1 //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the pass that transforms the X86 machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-emitter"
16 #include "X86InstrInfo.h"
17 #include "X86JITInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "X86Relocations.h"
22 #include "llvm/PassManager.h"
23 #include "llvm/CodeGen/MachineCodeEmitter.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/Function.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Support/Compiler.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Target/TargetOptions.h"
35 STATISTIC(NumEmitted
, "Number of machine instructions emitted");
38 class VISIBILITY_HIDDEN Emitter
: public MachineFunctionPass
{
39 const X86InstrInfo
*II
;
42 MachineCodeEmitter
&MCE
;
43 intptr_t PICBaseOffset
;
48 explicit Emitter(X86TargetMachine
&tm
, MachineCodeEmitter
&mce
)
49 : MachineFunctionPass(&ID
), II(0), TD(0), TM(tm
),
50 MCE(mce
), PICBaseOffset(0), Is64BitMode(false),
51 IsPIC(TM
.getRelocationModel() == Reloc::PIC_
) {}
52 Emitter(X86TargetMachine
&tm
, MachineCodeEmitter
&mce
,
53 const X86InstrInfo
&ii
, const TargetData
&td
, bool is64
)
54 : MachineFunctionPass(&ID
), II(&ii
), TD(&td
), TM(tm
),
55 MCE(mce
), PICBaseOffset(0), Is64BitMode(is64
),
56 IsPIC(TM
.getRelocationModel() == Reloc::PIC_
) {}
58 bool runOnMachineFunction(MachineFunction
&MF
);
60 virtual const char *getPassName() const {
61 return "X86 Machine Code Emitter";
64 void emitInstruction(const MachineInstr
&MI
,
65 const TargetInstrDesc
*Desc
);
67 void getAnalysisUsage(AnalysisUsage
&AU
) const {
68 AU
.addRequired
<MachineModuleInfo
>();
69 MachineFunctionPass::getAnalysisUsage(AU
);
73 void emitPCRelativeBlockAddress(MachineBasicBlock
*MBB
);
74 void emitGlobalAddress(GlobalValue
*GV
, unsigned Reloc
,
75 intptr_t Disp
= 0, intptr_t PCAdj
= 0,
76 bool NeedStub
= false, bool Indirect
= false);
77 void emitExternalSymbolAddress(const char *ES
, unsigned Reloc
);
78 void emitConstPoolAddress(unsigned CPI
, unsigned Reloc
, intptr_t Disp
= 0,
80 void emitJumpTableAddress(unsigned JTI
, unsigned Reloc
,
83 void emitDisplacementField(const MachineOperand
*RelocOp
, int DispVal
,
86 void emitRegModRMByte(unsigned ModRMReg
, unsigned RegOpcodeField
);
87 void emitRegModRMByte(unsigned RegOpcodeField
);
88 void emitSIBByte(unsigned SS
, unsigned Index
, unsigned Base
);
89 void emitConstant(uint64_t Val
, unsigned Size
);
91 void emitMemModRMByte(const MachineInstr
&MI
,
92 unsigned Op
, unsigned RegOpcodeField
,
95 unsigned getX86RegNum(unsigned RegNo
) const;
97 bool gvNeedsNonLazyPtr(const GlobalValue
*GV
);
102 /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
103 /// to the specified MCE object.
104 FunctionPass
*llvm::createX86CodeEmitterPass(X86TargetMachine
&TM
,
105 MachineCodeEmitter
&MCE
) {
106 return new Emitter(TM
, MCE
);
109 bool Emitter::runOnMachineFunction(MachineFunction
&MF
) {
111 MCE
.setModuleInfo(&getAnalysis
<MachineModuleInfo
>());
113 II
= TM
.getInstrInfo();
114 TD
= TM
.getTargetData();
115 Is64BitMode
= TM
.getSubtarget
<X86Subtarget
>().is64Bit();
116 IsPIC
= TM
.getRelocationModel() == Reloc::PIC_
;
119 DOUT
<< "JITTing function '" << MF
.getFunction()->getName() << "'\n";
120 MCE
.startFunction(MF
);
121 for (MachineFunction::iterator MBB
= MF
.begin(), E
= MF
.end();
123 MCE
.StartMachineBasicBlock(MBB
);
124 for (MachineBasicBlock::const_iterator I
= MBB
->begin(), E
= MBB
->end();
126 const TargetInstrDesc
&Desc
= I
->getDesc();
127 emitInstruction(*I
, &Desc
);
128 // MOVPC32r is basically a call plus a pop instruction.
129 if (Desc
.getOpcode() == X86::MOVPC32r
)
130 emitInstruction(*I
, &II
->get(X86::POP32r
));
131 NumEmitted
++; // Keep track of the # of mi's emitted
134 } while (MCE
.finishFunction(MF
));
139 /// emitPCRelativeBlockAddress - This method keeps track of the information
140 /// necessary to resolve the address of this block later and emits a dummy
143 void Emitter::emitPCRelativeBlockAddress(MachineBasicBlock
*MBB
) {
144 // Remember where this reference was and where it is to so we can
145 // deal with it later.
146 MCE
.addRelocation(MachineRelocation::getBB(MCE
.getCurrentPCOffset(),
147 X86::reloc_pcrel_word
, MBB
));
151 /// emitGlobalAddress - Emit the specified address to the code stream assuming
152 /// this is part of a "take the address of a global" instruction.
154 void Emitter::emitGlobalAddress(GlobalValue
*GV
, unsigned Reloc
,
155 intptr_t Disp
/* = 0 */,
156 intptr_t PCAdj
/* = 0 */,
157 bool NeedStub
/* = false */,
158 bool Indirect
/* = false */) {
159 intptr_t RelocCST
= 0;
160 if (Reloc
== X86::reloc_picrel_word
)
161 RelocCST
= PICBaseOffset
;
162 else if (Reloc
== X86::reloc_pcrel_word
)
164 MachineRelocation MR
= Indirect
165 ? MachineRelocation::getIndirectSymbol(MCE
.getCurrentPCOffset(), Reloc
,
166 GV
, RelocCST
, NeedStub
)
167 : MachineRelocation::getGV(MCE
.getCurrentPCOffset(), Reloc
,
168 GV
, RelocCST
, NeedStub
);
169 MCE
.addRelocation(MR
);
170 // The relocated value will be added to the displacement
171 if (Reloc
== X86::reloc_absolute_dword
)
172 MCE
.emitDWordLE(Disp
);
174 MCE
.emitWordLE((int32_t)Disp
);
177 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
178 /// be emitted to the current location in the function, and allow it to be PC
180 void Emitter::emitExternalSymbolAddress(const char *ES
, unsigned Reloc
) {
181 intptr_t RelocCST
= (Reloc
== X86::reloc_picrel_word
) ? PICBaseOffset
: 0;
182 MCE
.addRelocation(MachineRelocation::getExtSym(MCE
.getCurrentPCOffset(),
183 Reloc
, ES
, RelocCST
));
184 if (Reloc
== X86::reloc_absolute_dword
)
190 /// emitConstPoolAddress - Arrange for the address of an constant pool
191 /// to be emitted to the current location in the function, and allow it to be PC
193 void Emitter::emitConstPoolAddress(unsigned CPI
, unsigned Reloc
,
194 intptr_t Disp
/* = 0 */,
195 intptr_t PCAdj
/* = 0 */) {
196 intptr_t RelocCST
= 0;
197 if (Reloc
== X86::reloc_picrel_word
)
198 RelocCST
= PICBaseOffset
;
199 else if (Reloc
== X86::reloc_pcrel_word
)
201 MCE
.addRelocation(MachineRelocation::getConstPool(MCE
.getCurrentPCOffset(),
202 Reloc
, CPI
, RelocCST
));
203 // The relocated value will be added to the displacement
204 if (Reloc
== X86::reloc_absolute_dword
)
205 MCE
.emitDWordLE(Disp
);
207 MCE
.emitWordLE((int32_t)Disp
);
210 /// emitJumpTableAddress - Arrange for the address of a jump table to
211 /// be emitted to the current location in the function, and allow it to be PC
213 void Emitter::emitJumpTableAddress(unsigned JTI
, unsigned Reloc
,
214 intptr_t PCAdj
/* = 0 */) {
215 intptr_t RelocCST
= 0;
216 if (Reloc
== X86::reloc_picrel_word
)
217 RelocCST
= PICBaseOffset
;
218 else if (Reloc
== X86::reloc_pcrel_word
)
220 MCE
.addRelocation(MachineRelocation::getJumpTable(MCE
.getCurrentPCOffset(),
221 Reloc
, JTI
, RelocCST
));
222 // The relocated value will be added to the displacement
223 if (Reloc
== X86::reloc_absolute_dword
)
229 unsigned Emitter::getX86RegNum(unsigned RegNo
) const {
230 return II
->getRegisterInfo().getX86RegNum(RegNo
);
233 inline static unsigned char ModRMByte(unsigned Mod
, unsigned RegOpcode
,
235 assert(Mod
< 4 && RegOpcode
< 8 && RM
< 8 && "ModRM Fields out of range!");
236 return RM
| (RegOpcode
<< 3) | (Mod
<< 6);
239 void Emitter::emitRegModRMByte(unsigned ModRMReg
, unsigned RegOpcodeFld
){
240 MCE
.emitByte(ModRMByte(3, RegOpcodeFld
, getX86RegNum(ModRMReg
)));
243 void Emitter::emitRegModRMByte(unsigned RegOpcodeFld
) {
244 MCE
.emitByte(ModRMByte(3, RegOpcodeFld
, 0));
247 void Emitter::emitSIBByte(unsigned SS
, unsigned Index
, unsigned Base
) {
248 // SIB byte is in the same format as the ModRMByte...
249 MCE
.emitByte(ModRMByte(SS
, Index
, Base
));
252 void Emitter::emitConstant(uint64_t Val
, unsigned Size
) {
253 // Output the constant in little endian byte order...
254 for (unsigned i
= 0; i
!= Size
; ++i
) {
255 MCE
.emitByte(Val
& 255);
260 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
261 /// sign-extended field.
262 static bool isDisp8(int Value
) {
263 return Value
== (signed char)Value
;
266 bool Emitter::gvNeedsNonLazyPtr(const GlobalValue
*GV
) {
267 // For Darwin, simulate the linktime GOT by using the same non-lazy-pointer
268 // mechanism as 32-bit mode.
269 return (!Is64BitMode
|| TM
.getSubtarget
<X86Subtarget
>().isTargetDarwin()) &&
270 TM
.getSubtarget
<X86Subtarget
>().GVRequiresExtraLoad(GV
, TM
, false);
273 void Emitter::emitDisplacementField(const MachineOperand
*RelocOp
,
274 int DispVal
, intptr_t PCAdj
) {
275 // If this is a simple integer displacement that doesn't require a relocation,
278 emitConstant(DispVal
, 4);
282 // Otherwise, this is something that requires a relocation. Emit it as such
284 if (RelocOp
->isGlobal()) {
285 // In 64-bit static small code model, we could potentially emit absolute.
286 // But it's probably not beneficial.
287 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
288 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
289 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
290 : (IsPIC
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
291 bool NeedStub
= isa
<Function
>(RelocOp
->getGlobal());
292 bool Indirect
= gvNeedsNonLazyPtr(RelocOp
->getGlobal());
293 emitGlobalAddress(RelocOp
->getGlobal(), rt
, RelocOp
->getOffset(),
294 PCAdj
, NeedStub
, Indirect
);
295 } else if (RelocOp
->isCPI()) {
296 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
: X86::reloc_picrel_word
;
297 emitConstPoolAddress(RelocOp
->getIndex(), rt
,
298 RelocOp
->getOffset(), PCAdj
);
299 } else if (RelocOp
->isJTI()) {
300 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
: X86::reloc_picrel_word
;
301 emitJumpTableAddress(RelocOp
->getIndex(), rt
, PCAdj
);
303 assert(0 && "Unknown value to relocate!");
307 void Emitter::emitMemModRMByte(const MachineInstr
&MI
,
308 unsigned Op
, unsigned RegOpcodeField
,
310 const MachineOperand
&Op3
= MI
.getOperand(Op
+3);
312 const MachineOperand
*DispForReloc
= 0;
314 // Figure out what sort of displacement we have to handle here.
315 if (Op3
.isGlobal()) {
317 } else if (Op3
.isCPI()) {
318 if (Is64BitMode
|| IsPIC
) {
321 DispVal
+= MCE
.getConstantPoolEntryAddress(Op3
.getIndex());
322 DispVal
+= Op3
.getOffset();
324 } else if (Op3
.isJTI()) {
325 if (Is64BitMode
|| IsPIC
) {
328 DispVal
+= MCE
.getJumpTableEntryAddress(Op3
.getIndex());
331 DispVal
= Op3
.getImm();
334 const MachineOperand
&Base
= MI
.getOperand(Op
);
335 const MachineOperand
&Scale
= MI
.getOperand(Op
+1);
336 const MachineOperand
&IndexReg
= MI
.getOperand(Op
+2);
338 unsigned BaseReg
= Base
.getReg();
340 // Is a SIB byte needed?
341 if ((!Is64BitMode
|| DispForReloc
) && IndexReg
.getReg() == 0 &&
342 (BaseReg
== 0 || getX86RegNum(BaseReg
) != N86::ESP
)) {
343 if (BaseReg
== 0) { // Just a displacement?
344 // Emit special case [disp32] encoding
345 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 5));
347 emitDisplacementField(DispForReloc
, DispVal
, PCAdj
);
349 unsigned BaseRegNo
= getX86RegNum(BaseReg
);
350 if (!DispForReloc
&& DispVal
== 0 && BaseRegNo
!= N86::EBP
) {
351 // Emit simple indirect register encoding... [EAX] f.e.
352 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, BaseRegNo
));
353 } else if (!DispForReloc
&& isDisp8(DispVal
)) {
354 // Emit the disp8 encoding... [REG+disp8]
355 MCE
.emitByte(ModRMByte(1, RegOpcodeField
, BaseRegNo
));
356 emitConstant(DispVal
, 1);
358 // Emit the most general non-SIB encoding: [REG+disp32]
359 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, BaseRegNo
));
360 emitDisplacementField(DispForReloc
, DispVal
, PCAdj
);
364 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
365 assert(IndexReg
.getReg() != X86::ESP
&&
366 IndexReg
.getReg() != X86::RSP
&& "Cannot use ESP as index reg!");
368 bool ForceDisp32
= false;
369 bool ForceDisp8
= false;
371 // If there is no base register, we emit the special case SIB byte with
372 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
373 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 4));
375 } else if (DispForReloc
) {
376 // Emit the normal disp32 encoding.
377 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, 4));
379 } else if (DispVal
== 0 && getX86RegNum(BaseReg
) != N86::EBP
) {
380 // Emit no displacement ModR/M byte
381 MCE
.emitByte(ModRMByte(0, RegOpcodeField
, 4));
382 } else if (isDisp8(DispVal
)) {
383 // Emit the disp8 encoding...
384 MCE
.emitByte(ModRMByte(1, RegOpcodeField
, 4));
385 ForceDisp8
= true; // Make sure to force 8 bit disp if Base=EBP
387 // Emit the normal disp32 encoding...
388 MCE
.emitByte(ModRMByte(2, RegOpcodeField
, 4));
391 // Calculate what the SS field value should be...
392 static const unsigned SSTable
[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
393 unsigned SS
= SSTable
[Scale
.getImm()];
396 // Handle the SIB byte for the case where there is no base. The
397 // displacement has already been output.
399 if (IndexReg
.getReg())
400 IndexRegNo
= getX86RegNum(IndexReg
.getReg());
402 IndexRegNo
= 4; // For example [ESP+1*<noreg>+4]
403 emitSIBByte(SS
, IndexRegNo
, 5);
405 unsigned BaseRegNo
= getX86RegNum(BaseReg
);
407 if (IndexReg
.getReg())
408 IndexRegNo
= getX86RegNum(IndexReg
.getReg());
410 IndexRegNo
= 4; // For example [ESP+1*<noreg>+4]
411 emitSIBByte(SS
, IndexRegNo
, BaseRegNo
);
414 // Do we need to output a displacement?
416 emitConstant(DispVal
, 1);
417 } else if (DispVal
!= 0 || ForceDisp32
) {
418 emitDisplacementField(DispForReloc
, DispVal
, PCAdj
);
423 void Emitter::emitInstruction(const MachineInstr
&MI
,
424 const TargetInstrDesc
*Desc
) {
427 unsigned Opcode
= Desc
->Opcode
;
429 // Emit the lock opcode prefix as needed.
430 if (Desc
->TSFlags
& X86II::LOCK
) MCE
.emitByte(0xF0);
432 // Emit segment override opcode prefix as needed.
433 switch (Desc
->TSFlags
& X86II::SegOvrMask
) {
440 default: assert(0 && "Invalid segment!");
441 case 0: break; // No segment override!
444 // Emit the repeat opcode prefix as needed.
445 if ((Desc
->TSFlags
& X86II::Op0Mask
) == X86II::REP
) MCE
.emitByte(0xF3);
447 // Emit the operand size opcode prefix as needed.
448 if (Desc
->TSFlags
& X86II::OpSize
) MCE
.emitByte(0x66);
450 // Emit the address size opcode prefix as needed.
451 if (Desc
->TSFlags
& X86II::AdSize
) MCE
.emitByte(0x67);
453 bool Need0FPrefix
= false;
454 switch (Desc
->TSFlags
& X86II::Op0Mask
) {
455 case X86II::TB
: // Two-byte opcode prefix
456 case X86II::T8
: // 0F 38
457 case X86II::TA
: // 0F 3A
460 case X86II::REP
: break; // already handled.
461 case X86II::XS
: // F3 0F
465 case X86II::XD
: // F2 0F
469 case X86II::D8
: case X86II::D9
: case X86II::DA
: case X86II::DB
:
470 case X86II::DC
: case X86II::DD
: case X86II::DE
: case X86II::DF
:
472 (((Desc
->TSFlags
& X86II::Op0Mask
)-X86II::D8
)
473 >> X86II::Op0Shift
));
474 break; // Two-byte opcode prefix
475 default: assert(0 && "Invalid prefix!");
476 case 0: break; // No prefix!
481 unsigned REX
= X86InstrInfo::determineREX(MI
);
483 MCE
.emitByte(0x40 | REX
);
486 // 0x0F escape code must be emitted just before the opcode.
490 switch (Desc
->TSFlags
& X86II::Op0Mask
) {
491 case X86II::T8
: // 0F 38
494 case X86II::TA
: // 0F 3A
499 // If this is a two-address instruction, skip one of the register operands.
500 unsigned NumOps
= Desc
->getNumOperands();
502 if (NumOps
> 1 && Desc
->getOperandConstraint(1, TOI::TIED_TO
) != -1)
504 else if (NumOps
> 2 && Desc
->getOperandConstraint(NumOps
-1, TOI::TIED_TO
)== 0)
505 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
508 unsigned char BaseOpcode
= II
->getBaseOpcodeFor(Desc
);
509 switch (Desc
->TSFlags
& X86II::FormMask
) {
510 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
512 // Remember the current PC offset, this is the PIC relocation
516 assert(0 && "psuedo instructions should be removed before code emission");
518 case TargetInstrInfo::INLINEASM
: {
519 // We allow inline assembler nodes with empty bodies - they can
520 // implicitly define registers, which is ok for JIT.
521 if (MI
.getOperand(0).getSymbolName()[0]) {
522 assert(0 && "JIT does not support inline asm!\n");
527 case TargetInstrInfo::DBG_LABEL
:
528 case TargetInstrInfo::EH_LABEL
:
529 MCE
.emitLabel(MI
.getOperand(0).getImm());
531 case TargetInstrInfo::IMPLICIT_DEF
:
532 case TargetInstrInfo::DECLARE
:
534 case X86::FP_REG_KILL
:
536 case X86::MOVPC32r
: {
537 // This emits the "call" portion of this pseudo instruction.
538 MCE
.emitByte(BaseOpcode
);
539 emitConstant(0, X86InstrInfo::sizeOfImm(Desc
));
540 // Remember PIC base.
541 PICBaseOffset
= (intptr_t) MCE
.getCurrentPCOffset();
542 X86JITInfo
*JTI
= TM
.getJITInfo();
543 JTI
->setPICBase(MCE
.getCurrentPCValue());
550 MCE
.emitByte(BaseOpcode
);
552 if (CurOp
!= NumOps
) {
553 const MachineOperand
&MO
= MI
.getOperand(CurOp
++);
555 DOUT
<< "RawFrm CurOp " << CurOp
<< "\n";
556 DOUT
<< "isMBB " << MO
.isMBB() << "\n";
557 DOUT
<< "isGlobal " << MO
.isGlobal() << "\n";
558 DOUT
<< "isSymbol " << MO
.isSymbol() << "\n";
559 DOUT
<< "isImm " << MO
.isImm() << "\n";
562 emitPCRelativeBlockAddress(MO
.getMBB());
563 } else if (MO
.isGlobal()) {
564 // Assume undefined functions may be outside the Small codespace.
567 (TM
.getCodeModel() == CodeModel::Large
||
568 TM
.getSubtarget
<X86Subtarget
>().isTargetDarwin())) ||
569 Opcode
== X86::TAILJMPd
;
570 emitGlobalAddress(MO
.getGlobal(), X86::reloc_pcrel_word
,
571 MO
.getOffset(), 0, NeedStub
);
572 } else if (MO
.isSymbol()) {
573 emitExternalSymbolAddress(MO
.getSymbolName(), X86::reloc_pcrel_word
);
574 } else if (MO
.isImm()) {
575 if (Opcode
== X86::CALLpcrel32
|| Opcode
== X86::CALL64pcrel32
) {
576 // Fix up immediate operand for pc relative calls.
577 intptr_t Imm
= (intptr_t)MO
.getImm();
578 Imm
= Imm
- MCE
.getCurrentPCValue() - 4;
579 emitConstant(Imm
, X86InstrInfo::sizeOfImm(Desc
));
581 emitConstant(MO
.getImm(), X86InstrInfo::sizeOfImm(Desc
));
583 assert(0 && "Unknown RawFrm operand!");
588 case X86II::AddRegFrm
:
589 MCE
.emitByte(BaseOpcode
+ getX86RegNum(MI
.getOperand(CurOp
++).getReg()));
591 if (CurOp
!= NumOps
) {
592 const MachineOperand
&MO1
= MI
.getOperand(CurOp
++);
593 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
595 emitConstant(MO1
.getImm(), Size
);
597 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
598 : (IsPIC
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
599 // This should not occur on Darwin for relocatable objects.
600 if (Opcode
== X86::MOV64ri
)
601 rt
= X86::reloc_absolute_dword
; // FIXME: add X86II flag?
602 if (MO1
.isGlobal()) {
603 bool NeedStub
= isa
<Function
>(MO1
.getGlobal());
604 bool Indirect
= gvNeedsNonLazyPtr(MO1
.getGlobal());
605 emitGlobalAddress(MO1
.getGlobal(), rt
, MO1
.getOffset(), 0,
607 } else if (MO1
.isSymbol())
608 emitExternalSymbolAddress(MO1
.getSymbolName(), rt
);
609 else if (MO1
.isCPI())
610 emitConstPoolAddress(MO1
.getIndex(), rt
);
611 else if (MO1
.isJTI())
612 emitJumpTableAddress(MO1
.getIndex(), rt
);
617 case X86II::MRMDestReg
: {
618 MCE
.emitByte(BaseOpcode
);
619 emitRegModRMByte(MI
.getOperand(CurOp
).getReg(),
620 getX86RegNum(MI
.getOperand(CurOp
+1).getReg()));
623 emitConstant(MI
.getOperand(CurOp
++).getImm(), X86InstrInfo::sizeOfImm(Desc
));
626 case X86II::MRMDestMem
: {
627 MCE
.emitByte(BaseOpcode
);
628 emitMemModRMByte(MI
, CurOp
,
629 getX86RegNum(MI
.getOperand(CurOp
+ X86AddrNumOperands
)
631 CurOp
+= X86AddrNumOperands
+ 1;
633 emitConstant(MI
.getOperand(CurOp
++).getImm(), X86InstrInfo::sizeOfImm(Desc
));
637 case X86II::MRMSrcReg
:
638 MCE
.emitByte(BaseOpcode
);
639 emitRegModRMByte(MI
.getOperand(CurOp
+1).getReg(),
640 getX86RegNum(MI
.getOperand(CurOp
).getReg()));
643 emitConstant(MI
.getOperand(CurOp
++).getImm(), X86InstrInfo::sizeOfImm(Desc
));
646 case X86II::MRMSrcMem
: {
647 // FIXME: Maybe lea should have its own form?
649 if (Opcode
== X86::LEA64r
|| Opcode
== X86::LEA64_32r
||
650 Opcode
== X86::LEA16r
|| Opcode
== X86::LEA32r
)
651 AddrOperands
= X86AddrNumOperands
- 1; // No segment register
653 AddrOperands
= X86AddrNumOperands
;
655 intptr_t PCAdj
= (CurOp
+ AddrOperands
+ 1 != NumOps
) ?
656 X86InstrInfo::sizeOfImm(Desc
) : 0;
658 MCE
.emitByte(BaseOpcode
);
659 emitMemModRMByte(MI
, CurOp
+1, getX86RegNum(MI
.getOperand(CurOp
).getReg()),
661 CurOp
+= AddrOperands
+ 1;
663 emitConstant(MI
.getOperand(CurOp
++).getImm(), X86InstrInfo::sizeOfImm(Desc
));
667 case X86II::MRM0r
: case X86II::MRM1r
:
668 case X86II::MRM2r
: case X86II::MRM3r
:
669 case X86II::MRM4r
: case X86II::MRM5r
:
670 case X86II::MRM6r
: case X86II::MRM7r
: {
671 MCE
.emitByte(BaseOpcode
);
673 // Special handling of lfence and mfence.
674 if (Desc
->getOpcode() == X86::LFENCE
||
675 Desc
->getOpcode() == X86::MFENCE
)
676 emitRegModRMByte((Desc
->TSFlags
& X86II::FormMask
)-X86II::MRM0r
);
678 emitRegModRMByte(MI
.getOperand(CurOp
++).getReg(),
679 (Desc
->TSFlags
& X86II::FormMask
)-X86II::MRM0r
);
681 if (CurOp
!= NumOps
) {
682 const MachineOperand
&MO1
= MI
.getOperand(CurOp
++);
683 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
685 emitConstant(MO1
.getImm(), Size
);
687 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
688 : (IsPIC
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
689 if (Opcode
== X86::MOV64ri32
)
690 rt
= X86::reloc_absolute_word
; // FIXME: add X86II flag?
691 if (MO1
.isGlobal()) {
692 bool NeedStub
= isa
<Function
>(MO1
.getGlobal());
693 bool Indirect
= gvNeedsNonLazyPtr(MO1
.getGlobal());
694 emitGlobalAddress(MO1
.getGlobal(), rt
, MO1
.getOffset(), 0,
696 } else if (MO1
.isSymbol())
697 emitExternalSymbolAddress(MO1
.getSymbolName(), rt
);
698 else if (MO1
.isCPI())
699 emitConstPoolAddress(MO1
.getIndex(), rt
);
700 else if (MO1
.isJTI())
701 emitJumpTableAddress(MO1
.getIndex(), rt
);
707 case X86II::MRM0m
: case X86II::MRM1m
:
708 case X86II::MRM2m
: case X86II::MRM3m
:
709 case X86II::MRM4m
: case X86II::MRM5m
:
710 case X86II::MRM6m
: case X86II::MRM7m
: {
711 intptr_t PCAdj
= (CurOp
+ X86AddrNumOperands
!= NumOps
) ?
712 (MI
.getOperand(CurOp
+4).isImm() ? X86InstrInfo::sizeOfImm(Desc
) : 4) : 0;
714 MCE
.emitByte(BaseOpcode
);
715 emitMemModRMByte(MI
, CurOp
, (Desc
->TSFlags
& X86II::FormMask
)-X86II::MRM0m
,
717 CurOp
+= X86AddrNumOperands
;
719 if (CurOp
!= NumOps
) {
720 const MachineOperand
&MO
= MI
.getOperand(CurOp
++);
721 unsigned Size
= X86InstrInfo::sizeOfImm(Desc
);
723 emitConstant(MO
.getImm(), Size
);
725 unsigned rt
= Is64BitMode
? X86::reloc_pcrel_word
726 : (IsPIC
? X86::reloc_picrel_word
: X86::reloc_absolute_word
);
727 if (Opcode
== X86::MOV64mi32
)
728 rt
= X86::reloc_absolute_word
; // FIXME: add X86II flag?
730 bool NeedStub
= isa
<Function
>(MO
.getGlobal());
731 bool Indirect
= gvNeedsNonLazyPtr(MO
.getGlobal());
732 emitGlobalAddress(MO
.getGlobal(), rt
, MO
.getOffset(), 0,
734 } else if (MO
.isSymbol())
735 emitExternalSymbolAddress(MO
.getSymbolName(), rt
);
737 emitConstPoolAddress(MO
.getIndex(), rt
);
739 emitJumpTableAddress(MO
.getIndex(), rt
);
745 case X86II::MRMInitReg
:
746 MCE
.emitByte(BaseOpcode
);
747 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
748 emitRegModRMByte(MI
.getOperand(CurOp
).getReg(),
749 getX86RegNum(MI
.getOperand(CurOp
).getReg()));
754 if (!Desc
->isVariadic() && CurOp
!= NumOps
) {
755 cerr
<< "Cannot encode: ";