1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Peephole optimize the CFG.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/Type.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Support/CFG.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/Statistic.h"
33 STATISTIC(NumSpeculations
, "Number of speculative executed instructions");
35 /// SafeToMergeTerminators - Return true if it is safe to merge these two
36 /// terminator instructions together.
38 static bool SafeToMergeTerminators(TerminatorInst
*SI1
, TerminatorInst
*SI2
) {
39 if (SI1
== SI2
) return false; // Can't merge with self!
41 // It is not safe to merge these two switch instructions if they have a common
42 // successor, and if that successor has a PHI node, and if *that* PHI node has
43 // conflicting incoming values from the two switch blocks.
44 BasicBlock
*SI1BB
= SI1
->getParent();
45 BasicBlock
*SI2BB
= SI2
->getParent();
46 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
48 for (succ_iterator I
= succ_begin(SI2BB
), E
= succ_end(SI2BB
); I
!= E
; ++I
)
49 if (SI1Succs
.count(*I
))
50 for (BasicBlock::iterator BBI
= (*I
)->begin();
51 isa
<PHINode
>(BBI
); ++BBI
) {
52 PHINode
*PN
= cast
<PHINode
>(BBI
);
53 if (PN
->getIncomingValueForBlock(SI1BB
) !=
54 PN
->getIncomingValueForBlock(SI2BB
))
61 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
62 /// now be entries in it from the 'NewPred' block. The values that will be
63 /// flowing into the PHI nodes will be the same as those coming in from
64 /// ExistPred, an existing predecessor of Succ.
65 static void AddPredecessorToBlock(BasicBlock
*Succ
, BasicBlock
*NewPred
,
66 BasicBlock
*ExistPred
) {
67 assert(std::find(succ_begin(ExistPred
), succ_end(ExistPred
), Succ
) !=
68 succ_end(ExistPred
) && "ExistPred is not a predecessor of Succ!");
69 if (!isa
<PHINode
>(Succ
->begin())) return; // Quick exit if nothing to do
72 for (BasicBlock::iterator I
= Succ
->begin();
73 (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
74 PN
->addIncoming(PN
->getIncomingValueForBlock(ExistPred
), NewPred
);
77 // CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
78 // almost-empty BB ending in an unconditional branch to Succ, into succ.
80 // Assumption: Succ is the single successor for BB.
82 static bool CanPropagatePredecessorsForPHIs(BasicBlock
*BB
, BasicBlock
*Succ
) {
83 assert(*succ_begin(BB
) == Succ
&& "Succ is not successor of BB!");
85 DOUT
<< "Looking to fold " << BB
->getNameStart() << " into "
86 << Succ
->getNameStart() << "\n";
87 // Shortcut, if there is only a single predecessor is must be BB and merging
89 if (Succ
->getSinglePredecessor()) return true;
91 typedef SmallPtrSet
<Instruction
*, 16> InstrSet
;
94 // Make a list of all phi nodes in BB
95 BasicBlock::iterator BBI
= BB
->begin();
96 while (isa
<PHINode
>(*BBI
)) BBPHIs
.insert(BBI
++);
98 // Make a list of the predecessors of BB
99 typedef SmallPtrSet
<BasicBlock
*, 16> BlockSet
;
100 BlockSet
BBPreds(pred_begin(BB
), pred_end(BB
));
102 // Use that list to make another list of common predecessors of BB and Succ
103 BlockSet CommonPreds
;
104 for (pred_iterator PI
= pred_begin(Succ
), PE
= pred_end(Succ
);
106 if (BBPreds
.count(*PI
))
107 CommonPreds
.insert(*PI
);
109 // Shortcut, if there are no common predecessors, merging is always safe
110 if (CommonPreds
.begin() == CommonPreds
.end())
113 // Look at all the phi nodes in Succ, to see if they present a conflict when
114 // merging these blocks
115 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
116 PHINode
*PN
= cast
<PHINode
>(I
);
118 // If the incoming value from BB is again a PHINode in
119 // BB which has the same incoming value for *PI as PN does, we can
120 // merge the phi nodes and then the blocks can still be merged
121 PHINode
*BBPN
= dyn_cast
<PHINode
>(PN
->getIncomingValueForBlock(BB
));
122 if (BBPN
&& BBPN
->getParent() == BB
) {
123 for (BlockSet::iterator PI
= CommonPreds
.begin(), PE
= CommonPreds
.end();
125 if (BBPN
->getIncomingValueForBlock(*PI
)
126 != PN
->getIncomingValueForBlock(*PI
)) {
127 DOUT
<< "Can't fold, phi node " << *PN
->getNameStart() << " in "
128 << Succ
->getNameStart() << " is conflicting with "
129 << BBPN
->getNameStart() << " with regard to common predecessor "
130 << (*PI
)->getNameStart() << "\n";
134 // Remove this phinode from the list of phis in BB, since it has been
138 Value
* Val
= PN
->getIncomingValueForBlock(BB
);
139 for (BlockSet::iterator PI
= CommonPreds
.begin(), PE
= CommonPreds
.end();
141 // See if the incoming value for the common predecessor is equal to the
142 // one for BB, in which case this phi node will not prevent the merging
144 if (Val
!= PN
->getIncomingValueForBlock(*PI
)) {
145 DOUT
<< "Can't fold, phi node " << *PN
->getNameStart() << " in "
146 << Succ
->getNameStart() << " is conflicting with regard to common "
147 << "predecessor " << (*PI
)->getNameStart() << "\n";
154 // If there are any other phi nodes in BB that don't have a phi node in Succ
155 // to merge with, they must be moved to Succ completely. However, for any
156 // predecessors of Succ, branches will be added to the phi node that just
157 // point to itself. So, for any common predecessors, this must not cause
159 for (InstrSet::iterator I
= BBPHIs
.begin(), E
= BBPHIs
.end();
161 PHINode
*PN
= cast
<PHINode
>(*I
);
162 for (BlockSet::iterator PI
= CommonPreds
.begin(), PE
= CommonPreds
.end();
164 if (PN
->getIncomingValueForBlock(*PI
) != PN
) {
165 DOUT
<< "Can't fold, phi node " << *PN
->getNameStart() << " in "
166 << BB
->getNameStart() << " is conflicting with regard to common "
167 << "predecessor " << (*PI
)->getNameStart() << "\n";
175 /// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
176 /// branch to Succ, and contains no instructions other than PHI nodes and the
177 /// branch. If possible, eliminate BB.
178 static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock
*BB
,
180 // Check to see if merging these blocks would cause conflicts for any of the
181 // phi nodes in BB or Succ. If not, we can safely merge.
182 if (!CanPropagatePredecessorsForPHIs(BB
, Succ
)) return false;
184 DOUT
<< "Killing Trivial BB: \n" << *BB
;
186 if (isa
<PHINode
>(Succ
->begin())) {
187 // If there is more than one pred of succ, and there are PHI nodes in
188 // the successor, then we need to add incoming edges for the PHI nodes
190 const SmallVector
<BasicBlock
*, 16> BBPreds(pred_begin(BB
), pred_end(BB
));
192 // Loop over all of the PHI nodes in the successor of BB.
193 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
194 PHINode
*PN
= cast
<PHINode
>(I
);
195 Value
*OldVal
= PN
->removeIncomingValue(BB
, false);
196 assert(OldVal
&& "No entry in PHI for Pred BB!");
198 // If this incoming value is one of the PHI nodes in BB, the new entries
199 // in the PHI node are the entries from the old PHI.
200 if (isa
<PHINode
>(OldVal
) && cast
<PHINode
>(OldVal
)->getParent() == BB
) {
201 PHINode
*OldValPN
= cast
<PHINode
>(OldVal
);
202 for (unsigned i
= 0, e
= OldValPN
->getNumIncomingValues(); i
!= e
; ++i
)
203 // Note that, since we are merging phi nodes and BB and Succ might
204 // have common predecessors, we could end up with a phi node with
205 // identical incoming branches. This will be cleaned up later (and
206 // will trigger asserts if we try to clean it up now, without also
207 // simplifying the corresponding conditional branch).
208 PN
->addIncoming(OldValPN
->getIncomingValue(i
),
209 OldValPN
->getIncomingBlock(i
));
211 // Add an incoming value for each of the new incoming values.
212 for (unsigned i
= 0, e
= BBPreds
.size(); i
!= e
; ++i
)
213 PN
->addIncoming(OldVal
, BBPreds
[i
]);
218 if (isa
<PHINode
>(&BB
->front())) {
219 SmallVector
<BasicBlock
*, 16>
220 OldSuccPreds(pred_begin(Succ
), pred_end(Succ
));
222 // Move all PHI nodes in BB to Succ if they are alive, otherwise
224 while (PHINode
*PN
= dyn_cast
<PHINode
>(&BB
->front()))
225 if (PN
->use_empty()) {
226 // Just remove the dead phi. This happens if Succ's PHIs were the only
227 // users of the PHI nodes.
228 PN
->eraseFromParent();
230 // The instruction is alive, so this means that BB must dominate all
231 // predecessors of Succ (Since all uses of the PN are after its
232 // definition, so in Succ or a block dominated by Succ. If a predecessor
233 // of Succ would not be dominated by BB, PN would violate the def before
234 // use SSA demand). Therefore, we can simply move the phi node to the
236 Succ
->getInstList().splice(Succ
->begin(),
237 BB
->getInstList(), BB
->begin());
239 // We need to add new entries for the PHI node to account for
240 // predecessors of Succ that the PHI node does not take into
241 // account. At this point, since we know that BB dominated succ and all
242 // of its predecessors, this means that we should any newly added
243 // incoming edges should use the PHI node itself as the value for these
244 // edges, because they are loop back edges.
245 for (unsigned i
= 0, e
= OldSuccPreds
.size(); i
!= e
; ++i
)
246 if (OldSuccPreds
[i
] != BB
)
247 PN
->addIncoming(PN
, OldSuccPreds
[i
]);
251 // Everything that jumped to BB now goes to Succ.
252 BB
->replaceAllUsesWith(Succ
);
253 if (!Succ
->hasName()) Succ
->takeName(BB
);
254 BB
->eraseFromParent(); // Delete the old basic block.
258 /// GetIfCondition - Given a basic block (BB) with two predecessors (and
259 /// presumably PHI nodes in it), check to see if the merge at this block is due
260 /// to an "if condition". If so, return the boolean condition that determines
261 /// which entry into BB will be taken. Also, return by references the block
262 /// that will be entered from if the condition is true, and the block that will
263 /// be entered if the condition is false.
266 static Value
*GetIfCondition(BasicBlock
*BB
,
267 BasicBlock
*&IfTrue
, BasicBlock
*&IfFalse
) {
268 assert(std::distance(pred_begin(BB
), pred_end(BB
)) == 2 &&
269 "Function can only handle blocks with 2 predecessors!");
270 BasicBlock
*Pred1
= *pred_begin(BB
);
271 BasicBlock
*Pred2
= *++pred_begin(BB
);
273 // We can only handle branches. Other control flow will be lowered to
274 // branches if possible anyway.
275 if (!isa
<BranchInst
>(Pred1
->getTerminator()) ||
276 !isa
<BranchInst
>(Pred2
->getTerminator()))
278 BranchInst
*Pred1Br
= cast
<BranchInst
>(Pred1
->getTerminator());
279 BranchInst
*Pred2Br
= cast
<BranchInst
>(Pred2
->getTerminator());
281 // Eliminate code duplication by ensuring that Pred1Br is conditional if
283 if (Pred2Br
->isConditional()) {
284 // If both branches are conditional, we don't have an "if statement". In
285 // reality, we could transform this case, but since the condition will be
286 // required anyway, we stand no chance of eliminating it, so the xform is
287 // probably not profitable.
288 if (Pred1Br
->isConditional())
291 std::swap(Pred1
, Pred2
);
292 std::swap(Pred1Br
, Pred2Br
);
295 if (Pred1Br
->isConditional()) {
296 // If we found a conditional branch predecessor, make sure that it branches
297 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
298 if (Pred1Br
->getSuccessor(0) == BB
&&
299 Pred1Br
->getSuccessor(1) == Pred2
) {
302 } else if (Pred1Br
->getSuccessor(0) == Pred2
&&
303 Pred1Br
->getSuccessor(1) == BB
) {
307 // We know that one arm of the conditional goes to BB, so the other must
308 // go somewhere unrelated, and this must not be an "if statement".
312 // The only thing we have to watch out for here is to make sure that Pred2
313 // doesn't have incoming edges from other blocks. If it does, the condition
314 // doesn't dominate BB.
315 if (++pred_begin(Pred2
) != pred_end(Pred2
))
318 return Pred1Br
->getCondition();
321 // Ok, if we got here, both predecessors end with an unconditional branch to
322 // BB. Don't panic! If both blocks only have a single (identical)
323 // predecessor, and THAT is a conditional branch, then we're all ok!
324 if (pred_begin(Pred1
) == pred_end(Pred1
) ||
325 ++pred_begin(Pred1
) != pred_end(Pred1
) ||
326 pred_begin(Pred2
) == pred_end(Pred2
) ||
327 ++pred_begin(Pred2
) != pred_end(Pred2
) ||
328 *pred_begin(Pred1
) != *pred_begin(Pred2
))
331 // Otherwise, if this is a conditional branch, then we can use it!
332 BasicBlock
*CommonPred
= *pred_begin(Pred1
);
333 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(CommonPred
->getTerminator())) {
334 assert(BI
->isConditional() && "Two successors but not conditional?");
335 if (BI
->getSuccessor(0) == Pred1
) {
342 return BI
->getCondition();
348 // If we have a merge point of an "if condition" as accepted above, return true
349 // if the specified value dominates the block. We don't handle the true
350 // generality of domination here, just a special case which works well enough
353 // If AggressiveInsts is non-null, and if V does not dominate BB, we check to
354 // see if V (which must be an instruction) is cheap to compute and is
355 // non-trapping. If both are true, the instruction is inserted into the set and
357 static bool DominatesMergePoint(Value
*V
, BasicBlock
*BB
,
358 std::set
<Instruction
*> *AggressiveInsts
) {
359 Instruction
*I
= dyn_cast
<Instruction
>(V
);
361 // Non-instructions all dominate instructions, but not all constantexprs
362 // can be executed unconditionally.
363 if (ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(V
))
368 BasicBlock
*PBB
= I
->getParent();
370 // We don't want to allow weird loops that might have the "if condition" in
371 // the bottom of this block.
372 if (PBB
== BB
) return false;
374 // If this instruction is defined in a block that contains an unconditional
375 // branch to BB, then it must be in the 'conditional' part of the "if
377 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PBB
->getTerminator()))
378 if (BI
->isUnconditional() && BI
->getSuccessor(0) == BB
) {
379 if (!AggressiveInsts
) return false;
380 // Okay, it looks like the instruction IS in the "condition". Check to
381 // see if its a cheap instruction to unconditionally compute, and if it
382 // only uses stuff defined outside of the condition. If so, hoist it out.
383 switch (I
->getOpcode()) {
384 default: return false; // Cannot hoist this out safely.
385 case Instruction::Load
:
386 // We can hoist loads that are non-volatile and obviously cannot trap.
387 if (cast
<LoadInst
>(I
)->isVolatile())
389 if (!isa
<AllocaInst
>(I
->getOperand(0)) &&
390 !isa
<Constant
>(I
->getOperand(0)))
393 // Finally, we have to check to make sure there are no instructions
394 // before the load in its basic block, as we are going to hoist the loop
395 // out to its predecessor.
396 if (PBB
->begin() != BasicBlock::iterator(I
))
399 case Instruction::Add
:
400 case Instruction::Sub
:
401 case Instruction::And
:
402 case Instruction::Or
:
403 case Instruction::Xor
:
404 case Instruction::Shl
:
405 case Instruction::LShr
:
406 case Instruction::AShr
:
407 case Instruction::ICmp
:
408 case Instruction::FCmp
:
409 if (I
->getOperand(0)->getType()->isFPOrFPVector())
410 return false; // FP arithmetic might trap.
411 break; // These are all cheap and non-trapping instructions.
414 // Okay, we can only really hoist these out if their operands are not
415 // defined in the conditional region.
416 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
)
417 if (!DominatesMergePoint(*i
, BB
, 0))
419 // Okay, it's safe to do this! Remember this instruction.
420 AggressiveInsts
->insert(I
);
426 // GatherConstantSetEQs - Given a potentially 'or'd together collection of
427 // icmp_eq instructions that compare a value against a constant, return the
428 // value being compared, and stick the constant into the Values vector.
429 static Value
*GatherConstantSetEQs(Value
*V
, std::vector
<ConstantInt
*> &Values
){
430 if (Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
431 if (Inst
->getOpcode() == Instruction::ICmp
&&
432 cast
<ICmpInst
>(Inst
)->getPredicate() == ICmpInst::ICMP_EQ
) {
433 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1))) {
435 return Inst
->getOperand(0);
436 } else if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(0))) {
438 return Inst
->getOperand(1);
440 } else if (Inst
->getOpcode() == Instruction::Or
) {
441 if (Value
*LHS
= GatherConstantSetEQs(Inst
->getOperand(0), Values
))
442 if (Value
*RHS
= GatherConstantSetEQs(Inst
->getOperand(1), Values
))
450 // GatherConstantSetNEs - Given a potentially 'and'd together collection of
451 // setne instructions that compare a value against a constant, return the value
452 // being compared, and stick the constant into the Values vector.
453 static Value
*GatherConstantSetNEs(Value
*V
, std::vector
<ConstantInt
*> &Values
){
454 if (Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
455 if (Inst
->getOpcode() == Instruction::ICmp
&&
456 cast
<ICmpInst
>(Inst
)->getPredicate() == ICmpInst::ICMP_NE
) {
457 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1))) {
459 return Inst
->getOperand(0);
460 } else if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(0))) {
462 return Inst
->getOperand(1);
464 } else if (Inst
->getOpcode() == Instruction::And
) {
465 if (Value
*LHS
= GatherConstantSetNEs(Inst
->getOperand(0), Values
))
466 if (Value
*RHS
= GatherConstantSetNEs(Inst
->getOperand(1), Values
))
476 /// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
477 /// bunch of comparisons of one value against constants, return the value and
478 /// the constants being compared.
479 static bool GatherValueComparisons(Instruction
*Cond
, Value
*&CompVal
,
480 std::vector
<ConstantInt
*> &Values
) {
481 if (Cond
->getOpcode() == Instruction::Or
) {
482 CompVal
= GatherConstantSetEQs(Cond
, Values
);
484 // Return true to indicate that the condition is true if the CompVal is
485 // equal to one of the constants.
487 } else if (Cond
->getOpcode() == Instruction::And
) {
488 CompVal
= GatherConstantSetNEs(Cond
, Values
);
490 // Return false to indicate that the condition is false if the CompVal is
491 // equal to one of the constants.
497 /// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
498 /// has no side effects, nuke it. If it uses any instructions that become dead
499 /// because the instruction is now gone, nuke them too.
500 static void ErasePossiblyDeadInstructionTree(Instruction
*I
) {
501 if (!isInstructionTriviallyDead(I
)) return;
503 SmallVector
<Instruction
*, 16> InstrsToInspect
;
504 InstrsToInspect
.push_back(I
);
506 while (!InstrsToInspect
.empty()) {
507 I
= InstrsToInspect
.back();
508 InstrsToInspect
.pop_back();
510 if (!isInstructionTriviallyDead(I
)) continue;
512 // If I is in the work list multiple times, remove previous instances.
513 for (unsigned i
= 0, e
= InstrsToInspect
.size(); i
!= e
; ++i
)
514 if (InstrsToInspect
[i
] == I
) {
515 InstrsToInspect
.erase(InstrsToInspect
.begin()+i
);
519 // Add operands of dead instruction to worklist.
520 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
)
521 if (Instruction
*OpI
= dyn_cast
<Instruction
>(*i
))
522 InstrsToInspect
.push_back(OpI
);
524 // Remove dead instruction.
525 I
->eraseFromParent();
529 // isValueEqualityComparison - Return true if the specified terminator checks to
530 // see if a value is equal to constant integer value.
531 static Value
*isValueEqualityComparison(TerminatorInst
*TI
) {
532 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
533 // Do not permit merging of large switch instructions into their
534 // predecessors unless there is only one predecessor.
535 if (SI
->getNumSuccessors() * std::distance(pred_begin(SI
->getParent()),
536 pred_end(SI
->getParent())) > 128)
539 return SI
->getCondition();
541 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
))
542 if (BI
->isConditional() && BI
->getCondition()->hasOneUse())
543 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition()))
544 if ((ICI
->getPredicate() == ICmpInst::ICMP_EQ
||
545 ICI
->getPredicate() == ICmpInst::ICMP_NE
) &&
546 isa
<ConstantInt
>(ICI
->getOperand(1)))
547 return ICI
->getOperand(0);
551 // Given a value comparison instruction, decode all of the 'cases' that it
552 // represents and return the 'default' block.
554 GetValueEqualityComparisonCases(TerminatorInst
*TI
,
555 std::vector
<std::pair
<ConstantInt
*,
556 BasicBlock
*> > &Cases
) {
557 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
558 Cases
.reserve(SI
->getNumCases());
559 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
560 Cases
.push_back(std::make_pair(SI
->getCaseValue(i
), SI
->getSuccessor(i
)));
561 return SI
->getDefaultDest();
564 BranchInst
*BI
= cast
<BranchInst
>(TI
);
565 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
566 Cases
.push_back(std::make_pair(cast
<ConstantInt
>(ICI
->getOperand(1)),
567 BI
->getSuccessor(ICI
->getPredicate() ==
568 ICmpInst::ICMP_NE
)));
569 return BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_EQ
);
573 // EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
574 // in the list that match the specified block.
575 static void EliminateBlockCases(BasicBlock
*BB
,
576 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &Cases
) {
577 for (unsigned i
= 0, e
= Cases
.size(); i
!= e
; ++i
)
578 if (Cases
[i
].second
== BB
) {
579 Cases
.erase(Cases
.begin()+i
);
584 // ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
587 ValuesOverlap(std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &C1
,
588 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &C2
) {
589 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > *V1
= &C1
, *V2
= &C2
;
591 // Make V1 be smaller than V2.
592 if (V1
->size() > V2
->size())
595 if (V1
->size() == 0) return false;
596 if (V1
->size() == 1) {
598 ConstantInt
*TheVal
= (*V1
)[0].first
;
599 for (unsigned i
= 0, e
= V2
->size(); i
!= e
; ++i
)
600 if (TheVal
== (*V2
)[i
].first
)
604 // Otherwise, just sort both lists and compare element by element.
605 std::sort(V1
->begin(), V1
->end());
606 std::sort(V2
->begin(), V2
->end());
607 unsigned i1
= 0, i2
= 0, e1
= V1
->size(), e2
= V2
->size();
608 while (i1
!= e1
&& i2
!= e2
) {
609 if ((*V1
)[i1
].first
== (*V2
)[i2
].first
)
611 if ((*V1
)[i1
].first
< (*V2
)[i2
].first
)
619 // SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
620 // terminator instruction and its block is known to only have a single
621 // predecessor block, check to see if that predecessor is also a value
622 // comparison with the same value, and if that comparison determines the outcome
623 // of this comparison. If so, simplify TI. This does a very limited form of
625 static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst
*TI
,
627 Value
*PredVal
= isValueEqualityComparison(Pred
->getTerminator());
628 if (!PredVal
) return false; // Not a value comparison in predecessor.
630 Value
*ThisVal
= isValueEqualityComparison(TI
);
631 assert(ThisVal
&& "This isn't a value comparison!!");
632 if (ThisVal
!= PredVal
) return false; // Different predicates.
634 // Find out information about when control will move from Pred to TI's block.
635 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > PredCases
;
636 BasicBlock
*PredDef
= GetValueEqualityComparisonCases(Pred
->getTerminator(),
638 EliminateBlockCases(PredDef
, PredCases
); // Remove default from cases.
640 // Find information about how control leaves this block.
641 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > ThisCases
;
642 BasicBlock
*ThisDef
= GetValueEqualityComparisonCases(TI
, ThisCases
);
643 EliminateBlockCases(ThisDef
, ThisCases
); // Remove default from cases.
645 // If TI's block is the default block from Pred's comparison, potentially
646 // simplify TI based on this knowledge.
647 if (PredDef
== TI
->getParent()) {
648 // If we are here, we know that the value is none of those cases listed in
649 // PredCases. If there are any cases in ThisCases that are in PredCases, we
651 if (ValuesOverlap(PredCases
, ThisCases
)) {
652 if (BranchInst
*BTI
= dyn_cast
<BranchInst
>(TI
)) {
653 // Okay, one of the successors of this condbr is dead. Convert it to a
655 assert(ThisCases
.size() == 1 && "Branch can only have one case!");
656 Value
*Cond
= BTI
->getCondition();
657 // Insert the new branch.
658 Instruction
*NI
= BranchInst::Create(ThisDef
, TI
);
660 // Remove PHI node entries for the dead edge.
661 ThisCases
[0].second
->removePredecessor(TI
->getParent());
663 DOUT
<< "Threading pred instr: " << *Pred
->getTerminator()
664 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
<< "\n";
666 TI
->eraseFromParent(); // Nuke the old one.
667 // If condition is now dead, nuke it.
668 if (Instruction
*CondI
= dyn_cast
<Instruction
>(Cond
))
669 ErasePossiblyDeadInstructionTree(CondI
);
673 SwitchInst
*SI
= cast
<SwitchInst
>(TI
);
674 // Okay, TI has cases that are statically dead, prune them away.
675 SmallPtrSet
<Constant
*, 16> DeadCases
;
676 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
677 DeadCases
.insert(PredCases
[i
].first
);
679 DOUT
<< "Threading pred instr: " << *Pred
->getTerminator()
680 << "Through successor TI: " << *TI
;
682 for (unsigned i
= SI
->getNumCases()-1; i
!= 0; --i
)
683 if (DeadCases
.count(SI
->getCaseValue(i
))) {
684 SI
->getSuccessor(i
)->removePredecessor(TI
->getParent());
688 DOUT
<< "Leaving: " << *TI
<< "\n";
694 // Otherwise, TI's block must correspond to some matched value. Find out
695 // which value (or set of values) this is.
696 ConstantInt
*TIV
= 0;
697 BasicBlock
*TIBB
= TI
->getParent();
698 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
699 if (PredCases
[i
].second
== TIBB
) {
701 TIV
= PredCases
[i
].first
;
703 return false; // Cannot handle multiple values coming to this block.
705 assert(TIV
&& "No edge from pred to succ?");
707 // Okay, we found the one constant that our value can be if we get into TI's
708 // BB. Find out which successor will unconditionally be branched to.
709 BasicBlock
*TheRealDest
= 0;
710 for (unsigned i
= 0, e
= ThisCases
.size(); i
!= e
; ++i
)
711 if (ThisCases
[i
].first
== TIV
) {
712 TheRealDest
= ThisCases
[i
].second
;
716 // If not handled by any explicit cases, it is handled by the default case.
717 if (TheRealDest
== 0) TheRealDest
= ThisDef
;
719 // Remove PHI node entries for dead edges.
720 BasicBlock
*CheckEdge
= TheRealDest
;
721 for (succ_iterator SI
= succ_begin(TIBB
), e
= succ_end(TIBB
); SI
!= e
; ++SI
)
722 if (*SI
!= CheckEdge
)
723 (*SI
)->removePredecessor(TIBB
);
727 // Insert the new branch.
728 Instruction
*NI
= BranchInst::Create(TheRealDest
, TI
);
730 DOUT
<< "Threading pred instr: " << *Pred
->getTerminator()
731 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
<< "\n";
732 Instruction
*Cond
= 0;
733 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
))
734 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
735 TI
->eraseFromParent(); // Nuke the old one.
737 if (Cond
) ErasePossiblyDeadInstructionTree(Cond
);
743 // FoldValueComparisonIntoPredecessors - The specified terminator is a value
744 // equality comparison instruction (either a switch or a branch on "X == c").
745 // See if any of the predecessors of the terminator block are value comparisons
746 // on the same value. If so, and if safe to do so, fold them together.
747 static bool FoldValueComparisonIntoPredecessors(TerminatorInst
*TI
) {
748 BasicBlock
*BB
= TI
->getParent();
749 Value
*CV
= isValueEqualityComparison(TI
); // CondVal
750 assert(CV
&& "Not a comparison?");
751 bool Changed
= false;
753 SmallVector
<BasicBlock
*, 16> Preds(pred_begin(BB
), pred_end(BB
));
754 while (!Preds
.empty()) {
755 BasicBlock
*Pred
= Preds
.back();
758 // See if the predecessor is a comparison with the same value.
759 TerminatorInst
*PTI
= Pred
->getTerminator();
760 Value
*PCV
= isValueEqualityComparison(PTI
); // PredCondVal
762 if (PCV
== CV
&& SafeToMergeTerminators(TI
, PTI
)) {
763 // Figure out which 'cases' to copy from SI to PSI.
764 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > BBCases
;
765 BasicBlock
*BBDefault
= GetValueEqualityComparisonCases(TI
, BBCases
);
767 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > PredCases
;
768 BasicBlock
*PredDefault
= GetValueEqualityComparisonCases(PTI
, PredCases
);
770 // Based on whether the default edge from PTI goes to BB or not, fill in
771 // PredCases and PredDefault with the new switch cases we would like to
773 SmallVector
<BasicBlock
*, 8> NewSuccessors
;
775 if (PredDefault
== BB
) {
776 // If this is the default destination from PTI, only the edges in TI
777 // that don't occur in PTI, or that branch to BB will be activated.
778 std::set
<ConstantInt
*> PTIHandled
;
779 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
780 if (PredCases
[i
].second
!= BB
)
781 PTIHandled
.insert(PredCases
[i
].first
);
783 // The default destination is BB, we don't need explicit targets.
784 std::swap(PredCases
[i
], PredCases
.back());
785 PredCases
.pop_back();
789 // Reconstruct the new switch statement we will be building.
790 if (PredDefault
!= BBDefault
) {
791 PredDefault
->removePredecessor(Pred
);
792 PredDefault
= BBDefault
;
793 NewSuccessors
.push_back(BBDefault
);
795 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
796 if (!PTIHandled
.count(BBCases
[i
].first
) &&
797 BBCases
[i
].second
!= BBDefault
) {
798 PredCases
.push_back(BBCases
[i
]);
799 NewSuccessors
.push_back(BBCases
[i
].second
);
803 // If this is not the default destination from PSI, only the edges
804 // in SI that occur in PSI with a destination of BB will be
806 std::set
<ConstantInt
*> PTIHandled
;
807 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
808 if (PredCases
[i
].second
== BB
) {
809 PTIHandled
.insert(PredCases
[i
].first
);
810 std::swap(PredCases
[i
], PredCases
.back());
811 PredCases
.pop_back();
815 // Okay, now we know which constants were sent to BB from the
816 // predecessor. Figure out where they will all go now.
817 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
818 if (PTIHandled
.count(BBCases
[i
].first
)) {
819 // If this is one we are capable of getting...
820 PredCases
.push_back(BBCases
[i
]);
821 NewSuccessors
.push_back(BBCases
[i
].second
);
822 PTIHandled
.erase(BBCases
[i
].first
);// This constant is taken care of
825 // If there are any constants vectored to BB that TI doesn't handle,
826 // they must go to the default destination of TI.
827 for (std::set
<ConstantInt
*>::iterator I
= PTIHandled
.begin(),
828 E
= PTIHandled
.end(); I
!= E
; ++I
) {
829 PredCases
.push_back(std::make_pair(*I
, BBDefault
));
830 NewSuccessors
.push_back(BBDefault
);
834 // Okay, at this point, we know which new successor Pred will get. Make
835 // sure we update the number of entries in the PHI nodes for these
837 for (unsigned i
= 0, e
= NewSuccessors
.size(); i
!= e
; ++i
)
838 AddPredecessorToBlock(NewSuccessors
[i
], Pred
, BB
);
840 // Now that the successors are updated, create the new Switch instruction.
841 SwitchInst
*NewSI
= SwitchInst::Create(CV
, PredDefault
,
842 PredCases
.size(), PTI
);
843 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
844 NewSI
->addCase(PredCases
[i
].first
, PredCases
[i
].second
);
846 Instruction
*DeadCond
= 0;
847 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PTI
))
848 // If PTI is a branch, remember the condition.
849 DeadCond
= dyn_cast
<Instruction
>(BI
->getCondition());
850 Pred
->getInstList().erase(PTI
);
852 // If the condition is dead now, remove the instruction tree.
853 if (DeadCond
) ErasePossiblyDeadInstructionTree(DeadCond
);
855 // Okay, last check. If BB is still a successor of PSI, then we must
856 // have an infinite loop case. If so, add an infinitely looping block
857 // to handle the case to preserve the behavior of the code.
858 BasicBlock
*InfLoopBlock
= 0;
859 for (unsigned i
= 0, e
= NewSI
->getNumSuccessors(); i
!= e
; ++i
)
860 if (NewSI
->getSuccessor(i
) == BB
) {
861 if (InfLoopBlock
== 0) {
862 // Insert it at the end of the function, because it's either code,
863 // or it won't matter if it's hot. :)
864 InfLoopBlock
= BasicBlock::Create("infloop", BB
->getParent());
865 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
867 NewSI
->setSuccessor(i
, InfLoopBlock
);
876 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
877 /// BB2, hoist any common code in the two blocks up into the branch block. The
878 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
879 static bool HoistThenElseCodeToIf(BranchInst
*BI
) {
880 // This does very trivial matching, with limited scanning, to find identical
881 // instructions in the two blocks. In particular, we don't want to get into
882 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
883 // such, we currently just scan for obviously identical instructions in an
885 BasicBlock
*BB1
= BI
->getSuccessor(0); // The true destination.
886 BasicBlock
*BB2
= BI
->getSuccessor(1); // The false destination
888 Instruction
*I1
= BB1
->begin(), *I2
= BB2
->begin();
889 if (I1
->getOpcode() != I2
->getOpcode() || isa
<PHINode
>(I1
) ||
890 isa
<InvokeInst
>(I1
) || !I1
->isIdenticalTo(I2
))
893 // If we get here, we can hoist at least one instruction.
894 BasicBlock
*BIParent
= BI
->getParent();
897 // If we are hoisting the terminator instruction, don't move one (making a
898 // broken BB), instead clone it, and remove BI.
899 if (isa
<TerminatorInst
>(I1
))
900 goto HoistTerminator
;
902 // For a normal instruction, we just move one to right before the branch,
903 // then replace all uses of the other with the first. Finally, we remove
904 // the now redundant second instruction.
905 BIParent
->getInstList().splice(BI
, BB1
->getInstList(), I1
);
906 if (!I2
->use_empty())
907 I2
->replaceAllUsesWith(I1
);
908 BB2
->getInstList().erase(I2
);
912 } while (I1
->getOpcode() == I2
->getOpcode() && I1
->isIdenticalTo(I2
));
917 // Okay, it is safe to hoist the terminator.
918 Instruction
*NT
= I1
->clone();
919 BIParent
->getInstList().insert(BI
, NT
);
920 if (NT
->getType() != Type::VoidTy
) {
921 I1
->replaceAllUsesWith(NT
);
922 I2
->replaceAllUsesWith(NT
);
926 // Hoisting one of the terminators from our successor is a great thing.
927 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
928 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
929 // nodes, so we insert select instruction to compute the final result.
930 std::map
<std::pair
<Value
*,Value
*>, SelectInst
*> InsertedSelects
;
931 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
) {
933 for (BasicBlock::iterator BBI
= SI
->begin();
934 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
935 Value
*BB1V
= PN
->getIncomingValueForBlock(BB1
);
936 Value
*BB2V
= PN
->getIncomingValueForBlock(BB2
);
938 // These values do not agree. Insert a select instruction before NT
939 // that determines the right value.
940 SelectInst
*&SI
= InsertedSelects
[std::make_pair(BB1V
, BB2V
)];
942 SI
= SelectInst::Create(BI
->getCondition(), BB1V
, BB2V
,
943 BB1V
->getName()+"."+BB2V
->getName(), NT
);
944 // Make the PHI node use the select for all incoming values for BB1/BB2
945 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
946 if (PN
->getIncomingBlock(i
) == BB1
|| PN
->getIncomingBlock(i
) == BB2
)
947 PN
->setIncomingValue(i
, SI
);
952 // Update any PHI nodes in our new successors.
953 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
)
954 AddPredecessorToBlock(*SI
, BIParent
, BB1
);
956 BI
->eraseFromParent();
960 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
961 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
962 /// (for now, restricted to a single instruction that's side effect free) from
963 /// the BB1 into the branch block to speculatively execute it.
964 static bool SpeculativelyExecuteBB(BranchInst
*BI
, BasicBlock
*BB1
) {
965 // Only speculatively execution a single instruction (not counting the
966 // terminator) for now.
967 BasicBlock::iterator BBI
= BB1
->begin();
968 ++BBI
; // must have at least a terminator
969 if (BBI
== BB1
->end()) return false; // only one inst
971 if (BBI
!= BB1
->end()) return false; // more than 2 insts.
973 // Be conservative for now. FP select instruction can often be expensive.
974 Value
*BrCond
= BI
->getCondition();
975 if (isa
<Instruction
>(BrCond
) &&
976 cast
<Instruction
>(BrCond
)->getOpcode() == Instruction::FCmp
)
979 // If BB1 is actually on the false edge of the conditional branch, remember
980 // to swap the select operands later.
982 if (BB1
!= BI
->getSuccessor(0)) {
983 assert(BB1
== BI
->getSuccessor(1) && "No edge from 'if' block?");
990 // br i1 %t1, label %BB1, label %BB2
999 // %t3 = select i1 %t1, %t2, %t3
1000 Instruction
*I
= BB1
->begin();
1001 switch (I
->getOpcode()) {
1002 default: return false; // Not safe / profitable to hoist.
1003 case Instruction::Add
:
1004 case Instruction::Sub
:
1005 case Instruction::And
:
1006 case Instruction::Or
:
1007 case Instruction::Xor
:
1008 case Instruction::Shl
:
1009 case Instruction::LShr
:
1010 case Instruction::AShr
:
1011 if (!I
->getOperand(0)->getType()->isInteger())
1012 // FP arithmetic might trap. Not worth doing for vector ops.
1014 break; // These are all cheap and non-trapping instructions.
1017 // Can we speculatively execute the instruction? And what is the value
1018 // if the condition is false? Consider the phi uses, if the incoming value
1019 // from the "if" block are all the same V, then V is the value of the
1020 // select if the condition is false.
1021 BasicBlock
*BIParent
= BI
->getParent();
1022 SmallVector
<PHINode
*, 4> PHIUses
;
1023 Value
*FalseV
= NULL
;
1024 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
1026 PHINode
*PN
= dyn_cast
<PHINode
>(UI
);
1029 PHIUses
.push_back(PN
);
1030 Value
*PHIV
= PN
->getIncomingValueForBlock(BIParent
);
1033 else if (FalseV
!= PHIV
)
1034 return false; // Don't know the value when condition is false.
1036 if (!FalseV
) // Can this happen?
1039 // Do not hoist the instruction if any of its operands are defined but not
1040 // used in this BB. The transformation will prevent the operand from
1041 // being sunk into the use block.
1042 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
) {
1043 Instruction
*OpI
= dyn_cast
<Instruction
>(*i
);
1044 if (OpI
&& OpI
->getParent() == BIParent
&&
1045 !OpI
->isUsedInBasicBlock(BIParent
))
1049 // If we get here, we can hoist the instruction. Try to place it before the
1050 // icmp instruction preceeding the conditional branch.
1051 BasicBlock::iterator InsertPos
= BI
;
1052 if (InsertPos
!= BIParent
->begin())
1054 if (InsertPos
== BrCond
&& !isa
<PHINode
>(BrCond
))
1055 BIParent
->getInstList().splice(InsertPos
, BB1
->getInstList(), I
);
1057 BIParent
->getInstList().splice(BI
, BB1
->getInstList(), I
);
1059 // Create a select whose true value is the speculatively executed value and
1060 // false value is the previously determined FalseV.
1063 SI
= SelectInst::Create(BrCond
, FalseV
, I
,
1064 FalseV
->getName() + "." + I
->getName(), BI
);
1066 SI
= SelectInst::Create(BrCond
, I
, FalseV
,
1067 I
->getName() + "." + FalseV
->getName(), BI
);
1069 // Make the PHI node use the select for all incoming values for "then" and
1071 for (unsigned i
= 0, e
= PHIUses
.size(); i
!= e
; ++i
) {
1072 PHINode
*PN
= PHIUses
[i
];
1073 for (unsigned j
= 0, ee
= PN
->getNumIncomingValues(); j
!= ee
; ++j
)
1074 if (PN
->getIncomingBlock(j
) == BB1
||
1075 PN
->getIncomingBlock(j
) == BIParent
)
1076 PN
->setIncomingValue(j
, SI
);
1083 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1084 /// across this block.
1085 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock
*BB
) {
1086 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
1089 // If this basic block contains anything other than a PHI (which controls the
1090 // branch) and branch itself, bail out. FIXME: improve this in the future.
1091 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
, ++Size
) {
1092 if (Size
> 10) return false; // Don't clone large BB's.
1094 // We can only support instructions that are do not define values that are
1095 // live outside of the current basic block.
1096 for (Value::use_iterator UI
= BBI
->use_begin(), E
= BBI
->use_end();
1098 Instruction
*U
= cast
<Instruction
>(*UI
);
1099 if (U
->getParent() != BB
|| isa
<PHINode
>(U
)) return false;
1102 // Looks ok, continue checking.
1108 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1109 /// that is defined in the same block as the branch and if any PHI entries are
1110 /// constants, thread edges corresponding to that entry to be branches to their
1111 /// ultimate destination.
1112 static bool FoldCondBranchOnPHI(BranchInst
*BI
) {
1113 BasicBlock
*BB
= BI
->getParent();
1114 PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition());
1115 // NOTE: we currently cannot transform this case if the PHI node is used
1116 // outside of the block.
1117 if (!PN
|| PN
->getParent() != BB
|| !PN
->hasOneUse())
1120 // Degenerate case of a single entry PHI.
1121 if (PN
->getNumIncomingValues() == 1) {
1122 if (PN
->getIncomingValue(0) != PN
)
1123 PN
->replaceAllUsesWith(PN
->getIncomingValue(0));
1125 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
1126 PN
->eraseFromParent();
1130 // Now we know that this block has multiple preds and two succs.
1131 if (!BlockIsSimpleEnoughToThreadThrough(BB
)) return false;
1133 // Okay, this is a simple enough basic block. See if any phi values are
1135 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1137 if ((CB
= dyn_cast
<ConstantInt
>(PN
->getIncomingValue(i
))) &&
1138 CB
->getType() == Type::Int1Ty
) {
1139 // Okay, we now know that all edges from PredBB should be revectored to
1140 // branch to RealDest.
1141 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
1142 BasicBlock
*RealDest
= BI
->getSuccessor(!CB
->getZExtValue());
1144 if (RealDest
== BB
) continue; // Skip self loops.
1146 // The dest block might have PHI nodes, other predecessors and other
1147 // difficult cases. Instead of being smart about this, just insert a new
1148 // block that jumps to the destination block, effectively splitting
1149 // the edge we are about to create.
1150 BasicBlock
*EdgeBB
= BasicBlock::Create(RealDest
->getName()+".critedge",
1151 RealDest
->getParent(), RealDest
);
1152 BranchInst::Create(RealDest
, EdgeBB
);
1154 for (BasicBlock::iterator BBI
= RealDest
->begin();
1155 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
1156 Value
*V
= PN
->getIncomingValueForBlock(BB
);
1157 PN
->addIncoming(V
, EdgeBB
);
1160 // BB may have instructions that are being threaded over. Clone these
1161 // instructions into EdgeBB. We know that there will be no uses of the
1162 // cloned instructions outside of EdgeBB.
1163 BasicBlock::iterator InsertPt
= EdgeBB
->begin();
1164 std::map
<Value
*, Value
*> TranslateMap
; // Track translated values.
1165 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
1166 if (PHINode
*PN
= dyn_cast
<PHINode
>(BBI
)) {
1167 TranslateMap
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
1169 // Clone the instruction.
1170 Instruction
*N
= BBI
->clone();
1171 if (BBI
->hasName()) N
->setName(BBI
->getName()+".c");
1173 // Update operands due to translation.
1174 for (User::op_iterator i
= N
->op_begin(), e
= N
->op_end();
1176 std::map
<Value
*, Value
*>::iterator PI
=
1177 TranslateMap
.find(*i
);
1178 if (PI
!= TranslateMap
.end())
1182 // Check for trivial simplification.
1183 if (Constant
*C
= ConstantFoldInstruction(N
)) {
1184 TranslateMap
[BBI
] = C
;
1185 delete N
; // Constant folded away, don't need actual inst
1187 // Insert the new instruction into its new home.
1188 EdgeBB
->getInstList().insert(InsertPt
, N
);
1189 if (!BBI
->use_empty())
1190 TranslateMap
[BBI
] = N
;
1195 // Loop over all of the edges from PredBB to BB, changing them to branch
1196 // to EdgeBB instead.
1197 TerminatorInst
*PredBBTI
= PredBB
->getTerminator();
1198 for (unsigned i
= 0, e
= PredBBTI
->getNumSuccessors(); i
!= e
; ++i
)
1199 if (PredBBTI
->getSuccessor(i
) == BB
) {
1200 BB
->removePredecessor(PredBB
);
1201 PredBBTI
->setSuccessor(i
, EdgeBB
);
1204 // Recurse, simplifying any other constants.
1205 return FoldCondBranchOnPHI(BI
) | true;
1212 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1213 /// PHI node, see if we can eliminate it.
1214 static bool FoldTwoEntryPHINode(PHINode
*PN
) {
1215 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1216 // statement", which has a very simple dominance structure. Basically, we
1217 // are trying to find the condition that is being branched on, which
1218 // subsequently causes this merge to happen. We really want control
1219 // dependence information for this check, but simplifycfg can't keep it up
1220 // to date, and this catches most of the cases we care about anyway.
1222 BasicBlock
*BB
= PN
->getParent();
1223 BasicBlock
*IfTrue
, *IfFalse
;
1224 Value
*IfCond
= GetIfCondition(BB
, IfTrue
, IfFalse
);
1225 if (!IfCond
) return false;
1227 // Okay, we found that we can merge this two-entry phi node into a select.
1228 // Doing so would require us to fold *all* two entry phi nodes in this block.
1229 // At some point this becomes non-profitable (particularly if the target
1230 // doesn't support cmov's). Only do this transformation if there are two or
1231 // fewer PHI nodes in this block.
1232 unsigned NumPhis
= 0;
1233 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++NumPhis
, ++I
)
1237 DOUT
<< "FOUND IF CONDITION! " << *IfCond
<< " T: "
1238 << IfTrue
->getName() << " F: " << IfFalse
->getName() << "\n";
1240 // Loop over the PHI's seeing if we can promote them all to select
1241 // instructions. While we are at it, keep track of the instructions
1242 // that need to be moved to the dominating block.
1243 std::set
<Instruction
*> AggressiveInsts
;
1245 BasicBlock::iterator AfterPHIIt
= BB
->begin();
1246 while (isa
<PHINode
>(AfterPHIIt
)) {
1247 PHINode
*PN
= cast
<PHINode
>(AfterPHIIt
++);
1248 if (PN
->getIncomingValue(0) == PN
->getIncomingValue(1)) {
1249 if (PN
->getIncomingValue(0) != PN
)
1250 PN
->replaceAllUsesWith(PN
->getIncomingValue(0));
1252 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
1253 } else if (!DominatesMergePoint(PN
->getIncomingValue(0), BB
,
1254 &AggressiveInsts
) ||
1255 !DominatesMergePoint(PN
->getIncomingValue(1), BB
,
1256 &AggressiveInsts
)) {
1261 // If we all PHI nodes are promotable, check to make sure that all
1262 // instructions in the predecessor blocks can be promoted as well. If
1263 // not, we won't be able to get rid of the control flow, so it's not
1264 // worth promoting to select instructions.
1265 BasicBlock
*DomBlock
= 0, *IfBlock1
= 0, *IfBlock2
= 0;
1266 PN
= cast
<PHINode
>(BB
->begin());
1267 BasicBlock
*Pred
= PN
->getIncomingBlock(0);
1268 if (cast
<BranchInst
>(Pred
->getTerminator())->isUnconditional()) {
1270 DomBlock
= *pred_begin(Pred
);
1271 for (BasicBlock::iterator I
= Pred
->begin();
1272 !isa
<TerminatorInst
>(I
); ++I
)
1273 if (!AggressiveInsts
.count(I
)) {
1274 // This is not an aggressive instruction that we can promote.
1275 // Because of this, we won't be able to get rid of the control
1276 // flow, so the xform is not worth it.
1281 Pred
= PN
->getIncomingBlock(1);
1282 if (cast
<BranchInst
>(Pred
->getTerminator())->isUnconditional()) {
1284 DomBlock
= *pred_begin(Pred
);
1285 for (BasicBlock::iterator I
= Pred
->begin();
1286 !isa
<TerminatorInst
>(I
); ++I
)
1287 if (!AggressiveInsts
.count(I
)) {
1288 // This is not an aggressive instruction that we can promote.
1289 // Because of this, we won't be able to get rid of the control
1290 // flow, so the xform is not worth it.
1295 // If we can still promote the PHI nodes after this gauntlet of tests,
1296 // do all of the PHI's now.
1298 // Move all 'aggressive' instructions, which are defined in the
1299 // conditional parts of the if's up to the dominating block.
1301 DomBlock
->getInstList().splice(DomBlock
->getTerminator(),
1302 IfBlock1
->getInstList(),
1304 IfBlock1
->getTerminator());
1307 DomBlock
->getInstList().splice(DomBlock
->getTerminator(),
1308 IfBlock2
->getInstList(),
1310 IfBlock2
->getTerminator());
1313 while (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin())) {
1314 // Change the PHI node into a select instruction.
1316 PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfFalse
);
1318 PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfTrue
);
1320 Value
*NV
= SelectInst::Create(IfCond
, TrueVal
, FalseVal
, "", AfterPHIIt
);
1321 PN
->replaceAllUsesWith(NV
);
1324 BB
->getInstList().erase(PN
);
1329 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1330 /// to two returning blocks, try to merge them together into one return,
1331 /// introducing a select if the return values disagree.
1332 static bool SimplifyCondBranchToTwoReturns(BranchInst
*BI
) {
1333 assert(BI
->isConditional() && "Must be a conditional branch");
1334 BasicBlock
*TrueSucc
= BI
->getSuccessor(0);
1335 BasicBlock
*FalseSucc
= BI
->getSuccessor(1);
1336 ReturnInst
*TrueRet
= cast
<ReturnInst
>(TrueSucc
->getTerminator());
1337 ReturnInst
*FalseRet
= cast
<ReturnInst
>(FalseSucc
->getTerminator());
1339 // Check to ensure both blocks are empty (just a return) or optionally empty
1340 // with PHI nodes. If there are other instructions, merging would cause extra
1341 // computation on one path or the other.
1342 BasicBlock::iterator BBI
= TrueRet
;
1343 if (BBI
!= TrueSucc
->begin() && !isa
<PHINode
>(--BBI
))
1344 return false; // Not empty with optional phi nodes.
1346 if (BBI
!= FalseSucc
->begin() && !isa
<PHINode
>(--BBI
))
1347 return false; // Not empty with optional phi nodes.
1349 // Okay, we found a branch that is going to two return nodes. If
1350 // there is no return value for this function, just change the
1351 // branch into a return.
1352 if (FalseRet
->getNumOperands() == 0) {
1353 TrueSucc
->removePredecessor(BI
->getParent());
1354 FalseSucc
->removePredecessor(BI
->getParent());
1355 ReturnInst::Create(0, BI
);
1356 BI
->eraseFromParent();
1360 // Otherwise, build up the result values for the new return.
1361 SmallVector
<Value
*, 4> TrueResult
;
1362 SmallVector
<Value
*, 4> FalseResult
;
1364 for (unsigned i
= 0, e
= TrueRet
->getNumOperands(); i
!= e
; ++i
) {
1365 // Otherwise, figure out what the true and false return values are
1366 // so we can insert a new select instruction.
1367 Value
*TrueValue
= TrueRet
->getOperand(i
);
1368 Value
*FalseValue
= FalseRet
->getOperand(i
);
1370 // Unwrap any PHI nodes in the return blocks.
1371 if (PHINode
*TVPN
= dyn_cast
<PHINode
>(TrueValue
))
1372 if (TVPN
->getParent() == TrueSucc
)
1373 TrueValue
= TVPN
->getIncomingValueForBlock(BI
->getParent());
1374 if (PHINode
*FVPN
= dyn_cast
<PHINode
>(FalseValue
))
1375 if (FVPN
->getParent() == FalseSucc
)
1376 FalseValue
= FVPN
->getIncomingValueForBlock(BI
->getParent());
1378 // In order for this transformation to be safe, we must be able to
1379 // unconditionally execute both operands to the return. This is
1380 // normally the case, but we could have a potentially-trapping
1381 // constant expression that prevents this transformation from being
1383 if (ConstantExpr
*TCV
= dyn_cast
<ConstantExpr
>(TrueValue
))
1386 if (ConstantExpr
*FCV
= dyn_cast
<ConstantExpr
>(FalseValue
))
1390 TrueResult
.push_back(TrueValue
);
1391 FalseResult
.push_back(FalseValue
);
1394 // Okay, we collected all the mapped values and checked them for sanity, and
1395 // defined to really do this transformation. First, update the CFG.
1396 TrueSucc
->removePredecessor(BI
->getParent());
1397 FalseSucc
->removePredecessor(BI
->getParent());
1399 // Insert select instructions where needed.
1400 Value
*BrCond
= BI
->getCondition();
1401 for (unsigned i
= 0, e
= TrueRet
->getNumOperands(); i
!= e
; ++i
) {
1402 // Insert a select if the results differ.
1403 if (TrueResult
[i
] == FalseResult
[i
] || isa
<UndefValue
>(FalseResult
[i
]))
1405 if (isa
<UndefValue
>(TrueResult
[i
])) {
1406 TrueResult
[i
] = FalseResult
[i
];
1410 TrueResult
[i
] = SelectInst::Create(BrCond
, TrueResult
[i
],
1411 FalseResult
[i
], "retval", BI
);
1414 Value
*RI
= ReturnInst::Create(&TrueResult
[0], TrueResult
.size(), BI
);
1416 DOUT
<< "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1417 << "\n " << *BI
<< "NewRet = " << *RI
1418 << "TRUEBLOCK: " << *TrueSucc
<< "FALSEBLOCK: "<< *FalseSucc
;
1420 BI
->eraseFromParent();
1422 if (Instruction
*BrCondI
= dyn_cast
<Instruction
>(BrCond
))
1423 ErasePossiblyDeadInstructionTree(BrCondI
);
1427 /// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
1428 /// and if a predecessor branches to us and one of our successors, fold the
1429 /// setcc into the predecessor and use logical operations to pick the right
1431 static bool FoldBranchToCommonDest(BranchInst
*BI
) {
1432 BasicBlock
*BB
= BI
->getParent();
1433 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
1434 if (Cond
== 0) return false;
1437 // Only allow this if the condition is a simple instruction that can be
1438 // executed unconditionally. It must be in the same block as the branch, and
1439 // must be at the front of the block.
1440 if ((!isa
<CmpInst
>(Cond
) && !isa
<BinaryOperator
>(Cond
)) ||
1441 Cond
->getParent() != BB
|| &BB
->front() != Cond
|| !Cond
->hasOneUse())
1444 // Make sure the instruction after the condition is the cond branch.
1445 BasicBlock::iterator CondIt
= Cond
; ++CondIt
;
1449 // Finally, don't infinitely unroll conditional loops.
1450 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
1451 BasicBlock
*FalseDest
= BI
->getSuccessor(1);
1452 if (TrueDest
== BB
|| FalseDest
== BB
)
1455 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1456 BasicBlock
*PredBlock
= *PI
;
1457 BranchInst
*PBI
= dyn_cast
<BranchInst
>(PredBlock
->getTerminator());
1458 // Check that we have two conditional branches. If there is a PHI node in
1459 // the common successor, verify that the same value flows in from both
1461 if (PBI
== 0 || PBI
->isUnconditional() ||
1462 !SafeToMergeTerminators(BI
, PBI
))
1465 Instruction::BinaryOps Opc
;
1466 bool InvertPredCond
= false;
1468 if (PBI
->getSuccessor(0) == TrueDest
)
1469 Opc
= Instruction::Or
;
1470 else if (PBI
->getSuccessor(1) == FalseDest
)
1471 Opc
= Instruction::And
;
1472 else if (PBI
->getSuccessor(0) == FalseDest
)
1473 Opc
= Instruction::And
, InvertPredCond
= true;
1474 else if (PBI
->getSuccessor(1) == TrueDest
)
1475 Opc
= Instruction::Or
, InvertPredCond
= true;
1479 // If we need to invert the condition in the pred block to match, do so now.
1480 if (InvertPredCond
) {
1482 BinaryOperator::CreateNot(PBI
->getCondition(),
1483 PBI
->getCondition()->getName()+".not", PBI
);
1484 PBI
->setCondition(NewCond
);
1485 BasicBlock
*OldTrue
= PBI
->getSuccessor(0);
1486 BasicBlock
*OldFalse
= PBI
->getSuccessor(1);
1487 PBI
->setSuccessor(0, OldFalse
);
1488 PBI
->setSuccessor(1, OldTrue
);
1491 // Clone Cond into the predecessor basic block, and or/and the
1492 // two conditions together.
1493 Instruction
*New
= Cond
->clone();
1494 PredBlock
->getInstList().insert(PBI
, New
);
1495 New
->takeName(Cond
);
1496 Cond
->setName(New
->getName()+".old");
1498 Value
*NewCond
= BinaryOperator::Create(Opc
, PBI
->getCondition(),
1499 New
, "or.cond", PBI
);
1500 PBI
->setCondition(NewCond
);
1501 if (PBI
->getSuccessor(0) == BB
) {
1502 AddPredecessorToBlock(TrueDest
, PredBlock
, BB
);
1503 PBI
->setSuccessor(0, TrueDest
);
1505 if (PBI
->getSuccessor(1) == BB
) {
1506 AddPredecessorToBlock(FalseDest
, PredBlock
, BB
);
1507 PBI
->setSuccessor(1, FalseDest
);
1514 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1515 /// predecessor of another block, this function tries to simplify it. We know
1516 /// that PBI and BI are both conditional branches, and BI is in one of the
1517 /// successor blocks of PBI - PBI branches to BI.
1518 static bool SimplifyCondBranchToCondBranch(BranchInst
*PBI
, BranchInst
*BI
) {
1519 assert(PBI
->isConditional() && BI
->isConditional());
1520 BasicBlock
*BB
= BI
->getParent();
1522 // If this block ends with a branch instruction, and if there is a
1523 // predecessor that ends on a branch of the same condition, make
1524 // this conditional branch redundant.
1525 if (PBI
->getCondition() == BI
->getCondition() &&
1526 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
1527 // Okay, the outcome of this conditional branch is statically
1528 // knowable. If this block had a single pred, handle specially.
1529 if (BB
->getSinglePredecessor()) {
1530 // Turn this into a branch on constant.
1531 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
1532 BI
->setCondition(ConstantInt::get(Type::Int1Ty
, CondIsTrue
));
1533 return true; // Nuke the branch on constant.
1536 // Otherwise, if there are multiple predecessors, insert a PHI that merges
1537 // in the constant and simplify the block result. Subsequent passes of
1538 // simplifycfg will thread the block.
1539 if (BlockIsSimpleEnoughToThreadThrough(BB
)) {
1540 PHINode
*NewPN
= PHINode::Create(Type::Int1Ty
,
1541 BI
->getCondition()->getName() + ".pr",
1543 // Okay, we're going to insert the PHI node. Since PBI is not the only
1544 // predecessor, compute the PHI'd conditional value for all of the preds.
1545 // Any predecessor where the condition is not computable we keep symbolic.
1546 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
1547 if ((PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator())) &&
1548 PBI
!= BI
&& PBI
->isConditional() &&
1549 PBI
->getCondition() == BI
->getCondition() &&
1550 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
1551 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
1552 NewPN
->addIncoming(ConstantInt::get(Type::Int1Ty
,
1555 NewPN
->addIncoming(BI
->getCondition(), *PI
);
1558 BI
->setCondition(NewPN
);
1563 // If this is a conditional branch in an empty block, and if any
1564 // predecessors is a conditional branch to one of our destinations,
1565 // fold the conditions into logical ops and one cond br.
1566 if (&BB
->front() != BI
)
1570 if (PBI
->getSuccessor(0) == BI
->getSuccessor(0))
1572 else if (PBI
->getSuccessor(0) == BI
->getSuccessor(1))
1573 PBIOp
= 0, BIOp
= 1;
1574 else if (PBI
->getSuccessor(1) == BI
->getSuccessor(0))
1575 PBIOp
= 1, BIOp
= 0;
1576 else if (PBI
->getSuccessor(1) == BI
->getSuccessor(1))
1581 // Check to make sure that the other destination of this branch
1582 // isn't BB itself. If so, this is an infinite loop that will
1583 // keep getting unwound.
1584 if (PBI
->getSuccessor(PBIOp
) == BB
)
1587 // Do not perform this transformation if it would require
1588 // insertion of a large number of select instructions. For targets
1589 // without predication/cmovs, this is a big pessimization.
1590 BasicBlock
*CommonDest
= PBI
->getSuccessor(PBIOp
);
1592 unsigned NumPhis
= 0;
1593 for (BasicBlock::iterator II
= CommonDest
->begin();
1594 isa
<PHINode
>(II
); ++II
, ++NumPhis
)
1595 if (NumPhis
> 2) // Disable this xform.
1598 // Finally, if everything is ok, fold the branches to logical ops.
1599 BasicBlock
*OtherDest
= BI
->getSuccessor(BIOp
^ 1);
1601 DOUT
<< "FOLDING BRs:" << *PBI
->getParent()
1602 << "AND: " << *BI
->getParent();
1605 // If OtherDest *is* BB, then BB is a basic block with a single conditional
1606 // branch in it, where one edge (OtherDest) goes back to itself but the other
1607 // exits. We don't *know* that the program avoids the infinite loop
1608 // (even though that seems likely). If we do this xform naively, we'll end up
1609 // recursively unpeeling the loop. Since we know that (after the xform is
1610 // done) that the block *is* infinite if reached, we just make it an obviously
1611 // infinite loop with no cond branch.
1612 if (OtherDest
== BB
) {
1613 // Insert it at the end of the function, because it's either code,
1614 // or it won't matter if it's hot. :)
1615 BasicBlock
*InfLoopBlock
= BasicBlock::Create("infloop", BB
->getParent());
1616 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
1617 OtherDest
= InfLoopBlock
;
1620 DOUT
<< *PBI
->getParent()->getParent();
1622 // BI may have other predecessors. Because of this, we leave
1623 // it alone, but modify PBI.
1625 // Make sure we get to CommonDest on True&True directions.
1626 Value
*PBICond
= PBI
->getCondition();
1628 PBICond
= BinaryOperator::CreateNot(PBICond
,
1629 PBICond
->getName()+".not",
1631 Value
*BICond
= BI
->getCondition();
1633 BICond
= BinaryOperator::CreateNot(BICond
,
1634 BICond
->getName()+".not",
1636 // Merge the conditions.
1637 Value
*Cond
= BinaryOperator::CreateOr(PBICond
, BICond
, "brmerge", PBI
);
1639 // Modify PBI to branch on the new condition to the new dests.
1640 PBI
->setCondition(Cond
);
1641 PBI
->setSuccessor(0, CommonDest
);
1642 PBI
->setSuccessor(1, OtherDest
);
1644 // OtherDest may have phi nodes. If so, add an entry from PBI's
1645 // block that are identical to the entries for BI's block.
1647 for (BasicBlock::iterator II
= OtherDest
->begin();
1648 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
1649 Value
*V
= PN
->getIncomingValueForBlock(BB
);
1650 PN
->addIncoming(V
, PBI
->getParent());
1653 // We know that the CommonDest already had an edge from PBI to
1654 // it. If it has PHIs though, the PHIs may have different
1655 // entries for BB and PBI's BB. If so, insert a select to make
1657 for (BasicBlock::iterator II
= CommonDest
->begin();
1658 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
1659 Value
*BIV
= PN
->getIncomingValueForBlock(BB
);
1660 unsigned PBBIdx
= PN
->getBasicBlockIndex(PBI
->getParent());
1661 Value
*PBIV
= PN
->getIncomingValue(PBBIdx
);
1663 // Insert a select in PBI to pick the right value.
1664 Value
*NV
= SelectInst::Create(PBICond
, PBIV
, BIV
,
1665 PBIV
->getName()+".mux", PBI
);
1666 PN
->setIncomingValue(PBBIdx
, NV
);
1670 DOUT
<< "INTO: " << *PBI
->getParent();
1672 DOUT
<< *PBI
->getParent()->getParent();
1674 // This basic block is probably dead. We know it has at least
1675 // one fewer predecessor.
1681 /// ConstantIntOrdering - This class implements a stable ordering of constant
1682 /// integers that does not depend on their address. This is important for
1683 /// applications that sort ConstantInt's to ensure uniqueness.
1684 struct ConstantIntOrdering
{
1685 bool operator()(const ConstantInt
*LHS
, const ConstantInt
*RHS
) const {
1686 return LHS
->getValue().ult(RHS
->getValue());
1691 // SimplifyCFG - This function is used to do simplification of a CFG. For
1692 // example, it adjusts branches to branches to eliminate the extra hop, it
1693 // eliminates unreachable basic blocks, and does other "peephole" optimization
1694 // of the CFG. It returns true if a modification was made.
1696 // WARNING: The entry node of a function may not be simplified.
1698 bool llvm::SimplifyCFG(BasicBlock
*BB
) {
1699 bool Changed
= false;
1700 Function
*M
= BB
->getParent();
1702 assert(BB
&& BB
->getParent() && "Block not embedded in function!");
1703 assert(BB
->getTerminator() && "Degenerate basic block encountered!");
1704 assert(&BB
->getParent()->getEntryBlock() != BB
&&
1705 "Can't Simplify entry block!");
1707 // Remove basic blocks that have no predecessors... which are unreachable.
1708 if ((pred_begin(BB
) == pred_end(BB
)) ||
1709 (*pred_begin(BB
) == BB
&& ++pred_begin(BB
) == pred_end(BB
))) {
1710 DOUT
<< "Removing BB: \n" << *BB
;
1712 // Loop through all of our successors and make sure they know that one
1713 // of their predecessors is going away.
1714 for (succ_iterator SI
= succ_begin(BB
), E
= succ_end(BB
); SI
!= E
; ++SI
)
1715 SI
->removePredecessor(BB
);
1717 while (!BB
->empty()) {
1718 Instruction
&I
= BB
->back();
1719 // If this instruction is used, replace uses with an arbitrary
1720 // value. Because control flow can't get here, we don't care
1721 // what we replace the value with. Note that since this block is
1722 // unreachable, and all values contained within it must dominate their
1723 // uses, that all uses will eventually be removed.
1725 // Make all users of this instruction use undef instead
1726 I
.replaceAllUsesWith(UndefValue::get(I
.getType()));
1728 // Remove the instruction from the basic block
1729 BB
->getInstList().pop_back();
1731 M
->getBasicBlockList().erase(BB
);
1735 // Check to see if we can constant propagate this terminator instruction
1737 Changed
|= ConstantFoldTerminator(BB
);
1739 // If there is a trivial two-entry PHI node in this basic block, and we can
1740 // eliminate it, do so now.
1741 if (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin()))
1742 if (PN
->getNumIncomingValues() == 2)
1743 Changed
|= FoldTwoEntryPHINode(PN
);
1745 // If this is a returning block with only PHI nodes in it, fold the return
1746 // instruction into any unconditional branch predecessors.
1748 // If any predecessor is a conditional branch that just selects among
1749 // different return values, fold the replace the branch/return with a select
1751 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
1752 BasicBlock::iterator BBI
= BB
->getTerminator();
1753 if (BBI
== BB
->begin() || isa
<PHINode
>(--BBI
)) {
1754 // Find predecessors that end with branches.
1755 SmallVector
<BasicBlock
*, 8> UncondBranchPreds
;
1756 SmallVector
<BranchInst
*, 8> CondBranchPreds
;
1757 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1758 TerminatorInst
*PTI
= (*PI
)->getTerminator();
1759 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PTI
)) {
1760 if (BI
->isUnconditional())
1761 UncondBranchPreds
.push_back(*PI
);
1763 CondBranchPreds
.push_back(BI
);
1767 // If we found some, do the transformation!
1768 if (!UncondBranchPreds
.empty()) {
1769 while (!UncondBranchPreds
.empty()) {
1770 BasicBlock
*Pred
= UncondBranchPreds
.back();
1771 DOUT
<< "FOLDING: " << *BB
1772 << "INTO UNCOND BRANCH PRED: " << *Pred
;
1773 UncondBranchPreds
.pop_back();
1774 Instruction
*UncondBranch
= Pred
->getTerminator();
1775 // Clone the return and add it to the end of the predecessor.
1776 Instruction
*NewRet
= RI
->clone();
1777 Pred
->getInstList().push_back(NewRet
);
1779 // If the return instruction returns a value, and if the value was a
1780 // PHI node in "BB", propagate the right value into the return.
1781 for (User::op_iterator i
= NewRet
->op_begin(), e
= NewRet
->op_end();
1783 if (PHINode
*PN
= dyn_cast
<PHINode
>(*i
))
1784 if (PN
->getParent() == BB
)
1785 *i
= PN
->getIncomingValueForBlock(Pred
);
1787 // Update any PHI nodes in the returning block to realize that we no
1788 // longer branch to them.
1789 BB
->removePredecessor(Pred
);
1790 Pred
->getInstList().erase(UncondBranch
);
1793 // If we eliminated all predecessors of the block, delete the block now.
1794 if (pred_begin(BB
) == pred_end(BB
))
1795 // We know there are no successors, so just nuke the block.
1796 M
->getBasicBlockList().erase(BB
);
1801 // Check out all of the conditional branches going to this return
1802 // instruction. If any of them just select between returns, change the
1803 // branch itself into a select/return pair.
1804 while (!CondBranchPreds
.empty()) {
1805 BranchInst
*BI
= CondBranchPreds
.back();
1806 CondBranchPreds
.pop_back();
1808 // Check to see if the non-BB successor is also a return block.
1809 if (isa
<ReturnInst
>(BI
->getSuccessor(0)->getTerminator()) &&
1810 isa
<ReturnInst
>(BI
->getSuccessor(1)->getTerminator()) &&
1811 SimplifyCondBranchToTwoReturns(BI
))
1815 } else if (isa
<UnwindInst
>(BB
->begin())) {
1816 // Check to see if the first instruction in this block is just an unwind.
1817 // If so, replace any invoke instructions which use this as an exception
1818 // destination with call instructions, and any unconditional branch
1819 // predecessor with an unwind.
1821 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
1822 while (!Preds
.empty()) {
1823 BasicBlock
*Pred
= Preds
.back();
1824 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Pred
->getTerminator())) {
1825 if (BI
->isUnconditional()) {
1826 Pred
->getInstList().pop_back(); // nuke uncond branch
1827 new UnwindInst(Pred
); // Use unwind.
1830 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Pred
->getTerminator()))
1831 if (II
->getUnwindDest() == BB
) {
1832 // Insert a new branch instruction before the invoke, because this
1833 // is now a fall through...
1834 BranchInst
*BI
= BranchInst::Create(II
->getNormalDest(), II
);
1835 Pred
->getInstList().remove(II
); // Take out of symbol table
1837 // Insert the call now...
1838 SmallVector
<Value
*,8> Args(II
->op_begin()+3, II
->op_end());
1839 CallInst
*CI
= CallInst::Create(II
->getCalledValue(),
1840 Args
.begin(), Args
.end(),
1842 CI
->setCallingConv(II
->getCallingConv());
1843 CI
->setParamAttrs(II
->getParamAttrs());
1844 // If the invoke produced a value, the Call now does instead
1845 II
->replaceAllUsesWith(CI
);
1853 // If this block is now dead, remove it.
1854 if (pred_begin(BB
) == pred_end(BB
)) {
1855 // We know there are no successors, so just nuke the block.
1856 M
->getBasicBlockList().erase(BB
);
1860 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
1861 if (isValueEqualityComparison(SI
)) {
1862 // If we only have one predecessor, and if it is a branch on this value,
1863 // see if that predecessor totally determines the outcome of this switch.
1864 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
1865 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI
, OnlyPred
))
1866 return SimplifyCFG(BB
) || 1;
1868 // If the block only contains the switch, see if we can fold the block
1869 // away into any preds.
1870 if (SI
== &BB
->front())
1871 if (FoldValueComparisonIntoPredecessors(SI
))
1872 return SimplifyCFG(BB
) || 1;
1874 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
1875 if (BI
->isUnconditional()) {
1876 BasicBlock::iterator BBI
= BB
->getFirstNonPHI();
1878 BasicBlock
*Succ
= BI
->getSuccessor(0);
1879 if (BBI
->isTerminator() && // Terminator is the only non-phi instruction!
1880 Succ
!= BB
) // Don't hurt infinite loops!
1881 if (TryToSimplifyUncondBranchFromEmptyBlock(BB
, Succ
))
1884 } else { // Conditional branch
1885 if (isValueEqualityComparison(BI
)) {
1886 // If we only have one predecessor, and if it is a branch on this value,
1887 // see if that predecessor totally determines the outcome of this
1889 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
1890 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI
, OnlyPred
))
1891 return SimplifyCFG(BB
) || 1;
1893 // This block must be empty, except for the setcond inst, if it exists.
1894 BasicBlock::iterator I
= BB
->begin();
1896 (&*I
== cast
<Instruction
>(BI
->getCondition()) &&
1898 if (FoldValueComparisonIntoPredecessors(BI
))
1899 return SimplifyCFG(BB
) | true;
1902 // If this is a branch on a phi node in the current block, thread control
1903 // through this block if any PHI node entries are constants.
1904 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition()))
1905 if (PN
->getParent() == BI
->getParent())
1906 if (FoldCondBranchOnPHI(BI
))
1907 return SimplifyCFG(BB
) | true;
1909 // If this basic block is ONLY a setcc and a branch, and if a predecessor
1910 // branches to us and one of our successors, fold the setcc into the
1911 // predecessor and use logical operations to pick the right destination.
1912 if (FoldBranchToCommonDest(BI
))
1913 return SimplifyCFG(BB
) | 1;
1916 // Scan predecessor blocks for conditional branches.
1917 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
1918 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
1919 if (PBI
!= BI
&& PBI
->isConditional())
1920 if (SimplifyCondBranchToCondBranch(PBI
, BI
))
1921 return SimplifyCFG(BB
) | true;
1923 } else if (isa
<UnreachableInst
>(BB
->getTerminator())) {
1924 // If there are any instructions immediately before the unreachable that can
1925 // be removed, do so.
1926 Instruction
*Unreachable
= BB
->getTerminator();
1927 while (Unreachable
!= BB
->begin()) {
1928 BasicBlock::iterator BBI
= Unreachable
;
1930 if (isa
<CallInst
>(BBI
)) break;
1931 // Delete this instruction
1932 BB
->getInstList().erase(BBI
);
1936 // If the unreachable instruction is the first in the block, take a gander
1937 // at all of the predecessors of this instruction, and simplify them.
1938 if (&BB
->front() == Unreachable
) {
1939 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
1940 for (unsigned i
= 0, e
= Preds
.size(); i
!= e
; ++i
) {
1941 TerminatorInst
*TI
= Preds
[i
]->getTerminator();
1943 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
1944 if (BI
->isUnconditional()) {
1945 if (BI
->getSuccessor(0) == BB
) {
1946 new UnreachableInst(TI
);
1947 TI
->eraseFromParent();
1951 if (BI
->getSuccessor(0) == BB
) {
1952 BranchInst::Create(BI
->getSuccessor(1), BI
);
1953 BI
->eraseFromParent();
1954 } else if (BI
->getSuccessor(1) == BB
) {
1955 BranchInst::Create(BI
->getSuccessor(0), BI
);
1956 BI
->eraseFromParent();
1960 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
1961 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
1962 if (SI
->getSuccessor(i
) == BB
) {
1963 BB
->removePredecessor(SI
->getParent());
1968 // If the default value is unreachable, figure out the most popular
1969 // destination and make it the default.
1970 if (SI
->getSuccessor(0) == BB
) {
1971 std::map
<BasicBlock
*, unsigned> Popularity
;
1972 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
1973 Popularity
[SI
->getSuccessor(i
)]++;
1975 // Find the most popular block.
1976 unsigned MaxPop
= 0;
1977 BasicBlock
*MaxBlock
= 0;
1978 for (std::map
<BasicBlock
*, unsigned>::iterator
1979 I
= Popularity
.begin(), E
= Popularity
.end(); I
!= E
; ++I
) {
1980 if (I
->second
> MaxPop
) {
1982 MaxBlock
= I
->first
;
1986 // Make this the new default, allowing us to delete any explicit
1988 SI
->setSuccessor(0, MaxBlock
);
1991 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
1993 if (isa
<PHINode
>(MaxBlock
->begin()))
1994 for (unsigned i
= 0; i
!= MaxPop
-1; ++i
)
1995 MaxBlock
->removePredecessor(SI
->getParent());
1997 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
1998 if (SI
->getSuccessor(i
) == MaxBlock
) {
2004 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TI
)) {
2005 if (II
->getUnwindDest() == BB
) {
2006 // Convert the invoke to a call instruction. This would be a good
2007 // place to note that the call does not throw though.
2008 BranchInst
*BI
= BranchInst::Create(II
->getNormalDest(), II
);
2009 II
->removeFromParent(); // Take out of symbol table
2011 // Insert the call now...
2012 SmallVector
<Value
*, 8> Args(II
->op_begin()+3, II
->op_end());
2013 CallInst
*CI
= CallInst::Create(II
->getCalledValue(),
2014 Args
.begin(), Args
.end(),
2016 CI
->setCallingConv(II
->getCallingConv());
2017 CI
->setParamAttrs(II
->getParamAttrs());
2018 // If the invoke produced a value, the Call does now instead.
2019 II
->replaceAllUsesWith(CI
);
2026 // If this block is now dead, remove it.
2027 if (pred_begin(BB
) == pred_end(BB
)) {
2028 // We know there are no successors, so just nuke the block.
2029 M
->getBasicBlockList().erase(BB
);
2035 // Merge basic blocks into their predecessor if there is only one distinct
2036 // pred, and if there is only one distinct successor of the predecessor, and
2037 // if there are no PHI nodes.
2039 if (MergeBlockIntoPredecessor(BB
))
2042 // Otherwise, if this block only has a single predecessor, and if that block
2043 // is a conditional branch, see if we can hoist any code from this block up
2044 // into our predecessor.
2045 pred_iterator
PI(pred_begin(BB
)), PE(pred_end(BB
));
2046 BasicBlock
*OnlyPred
= *PI
++;
2047 for (; PI
!= PE
; ++PI
) // Search all predecessors, see if they are all same
2048 if (*PI
!= OnlyPred
) {
2049 OnlyPred
= 0; // There are multiple different predecessors...
2054 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(OnlyPred
->getTerminator()))
2055 if (BI
->isConditional()) {
2056 // Get the other block.
2057 BasicBlock
*OtherBB
= BI
->getSuccessor(BI
->getSuccessor(0) == BB
);
2058 PI
= pred_begin(OtherBB
);
2061 if (PI
== pred_end(OtherBB
)) {
2062 // We have a conditional branch to two blocks that are only reachable
2063 // from the condbr. We know that the condbr dominates the two blocks,
2064 // so see if there is any identical code in the "then" and "else"
2065 // blocks. If so, we can hoist it up to the branching block.
2066 Changed
|= HoistThenElseCodeToIf(BI
);
2068 BasicBlock
* OnlySucc
= NULL
;
2069 for (succ_iterator SI
= succ_begin(BB
), SE
= succ_end(BB
);
2073 else if (*SI
!= OnlySucc
) {
2074 OnlySucc
= 0; // There are multiple distinct successors!
2079 if (OnlySucc
== OtherBB
) {
2080 // If BB's only successor is the other successor of the predecessor,
2081 // i.e. a triangle, see if we can hoist any code from this block up
2082 // to the "if" block.
2083 Changed
|= SpeculativelyExecuteBB(BI
, BB
);
2088 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
2089 if (BranchInst
*BI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
2090 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2091 if (BI
->isConditional() && isa
<Instruction
>(BI
->getCondition())) {
2092 Instruction
*Cond
= cast
<Instruction
>(BI
->getCondition());
2093 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2094 // 'setne's and'ed together, collect them.
2096 std::vector
<ConstantInt
*> Values
;
2097 bool TrueWhenEqual
= GatherValueComparisons(Cond
, CompVal
, Values
);
2098 if (CompVal
&& CompVal
->getType()->isInteger()) {
2099 // There might be duplicate constants in the list, which the switch
2100 // instruction can't handle, remove them now.
2101 std::sort(Values
.begin(), Values
.end(), ConstantIntOrdering());
2102 Values
.erase(std::unique(Values
.begin(), Values
.end()), Values
.end());
2104 // Figure out which block is which destination.
2105 BasicBlock
*DefaultBB
= BI
->getSuccessor(1);
2106 BasicBlock
*EdgeBB
= BI
->getSuccessor(0);
2107 if (!TrueWhenEqual
) std::swap(DefaultBB
, EdgeBB
);
2109 // Create the new switch instruction now.
2110 SwitchInst
*New
= SwitchInst::Create(CompVal
, DefaultBB
,
2113 // Add all of the 'cases' to the switch instruction.
2114 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
)
2115 New
->addCase(Values
[i
], EdgeBB
);
2117 // We added edges from PI to the EdgeBB. As such, if there were any
2118 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2119 // the number of edges added.
2120 for (BasicBlock::iterator BBI
= EdgeBB
->begin();
2121 isa
<PHINode
>(BBI
); ++BBI
) {
2122 PHINode
*PN
= cast
<PHINode
>(BBI
);
2123 Value
*InVal
= PN
->getIncomingValueForBlock(*PI
);
2124 for (unsigned i
= 0, e
= Values
.size()-1; i
!= e
; ++i
)
2125 PN
->addIncoming(InVal
, *PI
);
2128 // Erase the old branch instruction.
2129 (*PI
)->getInstList().erase(BI
);
2131 // Erase the potentially condition tree that was used to computed the
2132 // branch condition.
2133 ErasePossiblyDeadInstructionTree(Cond
);