1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the X86 specific subclass of TargetMachine.
12 //===----------------------------------------------------------------------===//
14 #include "X86TargetAsmInfo.h"
15 #include "X86TargetMachine.h"
17 #include "llvm/Module.h"
18 #include "llvm/PassManager.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetOptions.h"
23 #include "llvm/Target/TargetMachineRegistry.h"
26 /// X86TargetMachineModule - Note that this is used on hosts that cannot link
27 /// in a library unless there are references into the library. In particular,
28 /// it seems that it is not possible to get things to work on Win32 without
29 /// this. Though it is unused, do not remove it.
30 extern "C" int X86TargetMachineModule
;
31 int X86TargetMachineModule
= 0;
33 // Register the target.
34 static RegisterTarget
<X86_32TargetMachine
>
35 X("x86", "32-bit X86: Pentium-Pro and above");
36 static RegisterTarget
<X86_64TargetMachine
>
37 Y("x86-64", "64-bit X86: EM64T and AMD64");
39 // No assembler printer by default
40 X86TargetMachine::AsmPrinterCtorFn
X86TargetMachine::AsmPrinterCtor
= 0;
42 const TargetAsmInfo
*X86TargetMachine::createTargetAsmInfo() const {
43 if (Subtarget
.isFlavorIntel())
44 return new X86WinTargetAsmInfo(*this);
46 switch (Subtarget
.TargetType
) {
47 case X86Subtarget::isDarwin
:
48 return new X86DarwinTargetAsmInfo(*this);
49 case X86Subtarget::isELF
:
50 return new X86ELFTargetAsmInfo(*this);
51 case X86Subtarget::isMingw
:
52 case X86Subtarget::isCygwin
:
53 return new X86COFFTargetAsmInfo(*this);
54 case X86Subtarget::isWindows
:
55 return new X86WinTargetAsmInfo(*this);
57 return new X86GenericTargetAsmInfo(*this);
61 unsigned X86_32TargetMachine::getJITMatchQuality() {
62 #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
68 unsigned X86_64TargetMachine::getJITMatchQuality() {
69 #if defined(__x86_64__) || defined(_M_AMD64)
75 unsigned X86_32TargetMachine::getModuleMatchQuality(const Module
&M
) {
76 // We strongly match "i[3-9]86-*".
77 std::string TT
= M
.getTargetTriple();
78 if (TT
.size() >= 5 && TT
[0] == 'i' && TT
[2] == '8' && TT
[3] == '6' &&
79 TT
[4] == '-' && TT
[1] - '3' < 6)
81 // If the target triple is something non-X86, we don't match.
82 if (!TT
.empty()) return 0;
84 if (M
.getEndianness() == Module::LittleEndian
&&
85 M
.getPointerSize() == Module::Pointer32
)
86 return 10; // Weak match
87 else if (M
.getEndianness() != Module::AnyEndianness
||
88 M
.getPointerSize() != Module::AnyPointerSize
)
89 return 0; // Match for some other target
91 return getJITMatchQuality()/2;
94 unsigned X86_64TargetMachine::getModuleMatchQuality(const Module
&M
) {
95 // We strongly match "x86_64-*".
96 std::string TT
= M
.getTargetTriple();
97 if (TT
.size() >= 7 && TT
[0] == 'x' && TT
[1] == '8' && TT
[2] == '6' &&
98 TT
[3] == '_' && TT
[4] == '6' && TT
[5] == '4' && TT
[6] == '-')
101 // We strongly match "amd64-*".
102 if (TT
.size() >= 6 && TT
[0] == 'a' && TT
[1] == 'm' && TT
[2] == 'd' &&
103 TT
[3] == '6' && TT
[4] == '4' && TT
[5] == '-')
106 // If the target triple is something non-X86-64, we don't match.
107 if (!TT
.empty()) return 0;
109 if (M
.getEndianness() == Module::LittleEndian
&&
110 M
.getPointerSize() == Module::Pointer64
)
111 return 10; // Weak match
112 else if (M
.getEndianness() != Module::AnyEndianness
||
113 M
.getPointerSize() != Module::AnyPointerSize
)
114 return 0; // Match for some other target
116 return getJITMatchQuality()/2;
119 X86_32TargetMachine::X86_32TargetMachine(const Module
&M
, const std::string
&FS
)
120 : X86TargetMachine(M
, FS
, false) {
124 X86_64TargetMachine::X86_64TargetMachine(const Module
&M
, const std::string
&FS
)
125 : X86TargetMachine(M
, FS
, true) {
128 /// X86TargetMachine ctor - Create an ILP32 architecture model
130 X86TargetMachine::X86TargetMachine(const Module
&M
, const std::string
&FS
,
132 : Subtarget(M
, FS
, is64Bit
),
133 DataLayout(Subtarget
.getDataLayout()),
134 FrameInfo(TargetFrameInfo::StackGrowsDown
,
135 Subtarget
.getStackAlignment(), Subtarget
.is64Bit() ? -8 : -4),
136 InstrInfo(*this), JITInfo(*this), TLInfo(*this) {
137 DefRelocModel
= getRelocationModel();
138 // FIXME: Correctly select PIC model for Win64 stuff
139 if (getRelocationModel() == Reloc::Default
) {
140 if (Subtarget
.isTargetDarwin() ||
141 (Subtarget
.isTargetCygMing() && !Subtarget
.isTargetWin64()))
142 setRelocationModel(Reloc::DynamicNoPIC
);
144 setRelocationModel(Reloc::Static
);
147 // ELF doesn't have a distinct dynamic-no-PIC model. Dynamic-no-PIC
148 // is defined as a model for code which may be used in static or
149 // dynamic executables but not necessarily a shared library. On ELF
150 // implement this by using the Static model.
151 if (Subtarget
.isTargetELF() &&
152 getRelocationModel() == Reloc::DynamicNoPIC
)
153 setRelocationModel(Reloc::Static
);
155 if (Subtarget
.is64Bit()) {
156 // No DynamicNoPIC support under X86-64.
157 if (getRelocationModel() == Reloc::DynamicNoPIC
)
158 setRelocationModel(Reloc::PIC_
);
159 // Default X86-64 code model is small.
160 if (getCodeModel() == CodeModel::Default
)
161 setCodeModel(CodeModel::Small
);
164 if (Subtarget
.isTargetCygMing())
165 Subtarget
.setPICStyle(PICStyles::WinPIC
);
166 else if (Subtarget
.isTargetDarwin()) {
167 if (Subtarget
.is64Bit())
168 Subtarget
.setPICStyle(PICStyles::RIPRel
);
170 Subtarget
.setPICStyle(PICStyles::Stub
);
171 } else if (Subtarget
.isTargetELF()) {
172 if (Subtarget
.is64Bit())
173 Subtarget
.setPICStyle(PICStyles::RIPRel
);
175 Subtarget
.setPICStyle(PICStyles::GOT
);
179 //===----------------------------------------------------------------------===//
180 // Pass Pipeline Configuration
181 //===----------------------------------------------------------------------===//
183 bool X86TargetMachine::addInstSelector(PassManagerBase
&PM
,
184 CodeGenOpt::Level OptLevel
) {
185 // Install an instruction selector.
186 PM
.add(createX86ISelDag(*this, OptLevel
));
188 // If we're using Fast-ISel, clean up the mess.
190 PM
.add(createDeadMachineInstructionElimPass());
192 // Install a pass to insert x87 FP_REG_KILL instructions, as needed.
193 PM
.add(createX87FPRegKillInserterPass());
198 bool X86TargetMachine::addPreRegAlloc(PassManagerBase
&PM
,
199 CodeGenOpt::Level OptLevel
) {
200 // Calculate and set max stack object alignment early, so we can decide
201 // whether we will need stack realignment (and thus FP).
202 PM
.add(createX86MaxStackAlignmentCalculatorPass());
203 return false; // -print-machineinstr shouldn't print after this.
206 bool X86TargetMachine::addPostRegAlloc(PassManagerBase
&PM
,
207 CodeGenOpt::Level OptLevel
) {
208 PM
.add(createX86FloatingPointStackifierPass());
209 return true; // -print-machineinstr should print after this.
212 bool X86TargetMachine::addAssemblyEmitter(PassManagerBase
&PM
,
213 CodeGenOpt::Level OptLevel
,
216 assert(AsmPrinterCtor
&& "AsmPrinter was not linked in");
218 PM
.add(AsmPrinterCtor(Out
, *this, OptLevel
, Verbose
));
222 bool X86TargetMachine::addCodeEmitter(PassManagerBase
&PM
,
223 CodeGenOpt::Level OptLevel
,
224 bool DumpAsm
, MachineCodeEmitter
&MCE
) {
225 // FIXME: Move this to TargetJITInfo!
226 // On Darwin, do not override 64-bit setting made in X86TargetMachine().
227 if (DefRelocModel
== Reloc::Default
&&
228 (!Subtarget
.isTargetDarwin() || !Subtarget
.is64Bit()))
229 setRelocationModel(Reloc::Static
);
231 // 64-bit JIT places everything in the same buffer except external functions.
232 // On Darwin, use small code model but hack the call instruction for
233 // externals. Elsewhere, do not assume globals are in the lower 4G.
234 if (Subtarget
.is64Bit()) {
235 if (Subtarget
.isTargetDarwin())
236 setCodeModel(CodeModel::Small
);
238 setCodeModel(CodeModel::Large
);
241 PM
.add(createX86CodeEmitterPass(*this, MCE
));
243 assert(AsmPrinterCtor
&& "AsmPrinter was not linked in");
245 PM
.add(AsmPrinterCtor(errs(), *this, OptLevel
, true));
251 bool X86TargetMachine::addSimpleCodeEmitter(PassManagerBase
&PM
,
252 CodeGenOpt::Level OptLevel
,
254 MachineCodeEmitter
&MCE
) {
255 PM
.add(createX86CodeEmitterPass(*this, MCE
));
257 assert(AsmPrinterCtor
&& "AsmPrinter was not linked in");
259 PM
.add(AsmPrinterCtor(errs(), *this, OptLevel
, true));
265 /// symbolicAddressesAreRIPRel - Return true if symbolic addresses are
266 /// RIP-relative on this machine, taking into consideration the relocation
267 /// model and subtarget. RIP-relative addresses cannot have a separate
268 /// base or index register.
269 bool X86TargetMachine::symbolicAddressesAreRIPRel() const {
270 return getRelocationModel() != Reloc::Static
&&
271 Subtarget
.isPICStyleRIPRel();