Update comments.
[llvm/msp430.git] / lib / Target / ARM / ARMISelLowering.cpp
blobe35b6672a3152186f07b11ef85b93866e5011ce6
1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
11 // selection DAG.
13 //===----------------------------------------------------------------------===//
15 #include "ARM.h"
16 #include "ARMAddressingModes.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMISelLowering.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMRegisterInfo.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/Constants.h"
25 #include "llvm/Function.h"
26 #include "llvm/Instruction.h"
27 #include "llvm/Intrinsics.h"
28 #include "llvm/GlobalValue.h"
29 #include "llvm/CodeGen/CallingConvLower.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/ADT/VectorExtras.h"
39 #include "llvm/Support/MathExtras.h"
40 using namespace llvm;
42 static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
43 CCValAssign::LocInfo &LocInfo,
44 ISD::ArgFlagsTy &ArgFlags,
45 CCState &State);
46 static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
47 CCValAssign::LocInfo &LocInfo,
48 ISD::ArgFlagsTy &ArgFlags,
49 CCState &State);
50 static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
51 CCValAssign::LocInfo &LocInfo,
52 ISD::ArgFlagsTy &ArgFlags,
53 CCState &State);
54 static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
55 CCValAssign::LocInfo &LocInfo,
56 ISD::ArgFlagsTy &ArgFlags,
57 CCState &State);
59 ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
60 : TargetLowering(TM), ARMPCLabelIndex(0) {
61 Subtarget = &TM.getSubtarget<ARMSubtarget>();
63 if (Subtarget->isTargetDarwin()) {
64 // Uses VFP for Thumb libfuncs if available.
65 if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
66 // Single-precision floating-point arithmetic.
67 setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
68 setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
69 setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
70 setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
72 // Double-precision floating-point arithmetic.
73 setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
74 setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
75 setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
76 setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
78 // Single-precision comparisons.
79 setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
80 setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
81 setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
82 setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
83 setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
84 setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
85 setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
86 setLibcallName(RTLIB::O_F32, "__unordsf2vfp");
88 setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
89 setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
90 setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
91 setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
92 setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
93 setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
94 setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
95 setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
97 // Double-precision comparisons.
98 setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
99 setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
100 setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
101 setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
102 setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
103 setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
104 setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
105 setLibcallName(RTLIB::O_F64, "__unorddf2vfp");
107 setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
108 setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
109 setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
110 setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
111 setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
112 setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
113 setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
114 setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
116 // Floating-point to integer conversions.
117 // i64 conversions are done via library routines even when generating VFP
118 // instructions, so use the same ones.
119 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
120 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
121 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
122 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
124 // Conversions between floating types.
125 setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
126 setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
128 // Integer to floating-point conversions.
129 // i64 conversions are done via library routines even when generating VFP
130 // instructions, so use the same ones.
131 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
132 // e.g., __floatunsidf vs. __floatunssidfvfp.
133 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
134 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
135 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
136 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
140 if (Subtarget->isThumb())
141 addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
142 else
143 addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
144 if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) {
145 addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
146 addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
148 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
150 computeRegisterProperties();
152 // ARM does not have f32 extending load.
153 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
155 // ARM does not have i1 sign extending load.
156 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
158 // ARM supports all 4 flavors of integer indexed load / store.
159 for (unsigned im = (unsigned)ISD::PRE_INC;
160 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
161 setIndexedLoadAction(im, MVT::i1, Legal);
162 setIndexedLoadAction(im, MVT::i8, Legal);
163 setIndexedLoadAction(im, MVT::i16, Legal);
164 setIndexedLoadAction(im, MVT::i32, Legal);
165 setIndexedStoreAction(im, MVT::i1, Legal);
166 setIndexedStoreAction(im, MVT::i8, Legal);
167 setIndexedStoreAction(im, MVT::i16, Legal);
168 setIndexedStoreAction(im, MVT::i32, Legal);
171 // i64 operation support.
172 if (Subtarget->isThumb()) {
173 setOperationAction(ISD::MUL, MVT::i64, Expand);
174 setOperationAction(ISD::MULHU, MVT::i32, Expand);
175 setOperationAction(ISD::MULHS, MVT::i32, Expand);
176 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
177 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
178 } else {
179 setOperationAction(ISD::MUL, MVT::i64, Expand);
180 setOperationAction(ISD::MULHU, MVT::i32, Expand);
181 if (!Subtarget->hasV6Ops())
182 setOperationAction(ISD::MULHS, MVT::i32, Expand);
184 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
185 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
186 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
187 setOperationAction(ISD::SRL, MVT::i64, Custom);
188 setOperationAction(ISD::SRA, MVT::i64, Custom);
190 // ARM does not have ROTL.
191 setOperationAction(ISD::ROTL, MVT::i32, Expand);
192 setOperationAction(ISD::CTTZ, MVT::i32, Expand);
193 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
194 if (!Subtarget->hasV5TOps() || Subtarget->isThumb())
195 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
197 // Only ARMv6 has BSWAP.
198 if (!Subtarget->hasV6Ops())
199 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
201 // These are expanded into libcalls.
202 setOperationAction(ISD::SDIV, MVT::i32, Expand);
203 setOperationAction(ISD::UDIV, MVT::i32, Expand);
204 setOperationAction(ISD::SREM, MVT::i32, Expand);
205 setOperationAction(ISD::UREM, MVT::i32, Expand);
206 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
207 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
209 // Support label based line numbers.
210 setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
211 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
213 setOperationAction(ISD::RET, MVT::Other, Custom);
214 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
215 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
216 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
217 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
219 // Use the default implementation.
220 setOperationAction(ISD::VASTART, MVT::Other, Custom);
221 setOperationAction(ISD::VAARG, MVT::Other, Expand);
222 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
223 setOperationAction(ISD::VAEND, MVT::Other, Expand);
224 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
225 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
226 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
227 setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
229 if (!Subtarget->hasV6Ops()) {
230 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
231 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
233 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
235 if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb())
236 // Turn f64->i64 into FMRRD, i64 -> f64 to FMDRR iff target supports vfp2.
237 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
239 // We want to custom lower some of our intrinsics.
240 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
242 setOperationAction(ISD::SETCC, MVT::i32, Expand);
243 setOperationAction(ISD::SETCC, MVT::f32, Expand);
244 setOperationAction(ISD::SETCC, MVT::f64, Expand);
245 setOperationAction(ISD::SELECT, MVT::i32, Expand);
246 setOperationAction(ISD::SELECT, MVT::f32, Expand);
247 setOperationAction(ISD::SELECT, MVT::f64, Expand);
248 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
249 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
250 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
252 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
253 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
254 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
255 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
256 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
258 // We don't support sin/cos/fmod/copysign/pow
259 setOperationAction(ISD::FSIN, MVT::f64, Expand);
260 setOperationAction(ISD::FSIN, MVT::f32, Expand);
261 setOperationAction(ISD::FCOS, MVT::f32, Expand);
262 setOperationAction(ISD::FCOS, MVT::f64, Expand);
263 setOperationAction(ISD::FREM, MVT::f64, Expand);
264 setOperationAction(ISD::FREM, MVT::f32, Expand);
265 if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) {
266 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
267 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
269 setOperationAction(ISD::FPOW, MVT::f64, Expand);
270 setOperationAction(ISD::FPOW, MVT::f32, Expand);
272 // int <-> fp are custom expanded into bit_convert + ARMISD ops.
273 if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) {
274 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
275 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
276 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
277 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
280 // We have target-specific dag combine patterns for the following nodes:
281 // ARMISD::FMRRD - No need to call setTargetDAGCombine
282 setTargetDAGCombine(ISD::ADD);
283 setTargetDAGCombine(ISD::SUB);
285 setStackPointerRegisterToSaveRestore(ARM::SP);
286 setSchedulingPreference(SchedulingForRegPressure);
287 setIfCvtBlockSizeLimit(Subtarget->isThumb() ? 0 : 10);
288 setIfCvtDupBlockSizeLimit(Subtarget->isThumb() ? 0 : 2);
290 maxStoresPerMemcpy = 1; //// temporary - rewrite interface to use type
293 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
294 switch (Opcode) {
295 default: return 0;
296 case ARMISD::Wrapper: return "ARMISD::Wrapper";
297 case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
298 case ARMISD::CALL: return "ARMISD::CALL";
299 case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
300 case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
301 case ARMISD::tCALL: return "ARMISD::tCALL";
302 case ARMISD::BRCOND: return "ARMISD::BRCOND";
303 case ARMISD::BR_JT: return "ARMISD::BR_JT";
304 case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
305 case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
306 case ARMISD::CMP: return "ARMISD::CMP";
307 case ARMISD::CMPNZ: return "ARMISD::CMPNZ";
308 case ARMISD::CMPFP: return "ARMISD::CMPFP";
309 case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
310 case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
311 case ARMISD::CMOV: return "ARMISD::CMOV";
312 case ARMISD::CNEG: return "ARMISD::CNEG";
314 case ARMISD::FTOSI: return "ARMISD::FTOSI";
315 case ARMISD::FTOUI: return "ARMISD::FTOUI";
316 case ARMISD::SITOF: return "ARMISD::SITOF";
317 case ARMISD::UITOF: return "ARMISD::UITOF";
319 case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
320 case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
321 case ARMISD::RRX: return "ARMISD::RRX";
323 case ARMISD::FMRRD: return "ARMISD::FMRRD";
324 case ARMISD::FMDRR: return "ARMISD::FMDRR";
326 case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
330 //===----------------------------------------------------------------------===//
331 // Lowering Code
332 //===----------------------------------------------------------------------===//
334 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
335 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
336 switch (CC) {
337 default: assert(0 && "Unknown condition code!");
338 case ISD::SETNE: return ARMCC::NE;
339 case ISD::SETEQ: return ARMCC::EQ;
340 case ISD::SETGT: return ARMCC::GT;
341 case ISD::SETGE: return ARMCC::GE;
342 case ISD::SETLT: return ARMCC::LT;
343 case ISD::SETLE: return ARMCC::LE;
344 case ISD::SETUGT: return ARMCC::HI;
345 case ISD::SETUGE: return ARMCC::HS;
346 case ISD::SETULT: return ARMCC::LO;
347 case ISD::SETULE: return ARMCC::LS;
351 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It
352 /// returns true if the operands should be inverted to form the proper
353 /// comparison.
354 static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
355 ARMCC::CondCodes &CondCode2) {
356 bool Invert = false;
357 CondCode2 = ARMCC::AL;
358 switch (CC) {
359 default: assert(0 && "Unknown FP condition!");
360 case ISD::SETEQ:
361 case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
362 case ISD::SETGT:
363 case ISD::SETOGT: CondCode = ARMCC::GT; break;
364 case ISD::SETGE:
365 case ISD::SETOGE: CondCode = ARMCC::GE; break;
366 case ISD::SETOLT: CondCode = ARMCC::MI; break;
367 case ISD::SETOLE: CondCode = ARMCC::GT; Invert = true; break;
368 case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
369 case ISD::SETO: CondCode = ARMCC::VC; break;
370 case ISD::SETUO: CondCode = ARMCC::VS; break;
371 case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
372 case ISD::SETUGT: CondCode = ARMCC::HI; break;
373 case ISD::SETUGE: CondCode = ARMCC::PL; break;
374 case ISD::SETLT:
375 case ISD::SETULT: CondCode = ARMCC::LT; break;
376 case ISD::SETLE:
377 case ISD::SETULE: CondCode = ARMCC::LE; break;
378 case ISD::SETNE:
379 case ISD::SETUNE: CondCode = ARMCC::NE; break;
381 return Invert;
384 //===----------------------------------------------------------------------===//
385 // Calling Convention Implementation
387 // The lower operations present on calling convention works on this order:
388 // LowerCALL (virt regs --> phys regs, virt regs --> stack)
389 // LowerFORMAL_ARGUMENTS (phys --> virt regs, stack --> virt regs)
390 // LowerRET (virt regs --> phys regs)
391 // LowerCALL (phys regs --> virt regs)
393 //===----------------------------------------------------------------------===//
395 #include "ARMGenCallingConv.inc"
397 // APCS f64 is in register pairs, possibly split to stack
398 static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
399 CCValAssign::LocInfo &LocInfo,
400 ISD::ArgFlagsTy &ArgFlags,
401 CCState &State) {
402 static const unsigned HiRegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
403 static const unsigned LoRegList[] = { ARM::R1,
404 ARM::R2,
405 ARM::R3,
406 ARM::NoRegister };
408 unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 4);
409 if (Reg == 0)
410 return false; // we didn't handle it
412 unsigned i;
413 for (i = 0; i < 4; ++i)
414 if (HiRegList[i] == Reg)
415 break;
417 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, MVT::i32, LocInfo));
418 if (LoRegList[i] != ARM::NoRegister)
419 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
420 MVT::i32, LocInfo));
421 else
422 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
423 State.AllocateStack(4, 4),
424 MVT::i32, LocInfo));
425 return true; // we handled it
428 // AAPCS f64 is in aligned register pairs
429 static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
430 CCValAssign::LocInfo &LocInfo,
431 ISD::ArgFlagsTy &ArgFlags,
432 CCState &State) {
433 static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
434 static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
436 unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
437 if (Reg == 0)
438 return false; // we didn't handle it
440 unsigned i;
441 for (i = 0; i < 2; ++i)
442 if (HiRegList[i] == Reg)
443 break;
445 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, MVT::i32, LocInfo));
446 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
447 MVT::i32, LocInfo));
448 return true; // we handled it
451 static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
452 CCValAssign::LocInfo &LocInfo,
453 ISD::ArgFlagsTy &ArgFlags,
454 CCState &State) {
455 static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
456 static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
458 unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
459 if (Reg == 0)
460 return false; // we didn't handle it
462 unsigned i;
463 for (i = 0; i < 2; ++i)
464 if (HiRegList[i] == Reg)
465 break;
467 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, MVT::i32, LocInfo));
468 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
469 MVT::i32, LocInfo));
470 return true; // we handled it
473 static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
474 CCValAssign::LocInfo &LocInfo,
475 ISD::ArgFlagsTy &ArgFlags,
476 CCState &State) {
477 return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
478 State);
481 /// LowerCallResult - Lower the result values of an ISD::CALL into the
482 /// appropriate copies out of appropriate physical registers. This assumes that
483 /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
484 /// being lowered. The returns a SDNode with the same number of values as the
485 /// ISD::CALL.
486 SDNode *ARMTargetLowering::
487 LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
488 unsigned CallingConv, SelectionDAG &DAG) {
490 DebugLoc dl = TheCall->getDebugLoc();
491 // Assign locations to each value returned by this call.
492 SmallVector<CCValAssign, 16> RVLocs;
493 bool isVarArg = TheCall->isVarArg();
494 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
495 CCInfo.AnalyzeCallResult(TheCall, RetCC_ARM);
497 SmallVector<SDValue, 8> ResultVals;
499 // Copy all of the result registers out of their specified physreg.
500 for (unsigned i = 0; i != RVLocs.size(); ++i) {
501 CCValAssign VA = RVLocs[i];
503 // handle f64 as custom
504 if (VA.needsCustom()) {
505 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
506 InFlag);
507 VA = RVLocs[++i]; // skip ahead to next loc
508 SDValue Hi = DAG.getCopyFromReg(Lo, dl, VA.getLocReg(), VA.getLocVT(),
509 Lo.getValue(2));
510 ResultVals.push_back(DAG.getNode(ARMISD::FMDRR, dl, VA.getValVT(), Lo,
511 Hi));
512 } else {
513 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
514 InFlag).getValue(1);
515 SDValue Val = Chain.getValue(0);
516 InFlag = Chain.getValue(2);
518 switch (VA.getLocInfo()) {
519 default: assert(0 && "Unknown loc info!");
520 case CCValAssign::Full: break;
521 case CCValAssign::BCvt:
522 Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(),
523 Chain.getValue(0));
524 break;
527 ResultVals.push_back(Val);
531 // Merge everything together with a MERGE_VALUES node.
532 ResultVals.push_back(Chain);
533 return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
534 &ResultVals[0], ResultVals.size()).getNode();
537 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
538 /// by "Src" to address "Dst" of size "Size". Alignment information is
539 /// specified by the specific parameter attribute. The copy will be passed as
540 /// a byval function parameter.
541 /// Sometimes what we are copying is the end of a larger object, the part that
542 /// does not fit in registers.
543 static SDValue
544 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
545 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
546 DebugLoc dl) {
547 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
548 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
549 /*AlwaysInline=*/false, NULL, 0, NULL, 0);
552 /// LowerMemOpCallTo - Store the argument to the stack.
553 SDValue
554 ARMTargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
555 const SDValue &StackPtr,
556 const CCValAssign &VA, SDValue Chain,
557 SDValue Arg, ISD::ArgFlagsTy Flags) {
558 DebugLoc dl = TheCall->getDebugLoc();
559 unsigned LocMemOffset = VA.getLocMemOffset();
560 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
561 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
562 if (Flags.isByVal()) {
563 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
565 return DAG.getStore(Chain, dl, Arg, PtrOff,
566 PseudoSourceValue::getStack(), LocMemOffset);
569 /// LowerCALL - Lowering a ISD::CALL node into a callseq_start <-
570 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
571 /// nodes.
572 SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
573 CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
574 MVT RetVT = TheCall->getRetValType(0);
575 SDValue Chain = TheCall->getChain();
576 unsigned CC = TheCall->getCallingConv();
577 assert((CC == CallingConv::C ||
578 CC == CallingConv::Fast) && "unknown calling convention");
579 bool isVarArg = TheCall->isVarArg();
580 SDValue Callee = TheCall->getCallee();
581 DebugLoc dl = TheCall->getDebugLoc();
583 // Analyze operands of the call, assigning locations to each operand.
584 SmallVector<CCValAssign, 16> ArgLocs;
585 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
586 CCInfo.AnalyzeCallOperands(TheCall, CC_ARM);
588 // Get a count of how many bytes are to be pushed on the stack.
589 unsigned NumBytes = CCInfo.getNextStackOffset();
591 // Adjust the stack pointer for the new arguments...
592 // These operations are automatically eliminated by the prolog/epilog pass
593 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
595 SDValue StackPtr = DAG.getRegister(ARM::SP, MVT::i32);
597 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
598 SmallVector<SDValue, 8> MemOpChains;
600 // Walk the register/memloc assignments, inserting copies/loads. In the case
601 // of tail call optimization, arguments are handled later.
602 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
603 i != e;
604 ++i, ++realArgIdx) {
605 CCValAssign &VA = ArgLocs[i];
606 SDValue Arg = TheCall->getArg(realArgIdx);
607 ISD::ArgFlagsTy Flags = TheCall->getArgFlags(realArgIdx);
609 // Promote the value if needed.
610 switch (VA.getLocInfo()) {
611 default: assert(0 && "Unknown loc info!");
612 case CCValAssign::Full: break;
613 case CCValAssign::SExt:
614 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
615 break;
616 case CCValAssign::ZExt:
617 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
618 break;
619 case CCValAssign::AExt:
620 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
621 break;
622 case CCValAssign::BCvt:
623 Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
624 break;
627 // f64 is passed in i32 pairs and must be combined
628 if (VA.needsCustom()) {
629 SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
630 DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
631 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
632 VA = ArgLocs[++i]; // skip ahead to next loc
633 if (VA.isRegLoc())
634 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(1)));
635 else {
636 assert(VA.isMemLoc());
637 if (StackPtr.getNode() == 0)
638 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
640 MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
641 Chain, fmrrd.getValue(1),
642 Flags));
644 } else if (VA.isRegLoc()) {
645 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
646 } else {
647 assert(VA.isMemLoc());
648 if (StackPtr.getNode() == 0)
649 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
651 MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
652 Chain, Arg, Flags));
656 if (!MemOpChains.empty())
657 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
658 &MemOpChains[0], MemOpChains.size());
660 // Build a sequence of copy-to-reg nodes chained together with token chain
661 // and flag operands which copy the outgoing args into the appropriate regs.
662 SDValue InFlag;
663 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
664 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
665 RegsToPass[i].second, InFlag);
666 InFlag = Chain.getValue(1);
669 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
670 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
671 // node so that legalize doesn't hack it.
672 bool isDirect = false;
673 bool isARMFunc = false;
674 bool isLocalARMFunc = false;
675 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
676 GlobalValue *GV = G->getGlobal();
677 isDirect = true;
678 bool isExt = (GV->isDeclaration() || GV->hasWeakLinkage() ||
679 GV->hasLinkOnceLinkage());
680 bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
681 getTargetMachine().getRelocationModel() != Reloc::Static;
682 isARMFunc = !Subtarget->isThumb() || isStub;
683 // ARM call to a local ARM function is predicable.
684 isLocalARMFunc = !Subtarget->isThumb() && !isExt;
685 // tBX takes a register source operand.
686 if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps()) {
687 ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
688 ARMCP::CPStub, 4);
689 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
690 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
691 Callee = DAG.getLoad(getPointerTy(), dl,
692 DAG.getEntryNode(), CPAddr, NULL, 0);
693 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
694 Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
695 getPointerTy(), Callee, PICLabel);
696 } else
697 Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
698 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
699 isDirect = true;
700 bool isStub = Subtarget->isTargetDarwin() &&
701 getTargetMachine().getRelocationModel() != Reloc::Static;
702 isARMFunc = !Subtarget->isThumb() || isStub;
703 // tBX takes a register source operand.
704 const char *Sym = S->getSymbol();
705 if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps()) {
706 ARMConstantPoolValue *CPV = new ARMConstantPoolValue(Sym, ARMPCLabelIndex,
707 ARMCP::CPStub, 4);
708 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
709 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
710 Callee = DAG.getLoad(getPointerTy(), dl,
711 DAG.getEntryNode(), CPAddr, NULL, 0);
712 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
713 Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
714 getPointerTy(), Callee, PICLabel);
715 } else
716 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
719 // FIXME: handle tail calls differently.
720 unsigned CallOpc;
721 if (Subtarget->isThumb()) {
722 if (!Subtarget->hasV5TOps() && (!isDirect || isARMFunc))
723 CallOpc = ARMISD::CALL_NOLINK;
724 else
725 CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
726 } else {
727 CallOpc = (isDirect || Subtarget->hasV5TOps())
728 ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
729 : ARMISD::CALL_NOLINK;
731 if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb()) {
732 // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
733 Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag);
734 InFlag = Chain.getValue(1);
737 std::vector<SDValue> Ops;
738 Ops.push_back(Chain);
739 Ops.push_back(Callee);
741 // Add argument registers to the end of the list so that they are known live
742 // into the call.
743 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
744 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
745 RegsToPass[i].second.getValueType()));
747 if (InFlag.getNode())
748 Ops.push_back(InFlag);
749 // Returns a chain and a flag for retval copy to use.
750 Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag),
751 &Ops[0], Ops.size());
752 InFlag = Chain.getValue(1);
754 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
755 DAG.getIntPtrConstant(0, true), InFlag);
756 if (RetVT != MVT::Other)
757 InFlag = Chain.getValue(1);
759 // Handle result values, copying them out of physregs into vregs that we
760 // return.
761 return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
762 Op.getResNo());
765 SDValue ARMTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
766 // The chain is always operand #0
767 SDValue Chain = Op.getOperand(0);
768 DebugLoc dl = Op.getDebugLoc();
770 // CCValAssign - represent the assignment of the return value to a location.
771 SmallVector<CCValAssign, 16> RVLocs;
772 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
773 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
775 // CCState - Info about the registers and stack slots.
776 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
778 // Analyze return values of ISD::RET.
779 CCInfo.AnalyzeReturn(Op.getNode(), RetCC_ARM);
781 // If this is the first return lowered for this function, add
782 // the regs to the liveout set for the function.
783 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
784 for (unsigned i = 0; i != RVLocs.size(); ++i)
785 if (RVLocs[i].isRegLoc())
786 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
789 SDValue Flag;
791 // Copy the result values into the output registers.
792 for (unsigned i = 0, realRVLocIdx = 0;
793 i != RVLocs.size();
794 ++i, ++realRVLocIdx) {
795 CCValAssign &VA = RVLocs[i];
796 assert(VA.isRegLoc() && "Can only return in registers!");
798 // ISD::RET => ret chain, (regnum1,val1), ...
799 // So i*2+1 index only the regnums
800 SDValue Arg = Op.getOperand(realRVLocIdx*2+1);
802 switch (VA.getLocInfo()) {
803 default: assert(0 && "Unknown loc info!");
804 case CCValAssign::Full: break;
805 case CCValAssign::BCvt:
806 Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
807 break;
810 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
811 // available.
812 if (VA.needsCustom()) {
813 SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
814 DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
815 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
816 VA = RVLocs[++i]; // skip ahead to next loc
817 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
818 Flag);
819 } else
820 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
822 // Guarantee that all emitted copies are
823 // stuck together, avoiding something bad.
824 Flag = Chain.getValue(1);
827 SDValue result;
828 if (Flag.getNode())
829 result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
830 else // Return Void
831 result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
833 return result;
836 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
837 // their target countpart wrapped in the ARMISD::Wrapper node. Suppose N is
838 // one of the above mentioned nodes. It has to be wrapped because otherwise
839 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
840 // be used to form addressing mode. These wrapped nodes will be selected
841 // into MOVi.
842 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
843 MVT PtrVT = Op.getValueType();
844 // FIXME there is no actual debug info here
845 DebugLoc dl = Op.getDebugLoc();
846 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
847 SDValue Res;
848 if (CP->isMachineConstantPoolEntry())
849 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
850 CP->getAlignment());
851 else
852 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
853 CP->getAlignment());
854 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
857 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
858 SDValue
859 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
860 SelectionDAG &DAG) {
861 DebugLoc dl = GA->getDebugLoc();
862 MVT PtrVT = getPointerTy();
863 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
864 ARMConstantPoolValue *CPV =
865 new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
866 PCAdj, "tlsgd", true);
867 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
868 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
869 Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, NULL, 0);
870 SDValue Chain = Argument.getValue(1);
872 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
873 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
875 // call __tls_get_addr.
876 ArgListTy Args;
877 ArgListEntry Entry;
878 Entry.Node = Argument;
879 Entry.Ty = (const Type *) Type::Int32Ty;
880 Args.push_back(Entry);
881 // FIXME: is there useful debug info available here?
882 std::pair<SDValue, SDValue> CallResult =
883 LowerCallTo(Chain, (const Type *) Type::Int32Ty, false, false, false, false,
884 CallingConv::C, false,
885 DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
886 return CallResult.first;
889 // Lower ISD::GlobalTLSAddress using the "initial exec" or
890 // "local exec" model.
891 SDValue
892 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
893 SelectionDAG &DAG) {
894 GlobalValue *GV = GA->getGlobal();
895 DebugLoc dl = GA->getDebugLoc();
896 SDValue Offset;
897 SDValue Chain = DAG.getEntryNode();
898 MVT PtrVT = getPointerTy();
899 // Get the Thread Pointer
900 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
902 if (GV->isDeclaration()){
903 // initial exec model
904 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
905 ARMConstantPoolValue *CPV =
906 new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
907 PCAdj, "gottpoff", true);
908 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
909 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
910 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
911 Chain = Offset.getValue(1);
913 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
914 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
916 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
917 } else {
918 // local exec model
919 ARMConstantPoolValue *CPV =
920 new ARMConstantPoolValue(GV, ARMCP::CPValue, "tpoff");
921 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
922 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
923 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
926 // The address of the thread local variable is the add of the thread
927 // pointer with the offset of the variable.
928 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
931 SDValue
932 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
933 // TODO: implement the "local dynamic" model
934 assert(Subtarget->isTargetELF() &&
935 "TLS not implemented for non-ELF targets");
936 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
937 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
938 // otherwise use the "Local Exec" TLS Model
939 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
940 return LowerToTLSGeneralDynamicModel(GA, DAG);
941 else
942 return LowerToTLSExecModels(GA, DAG);
945 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
946 SelectionDAG &DAG) {
947 MVT PtrVT = getPointerTy();
948 DebugLoc dl = Op.getDebugLoc();
949 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
950 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
951 if (RelocM == Reloc::PIC_) {
952 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
953 ARMConstantPoolValue *CPV =
954 new ARMConstantPoolValue(GV, ARMCP::CPValue, UseGOTOFF ? "GOTOFF":"GOT");
955 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
956 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
957 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
958 CPAddr, NULL, 0);
959 SDValue Chain = Result.getValue(1);
960 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
961 Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
962 if (!UseGOTOFF)
963 Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0);
964 return Result;
965 } else {
966 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
967 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
968 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
972 /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol
973 /// even in non-static mode.
974 static bool GVIsIndirectSymbol(GlobalValue *GV, Reloc::Model RelocM) {
975 // If symbol visibility is hidden, the extra load is not needed if
976 // the symbol is definitely defined in the current translation unit.
977 bool isDecl = GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode();
978 if (GV->hasHiddenVisibility() && (!isDecl && !GV->hasCommonLinkage()))
979 return false;
980 return RelocM != Reloc::Static && (isDecl || GV->isWeakForLinker());
983 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
984 SelectionDAG &DAG) {
985 MVT PtrVT = getPointerTy();
986 DebugLoc dl = Op.getDebugLoc();
987 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
988 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
989 bool IsIndirect = GVIsIndirectSymbol(GV, RelocM);
990 SDValue CPAddr;
991 if (RelocM == Reloc::Static)
992 CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
993 else {
994 unsigned PCAdj = (RelocM != Reloc::PIC_)
995 ? 0 : (Subtarget->isThumb() ? 4 : 8);
996 ARMCP::ARMCPKind Kind = IsIndirect ? ARMCP::CPNonLazyPtr
997 : ARMCP::CPValue;
998 ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
999 Kind, PCAdj);
1000 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1002 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1004 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1005 SDValue Chain = Result.getValue(1);
1007 if (RelocM == Reloc::PIC_) {
1008 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1009 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1011 if (IsIndirect)
1012 Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0);
1014 return Result;
1017 SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1018 SelectionDAG &DAG){
1019 assert(Subtarget->isTargetELF() &&
1020 "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1021 MVT PtrVT = getPointerTy();
1022 DebugLoc dl = Op.getDebugLoc();
1023 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1024 ARMConstantPoolValue *CPV = new ARMConstantPoolValue("_GLOBAL_OFFSET_TABLE_",
1025 ARMPCLabelIndex,
1026 ARMCP::CPValue, PCAdj);
1027 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1028 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1029 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1030 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1031 return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1034 static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
1035 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1036 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1037 switch (IntNo) {
1038 default: return SDValue(); // Don't custom lower most intrinsics.
1039 case Intrinsic::arm_thread_pointer:
1040 return DAG.getNode(ARMISD::THREAD_POINTER, DebugLoc::getUnknownLoc(),
1041 PtrVT);
1045 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
1046 unsigned VarArgsFrameIndex) {
1047 // vastart just stores the address of the VarArgsFrameIndex slot into the
1048 // memory location argument.
1049 DebugLoc dl = Op.getDebugLoc();
1050 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1051 SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1052 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1053 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1056 SDValue
1057 ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1058 MachineFunction &MF = DAG.getMachineFunction();
1059 MachineFrameInfo *MFI = MF.getFrameInfo();
1061 SDValue Root = Op.getOperand(0);
1062 DebugLoc dl = Op.getDebugLoc();
1063 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1064 unsigned CC = MF.getFunction()->getCallingConv();
1065 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1067 // Assign locations to all of the incoming arguments.
1068 SmallVector<CCValAssign, 16> ArgLocs;
1069 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1070 CCInfo.AnalyzeFormalArguments(Op.getNode(), CC_ARM);
1072 SmallVector<SDValue, 16> ArgValues;
1074 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1075 CCValAssign &VA = ArgLocs[i];
1077 // Arguments stored in registers.
1078 if (VA.isRegLoc()) {
1079 MVT RegVT = VA.getLocVT();
1080 TargetRegisterClass *RC;
1081 if (AFI->isThumbFunction())
1082 RC = ARM::tGPRRegisterClass;
1083 else
1084 RC = ARM::GPRRegisterClass;
1086 if (RegVT == MVT::f64) {
1087 // f64 is passed in pairs of GPRs and must be combined.
1088 RegVT = MVT::i32;
1089 } else if (!((RegVT == MVT::i32) || (RegVT == MVT::f32)))
1090 assert(0 && "RegVT not supported by FORMAL_ARGUMENTS Lowering");
1092 // Transform the arguments stored in physical registers into virtual ones.
1093 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1094 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
1096 // f64 is passed in i32 pairs and must be combined.
1097 if (VA.needsCustom()) {
1098 SDValue ArgValue2;
1100 VA = ArgLocs[++i]; // skip ahead to next loc
1101 if (VA.isMemLoc()) {
1102 // must be APCS and older than V5T to split like this
1103 unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
1104 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset());
1106 // Create load node to retrieve arguments from the stack.
1107 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1108 ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN, NULL, 0);
1109 } else {
1110 Reg = MF.addLiveIn(VA.getLocReg(), RC);
1111 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1114 ArgValue = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64,
1115 ArgValue, ArgValue2);
1118 // If this is an 8 or 16-bit value, it is really passed promoted
1119 // to 32 bits. Insert an assert[sz]ext to capture this, then
1120 // truncate to the right size.
1121 switch (VA.getLocInfo()) {
1122 default: assert(0 && "Unknown loc info!");
1123 case CCValAssign::Full: break;
1124 case CCValAssign::BCvt:
1125 ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1126 break;
1127 case CCValAssign::SExt:
1128 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1129 DAG.getValueType(VA.getValVT()));
1130 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1131 break;
1132 case CCValAssign::ZExt:
1133 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1134 DAG.getValueType(VA.getValVT()));
1135 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1136 break;
1139 ArgValues.push_back(ArgValue);
1141 } else { // VA.isRegLoc()
1143 // sanity check
1144 assert(VA.isMemLoc());
1145 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
1147 unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
1148 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset());
1150 // Create load nodes to retrieve arguments from the stack.
1151 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1152 ArgValues.push_back(DAG.getLoad(VA.getValVT(), dl, Root, FIN, NULL, 0));
1156 // varargs
1157 if (isVarArg) {
1158 static const unsigned GPRArgRegs[] = {
1159 ARM::R0, ARM::R1, ARM::R2, ARM::R3
1162 unsigned NumGPRs = CCInfo.getFirstUnallocated
1163 (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
1165 unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1166 unsigned VARegSize = (4 - NumGPRs) * 4;
1167 unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
1168 unsigned ArgOffset = 0;
1169 if (VARegSaveSize) {
1170 // If this function is vararg, store any remaining integer argument regs
1171 // to their spots on the stack so that they may be loaded by deferencing
1172 // the result of va_next.
1173 AFI->setVarArgsRegSaveSize(VARegSaveSize);
1174 ArgOffset = CCInfo.getNextStackOffset();
1175 VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset +
1176 VARegSaveSize - VARegSize);
1177 SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
1179 SmallVector<SDValue, 4> MemOps;
1180 for (; NumGPRs < 4; ++NumGPRs) {
1181 TargetRegisterClass *RC;
1182 if (AFI->isThumbFunction())
1183 RC = ARM::tGPRRegisterClass;
1184 else
1185 RC = ARM::GPRRegisterClass;
1187 unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
1188 SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);
1189 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1190 MemOps.push_back(Store);
1191 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1192 DAG.getConstant(4, getPointerTy()));
1194 if (!MemOps.empty())
1195 Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1196 &MemOps[0], MemOps.size());
1197 } else
1198 // This will point to the next argument passed via stack.
1199 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
1202 ArgValues.push_back(Root);
1204 // Return the new list of results.
1205 return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1206 &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1209 /// isFloatingPointZero - Return true if this is +0.0.
1210 static bool isFloatingPointZero(SDValue Op) {
1211 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1212 return CFP->getValueAPF().isPosZero();
1213 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1214 // Maybe this has already been legalized into the constant pool?
1215 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
1216 SDValue WrapperOp = Op.getOperand(1).getOperand(0);
1217 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
1218 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1219 return CFP->getValueAPF().isPosZero();
1222 return false;
1225 static bool isLegalCmpImmediate(unsigned C, bool isThumb) {
1226 return ( isThumb && (C & ~255U) == 0) ||
1227 (!isThumb && ARM_AM::getSOImmVal(C) != -1);
1230 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
1231 /// the given operands.
1232 static SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1233 SDValue &ARMCC, SelectionDAG &DAG, bool isThumb,
1234 DebugLoc dl) {
1235 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1236 unsigned C = RHSC->getZExtValue();
1237 if (!isLegalCmpImmediate(C, isThumb)) {
1238 // Constant does not fit, try adjusting it by one?
1239 switch (CC) {
1240 default: break;
1241 case ISD::SETLT:
1242 case ISD::SETGE:
1243 if (isLegalCmpImmediate(C-1, isThumb)) {
1244 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1245 RHS = DAG.getConstant(C-1, MVT::i32);
1247 break;
1248 case ISD::SETULT:
1249 case ISD::SETUGE:
1250 if (C > 0 && isLegalCmpImmediate(C-1, isThumb)) {
1251 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1252 RHS = DAG.getConstant(C-1, MVT::i32);
1254 break;
1255 case ISD::SETLE:
1256 case ISD::SETGT:
1257 if (isLegalCmpImmediate(C+1, isThumb)) {
1258 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1259 RHS = DAG.getConstant(C+1, MVT::i32);
1261 break;
1262 case ISD::SETULE:
1263 case ISD::SETUGT:
1264 if (C < 0xffffffff && isLegalCmpImmediate(C+1, isThumb)) {
1265 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1266 RHS = DAG.getConstant(C+1, MVT::i32);
1268 break;
1273 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
1274 ARMISD::NodeType CompareType;
1275 switch (CondCode) {
1276 default:
1277 CompareType = ARMISD::CMP;
1278 break;
1279 case ARMCC::EQ:
1280 case ARMCC::NE:
1281 case ARMCC::MI:
1282 case ARMCC::PL:
1283 // Uses only N and Z Flags
1284 CompareType = ARMISD::CMPNZ;
1285 break;
1287 ARMCC = DAG.getConstant(CondCode, MVT::i32);
1288 return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
1291 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
1292 static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
1293 DebugLoc dl) {
1294 SDValue Cmp;
1295 if (!isFloatingPointZero(RHS))
1296 Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
1297 else
1298 Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
1299 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
1302 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
1303 const ARMSubtarget *ST) {
1304 MVT VT = Op.getValueType();
1305 SDValue LHS = Op.getOperand(0);
1306 SDValue RHS = Op.getOperand(1);
1307 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1308 SDValue TrueVal = Op.getOperand(2);
1309 SDValue FalseVal = Op.getOperand(3);
1310 DebugLoc dl = Op.getDebugLoc();
1312 if (LHS.getValueType() == MVT::i32) {
1313 SDValue ARMCC;
1314 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1315 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb(), dl);
1316 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp);
1319 ARMCC::CondCodes CondCode, CondCode2;
1320 if (FPCCToARMCC(CC, CondCode, CondCode2))
1321 std::swap(TrueVal, FalseVal);
1323 SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1324 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1325 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1326 SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
1327 ARMCC, CCR, Cmp);
1328 if (CondCode2 != ARMCC::AL) {
1329 SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
1330 // FIXME: Needs another CMP because flag can have but one use.
1331 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
1332 Result = DAG.getNode(ARMISD::CMOV, dl, VT,
1333 Result, TrueVal, ARMCC2, CCR, Cmp2);
1335 return Result;
1338 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
1339 const ARMSubtarget *ST) {
1340 SDValue Chain = Op.getOperand(0);
1341 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1342 SDValue LHS = Op.getOperand(2);
1343 SDValue RHS = Op.getOperand(3);
1344 SDValue Dest = Op.getOperand(4);
1345 DebugLoc dl = Op.getDebugLoc();
1347 if (LHS.getValueType() == MVT::i32) {
1348 SDValue ARMCC;
1349 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1350 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb(), dl);
1351 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
1352 Chain, Dest, ARMCC, CCR,Cmp);
1355 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
1356 ARMCC::CondCodes CondCode, CondCode2;
1357 if (FPCCToARMCC(CC, CondCode, CondCode2))
1358 // Swap the LHS/RHS of the comparison if needed.
1359 std::swap(LHS, RHS);
1361 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1362 SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1363 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1364 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
1365 SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
1366 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1367 if (CondCode2 != ARMCC::AL) {
1368 ARMCC = DAG.getConstant(CondCode2, MVT::i32);
1369 SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
1370 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1372 return Res;
1375 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) {
1376 SDValue Chain = Op.getOperand(0);
1377 SDValue Table = Op.getOperand(1);
1378 SDValue Index = Op.getOperand(2);
1379 DebugLoc dl = Op.getDebugLoc();
1381 MVT PTy = getPointerTy();
1382 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
1383 ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
1384 SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
1385 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
1386 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
1387 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
1388 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
1389 bool isPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1390 Addr = DAG.getLoad(isPIC ? (MVT)MVT::i32 : PTy, dl,
1391 Chain, Addr, NULL, 0);
1392 Chain = Addr.getValue(1);
1393 if (isPIC)
1394 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
1395 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1398 static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1399 DebugLoc dl = Op.getDebugLoc();
1400 unsigned Opc =
1401 Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI;
1402 Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
1403 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
1406 static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1407 MVT VT = Op.getValueType();
1408 DebugLoc dl = Op.getDebugLoc();
1409 unsigned Opc =
1410 Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF;
1412 Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
1413 return DAG.getNode(Opc, dl, VT, Op);
1416 static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
1417 // Implement fcopysign with a fabs and a conditional fneg.
1418 SDValue Tmp0 = Op.getOperand(0);
1419 SDValue Tmp1 = Op.getOperand(1);
1420 DebugLoc dl = Op.getDebugLoc();
1421 MVT VT = Op.getValueType();
1422 MVT SrcVT = Tmp1.getValueType();
1423 SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
1424 SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl);
1425 SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
1426 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1427 return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
1430 SDValue
1431 ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1432 SDValue Chain,
1433 SDValue Dst, SDValue Src,
1434 SDValue Size, unsigned Align,
1435 bool AlwaysInline,
1436 const Value *DstSV, uint64_t DstSVOff,
1437 const Value *SrcSV, uint64_t SrcSVOff){
1438 // Do repeated 4-byte loads and stores. To be improved.
1439 // This requires 4-byte alignment.
1440 if ((Align & 3) != 0)
1441 return SDValue();
1442 // This requires the copy size to be a constant, preferrably
1443 // within a subtarget-specific limit.
1444 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
1445 if (!ConstantSize)
1446 return SDValue();
1447 uint64_t SizeVal = ConstantSize->getZExtValue();
1448 if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
1449 return SDValue();
1451 unsigned BytesLeft = SizeVal & 3;
1452 unsigned NumMemOps = SizeVal >> 2;
1453 unsigned EmittedNumMemOps = 0;
1454 MVT VT = MVT::i32;
1455 unsigned VTSize = 4;
1456 unsigned i = 0;
1457 const unsigned MAX_LOADS_IN_LDM = 6;
1458 SDValue TFOps[MAX_LOADS_IN_LDM];
1459 SDValue Loads[MAX_LOADS_IN_LDM];
1460 uint64_t SrcOff = 0, DstOff = 0;
1462 // Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
1463 // same number of stores. The loads and stores will get combined into
1464 // ldm/stm later on.
1465 while (EmittedNumMemOps < NumMemOps) {
1466 for (i = 0;
1467 i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
1468 Loads[i] = DAG.getLoad(VT, dl, Chain,
1469 DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
1470 DAG.getConstant(SrcOff, MVT::i32)),
1471 SrcSV, SrcSVOff + SrcOff);
1472 TFOps[i] = Loads[i].getValue(1);
1473 SrcOff += VTSize;
1475 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1477 for (i = 0;
1478 i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
1479 TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
1480 DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
1481 DAG.getConstant(DstOff, MVT::i32)),
1482 DstSV, DstSVOff + DstOff);
1483 DstOff += VTSize;
1485 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1487 EmittedNumMemOps += i;
1490 if (BytesLeft == 0)
1491 return Chain;
1493 // Issue loads / stores for the trailing (1 - 3) bytes.
1494 unsigned BytesLeftSave = BytesLeft;
1495 i = 0;
1496 while (BytesLeft) {
1497 if (BytesLeft >= 2) {
1498 VT = MVT::i16;
1499 VTSize = 2;
1500 } else {
1501 VT = MVT::i8;
1502 VTSize = 1;
1505 Loads[i] = DAG.getLoad(VT, dl, Chain,
1506 DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
1507 DAG.getConstant(SrcOff, MVT::i32)),
1508 SrcSV, SrcSVOff + SrcOff);
1509 TFOps[i] = Loads[i].getValue(1);
1510 ++i;
1511 SrcOff += VTSize;
1512 BytesLeft -= VTSize;
1514 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1516 i = 0;
1517 BytesLeft = BytesLeftSave;
1518 while (BytesLeft) {
1519 if (BytesLeft >= 2) {
1520 VT = MVT::i16;
1521 VTSize = 2;
1522 } else {
1523 VT = MVT::i8;
1524 VTSize = 1;
1527 TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
1528 DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
1529 DAG.getConstant(DstOff, MVT::i32)),
1530 DstSV, DstSVOff + DstOff);
1531 ++i;
1532 DstOff += VTSize;
1533 BytesLeft -= VTSize;
1535 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1538 static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
1539 SDValue Op = N->getOperand(0);
1540 DebugLoc dl = N->getDebugLoc();
1541 if (N->getValueType(0) == MVT::f64) {
1542 // Turn i64->f64 into FMDRR.
1543 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
1544 DAG.getConstant(0, MVT::i32));
1545 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
1546 DAG.getConstant(1, MVT::i32));
1547 return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
1550 // Turn f64->i64 into FMRRD.
1551 SDValue Cvt = DAG.getNode(ARMISD::FMRRD, dl,
1552 DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
1554 // Merge the pieces into a single i64 value.
1555 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
1558 static SDValue ExpandSRx(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST) {
1559 assert(N->getValueType(0) == MVT::i64 &&
1560 (N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
1561 "Unknown shift to lower!");
1563 // We only lower SRA, SRL of 1 here, all others use generic lowering.
1564 if (!isa<ConstantSDNode>(N->getOperand(1)) ||
1565 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
1566 return SDValue();
1568 // If we are in thumb mode, we don't have RRX.
1569 if (ST->isThumb()) return SDValue();
1571 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
1572 DebugLoc dl = N->getDebugLoc();
1573 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
1574 DAG.getConstant(0, MVT::i32));
1575 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
1576 DAG.getConstant(1, MVT::i32));
1578 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
1579 // captures the result into a carry flag.
1580 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
1581 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
1583 // The low part is an ARMISD::RRX operand, which shifts the carry in.
1584 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
1586 // Merge the pieces into a single i64 value.
1587 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1590 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
1591 switch (Op.getOpcode()) {
1592 default: assert(0 && "Don't know how to custom lower this!"); abort();
1593 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
1594 case ISD::GlobalAddress:
1595 return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
1596 LowerGlobalAddressELF(Op, DAG);
1597 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
1598 case ISD::CALL: return LowerCALL(Op, DAG);
1599 case ISD::RET: return LowerRET(Op, DAG);
1600 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, Subtarget);
1601 case ISD::BR_CC: return LowerBR_CC(Op, DAG, Subtarget);
1602 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
1603 case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
1604 case ISD::SINT_TO_FP:
1605 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
1606 case ISD::FP_TO_SINT:
1607 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
1608 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
1609 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
1610 case ISD::RETURNADDR: break;
1611 case ISD::FRAMEADDR: break;
1612 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
1613 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1614 case ISD::BIT_CONVERT: return ExpandBIT_CONVERT(Op.getNode(), DAG);
1615 case ISD::SRL:
1616 case ISD::SRA: return ExpandSRx(Op.getNode(), DAG,Subtarget);
1618 return SDValue();
1621 /// ReplaceNodeResults - Replace the results of node with an illegal result
1622 /// type with new values built out of custom code.
1623 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
1624 SmallVectorImpl<SDValue>&Results,
1625 SelectionDAG &DAG) {
1626 switch (N->getOpcode()) {
1627 default:
1628 assert(0 && "Don't know how to custom expand this!");
1629 return;
1630 case ISD::BIT_CONVERT:
1631 Results.push_back(ExpandBIT_CONVERT(N, DAG));
1632 return;
1633 case ISD::SRL:
1634 case ISD::SRA: {
1635 SDValue Res = ExpandSRx(N, DAG, Subtarget);
1636 if (Res.getNode())
1637 Results.push_back(Res);
1638 return;
1643 //===----------------------------------------------------------------------===//
1644 // ARM Scheduler Hooks
1645 //===----------------------------------------------------------------------===//
1647 MachineBasicBlock *
1648 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1649 MachineBasicBlock *BB) const {
1650 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1651 DebugLoc dl = MI->getDebugLoc();
1652 switch (MI->getOpcode()) {
1653 default: assert(false && "Unexpected instr type to insert");
1654 case ARM::tMOVCCr: {
1655 // To "insert" a SELECT_CC instruction, we actually have to insert the
1656 // diamond control-flow pattern. The incoming instruction knows the
1657 // destination vreg to set, the condition code register to branch on, the
1658 // true/false values to select between, and a branch opcode to use.
1659 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1660 MachineFunction::iterator It = BB;
1661 ++It;
1663 // thisMBB:
1664 // ...
1665 // TrueVal = ...
1666 // cmpTY ccX, r1, r2
1667 // bCC copy1MBB
1668 // fallthrough --> copy0MBB
1669 MachineBasicBlock *thisMBB = BB;
1670 MachineFunction *F = BB->getParent();
1671 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1672 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1673 BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
1674 .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
1675 F->insert(It, copy0MBB);
1676 F->insert(It, sinkMBB);
1677 // Update machine-CFG edges by first adding all successors of the current
1678 // block to the new block which will contain the Phi node for the select.
1679 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
1680 e = BB->succ_end(); i != e; ++i)
1681 sinkMBB->addSuccessor(*i);
1682 // Next, remove all successors of the current block, and add the true
1683 // and fallthrough blocks as its successors.
1684 while(!BB->succ_empty())
1685 BB->removeSuccessor(BB->succ_begin());
1686 BB->addSuccessor(copy0MBB);
1687 BB->addSuccessor(sinkMBB);
1689 // copy0MBB:
1690 // %FalseValue = ...
1691 // # fallthrough to sinkMBB
1692 BB = copy0MBB;
1694 // Update machine-CFG edges
1695 BB->addSuccessor(sinkMBB);
1697 // sinkMBB:
1698 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1699 // ...
1700 BB = sinkMBB;
1701 BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg())
1702 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
1703 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
1705 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
1706 return BB;
1711 //===----------------------------------------------------------------------===//
1712 // ARM Optimization Hooks
1713 //===----------------------------------------------------------------------===//
1715 static
1716 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
1717 TargetLowering::DAGCombinerInfo &DCI) {
1718 SelectionDAG &DAG = DCI.DAG;
1719 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1720 MVT VT = N->getValueType(0);
1721 unsigned Opc = N->getOpcode();
1722 bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
1723 SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
1724 SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
1725 ISD::CondCode CC = ISD::SETCC_INVALID;
1727 if (isSlctCC) {
1728 CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
1729 } else {
1730 SDValue CCOp = Slct.getOperand(0);
1731 if (CCOp.getOpcode() == ISD::SETCC)
1732 CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
1735 bool DoXform = false;
1736 bool InvCC = false;
1737 assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
1738 "Bad input!");
1740 if (LHS.getOpcode() == ISD::Constant &&
1741 cast<ConstantSDNode>(LHS)->isNullValue()) {
1742 DoXform = true;
1743 } else if (CC != ISD::SETCC_INVALID &&
1744 RHS.getOpcode() == ISD::Constant &&
1745 cast<ConstantSDNode>(RHS)->isNullValue()) {
1746 std::swap(LHS, RHS);
1747 SDValue Op0 = Slct.getOperand(0);
1748 MVT OpVT = isSlctCC ? Op0.getValueType() :
1749 Op0.getOperand(0).getValueType();
1750 bool isInt = OpVT.isInteger();
1751 CC = ISD::getSetCCInverse(CC, isInt);
1753 if (!TLI.isCondCodeLegal(CC, OpVT))
1754 return SDValue(); // Inverse operator isn't legal.
1756 DoXform = true;
1757 InvCC = true;
1760 if (DoXform) {
1761 SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
1762 if (isSlctCC)
1763 return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
1764 Slct.getOperand(0), Slct.getOperand(1), CC);
1765 SDValue CCOp = Slct.getOperand(0);
1766 if (InvCC)
1767 CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
1768 CCOp.getOperand(0), CCOp.getOperand(1), CC);
1769 return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
1770 CCOp, OtherOp, Result);
1772 return SDValue();
1775 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
1776 static SDValue PerformADDCombine(SDNode *N,
1777 TargetLowering::DAGCombinerInfo &DCI) {
1778 // added by evan in r37685 with no testcase.
1779 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
1781 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
1782 if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
1783 SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
1784 if (Result.getNode()) return Result;
1786 if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
1787 SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
1788 if (Result.getNode()) return Result;
1791 return SDValue();
1794 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
1795 static SDValue PerformSUBCombine(SDNode *N,
1796 TargetLowering::DAGCombinerInfo &DCI) {
1797 // added by evan in r37685 with no testcase.
1798 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
1800 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1801 if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
1802 SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
1803 if (Result.getNode()) return Result;
1806 return SDValue();
1810 /// PerformFMRRDCombine - Target-specific dag combine xforms for ARMISD::FMRRD.
1811 static SDValue PerformFMRRDCombine(SDNode *N,
1812 TargetLowering::DAGCombinerInfo &DCI) {
1813 // fmrrd(fmdrr x, y) -> x,y
1814 SDValue InDouble = N->getOperand(0);
1815 if (InDouble.getOpcode() == ARMISD::FMDRR)
1816 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
1817 return SDValue();
1820 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
1821 DAGCombinerInfo &DCI) const {
1822 switch (N->getOpcode()) {
1823 default: break;
1824 case ISD::ADD: return PerformADDCombine(N, DCI);
1825 case ISD::SUB: return PerformSUBCombine(N, DCI);
1826 case ARMISD::FMRRD: return PerformFMRRDCombine(N, DCI);
1829 return SDValue();
1832 /// isLegalAddressImmediate - Return true if the integer value can be used
1833 /// as the offset of the target addressing mode for load / store of the
1834 /// given type.
1835 static bool isLegalAddressImmediate(int64_t V, MVT VT,
1836 const ARMSubtarget *Subtarget) {
1837 if (V == 0)
1838 return true;
1840 if (!VT.isSimple())
1841 return false;
1843 if (Subtarget->isThumb()) {
1844 if (V < 0)
1845 return false;
1847 unsigned Scale = 1;
1848 switch (VT.getSimpleVT()) {
1849 default: return false;
1850 case MVT::i1:
1851 case MVT::i8:
1852 // Scale == 1;
1853 break;
1854 case MVT::i16:
1855 // Scale == 2;
1856 Scale = 2;
1857 break;
1858 case MVT::i32:
1859 // Scale == 4;
1860 Scale = 4;
1861 break;
1864 if ((V & (Scale - 1)) != 0)
1865 return false;
1866 V /= Scale;
1867 return V == (V & ((1LL << 5) - 1));
1870 if (V < 0)
1871 V = - V;
1872 switch (VT.getSimpleVT()) {
1873 default: return false;
1874 case MVT::i1:
1875 case MVT::i8:
1876 case MVT::i32:
1877 // +- imm12
1878 return V == (V & ((1LL << 12) - 1));
1879 case MVT::i16:
1880 // +- imm8
1881 return V == (V & ((1LL << 8) - 1));
1882 case MVT::f32:
1883 case MVT::f64:
1884 if (!Subtarget->hasVFP2())
1885 return false;
1886 if ((V & 3) != 0)
1887 return false;
1888 V >>= 2;
1889 return V == (V & ((1LL << 8) - 1));
1893 /// isLegalAddressingMode - Return true if the addressing mode represented
1894 /// by AM is legal for this target, for a load/store of the specified type.
1895 bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
1896 const Type *Ty) const {
1897 MVT VT = getValueType(Ty, true);
1898 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
1899 return false;
1901 // Can never fold addr of global into load/store.
1902 if (AM.BaseGV)
1903 return false;
1905 switch (AM.Scale) {
1906 case 0: // no scale reg, must be "r+i" or "r", or "i".
1907 break;
1908 case 1:
1909 if (Subtarget->isThumb())
1910 return false;
1911 // FALL THROUGH.
1912 default:
1913 // ARM doesn't support any R+R*scale+imm addr modes.
1914 if (AM.BaseOffs)
1915 return false;
1917 if (!VT.isSimple())
1918 return false;
1920 int Scale = AM.Scale;
1921 switch (VT.getSimpleVT()) {
1922 default: return false;
1923 case MVT::i1:
1924 case MVT::i8:
1925 case MVT::i32:
1926 case MVT::i64:
1927 // This assumes i64 is legalized to a pair of i32. If not (i.e.
1928 // ldrd / strd are used, then its address mode is same as i16.
1929 // r + r
1930 if (Scale < 0) Scale = -Scale;
1931 if (Scale == 1)
1932 return true;
1933 // r + r << imm
1934 return isPowerOf2_32(Scale & ~1);
1935 case MVT::i16:
1936 // r + r
1937 if (((unsigned)AM.HasBaseReg + Scale) <= 2)
1938 return true;
1939 return false;
1941 case MVT::isVoid:
1942 // Note, we allow "void" uses (basically, uses that aren't loads or
1943 // stores), because arm allows folding a scale into many arithmetic
1944 // operations. This should be made more precise and revisited later.
1946 // Allow r << imm, but the imm has to be a multiple of two.
1947 if (AM.Scale & 1) return false;
1948 return isPowerOf2_32(AM.Scale);
1950 break;
1952 return true;
1955 static bool getIndexedAddressParts(SDNode *Ptr, MVT VT,
1956 bool isSEXTLoad, SDValue &Base,
1957 SDValue &Offset, bool &isInc,
1958 SelectionDAG &DAG) {
1959 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
1960 return false;
1962 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
1963 // AddressingMode 3
1964 Base = Ptr->getOperand(0);
1965 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
1966 int RHSC = (int)RHS->getZExtValue();
1967 if (RHSC < 0 && RHSC > -256) {
1968 isInc = false;
1969 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
1970 return true;
1973 isInc = (Ptr->getOpcode() == ISD::ADD);
1974 Offset = Ptr->getOperand(1);
1975 return true;
1976 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
1977 // AddressingMode 2
1978 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
1979 int RHSC = (int)RHS->getZExtValue();
1980 if (RHSC < 0 && RHSC > -0x1000) {
1981 isInc = false;
1982 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
1983 Base = Ptr->getOperand(0);
1984 return true;
1988 if (Ptr->getOpcode() == ISD::ADD) {
1989 isInc = true;
1990 ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
1991 if (ShOpcVal != ARM_AM::no_shift) {
1992 Base = Ptr->getOperand(1);
1993 Offset = Ptr->getOperand(0);
1994 } else {
1995 Base = Ptr->getOperand(0);
1996 Offset = Ptr->getOperand(1);
1998 return true;
2001 isInc = (Ptr->getOpcode() == ISD::ADD);
2002 Base = Ptr->getOperand(0);
2003 Offset = Ptr->getOperand(1);
2004 return true;
2007 // FIXME: Use FLDM / FSTM to emulate indexed FP load / store.
2008 return false;
2011 /// getPreIndexedAddressParts - returns true by value, base pointer and
2012 /// offset pointer and addressing mode by reference if the node's address
2013 /// can be legally represented as pre-indexed load / store address.
2014 bool
2015 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2016 SDValue &Offset,
2017 ISD::MemIndexedMode &AM,
2018 SelectionDAG &DAG) const {
2019 if (Subtarget->isThumb())
2020 return false;
2022 MVT VT;
2023 SDValue Ptr;
2024 bool isSEXTLoad = false;
2025 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2026 Ptr = LD->getBasePtr();
2027 VT = LD->getMemoryVT();
2028 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
2029 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2030 Ptr = ST->getBasePtr();
2031 VT = ST->getMemoryVT();
2032 } else
2033 return false;
2035 bool isInc;
2036 bool isLegal = getIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, Offset,
2037 isInc, DAG);
2038 if (isLegal) {
2039 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
2040 return true;
2042 return false;
2045 /// getPostIndexedAddressParts - returns true by value, base pointer and
2046 /// offset pointer and addressing mode by reference if this node can be
2047 /// combined with a load / store to form a post-indexed load / store.
2048 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
2049 SDValue &Base,
2050 SDValue &Offset,
2051 ISD::MemIndexedMode &AM,
2052 SelectionDAG &DAG) const {
2053 if (Subtarget->isThumb())
2054 return false;
2056 MVT VT;
2057 SDValue Ptr;
2058 bool isSEXTLoad = false;
2059 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2060 VT = LD->getMemoryVT();
2061 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
2062 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2063 VT = ST->getMemoryVT();
2064 } else
2065 return false;
2067 bool isInc;
2068 bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
2069 isInc, DAG);
2070 if (isLegal) {
2071 AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
2072 return true;
2074 return false;
2077 void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
2078 const APInt &Mask,
2079 APInt &KnownZero,
2080 APInt &KnownOne,
2081 const SelectionDAG &DAG,
2082 unsigned Depth) const {
2083 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
2084 switch (Op.getOpcode()) {
2085 default: break;
2086 case ARMISD::CMOV: {
2087 // Bits are known zero/one if known on the LHS and RHS.
2088 DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2089 if (KnownZero == 0 && KnownOne == 0) return;
2091 APInt KnownZeroRHS, KnownOneRHS;
2092 DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
2093 KnownZeroRHS, KnownOneRHS, Depth+1);
2094 KnownZero &= KnownZeroRHS;
2095 KnownOne &= KnownOneRHS;
2096 return;
2101 //===----------------------------------------------------------------------===//
2102 // ARM Inline Assembly Support
2103 //===----------------------------------------------------------------------===//
2105 /// getConstraintType - Given a constraint letter, return the type of
2106 /// constraint it is for this target.
2107 ARMTargetLowering::ConstraintType
2108 ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
2109 if (Constraint.size() == 1) {
2110 switch (Constraint[0]) {
2111 default: break;
2112 case 'l': return C_RegisterClass;
2113 case 'w': return C_RegisterClass;
2116 return TargetLowering::getConstraintType(Constraint);
2119 std::pair<unsigned, const TargetRegisterClass*>
2120 ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
2121 MVT VT) const {
2122 if (Constraint.size() == 1) {
2123 // GCC RS6000 Constraint Letters
2124 switch (Constraint[0]) {
2125 case 'l':
2126 if (Subtarget->isThumb())
2127 return std::make_pair(0U, ARM::tGPRRegisterClass);
2128 else
2129 return std::make_pair(0U, ARM::GPRRegisterClass);
2130 case 'r':
2131 return std::make_pair(0U, ARM::GPRRegisterClass);
2132 case 'w':
2133 if (VT == MVT::f32)
2134 return std::make_pair(0U, ARM::SPRRegisterClass);
2135 if (VT == MVT::f64)
2136 return std::make_pair(0U, ARM::DPRRegisterClass);
2137 break;
2140 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2143 std::vector<unsigned> ARMTargetLowering::
2144 getRegClassForInlineAsmConstraint(const std::string &Constraint,
2145 MVT VT) const {
2146 if (Constraint.size() != 1)
2147 return std::vector<unsigned>();
2149 switch (Constraint[0]) { // GCC ARM Constraint Letters
2150 default: break;
2151 case 'l':
2152 return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
2153 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
2155 case 'r':
2156 return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
2157 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
2158 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
2159 ARM::R12, ARM::LR, 0);
2160 case 'w':
2161 if (VT == MVT::f32)
2162 return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
2163 ARM::S4, ARM::S5, ARM::S6, ARM::S7,
2164 ARM::S8, ARM::S9, ARM::S10, ARM::S11,
2165 ARM::S12,ARM::S13,ARM::S14,ARM::S15,
2166 ARM::S16,ARM::S17,ARM::S18,ARM::S19,
2167 ARM::S20,ARM::S21,ARM::S22,ARM::S23,
2168 ARM::S24,ARM::S25,ARM::S26,ARM::S27,
2169 ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
2170 if (VT == MVT::f64)
2171 return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
2172 ARM::D4, ARM::D5, ARM::D6, ARM::D7,
2173 ARM::D8, ARM::D9, ARM::D10,ARM::D11,
2174 ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
2175 break;
2178 return std::vector<unsigned>();
2181 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2182 /// vector. If it is invalid, don't add anything to Ops.
2183 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2184 char Constraint,
2185 bool hasMemory,
2186 std::vector<SDValue>&Ops,
2187 SelectionDAG &DAG) const {
2188 SDValue Result(0, 0);
2190 switch (Constraint) {
2191 default: break;
2192 case 'I': case 'J': case 'K': case 'L':
2193 case 'M': case 'N': case 'O':
2194 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2195 if (!C)
2196 return;
2198 int64_t CVal64 = C->getSExtValue();
2199 int CVal = (int) CVal64;
2200 // None of these constraints allow values larger than 32 bits. Check
2201 // that the value fits in an int.
2202 if (CVal != CVal64)
2203 return;
2205 switch (Constraint) {
2206 case 'I':
2207 if (Subtarget->isThumb()) {
2208 // This must be a constant between 0 and 255, for ADD immediates.
2209 if (CVal >= 0 && CVal <= 255)
2210 break;
2211 } else {
2212 // A constant that can be used as an immediate value in a
2213 // data-processing instruction.
2214 if (ARM_AM::getSOImmVal(CVal) != -1)
2215 break;
2217 return;
2219 case 'J':
2220 if (Subtarget->isThumb()) {
2221 // This must be a constant between -255 and -1, for negated ADD
2222 // immediates. This can be used in GCC with an "n" modifier that
2223 // prints the negated value, for use with SUB instructions. It is
2224 // not useful otherwise but is implemented for compatibility.
2225 if (CVal >= -255 && CVal <= -1)
2226 break;
2227 } else {
2228 // This must be a constant between -4095 and 4095. It is not clear
2229 // what this constraint is intended for. Implemented for
2230 // compatibility with GCC.
2231 if (CVal >= -4095 && CVal <= 4095)
2232 break;
2234 return;
2236 case 'K':
2237 if (Subtarget->isThumb()) {
2238 // A 32-bit value where only one byte has a nonzero value. Exclude
2239 // zero to match GCC. This constraint is used by GCC internally for
2240 // constants that can be loaded with a move/shift combination.
2241 // It is not useful otherwise but is implemented for compatibility.
2242 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
2243 break;
2244 } else {
2245 // A constant whose bitwise inverse can be used as an immediate
2246 // value in a data-processing instruction. This can be used in GCC
2247 // with a "B" modifier that prints the inverted value, for use with
2248 // BIC and MVN instructions. It is not useful otherwise but is
2249 // implemented for compatibility.
2250 if (ARM_AM::getSOImmVal(~CVal) != -1)
2251 break;
2253 return;
2255 case 'L':
2256 if (Subtarget->isThumb()) {
2257 // This must be a constant between -7 and 7,
2258 // for 3-operand ADD/SUB immediate instructions.
2259 if (CVal >= -7 && CVal < 7)
2260 break;
2261 } else {
2262 // A constant whose negation can be used as an immediate value in a
2263 // data-processing instruction. This can be used in GCC with an "n"
2264 // modifier that prints the negated value, for use with SUB
2265 // instructions. It is not useful otherwise but is implemented for
2266 // compatibility.
2267 if (ARM_AM::getSOImmVal(-CVal) != -1)
2268 break;
2270 return;
2272 case 'M':
2273 if (Subtarget->isThumb()) {
2274 // This must be a multiple of 4 between 0 and 1020, for
2275 // ADD sp + immediate.
2276 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
2277 break;
2278 } else {
2279 // A power of two or a constant between 0 and 32. This is used in
2280 // GCC for the shift amount on shifted register operands, but it is
2281 // useful in general for any shift amounts.
2282 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
2283 break;
2285 return;
2287 case 'N':
2288 if (Subtarget->isThumb()) {
2289 // This must be a constant between 0 and 31, for shift amounts.
2290 if (CVal >= 0 && CVal <= 31)
2291 break;
2293 return;
2295 case 'O':
2296 if (Subtarget->isThumb()) {
2297 // This must be a multiple of 4 between -508 and 508, for
2298 // ADD/SUB sp = sp + immediate.
2299 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
2300 break;
2302 return;
2304 Result = DAG.getTargetConstant(CVal, Op.getValueType());
2305 break;
2308 if (Result.getNode()) {
2309 Ops.push_back(Result);
2310 return;
2312 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
2313 Ops, DAG);