
= 0;
3109 SmallVector
<SDValue
, 8> LoadValues
;
3110 SmallVector
<SDValue
, 8> LoadChains
;
3111 SmallVector
<SDValue
, 8> OutChains
;
3112 unsigned NumMemOps
= MemOps
.size();
3113 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3115 unsigned VTSize
= VT
.getSizeInBits() / 8;
3116 SDValue Value
, Store
;
3118 Value
= DAG
.getLoad(VT
, dl
, Chain
,
3119 getMemBasePlusOffset(Src
, SrcOff
, DAG
),
3120 SrcSV
, SrcSVOff
+ SrcOff
, false, Align
);
3121 LoadValues
.push_back(Value
);
3122 LoadChains
.push_back(Value
.getValue(1));
3125 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3126 &LoadChains
[0], LoadChains
.size());
3128 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3130 unsigned VTSize
= VT
.getSizeInBits() / 8;
3131 SDValue Value
, Store
;
3133 Store
= DAG
.getStore(Chain
, dl
, LoadValues
[i
],
3134 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3135 DstSV
, DstSVOff
+ DstOff
, false, DstAlign
);
3136 OutChains
.push_back(Store
);
3140 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3141 &OutChains
[0], OutChains
.size());
3144 static SDValue
getMemsetStores(SelectionDAG
&DAG
, DebugLoc dl
,
3145 SDValue Chain
, SDValue Dst
,
3146 SDValue Src
, uint64_t Size
,
3148 const Value
*DstSV
, uint64_t DstSVOff
) {
3149 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3151 // Expand memset to a series of load/store ops if the size operand
3152 // falls below a certain threshold.
3153 std::vector
<MVT
> MemOps
;
3156 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, TLI
.getMaxStoresPerMemset(),
3157 Size
, Align
, Str
, CopyFromStr
, DAG
, TLI
))
3160 SmallVector
<SDValue
, 8> OutChains
;
3161 uint64_t DstOff
= 0;
3163 unsigned NumMemOps
= MemOps
.size();
3164 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3166 unsigned VTSize
= VT
.getSizeInBits() / 8;
3167 SDValue Value
= getMemsetValue(Src
, VT
, DAG
, dl
);
3168 SDValue Store
= DAG
.getStore(Chain
, dl
, Value
,
3169 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3170 DstSV
, DstSVOff
+ DstOff
);
3171 OutChains
.push_back(Store
);
3175 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3176 &OutChains
[0], OutChains
.size());
3179 SDValue
SelectionDAG::getMemcpy(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3180 SDValue Src
, SDValue Size
,
3181 unsigned Align
, bool AlwaysInline
,
3182 const Value
*DstSV
, uint64_t DstSVOff
,
3183 const Value
*SrcSV
, uint64_t SrcSVOff
) {
3185 // Check to see if we should lower the memcpy to loads and stores first.
3186 // For cases within the target-specified limits, this is the best choice.
3187 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3189 // Memcpy with size zero? Just return the original chain.
3190 if (ConstantSize
->isNullValue())
3194 getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3195 ConstantSize
->getZExtValue(),
3196 Align
, false, DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3197 if (Result
.getNode())
3201 // Then check to see if we should lower the memcpy with target-specific
3202 // code. If the target chooses to do this, this is the next best.
3204 TLI
.EmitTargetCodeForMemcpy(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3206 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3207 if (Result
.getNode())
3210 // If we really need inline code and the target declined to provide it,
3211 // use a (potentially long) sequence of loads and stores.
3213 assert(ConstantSize
&& "AlwaysInline requires a constant size!");
3214 return getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3215 ConstantSize
->getZExtValue(), Align
, true,
3216 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3219 // Emit a library call.
3220 TargetLowering::ArgListTy Args
;
3221 TargetLowering::ArgListEntry Entry
;
3222 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType();
3223 Entry
.Node
= Dst
; Args
.push_back(Entry
);
3224 Entry
.Node
= Src
; Args
.push_back(Entry
);
3225 Entry
.Node
= Size
; Args
.push_back(Entry
);
3226 // FIXME: pass in DebugLoc
3227 std::pair
<SDValue
,SDValue
> CallResult
=
3228 TLI
.LowerCallTo(Chain
, Type::VoidTy
,
3229 false, false, false, false, CallingConv::C
, false,
3230 getExternalSymbol("memcpy", TLI
.getPointerTy()),
3232 return CallResult
.second
;
3235 SDValue
SelectionDAG::getMemmove(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3236 SDValue Src
, SDValue Size
,
3238 const Value
*DstSV
, uint64_t DstSVOff
,
3239 const Value
*SrcSV
, uint64_t SrcSVOff
) {
3241 // Check to see if we should lower the memmove to loads and stores first.
3242 // For cases within the target-specified limits, this is the best choice.
3243 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3245 // Memmove with size zero? Just return the original chain.
3246 if (ConstantSize
->isNullValue())
3250 getMemmoveLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3251 ConstantSize
->getZExtValue(),
3252 Align
, false, DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3253 if (Result
.getNode())
3257 // Then check to see if we should lower the memmove with target-specific
3258 // code. If the target chooses to do this, this is the next best.
3260 TLI
.EmitTargetCodeForMemmove(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3261 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3262 if (Result
.getNode())
3265 // Emit a library call.
3266 TargetLowering::ArgListTy Args
;
3267 TargetLowering::ArgListEntry Entry
;
3268 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType();
3269 Entry
.Node
= Dst
; Args
.push_back(Entry
);
3270 Entry
.Node
= Src
; Args
.push_back(Entry
);
3271 Entry
.Node
= Size
; Args
.push_back(Entry
);
3272 // FIXME: pass in DebugLoc
3273 std::pair
<SDValue
,SDValue
> CallResult
=
3274 TLI
.LowerCallTo(Chain
, Type::VoidTy
,
3275 false, false, false, false, CallingConv::C
, false,
3276 getExternalSymbol("memmove", TLI
.getPointerTy()),
3278 return CallResult
.second
;
3281 SDValue
SelectionDAG::getMemset(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3282 SDValue Src
, SDValue Size
,
3284 const Value
*DstSV
, uint64_t DstSVOff
) {
3286 // Check to see if we should lower the memset to stores first.
3287 // For cases within the target-specified limits, this is the best choice.
3288 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3290 // Memset with size zero? Just return the original chain.
3291 if (ConstantSize
->isNullValue())
3295 getMemsetStores(*this, dl
, Chain
, Dst
, Src
, ConstantSize
->getZExtValue(),
3296 Align
, DstSV
, DstSVOff
);
3297 if (Result
.getNode())
3301 // Then check to see if we should lower the memset with target-specific
3302 // code. If the target chooses to do this, this is the next best.
3304 TLI
.EmitTargetCodeForMemset(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3306 if (Result
.getNode())
3309 // Emit a library call.
3310 const Type
*IntPtrTy
= TLI
.getTargetData()->getIntPtrType();
3311 TargetLowering::ArgListTy Args
;
3312 TargetLowering::ArgListEntry Entry
;
3313 Entry
.Node
= Dst
; Entry
.Ty
= IntPtrTy
;
3314 Args
.push_back(Entry
);
3315 // Extend or truncate the argument to be an i32 value for the call.
3316 if (Src
.getValueType().bitsGT(MVT::i32
))
3317 Src
= getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Src
);
3319 Src
= getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, Src
);
3320 Entry
.Node
= Src
; Entry
.Ty
= Type::Int32Ty
; Entry
.isSExt
= true;
3321 Args
.push_back(Entry
);
3322 Entry
.Node
= Size
; Entry
.Ty
= IntPtrTy
; Entry
.isSExt
= false;
3323 Args
.push_back(Entry
);
3324 // FIXME: pass in DebugLoc
3325 std::pair
<SDValue
,SDValue
> CallResult
=
3326 TLI
.LowerCallTo(Chain
, Type::VoidTy
,
3327 false, false, false, false, CallingConv::C
, false,
3328 getExternalSymbol("memset", TLI
.getPointerTy()),
3330 return CallResult
.second
;
3333 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, MVT MemVT
,
3335 SDValue Ptr
, SDValue Cmp
,
3336 SDValue Swp
, const Value
* PtrVal
,
3337 unsigned Alignment
) {
3338 assert(Opcode
== ISD::ATOMIC_CMP_SWAP
&& "Invalid Atomic Op");
3339 assert(Cmp
.getValueType() == Swp
.getValueType() && "Invalid Atomic Op Types");
3341 MVT VT
= Cmp
.getValueType();
3343 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3344 Alignment
= getMVTAlignment(MemVT
);
3346 SDVTList VTs
= getVTList(VT
, MVT::Other
);
3347 FoldingSetNodeID ID
;
3348 ID
.AddInteger(MemVT
.getRawBits());
3349 SDValue Ops
[] = {Chain
, Ptr
, Cmp
, Swp
};
3350 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 4);
3352 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3353 return SDValue(E
, 0);
3354 SDNode
* N
= NodeAllocator
.Allocate
<AtomicSDNode
>();
3355 new (N
) AtomicSDNode(Opcode
, dl
, VTs
, MemVT
,
3356 Chain
, Ptr
, Cmp
, Swp
, PtrVal
, Alignment
);
3357 CSEMap
.InsertNode(N
, IP
);
3358 AllNodes
.push_back(N
);
3359 return SDValue(N
, 0);
3362 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, MVT MemVT
,
3364 SDValue Ptr
, SDValue Val
,
3365 const Value
* PtrVal
,
3366 unsigned Alignment
) {
3367 assert((Opcode
== ISD::ATOMIC_LOAD_ADD
||
3368 Opcode
== ISD::ATOMIC_LOAD_SUB
||
3369 Opcode
== ISD::ATOMIC_LOAD_AND
||
3370 Opcode
== ISD::ATOMIC_LOAD_OR
||
3371 Opcode
== ISD::ATOMIC_LOAD_XOR
||
3372 Opcode
== ISD::ATOMIC_LOAD_NAND
||
3373 Opcode
== ISD::ATOMIC_LOAD_MIN
||
3374 Opcode
== ISD::ATOMIC_LOAD_MAX
||
3375 Opcode
== ISD::ATOMIC_LOAD_UMIN
||
3376 Opcode
== ISD::ATOMIC_LOAD_UMAX
||
3377 Opcode
== ISD::ATOMIC_SWAP
) &&
3378 "Invalid Atomic Op");
3380 MVT VT
= Val
.getValueType();
3382 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3383 Alignment
= getMVTAlignment(MemVT
);
3385 SDVTList VTs
= getVTList(VT
, MVT::Other
);
3386 FoldingSetNodeID ID
;
3387 ID
.AddInteger(MemVT
.getRawBits());
3388 SDValue Ops
[] = {Chain
, Ptr
, Val
};
3389 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 3);
3391 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3392 return SDValue(E
, 0);
3393 SDNode
* N
= NodeAllocator
.Allocate
<AtomicSDNode
>();
3394 new (N
) AtomicSDNode(Opcode
, dl
, VTs
, MemVT
,
3395 Chain
, Ptr
, Val
, PtrVal
, Alignment
);
3396 CSEMap
.InsertNode(N
, IP
);
3397 AllNodes
.push_back(N
);
3398 return SDValue(N
, 0);
3401 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
3402 /// Allowed to return something different (and simpler) if Simplify is true.
3403 SDValue
SelectionDAG::getMergeValues(const SDValue
*Ops
, unsigned NumOps
,
3408 SmallVector
<MVT
, 4> VTs
;
3409 VTs
.reserve(NumOps
);
3410 for (unsigned i
= 0; i
< NumOps
; ++i
)
3411 VTs
.push_back(Ops
[i
].getValueType());
3412 return getNode(ISD::MERGE_VALUES
, dl
, getVTList(&VTs
[0], NumOps
),
3417 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
,
3418 const MVT
*VTs
, unsigned NumVTs
,
3419 const SDValue
*Ops
, unsigned NumOps
,
3420 MVT MemVT
, const Value
*srcValue
, int SVOff
,
3421 unsigned Align
, bool Vol
,
3422 bool ReadMem
, bool WriteMem
) {
3423 return getMemIntrinsicNode(Opcode
, dl
, makeVTList(VTs
, NumVTs
), Ops
, NumOps
,
3424 MemVT
, srcValue
, SVOff
, Align
, Vol
,
3429 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
, SDVTList VTList
,
3430 const SDValue
*Ops
, unsigned NumOps
,
3431 MVT MemVT
, const Value
*srcValue
, int SVOff
,
3432 unsigned Align
, bool Vol
,
3433 bool ReadMem
, bool WriteMem
) {
3434 // Memoize the node unless it returns a flag.
3435 MemIntrinsicSDNode
*N
;
3436 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
3437 FoldingSetNodeID ID
;
3438 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
3440 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3441 return SDValue(E
, 0);
3443 N
= NodeAllocator
.Allocate
<MemIntrinsicSDNode
>();
3444 new (N
) MemIntrinsicSDNode(Opcode
, dl
, VTList
, Ops
, NumOps
, MemVT
,
3445 srcValue
, SVOff
, Align
, Vol
, ReadMem
, WriteMem
);
3446 CSEMap
.InsertNode(N
, IP
);
3448 N
= NodeAllocator
.Allocate
<MemIntrinsicSDNode
>();
3449 new (N
) MemIntrinsicSDNode(Opcode
, dl
, VTList
, Ops
, NumOps
, MemVT
,
3450 srcValue
, SVOff
, Align
, Vol
, ReadMem
, WriteMem
);
3452 AllNodes
.push_back(N
);
3453 return SDValue(N
, 0);
3457 SelectionDAG::getCall(unsigned CallingConv
, DebugLoc dl
, bool IsVarArgs
,
3458 bool IsTailCall
, bool IsInreg
, SDVTList VTs
,
3459 const SDValue
*Operands
, unsigned NumOperands
) {
3460 // Do not include isTailCall in the folding set profile.
3461 FoldingSetNodeID ID
;
3462 AddNodeIDNode(ID
, ISD::CALL
, VTs
, Operands
, NumOperands
);
3463 ID
.AddInteger(CallingConv
);
3464 ID
.AddInteger(IsVarArgs
);
3466 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
3467 // Instead of including isTailCall in the folding set, we just
3468 // set the flag of the existing node.
3470 cast
<CallSDNode
>(E
)->setNotTailCall();
3471 return SDValue(E
, 0);
3473 SDNode
*N
= NodeAllocator
.Allocate
<CallSDNode
>();
3474 new (N
) CallSDNode(CallingConv
, dl
, IsVarArgs
, IsTailCall
, IsInreg
,
3475 VTs
, Operands
, NumOperands
);
3476 CSEMap
.InsertNode(N
, IP
);
3477 AllNodes
.push_back(N
);
3478 return SDValue(N
, 0);
3482 SelectionDAG::getLoad(ISD::MemIndexedMode AM
, DebugLoc dl
,
3483 ISD::LoadExtType ExtType
, MVT VT
, SDValue Chain
,
3484 SDValue Ptr
, SDValue Offset
,
3485 const Value
*SV
, int SVOffset
, MVT EVT
,
3486 bool isVolatile
, unsigned Alignment
) {
3487 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3488 Alignment
= getMVTAlignment(VT
);
3491 ExtType
= ISD::NON_EXTLOAD
;
3492 } else if (ExtType
== ISD::NON_EXTLOAD
) {
3493 assert(VT
== EVT
&& "Non-extending load from different memory type!");
3497 assert(EVT
.getVectorNumElements() == VT
.getVectorNumElements() &&
3498 "Invalid vector extload!");
3500 assert(EVT
.bitsLT(VT
) &&
3501 "Should only be an extending load, not truncating!");
3502 assert((ExtType
== ISD::EXTLOAD
|| VT
.isInteger()) &&
3503 "Cannot sign/zero extend a FP/Vector load!");
3504 assert(VT
.isInteger() == EVT
.isInteger() &&
3505 "Cannot convert from FP to Int or Int -> FP!");
3508 bool Indexed
= AM
!= ISD::UNINDEXED
;
3509 assert((Indexed
|| Offset
.getOpcode() == ISD::UNDEF
) &&
3510 "Unindexed load with an offset!");
3512 SDVTList VTs
= Indexed
?
3513 getVTList(VT
, Ptr
.getValueType(), MVT::Other
) : getVTList(VT
, MVT::Other
);
3514 SDValue Ops
[] = { Chain
, Ptr
, Offset
};
3515 FoldingSetNodeID ID
;
3516 AddNodeIDNode(ID
, ISD::LOAD
, VTs
, Ops
, 3);
3517 ID
.AddInteger(EVT
.getRawBits());
3518 ID
.AddInteger(encodeMemSDNodeFlags(ExtType
, AM
, isVolatile
, Alignment
));
3520 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3521 return SDValue(E
, 0);
3522 SDNode
*N
= NodeAllocator
.Allocate
<LoadSDNode
>();
3523 new (N
) LoadSDNode(Ops
, dl
, VTs
, AM
, ExtType
, EVT
, SV
, SVOffset
,
3524 Alignment
, isVolatile
);
3525 CSEMap
.InsertNode(N
, IP
);
3526 AllNodes
.push_back(N
);
3527 return SDValue(N
, 0);
3530 SDValue
SelectionDAG::getLoad(MVT VT
, DebugLoc dl
,
3531 SDValue Chain
, SDValue Ptr
,
3532 const Value
*SV
, int SVOffset
,
3533 bool isVolatile
, unsigned Alignment
) {
3534 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3535 return getLoad(ISD::UNINDEXED
, dl
, ISD::NON_EXTLOAD
, VT
, Chain
, Ptr
, Undef
,
3536 SV
, SVOffset
, VT
, isVolatile
, Alignment
);
3539 SDValue
SelectionDAG::getExtLoad(ISD::LoadExtType ExtType
, DebugLoc dl
, MVT VT
,
3540 SDValue Chain
, SDValue Ptr
,
3542 int SVOffset
, MVT EVT
,
3543 bool isVolatile
, unsigned Alignment
) {
3544 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3545 return getLoad(ISD::UNINDEXED
, dl
, ExtType
, VT
, Chain
, Ptr
, Undef
,
3546 SV
, SVOffset
, EVT
, isVolatile
, Alignment
);
3550 SelectionDAG::getIndexedLoad(SDValue OrigLoad
, DebugLoc dl
, SDValue Base
,
3551 SDValue Offset
, ISD::MemIndexedMode AM
) {
3552 LoadSDNode
*LD
= cast
<LoadSDNode
>(OrigLoad
);
3553 assert(LD
->getOffset().getOpcode() == ISD::UNDEF
&&
3554 "Load is already a indexed load!");
3555 return getLoad(AM
, dl
, LD
->getExtensionType(), OrigLoad
.getValueType(),
3556 LD
->getChain(), Base
, Offset
, LD
->getSrcValue(),
3557 LD
->getSrcValueOffset(), LD
->getMemoryVT(),
3558 LD
->isVolatile(), LD
->getAlignment());
3561 SDValue
SelectionDAG::getStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
3562 SDValue Ptr
, const Value
*SV
, int SVOffset
,
3563 bool isVolatile
, unsigned Alignment
) {
3564 MVT VT
= Val
.getValueType();
3566 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3567 Alignment
= getMVTAlignment(VT
);
3569 SDVTList VTs
= getVTList(MVT::Other
);
3570 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3571 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
3572 FoldingSetNodeID ID
;
3573 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3574 ID
.AddInteger(VT
.getRawBits());
3575 ID
.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED
,
3576 isVolatile
, Alignment
));
3578 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3579 return SDValue(E
, 0);
3580 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3581 new (N
) StoreSDNode(Ops
, dl
, VTs
, ISD::UNINDEXED
, false,
3582 VT
, SV
, SVOffset
, Alignment
, isVolatile
);
3583 CSEMap
.InsertNode(N
, IP
);
3584 AllNodes
.push_back(N
);
3585 return SDValue(N
, 0);
3588 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
3589 SDValue Ptr
, const Value
*SV
,
3590 int SVOffset
, MVT SVT
,
3591 bool isVolatile
, unsigned Alignment
) {
3592 MVT VT
= Val
.getValueType();
3595 return getStore(Chain
, dl
, Val
, Ptr
, SV
, SVOffset
, isVolatile
, Alignment
);
3597 assert(VT
.bitsGT(SVT
) && "Not a truncation?");
3598 assert(VT
.isInteger() == SVT
.isInteger() &&
3599 "Can't do FP-INT conversion!");
3601 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3602 Alignment
= getMVTAlignment(VT
);
3604 SDVTList VTs
= getVTList(MVT::Other
);
3605 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3606 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
3607 FoldingSetNodeID ID
;
3608 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3609 ID
.AddInteger(SVT
.getRawBits());
3610 ID
.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED
,
3611 isVolatile
, Alignment
));
3613 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3614 return SDValue(E
, 0);
3615 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3616 new (N
) StoreSDNode(Ops
, dl
, VTs
, ISD::UNINDEXED
, true,
3617 SVT
, SV
, SVOffset
, Alignment
, isVolatile
);
3618 CSEMap
.InsertNode(N
, IP
);
3619 AllNodes
.push_back(N
);
3620 return SDValue(N
, 0);
3624 SelectionDAG::getIndexedStore(SDValue OrigStore
, DebugLoc dl
, SDValue Base
,
3625 SDValue Offset
, ISD::MemIndexedMode AM
) {
3626 StoreSDNode
*ST
= cast
<StoreSDNode
>(OrigStore
);
3627 assert(ST
->getOffset().getOpcode() == ISD::UNDEF
&&
3628 "Store is already a indexed store!");
3629 SDVTList VTs
= getVTList(Base
.getValueType(), MVT::Other
);
3630 SDValue Ops
[] = { ST
->getChain(), ST
->getValue(), Base
, Offset
};
3631 FoldingSetNodeID ID
;
3632 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3633 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
3634 ID
.AddInteger(ST
->getRawSubclassData());
3636 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3637 return SDValue(E
, 0);
3638 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3639 new (N
) StoreSDNode(Ops
, dl
, VTs
, AM
,
3640 ST
->isTruncatingStore(), ST
->getMemoryVT(),
3641 ST
->getSrcValue(), ST
->getSrcValueOffset(),
3642 ST
->getAlignment(), ST
->isVolatile());
3643 CSEMap
.InsertNode(N
, IP
);
3644 AllNodes
.push_back(N
);
3645 return SDValue(N
, 0);
3648 SDValue
SelectionDAG::getVAArg(MVT VT
, DebugLoc dl
,
3649 SDValue Chain
, SDValue Ptr
,
3651 SDValue Ops
[] = { Chain
, Ptr
, SV
};
3652 return getNode(ISD::VAARG
, dl
, getVTList(VT
, MVT::Other
), Ops
, 3);
3655 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
3656 const SDUse
*Ops
, unsigned NumOps
) {
3658 case 0: return getNode(Opcode
, DL
, VT
);
3659 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0]);
3660 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
3661 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
3665 // Copy from an SDUse array into an SDValue array for use with
3666 // the regular getNode logic.
3667 SmallVector
<SDValue
, 8> NewOps(Ops
, Ops
+ NumOps
);
3668 return getNode(Opcode
, DL
, VT
, &NewOps
[0], NumOps
);
3671 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
3672 const SDValue
*Ops
, unsigned NumOps
) {
3674 case 0: return getNode(Opcode
, DL
, VT
);
3675 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0]);
3676 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
3677 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
3683 case ISD::SELECT_CC
: {
3684 assert(NumOps
== 5 && "SELECT_CC takes 5 operands!");
3685 assert(Ops
[0].getValueType() == Ops
[1].getValueType() &&
3686 "LHS and RHS of condition must have same type!");
3687 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
3688 "True and False arms of SelectCC must have same type!");
3689 assert(Ops
[2].getValueType() == VT
&&
3690 "select_cc node must be of same type as true and false value!");
3694 assert(NumOps
== 5 && "BR_CC takes 5 operands!");
3695 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
3696 "LHS/RHS of comparison should match types!");
3703 SDVTList VTs
= getVTList(VT
);
3705 if (VT
!= MVT::Flag
) {
3706 FoldingSetNodeID ID
;
3707 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, NumOps
);
3710 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3711 return SDValue(E
, 0);
3713 N
= NodeAllocator
.Allocate
<SDNode
>();
3714 new (N
) SDNode(Opcode
, DL
, VTs
, Ops
, NumOps
);
3715 CSEMap
.InsertNode(N
, IP
);
3717 N
= NodeAllocator
.Allocate
<SDNode
>();
3718 new (N
) SDNode(Opcode
, DL
, VTs
, Ops
, NumOps
);
3721 AllNodes
.push_back(N
);
3725 return SDValue(N
, 0);
3728 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
3729 const std::vector
<MVT
> &ResultTys
,
3730 const SDValue
*Ops
, unsigned NumOps
) {
3731 return getNode(Opcode
, DL
, getVTList(&ResultTys
[0], ResultTys
.size()),
3735 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
3736 const MVT
*VTs
, unsigned NumVTs
,
3737 const SDValue
*Ops
, unsigned NumOps
) {
3739 return getNode(Opcode
, DL
, VTs
[0], Ops
, NumOps
);
3740 return getNode(Opcode
, DL
, makeVTList(VTs
, NumVTs
), Ops
, NumOps
);
3743 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3744 const SDValue
*Ops
, unsigned NumOps
) {
3745 if (VTList
.NumVTs
== 1)
3746 return getNode(Opcode
, DL
, VTList
.VTs
[0], Ops
, NumOps
);
3749 // FIXME: figure out how to safely handle things like
3750 // int foo(int x) { return 1 << (x & 255); }
3751 // int bar() { return foo(256); }
3753 case ISD::SRA_PARTS
:
3754 case ISD::SRL_PARTS
:
3755 case ISD::SHL_PARTS
:
3756 if (N3
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
3757 cast
<VTSDNode
>(N3
.getOperand(1))->getVT() != MVT::i1
)
3758 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
3759 else if (N3
.getOpcode() == ISD::AND
)
3760 if (ConstantSDNode
*AndRHS
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(1))) {
3761 // If the and is only masking out bits that cannot effect the shift,
3762 // eliminate the and.
3763 unsigned NumBits
= VT
.getSizeInBits()*2;
3764 if ((AndRHS
->getValue() & (NumBits
-1)) == NumBits
-1)
3765 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
3771 // Memoize the node unless it returns a flag.
3773 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
3774 FoldingSetNodeID ID
;
3775 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
3777 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3778 return SDValue(E
, 0);
3780 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
3781 new (N
) UnarySDNode(Opcode
, DL
, VTList
, Ops
[0]);
3782 } else if (NumOps
== 2) {
3783 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
3784 new (N
) BinarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1]);
3785 } else if (NumOps
== 3) {
3786 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
3787 new (N
) TernarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1], Ops
[2]);
3789 N
= NodeAllocator
.Allocate
<SDNode
>();
3790 new (N
) SDNode(Opcode
, DL
, VTList
, Ops
, NumOps
);
3792 CSEMap
.InsertNode(N
, IP
);
3795 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
3796 new (N
) UnarySDNode(Opcode
, DL
, VTList
, Ops
[0]);
3797 } else if (NumOps
== 2) {
3798 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
3799 new (N
) BinarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1]);
3800 } else if (NumOps
== 3) {
3801 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
3802 new (N
) TernarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1], Ops
[2]);
3804 N
= NodeAllocator
.Allocate
<SDNode
>();
3805 new (N
) SDNode(Opcode
, DL
, VTList
, Ops
, NumOps
);
3808 AllNodes
.push_back(N
);
3812 return SDValue(N
, 0);
3815 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
) {
3816 return getNode(Opcode
, DL
, VTList
, 0, 0);
3819 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3821 SDValue Ops
[] = { N1
};
3822 return getNode(Opcode
, DL
, VTList
, Ops
, 1);
3825 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3826 SDValue N1
, SDValue N2
) {
3827 SDValue Ops
[] = { N1
, N2
};
3828 return getNode(Opcode
, DL
, VTList
, Ops
, 2);
3831 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3832 SDValue N1
, SDValue N2
, SDValue N3
) {
3833 SDValue Ops
[] = { N1
, N2
, N3
};
3834 return getNode(Opcode
, DL
, VTList
, Ops
, 3);
3837 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3838 SDValue N1
, SDValue N2
, SDValue N3
,
3840 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
3841 return getNode(Opcode
, DL
, VTList
, Ops
, 4);
3844 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3845 SDValue N1
, SDValue N2
, SDValue N3
,
3846 SDValue N4
, SDValue N5
) {
3847 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
3848 return getNode(Opcode
, DL
, VTList
, Ops
, 5);
3851 SDVTList
SelectionDAG::getVTList(MVT VT
) {
3852 return makeVTList(SDNode::getValueTypeList(VT
), 1);
3855 SDVTList
SelectionDAG::getVTList(MVT VT1
, MVT VT2
) {
3856 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
3857 E
= VTList
.rend(); I
!= E
; ++I
)
3858 if (I
->NumVTs
== 2 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
)
3861 MVT
*Array
= Allocator
.Allocate
<MVT
>(2);
3864 SDVTList Result
= makeVTList(Array
, 2);
3865 VTList
.push_back(Result
);
3869 SDVTList
SelectionDAG::getVTList(MVT VT1
, MVT VT2
, MVT VT3
) {
3870 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
3871 E
= VTList
.rend(); I
!= E
; ++I
)
3872 if (I
->NumVTs
== 3 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
&&
3876 MVT
*Array
= Allocator
.Allocate
<MVT
>(3);
3880 SDVTList Result
= makeVTList(Array
, 3);
3881 VTList
.push_back(Result
);
3885 SDVTList
SelectionDAG::getVTList(MVT VT1
, MVT VT2
, MVT VT3
, MVT VT4
) {
3886 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
3887 E
= VTList
.rend(); I
!= E
; ++I
)
3888 if (I
->NumVTs
== 4 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
&&
3889 I
->VTs
[2] == VT3
&& I
->VTs
[3] == VT4
)
3892 MVT
*Array
= Allocator
.Allocate
<MVT
>(3);
3897 SDVTList Result
= makeVTList(Array
, 4);
3898 VTList
.push_back(Result
);
3902 SDVTList
SelectionDAG::getVTList(const MVT
*VTs
, unsigned NumVTs
) {
3904 case 0: assert(0 && "Cannot have nodes without results!");
3905 case 1: return getVTList(VTs
[0]);
3906 case 2: return getVTList(VTs
[0], VTs
[1]);
3907 case 3: return getVTList(VTs
[0], VTs
[1], VTs
[2]);
3911 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
3912 E
= VTList
.rend(); I
!= E
; ++I
) {
3913 if (I
->NumVTs
!= NumVTs
|| VTs
[0] != I
->VTs
[0] || VTs
[1] != I
->VTs
[1])
3916 bool NoMatch
= false;
3917 for (unsigned i
= 2; i
!= NumVTs
; ++i
)
3918 if (VTs
[i
] != I
->VTs
[i
]) {
3926 MVT
*Array
= Allocator
.Allocate
<MVT
>(NumVTs
);
3927 std::copy(VTs
, VTs
+NumVTs
, Array
);
3928 SDVTList Result
= makeVTList(Array
, NumVTs
);
3929 VTList
.push_back(Result
);
3934 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3935 /// specified operands. If the resultant node already exists in the DAG,
3936 /// this does not modify the specified node, instead it returns the node that
3937 /// already exists. If the resultant node does not exist in the DAG, the
3938 /// input node is returned. As a degenerate case, if you specify the same
3939 /// input operands as the node already has, the input node is returned.
3940 SDValue
SelectionDAG::UpdateNodeOperands(SDValue InN
, SDValue Op
) {
3941 SDNode
*N
= InN
.getNode();
3942 assert(N
->getNumOperands() == 1 && "Update with wrong number of operands");
3944 // Check to see if there is no change.
3945 if (Op
== N
->getOperand(0)) return InN
;
3947 // See if the modified node already exists.
3948 void *InsertPos
= 0;
3949 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op
, InsertPos
))
3950 return SDValue(Existing
, InN
.getResNo());
3952 // Nope it doesn't. Remove the node from its current place in the maps.
3954 if (!RemoveNodeFromCSEMaps(N
))
3957 // Now we update the operands.
3958 N
->OperandList
[0].set(Op
);
3960 // If this gets put into a CSE map, add it.
3961 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
3965 SDValue
SelectionDAG::
3966 UpdateNodeOperands(SDValue InN
, SDValue Op1
, SDValue Op2
) {
3967 SDNode
*N
= InN
.getNode();
3968 assert(N
->getNumOperands() == 2 && "Update with wrong number of operands");
3970 // Check to see if there is no change.
3971 if (Op1
== N
->getOperand(0) && Op2
== N
->getOperand(1))
3972 return InN
; // No operands changed, just return the input node.
3974 // See if the modified node already exists.
3975 void *InsertPos
= 0;
3976 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op1
, Op2
, InsertPos
))
3977 return SDValue(Existing
, InN
.getResNo());
3979 // Nope it doesn't. Remove the node from its current place in the maps.
3981 if (!RemoveNodeFromCSEMaps(N
))
3984 // Now we update the operands.
3985 if (N
->OperandList
[0] != Op1
)
3986 N
->OperandList
[0].set(Op1
);
3987 if (N
->OperandList
[1] != Op2
)
3988 N
->OperandList
[1].set(Op2
);
3990 // If this gets put into a CSE map, add it.
3991 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
3995 SDValue
SelectionDAG::
3996 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
, SDValue Op3
) {
3997 SDValue Ops
[] = { Op1
, Op2
, Op3
};
3998 return UpdateNodeOperands(N
, Ops
, 3);
4001 SDValue
SelectionDAG::
4002 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
,
4003 SDValue Op3
, SDValue Op4
) {
4004 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
};
4005 return UpdateNodeOperands(N
, Ops
, 4);
4008 SDValue
SelectionDAG::
4009 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
,
4010 SDValue Op3
, SDValue Op4
, SDValue Op5
) {
4011 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
, Op5
};
4012 return UpdateNodeOperands(N
, Ops
, 5);
4015 SDValue
SelectionDAG::
4016 UpdateNodeOperands(SDValue InN
, const SDValue
*Ops
, unsigned NumOps
) {
4017 SDNode
*N
= InN
.getNode();
4018 assert(N
->getNumOperands() == NumOps
&&
4019 "Update with wrong number of operands");
4021 // Check to see if there is no change.
4022 bool AnyChange
= false;
4023 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
4024 if (Ops
[i
] != N
->getOperand(i
)) {
4030 // No operands changed, just return the input node.
4031 if (!AnyChange
) return InN
;
4033 // See if the modified node already exists.
4034 void *InsertPos
= 0;
4035 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Ops
, NumOps
, InsertPos
))
4036 return SDValue(Existing
, InN
.getResNo());
4038 // Nope it doesn't. Remove the node from its current place in the maps.
4040 if (!RemoveNodeFromCSEMaps(N
))
4043 // Now we update the operands.
4044 for (unsigned i
= 0; i
!= NumOps
; ++i
)
4045 if (N
->OperandList
[i
] != Ops
[i
])
4046 N
->OperandList
[i
].set(Ops
[i
]);
4048 // If this gets put into a CSE map, add it.
4049 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4053 /// DropOperands - Release the operands and set this node to have
4055 void SDNode::DropOperands() {
4056 // Unlike the code in MorphNodeTo that does this, we don't need to
4057 // watch for dead nodes here.
4058 for (op_iterator I
= op_begin(), E
= op_end(); I
!= E
; ) {
4064 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4067 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4069 SDVTList VTs
= getVTList(VT
);
4070 return SelectNodeTo(N
, MachineOpc
, VTs
, 0, 0);
4073 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4074 MVT VT
, SDValue Op1
) {
4075 SDVTList VTs
= getVTList(VT
);
4076 SDValue Ops
[] = { Op1
};
4077 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 1);
4080 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4081 MVT VT
, SDValue Op1
,
4083 SDVTList VTs
= getVTList(VT
);
4084 SDValue Ops
[] = { Op1
, Op2
};
4085 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 2);
4088 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4089 MVT VT
, SDValue Op1
,
4090 SDValue Op2
, SDValue Op3
) {
4091 SDVTList VTs
= getVTList(VT
);
4092 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4093 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4096 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4097 MVT VT
, const SDValue
*Ops
,
4099 SDVTList VTs
= getVTList(VT
);
4100 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4103 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4104 MVT VT1
, MVT VT2
, const SDValue
*Ops
,
4106 SDVTList VTs
= getVTList(VT1
, VT2
);
4107 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4110 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4112 SDVTList VTs
= getVTList(VT1
, VT2
);
4113 return SelectNodeTo(N
, MachineOpc
, VTs
, (SDValue
*)0, 0);
4116 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4117 MVT VT1
, MVT VT2
, MVT VT3
,
4118 const SDValue
*Ops
, unsigned NumOps
) {
4119 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4120 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4123 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4124 MVT VT1
, MVT VT2
, MVT VT3
, MVT VT4
,
4125 const SDValue
*Ops
, unsigned NumOps
) {
4126 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
, VT4
);
4127 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4130 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4133 SDVTList VTs
= getVTList(VT1
, VT2
);
4134 SDValue Ops
[] = { Op1
};
4135 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 1);
4138 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4140 SDValue Op1
, SDValue Op2
) {
4141 SDVTList VTs
= getVTList(VT1
, VT2
);
4142 SDValue Ops
[] = { Op1
, Op2
};
4143 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 2);
4146 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4148 SDValue Op1
, SDValue Op2
,
4150 SDVTList VTs
= getVTList(VT1
, VT2
);
4151 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4152 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4155 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4156 MVT VT1
, MVT VT2
, MVT VT3
,
4157 SDValue Op1
, SDValue Op2
,
4159 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4160 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4161 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4164 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4165 SDVTList VTs
, const SDValue
*Ops
,
4167 return MorphNodeTo(N
, ~MachineOpc
, VTs
, Ops
, NumOps
);
4170 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4172 SDVTList VTs
= getVTList(VT
);
4173 return MorphNodeTo(N
, Opc
, VTs
, 0, 0);
4176 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4177 MVT VT
, SDValue Op1
) {
4178 SDVTList VTs
= getVTList(VT
);
4179 SDValue Ops
[] = { Op1
};
4180 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 1);
4183 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4184 MVT VT
, SDValue Op1
,
4186 SDVTList VTs
= getVTList(VT
);
4187 SDValue Ops
[] = { Op1
, Op2
};
4188 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 2);
4191 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4192 MVT VT
, SDValue Op1
,
4193 SDValue Op2
, SDValue Op3
) {
4194 SDVTList VTs
= getVTList(VT
);
4195 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4196 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 3);
4199 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4200 MVT VT
, const SDValue
*Ops
,
4202 SDVTList VTs
= getVTList(VT
);
4203 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4206 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4207 MVT VT1
, MVT VT2
, const SDValue
*Ops
,
4209 SDVTList VTs
= getVTList(VT1
, VT2
);
4210 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4213 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4215 SDVTList VTs
= getVTList(VT1
, VT2
);
4216 return MorphNodeTo(N
, Opc
, VTs
, (SDValue
*)0, 0);
4219 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4220 MVT VT1
, MVT VT2
, MVT VT3
,
4221 const SDValue
*Ops
, unsigned NumOps
) {
4222 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4223 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4226 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4229 SDVTList VTs
= getVTList(VT1
, VT2
);
4230 SDValue Ops
[] = { Op1
};
4231 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 1);
4234 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4236 SDValue Op1
, SDValue Op2
) {
4237 SDVTList VTs
= getVTList(VT1
, VT2
);
4238 SDValue Ops
[] = { Op1
, Op2
};
4239 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 2);
4242 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4244 SDValue Op1
, SDValue Op2
,
4246 SDVTList VTs
= getVTList(VT1
, VT2
);
4247 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4248 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 3);
4251 /// MorphNodeTo - These *mutate* the specified node to have the specified
4252 /// return type, opcode, and operands.
4254 /// Note that MorphNodeTo returns the resultant node. If there is already a
4255 /// node of the specified opcode and operands, it returns that node instead of
4256 /// the current one. Note that the DebugLoc need not be the same.
4258 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4259 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4260 /// node, and because it doesn't require CSE recalculation for any of
4261 /// the node's users.
4263 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4264 SDVTList VTs
, const SDValue
*Ops
,
4266 // If an identical node already exists, use it.
4268 if (VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Flag
) {
4269 FoldingSetNodeID ID
;
4270 AddNodeIDNode(ID
, Opc
, VTs
, Ops
, NumOps
);
4271 if (SDNode
*ON
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4275 if (!RemoveNodeFromCSEMaps(N
))
4278 // Start the morphing.
4280 N
->ValueList
= VTs
.VTs
;
4281 N
->NumValues
= VTs
.NumVTs
;
4283 // Clear the operands list, updating used nodes to remove this from their
4284 // use list. Keep track of any operands that become dead as a result.
4285 SmallPtrSet
<SDNode
*, 16> DeadNodeSet
;
4286 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
4288 SDNode
*Used
= Use
.getNode();
4290 if (Used
->use_empty())
4291 DeadNodeSet
.insert(Used
);
4294 // If NumOps is larger than the # of operands we currently have, reallocate
4295 // the operand list.
4296 if (NumOps
> N
->NumOperands
) {
4297 if (N
->OperandsNeedDelete
)
4298 delete[] N
->OperandList
;
4300 if (N
->isMachineOpcode()) {
4301 // We're creating a final node that will live unmorphed for the
4302 // remainder of the current SelectionDAG iteration, so we can allocate
4303 // the operands directly out of a pool with no recycling metadata.
4304 N
->OperandList
= OperandAllocator
.Allocate
<SDUse
>(NumOps
);
4305 N
->OperandsNeedDelete
= false;
4307 N
->OperandList
= new SDUse
[NumOps
];
4308 N
->OperandsNeedDelete
= true;
4312 // Assign the new operands.
4313 N
->NumOperands
= NumOps
;
4314 for (unsigned i
= 0, e
= NumOps
; i
!= e
; ++i
) {
4315 N
->OperandList
[i
].setUser(N
);
4316 N
->OperandList
[i
].setInitial(Ops
[i
]);
4319 // Delete any nodes that are still dead after adding the uses for the
4321 SmallVector
<SDNode
*, 16> DeadNodes
;
4322 for (SmallPtrSet
<SDNode
*, 16>::iterator I
= DeadNodeSet
.begin(),
4323 E
= DeadNodeSet
.end(); I
!= E
; ++I
)
4324 if ((*I
)->use_empty())
4325 DeadNodes
.push_back(*I
);
4326 RemoveDeadNodes(DeadNodes
);
4329 CSEMap
.InsertNode(N
, IP
); // Memoize the new node.
4334 /// getTargetNode - These are used for target selectors to create a new node
4335 /// with specified return type(s), target opcode, and operands.
4337 /// Note that getTargetNode returns the resultant node. If there is already a
4338 /// node of the specified opcode and operands, it returns that node instead of
4339 /// the current one.
4340 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT
) {
4341 return getNode(~Opcode
, dl
, VT
).getNode();
4344 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT
,
4346 return getNode(~Opcode
, dl
, VT
, Op1
).getNode();
4349 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT
,
4350 SDValue Op1
, SDValue Op2
) {
4351 return getNode(~Opcode
, dl
, VT
, Op1
, Op2
).getNode();
4354 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT
,
4355 SDValue Op1
, SDValue Op2
,
4357 return getNode(~Opcode
, dl
, VT
, Op1
, Op2
, Op3
).getNode();
4360 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT
,
4361 const SDValue
*Ops
, unsigned NumOps
) {
4362 return getNode(~Opcode
, dl
, VT
, Ops
, NumOps
).getNode();
4365 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4367 SDVTList VTs
= getVTList(VT1
, VT2
);
4369 return getNode(~Opcode
, dl
, VTs
, &Op
, 0).getNode();
4372 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT1
,
4373 MVT VT2
, SDValue Op1
) {
4374 SDVTList VTs
= getVTList(VT1
, VT2
);
4375 return getNode(~Opcode
, dl
, VTs
, &Op1
, 1).getNode();
4378 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT1
,
4379 MVT VT2
, SDValue Op1
,
4381 SDVTList VTs
= getVTList(VT1
, VT2
);
4382 SDValue Ops
[] = { Op1
, Op2
};
4383 return getNode(~Opcode
, dl
, VTs
, Ops
, 2).getNode();
4386 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT1
,
4387 MVT VT2
, SDValue Op1
,
4388 SDValue Op2
, SDValue Op3
) {
4389 SDVTList VTs
= getVTList(VT1
, VT2
);
4390 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4391 return getNode(~Opcode
, dl
, VTs
, Ops
, 3).getNode();
4394 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4396 const SDValue
*Ops
, unsigned NumOps
) {
4397 SDVTList VTs
= getVTList(VT1
, VT2
);
4398 return getNode(~Opcode
, dl
, VTs
, Ops
, NumOps
).getNode();
4401 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4402 MVT VT1
, MVT VT2
, MVT VT3
,
4403 SDValue Op1
, SDValue Op2
) {
4404 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4405 SDValue Ops
[] = { Op1
, Op2
};
4406 return getNode(~Opcode
, dl
, VTs
, Ops
, 2).getNode();
4409 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4410 MVT VT1
, MVT VT2
, MVT VT3
,
4411 SDValue Op1
, SDValue Op2
,
4413 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4414 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4415 return getNode(~Opcode
, dl
, VTs
, Ops
, 3).getNode();
4418 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4419 MVT VT1
, MVT VT2
, MVT VT3
,
4420 const SDValue
*Ops
, unsigned NumOps
) {
4421 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4422 return getNode(~Opcode
, dl
, VTs
, Ops
, NumOps
).getNode();
4425 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT1
,
4426 MVT VT2
, MVT VT3
, MVT VT4
,
4427 const SDValue
*Ops
, unsigned NumOps
) {
4428 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
, VT4
);
4429 return getNode(~Opcode
, dl
, VTs
, Ops
, NumOps
).getNode();
4432 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4433 const std::vector
<MVT
> &ResultTys
,
4434 const SDValue
*Ops
, unsigned NumOps
) {
4435 return getNode(~Opcode
, dl
, ResultTys
, Ops
, NumOps
).getNode();
4438 /// getNodeIfExists - Get the specified node if it's already available, or
4439 /// else return NULL.
4440 SDNode
*SelectionDAG::getNodeIfExists(unsigned Opcode
, SDVTList VTList
,
4441 const SDValue
*Ops
, unsigned NumOps
) {
4442 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
4443 FoldingSetNodeID ID
;
4444 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
4446 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4452 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4453 /// This can cause recursive merging of nodes in the DAG.
4455 /// This version assumes From has a single result value.
4457 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN
, SDValue To
,
4458 DAGUpdateListener
*UpdateListener
) {
4459 SDNode
*From
= FromN
.getNode();
4460 assert(From
->getNumValues() == 1 && FromN
.getResNo() == 0 &&
4461 "Cannot replace with this method!");
4462 assert(From
!= To
.getNode() && "Cannot replace uses of with self");
4464 // Iterate over all the existing uses of From. New uses will be added
4465 // to the beginning of the use list, which we avoid visiting.
4466 // This specifically avoids visiting uses of From that arise while the
4467 // replacement is happening, because any such uses would be the result
4468 // of CSE: If an existing node looks like From after one of its operands
4469 // is replaced by To, we don't want to replace of all its users with To
4470 // too. See PR3018 for more info.
4471 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4475 // This node is about to morph, remove its old self from the CSE maps.
4476 RemoveNodeFromCSEMaps(User
);
4478 // A user can appear in a use list multiple times, and when this
4479 // happens the uses are usually next to each other in the list.
4480 // To help reduce the number of CSE recomputations, process all
4481 // the uses of this user that we can find this way.
4483 SDUse
&Use
= UI
.getUse();
4486 } while (UI
!= UE
&& *UI
== User
);
4488 // Now that we have modified User, add it back to the CSE maps. If it
4489 // already exists there, recursively merge the results together.
4490 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4494 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4495 /// This can cause recursive merging of nodes in the DAG.
4497 /// This version assumes that for each value of From, there is a
4498 /// corresponding value in To in the same position with the same type.
4500 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
, SDNode
*To
,
4501 DAGUpdateListener
*UpdateListener
) {
4503 for (unsigned i
= 0, e
= From
->getNumValues(); i
!= e
; ++i
)
4504 assert((!From
->hasAnyUseOfValue(i
) ||
4505 From
->getValueType(i
) == To
->getValueType(i
)) &&
4506 "Cannot use this version of ReplaceAllUsesWith!");
4509 // Handle the trivial case.
4513 // Iterate over just the existing users of From. See the comments in
4514 // the ReplaceAllUsesWith above.
4515 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4519 // This node is about to morph, remove its old self from the CSE maps.
4520 RemoveNodeFromCSEMaps(User
);
4522 // A user can appear in a use list multiple times, and when this
4523 // happens the uses are usually next to each other in the list.
4524 // To help reduce the number of CSE recomputations, process all
4525 // the uses of this user that we can find this way.
4527 SDUse
&Use
= UI
.getUse();
4530 } while (UI
!= UE
&& *UI
== User
);
4532 // Now that we have modified User, add it back to the CSE maps. If it
4533 // already exists there, recursively merge the results together.
4534 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4538 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4539 /// This can cause recursive merging of nodes in the DAG.
4541 /// This version can replace From with any result values. To must match the
4542 /// number and types of values returned by From.
4543 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
,
4545 DAGUpdateListener
*UpdateListener
) {
4546 if (From
->getNumValues() == 1) // Handle the simple case efficiently.
4547 return ReplaceAllUsesWith(SDValue(From
, 0), To
[0], UpdateListener
);
4549 // Iterate over just the existing users of From. See the comments in
4550 // the ReplaceAllUsesWith above.
4551 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4555 // This node is about to morph, remove its old self from the CSE maps.
4556 RemoveNodeFromCSEMaps(User
);
4558 // A user can appear in a use list multiple times, and when this
4559 // happens the uses are usually next to each other in the list.
4560 // To help reduce the number of CSE recomputations, process all
4561 // the uses of this user that we can find this way.
4563 SDUse
&Use
= UI
.getUse();
4564 const SDValue
&ToOp
= To
[Use
.getResNo()];
4567 } while (UI
!= UE
&& *UI
== User
);
4569 // Now that we have modified User, add it back to the CSE maps. If it
4570 // already exists there, recursively merge the results together.
4571 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4575 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4576 /// uses of other values produced by From.getNode() alone. The Deleted
4577 /// vector is handled the same way as for ReplaceAllUsesWith.
4578 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From
, SDValue To
,
4579 DAGUpdateListener
*UpdateListener
){
4580 // Handle the really simple, really trivial case efficiently.
4581 if (From
== To
) return;
4583 // Handle the simple, trivial, case efficiently.
4584 if (From
.getNode()->getNumValues() == 1) {
4585 ReplaceAllUsesWith(From
, To
, UpdateListener
);
4589 // Iterate over just the existing users of From. See the comments in
4590 // the ReplaceAllUsesWith above.
4591 SDNode::use_iterator UI
= From
.getNode()->use_begin(),
4592 UE
= From
.getNode()->use_end();
4595 bool UserRemovedFromCSEMaps
= false;
4597 // A user can appear in a use list multiple times, and when this
4598 // happens the uses are usually next to each other in the list.
4599 // To help reduce the number of CSE recomputations, process all
4600 // the uses of this user that we can find this way.
4602 SDUse
&Use
= UI
.getUse();
4604 // Skip uses of different values from the same node.
4605 if (Use
.getResNo() != From
.getResNo()) {
4610 // If this node hasn't been modified yet, it's still in the CSE maps,
4611 // so remove its old self from the CSE maps.
4612 if (!UserRemovedFromCSEMaps
) {
4613 RemoveNodeFromCSEMaps(User
);
4614 UserRemovedFromCSEMaps
= true;
4619 } while (UI
!= UE
&& *UI
== User
);
4621 // We are iterating over all uses of the From node, so if a use
4622 // doesn't use the specific value, no changes are made.
4623 if (!UserRemovedFromCSEMaps
)
4626 // Now that we have modified User, add it back to the CSE maps. If it
4627 // already exists there, recursively merge the results together.
4628 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4633 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4634 /// to record information about a use.
4641 /// operator< - Sort Memos by User.
4642 bool operator<(const UseMemo
&L
, const UseMemo
&R
) {
4643 return (intptr_t)L
.User
< (intptr_t)R
.User
;
4647 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4648 /// uses of other values produced by From.getNode() alone. The same value
4649 /// may appear in both the From and To list. The Deleted vector is
4650 /// handled the same way as for ReplaceAllUsesWith.
4651 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue
*From
,
4654 DAGUpdateListener
*UpdateListener
){
4655 // Handle the simple, trivial case efficiently.
4657 return ReplaceAllUsesOfValueWith(*From
, *To
, UpdateListener
);
4659 // Read up all the uses and make records of them. This helps
4660 // processing new uses that are introduced during the
4661 // replacement process.
4662 SmallVector
<UseMemo
, 4> Uses
;
4663 for (unsigned i
= 0; i
!= Num
; ++i
) {
4664 unsigned FromResNo
= From
[i
].getResNo();
4665 SDNode
*FromNode
= From
[i
].getNode();
4666 for (SDNode::use_iterator UI
= FromNode
->use_begin(),
4667 E
= FromNode
->use_end(); UI
!= E
; ++UI
) {
4668 SDUse
&Use
= UI
.getUse();
4669 if (Use
.getResNo() == FromResNo
) {
4670 UseMemo Memo
= { *UI
, i
, &Use
};
4671 Uses
.push_back(Memo
);
4676 // Sort the uses, so that all the uses from a given User are together.
4677 std::sort(Uses
.begin(), Uses
.end());
4679 for (unsigned UseIndex
= 0, UseIndexEnd
= Uses
.size();
4680 UseIndex
!= UseIndexEnd
; ) {
4681 // We know that this user uses some value of From. If it is the right
4682 // value, update it.
4683 SDNode
*User
= Uses
[UseIndex
].User
;
4685 // This node is about to morph, remove its old self from the CSE maps.
4686 RemoveNodeFromCSEMaps(User
);
4688 // The Uses array is sorted, so all the uses for a given User
4689 // are next to each other in the list.
4690 // To help reduce the number of CSE recomputations, process all
4691 // the uses of this user that we can find this way.
4693 unsigned i
= Uses
[UseIndex
].Index
;
4694 SDUse
&Use
= *Uses
[UseIndex
].Use
;
4698 } while (UseIndex
!= UseIndexEnd
&& Uses
[UseIndex
].User
== User
);
4700 // Now that we have modified User, add it back to the CSE maps. If it
4701 // already exists there, recursively merge the results together.
4702 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4706 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4707 /// based on their topological order. It returns the maximum id and a vector
4708 /// of the SDNodes* in assigned order by reference.
4709 unsigned SelectionDAG::AssignTopologicalOrder() {
4711 unsigned DAGSize
= 0;
4713 // SortedPos tracks the progress of the algorithm. Nodes before it are
4714 // sorted, nodes after it are unsorted. When the algorithm completes
4715 // it is at the end of the list.
4716 allnodes_iterator SortedPos
= allnodes_begin();
4718 // Visit all the nodes. Move nodes with no operands to the front of
4719 // the list immediately. Annotate nodes that do have operands with their
4720 // operand count. Before we do this, the Node Id fields of the nodes
4721 // may contain arbitrary values. After, the Node Id fields for nodes
4722 // before SortedPos will contain the topological sort index, and the
4723 // Node Id fields for nodes At SortedPos and after will contain the
4724 // count of outstanding operands.
4725 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ) {
4727 unsigned Degree
= N
->getNumOperands();
4729 // A node with no uses, add it to the result array immediately.
4730 N
->setNodeId(DAGSize
++);
4731 allnodes_iterator Q
= N
;
4733 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(Q
));
4736 // Temporarily use the Node Id as scratch space for the degree count.
4737 N
->setNodeId(Degree
);
4741 // Visit all the nodes. As we iterate, moves nodes into sorted order,
4742 // such that by the time the end is reached all nodes will be sorted.
4743 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ++I
) {
4745 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
4748 unsigned Degree
= P
->getNodeId();
4751 // All of P's operands are sorted, so P may sorted now.
4752 P
->setNodeId(DAGSize
++);
4754 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(P
));
4757 // Update P's outstanding operand count.
4758 P
->setNodeId(Degree
);
4763 assert(SortedPos
== AllNodes
.end() &&
4764 "Topological sort incomplete!");
4765 assert(AllNodes
.front().getOpcode() == ISD::EntryToken
&&
4766 "First node in topological sort is not the entry token!");
4767 assert(AllNodes
.front().getNodeId() == 0 &&
4768 "First node in topological sort has non-zero id!");
4769 assert(AllNodes
.front().getNumOperands() == 0 &&
4770 "First node in topological sort has operands!");
4771 assert(AllNodes
.back().getNodeId() == (int)DAGSize
-1 &&
4772 "Last node in topologic sort has unexpected id!");
4773 assert(AllNodes
.back().use_empty() &&
4774 "Last node in topologic sort has users!");
4775 assert(DAGSize
== allnodes_size() && "Node count mismatch!");
4781 //===----------------------------------------------------------------------===//
4783 //===----------------------------------------------------------------------===//
4785 HandleSDNode::~HandleSDNode() {
4789 GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget
, const GlobalValue
*GA
,
4791 : SDNode(isa
<GlobalVariable
>(GA
) &&
4792 cast
<GlobalVariable
>(GA
)->isThreadLocal() ?
4794 (isTarget
? ISD::TargetGlobalTLSAddress
: ISD::GlobalTLSAddress
) :
4796 (isTarget
? ISD::TargetGlobalAddress
: ISD::GlobalAddress
),
4797 DebugLoc::getUnknownLoc(), getSDVTList(VT
)), Offset(o
) {
4798 TheGlobal
= const_cast<GlobalValue
*>(GA
);
4801 MemSDNode::MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
, MVT memvt
,
4802 const Value
*srcValue
, int SVO
,
4803 unsigned alignment
, bool vol
)
4804 : SDNode(Opc
, dl
, VTs
), MemoryVT(memvt
), SrcValue(srcValue
), SVOffset(SVO
) {
4805 SubclassData
= encodeMemSDNodeFlags(0, ISD::UNINDEXED
, vol
, alignment
);
4806 assert(isPowerOf2_32(alignment
) && "Alignment is not a power of 2!");
4807 assert(getAlignment() == alignment
&& "Alignment representation error!");
4808 assert(isVolatile() == vol
&& "Volatile representation error!");
4811 MemSDNode::MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
,
4813 unsigned NumOps
, MVT memvt
, const Value
*srcValue
,
4814 int SVO
, unsigned alignment
, bool vol
)
4815 : SDNode(Opc
, dl
, VTs
, Ops
, NumOps
),
4816 MemoryVT(memvt
), SrcValue(srcValue
), SVOffset(SVO
) {
4817 SubclassData
= encodeMemSDNodeFlags(0, ISD::UNINDEXED
, vol
, alignment
);
4818 assert(isPowerOf2_32(alignment
) && "Alignment is not a power of 2!");
4819 assert(getAlignment() == alignment
&& "Alignment representation error!");
4820 assert(isVolatile() == vol
&& "Volatile representation error!");
4823 /// getMemOperand - Return a MachineMemOperand object describing the memory
4824 /// reference performed by this memory reference.
4825 MachineMemOperand
MemSDNode::getMemOperand() const {
4827 if (isa
<LoadSDNode
>(this))
4828 Flags
= MachineMemOperand::MOLoad
;
4829 else if (isa
<StoreSDNode
>(this))
4830 Flags
= MachineMemOperand::MOStore
;
4831 else if (isa
<AtomicSDNode
>(this)) {
4832 Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
4835 const MemIntrinsicSDNode
* MemIntrinNode
= dyn_cast
<MemIntrinsicSDNode
>(this);
4836 assert(MemIntrinNode
&& "Unknown MemSDNode opcode!");
4837 if (MemIntrinNode
->readMem()) Flags
|= MachineMemOperand::MOLoad
;
4838 if (MemIntrinNode
->writeMem()) Flags
|= MachineMemOperand::MOStore
;
4841 int Size
= (getMemoryVT().getSizeInBits() + 7) >> 3;
4842 if (isVolatile()) Flags
|= MachineMemOperand::MOVolatile
;
4844 // Check if the memory reference references a frame index
4845 const FrameIndexSDNode
*FI
=
4846 dyn_cast
<const FrameIndexSDNode
>(getBasePtr().getNode());
4847 if (!getSrcValue() && FI
)
4848 return MachineMemOperand(PseudoSourceValue::getFixedStack(FI
->getIndex()),
4849 Flags
, 0, Size
, getAlignment());
4851 return MachineMemOperand(getSrcValue(), Flags
, getSrcValueOffset(),
4852 Size
, getAlignment());
4855 /// Profile - Gather unique data for the node.
4857 void SDNode::Profile(FoldingSetNodeID
&ID
) const {
4858 AddNodeIDNode(ID
, this);
4861 /// getValueTypeList - Return a pointer to the specified value type.
4863 const MVT
*SDNode::getValueTypeList(MVT VT
) {
4864 if (VT
.isExtended()) {
4865 static std::set
<MVT
, MVT::compareRawBits
> EVTs
;
4866 return &(*EVTs
.insert(VT
).first
);
4868 static MVT VTs
[MVT::LAST_VALUETYPE
];
4869 VTs
[VT
.getSimpleVT()] = VT
;
4870 return &VTs
[VT
.getSimpleVT()];
4874 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4875 /// indicated value. This method ignores uses of other values defined by this
4877 bool SDNode::hasNUsesOfValue(unsigned NUses
, unsigned Value
) const {
4878 assert(Value
< getNumValues() && "Bad value!");
4880 // TODO: Only iterate over uses of a given value of the node
4881 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
) {
4882 if (UI
.getUse().getResNo() == Value
) {
4889 // Found exactly the right number of uses?
4894 /// hasAnyUseOfValue - Return true if there are any use of the indicated
4895 /// value. This method ignores uses of other values defined by this operation.
4896 bool SDNode::hasAnyUseOfValue(unsigned Value
) const {
4897 assert(Value
< getNumValues() && "Bad value!");
4899 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
)
4900 if (UI
.getUse().getResNo() == Value
)
4907 /// isOnlyUserOf - Return true if this node is the only use of N.
4909 bool SDNode::isOnlyUserOf(SDNode
*N
) const {
4911 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
4922 /// isOperand - Return true if this node is an operand of N.
4924 bool SDValue::isOperandOf(SDNode
*N
) const {
4925 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
4926 if (*this == N
->getOperand(i
))
4931 bool SDNode::isOperandOf(SDNode
*N
) const {
4932 for (unsigned i
= 0, e
= N
->NumOperands
; i
!= e
; ++i
)
4933 if (this == N
->OperandList
[i
].getNode())
4938 /// reachesChainWithoutSideEffects - Return true if this operand (which must
4939 /// be a chain) reaches the specified operand without crossing any
4940 /// side-effecting instructions. In practice, this looks through token
4941 /// factors and non-volatile loads. In order to remain efficient, this only
4942 /// looks a couple of nodes in, it does not do an exhaustive search.
4943 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest
,
4944 unsigned Depth
) const {
4945 if (*this == Dest
) return true;
4947 // Don't search too deeply, we just want to be able to see through
4948 // TokenFactor's etc.
4949 if (Depth
== 0) return false;
4951 // If this is a token factor, all inputs to the TF happen in parallel. If any
4952 // of the operands of the TF reach dest, then we can do the xform.
4953 if (getOpcode() == ISD::TokenFactor
) {
4954 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
4955 if (getOperand(i
).reachesChainWithoutSideEffects(Dest
, Depth
-1))
4960 // Loads don't have side effects, look through them.
4961 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(*this)) {
4962 if (!Ld
->isVolatile())
4963 return Ld
->getChain().reachesChainWithoutSideEffects(Dest
, Depth
-1);
4969 static void findPredecessor(SDNode
*N
, const SDNode
*P
, bool &found
,
4970 SmallPtrSet
<SDNode
*, 32> &Visited
) {
4971 if (found
|| !Visited
.insert(N
))
4974 for (unsigned i
= 0, e
= N
->getNumOperands(); !found
&& i
!= e
; ++i
) {
4975 SDNode
*Op
= N
->getOperand(i
).getNode();
4980 findPredecessor(Op
, P
, found
, Visited
);
4984 /// isPredecessorOf - Return true if this node is a predecessor of N. This node
4985 /// is either an operand of N or it can be reached by recursively traversing
4986 /// up the operands.
4987 /// NOTE: this is an expensive method. Use it carefully.
4988 bool SDNode::isPredecessorOf(SDNode
*N
) const {
4989 SmallPtrSet
<SDNode
*, 32> Visited
;
4991 findPredecessor(N
, this, found
, Visited
);
4995 uint64_t SDNode::getConstantOperandVal(unsigned Num
) const {
4996 assert(Num
< NumOperands
&& "Invalid child # of SDNode!");
4997 return cast
<ConstantSDNode
>(OperandList
[Num
])->getZExtValue();
5000 std::string
SDNode::getOperationName(const SelectionDAG
*G
) const {
5001 switch (getOpcode()) {
5003 if (getOpcode() < ISD::BUILTIN_OP_END
)
5004 return "<<Unknown DAG Node>>";
5005 if (isMachineOpcode()) {
5007 if (const TargetInstrInfo
*TII
= G
->getTarget().getInstrInfo())
5008 if (getMachineOpcode() < TII
->getNumOpcodes())
5009 return TII
->get(getMachineOpcode()).getName();
5010 return "<<Unknown Machine Node>>";
5013 const TargetLowering
&TLI
= G
->getTargetLoweringInfo();
5014 const char *Name
= TLI
.getTargetNodeName(getOpcode());
5015 if (Name
) return Name
;
5016 return "<<Unknown Target Node>>";
5018 return "<<Unknown Node>>";
5021 case ISD::DELETED_NODE
:
5022 return "<<Deleted Node!>>";
5024 case ISD::PREFETCH
: return "Prefetch";
5025 case ISD::MEMBARRIER
: return "MemBarrier";
5026 case ISD::ATOMIC_CMP_SWAP
: return "AtomicCmpSwap";
5027 case ISD::ATOMIC_SWAP
: return "AtomicSwap";
5028 case ISD::ATOMIC_LOAD_ADD
: return "AtomicLoadAdd";
5029 case ISD::ATOMIC_LOAD_SUB
: return "AtomicLoadSub";
5030 case ISD::ATOMIC_LOAD_AND
: return "AtomicLoadAnd";
5031 case ISD::ATOMIC_LOAD_OR
: return "AtomicLoadOr";
5032 case ISD::ATOMIC_LOAD_XOR
: return "AtomicLoadXor";
5033 case ISD::ATOMIC_LOAD_NAND
: return "AtomicLoadNand";
5034 case ISD::ATOMIC_LOAD_MIN
: return "AtomicLoadMin";
5035 case ISD::ATOMIC_LOAD_MAX
: return "AtomicLoadMax";
5036 case ISD::ATOMIC_LOAD_UMIN
: return "AtomicLoadUMin";
5037 case ISD::ATOMIC_LOAD_UMAX
: return "AtomicLoadUMax";
5038 case ISD::PCMARKER
: return "PCMarker";
5039 case ISD::READCYCLECOUNTER
: return "ReadCycleCounter";
5040 case ISD::SRCVALUE
: return "SrcValue";
5041 case ISD::MEMOPERAND
: return "MemOperand";
5042 case ISD::EntryToken
: return "EntryToken";
5043 case ISD::TokenFactor
: return "TokenFactor";
5044 case ISD::AssertSext
: return "AssertSext";
5045 case ISD::AssertZext
: return "AssertZext";
5047 case ISD::BasicBlock
: return "BasicBlock";
5048 case ISD::ARG_FLAGS
: return "ArgFlags";
5049 case ISD::VALUETYPE
: return "ValueType";
5050 case ISD::Register
: return "Register";
5052 case ISD::Constant
: return "Constant";
5053 case ISD::ConstantFP
: return "ConstantFP";
5054 case ISD::GlobalAddress
: return "GlobalAddress";
5055 case ISD::GlobalTLSAddress
: return "GlobalTLSAddress";
5056 case ISD::FrameIndex
: return "FrameIndex";
5057 case ISD::JumpTable
: return "JumpTable";
5058 case ISD::GLOBAL_OFFSET_TABLE
: return "GLOBAL_OFFSET_TABLE";
5059 case ISD::RETURNADDR
: return "RETURNADDR";
5060 case ISD::FRAMEADDR
: return "FRAMEADDR";
5061 case ISD::FRAME_TO_ARGS_OFFSET
: return "FRAME_TO_ARGS_OFFSET";
5062 case ISD::EXCEPTIONADDR
: return "EXCEPTIONADDR";
5063 case ISD::EHSELECTION
: return "EHSELECTION";
5064 case ISD::EH_RETURN
: return "EH_RETURN";
5065 case ISD::ConstantPool
: return "ConstantPool";
5066 case ISD::ExternalSymbol
: return "ExternalSymbol";
5067 case ISD::INTRINSIC_WO_CHAIN
: {
5068 unsigned IID
= cast
<ConstantSDNode
>(getOperand(0))->getZExtValue();
5069 return Intrinsic::getName((Intrinsic::ID
)IID
);
5071 case ISD::INTRINSIC_VOID
:
5072 case ISD::INTRINSIC_W_CHAIN
: {
5073 unsigned IID
= cast
<ConstantSDNode
>(getOperand(1))->getZExtValue();
5074 return Intrinsic::getName((Intrinsic::ID
)IID
);
5077 case ISD::BUILD_VECTOR
: return "BUILD_VECTOR";
5078 case ISD::TargetConstant
: return "TargetConstant";
5079 case ISD::TargetConstantFP
:return "TargetConstantFP";
5080 case ISD::TargetGlobalAddress
: return "TargetGlobalAddress";
5081 case ISD::TargetGlobalTLSAddress
: return "TargetGlobalTLSAddress";
5082 case ISD::TargetFrameIndex
: return "TargetFrameIndex";
5083 case ISD::TargetJumpTable
: return "TargetJumpTable";
5084 case ISD::TargetConstantPool
: return "TargetConstantPool";
5085 case ISD::TargetExternalSymbol
: return "TargetExternalSymbol";
5087 case ISD::CopyToReg
: return "CopyToReg";
5088 case ISD::CopyFromReg
: return "CopyFromReg";
5089 case ISD::UNDEF
: return "undef";
5090 case ISD::MERGE_VALUES
: return "merge_values";
5091 case ISD::INLINEASM
: return "inlineasm";
5092 case ISD::DBG_LABEL
: return "dbg_label";
5093 case ISD::EH_LABEL
: return "eh_label";
5094 case ISD::DECLARE
: return "declare";
5095 case ISD::HANDLENODE
: return "handlenode";
5096 case ISD::FORMAL_ARGUMENTS
: return "formal_arguments";
5097 case ISD::CALL
: return "call";
5100 case ISD::FABS
: return "fabs";
5101 case ISD::FNEG
: return "fneg";
5102 case ISD::FSQRT
: return "fsqrt";
5103 case ISD::FSIN
: return "fsin";
5104 case ISD::FCOS
: return "fcos";
5105 case ISD::FPOWI
: return "fpowi";
5106 case ISD::FPOW
: return "fpow";
5107 case ISD::FTRUNC
: return "ftrunc";
5108 case ISD::FFLOOR
: return "ffloor";
5109 case ISD::FCEIL
: return "fceil";
5110 case ISD::FRINT
: return "frint";
5111 case ISD::FNEARBYINT
: return "fnearbyint";
5114 case ISD::ADD
: return "add";
5115 case ISD::SUB
: return "sub";
5116 case ISD::MUL
: return "mul";
5117 case ISD::MULHU
: return "mulhu";
5118 case ISD::MULHS
: return "mulhs";
5119 case ISD::SDIV
: return "sdiv";
5120 case ISD::UDIV
: return "udiv";
5121 case ISD::SREM
: return "srem";
5122 case ISD::UREM
: return "urem";
5123 case ISD::SMUL_LOHI
: return "smul_lohi";
5124 case ISD::UMUL_LOHI
: return "umul_lohi";
5125 case ISD::SDIVREM
: return "sdivrem";
5126 case ISD::UDIVREM
: return "udivrem";
5127 case ISD::AND
: return "and";
5128 case ISD::OR
: return "or";
5129 case ISD::XOR
: return "xor";
5130 case ISD::SHL
: return "shl";
5131 case ISD::SRA
: return "sra";
5132 case ISD::SRL
: return "srl";
5133 case ISD::ROTL
: return "rotl";
5134 case ISD::ROTR
: return "rotr";
5135 case ISD::FADD
: return "fadd";
5136 case ISD::FSUB
: return "fsub";
5137 case ISD::FMUL
: return "fmul";
5138 case ISD::FDIV
: return "fdiv";
5139 case ISD::FREM
: return "frem";
5140 case ISD::FCOPYSIGN
: return "fcopysign";
5141 case ISD::FGETSIGN
: return "fgetsign";
5143 case ISD::SETCC
: return "setcc";
5144 case ISD::VSETCC
: return "vsetcc";
5145 case ISD::SELECT
: return "select";
5146 case ISD::SELECT_CC
: return "select_cc";
5147 case ISD::INSERT_VECTOR_ELT
: return "insert_vector_elt";
5148 case ISD::EXTRACT_VECTOR_ELT
: return "extract_vector_elt";
5149 case ISD::CONCAT_VECTORS
: return "concat_vectors";
5150 case ISD::EXTRACT_SUBVECTOR
: return "extract_subvector";
5151 case ISD::SCALAR_TO_VECTOR
: return "scalar_to_vector";
5152 case ISD::VECTOR_SHUFFLE
: return "vector_shuffle";
5153 case ISD::CARRY_FALSE
: return "carry_false";
5154 case ISD::ADDC
: return "addc";
5155 case ISD::ADDE
: return "adde";
5156 case ISD::SADDO
: return "saddo";
5157 case ISD::UADDO
: return "uaddo";
5158 case ISD::SSUBO
: return "ssubo";
5159 case ISD::USUBO
: return "usubo";
5160 case ISD::SMULO
: return "smulo";
5161 case ISD::UMULO
: return "umulo";
5162 case ISD::SUBC
: return "subc";
5163 case ISD::SUBE
: return "sube";
5164 case ISD::SHL_PARTS
: return "shl_parts";
5165 case ISD::SRA_PARTS
: return "sra_parts";
5166 case ISD::SRL_PARTS
: return "srl_parts";
5168 // Conversion operators.
5169 case ISD::SIGN_EXTEND
: return "sign_extend";
5170 case ISD::ZERO_EXTEND
: return "zero_extend";
5171 case ISD::ANY_EXTEND
: return "any_extend";
5172 case ISD::SIGN_EXTEND_INREG
: return "sign_extend_inreg";
5173 case ISD::TRUNCATE
: return "truncate";
5174 case ISD::FP_ROUND
: return "fp_round";
5175 case ISD::FLT_ROUNDS_
: return "flt_rounds";
5176 case ISD::FP_ROUND_INREG
: return "fp_round_inreg";
5177 case ISD::FP_EXTEND
: return "fp_extend";
5179 case ISD::SINT_TO_FP
: return "sint_to_fp";
5180 case ISD::UINT_TO_FP
: return "uint_to_fp";
5181 case ISD::FP_TO_SINT
: return "fp_to_sint";
5182 case ISD::FP_TO_UINT
: return "fp_to_uint";
5183 case ISD::BIT_CONVERT
: return "bit_convert";
5185 case ISD::CONVERT_RNDSAT
: {
5186 switch (cast
<CvtRndSatSDNode
>(this)->getCvtCode()) {
5187 default: assert(0 && "Unknown cvt code!");
5188 case ISD::CVT_FF
: return "cvt_ff";
5189 case ISD::CVT_FS
: return "cvt_fs";
5190 case ISD::CVT_FU
: return "cvt_fu";
5191 case ISD::CVT_SF
: return "cvt_sf";
5192 case ISD::CVT_UF
: return "cvt_uf";
5193 case ISD::CVT_SS
: return "cvt_ss";
5194 case ISD::CVT_SU
: return "cvt_su";
5195 case ISD::CVT_US
: return "cvt_us";
5196 case ISD::CVT_UU
: return "cvt_uu";
5200 // Control flow instructions
5201 case ISD::BR
: return "br";
5202 case ISD::BRIND
: return "brind";
5203 case ISD::BR_JT
: return "br_jt";
5204 case ISD::BRCOND
: return "brcond";
5205 case ISD::BR_CC
: return "br_cc";
5206 case ISD::RET
: return "ret";
5207 case ISD::CALLSEQ_START
: return "callseq_start";
5208 case ISD::CALLSEQ_END
: return "callseq_end";
5211 case ISD::LOAD
: return "load";
5212 case ISD::STORE
: return "store";
5213 case ISD::VAARG
: return "vaarg";
5214 case ISD::VACOPY
: return "vacopy";
5215 case ISD::VAEND
: return "vaend";
5216 case ISD::VASTART
: return "vastart";
5217 case ISD::DYNAMIC_STACKALLOC
: return "dynamic_stackalloc";
5218 case ISD::EXTRACT_ELEMENT
: return "extract_element";
5219 case ISD::BUILD_PAIR
: return "build_pair";
5220 case ISD::STACKSAVE
: return "stacksave";
5221 case ISD::STACKRESTORE
: return "stackrestore";
5222 case ISD::TRAP
: return "trap";
5225 case ISD::BSWAP
: return "bswap";
5226 case ISD::CTPOP
: return "ctpop";
5227 case ISD::CTTZ
: return "cttz";
5228 case ISD::CTLZ
: return "ctlz";
5231 case ISD::DBG_STOPPOINT
: return "dbg_stoppoint";
5232 case ISD::DEBUG_LOC
: return "debug_loc";
5235 case ISD::TRAMPOLINE
: return "trampoline";
5238 switch (cast
<CondCodeSDNode
>(this)->get()) {
5239 default: assert(0 && "Unknown setcc condition!");
5240 case ISD::SETOEQ
: return "setoeq";
5241 case ISD::SETOGT
: return "setogt";
5242 case ISD::SETOGE
: return "setoge";
5243 case ISD::SETOLT
: return "setolt";
5244 case ISD::SETOLE
: return "setole";
5245 case ISD::SETONE
: return "setone";
5247 case ISD::SETO
: return "seto";
5248 case ISD::SETUO
: return "setuo";
5249 case ISD::SETUEQ
: return "setue";
5250 case ISD::SETUGT
: return "setugt";
5251 case ISD::SETUGE
: return "setuge";
5252 case ISD::SETULT
: return "setult";
5253 case ISD::SETULE
: return "setule";
5254 case ISD::SETUNE
: return "setune";
5256 case ISD::SETEQ
: return "seteq";
5257 case ISD::SETGT
: return "setgt";
5258 case ISD::SETGE
: return "setge";
5259 case ISD::SETLT
: return "setlt";
5260 case ISD::SETLE
: return "setle";
5261 case ISD::SETNE
: return "setne";
5266 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM
) {
5275 return "<post-inc>";
5277 return "<post-dec>";
5281 std::string
ISD::ArgFlagsTy::getArgFlagsString() {
5282 std::string S
= "< ";
5296 if (getByValAlign())
5297 S
+= "byval-align:" + utostr(getByValAlign()) + " ";
5299 S
+= "orig-align:" + utostr(getOrigAlign()) + " ";
5301 S
+= "byval-size:" + utostr(getByValSize()) + " ";
5305 void SDNode::dump() const { dump(0); }
5306 void SDNode::dump(const SelectionDAG
*G
) const {
5310 void SDNode::print_types(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5311 OS
<< (void*)this << ": ";
5313 for (unsigned i
= 0, e
= getNumValues(); i
!= e
; ++i
) {
5315 if (getValueType(i
) == MVT::Other
)
5318 OS
<< getValueType(i
).getMVTString();
5320 OS
<< " = " << getOperationName(G
);
5323 void SDNode::print_details(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5324 if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE
) {
5325 SDNode
*Mask
= getOperand(2).getNode();
5327 for (unsigned i
= 0, e
= Mask
->getNumOperands(); i
!= e
; ++i
) {
5329 if (Mask
->getOperand(i
).getOpcode() == ISD::UNDEF
)
5332 OS
<< cast
<ConstantSDNode
>(Mask
->getOperand(i
))->getZExtValue();
5337 if (const ConstantSDNode
*CSDN
= dyn_cast
<ConstantSDNode
>(this)) {
5338 OS
<< '<' << CSDN
->getAPIntValue() << '>';
5339 } else if (const ConstantFPSDNode
*CSDN
= dyn_cast
<ConstantFPSDNode
>(this)) {
5340 if (&CSDN
->getValueAPF().getSemantics()==&APFloat::IEEEsingle
)
5341 OS
<< '<' << CSDN
->getValueAPF().convertToFloat() << '>';
5342 else if (&CSDN
->getValueAPF().getSemantics()==&APFloat::IEEEdouble
)
5343 OS
<< '<' << CSDN
->getValueAPF().convertToDouble() << '>';
5346 CSDN
->getValueAPF().bitcastToAPInt().dump();
5349 } else if (const GlobalAddressSDNode
*GADN
=
5350 dyn_cast
<GlobalAddressSDNode
>(this)) {
5351 int64_t offset
= GADN
->getOffset();
5353 WriteAsOperand(OS
, GADN
->getGlobal());
5356 OS
<< " + " << offset
;
5358 OS
<< " " << offset
;
5359 } else if (const FrameIndexSDNode
*FIDN
= dyn_cast
<FrameIndexSDNode
>(this)) {
5360 OS
<< "<" << FIDN
->getIndex() << ">";
5361 } else if (const JumpTableSDNode
*JTDN
= dyn_cast
<JumpTableSDNode
>(this)) {
5362 OS
<< "<" << JTDN
->getIndex() << ">";
5363 } else if (const ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(this)){
5364 int offset
= CP
->getOffset();
5365 if (CP
->isMachineConstantPoolEntry())
5366 OS
<< "<" << *CP
->getMachineCPVal() << ">";
5368 OS
<< "<" << *CP
->getConstVal() << ">";
5370 OS
<< " + " << offset
;
5372 OS
<< " " << offset
;
5373 } else if (const BasicBlockSDNode
*BBDN
= dyn_cast
<BasicBlockSDNode
>(this)) {
5375 const Value
*LBB
= (const Value
*)BBDN
->getBasicBlock()->getBasicBlock();
5377 OS
<< LBB
->getName() << " ";
5378 OS
<< (const void*)BBDN
->getBasicBlock() << ">";
5379 } else if (const RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(this)) {
5380 if (G
&& R
->getReg() &&
5381 TargetRegisterInfo::isPhysicalRegister(R
->getReg())) {
5382 OS
<< " " << G
->getTarget().getRegisterInfo()->getName(R
->getReg());
5384 OS
<< " #" << R
->getReg();
5386 } else if (const ExternalSymbolSDNode
*ES
=
5387 dyn_cast
<ExternalSymbolSDNode
>(this)) {
5388 OS
<< "'" << ES
->getSymbol() << "'";
5389 } else if (const SrcValueSDNode
*M
= dyn_cast
<SrcValueSDNode
>(this)) {
5391 OS
<< "<" << M
->getValue() << ">";
5394 } else if (const MemOperandSDNode
*M
= dyn_cast
<MemOperandSDNode
>(this)) {
5395 if (M
->MO
.getValue())
5396 OS
<< "<" << M
->MO
.getValue() << ":" << M
->MO
.getOffset() << ">";
5398 OS
<< "<null:" << M
->MO
.getOffset() << ">";
5399 } else if (const ARG_FLAGSSDNode
*N
= dyn_cast
<ARG_FLAGSSDNode
>(this)) {
5400 OS
<< N
->getArgFlags().getArgFlagsString();
5401 } else if (const VTSDNode
*N
= dyn_cast
<VTSDNode
>(this)) {
5402 OS
<< ":" << N
->getVT().getMVTString();
5404 else if (const LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(this)) {
5405 const Value
*SrcValue
= LD
->getSrcValue();
5406 int SrcOffset
= LD
->getSrcValueOffset();
5412 OS
<< ":" << SrcOffset
<< ">";
5415 switch (LD
->getExtensionType()) {
5416 default: doExt
= false; break;
5417 case ISD::EXTLOAD
: OS
<< " <anyext "; break;
5418 case ISD::SEXTLOAD
: OS
<< " <sext "; break;
5419 case ISD::ZEXTLOAD
: OS
<< " <zext "; break;
5422 OS
<< LD
->getMemoryVT().getMVTString() << ">";
5424 const char *AM
= getIndexedModeName(LD
->getAddressingMode());
5427 if (LD
->isVolatile())
5428 OS
<< " <volatile>";
5429 OS
<< " alignment=" << LD
->getAlignment();
5430 } else if (const StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(this)) {
5431 const Value
*SrcValue
= ST
->getSrcValue();
5432 int SrcOffset
= ST
->getSrcValueOffset();
5438 OS
<< ":" << SrcOffset
<< ">";
5440 if (ST
->isTruncatingStore())
5441 OS
<< " <trunc " << ST
->getMemoryVT().getMVTString() << ">";
5443 const char *AM
= getIndexedModeName(ST
->getAddressingMode());
5446 if (ST
->isVolatile())
5447 OS
<< " <volatile>";
5448 OS
<< " alignment=" << ST
->getAlignment();
5449 } else if (const AtomicSDNode
* AT
= dyn_cast
<AtomicSDNode
>(this)) {
5450 const Value
*SrcValue
= AT
->getSrcValue();
5451 int SrcOffset
= AT
->getSrcValueOffset();
5457 OS
<< ":" << SrcOffset
<< ">";
5458 if (AT
->isVolatile())
5459 OS
<< " <volatile>";
5460 OS
<< " alignment=" << AT
->getAlignment();
5464 void SDNode::print(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5467 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
5469 OS
<< (void*)getOperand(i
).getNode();
5470 if (unsigned RN
= getOperand(i
).getResNo())
5473 print_details(OS
, G
);
5476 static void DumpNodes(const SDNode
*N
, unsigned indent
, const SelectionDAG
*G
) {
5477 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
5478 if (N
->getOperand(i
).getNode()->hasOneUse())
5479 DumpNodes(N
->getOperand(i
).getNode(), indent
+2, G
);
5481 cerr
<< "\n" << std::string(indent
+2, ' ')
5482 << (void*)N
->getOperand(i
).getNode() << ": <multiple use>";
5485 cerr
<< "\n" << std::string(indent
, ' ');
5489 void SelectionDAG::dump() const {
5490 cerr
<< "SelectionDAG has " << AllNodes
.size() << " nodes:";
5492 for (allnodes_const_iterator I
= allnodes_begin(), E
= allnodes_end();
5494 const SDNode
*N
= I
;
5495 if (!N
->hasOneUse() && N
!= getRoot().getNode())
5496 DumpNodes(N
, 2, this);
5499 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5504 void SDNode::printr(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5506 print_details(OS
, G
);
5509 typedef SmallPtrSet
<const SDNode
*, 128> VisitedSDNodeSet
;
5510 static void DumpNodesr(raw_ostream
&OS
, const SDNode
*N
, unsigned indent
,
5511 const SelectionDAG
*G
, VisitedSDNodeSet
&once
) {
5512 if (!once
.insert(N
)) // If we've been here before, return now.
5514 // Dump the current SDNode, but don't end the line yet.
5515 OS
<< std::string(indent
, ' ');
5517 // Having printed this SDNode, walk the children:
5518 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
5519 const SDNode
*child
= N
->getOperand(i
).getNode();
5522 if (child
->getNumOperands() == 0) {
5523 // This child has no grandchildren; print it inline right here.
5524 child
->printr(OS
, G
);
5526 } else { // Just the address. FIXME: also print the child's opcode
5528 if (unsigned RN
= N
->getOperand(i
).getResNo())
5533 // Dump children that have grandchildren on their own line(s).
5534 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
5535 const SDNode
*child
= N
->getOperand(i
).getNode();
5536 DumpNodesr(OS
, child
, indent
+2, G
, once
);
5540 void SDNode::dumpr() const {
5541 VisitedSDNodeSet once
;
5542 DumpNodesr(errs(), this, 0, 0, once
);
5545 const Type
*ConstantPoolSDNode::getType() const {
5546 if (isMachineConstantPoolEntry())
5547 return Val
.MachineCPVal
->getType();
5548 return Val
.ConstVal
->getType();
5551 bool BuildVectorSDNode::isConstantSplat(APInt
&SplatValue
,
5553 unsigned &SplatBitSize
,
5555 unsigned MinSplatBits
) {
5556 MVT VT
= getValueType(0);
5557 assert(VT
.isVector() && "Expected a vector type");
5558 unsigned sz
= VT
.getSizeInBits();
5559 if (MinSplatBits
> sz
)
5562 SplatValue
= APInt(sz
, 0);
5563 SplatUndef
= APInt(sz
, 0);
5565 // Get the bits. Bits with undefined values (when the corresponding element
5566 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5567 // in SplatValue. If any of the values are not constant, give up and return
5569 unsigned int nOps
= getNumOperands();
5570 assert(nOps
> 0 && "isConstantSplat has 0-size build vector");
5571 unsigned EltBitSize
= VT
.getVectorElementType().getSizeInBits();
5572 for (unsigned i
= 0; i
< nOps
; ++i
) {
5573 SDValue OpVal
= getOperand(i
);
5574 unsigned BitPos
= i
* EltBitSize
;
5576 if (OpVal
.getOpcode() == ISD::UNDEF
)
5577 SplatUndef
|= APInt::getBitsSet(sz
, BitPos
, BitPos
+EltBitSize
);
5578 else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(OpVal
))
5579 SplatValue
|= (APInt(CN
->getAPIntValue()).zextOrTrunc(EltBitSize
).
5580 zextOrTrunc(sz
) << BitPos
);
5581 else if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
))
5582 SplatValue
|= CN
->getValueAPF().bitcastToAPInt().zextOrTrunc(sz
) <<BitPos
;
5587 // The build_vector is all constants or undefs. Find the smallest element
5588 // size that splats the vector.
5590 HasAnyUndefs
= (SplatUndef
!= 0);
5593 unsigned HalfSize
= sz
/ 2;
5594 APInt HighValue
= APInt(SplatValue
).lshr(HalfSize
).trunc(HalfSize
);
5595 APInt LowValue
= APInt(SplatValue
).trunc(HalfSize
);
5596 APInt HighUndef
= APInt(SplatUndef
).lshr(HalfSize
).trunc(HalfSize
);
5597 APInt LowUndef
= APInt(SplatUndef
).trunc(HalfSize
);
5599 // If the two halves do not match (ignoring undef bits), stop here.
5600 if ((HighValue
& ~LowUndef
) != (LowValue
& ~HighUndef
) ||
5601 MinSplatBits
> HalfSize
)
5604 SplatValue
= HighValue
| LowValue
;
5605 SplatUndef
= HighUndef
& LowUndef
;