Hanle i8 returns
[llvm/msp430.git] / lib / Target / X86 / X86TargetMachine.cpp
blob761d098b5eb26c1889acaba26a2f46f34c2a23e9
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the X86 specific subclass of TargetMachine.
12 //===----------------------------------------------------------------------===//
14 #include "X86TargetAsmInfo.h"
15 #include "X86TargetMachine.h"
16 #include "X86.h"
17 #include "llvm/Module.h"
18 #include "llvm/PassManager.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetOptions.h"
23 #include "llvm/Target/TargetMachineRegistry.h"
24 using namespace llvm;
26 /// X86TargetMachineModule - Note that this is used on hosts that cannot link
27 /// in a library unless there are references into the library. In particular,
28 /// it seems that it is not possible to get things to work on Win32 without
29 /// this. Though it is unused, do not remove it.
30 extern "C" int X86TargetMachineModule;
31 int X86TargetMachineModule = 0;
33 // Register the target.
34 static RegisterTarget<X86_32TargetMachine>
35 X("x86", "32-bit X86: Pentium-Pro and above");
36 static RegisterTarget<X86_64TargetMachine>
37 Y("x86-64", "64-bit X86: EM64T and AMD64");
39 // No assembler printer by default
40 X86TargetMachine::AsmPrinterCtorFn X86TargetMachine::AsmPrinterCtor = 0;
42 const TargetAsmInfo *X86TargetMachine::createTargetAsmInfo() const {
43 if (Subtarget.isFlavorIntel())
44 return new X86WinTargetAsmInfo(*this);
45 else
46 switch (Subtarget.TargetType) {
47 case X86Subtarget::isDarwin:
48 return new X86DarwinTargetAsmInfo(*this);
49 case X86Subtarget::isELF:
50 return new X86ELFTargetAsmInfo(*this);
51 case X86Subtarget::isMingw:
52 case X86Subtarget::isCygwin:
53 return new X86COFFTargetAsmInfo(*this);
54 case X86Subtarget::isWindows:
55 return new X86WinTargetAsmInfo(*this);
56 default:
57 return new X86GenericTargetAsmInfo(*this);
61 unsigned X86_32TargetMachine::getJITMatchQuality() {
62 #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
63 return 10;
64 #endif
65 return 0;
68 unsigned X86_64TargetMachine::getJITMatchQuality() {
69 #if defined(__x86_64__) || defined(_M_AMD64)
70 return 10;
71 #endif
72 return 0;
75 unsigned X86_32TargetMachine::getModuleMatchQuality(const Module &M) {
76 // We strongly match "i[3-9]86-*".
77 std::string TT = M.getTargetTriple();
78 if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
79 TT[4] == '-' && TT[1] - '3' < 6)
80 return 20;
81 // If the target triple is something non-X86, we don't match.
82 if (!TT.empty()) return 0;
84 if (M.getEndianness() == Module::LittleEndian &&
85 M.getPointerSize() == Module::Pointer32)
86 return 10; // Weak match
87 else if (M.getEndianness() != Module::AnyEndianness ||
88 M.getPointerSize() != Module::AnyPointerSize)
89 return 0; // Match for some other target
91 return getJITMatchQuality()/2;
94 unsigned X86_64TargetMachine::getModuleMatchQuality(const Module &M) {
95 // We strongly match "x86_64-*".
96 std::string TT = M.getTargetTriple();
97 if (TT.size() >= 7 && TT[0] == 'x' && TT[1] == '8' && TT[2] == '6' &&
98 TT[3] == '_' && TT[4] == '6' && TT[5] == '4' && TT[6] == '-')
99 return 20;
101 // We strongly match "amd64-*".
102 if (TT.size() >= 6 && TT[0] == 'a' && TT[1] == 'm' && TT[2] == 'd' &&
103 TT[3] == '6' && TT[4] == '4' && TT[5] == '-')
104 return 20;
106 // If the target triple is something non-X86-64, we don't match.
107 if (!TT.empty()) return 0;
109 if (M.getEndianness() == Module::LittleEndian &&
110 M.getPointerSize() == Module::Pointer64)
111 return 10; // Weak match
112 else if (M.getEndianness() != Module::AnyEndianness ||
113 M.getPointerSize() != Module::AnyPointerSize)
114 return 0; // Match for some other target
116 return getJITMatchQuality()/2;
119 X86_32TargetMachine::X86_32TargetMachine(const Module &M, const std::string &FS)
120 : X86TargetMachine(M, FS, false) {
124 X86_64TargetMachine::X86_64TargetMachine(const Module &M, const std::string &FS)
125 : X86TargetMachine(M, FS, true) {
128 /// X86TargetMachine ctor - Create an ILP32 architecture model
130 X86TargetMachine::X86TargetMachine(const Module &M, const std::string &FS,
131 bool is64Bit)
132 : Subtarget(M, FS, is64Bit),
133 DataLayout(Subtarget.getDataLayout()),
134 FrameInfo(TargetFrameInfo::StackGrowsDown,
135 Subtarget.getStackAlignment(), Subtarget.is64Bit() ? -8 : -4),
136 InstrInfo(*this), JITInfo(*this), TLInfo(*this) {
137 DefRelocModel = getRelocationModel();
138 // FIXME: Correctly select PIC model for Win64 stuff
139 if (getRelocationModel() == Reloc::Default) {
140 if (Subtarget.isTargetDarwin() ||
141 (Subtarget.isTargetCygMing() && !Subtarget.isTargetWin64()))
142 setRelocationModel(Reloc::DynamicNoPIC);
143 else
144 setRelocationModel(Reloc::Static);
147 // ELF doesn't have a distinct dynamic-no-PIC model. Dynamic-no-PIC
148 // is defined as a model for code which may be used in static or
149 // dynamic executables but not necessarily a shared library. On ELF
150 // implement this by using the Static model.
151 if (Subtarget.isTargetELF() &&
152 getRelocationModel() == Reloc::DynamicNoPIC)
153 setRelocationModel(Reloc::Static);
155 if (Subtarget.is64Bit()) {
156 // No DynamicNoPIC support under X86-64.
157 if (getRelocationModel() == Reloc::DynamicNoPIC)
158 setRelocationModel(Reloc::PIC_);
159 // Default X86-64 code model is small.
160 if (getCodeModel() == CodeModel::Default)
161 setCodeModel(CodeModel::Small);
164 if (Subtarget.isTargetCygMing())
165 Subtarget.setPICStyle(PICStyles::WinPIC);
166 else if (Subtarget.isTargetDarwin()) {
167 if (Subtarget.is64Bit())
168 Subtarget.setPICStyle(PICStyles::RIPRel);
169 else
170 Subtarget.setPICStyle(PICStyles::Stub);
171 } else if (Subtarget.isTargetELF()) {
172 if (Subtarget.is64Bit())
173 Subtarget.setPICStyle(PICStyles::RIPRel);
174 else
175 Subtarget.setPICStyle(PICStyles::GOT);
179 //===----------------------------------------------------------------------===//
180 // Pass Pipeline Configuration
181 //===----------------------------------------------------------------------===//
183 bool X86TargetMachine::addInstSelector(PassManagerBase &PM,
184 CodeGenOpt::Level OptLevel) {
185 // Install an instruction selector.
186 PM.add(createX86ISelDag(*this, OptLevel));
188 // If we're using Fast-ISel, clean up the mess.
189 if (EnableFastISel)
190 PM.add(createDeadMachineInstructionElimPass());
192 // Install a pass to insert x87 FP_REG_KILL instructions, as needed.
193 PM.add(createX87FPRegKillInserterPass());
195 return false;
198 bool X86TargetMachine::addPreRegAlloc(PassManagerBase &PM,
199 CodeGenOpt::Level OptLevel) {
200 // Calculate and set max stack object alignment early, so we can decide
201 // whether we will need stack realignment (and thus FP).
202 PM.add(createX86MaxStackAlignmentCalculatorPass());
203 return false; // -print-machineinstr shouldn't print after this.
206 bool X86TargetMachine::addPostRegAlloc(PassManagerBase &PM,
207 CodeGenOpt::Level OptLevel) {
208 PM.add(createX86FloatingPointStackifierPass());
209 return true; // -print-machineinstr should print after this.
212 bool X86TargetMachine::addAssemblyEmitter(PassManagerBase &PM,
213 CodeGenOpt::Level OptLevel,
214 bool Verbose,
215 raw_ostream &Out) {
216 assert(AsmPrinterCtor && "AsmPrinter was not linked in");
217 if (AsmPrinterCtor)
218 PM.add(AsmPrinterCtor(Out, *this, OptLevel, Verbose));
219 return false;
222 bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
223 CodeGenOpt::Level OptLevel,
224 bool DumpAsm, MachineCodeEmitter &MCE) {
225 // FIXME: Move this to TargetJITInfo!
226 // On Darwin, do not override 64-bit setting made in X86TargetMachine().
227 if (DefRelocModel == Reloc::Default &&
228 (!Subtarget.isTargetDarwin() || !Subtarget.is64Bit()))
229 setRelocationModel(Reloc::Static);
231 // 64-bit JIT places everything in the same buffer except external functions.
232 // On Darwin, use small code model but hack the call instruction for
233 // externals. Elsewhere, do not assume globals are in the lower 4G.
234 if (Subtarget.is64Bit()) {
235 if (Subtarget.isTargetDarwin())
236 setCodeModel(CodeModel::Small);
237 else
238 setCodeModel(CodeModel::Large);
241 PM.add(createX86CodeEmitterPass(*this, MCE));
242 if (DumpAsm) {
243 assert(AsmPrinterCtor && "AsmPrinter was not linked in");
244 if (AsmPrinterCtor)
245 PM.add(AsmPrinterCtor(errs(), *this, OptLevel, true));
248 return false;
251 bool X86TargetMachine::addSimpleCodeEmitter(PassManagerBase &PM,
252 CodeGenOpt::Level OptLevel,
253 bool DumpAsm,
254 MachineCodeEmitter &MCE) {
255 PM.add(createX86CodeEmitterPass(*this, MCE));
256 if (DumpAsm) {
257 assert(AsmPrinterCtor && "AsmPrinter was not linked in");
258 if (AsmPrinterCtor)
259 PM.add(AsmPrinterCtor(errs(), *this, OptLevel, true));
262 return false;
265 /// symbolicAddressesAreRIPRel - Return true if symbolic addresses are
266 /// RIP-relative on this machine, taking into consideration the relocation
267 /// model and subtarget. RIP-relative addresses cannot have a separate
268 /// base or index register.
269 bool X86TargetMachine::symbolicAddressesAreRIPRel() const {
270 return getRelocationModel() != Reloc::Static &&
271 Subtarget.isPICStyleRIPRel();