Use MergeBlockIntoPredecessor to simplify some code.
[llvm/msp430.git] / lib / Transforms / Utils / SimplifyCFG.cpp
blob2fc859e88dd158d9381bab26869bd6edc10bd5ee
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/Type.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Support/CFG.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/Statistic.h"
27 #include <algorithm>
28 #include <functional>
29 #include <set>
30 #include <map>
31 using namespace llvm;
33 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
35 /// SafeToMergeTerminators - Return true if it is safe to merge these two
36 /// terminator instructions together.
37 ///
38 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
39 if (SI1 == SI2) return false; // Can't merge with self!
41 // It is not safe to merge these two switch instructions if they have a common
42 // successor, and if that successor has a PHI node, and if *that* PHI node has
43 // conflicting incoming values from the two switch blocks.
44 BasicBlock *SI1BB = SI1->getParent();
45 BasicBlock *SI2BB = SI2->getParent();
46 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
48 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
49 if (SI1Succs.count(*I))
50 for (BasicBlock::iterator BBI = (*I)->begin();
51 isa<PHINode>(BBI); ++BBI) {
52 PHINode *PN = cast<PHINode>(BBI);
53 if (PN->getIncomingValueForBlock(SI1BB) !=
54 PN->getIncomingValueForBlock(SI2BB))
55 return false;
58 return true;
61 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
62 /// now be entries in it from the 'NewPred' block. The values that will be
63 /// flowing into the PHI nodes will be the same as those coming in from
64 /// ExistPred, an existing predecessor of Succ.
65 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
66 BasicBlock *ExistPred) {
67 assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
68 succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
69 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
71 PHINode *PN;
72 for (BasicBlock::iterator I = Succ->begin();
73 (PN = dyn_cast<PHINode>(I)); ++I)
74 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
77 // CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
78 // almost-empty BB ending in an unconditional branch to Succ, into succ.
80 // Assumption: Succ is the single successor for BB.
82 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
83 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
85 DOUT << "Looking to fold " << BB->getNameStart() << " into "
86 << Succ->getNameStart() << "\n";
87 // Shortcut, if there is only a single predecessor is must be BB and merging
88 // is always safe
89 if (Succ->getSinglePredecessor()) return true;
91 typedef SmallPtrSet<Instruction*, 16> InstrSet;
92 InstrSet BBPHIs;
94 // Make a list of all phi nodes in BB
95 BasicBlock::iterator BBI = BB->begin();
96 while (isa<PHINode>(*BBI)) BBPHIs.insert(BBI++);
98 // Make a list of the predecessors of BB
99 typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
100 BlockSet BBPreds(pred_begin(BB), pred_end(BB));
102 // Use that list to make another list of common predecessors of BB and Succ
103 BlockSet CommonPreds;
104 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
105 PI != PE; ++PI)
106 if (BBPreds.count(*PI))
107 CommonPreds.insert(*PI);
109 // Shortcut, if there are no common predecessors, merging is always safe
110 if (CommonPreds.begin() == CommonPreds.end())
111 return true;
113 // Look at all the phi nodes in Succ, to see if they present a conflict when
114 // merging these blocks
115 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
116 PHINode *PN = cast<PHINode>(I);
118 // If the incoming value from BB is again a PHINode in
119 // BB which has the same incoming value for *PI as PN does, we can
120 // merge the phi nodes and then the blocks can still be merged
121 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
122 if (BBPN && BBPN->getParent() == BB) {
123 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
124 PI != PE; PI++) {
125 if (BBPN->getIncomingValueForBlock(*PI)
126 != PN->getIncomingValueForBlock(*PI)) {
127 DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
128 << Succ->getNameStart() << " is conflicting with "
129 << BBPN->getNameStart() << " with regard to common predecessor "
130 << (*PI)->getNameStart() << "\n";
131 return false;
134 // Remove this phinode from the list of phis in BB, since it has been
135 // handled.
136 BBPHIs.erase(BBPN);
137 } else {
138 Value* Val = PN->getIncomingValueForBlock(BB);
139 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
140 PI != PE; PI++) {
141 // See if the incoming value for the common predecessor is equal to the
142 // one for BB, in which case this phi node will not prevent the merging
143 // of the block.
144 if (Val != PN->getIncomingValueForBlock(*PI)) {
145 DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
146 << Succ->getNameStart() << " is conflicting with regard to common "
147 << "predecessor " << (*PI)->getNameStart() << "\n";
148 return false;
154 // If there are any other phi nodes in BB that don't have a phi node in Succ
155 // to merge with, they must be moved to Succ completely. However, for any
156 // predecessors of Succ, branches will be added to the phi node that just
157 // point to itself. So, for any common predecessors, this must not cause
158 // conflicts.
159 for (InstrSet::iterator I = BBPHIs.begin(), E = BBPHIs.end();
160 I != E; I++) {
161 PHINode *PN = cast<PHINode>(*I);
162 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
163 PI != PE; PI++)
164 if (PN->getIncomingValueForBlock(*PI) != PN) {
165 DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
166 << BB->getNameStart() << " is conflicting with regard to common "
167 << "predecessor " << (*PI)->getNameStart() << "\n";
168 return false;
172 return true;
175 /// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
176 /// branch to Succ, and contains no instructions other than PHI nodes and the
177 /// branch. If possible, eliminate BB.
178 static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
179 BasicBlock *Succ) {
180 // Check to see if merging these blocks would cause conflicts for any of the
181 // phi nodes in BB or Succ. If not, we can safely merge.
182 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
184 DOUT << "Killing Trivial BB: \n" << *BB;
186 if (isa<PHINode>(Succ->begin())) {
187 // If there is more than one pred of succ, and there are PHI nodes in
188 // the successor, then we need to add incoming edges for the PHI nodes
190 const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
192 // Loop over all of the PHI nodes in the successor of BB.
193 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
194 PHINode *PN = cast<PHINode>(I);
195 Value *OldVal = PN->removeIncomingValue(BB, false);
196 assert(OldVal && "No entry in PHI for Pred BB!");
198 // If this incoming value is one of the PHI nodes in BB, the new entries
199 // in the PHI node are the entries from the old PHI.
200 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
201 PHINode *OldValPN = cast<PHINode>(OldVal);
202 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
203 // Note that, since we are merging phi nodes and BB and Succ might
204 // have common predecessors, we could end up with a phi node with
205 // identical incoming branches. This will be cleaned up later (and
206 // will trigger asserts if we try to clean it up now, without also
207 // simplifying the corresponding conditional branch).
208 PN->addIncoming(OldValPN->getIncomingValue(i),
209 OldValPN->getIncomingBlock(i));
210 } else {
211 // Add an incoming value for each of the new incoming values.
212 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
213 PN->addIncoming(OldVal, BBPreds[i]);
218 if (isa<PHINode>(&BB->front())) {
219 SmallVector<BasicBlock*, 16>
220 OldSuccPreds(pred_begin(Succ), pred_end(Succ));
222 // Move all PHI nodes in BB to Succ if they are alive, otherwise
223 // delete them.
224 while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
225 if (PN->use_empty()) {
226 // Just remove the dead phi. This happens if Succ's PHIs were the only
227 // users of the PHI nodes.
228 PN->eraseFromParent();
229 } else {
230 // The instruction is alive, so this means that BB must dominate all
231 // predecessors of Succ (Since all uses of the PN are after its
232 // definition, so in Succ or a block dominated by Succ. If a predecessor
233 // of Succ would not be dominated by BB, PN would violate the def before
234 // use SSA demand). Therefore, we can simply move the phi node to the
235 // next block.
236 Succ->getInstList().splice(Succ->begin(),
237 BB->getInstList(), BB->begin());
239 // We need to add new entries for the PHI node to account for
240 // predecessors of Succ that the PHI node does not take into
241 // account. At this point, since we know that BB dominated succ and all
242 // of its predecessors, this means that we should any newly added
243 // incoming edges should use the PHI node itself as the value for these
244 // edges, because they are loop back edges.
245 for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
246 if (OldSuccPreds[i] != BB)
247 PN->addIncoming(PN, OldSuccPreds[i]);
251 // Everything that jumped to BB now goes to Succ.
252 BB->replaceAllUsesWith(Succ);
253 if (!Succ->hasName()) Succ->takeName(BB);
254 BB->eraseFromParent(); // Delete the old basic block.
255 return true;
258 /// GetIfCondition - Given a basic block (BB) with two predecessors (and
259 /// presumably PHI nodes in it), check to see if the merge at this block is due
260 /// to an "if condition". If so, return the boolean condition that determines
261 /// which entry into BB will be taken. Also, return by references the block
262 /// that will be entered from if the condition is true, and the block that will
263 /// be entered if the condition is false.
266 static Value *GetIfCondition(BasicBlock *BB,
267 BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
268 assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
269 "Function can only handle blocks with 2 predecessors!");
270 BasicBlock *Pred1 = *pred_begin(BB);
271 BasicBlock *Pred2 = *++pred_begin(BB);
273 // We can only handle branches. Other control flow will be lowered to
274 // branches if possible anyway.
275 if (!isa<BranchInst>(Pred1->getTerminator()) ||
276 !isa<BranchInst>(Pred2->getTerminator()))
277 return 0;
278 BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
279 BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
281 // Eliminate code duplication by ensuring that Pred1Br is conditional if
282 // either are.
283 if (Pred2Br->isConditional()) {
284 // If both branches are conditional, we don't have an "if statement". In
285 // reality, we could transform this case, but since the condition will be
286 // required anyway, we stand no chance of eliminating it, so the xform is
287 // probably not profitable.
288 if (Pred1Br->isConditional())
289 return 0;
291 std::swap(Pred1, Pred2);
292 std::swap(Pred1Br, Pred2Br);
295 if (Pred1Br->isConditional()) {
296 // If we found a conditional branch predecessor, make sure that it branches
297 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
298 if (Pred1Br->getSuccessor(0) == BB &&
299 Pred1Br->getSuccessor(1) == Pred2) {
300 IfTrue = Pred1;
301 IfFalse = Pred2;
302 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
303 Pred1Br->getSuccessor(1) == BB) {
304 IfTrue = Pred2;
305 IfFalse = Pred1;
306 } else {
307 // We know that one arm of the conditional goes to BB, so the other must
308 // go somewhere unrelated, and this must not be an "if statement".
309 return 0;
312 // The only thing we have to watch out for here is to make sure that Pred2
313 // doesn't have incoming edges from other blocks. If it does, the condition
314 // doesn't dominate BB.
315 if (++pred_begin(Pred2) != pred_end(Pred2))
316 return 0;
318 return Pred1Br->getCondition();
321 // Ok, if we got here, both predecessors end with an unconditional branch to
322 // BB. Don't panic! If both blocks only have a single (identical)
323 // predecessor, and THAT is a conditional branch, then we're all ok!
324 if (pred_begin(Pred1) == pred_end(Pred1) ||
325 ++pred_begin(Pred1) != pred_end(Pred1) ||
326 pred_begin(Pred2) == pred_end(Pred2) ||
327 ++pred_begin(Pred2) != pred_end(Pred2) ||
328 *pred_begin(Pred1) != *pred_begin(Pred2))
329 return 0;
331 // Otherwise, if this is a conditional branch, then we can use it!
332 BasicBlock *CommonPred = *pred_begin(Pred1);
333 if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
334 assert(BI->isConditional() && "Two successors but not conditional?");
335 if (BI->getSuccessor(0) == Pred1) {
336 IfTrue = Pred1;
337 IfFalse = Pred2;
338 } else {
339 IfTrue = Pred2;
340 IfFalse = Pred1;
342 return BI->getCondition();
344 return 0;
348 // If we have a merge point of an "if condition" as accepted above, return true
349 // if the specified value dominates the block. We don't handle the true
350 // generality of domination here, just a special case which works well enough
351 // for us.
353 // If AggressiveInsts is non-null, and if V does not dominate BB, we check to
354 // see if V (which must be an instruction) is cheap to compute and is
355 // non-trapping. If both are true, the instruction is inserted into the set and
356 // true is returned.
357 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
358 std::set<Instruction*> *AggressiveInsts) {
359 Instruction *I = dyn_cast<Instruction>(V);
360 if (!I) {
361 // Non-instructions all dominate instructions, but not all constantexprs
362 // can be executed unconditionally.
363 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
364 if (C->canTrap())
365 return false;
366 return true;
368 BasicBlock *PBB = I->getParent();
370 // We don't want to allow weird loops that might have the "if condition" in
371 // the bottom of this block.
372 if (PBB == BB) return false;
374 // If this instruction is defined in a block that contains an unconditional
375 // branch to BB, then it must be in the 'conditional' part of the "if
376 // statement".
377 if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
378 if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
379 if (!AggressiveInsts) return false;
380 // Okay, it looks like the instruction IS in the "condition". Check to
381 // see if its a cheap instruction to unconditionally compute, and if it
382 // only uses stuff defined outside of the condition. If so, hoist it out.
383 switch (I->getOpcode()) {
384 default: return false; // Cannot hoist this out safely.
385 case Instruction::Load:
386 // We can hoist loads that are non-volatile and obviously cannot trap.
387 if (cast<LoadInst>(I)->isVolatile())
388 return false;
389 if (!isa<AllocaInst>(I->getOperand(0)) &&
390 !isa<Constant>(I->getOperand(0)))
391 return false;
393 // Finally, we have to check to make sure there are no instructions
394 // before the load in its basic block, as we are going to hoist the loop
395 // out to its predecessor.
396 if (PBB->begin() != BasicBlock::iterator(I))
397 return false;
398 break;
399 case Instruction::Add:
400 case Instruction::Sub:
401 case Instruction::And:
402 case Instruction::Or:
403 case Instruction::Xor:
404 case Instruction::Shl:
405 case Instruction::LShr:
406 case Instruction::AShr:
407 case Instruction::ICmp:
408 case Instruction::FCmp:
409 if (I->getOperand(0)->getType()->isFPOrFPVector())
410 return false; // FP arithmetic might trap.
411 break; // These are all cheap and non-trapping instructions.
414 // Okay, we can only really hoist these out if their operands are not
415 // defined in the conditional region.
416 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
417 if (!DominatesMergePoint(*i, BB, 0))
418 return false;
419 // Okay, it's safe to do this! Remember this instruction.
420 AggressiveInsts->insert(I);
423 return true;
426 // GatherConstantSetEQs - Given a potentially 'or'd together collection of
427 // icmp_eq instructions that compare a value against a constant, return the
428 // value being compared, and stick the constant into the Values vector.
429 static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
430 if (Instruction *Inst = dyn_cast<Instruction>(V)) {
431 if (Inst->getOpcode() == Instruction::ICmp &&
432 cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
433 if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
434 Values.push_back(C);
435 return Inst->getOperand(0);
436 } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
437 Values.push_back(C);
438 return Inst->getOperand(1);
440 } else if (Inst->getOpcode() == Instruction::Or) {
441 if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
442 if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
443 if (LHS == RHS)
444 return LHS;
447 return 0;
450 // GatherConstantSetNEs - Given a potentially 'and'd together collection of
451 // setne instructions that compare a value against a constant, return the value
452 // being compared, and stick the constant into the Values vector.
453 static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
454 if (Instruction *Inst = dyn_cast<Instruction>(V)) {
455 if (Inst->getOpcode() == Instruction::ICmp &&
456 cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
457 if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
458 Values.push_back(C);
459 return Inst->getOperand(0);
460 } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
461 Values.push_back(C);
462 return Inst->getOperand(1);
464 } else if (Inst->getOpcode() == Instruction::And) {
465 if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
466 if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
467 if (LHS == RHS)
468 return LHS;
471 return 0;
476 /// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
477 /// bunch of comparisons of one value against constants, return the value and
478 /// the constants being compared.
479 static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
480 std::vector<ConstantInt*> &Values) {
481 if (Cond->getOpcode() == Instruction::Or) {
482 CompVal = GatherConstantSetEQs(Cond, Values);
484 // Return true to indicate that the condition is true if the CompVal is
485 // equal to one of the constants.
486 return true;
487 } else if (Cond->getOpcode() == Instruction::And) {
488 CompVal = GatherConstantSetNEs(Cond, Values);
490 // Return false to indicate that the condition is false if the CompVal is
491 // equal to one of the constants.
492 return false;
494 return false;
497 /// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
498 /// has no side effects, nuke it. If it uses any instructions that become dead
499 /// because the instruction is now gone, nuke them too.
500 static void ErasePossiblyDeadInstructionTree(Instruction *I) {
501 if (!isInstructionTriviallyDead(I)) return;
503 SmallVector<Instruction*, 16> InstrsToInspect;
504 InstrsToInspect.push_back(I);
506 while (!InstrsToInspect.empty()) {
507 I = InstrsToInspect.back();
508 InstrsToInspect.pop_back();
510 if (!isInstructionTriviallyDead(I)) continue;
512 // If I is in the work list multiple times, remove previous instances.
513 for (unsigned i = 0, e = InstrsToInspect.size(); i != e; ++i)
514 if (InstrsToInspect[i] == I) {
515 InstrsToInspect.erase(InstrsToInspect.begin()+i);
516 --i, --e;
519 // Add operands of dead instruction to worklist.
520 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
521 if (Instruction *OpI = dyn_cast<Instruction>(*i))
522 InstrsToInspect.push_back(OpI);
524 // Remove dead instruction.
525 I->eraseFromParent();
529 // isValueEqualityComparison - Return true if the specified terminator checks to
530 // see if a value is equal to constant integer value.
531 static Value *isValueEqualityComparison(TerminatorInst *TI) {
532 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
533 // Do not permit merging of large switch instructions into their
534 // predecessors unless there is only one predecessor.
535 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
536 pred_end(SI->getParent())) > 128)
537 return 0;
539 return SI->getCondition();
541 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
542 if (BI->isConditional() && BI->getCondition()->hasOneUse())
543 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
544 if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
545 ICI->getPredicate() == ICmpInst::ICMP_NE) &&
546 isa<ConstantInt>(ICI->getOperand(1)))
547 return ICI->getOperand(0);
548 return 0;
551 // Given a value comparison instruction, decode all of the 'cases' that it
552 // represents and return the 'default' block.
553 static BasicBlock *
554 GetValueEqualityComparisonCases(TerminatorInst *TI,
555 std::vector<std::pair<ConstantInt*,
556 BasicBlock*> > &Cases) {
557 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
558 Cases.reserve(SI->getNumCases());
559 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
560 Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
561 return SI->getDefaultDest();
564 BranchInst *BI = cast<BranchInst>(TI);
565 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
566 Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
567 BI->getSuccessor(ICI->getPredicate() ==
568 ICmpInst::ICMP_NE)));
569 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
573 // EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
574 // in the list that match the specified block.
575 static void EliminateBlockCases(BasicBlock *BB,
576 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
577 for (unsigned i = 0, e = Cases.size(); i != e; ++i)
578 if (Cases[i].second == BB) {
579 Cases.erase(Cases.begin()+i);
580 --i; --e;
584 // ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
585 // well.
586 static bool
587 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
588 std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
589 std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
591 // Make V1 be smaller than V2.
592 if (V1->size() > V2->size())
593 std::swap(V1, V2);
595 if (V1->size() == 0) return false;
596 if (V1->size() == 1) {
597 // Just scan V2.
598 ConstantInt *TheVal = (*V1)[0].first;
599 for (unsigned i = 0, e = V2->size(); i != e; ++i)
600 if (TheVal == (*V2)[i].first)
601 return true;
604 // Otherwise, just sort both lists and compare element by element.
605 std::sort(V1->begin(), V1->end());
606 std::sort(V2->begin(), V2->end());
607 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
608 while (i1 != e1 && i2 != e2) {
609 if ((*V1)[i1].first == (*V2)[i2].first)
610 return true;
611 if ((*V1)[i1].first < (*V2)[i2].first)
612 ++i1;
613 else
614 ++i2;
616 return false;
619 // SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
620 // terminator instruction and its block is known to only have a single
621 // predecessor block, check to see if that predecessor is also a value
622 // comparison with the same value, and if that comparison determines the outcome
623 // of this comparison. If so, simplify TI. This does a very limited form of
624 // jump threading.
625 static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
626 BasicBlock *Pred) {
627 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
628 if (!PredVal) return false; // Not a value comparison in predecessor.
630 Value *ThisVal = isValueEqualityComparison(TI);
631 assert(ThisVal && "This isn't a value comparison!!");
632 if (ThisVal != PredVal) return false; // Different predicates.
634 // Find out information about when control will move from Pred to TI's block.
635 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
636 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
637 PredCases);
638 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
640 // Find information about how control leaves this block.
641 std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
642 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
643 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
645 // If TI's block is the default block from Pred's comparison, potentially
646 // simplify TI based on this knowledge.
647 if (PredDef == TI->getParent()) {
648 // If we are here, we know that the value is none of those cases listed in
649 // PredCases. If there are any cases in ThisCases that are in PredCases, we
650 // can simplify TI.
651 if (ValuesOverlap(PredCases, ThisCases)) {
652 if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
653 // Okay, one of the successors of this condbr is dead. Convert it to a
654 // uncond br.
655 assert(ThisCases.size() == 1 && "Branch can only have one case!");
656 Value *Cond = BTI->getCondition();
657 // Insert the new branch.
658 Instruction *NI = BranchInst::Create(ThisDef, TI);
660 // Remove PHI node entries for the dead edge.
661 ThisCases[0].second->removePredecessor(TI->getParent());
663 DOUT << "Threading pred instr: " << *Pred->getTerminator()
664 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
666 TI->eraseFromParent(); // Nuke the old one.
667 // If condition is now dead, nuke it.
668 if (Instruction *CondI = dyn_cast<Instruction>(Cond))
669 ErasePossiblyDeadInstructionTree(CondI);
670 return true;
672 } else {
673 SwitchInst *SI = cast<SwitchInst>(TI);
674 // Okay, TI has cases that are statically dead, prune them away.
675 SmallPtrSet<Constant*, 16> DeadCases;
676 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
677 DeadCases.insert(PredCases[i].first);
679 DOUT << "Threading pred instr: " << *Pred->getTerminator()
680 << "Through successor TI: " << *TI;
682 for (unsigned i = SI->getNumCases()-1; i != 0; --i)
683 if (DeadCases.count(SI->getCaseValue(i))) {
684 SI->getSuccessor(i)->removePredecessor(TI->getParent());
685 SI->removeCase(i);
688 DOUT << "Leaving: " << *TI << "\n";
689 return true;
693 } else {
694 // Otherwise, TI's block must correspond to some matched value. Find out
695 // which value (or set of values) this is.
696 ConstantInt *TIV = 0;
697 BasicBlock *TIBB = TI->getParent();
698 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
699 if (PredCases[i].second == TIBB) {
700 if (TIV == 0)
701 TIV = PredCases[i].first;
702 else
703 return false; // Cannot handle multiple values coming to this block.
705 assert(TIV && "No edge from pred to succ?");
707 // Okay, we found the one constant that our value can be if we get into TI's
708 // BB. Find out which successor will unconditionally be branched to.
709 BasicBlock *TheRealDest = 0;
710 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
711 if (ThisCases[i].first == TIV) {
712 TheRealDest = ThisCases[i].second;
713 break;
716 // If not handled by any explicit cases, it is handled by the default case.
717 if (TheRealDest == 0) TheRealDest = ThisDef;
719 // Remove PHI node entries for dead edges.
720 BasicBlock *CheckEdge = TheRealDest;
721 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
722 if (*SI != CheckEdge)
723 (*SI)->removePredecessor(TIBB);
724 else
725 CheckEdge = 0;
727 // Insert the new branch.
728 Instruction *NI = BranchInst::Create(TheRealDest, TI);
730 DOUT << "Threading pred instr: " << *Pred->getTerminator()
731 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
732 Instruction *Cond = 0;
733 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
734 Cond = dyn_cast<Instruction>(BI->getCondition());
735 TI->eraseFromParent(); // Nuke the old one.
737 if (Cond) ErasePossiblyDeadInstructionTree(Cond);
738 return true;
740 return false;
743 // FoldValueComparisonIntoPredecessors - The specified terminator is a value
744 // equality comparison instruction (either a switch or a branch on "X == c").
745 // See if any of the predecessors of the terminator block are value comparisons
746 // on the same value. If so, and if safe to do so, fold them together.
747 static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
748 BasicBlock *BB = TI->getParent();
749 Value *CV = isValueEqualityComparison(TI); // CondVal
750 assert(CV && "Not a comparison?");
751 bool Changed = false;
753 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
754 while (!Preds.empty()) {
755 BasicBlock *Pred = Preds.back();
756 Preds.pop_back();
758 // See if the predecessor is a comparison with the same value.
759 TerminatorInst *PTI = Pred->getTerminator();
760 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
762 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
763 // Figure out which 'cases' to copy from SI to PSI.
764 std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
765 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
767 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
768 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
770 // Based on whether the default edge from PTI goes to BB or not, fill in
771 // PredCases and PredDefault with the new switch cases we would like to
772 // build.
773 SmallVector<BasicBlock*, 8> NewSuccessors;
775 if (PredDefault == BB) {
776 // If this is the default destination from PTI, only the edges in TI
777 // that don't occur in PTI, or that branch to BB will be activated.
778 std::set<ConstantInt*> PTIHandled;
779 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
780 if (PredCases[i].second != BB)
781 PTIHandled.insert(PredCases[i].first);
782 else {
783 // The default destination is BB, we don't need explicit targets.
784 std::swap(PredCases[i], PredCases.back());
785 PredCases.pop_back();
786 --i; --e;
789 // Reconstruct the new switch statement we will be building.
790 if (PredDefault != BBDefault) {
791 PredDefault->removePredecessor(Pred);
792 PredDefault = BBDefault;
793 NewSuccessors.push_back(BBDefault);
795 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
796 if (!PTIHandled.count(BBCases[i].first) &&
797 BBCases[i].second != BBDefault) {
798 PredCases.push_back(BBCases[i]);
799 NewSuccessors.push_back(BBCases[i].second);
802 } else {
803 // If this is not the default destination from PSI, only the edges
804 // in SI that occur in PSI with a destination of BB will be
805 // activated.
806 std::set<ConstantInt*> PTIHandled;
807 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
808 if (PredCases[i].second == BB) {
809 PTIHandled.insert(PredCases[i].first);
810 std::swap(PredCases[i], PredCases.back());
811 PredCases.pop_back();
812 --i; --e;
815 // Okay, now we know which constants were sent to BB from the
816 // predecessor. Figure out where they will all go now.
817 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
818 if (PTIHandled.count(BBCases[i].first)) {
819 // If this is one we are capable of getting...
820 PredCases.push_back(BBCases[i]);
821 NewSuccessors.push_back(BBCases[i].second);
822 PTIHandled.erase(BBCases[i].first);// This constant is taken care of
825 // If there are any constants vectored to BB that TI doesn't handle,
826 // they must go to the default destination of TI.
827 for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
828 E = PTIHandled.end(); I != E; ++I) {
829 PredCases.push_back(std::make_pair(*I, BBDefault));
830 NewSuccessors.push_back(BBDefault);
834 // Okay, at this point, we know which new successor Pred will get. Make
835 // sure we update the number of entries in the PHI nodes for these
836 // successors.
837 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
838 AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
840 // Now that the successors are updated, create the new Switch instruction.
841 SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault,
842 PredCases.size(), PTI);
843 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
844 NewSI->addCase(PredCases[i].first, PredCases[i].second);
846 Instruction *DeadCond = 0;
847 if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
848 // If PTI is a branch, remember the condition.
849 DeadCond = dyn_cast<Instruction>(BI->getCondition());
850 Pred->getInstList().erase(PTI);
852 // If the condition is dead now, remove the instruction tree.
853 if (DeadCond) ErasePossiblyDeadInstructionTree(DeadCond);
855 // Okay, last check. If BB is still a successor of PSI, then we must
856 // have an infinite loop case. If so, add an infinitely looping block
857 // to handle the case to preserve the behavior of the code.
858 BasicBlock *InfLoopBlock = 0;
859 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
860 if (NewSI->getSuccessor(i) == BB) {
861 if (InfLoopBlock == 0) {
862 // Insert it at the end of the function, because it's either code,
863 // or it won't matter if it's hot. :)
864 InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
865 BranchInst::Create(InfLoopBlock, InfLoopBlock);
867 NewSI->setSuccessor(i, InfLoopBlock);
870 Changed = true;
873 return Changed;
876 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
877 /// BB2, hoist any common code in the two blocks up into the branch block. The
878 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
879 static bool HoistThenElseCodeToIf(BranchInst *BI) {
880 // This does very trivial matching, with limited scanning, to find identical
881 // instructions in the two blocks. In particular, we don't want to get into
882 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
883 // such, we currently just scan for obviously identical instructions in an
884 // identical order.
885 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
886 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
888 Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
889 if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
890 isa<InvokeInst>(I1) || !I1->isIdenticalTo(I2))
891 return false;
893 // If we get here, we can hoist at least one instruction.
894 BasicBlock *BIParent = BI->getParent();
896 do {
897 // If we are hoisting the terminator instruction, don't move one (making a
898 // broken BB), instead clone it, and remove BI.
899 if (isa<TerminatorInst>(I1))
900 goto HoistTerminator;
902 // For a normal instruction, we just move one to right before the branch,
903 // then replace all uses of the other with the first. Finally, we remove
904 // the now redundant second instruction.
905 BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
906 if (!I2->use_empty())
907 I2->replaceAllUsesWith(I1);
908 BB2->getInstList().erase(I2);
910 I1 = BB1->begin();
911 I2 = BB2->begin();
912 } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
914 return true;
916 HoistTerminator:
917 // Okay, it is safe to hoist the terminator.
918 Instruction *NT = I1->clone();
919 BIParent->getInstList().insert(BI, NT);
920 if (NT->getType() != Type::VoidTy) {
921 I1->replaceAllUsesWith(NT);
922 I2->replaceAllUsesWith(NT);
923 NT->takeName(I1);
926 // Hoisting one of the terminators from our successor is a great thing.
927 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
928 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
929 // nodes, so we insert select instruction to compute the final result.
930 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
931 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
932 PHINode *PN;
933 for (BasicBlock::iterator BBI = SI->begin();
934 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
935 Value *BB1V = PN->getIncomingValueForBlock(BB1);
936 Value *BB2V = PN->getIncomingValueForBlock(BB2);
937 if (BB1V != BB2V) {
938 // These values do not agree. Insert a select instruction before NT
939 // that determines the right value.
940 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
941 if (SI == 0)
942 SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
943 BB1V->getName()+"."+BB2V->getName(), NT);
944 // Make the PHI node use the select for all incoming values for BB1/BB2
945 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
946 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
947 PN->setIncomingValue(i, SI);
952 // Update any PHI nodes in our new successors.
953 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
954 AddPredecessorToBlock(*SI, BIParent, BB1);
956 BI->eraseFromParent();
957 return true;
960 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
961 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
962 /// (for now, restricted to a single instruction that's side effect free) from
963 /// the BB1 into the branch block to speculatively execute it.
964 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
965 // Only speculatively execution a single instruction (not counting the
966 // terminator) for now.
967 BasicBlock::iterator BBI = BB1->begin();
968 ++BBI; // must have at least a terminator
969 if (BBI == BB1->end()) return false; // only one inst
970 ++BBI;
971 if (BBI != BB1->end()) return false; // more than 2 insts.
973 // Be conservative for now. FP select instruction can often be expensive.
974 Value *BrCond = BI->getCondition();
975 if (isa<Instruction>(BrCond) &&
976 cast<Instruction>(BrCond)->getOpcode() == Instruction::FCmp)
977 return false;
979 // If BB1 is actually on the false edge of the conditional branch, remember
980 // to swap the select operands later.
981 bool Invert = false;
982 if (BB1 != BI->getSuccessor(0)) {
983 assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
984 Invert = true;
987 // Turn
988 // BB:
989 // %t1 = icmp
990 // br i1 %t1, label %BB1, label %BB2
991 // BB1:
992 // %t3 = add %t2, c
993 // br label BB2
994 // BB2:
995 // =>
996 // BB:
997 // %t1 = icmp
998 // %t4 = add %t2, c
999 // %t3 = select i1 %t1, %t2, %t3
1000 Instruction *I = BB1->begin();
1001 switch (I->getOpcode()) {
1002 default: return false; // Not safe / profitable to hoist.
1003 case Instruction::Add:
1004 case Instruction::Sub:
1005 case Instruction::And:
1006 case Instruction::Or:
1007 case Instruction::Xor:
1008 case Instruction::Shl:
1009 case Instruction::LShr:
1010 case Instruction::AShr:
1011 if (!I->getOperand(0)->getType()->isInteger())
1012 // FP arithmetic might trap. Not worth doing for vector ops.
1013 return false;
1014 break; // These are all cheap and non-trapping instructions.
1017 // Can we speculatively execute the instruction? And what is the value
1018 // if the condition is false? Consider the phi uses, if the incoming value
1019 // from the "if" block are all the same V, then V is the value of the
1020 // select if the condition is false.
1021 BasicBlock *BIParent = BI->getParent();
1022 SmallVector<PHINode*, 4> PHIUses;
1023 Value *FalseV = NULL;
1024 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1025 UI != E; ++UI) {
1026 PHINode *PN = dyn_cast<PHINode>(UI);
1027 if (!PN)
1028 continue;
1029 PHIUses.push_back(PN);
1030 Value *PHIV = PN->getIncomingValueForBlock(BIParent);
1031 if (!FalseV)
1032 FalseV = PHIV;
1033 else if (FalseV != PHIV)
1034 return false; // Don't know the value when condition is false.
1036 if (!FalseV) // Can this happen?
1037 return false;
1039 // Do not hoist the instruction if any of its operands are defined but not
1040 // used in this BB. The transformation will prevent the operand from
1041 // being sunk into the use block.
1042 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1043 Instruction *OpI = dyn_cast<Instruction>(*i);
1044 if (OpI && OpI->getParent() == BIParent &&
1045 !OpI->isUsedInBasicBlock(BIParent))
1046 return false;
1049 // If we get here, we can hoist the instruction. Try to place it before the
1050 // icmp instruction preceeding the conditional branch.
1051 BasicBlock::iterator InsertPos = BI;
1052 if (InsertPos != BIParent->begin())
1053 --InsertPos;
1054 if (InsertPos == BrCond && !isa<PHINode>(BrCond))
1055 BIParent->getInstList().splice(InsertPos, BB1->getInstList(), I);
1056 else
1057 BIParent->getInstList().splice(BI, BB1->getInstList(), I);
1059 // Create a select whose true value is the speculatively executed value and
1060 // false value is the previously determined FalseV.
1061 SelectInst *SI;
1062 if (Invert)
1063 SI = SelectInst::Create(BrCond, FalseV, I,
1064 FalseV->getName() + "." + I->getName(), BI);
1065 else
1066 SI = SelectInst::Create(BrCond, I, FalseV,
1067 I->getName() + "." + FalseV->getName(), BI);
1069 // Make the PHI node use the select for all incoming values for "then" and
1070 // "if" blocks.
1071 for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1072 PHINode *PN = PHIUses[i];
1073 for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1074 if (PN->getIncomingBlock(j) == BB1 ||
1075 PN->getIncomingBlock(j) == BIParent)
1076 PN->setIncomingValue(j, SI);
1079 ++NumSpeculations;
1080 return true;
1083 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1084 /// across this block.
1085 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1086 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1087 unsigned Size = 0;
1089 // If this basic block contains anything other than a PHI (which controls the
1090 // branch) and branch itself, bail out. FIXME: improve this in the future.
1091 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI, ++Size) {
1092 if (Size > 10) return false; // Don't clone large BB's.
1094 // We can only support instructions that are do not define values that are
1095 // live outside of the current basic block.
1096 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1097 UI != E; ++UI) {
1098 Instruction *U = cast<Instruction>(*UI);
1099 if (U->getParent() != BB || isa<PHINode>(U)) return false;
1102 // Looks ok, continue checking.
1105 return true;
1108 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1109 /// that is defined in the same block as the branch and if any PHI entries are
1110 /// constants, thread edges corresponding to that entry to be branches to their
1111 /// ultimate destination.
1112 static bool FoldCondBranchOnPHI(BranchInst *BI) {
1113 BasicBlock *BB = BI->getParent();
1114 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1115 // NOTE: we currently cannot transform this case if the PHI node is used
1116 // outside of the block.
1117 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1118 return false;
1120 // Degenerate case of a single entry PHI.
1121 if (PN->getNumIncomingValues() == 1) {
1122 if (PN->getIncomingValue(0) != PN)
1123 PN->replaceAllUsesWith(PN->getIncomingValue(0));
1124 else
1125 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1126 PN->eraseFromParent();
1127 return true;
1130 // Now we know that this block has multiple preds and two succs.
1131 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1133 // Okay, this is a simple enough basic block. See if any phi values are
1134 // constants.
1135 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1136 ConstantInt *CB;
1137 if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
1138 CB->getType() == Type::Int1Ty) {
1139 // Okay, we now know that all edges from PredBB should be revectored to
1140 // branch to RealDest.
1141 BasicBlock *PredBB = PN->getIncomingBlock(i);
1142 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1144 if (RealDest == BB) continue; // Skip self loops.
1146 // The dest block might have PHI nodes, other predecessors and other
1147 // difficult cases. Instead of being smart about this, just insert a new
1148 // block that jumps to the destination block, effectively splitting
1149 // the edge we are about to create.
1150 BasicBlock *EdgeBB = BasicBlock::Create(RealDest->getName()+".critedge",
1151 RealDest->getParent(), RealDest);
1152 BranchInst::Create(RealDest, EdgeBB);
1153 PHINode *PN;
1154 for (BasicBlock::iterator BBI = RealDest->begin();
1155 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1156 Value *V = PN->getIncomingValueForBlock(BB);
1157 PN->addIncoming(V, EdgeBB);
1160 // BB may have instructions that are being threaded over. Clone these
1161 // instructions into EdgeBB. We know that there will be no uses of the
1162 // cloned instructions outside of EdgeBB.
1163 BasicBlock::iterator InsertPt = EdgeBB->begin();
1164 std::map<Value*, Value*> TranslateMap; // Track translated values.
1165 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1166 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1167 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1168 } else {
1169 // Clone the instruction.
1170 Instruction *N = BBI->clone();
1171 if (BBI->hasName()) N->setName(BBI->getName()+".c");
1173 // Update operands due to translation.
1174 for (User::op_iterator i = N->op_begin(), e = N->op_end();
1175 i != e; ++i) {
1176 std::map<Value*, Value*>::iterator PI =
1177 TranslateMap.find(*i);
1178 if (PI != TranslateMap.end())
1179 *i = PI->second;
1182 // Check for trivial simplification.
1183 if (Constant *C = ConstantFoldInstruction(N)) {
1184 TranslateMap[BBI] = C;
1185 delete N; // Constant folded away, don't need actual inst
1186 } else {
1187 // Insert the new instruction into its new home.
1188 EdgeBB->getInstList().insert(InsertPt, N);
1189 if (!BBI->use_empty())
1190 TranslateMap[BBI] = N;
1195 // Loop over all of the edges from PredBB to BB, changing them to branch
1196 // to EdgeBB instead.
1197 TerminatorInst *PredBBTI = PredBB->getTerminator();
1198 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1199 if (PredBBTI->getSuccessor(i) == BB) {
1200 BB->removePredecessor(PredBB);
1201 PredBBTI->setSuccessor(i, EdgeBB);
1204 // Recurse, simplifying any other constants.
1205 return FoldCondBranchOnPHI(BI) | true;
1209 return false;
1212 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1213 /// PHI node, see if we can eliminate it.
1214 static bool FoldTwoEntryPHINode(PHINode *PN) {
1215 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1216 // statement", which has a very simple dominance structure. Basically, we
1217 // are trying to find the condition that is being branched on, which
1218 // subsequently causes this merge to happen. We really want control
1219 // dependence information for this check, but simplifycfg can't keep it up
1220 // to date, and this catches most of the cases we care about anyway.
1222 BasicBlock *BB = PN->getParent();
1223 BasicBlock *IfTrue, *IfFalse;
1224 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1225 if (!IfCond) return false;
1227 // Okay, we found that we can merge this two-entry phi node into a select.
1228 // Doing so would require us to fold *all* two entry phi nodes in this block.
1229 // At some point this becomes non-profitable (particularly if the target
1230 // doesn't support cmov's). Only do this transformation if there are two or
1231 // fewer PHI nodes in this block.
1232 unsigned NumPhis = 0;
1233 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1234 if (NumPhis > 2)
1235 return false;
1237 DOUT << "FOUND IF CONDITION! " << *IfCond << " T: "
1238 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n";
1240 // Loop over the PHI's seeing if we can promote them all to select
1241 // instructions. While we are at it, keep track of the instructions
1242 // that need to be moved to the dominating block.
1243 std::set<Instruction*> AggressiveInsts;
1245 BasicBlock::iterator AfterPHIIt = BB->begin();
1246 while (isa<PHINode>(AfterPHIIt)) {
1247 PHINode *PN = cast<PHINode>(AfterPHIIt++);
1248 if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
1249 if (PN->getIncomingValue(0) != PN)
1250 PN->replaceAllUsesWith(PN->getIncomingValue(0));
1251 else
1252 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1253 } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1254 &AggressiveInsts) ||
1255 !DominatesMergePoint(PN->getIncomingValue(1), BB,
1256 &AggressiveInsts)) {
1257 return false;
1261 // If we all PHI nodes are promotable, check to make sure that all
1262 // instructions in the predecessor blocks can be promoted as well. If
1263 // not, we won't be able to get rid of the control flow, so it's not
1264 // worth promoting to select instructions.
1265 BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1266 PN = cast<PHINode>(BB->begin());
1267 BasicBlock *Pred = PN->getIncomingBlock(0);
1268 if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1269 IfBlock1 = Pred;
1270 DomBlock = *pred_begin(Pred);
1271 for (BasicBlock::iterator I = Pred->begin();
1272 !isa<TerminatorInst>(I); ++I)
1273 if (!AggressiveInsts.count(I)) {
1274 // This is not an aggressive instruction that we can promote.
1275 // Because of this, we won't be able to get rid of the control
1276 // flow, so the xform is not worth it.
1277 return false;
1281 Pred = PN->getIncomingBlock(1);
1282 if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1283 IfBlock2 = Pred;
1284 DomBlock = *pred_begin(Pred);
1285 for (BasicBlock::iterator I = Pred->begin();
1286 !isa<TerminatorInst>(I); ++I)
1287 if (!AggressiveInsts.count(I)) {
1288 // This is not an aggressive instruction that we can promote.
1289 // Because of this, we won't be able to get rid of the control
1290 // flow, so the xform is not worth it.
1291 return false;
1295 // If we can still promote the PHI nodes after this gauntlet of tests,
1296 // do all of the PHI's now.
1298 // Move all 'aggressive' instructions, which are defined in the
1299 // conditional parts of the if's up to the dominating block.
1300 if (IfBlock1) {
1301 DomBlock->getInstList().splice(DomBlock->getTerminator(),
1302 IfBlock1->getInstList(),
1303 IfBlock1->begin(),
1304 IfBlock1->getTerminator());
1306 if (IfBlock2) {
1307 DomBlock->getInstList().splice(DomBlock->getTerminator(),
1308 IfBlock2->getInstList(),
1309 IfBlock2->begin(),
1310 IfBlock2->getTerminator());
1313 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1314 // Change the PHI node into a select instruction.
1315 Value *TrueVal =
1316 PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1317 Value *FalseVal =
1318 PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1320 Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
1321 PN->replaceAllUsesWith(NV);
1322 NV->takeName(PN);
1324 BB->getInstList().erase(PN);
1326 return true;
1329 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1330 /// to two returning blocks, try to merge them together into one return,
1331 /// introducing a select if the return values disagree.
1332 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
1333 assert(BI->isConditional() && "Must be a conditional branch");
1334 BasicBlock *TrueSucc = BI->getSuccessor(0);
1335 BasicBlock *FalseSucc = BI->getSuccessor(1);
1336 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1337 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1339 // Check to ensure both blocks are empty (just a return) or optionally empty
1340 // with PHI nodes. If there are other instructions, merging would cause extra
1341 // computation on one path or the other.
1342 BasicBlock::iterator BBI = TrueRet;
1343 if (BBI != TrueSucc->begin() && !isa<PHINode>(--BBI))
1344 return false; // Not empty with optional phi nodes.
1345 BBI = FalseRet;
1346 if (BBI != FalseSucc->begin() && !isa<PHINode>(--BBI))
1347 return false; // Not empty with optional phi nodes.
1349 // Okay, we found a branch that is going to two return nodes. If
1350 // there is no return value for this function, just change the
1351 // branch into a return.
1352 if (FalseRet->getNumOperands() == 0) {
1353 TrueSucc->removePredecessor(BI->getParent());
1354 FalseSucc->removePredecessor(BI->getParent());
1355 ReturnInst::Create(0, BI);
1356 BI->eraseFromParent();
1357 return true;
1360 // Otherwise, build up the result values for the new return.
1361 SmallVector<Value*, 4> TrueResult;
1362 SmallVector<Value*, 4> FalseResult;
1364 for (unsigned i = 0, e = TrueRet->getNumOperands(); i != e; ++i) {
1365 // Otherwise, figure out what the true and false return values are
1366 // so we can insert a new select instruction.
1367 Value *TrueValue = TrueRet->getOperand(i);
1368 Value *FalseValue = FalseRet->getOperand(i);
1370 // Unwrap any PHI nodes in the return blocks.
1371 if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
1372 if (TVPN->getParent() == TrueSucc)
1373 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1374 if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
1375 if (FVPN->getParent() == FalseSucc)
1376 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1378 // In order for this transformation to be safe, we must be able to
1379 // unconditionally execute both operands to the return. This is
1380 // normally the case, but we could have a potentially-trapping
1381 // constant expression that prevents this transformation from being
1382 // safe.
1383 if (ConstantExpr *TCV = dyn_cast<ConstantExpr>(TrueValue))
1384 if (TCV->canTrap())
1385 return false;
1386 if (ConstantExpr *FCV = dyn_cast<ConstantExpr>(FalseValue))
1387 if (FCV->canTrap())
1388 return false;
1390 TrueResult.push_back(TrueValue);
1391 FalseResult.push_back(FalseValue);
1394 // Okay, we collected all the mapped values and checked them for sanity, and
1395 // defined to really do this transformation. First, update the CFG.
1396 TrueSucc->removePredecessor(BI->getParent());
1397 FalseSucc->removePredecessor(BI->getParent());
1399 // Insert select instructions where needed.
1400 Value *BrCond = BI->getCondition();
1401 for (unsigned i = 0, e = TrueRet->getNumOperands(); i != e; ++i) {
1402 // Insert a select if the results differ.
1403 if (TrueResult[i] == FalseResult[i] || isa<UndefValue>(FalseResult[i]))
1404 continue;
1405 if (isa<UndefValue>(TrueResult[i])) {
1406 TrueResult[i] = FalseResult[i];
1407 continue;
1410 TrueResult[i] = SelectInst::Create(BrCond, TrueResult[i],
1411 FalseResult[i], "retval", BI);
1414 Value *RI = ReturnInst::Create(&TrueResult[0], TrueResult.size(), BI);
1416 DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1417 << "\n " << *BI << "NewRet = " << *RI
1418 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
1420 BI->eraseFromParent();
1422 if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
1423 ErasePossiblyDeadInstructionTree(BrCondI);
1424 return true;
1427 /// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
1428 /// and if a predecessor branches to us and one of our successors, fold the
1429 /// setcc into the predecessor and use logical operations to pick the right
1430 /// destination.
1431 static bool FoldBranchToCommonDest(BranchInst *BI) {
1432 BasicBlock *BB = BI->getParent();
1433 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1434 if (Cond == 0) return false;
1437 // Only allow this if the condition is a simple instruction that can be
1438 // executed unconditionally. It must be in the same block as the branch, and
1439 // must be at the front of the block.
1440 if ((!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1441 Cond->getParent() != BB || &BB->front() != Cond || !Cond->hasOneUse())
1442 return false;
1444 // Make sure the instruction after the condition is the cond branch.
1445 BasicBlock::iterator CondIt = Cond; ++CondIt;
1446 if (&*CondIt != BI)
1447 return false;
1449 // Finally, don't infinitely unroll conditional loops.
1450 BasicBlock *TrueDest = BI->getSuccessor(0);
1451 BasicBlock *FalseDest = BI->getSuccessor(1);
1452 if (TrueDest == BB || FalseDest == BB)
1453 return false;
1455 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1456 BasicBlock *PredBlock = *PI;
1457 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1458 // Check that we have two conditional branches. If there is a PHI node in
1459 // the common successor, verify that the same value flows in from both
1460 // blocks.
1461 if (PBI == 0 || PBI->isUnconditional() ||
1462 !SafeToMergeTerminators(BI, PBI))
1463 continue;
1465 Instruction::BinaryOps Opc;
1466 bool InvertPredCond = false;
1468 if (PBI->getSuccessor(0) == TrueDest)
1469 Opc = Instruction::Or;
1470 else if (PBI->getSuccessor(1) == FalseDest)
1471 Opc = Instruction::And;
1472 else if (PBI->getSuccessor(0) == FalseDest)
1473 Opc = Instruction::And, InvertPredCond = true;
1474 else if (PBI->getSuccessor(1) == TrueDest)
1475 Opc = Instruction::Or, InvertPredCond = true;
1476 else
1477 continue;
1479 // If we need to invert the condition in the pred block to match, do so now.
1480 if (InvertPredCond) {
1481 Value *NewCond =
1482 BinaryOperator::CreateNot(PBI->getCondition(),
1483 PBI->getCondition()->getName()+".not", PBI);
1484 PBI->setCondition(NewCond);
1485 BasicBlock *OldTrue = PBI->getSuccessor(0);
1486 BasicBlock *OldFalse = PBI->getSuccessor(1);
1487 PBI->setSuccessor(0, OldFalse);
1488 PBI->setSuccessor(1, OldTrue);
1491 // Clone Cond into the predecessor basic block, and or/and the
1492 // two conditions together.
1493 Instruction *New = Cond->clone();
1494 PredBlock->getInstList().insert(PBI, New);
1495 New->takeName(Cond);
1496 Cond->setName(New->getName()+".old");
1498 Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(),
1499 New, "or.cond", PBI);
1500 PBI->setCondition(NewCond);
1501 if (PBI->getSuccessor(0) == BB) {
1502 AddPredecessorToBlock(TrueDest, PredBlock, BB);
1503 PBI->setSuccessor(0, TrueDest);
1505 if (PBI->getSuccessor(1) == BB) {
1506 AddPredecessorToBlock(FalseDest, PredBlock, BB);
1507 PBI->setSuccessor(1, FalseDest);
1509 return true;
1511 return false;
1514 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1515 /// predecessor of another block, this function tries to simplify it. We know
1516 /// that PBI and BI are both conditional branches, and BI is in one of the
1517 /// successor blocks of PBI - PBI branches to BI.
1518 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1519 assert(PBI->isConditional() && BI->isConditional());
1520 BasicBlock *BB = BI->getParent();
1522 // If this block ends with a branch instruction, and if there is a
1523 // predecessor that ends on a branch of the same condition, make
1524 // this conditional branch redundant.
1525 if (PBI->getCondition() == BI->getCondition() &&
1526 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1527 // Okay, the outcome of this conditional branch is statically
1528 // knowable. If this block had a single pred, handle specially.
1529 if (BB->getSinglePredecessor()) {
1530 // Turn this into a branch on constant.
1531 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1532 BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
1533 return true; // Nuke the branch on constant.
1536 // Otherwise, if there are multiple predecessors, insert a PHI that merges
1537 // in the constant and simplify the block result. Subsequent passes of
1538 // simplifycfg will thread the block.
1539 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1540 PHINode *NewPN = PHINode::Create(Type::Int1Ty,
1541 BI->getCondition()->getName() + ".pr",
1542 BB->begin());
1543 // Okay, we're going to insert the PHI node. Since PBI is not the only
1544 // predecessor, compute the PHI'd conditional value for all of the preds.
1545 // Any predecessor where the condition is not computable we keep symbolic.
1546 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1547 if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
1548 PBI != BI && PBI->isConditional() &&
1549 PBI->getCondition() == BI->getCondition() &&
1550 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1551 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1552 NewPN->addIncoming(ConstantInt::get(Type::Int1Ty,
1553 CondIsTrue), *PI);
1554 } else {
1555 NewPN->addIncoming(BI->getCondition(), *PI);
1558 BI->setCondition(NewPN);
1559 return true;
1563 // If this is a conditional branch in an empty block, and if any
1564 // predecessors is a conditional branch to one of our destinations,
1565 // fold the conditions into logical ops and one cond br.
1566 if (&BB->front() != BI)
1567 return false;
1569 int PBIOp, BIOp;
1570 if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1571 PBIOp = BIOp = 0;
1572 else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1573 PBIOp = 0, BIOp = 1;
1574 else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1575 PBIOp = 1, BIOp = 0;
1576 else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1577 PBIOp = BIOp = 1;
1578 else
1579 return false;
1581 // Check to make sure that the other destination of this branch
1582 // isn't BB itself. If so, this is an infinite loop that will
1583 // keep getting unwound.
1584 if (PBI->getSuccessor(PBIOp) == BB)
1585 return false;
1587 // Do not perform this transformation if it would require
1588 // insertion of a large number of select instructions. For targets
1589 // without predication/cmovs, this is a big pessimization.
1590 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1592 unsigned NumPhis = 0;
1593 for (BasicBlock::iterator II = CommonDest->begin();
1594 isa<PHINode>(II); ++II, ++NumPhis)
1595 if (NumPhis > 2) // Disable this xform.
1596 return false;
1598 // Finally, if everything is ok, fold the branches to logical ops.
1599 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
1601 DOUT << "FOLDING BRs:" << *PBI->getParent()
1602 << "AND: " << *BI->getParent();
1605 // If OtherDest *is* BB, then BB is a basic block with a single conditional
1606 // branch in it, where one edge (OtherDest) goes back to itself but the other
1607 // exits. We don't *know* that the program avoids the infinite loop
1608 // (even though that seems likely). If we do this xform naively, we'll end up
1609 // recursively unpeeling the loop. Since we know that (after the xform is
1610 // done) that the block *is* infinite if reached, we just make it an obviously
1611 // infinite loop with no cond branch.
1612 if (OtherDest == BB) {
1613 // Insert it at the end of the function, because it's either code,
1614 // or it won't matter if it's hot. :)
1615 BasicBlock *InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
1616 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1617 OtherDest = InfLoopBlock;
1620 DOUT << *PBI->getParent()->getParent();
1622 // BI may have other predecessors. Because of this, we leave
1623 // it alone, but modify PBI.
1625 // Make sure we get to CommonDest on True&True directions.
1626 Value *PBICond = PBI->getCondition();
1627 if (PBIOp)
1628 PBICond = BinaryOperator::CreateNot(PBICond,
1629 PBICond->getName()+".not",
1630 PBI);
1631 Value *BICond = BI->getCondition();
1632 if (BIOp)
1633 BICond = BinaryOperator::CreateNot(BICond,
1634 BICond->getName()+".not",
1635 PBI);
1636 // Merge the conditions.
1637 Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI);
1639 // Modify PBI to branch on the new condition to the new dests.
1640 PBI->setCondition(Cond);
1641 PBI->setSuccessor(0, CommonDest);
1642 PBI->setSuccessor(1, OtherDest);
1644 // OtherDest may have phi nodes. If so, add an entry from PBI's
1645 // block that are identical to the entries for BI's block.
1646 PHINode *PN;
1647 for (BasicBlock::iterator II = OtherDest->begin();
1648 (PN = dyn_cast<PHINode>(II)); ++II) {
1649 Value *V = PN->getIncomingValueForBlock(BB);
1650 PN->addIncoming(V, PBI->getParent());
1653 // We know that the CommonDest already had an edge from PBI to
1654 // it. If it has PHIs though, the PHIs may have different
1655 // entries for BB and PBI's BB. If so, insert a select to make
1656 // them agree.
1657 for (BasicBlock::iterator II = CommonDest->begin();
1658 (PN = dyn_cast<PHINode>(II)); ++II) {
1659 Value *BIV = PN->getIncomingValueForBlock(BB);
1660 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1661 Value *PBIV = PN->getIncomingValue(PBBIdx);
1662 if (BIV != PBIV) {
1663 // Insert a select in PBI to pick the right value.
1664 Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
1665 PBIV->getName()+".mux", PBI);
1666 PN->setIncomingValue(PBBIdx, NV);
1670 DOUT << "INTO: " << *PBI->getParent();
1672 DOUT << *PBI->getParent()->getParent();
1674 // This basic block is probably dead. We know it has at least
1675 // one fewer predecessor.
1676 return true;
1680 namespace {
1681 /// ConstantIntOrdering - This class implements a stable ordering of constant
1682 /// integers that does not depend on their address. This is important for
1683 /// applications that sort ConstantInt's to ensure uniqueness.
1684 struct ConstantIntOrdering {
1685 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1686 return LHS->getValue().ult(RHS->getValue());
1691 // SimplifyCFG - This function is used to do simplification of a CFG. For
1692 // example, it adjusts branches to branches to eliminate the extra hop, it
1693 // eliminates unreachable basic blocks, and does other "peephole" optimization
1694 // of the CFG. It returns true if a modification was made.
1696 // WARNING: The entry node of a function may not be simplified.
1698 bool llvm::SimplifyCFG(BasicBlock *BB) {
1699 bool Changed = false;
1700 Function *M = BB->getParent();
1702 assert(BB && BB->getParent() && "Block not embedded in function!");
1703 assert(BB->getTerminator() && "Degenerate basic block encountered!");
1704 assert(&BB->getParent()->getEntryBlock() != BB &&
1705 "Can't Simplify entry block!");
1707 // Remove basic blocks that have no predecessors... which are unreachable.
1708 if ((pred_begin(BB) == pred_end(BB)) ||
1709 (*pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB))) {
1710 DOUT << "Removing BB: \n" << *BB;
1712 // Loop through all of our successors and make sure they know that one
1713 // of their predecessors is going away.
1714 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1715 SI->removePredecessor(BB);
1717 while (!BB->empty()) {
1718 Instruction &I = BB->back();
1719 // If this instruction is used, replace uses with an arbitrary
1720 // value. Because control flow can't get here, we don't care
1721 // what we replace the value with. Note that since this block is
1722 // unreachable, and all values contained within it must dominate their
1723 // uses, that all uses will eventually be removed.
1724 if (!I.use_empty())
1725 // Make all users of this instruction use undef instead
1726 I.replaceAllUsesWith(UndefValue::get(I.getType()));
1728 // Remove the instruction from the basic block
1729 BB->getInstList().pop_back();
1731 M->getBasicBlockList().erase(BB);
1732 return true;
1735 // Check to see if we can constant propagate this terminator instruction
1736 // away...
1737 Changed |= ConstantFoldTerminator(BB);
1739 // If there is a trivial two-entry PHI node in this basic block, and we can
1740 // eliminate it, do so now.
1741 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1742 if (PN->getNumIncomingValues() == 2)
1743 Changed |= FoldTwoEntryPHINode(PN);
1745 // If this is a returning block with only PHI nodes in it, fold the return
1746 // instruction into any unconditional branch predecessors.
1748 // If any predecessor is a conditional branch that just selects among
1749 // different return values, fold the replace the branch/return with a select
1750 // and return.
1751 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1752 BasicBlock::iterator BBI = BB->getTerminator();
1753 if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
1754 // Find predecessors that end with branches.
1755 SmallVector<BasicBlock*, 8> UncondBranchPreds;
1756 SmallVector<BranchInst*, 8> CondBranchPreds;
1757 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1758 TerminatorInst *PTI = (*PI)->getTerminator();
1759 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
1760 if (BI->isUnconditional())
1761 UncondBranchPreds.push_back(*PI);
1762 else
1763 CondBranchPreds.push_back(BI);
1767 // If we found some, do the transformation!
1768 if (!UncondBranchPreds.empty()) {
1769 while (!UncondBranchPreds.empty()) {
1770 BasicBlock *Pred = UncondBranchPreds.back();
1771 DOUT << "FOLDING: " << *BB
1772 << "INTO UNCOND BRANCH PRED: " << *Pred;
1773 UncondBranchPreds.pop_back();
1774 Instruction *UncondBranch = Pred->getTerminator();
1775 // Clone the return and add it to the end of the predecessor.
1776 Instruction *NewRet = RI->clone();
1777 Pred->getInstList().push_back(NewRet);
1779 // If the return instruction returns a value, and if the value was a
1780 // PHI node in "BB", propagate the right value into the return.
1781 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
1782 i != e; ++i)
1783 if (PHINode *PN = dyn_cast<PHINode>(*i))
1784 if (PN->getParent() == BB)
1785 *i = PN->getIncomingValueForBlock(Pred);
1787 // Update any PHI nodes in the returning block to realize that we no
1788 // longer branch to them.
1789 BB->removePredecessor(Pred);
1790 Pred->getInstList().erase(UncondBranch);
1793 // If we eliminated all predecessors of the block, delete the block now.
1794 if (pred_begin(BB) == pred_end(BB))
1795 // We know there are no successors, so just nuke the block.
1796 M->getBasicBlockList().erase(BB);
1798 return true;
1801 // Check out all of the conditional branches going to this return
1802 // instruction. If any of them just select between returns, change the
1803 // branch itself into a select/return pair.
1804 while (!CondBranchPreds.empty()) {
1805 BranchInst *BI = CondBranchPreds.back();
1806 CondBranchPreds.pop_back();
1808 // Check to see if the non-BB successor is also a return block.
1809 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
1810 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
1811 SimplifyCondBranchToTwoReturns(BI))
1812 return true;
1815 } else if (isa<UnwindInst>(BB->begin())) {
1816 // Check to see if the first instruction in this block is just an unwind.
1817 // If so, replace any invoke instructions which use this as an exception
1818 // destination with call instructions, and any unconditional branch
1819 // predecessor with an unwind.
1821 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
1822 while (!Preds.empty()) {
1823 BasicBlock *Pred = Preds.back();
1824 if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
1825 if (BI->isUnconditional()) {
1826 Pred->getInstList().pop_back(); // nuke uncond branch
1827 new UnwindInst(Pred); // Use unwind.
1828 Changed = true;
1830 } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
1831 if (II->getUnwindDest() == BB) {
1832 // Insert a new branch instruction before the invoke, because this
1833 // is now a fall through...
1834 BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
1835 Pred->getInstList().remove(II); // Take out of symbol table
1837 // Insert the call now...
1838 SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
1839 CallInst *CI = CallInst::Create(II->getCalledValue(),
1840 Args.begin(), Args.end(),
1841 II->getName(), BI);
1842 CI->setCallingConv(II->getCallingConv());
1843 CI->setParamAttrs(II->getParamAttrs());
1844 // If the invoke produced a value, the Call now does instead
1845 II->replaceAllUsesWith(CI);
1846 delete II;
1847 Changed = true;
1850 Preds.pop_back();
1853 // If this block is now dead, remove it.
1854 if (pred_begin(BB) == pred_end(BB)) {
1855 // We know there are no successors, so just nuke the block.
1856 M->getBasicBlockList().erase(BB);
1857 return true;
1860 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1861 if (isValueEqualityComparison(SI)) {
1862 // If we only have one predecessor, and if it is a branch on this value,
1863 // see if that predecessor totally determines the outcome of this switch.
1864 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1865 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1866 return SimplifyCFG(BB) || 1;
1868 // If the block only contains the switch, see if we can fold the block
1869 // away into any preds.
1870 if (SI == &BB->front())
1871 if (FoldValueComparisonIntoPredecessors(SI))
1872 return SimplifyCFG(BB) || 1;
1874 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1875 if (BI->isUnconditional()) {
1876 BasicBlock::iterator BBI = BB->getFirstNonPHI();
1878 BasicBlock *Succ = BI->getSuccessor(0);
1879 if (BBI->isTerminator() && // Terminator is the only non-phi instruction!
1880 Succ != BB) // Don't hurt infinite loops!
1881 if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
1882 return true;
1884 } else { // Conditional branch
1885 if (isValueEqualityComparison(BI)) {
1886 // If we only have one predecessor, and if it is a branch on this value,
1887 // see if that predecessor totally determines the outcome of this
1888 // switch.
1889 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1890 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
1891 return SimplifyCFG(BB) || 1;
1893 // This block must be empty, except for the setcond inst, if it exists.
1894 BasicBlock::iterator I = BB->begin();
1895 if (&*I == BI ||
1896 (&*I == cast<Instruction>(BI->getCondition()) &&
1897 &*++I == BI))
1898 if (FoldValueComparisonIntoPredecessors(BI))
1899 return SimplifyCFG(BB) | true;
1902 // If this is a branch on a phi node in the current block, thread control
1903 // through this block if any PHI node entries are constants.
1904 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
1905 if (PN->getParent() == BI->getParent())
1906 if (FoldCondBranchOnPHI(BI))
1907 return SimplifyCFG(BB) | true;
1909 // If this basic block is ONLY a setcc and a branch, and if a predecessor
1910 // branches to us and one of our successors, fold the setcc into the
1911 // predecessor and use logical operations to pick the right destination.
1912 if (FoldBranchToCommonDest(BI))
1913 return SimplifyCFG(BB) | 1;
1916 // Scan predecessor blocks for conditional branches.
1917 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1918 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1919 if (PBI != BI && PBI->isConditional())
1920 if (SimplifyCondBranchToCondBranch(PBI, BI))
1921 return SimplifyCFG(BB) | true;
1923 } else if (isa<UnreachableInst>(BB->getTerminator())) {
1924 // If there are any instructions immediately before the unreachable that can
1925 // be removed, do so.
1926 Instruction *Unreachable = BB->getTerminator();
1927 while (Unreachable != BB->begin()) {
1928 BasicBlock::iterator BBI = Unreachable;
1929 --BBI;
1930 if (isa<CallInst>(BBI)) break;
1931 // Delete this instruction
1932 BB->getInstList().erase(BBI);
1933 Changed = true;
1936 // If the unreachable instruction is the first in the block, take a gander
1937 // at all of the predecessors of this instruction, and simplify them.
1938 if (&BB->front() == Unreachable) {
1939 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
1940 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1941 TerminatorInst *TI = Preds[i]->getTerminator();
1943 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1944 if (BI->isUnconditional()) {
1945 if (BI->getSuccessor(0) == BB) {
1946 new UnreachableInst(TI);
1947 TI->eraseFromParent();
1948 Changed = true;
1950 } else {
1951 if (BI->getSuccessor(0) == BB) {
1952 BranchInst::Create(BI->getSuccessor(1), BI);
1953 BI->eraseFromParent();
1954 } else if (BI->getSuccessor(1) == BB) {
1955 BranchInst::Create(BI->getSuccessor(0), BI);
1956 BI->eraseFromParent();
1957 Changed = true;
1960 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1961 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1962 if (SI->getSuccessor(i) == BB) {
1963 BB->removePredecessor(SI->getParent());
1964 SI->removeCase(i);
1965 --i; --e;
1966 Changed = true;
1968 // If the default value is unreachable, figure out the most popular
1969 // destination and make it the default.
1970 if (SI->getSuccessor(0) == BB) {
1971 std::map<BasicBlock*, unsigned> Popularity;
1972 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1973 Popularity[SI->getSuccessor(i)]++;
1975 // Find the most popular block.
1976 unsigned MaxPop = 0;
1977 BasicBlock *MaxBlock = 0;
1978 for (std::map<BasicBlock*, unsigned>::iterator
1979 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
1980 if (I->second > MaxPop) {
1981 MaxPop = I->second;
1982 MaxBlock = I->first;
1985 if (MaxBlock) {
1986 // Make this the new default, allowing us to delete any explicit
1987 // edges to it.
1988 SI->setSuccessor(0, MaxBlock);
1989 Changed = true;
1991 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
1992 // it.
1993 if (isa<PHINode>(MaxBlock->begin()))
1994 for (unsigned i = 0; i != MaxPop-1; ++i)
1995 MaxBlock->removePredecessor(SI->getParent());
1997 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1998 if (SI->getSuccessor(i) == MaxBlock) {
1999 SI->removeCase(i);
2000 --i; --e;
2004 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2005 if (II->getUnwindDest() == BB) {
2006 // Convert the invoke to a call instruction. This would be a good
2007 // place to note that the call does not throw though.
2008 BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
2009 II->removeFromParent(); // Take out of symbol table
2011 // Insert the call now...
2012 SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end());
2013 CallInst *CI = CallInst::Create(II->getCalledValue(),
2014 Args.begin(), Args.end(),
2015 II->getName(), BI);
2016 CI->setCallingConv(II->getCallingConv());
2017 CI->setParamAttrs(II->getParamAttrs());
2018 // If the invoke produced a value, the Call does now instead.
2019 II->replaceAllUsesWith(CI);
2020 delete II;
2021 Changed = true;
2026 // If this block is now dead, remove it.
2027 if (pred_begin(BB) == pred_end(BB)) {
2028 // We know there are no successors, so just nuke the block.
2029 M->getBasicBlockList().erase(BB);
2030 return true;
2035 // Merge basic blocks into their predecessor if there is only one distinct
2036 // pred, and if there is only one distinct successor of the predecessor, and
2037 // if there are no PHI nodes.
2039 if (MergeBlockIntoPredecessor(BB))
2040 return true;
2042 // Otherwise, if this block only has a single predecessor, and if that block
2043 // is a conditional branch, see if we can hoist any code from this block up
2044 // into our predecessor.
2045 pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
2046 BasicBlock *OnlyPred = *PI++;
2047 for (; PI != PE; ++PI) // Search all predecessors, see if they are all same
2048 if (*PI != OnlyPred) {
2049 OnlyPred = 0; // There are multiple different predecessors...
2050 break;
2053 if (OnlyPred)
2054 if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
2055 if (BI->isConditional()) {
2056 // Get the other block.
2057 BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
2058 PI = pred_begin(OtherBB);
2059 ++PI;
2061 if (PI == pred_end(OtherBB)) {
2062 // We have a conditional branch to two blocks that are only reachable
2063 // from the condbr. We know that the condbr dominates the two blocks,
2064 // so see if there is any identical code in the "then" and "else"
2065 // blocks. If so, we can hoist it up to the branching block.
2066 Changed |= HoistThenElseCodeToIf(BI);
2067 } else {
2068 BasicBlock* OnlySucc = NULL;
2069 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
2070 SI != SE; ++SI) {
2071 if (!OnlySucc)
2072 OnlySucc = *SI;
2073 else if (*SI != OnlySucc) {
2074 OnlySucc = 0; // There are multiple distinct successors!
2075 break;
2079 if (OnlySucc == OtherBB) {
2080 // If BB's only successor is the other successor of the predecessor,
2081 // i.e. a triangle, see if we can hoist any code from this block up
2082 // to the "if" block.
2083 Changed |= SpeculativelyExecuteBB(BI, BB);
2088 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2089 if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2090 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2091 if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
2092 Instruction *Cond = cast<Instruction>(BI->getCondition());
2093 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2094 // 'setne's and'ed together, collect them.
2095 Value *CompVal = 0;
2096 std::vector<ConstantInt*> Values;
2097 bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
2098 if (CompVal && CompVal->getType()->isInteger()) {
2099 // There might be duplicate constants in the list, which the switch
2100 // instruction can't handle, remove them now.
2101 std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
2102 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2104 // Figure out which block is which destination.
2105 BasicBlock *DefaultBB = BI->getSuccessor(1);
2106 BasicBlock *EdgeBB = BI->getSuccessor(0);
2107 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2109 // Create the new switch instruction now.
2110 SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB,
2111 Values.size(), BI);
2113 // Add all of the 'cases' to the switch instruction.
2114 for (unsigned i = 0, e = Values.size(); i != e; ++i)
2115 New->addCase(Values[i], EdgeBB);
2117 // We added edges from PI to the EdgeBB. As such, if there were any
2118 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2119 // the number of edges added.
2120 for (BasicBlock::iterator BBI = EdgeBB->begin();
2121 isa<PHINode>(BBI); ++BBI) {
2122 PHINode *PN = cast<PHINode>(BBI);
2123 Value *InVal = PN->getIncomingValueForBlock(*PI);
2124 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2125 PN->addIncoming(InVal, *PI);
2128 // Erase the old branch instruction.
2129 (*PI)->getInstList().erase(BI);
2131 // Erase the potentially condition tree that was used to computed the
2132 // branch condition.
2133 ErasePossiblyDeadInstructionTree(Cond);
2134 return true;
2138 return Changed;