1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * All other things that are tested by asserts spread about the code...
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Analysis/Verifier.h"
43 #include "llvm/CallingConv.h"
44 #include "llvm/Constants.h"
45 #include "llvm/DerivedTypes.h"
46 #include "llvm/InlineAsm.h"
47 #include "llvm/IntrinsicInst.h"
48 #include "llvm/Module.h"
49 #include "llvm/ModuleProvider.h"
50 #include "llvm/Pass.h"
51 #include "llvm/PassManager.h"
52 #include "llvm/Analysis/Dominators.h"
53 #include "llvm/Assembly/Writer.h"
54 #include "llvm/CodeGen/ValueTypes.h"
55 #include "llvm/Support/CallSite.h"
56 #include "llvm/Support/CFG.h"
57 #include "llvm/Support/InstVisitor.h"
58 #include "llvm/Support/Streams.h"
59 #include "llvm/ADT/SmallPtrSet.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/ADT/StringExtras.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/raw_ostream.h"
70 namespace { // Anonymous namespace for class
71 struct VISIBILITY_HIDDEN PreVerifier
: public FunctionPass
{
72 static char ID
; // Pass ID, replacement for typeid
74 PreVerifier() : FunctionPass(&ID
) { }
76 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
80 // Check that the prerequisites for successful DominatorTree construction
82 bool runOnFunction(Function
&F
) {
85 for (Function::iterator I
= F
.begin(), E
= F
.end(); I
!= E
; ++I
) {
86 if (I
->empty() || !I
->back().isTerminator()) {
87 cerr
<< "Basic Block does not have terminator!\n";
88 WriteAsOperand(*cerr
, I
, true);
102 char PreVerifier::ID
= 0;
103 static RegisterPass
<PreVerifier
>
104 PreVer("preverify", "Preliminary module verification");
105 static const PassInfo
*const PreVerifyID
= &PreVer
;
108 struct VISIBILITY_HIDDEN
109 Verifier
: public FunctionPass
, InstVisitor
<Verifier
> {
110 static char ID
; // Pass ID, replacement for typeid
111 bool Broken
; // Is this module found to be broken?
112 bool RealPass
; // Are we not being run by a PassManager?
113 VerifierFailureAction action
;
114 // What to do if verification fails.
115 Module
*Mod
; // Module we are verifying right now
116 DominatorTree
*DT
; // Dominator Tree, caution can be null!
117 std::stringstream msgs
; // A stringstream to collect messages
119 /// InstInThisBlock - when verifying a basic block, keep track of all of the
120 /// instructions we have seen so far. This allows us to do efficient
121 /// dominance checks for the case when an instruction has an operand that is
122 /// an instruction in the same block.
123 SmallPtrSet
<Instruction
*, 16> InstsInThisBlock
;
127 Broken(false), RealPass(true), action(AbortProcessAction
),
128 DT(0), msgs( std::ios::app
| std::ios::out
) {}
129 explicit Verifier(VerifierFailureAction ctn
)
131 Broken(false), RealPass(true), action(ctn
), DT(0),
132 msgs( std::ios::app
| std::ios::out
) {}
133 explicit Verifier(bool AB
)
135 Broken(false), RealPass(true),
136 action( AB
? AbortProcessAction
: PrintMessageAction
), DT(0),
137 msgs( std::ios::app
| std::ios::out
) {}
138 explicit Verifier(DominatorTree
&dt
)
140 Broken(false), RealPass(false), action(PrintMessageAction
),
141 DT(&dt
), msgs( std::ios::app
| std::ios::out
) {}
144 bool doInitialization(Module
&M
) {
146 verifyTypeSymbolTable(M
.getTypeSymbolTable());
148 // If this is a real pass, in a pass manager, we must abort before
149 // returning back to the pass manager, or else the pass manager may try to
150 // run other passes on the broken module.
152 return abortIfBroken();
156 bool runOnFunction(Function
&F
) {
157 // Get dominator information if we are being run by PassManager
158 if (RealPass
) DT
= &getAnalysis
<DominatorTree
>();
163 InstsInThisBlock
.clear();
165 // If this is a real pass, in a pass manager, we must abort before
166 // returning back to the pass manager, or else the pass manager may try to
167 // run other passes on the broken module.
169 return abortIfBroken();
174 bool doFinalization(Module
&M
) {
175 // Scan through, checking all of the external function's linkage now...
176 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ++I
) {
177 visitGlobalValue(*I
);
179 // Check to make sure function prototypes are okay.
180 if (I
->isDeclaration()) visitFunction(*I
);
183 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
185 visitGlobalVariable(*I
);
187 for (Module::alias_iterator I
= M
.alias_begin(), E
= M
.alias_end();
189 visitGlobalAlias(*I
);
191 // If the module is broken, abort at this time.
192 return abortIfBroken();
195 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
196 AU
.setPreservesAll();
197 AU
.addRequiredID(PreVerifyID
);
199 AU
.addRequired
<DominatorTree
>();
202 /// abortIfBroken - If the module is broken and we are supposed to abort on
203 /// this condition, do so.
205 bool abortIfBroken() {
206 if (!Broken
) return false;
207 msgs
<< "Broken module found, ";
209 default: assert(0 && "Unknown action");
210 case AbortProcessAction
:
211 msgs
<< "compilation aborted!\n";
214 case PrintMessageAction
:
215 msgs
<< "verification continues.\n";
218 case ReturnStatusAction
:
219 msgs
<< "compilation terminated.\n";
225 // Verification methods...
226 void verifyTypeSymbolTable(TypeSymbolTable
&ST
);
227 void visitGlobalValue(GlobalValue
&GV
);
228 void visitGlobalVariable(GlobalVariable
&GV
);
229 void visitGlobalAlias(GlobalAlias
&GA
);
230 void visitFunction(Function
&F
);
231 void visitBasicBlock(BasicBlock
&BB
);
232 using InstVisitor
<Verifier
>::visit
;
234 void visit(Instruction
&I
);
236 void visitTruncInst(TruncInst
&I
);
237 void visitZExtInst(ZExtInst
&I
);
238 void visitSExtInst(SExtInst
&I
);
239 void visitFPTruncInst(FPTruncInst
&I
);
240 void visitFPExtInst(FPExtInst
&I
);
241 void visitFPToUIInst(FPToUIInst
&I
);
242 void visitFPToSIInst(FPToSIInst
&I
);
243 void visitUIToFPInst(UIToFPInst
&I
);
244 void visitSIToFPInst(SIToFPInst
&I
);
245 void visitIntToPtrInst(IntToPtrInst
&I
);
246 void visitPtrToIntInst(PtrToIntInst
&I
);
247 void visitBitCastInst(BitCastInst
&I
);
248 void visitPHINode(PHINode
&PN
);
249 void visitBinaryOperator(BinaryOperator
&B
);
250 void visitICmpInst(ICmpInst
&IC
);
251 void visitFCmpInst(FCmpInst
&FC
);
252 void visitExtractElementInst(ExtractElementInst
&EI
);
253 void visitInsertElementInst(InsertElementInst
&EI
);
254 void visitShuffleVectorInst(ShuffleVectorInst
&EI
);
255 void visitVAArgInst(VAArgInst
&VAA
) { visitInstruction(VAA
); }
256 void visitCallInst(CallInst
&CI
);
257 void visitInvokeInst(InvokeInst
&II
);
258 void visitGetElementPtrInst(GetElementPtrInst
&GEP
);
259 void visitLoadInst(LoadInst
&LI
);
260 void visitStoreInst(StoreInst
&SI
);
261 void visitInstruction(Instruction
&I
);
262 void visitTerminatorInst(TerminatorInst
&I
);
263 void visitReturnInst(ReturnInst
&RI
);
264 void visitSwitchInst(SwitchInst
&SI
);
265 void visitSelectInst(SelectInst
&SI
);
266 void visitUserOp1(Instruction
&I
);
267 void visitUserOp2(Instruction
&I
) { visitUserOp1(I
); }
268 void visitIntrinsicFunctionCall(Intrinsic::ID ID
, CallInst
&CI
);
269 void visitAllocationInst(AllocationInst
&AI
);
270 void visitExtractValueInst(ExtractValueInst
&EVI
);
271 void visitInsertValueInst(InsertValueInst
&IVI
);
273 void VerifyCallSite(CallSite CS
);
274 bool PerformTypeCheck(Intrinsic::ID ID
, Function
*F
, const Type
*Ty
,
275 int VT
, unsigned ArgNo
, std::string
&Suffix
);
276 void VerifyIntrinsicPrototype(Intrinsic::ID ID
, Function
*F
,
277 unsigned RetNum
, unsigned ParamNum
, ...);
278 void VerifyAttrs(Attributes Attrs
, const Type
*Ty
,
279 bool isReturnValue
, const Value
*V
);
280 void VerifyFunctionAttrs(const FunctionType
*FT
, const AttrListPtr
&Attrs
,
283 void WriteValue(const Value
*V
) {
285 if (isa
<Instruction
>(V
)) {
288 WriteAsOperand(msgs
, V
, true, Mod
);
293 void WriteType(const Type
*T
) {
295 raw_os_ostream
RO(msgs
);
297 WriteTypeSymbolic(RO
, T
, Mod
);
301 // CheckFailed - A check failed, so print out the condition and the message
302 // that failed. This provides a nice place to put a breakpoint if you want
303 // to see why something is not correct.
304 void CheckFailed(const std::string
&Message
,
305 const Value
*V1
= 0, const Value
*V2
= 0,
306 const Value
*V3
= 0, const Value
*V4
= 0) {
307 msgs
<< Message
<< "\n";
315 void CheckFailed( const std::string
& Message
, const Value
* V1
,
316 const Type
* T2
, const Value
* V3
= 0 ) {
317 msgs
<< Message
<< "\n";
324 } // End anonymous namespace
326 char Verifier::ID
= 0;
327 static RegisterPass
<Verifier
> X("verify", "Module Verifier");
329 // Assert - We know that cond should be true, if not print an error message.
330 #define Assert(C, M) \
331 do { if (!(C)) { CheckFailed(M); return; } } while (0)
332 #define Assert1(C, M, V1) \
333 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
334 #define Assert2(C, M, V1, V2) \
335 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
336 #define Assert3(C, M, V1, V2, V3) \
337 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
338 #define Assert4(C, M, V1, V2, V3, V4) \
339 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
341 /// Check whether or not a Value is metadata or made up of a constant
342 /// expression involving metadata.
343 static bool isMetadata(Value
*X
) {
344 SmallPtrSet
<Value
*, 8> Visited
;
345 SmallVector
<Value
*, 8> Queue
;
348 while (!Queue
.empty()) {
349 Value
*V
= Queue
.back();
351 if (!Visited
.insert(V
))
354 if (isa
<MDString
>(V
) || isa
<MDNode
>(V
))
356 if (!isa
<ConstantExpr
>(V
))
358 ConstantExpr
*CE
= cast
<ConstantExpr
>(V
);
360 if (CE
->getType() != Type::EmptyStructTy
)
363 // The only constant expression that works on metadata type is select.
364 if (CE
->getOpcode() != Instruction::Select
) return false;
366 Queue
.push_back(CE
->getOperand(1));
367 Queue
.push_back(CE
->getOperand(2));
372 void Verifier::visit(Instruction
&I
) {
373 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
374 Assert1(I
.getOperand(i
) != 0, "Operand is null", &I
);
375 InstVisitor
<Verifier
>::visit(I
);
379 void Verifier::visitGlobalValue(GlobalValue
&GV
) {
380 Assert1(!GV
.isDeclaration() ||
381 GV
.hasExternalLinkage() ||
382 GV
.hasDLLImportLinkage() ||
383 GV
.hasExternalWeakLinkage() ||
384 GV
.hasGhostLinkage() ||
385 (isa
<GlobalAlias
>(GV
) &&
386 (GV
.hasLocalLinkage() || GV
.hasWeakLinkage())),
387 "Global is external, but doesn't have external or dllimport or weak linkage!",
390 Assert1(!GV
.hasDLLImportLinkage() || GV
.isDeclaration(),
391 "Global is marked as dllimport, but not external", &GV
);
393 Assert1(!GV
.hasAppendingLinkage() || isa
<GlobalVariable
>(GV
),
394 "Only global variables can have appending linkage!", &GV
);
396 if (GV
.hasAppendingLinkage()) {
397 GlobalVariable
&GVar
= cast
<GlobalVariable
>(GV
);
398 Assert1(isa
<ArrayType
>(GVar
.getType()->getElementType()),
399 "Only global arrays can have appending linkage!", &GV
);
403 void Verifier::visitGlobalVariable(GlobalVariable
&GV
) {
404 if (GV
.hasInitializer()) {
405 Assert1(GV
.getInitializer()->getType() == GV
.getType()->getElementType(),
406 "Global variable initializer type does not match global "
407 "variable type!", &GV
);
409 Assert1(GV
.hasExternalLinkage() || GV
.hasDLLImportLinkage() ||
410 GV
.hasExternalWeakLinkage(),
411 "invalid linkage type for global declaration", &GV
);
414 visitGlobalValue(GV
);
417 void Verifier::visitGlobalAlias(GlobalAlias
&GA
) {
418 Assert1(!GA
.getName().empty(),
419 "Alias name cannot be empty!", &GA
);
420 Assert1(GA
.hasExternalLinkage() || GA
.hasLocalLinkage() ||
422 "Alias should have external or external weak linkage!", &GA
);
423 Assert1(GA
.getAliasee(),
424 "Aliasee cannot be NULL!", &GA
);
425 Assert1(GA
.getType() == GA
.getAliasee()->getType(),
426 "Alias and aliasee types should match!", &GA
);
428 if (!isa
<GlobalValue
>(GA
.getAliasee())) {
429 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(GA
.getAliasee());
431 (CE
->getOpcode() == Instruction::BitCast
||
432 CE
->getOpcode() == Instruction::GetElementPtr
) &&
433 isa
<GlobalValue
>(CE
->getOperand(0)),
434 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
438 const GlobalValue
* Aliasee
= GA
.resolveAliasedGlobal(/*stopOnWeak*/ false);
440 "Aliasing chain should end with function or global variable", &GA
);
442 visitGlobalValue(GA
);
445 void Verifier::verifyTypeSymbolTable(TypeSymbolTable
&ST
) {
448 // VerifyAttrs - Check the given parameter attributes for an argument or return
449 // value of the specified type. The value V is printed in error messages.
450 void Verifier::VerifyAttrs(Attributes Attrs
, const Type
*Ty
,
451 bool isReturnValue
, const Value
*V
) {
452 if (Attrs
== Attribute::None
)
456 Attributes RetI
= Attrs
& Attribute::ParameterOnly
;
457 Assert1(!RetI
, "Attribute " + Attribute::getAsString(RetI
) +
458 " does not apply to return values!", V
);
460 Attributes FnCheckAttr
= Attrs
& Attribute::FunctionOnly
;
461 Assert1(!FnCheckAttr
, "Attribute " + Attribute::getAsString(FnCheckAttr
) +
462 " only applies to functions!", V
);
465 i
< array_lengthof(Attribute::MutuallyIncompatible
); ++i
) {
466 Attributes MutI
= Attrs
& Attribute::MutuallyIncompatible
[i
];
467 Assert1(!(MutI
& (MutI
- 1)), "Attributes " +
468 Attribute::getAsString(MutI
) + " are incompatible!", V
);
471 Attributes TypeI
= Attrs
& Attribute::typeIncompatible(Ty
);
472 Assert1(!TypeI
, "Wrong type for attribute " +
473 Attribute::getAsString(TypeI
), V
);
475 Attributes ByValI
= Attrs
& Attribute::ByVal
;
476 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
)) {
477 Assert1(!ByValI
|| PTy
->getElementType()->isSized(),
478 "Attribute " + Attribute::getAsString(ByValI
) +
479 " does not support unsized types!", V
);
482 "Attribute " + Attribute::getAsString(ByValI
) +
483 " only applies to parameters with pointer type!", V
);
487 // VerifyFunctionAttrs - Check parameter attributes against a function type.
488 // The value V is printed in error messages.
489 void Verifier::VerifyFunctionAttrs(const FunctionType
*FT
,
490 const AttrListPtr
&Attrs
,
495 bool SawNest
= false;
497 for (unsigned i
= 0, e
= Attrs
.getNumSlots(); i
!= e
; ++i
) {
498 const AttributeWithIndex
&Attr
= Attrs
.getSlot(i
);
502 Ty
= FT
->getReturnType();
503 else if (Attr
.Index
-1 < FT
->getNumParams())
504 Ty
= FT
->getParamType(Attr
.Index
-1);
506 break; // VarArgs attributes, don't verify.
508 VerifyAttrs(Attr
.Attrs
, Ty
, Attr
.Index
== 0, V
);
510 if (Attr
.Attrs
& Attribute::Nest
) {
511 Assert1(!SawNest
, "More than one parameter has attribute nest!", V
);
515 if (Attr
.Attrs
& Attribute::StructRet
)
516 Assert1(Attr
.Index
== 1, "Attribute sret not on first parameter!", V
);
519 Attributes FAttrs
= Attrs
.getFnAttributes();
520 Assert1(!(FAttrs
& (~Attribute::FunctionOnly
)),
521 "Attribute " + Attribute::getAsString(FAttrs
) +
522 " does not apply to function!", V
);
525 i
< array_lengthof(Attribute::MutuallyIncompatible
); ++i
) {
526 Attributes MutI
= FAttrs
& Attribute::MutuallyIncompatible
[i
];
527 Assert1(!(MutI
& (MutI
- 1)), "Attributes " +
528 Attribute::getAsString(MutI
) + " are incompatible!", V
);
532 static bool VerifyAttributeCount(const AttrListPtr
&Attrs
, unsigned Params
) {
536 unsigned LastSlot
= Attrs
.getNumSlots() - 1;
537 unsigned LastIndex
= Attrs
.getSlot(LastSlot
).Index
;
538 if (LastIndex
<= Params
539 || (LastIndex
== (unsigned)~0
540 && (LastSlot
== 0 || Attrs
.getSlot(LastSlot
- 1).Index
<= Params
)))
545 // visitFunction - Verify that a function is ok.
547 void Verifier::visitFunction(Function
&F
) {
548 // Check function arguments.
549 const FunctionType
*FT
= F
.getFunctionType();
550 unsigned NumArgs
= F
.arg_size();
552 Assert2(FT
->getNumParams() == NumArgs
,
553 "# formal arguments must match # of arguments for function type!",
555 Assert1(F
.getReturnType()->isFirstClassType() ||
556 F
.getReturnType() == Type::VoidTy
||
557 isa
<StructType
>(F
.getReturnType()),
558 "Functions cannot return aggregate values!", &F
);
560 Assert1(!F
.hasStructRetAttr() || F
.getReturnType() == Type::VoidTy
,
561 "Invalid struct return type!", &F
);
563 const AttrListPtr
&Attrs
= F
.getAttributes();
565 Assert1(VerifyAttributeCount(Attrs
, FT
->getNumParams()),
566 "Attributes after last parameter!", &F
);
568 // Check function attributes.
569 VerifyFunctionAttrs(FT
, Attrs
, &F
);
571 // Check that this function meets the restrictions on this calling convention.
572 switch (F
.getCallingConv()) {
577 case CallingConv::Fast
:
578 case CallingConv::Cold
:
579 case CallingConv::X86_FastCall
:
580 Assert1(!F
.isVarArg(),
581 "Varargs functions must have C calling conventions!", &F
);
585 // Check that the argument values match the function type for this function...
587 for (Function::arg_iterator I
= F
.arg_begin(), E
= F
.arg_end();
589 Assert2(I
->getType() == FT
->getParamType(i
),
590 "Argument value does not match function argument type!",
591 I
, FT
->getParamType(i
));
592 Assert1(I
->getType()->isFirstClassType(),
593 "Function arguments must have first-class types!", I
);
596 if (F
.isDeclaration()) {
597 Assert1(F
.hasExternalLinkage() || F
.hasDLLImportLinkage() ||
598 F
.hasExternalWeakLinkage() || F
.hasGhostLinkage(),
599 "invalid linkage type for function declaration", &F
);
601 // Verify that this function (which has a body) is not named "llvm.*". It
602 // is not legal to define intrinsics.
603 if (F
.getName().size() >= 5)
604 Assert1(F
.getName().substr(0, 5) != "llvm.",
605 "llvm intrinsics cannot be defined!", &F
);
607 // Check the entry node
608 BasicBlock
*Entry
= &F
.getEntryBlock();
609 Assert1(pred_begin(Entry
) == pred_end(Entry
),
610 "Entry block to function must not have predecessors!", Entry
);
615 // verifyBasicBlock - Verify that a basic block is well formed...
617 void Verifier::visitBasicBlock(BasicBlock
&BB
) {
618 InstsInThisBlock
.clear();
620 // Ensure that basic blocks have terminators!
621 Assert1(BB
.getTerminator(), "Basic Block does not have terminator!", &BB
);
623 // Check constraints that this basic block imposes on all of the PHI nodes in
625 if (isa
<PHINode
>(BB
.front())) {
626 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(&BB
), pred_end(&BB
));
627 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> Values
;
628 std::sort(Preds
.begin(), Preds
.end());
630 for (BasicBlock::iterator I
= BB
.begin(); (PN
= dyn_cast
<PHINode
>(I
));++I
) {
632 // Ensure that PHI nodes have at least one entry!
633 Assert1(PN
->getNumIncomingValues() != 0,
634 "PHI nodes must have at least one entry. If the block is dead, "
635 "the PHI should be removed!", PN
);
636 Assert1(PN
->getNumIncomingValues() == Preds
.size(),
637 "PHINode should have one entry for each predecessor of its "
638 "parent basic block!", PN
);
640 // Get and sort all incoming values in the PHI node...
642 Values
.reserve(PN
->getNumIncomingValues());
643 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
644 Values
.push_back(std::make_pair(PN
->getIncomingBlock(i
),
645 PN
->getIncomingValue(i
)));
646 std::sort(Values
.begin(), Values
.end());
648 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
) {
649 // Check to make sure that if there is more than one entry for a
650 // particular basic block in this PHI node, that the incoming values are
653 Assert4(i
== 0 || Values
[i
].first
!= Values
[i
-1].first
||
654 Values
[i
].second
== Values
[i
-1].second
,
655 "PHI node has multiple entries for the same basic block with "
656 "different incoming values!", PN
, Values
[i
].first
,
657 Values
[i
].second
, Values
[i
-1].second
);
659 // Check to make sure that the predecessors and PHI node entries are
661 Assert3(Values
[i
].first
== Preds
[i
],
662 "PHI node entries do not match predecessors!", PN
,
663 Values
[i
].first
, Preds
[i
]);
669 void Verifier::visitTerminatorInst(TerminatorInst
&I
) {
670 // Ensure that terminators only exist at the end of the basic block.
671 Assert1(&I
== I
.getParent()->getTerminator(),
672 "Terminator found in the middle of a basic block!", I
.getParent());
676 void Verifier::visitReturnInst(ReturnInst
&RI
) {
677 Function
*F
= RI
.getParent()->getParent();
678 unsigned N
= RI
.getNumOperands();
679 if (F
->getReturnType() == Type::VoidTy
)
681 "Found return instr that returns non-void in Function of void "
682 "return type!", &RI
, F
->getReturnType());
683 else if (N
== 1 && F
->getReturnType() == RI
.getOperand(0)->getType()) {
684 Assert1(!isMetadata(RI
.getOperand(0)), "Invalid use of metadata!", &RI
);
685 // Exactly one return value and it matches the return type. Good.
686 } else if (const StructType
*STy
= dyn_cast
<StructType
>(F
->getReturnType())) {
687 // The return type is a struct; check for multiple return values.
688 Assert2(STy
->getNumElements() == N
,
689 "Incorrect number of return values in ret instruction!",
690 &RI
, F
->getReturnType());
691 for (unsigned i
= 0; i
!= N
; ++i
)
692 Assert2(STy
->getElementType(i
) == RI
.getOperand(i
)->getType(),
693 "Function return type does not match operand "
694 "type of return inst!", &RI
, F
->getReturnType());
695 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(F
->getReturnType())) {
696 // The return type is an array; check for multiple return values.
697 Assert2(ATy
->getNumElements() == N
,
698 "Incorrect number of return values in ret instruction!",
699 &RI
, F
->getReturnType());
700 for (unsigned i
= 0; i
!= N
; ++i
)
701 Assert2(ATy
->getElementType() == RI
.getOperand(i
)->getType(),
702 "Function return type does not match operand "
703 "type of return inst!", &RI
, F
->getReturnType());
705 CheckFailed("Function return type does not match operand "
706 "type of return inst!", &RI
, F
->getReturnType());
709 // Check to make sure that the return value has necessary properties for
711 visitTerminatorInst(RI
);
714 void Verifier::visitSwitchInst(SwitchInst
&SI
) {
715 // Check to make sure that all of the constants in the switch instruction
716 // have the same type as the switched-on value.
717 const Type
*SwitchTy
= SI
.getCondition()->getType();
718 for (unsigned i
= 1, e
= SI
.getNumCases(); i
!= e
; ++i
)
719 Assert1(SI
.getCaseValue(i
)->getType() == SwitchTy
,
720 "Switch constants must all be same type as switch value!", &SI
);
722 visitTerminatorInst(SI
);
725 void Verifier::visitSelectInst(SelectInst
&SI
) {
726 Assert1(!SelectInst::areInvalidOperands(SI
.getOperand(0), SI
.getOperand(1),
728 "Invalid operands for select instruction!", &SI
);
730 Assert1(SI
.getTrueValue()->getType() == SI
.getType(),
731 "Select values must have same type as select instruction!", &SI
);
732 Assert1(!isMetadata(SI
.getOperand(1)) && !isMetadata(SI
.getOperand(2)),
733 "Invalid use of metadata!", &SI
);
734 visitInstruction(SI
);
738 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
739 /// a pass, if any exist, it's an error.
741 void Verifier::visitUserOp1(Instruction
&I
) {
742 Assert1(0, "User-defined operators should not live outside of a pass!", &I
);
745 void Verifier::visitTruncInst(TruncInst
&I
) {
746 // Get the source and destination types
747 const Type
*SrcTy
= I
.getOperand(0)->getType();
748 const Type
*DestTy
= I
.getType();
750 // Get the size of the types in bits, we'll need this later
751 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
752 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
754 Assert1(SrcTy
->isIntOrIntVector(), "Trunc only operates on integer", &I
);
755 Assert1(DestTy
->isIntOrIntVector(), "Trunc only produces integer", &I
);
756 Assert1(isa
<VectorType
>(SrcTy
) == isa
<VectorType
>(DestTy
),
757 "trunc source and destination must both be a vector or neither", &I
);
758 Assert1(SrcBitSize
> DestBitSize
,"DestTy too big for Trunc", &I
);
763 void Verifier::visitZExtInst(ZExtInst
&I
) {
764 // Get the source and destination types
765 const Type
*SrcTy
= I
.getOperand(0)->getType();
766 const Type
*DestTy
= I
.getType();
768 // Get the size of the types in bits, we'll need this later
769 Assert1(SrcTy
->isIntOrIntVector(), "ZExt only operates on integer", &I
);
770 Assert1(DestTy
->isIntOrIntVector(), "ZExt only produces an integer", &I
);
771 Assert1(isa
<VectorType
>(SrcTy
) == isa
<VectorType
>(DestTy
),
772 "zext source and destination must both be a vector or neither", &I
);
773 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
774 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
776 Assert1(SrcBitSize
< DestBitSize
,"Type too small for ZExt", &I
);
781 void Verifier::visitSExtInst(SExtInst
&I
) {
782 // Get the source and destination types
783 const Type
*SrcTy
= I
.getOperand(0)->getType();
784 const Type
*DestTy
= I
.getType();
786 // Get the size of the types in bits, we'll need this later
787 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
788 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
790 Assert1(SrcTy
->isIntOrIntVector(), "SExt only operates on integer", &I
);
791 Assert1(DestTy
->isIntOrIntVector(), "SExt only produces an integer", &I
);
792 Assert1(isa
<VectorType
>(SrcTy
) == isa
<VectorType
>(DestTy
),
793 "sext source and destination must both be a vector or neither", &I
);
794 Assert1(SrcBitSize
< DestBitSize
,"Type too small for SExt", &I
);
799 void Verifier::visitFPTruncInst(FPTruncInst
&I
) {
800 // Get the source and destination types
801 const Type
*SrcTy
= I
.getOperand(0)->getType();
802 const Type
*DestTy
= I
.getType();
803 // Get the size of the types in bits, we'll need this later
804 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
805 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
807 Assert1(SrcTy
->isFPOrFPVector(),"FPTrunc only operates on FP", &I
);
808 Assert1(DestTy
->isFPOrFPVector(),"FPTrunc only produces an FP", &I
);
809 Assert1(isa
<VectorType
>(SrcTy
) == isa
<VectorType
>(DestTy
),
810 "fptrunc source and destination must both be a vector or neither",&I
);
811 Assert1(SrcBitSize
> DestBitSize
,"DestTy too big for FPTrunc", &I
);
816 void Verifier::visitFPExtInst(FPExtInst
&I
) {
817 // Get the source and destination types
818 const Type
*SrcTy
= I
.getOperand(0)->getType();
819 const Type
*DestTy
= I
.getType();
821 // Get the size of the types in bits, we'll need this later
822 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
823 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
825 Assert1(SrcTy
->isFPOrFPVector(),"FPExt only operates on FP", &I
);
826 Assert1(DestTy
->isFPOrFPVector(),"FPExt only produces an FP", &I
);
827 Assert1(isa
<VectorType
>(SrcTy
) == isa
<VectorType
>(DestTy
),
828 "fpext source and destination must both be a vector or neither", &I
);
829 Assert1(SrcBitSize
< DestBitSize
,"DestTy too small for FPExt", &I
);
834 void Verifier::visitUIToFPInst(UIToFPInst
&I
) {
835 // Get the source and destination types
836 const Type
*SrcTy
= I
.getOperand(0)->getType();
837 const Type
*DestTy
= I
.getType();
839 bool SrcVec
= isa
<VectorType
>(SrcTy
);
840 bool DstVec
= isa
<VectorType
>(DestTy
);
842 Assert1(SrcVec
== DstVec
,
843 "UIToFP source and dest must both be vector or scalar", &I
);
844 Assert1(SrcTy
->isIntOrIntVector(),
845 "UIToFP source must be integer or integer vector", &I
);
846 Assert1(DestTy
->isFPOrFPVector(),
847 "UIToFP result must be FP or FP vector", &I
);
849 if (SrcVec
&& DstVec
)
850 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
851 cast
<VectorType
>(DestTy
)->getNumElements(),
852 "UIToFP source and dest vector length mismatch", &I
);
857 void Verifier::visitSIToFPInst(SIToFPInst
&I
) {
858 // Get the source and destination types
859 const Type
*SrcTy
= I
.getOperand(0)->getType();
860 const Type
*DestTy
= I
.getType();
862 bool SrcVec
= SrcTy
->getTypeID() == Type::VectorTyID
;
863 bool DstVec
= DestTy
->getTypeID() == Type::VectorTyID
;
865 Assert1(SrcVec
== DstVec
,
866 "SIToFP source and dest must both be vector or scalar", &I
);
867 Assert1(SrcTy
->isIntOrIntVector(),
868 "SIToFP source must be integer or integer vector", &I
);
869 Assert1(DestTy
->isFPOrFPVector(),
870 "SIToFP result must be FP or FP vector", &I
);
872 if (SrcVec
&& DstVec
)
873 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
874 cast
<VectorType
>(DestTy
)->getNumElements(),
875 "SIToFP source and dest vector length mismatch", &I
);
880 void Verifier::visitFPToUIInst(FPToUIInst
&I
) {
881 // Get the source and destination types
882 const Type
*SrcTy
= I
.getOperand(0)->getType();
883 const Type
*DestTy
= I
.getType();
885 bool SrcVec
= isa
<VectorType
>(SrcTy
);
886 bool DstVec
= isa
<VectorType
>(DestTy
);
888 Assert1(SrcVec
== DstVec
,
889 "FPToUI source and dest must both be vector or scalar", &I
);
890 Assert1(SrcTy
->isFPOrFPVector(), "FPToUI source must be FP or FP vector", &I
);
891 Assert1(DestTy
->isIntOrIntVector(),
892 "FPToUI result must be integer or integer vector", &I
);
894 if (SrcVec
&& DstVec
)
895 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
896 cast
<VectorType
>(DestTy
)->getNumElements(),
897 "FPToUI source and dest vector length mismatch", &I
);
902 void Verifier::visitFPToSIInst(FPToSIInst
&I
) {
903 // Get the source and destination types
904 const Type
*SrcTy
= I
.getOperand(0)->getType();
905 const Type
*DestTy
= I
.getType();
907 bool SrcVec
= isa
<VectorType
>(SrcTy
);
908 bool DstVec
= isa
<VectorType
>(DestTy
);
910 Assert1(SrcVec
== DstVec
,
911 "FPToSI source and dest must both be vector or scalar", &I
);
912 Assert1(SrcTy
->isFPOrFPVector(),
913 "FPToSI source must be FP or FP vector", &I
);
914 Assert1(DestTy
->isIntOrIntVector(),
915 "FPToSI result must be integer or integer vector", &I
);
917 if (SrcVec
&& DstVec
)
918 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
919 cast
<VectorType
>(DestTy
)->getNumElements(),
920 "FPToSI source and dest vector length mismatch", &I
);
925 void Verifier::visitPtrToIntInst(PtrToIntInst
&I
) {
926 // Get the source and destination types
927 const Type
*SrcTy
= I
.getOperand(0)->getType();
928 const Type
*DestTy
= I
.getType();
930 Assert1(isa
<PointerType
>(SrcTy
), "PtrToInt source must be pointer", &I
);
931 Assert1(DestTy
->isInteger(), "PtrToInt result must be integral", &I
);
936 void Verifier::visitIntToPtrInst(IntToPtrInst
&I
) {
937 // Get the source and destination types
938 const Type
*SrcTy
= I
.getOperand(0)->getType();
939 const Type
*DestTy
= I
.getType();
941 Assert1(SrcTy
->isInteger(), "IntToPtr source must be an integral", &I
);
942 Assert1(isa
<PointerType
>(DestTy
), "IntToPtr result must be a pointer",&I
);
947 void Verifier::visitBitCastInst(BitCastInst
&I
) {
948 // Get the source and destination types
949 const Type
*SrcTy
= I
.getOperand(0)->getType();
950 const Type
*DestTy
= I
.getType();
952 // Get the size of the types in bits, we'll need this later
953 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
954 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
956 // BitCast implies a no-op cast of type only. No bits change.
957 // However, you can't cast pointers to anything but pointers.
958 Assert1(isa
<PointerType
>(DestTy
) == isa
<PointerType
>(DestTy
),
959 "Bitcast requires both operands to be pointer or neither", &I
);
960 Assert1(SrcBitSize
== DestBitSize
, "Bitcast requies types of same width", &I
);
962 // Disallow aggregates.
963 Assert1(!SrcTy
->isAggregateType(),
964 "Bitcast operand must not be aggregate", &I
);
965 Assert1(!DestTy
->isAggregateType(),
966 "Bitcast type must not be aggregate", &I
);
971 /// visitPHINode - Ensure that a PHI node is well formed.
973 void Verifier::visitPHINode(PHINode
&PN
) {
974 // Ensure that the PHI nodes are all grouped together at the top of the block.
975 // This can be tested by checking whether the instruction before this is
976 // either nonexistent (because this is begin()) or is a PHI node. If not,
977 // then there is some other instruction before a PHI.
978 Assert2(&PN
== &PN
.getParent()->front() ||
979 isa
<PHINode
>(--BasicBlock::iterator(&PN
)),
980 "PHI nodes not grouped at top of basic block!",
981 &PN
, PN
.getParent());
983 // Check that all of the operands of the PHI node have the same type as the
985 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
986 Assert1(PN
.getType() == PN
.getIncomingValue(i
)->getType(),
987 "PHI node operands are not the same type as the result!", &PN
);
989 // Check that it's not a PHI of metadata.
990 if (PN
.getType() == Type::EmptyStructTy
) {
991 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
992 Assert1(!isMetadata(PN
.getIncomingValue(i
)),
993 "Invalid use of metadata!", &PN
);
996 // All other PHI node constraints are checked in the visitBasicBlock method.
998 visitInstruction(PN
);
1001 void Verifier::VerifyCallSite(CallSite CS
) {
1002 Instruction
*I
= CS
.getInstruction();
1004 Assert1(isa
<PointerType
>(CS
.getCalledValue()->getType()),
1005 "Called function must be a pointer!", I
);
1006 const PointerType
*FPTy
= cast
<PointerType
>(CS
.getCalledValue()->getType());
1007 Assert1(isa
<FunctionType
>(FPTy
->getElementType()),
1008 "Called function is not pointer to function type!", I
);
1010 const FunctionType
*FTy
= cast
<FunctionType
>(FPTy
->getElementType());
1012 // Verify that the correct number of arguments are being passed
1013 if (FTy
->isVarArg())
1014 Assert1(CS
.arg_size() >= FTy
->getNumParams(),
1015 "Called function requires more parameters than were provided!",I
);
1017 Assert1(CS
.arg_size() == FTy
->getNumParams(),
1018 "Incorrect number of arguments passed to called function!", I
);
1020 // Verify that all arguments to the call match the function type...
1021 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
1022 Assert3(CS
.getArgument(i
)->getType() == FTy
->getParamType(i
),
1023 "Call parameter type does not match function signature!",
1024 CS
.getArgument(i
), FTy
->getParamType(i
), I
);
1026 if (CS
.getCalledValue()->getNameLen() < 5 ||
1027 strncmp(CS
.getCalledValue()->getNameStart(), "llvm.", 5) != 0) {
1028 // Verify that none of the arguments are metadata...
1029 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
1030 Assert2(!isMetadata(CS
.getArgument(i
)), "Invalid use of metadata!",
1031 CS
.getArgument(i
), I
);
1034 const AttrListPtr
&Attrs
= CS
.getAttributes();
1036 Assert1(VerifyAttributeCount(Attrs
, CS
.arg_size()),
1037 "Attributes after last parameter!", I
);
1039 // Verify call attributes.
1040 VerifyFunctionAttrs(FTy
, Attrs
, I
);
1042 if (FTy
->isVarArg())
1043 // Check attributes on the varargs part.
1044 for (unsigned Idx
= 1 + FTy
->getNumParams(); Idx
<= CS
.arg_size(); ++Idx
) {
1045 Attributes Attr
= Attrs
.getParamAttributes(Idx
);
1047 VerifyAttrs(Attr
, CS
.getArgument(Idx
-1)->getType(), false, I
);
1049 Attributes VArgI
= Attr
& Attribute::VarArgsIncompatible
;
1050 Assert1(!VArgI
, "Attribute " + Attribute::getAsString(VArgI
) +
1051 " cannot be used for vararg call arguments!", I
);
1054 visitInstruction(*I
);
1057 void Verifier::visitCallInst(CallInst
&CI
) {
1058 VerifyCallSite(&CI
);
1060 if (Function
*F
= CI
.getCalledFunction())
1061 if (Intrinsic::ID ID
= (Intrinsic::ID
)F
->getIntrinsicID())
1062 visitIntrinsicFunctionCall(ID
, CI
);
1065 void Verifier::visitInvokeInst(InvokeInst
&II
) {
1066 VerifyCallSite(&II
);
1069 /// visitBinaryOperator - Check that both arguments to the binary operator are
1070 /// of the same type!
1072 void Verifier::visitBinaryOperator(BinaryOperator
&B
) {
1073 Assert1(B
.getOperand(0)->getType() == B
.getOperand(1)->getType(),
1074 "Both operands to a binary operator are not of the same type!", &B
);
1076 switch (B
.getOpcode()) {
1077 // Check that logical operators are only used with integral operands.
1078 case Instruction::And
:
1079 case Instruction::Or
:
1080 case Instruction::Xor
:
1081 Assert1(B
.getType()->isInteger() ||
1082 (isa
<VectorType
>(B
.getType()) &&
1083 cast
<VectorType
>(B
.getType())->getElementType()->isInteger()),
1084 "Logical operators only work with integral types!", &B
);
1085 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1086 "Logical operators must have same type for operands and result!",
1089 case Instruction::Shl
:
1090 case Instruction::LShr
:
1091 case Instruction::AShr
:
1092 Assert1(B
.getType()->isInteger() ||
1093 (isa
<VectorType
>(B
.getType()) &&
1094 cast
<VectorType
>(B
.getType())->getElementType()->isInteger()),
1095 "Shifts only work with integral types!", &B
);
1096 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1097 "Shift return type must be same as operands!", &B
);
1100 // Arithmetic operators only work on integer or fp values
1101 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1102 "Arithmetic operators must have same type for operands and result!",
1104 Assert1(B
.getType()->isInteger() || B
.getType()->isFloatingPoint() ||
1105 isa
<VectorType
>(B
.getType()),
1106 "Arithmetic operators must have integer, fp, or vector type!", &B
);
1110 visitInstruction(B
);
1113 void Verifier::visitICmpInst(ICmpInst
& IC
) {
1114 // Check that the operands are the same type
1115 const Type
* Op0Ty
= IC
.getOperand(0)->getType();
1116 const Type
* Op1Ty
= IC
.getOperand(1)->getType();
1117 Assert1(Op0Ty
== Op1Ty
,
1118 "Both operands to ICmp instruction are not of the same type!", &IC
);
1119 // Check that the operands are the right type
1120 Assert1(Op0Ty
->isIntOrIntVector() || isa
<PointerType
>(Op0Ty
),
1121 "Invalid operand types for ICmp instruction", &IC
);
1122 visitInstruction(IC
);
1125 void Verifier::visitFCmpInst(FCmpInst
& FC
) {
1126 // Check that the operands are the same type
1127 const Type
* Op0Ty
= FC
.getOperand(0)->getType();
1128 const Type
* Op1Ty
= FC
.getOperand(1)->getType();
1129 Assert1(Op0Ty
== Op1Ty
,
1130 "Both operands to FCmp instruction are not of the same type!", &FC
);
1131 // Check that the operands are the right type
1132 Assert1(Op0Ty
->isFPOrFPVector(),
1133 "Invalid operand types for FCmp instruction", &FC
);
1134 visitInstruction(FC
);
1137 void Verifier::visitExtractElementInst(ExtractElementInst
&EI
) {
1138 Assert1(ExtractElementInst::isValidOperands(EI
.getOperand(0),
1140 "Invalid extractelement operands!", &EI
);
1141 visitInstruction(EI
);
1144 void Verifier::visitInsertElementInst(InsertElementInst
&IE
) {
1145 Assert1(InsertElementInst::isValidOperands(IE
.getOperand(0),
1148 "Invalid insertelement operands!", &IE
);
1149 visitInstruction(IE
);
1152 void Verifier::visitShuffleVectorInst(ShuffleVectorInst
&SV
) {
1153 Assert1(ShuffleVectorInst::isValidOperands(SV
.getOperand(0), SV
.getOperand(1),
1155 "Invalid shufflevector operands!", &SV
);
1157 const VectorType
*VTy
= dyn_cast
<VectorType
>(SV
.getOperand(0)->getType());
1158 Assert1(VTy
, "Operands are not a vector type", &SV
);
1160 // Check to see if Mask is valid.
1161 if (const ConstantVector
*MV
= dyn_cast
<ConstantVector
>(SV
.getOperand(2))) {
1162 for (unsigned i
= 0, e
= MV
->getNumOperands(); i
!= e
; ++i
) {
1163 if (ConstantInt
* CI
= dyn_cast
<ConstantInt
>(MV
->getOperand(i
))) {
1164 Assert1(!CI
->uge(VTy
->getNumElements()*2),
1165 "Invalid shufflevector shuffle mask!", &SV
);
1167 Assert1(isa
<UndefValue
>(MV
->getOperand(i
)),
1168 "Invalid shufflevector shuffle mask!", &SV
);
1172 Assert1(isa
<UndefValue
>(SV
.getOperand(2)) ||
1173 isa
<ConstantAggregateZero
>(SV
.getOperand(2)),
1174 "Invalid shufflevector shuffle mask!", &SV
);
1177 visitInstruction(SV
);
1180 void Verifier::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
1181 SmallVector
<Value
*, 16> Idxs(GEP
.idx_begin(), GEP
.idx_end());
1183 GetElementPtrInst::getIndexedType(GEP
.getOperand(0)->getType(),
1184 Idxs
.begin(), Idxs
.end());
1185 Assert1(ElTy
, "Invalid indices for GEP pointer type!", &GEP
);
1186 Assert2(isa
<PointerType
>(GEP
.getType()) &&
1187 cast
<PointerType
>(GEP
.getType())->getElementType() == ElTy
,
1188 "GEP is not of right type for indices!", &GEP
, ElTy
);
1189 visitInstruction(GEP
);
1192 void Verifier::visitLoadInst(LoadInst
&LI
) {
1194 cast
<PointerType
>(LI
.getOperand(0)->getType())->getElementType();
1195 Assert2(ElTy
== LI
.getType(),
1196 "Load result type does not match pointer operand type!", &LI
, ElTy
);
1197 visitInstruction(LI
);
1200 void Verifier::visitStoreInst(StoreInst
&SI
) {
1202 cast
<PointerType
>(SI
.getOperand(1)->getType())->getElementType();
1203 Assert2(ElTy
== SI
.getOperand(0)->getType(),
1204 "Stored value type does not match pointer operand type!", &SI
, ElTy
);
1205 Assert1(!isMetadata(SI
.getOperand(0)), "Invalid use of metadata!", &SI
);
1206 visitInstruction(SI
);
1209 void Verifier::visitAllocationInst(AllocationInst
&AI
) {
1210 const PointerType
*PTy
= AI
.getType();
1211 Assert1(PTy
->getAddressSpace() == 0,
1212 "Allocation instruction pointer not in the generic address space!",
1214 Assert1(PTy
->getElementType()->isSized(), "Cannot allocate unsized type",
1216 visitInstruction(AI
);
1219 void Verifier::visitExtractValueInst(ExtractValueInst
&EVI
) {
1220 Assert1(ExtractValueInst::getIndexedType(EVI
.getAggregateOperand()->getType(),
1221 EVI
.idx_begin(), EVI
.idx_end()) ==
1223 "Invalid ExtractValueInst operands!", &EVI
);
1225 visitInstruction(EVI
);
1228 void Verifier::visitInsertValueInst(InsertValueInst
&IVI
) {
1229 Assert1(ExtractValueInst::getIndexedType(IVI
.getAggregateOperand()->getType(),
1230 IVI
.idx_begin(), IVI
.idx_end()) ==
1231 IVI
.getOperand(1)->getType(),
1232 "Invalid InsertValueInst operands!", &IVI
);
1234 visitInstruction(IVI
);
1237 /// verifyInstruction - Verify that an instruction is well formed.
1239 void Verifier::visitInstruction(Instruction
&I
) {
1240 BasicBlock
*BB
= I
.getParent();
1241 Assert1(BB
, "Instruction not embedded in basic block!", &I
);
1243 if (!isa
<PHINode
>(I
)) { // Check that non-phi nodes are not self referential
1244 for (Value::use_iterator UI
= I
.use_begin(), UE
= I
.use_end();
1246 Assert1(*UI
!= (User
*)&I
||
1247 !DT
->dominates(&BB
->getParent()->getEntryBlock(), BB
),
1248 "Only PHI nodes may reference their own value!", &I
);
1251 // Verify that if this is a terminator that it is at the end of the block.
1252 if (isa
<TerminatorInst
>(I
))
1253 Assert1(BB
->getTerminator() == &I
, "Terminator not at end of block!", &I
);
1256 // Check that void typed values don't have names
1257 Assert1(I
.getType() != Type::VoidTy
|| !I
.hasName(),
1258 "Instruction has a name, but provides a void value!", &I
);
1260 // Check that the return value of the instruction is either void or a legal
1262 Assert1(I
.getType() == Type::VoidTy
|| I
.getType()->isFirstClassType()
1263 || ((isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
))
1264 && isa
<StructType
>(I
.getType())),
1265 "Instruction returns a non-scalar type!", &I
);
1267 // Check that all uses of the instruction, if they are instructions
1268 // themselves, actually have parent basic blocks. If the use is not an
1269 // instruction, it is an error!
1270 for (User::use_iterator UI
= I
.use_begin(), UE
= I
.use_end();
1272 Assert1(isa
<Instruction
>(*UI
), "Use of instruction is not an instruction!",
1274 Instruction
*Used
= cast
<Instruction
>(*UI
);
1275 Assert2(Used
->getParent() != 0, "Instruction referencing instruction not"
1276 " embedded in a basic block!", &I
, Used
);
1279 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
1280 Assert1(I
.getOperand(i
) != 0, "Instruction has null operand!", &I
);
1282 // Check to make sure that only first-class-values are operands to
1284 if (!I
.getOperand(i
)->getType()->isFirstClassType()) {
1285 Assert1(0, "Instruction operands must be first-class values!", &I
);
1288 if (Function
*F
= dyn_cast
<Function
>(I
.getOperand(i
))) {
1289 // Check to make sure that the "address of" an intrinsic function is never
1291 Assert1(!F
->isIntrinsic() || (i
== 0 && isa
<CallInst
>(I
)),
1292 "Cannot take the address of an intrinsic!", &I
);
1293 Assert1(F
->getParent() == Mod
, "Referencing function in another module!",
1295 } else if (BasicBlock
*OpBB
= dyn_cast
<BasicBlock
>(I
.getOperand(i
))) {
1296 Assert1(OpBB
->getParent() == BB
->getParent(),
1297 "Referring to a basic block in another function!", &I
);
1298 } else if (Argument
*OpArg
= dyn_cast
<Argument
>(I
.getOperand(i
))) {
1299 Assert1(OpArg
->getParent() == BB
->getParent(),
1300 "Referring to an argument in another function!", &I
);
1301 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(I
.getOperand(i
))) {
1302 Assert1(GV
->getParent() == Mod
, "Referencing global in another module!",
1304 } else if (Instruction
*Op
= dyn_cast
<Instruction
>(I
.getOperand(i
))) {
1305 BasicBlock
*OpBlock
= Op
->getParent();
1307 // Check that a definition dominates all of its uses.
1308 if (!isa
<PHINode
>(I
)) {
1309 // Invoke results are only usable in the normal destination, not in the
1310 // exceptional destination.
1311 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Op
)) {
1312 OpBlock
= II
->getNormalDest();
1314 Assert2(OpBlock
!= II
->getUnwindDest(),
1315 "No uses of invoke possible due to dominance structure!",
1318 // If the normal successor of an invoke instruction has multiple
1319 // predecessors, then the normal edge from the invoke is critical, so
1320 // the invoke value can only be live if the destination block
1321 // dominates all of it's predecessors (other than the invoke) or if
1322 // the invoke value is only used by a phi in the successor.
1323 if (!OpBlock
->getSinglePredecessor() &&
1324 DT
->dominates(&BB
->getParent()->getEntryBlock(), BB
)) {
1325 // The first case we allow is if the use is a PHI operand in the
1326 // normal block, and if that PHI operand corresponds to the invoke's
1329 if (PHINode
*PN
= dyn_cast
<PHINode
>(&I
))
1330 if (PN
->getParent() == OpBlock
&&
1331 PN
->getIncomingBlock(i
/2) == Op
->getParent())
1334 // If it is used by something non-phi, then the other case is that
1335 // 'OpBlock' dominates all of its predecessors other than the
1336 // invoke. In this case, the invoke value can still be used.
1339 for (pred_iterator PI
= pred_begin(OpBlock
),
1340 E
= pred_end(OpBlock
); PI
!= E
; ++PI
) {
1341 if (*PI
!= II
->getParent() && !DT
->dominates(OpBlock
, *PI
)) {
1348 "Invoke value defined on critical edge but not dead!", &I
,
1351 } else if (OpBlock
== BB
) {
1352 // If they are in the same basic block, make sure that the definition
1353 // comes before the use.
1354 Assert2(InstsInThisBlock
.count(Op
) ||
1355 !DT
->dominates(&BB
->getParent()->getEntryBlock(), BB
),
1356 "Instruction does not dominate all uses!", Op
, &I
);
1359 // Definition must dominate use unless use is unreachable!
1360 Assert2(InstsInThisBlock
.count(Op
) || DT
->dominates(Op
, &I
) ||
1361 !DT
->dominates(&BB
->getParent()->getEntryBlock(), BB
),
1362 "Instruction does not dominate all uses!", Op
, &I
);
1364 // PHI nodes are more difficult than other nodes because they actually
1365 // "use" the value in the predecessor basic blocks they correspond to.
1366 BasicBlock
*PredBB
= cast
<BasicBlock
>(I
.getOperand(i
+1));
1367 Assert2(DT
->dominates(OpBlock
, PredBB
) ||
1368 !DT
->dominates(&BB
->getParent()->getEntryBlock(), PredBB
),
1369 "Instruction does not dominate all uses!", Op
, &I
);
1371 } else if (isa
<InlineAsm
>(I
.getOperand(i
))) {
1372 Assert1(i
== 0 && (isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
)),
1373 "Cannot take the address of an inline asm!", &I
);
1376 InstsInThisBlock
.insert(&I
);
1379 // Flags used by TableGen to mark intrinsic parameters with the
1380 // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
1381 static const unsigned ExtendedElementVectorType
= 0x40000000;
1382 static const unsigned TruncatedElementVectorType
= 0x20000000;
1384 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1386 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID
, CallInst
&CI
) {
1387 Function
*IF
= CI
.getCalledFunction();
1388 Assert1(IF
->isDeclaration(), "Intrinsic functions should never be defined!",
1391 #define GET_INTRINSIC_VERIFIER
1392 #include "llvm/Intrinsics.gen"
1393 #undef GET_INTRINSIC_VERIFIER
1398 case Intrinsic::dbg_declare
: // llvm.dbg.declare
1399 if (Constant
*C
= dyn_cast
<Constant
>(CI
.getOperand(1)))
1400 Assert1(C
&& !isa
<ConstantPointerNull
>(C
),
1401 "invalid llvm.dbg.declare intrinsic call", &CI
);
1403 case Intrinsic::memcpy
:
1404 case Intrinsic::memmove
:
1405 case Intrinsic::memset
:
1406 Assert1(isa
<ConstantInt
>(CI
.getOperand(4)),
1407 "alignment argument of memory intrinsics must be a constant int",
1410 case Intrinsic::gcroot
:
1411 case Intrinsic::gcwrite
:
1412 case Intrinsic::gcread
:
1413 if (ID
== Intrinsic::gcroot
) {
1415 dyn_cast
<AllocaInst
>(CI
.getOperand(1)->stripPointerCasts());
1416 Assert1(AI
&& isa
<PointerType
>(AI
->getType()->getElementType()),
1417 "llvm.gcroot parameter #1 must be a pointer alloca.", &CI
);
1418 Assert1(isa
<Constant
>(CI
.getOperand(2)),
1419 "llvm.gcroot parameter #2 must be a constant.", &CI
);
1422 Assert1(CI
.getParent()->getParent()->hasGC(),
1423 "Enclosing function does not use GC.", &CI
);
1425 case Intrinsic::init_trampoline
:
1426 Assert1(isa
<Function
>(CI
.getOperand(2)->stripPointerCasts()),
1427 "llvm.init_trampoline parameter #2 must resolve to a function.",
1430 case Intrinsic::prefetch
:
1431 Assert1(isa
<ConstantInt
>(CI
.getOperand(2)) &&
1432 isa
<ConstantInt
>(CI
.getOperand(3)) &&
1433 cast
<ConstantInt
>(CI
.getOperand(2))->getZExtValue() < 2 &&
1434 cast
<ConstantInt
>(CI
.getOperand(3))->getZExtValue() < 4,
1435 "invalid arguments to llvm.prefetch",
1438 case Intrinsic::stackprotector
:
1439 Assert1(isa
<AllocaInst
>(CI
.getOperand(2)->stripPointerCasts()),
1440 "llvm.stackprotector parameter #2 must resolve to an alloca.",
1446 /// Produce a string to identify an intrinsic parameter or return value.
1447 /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
1448 /// parameters beginning with NumRets.
1450 static std::string
IntrinsicParam(unsigned ArgNo
, unsigned NumRets
) {
1451 if (ArgNo
< NumRets
) {
1453 return "Intrinsic result type";
1455 return "Intrinsic result type #" + utostr(ArgNo
);
1457 return "Intrinsic parameter #" + utostr(ArgNo
- NumRets
);
1460 bool Verifier::PerformTypeCheck(Intrinsic::ID ID
, Function
*F
, const Type
*Ty
,
1461 int VT
, unsigned ArgNo
, std::string
&Suffix
) {
1462 const FunctionType
*FTy
= F
->getFunctionType();
1464 unsigned NumElts
= 0;
1465 const Type
*EltTy
= Ty
;
1466 const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
);
1468 EltTy
= VTy
->getElementType();
1469 NumElts
= VTy
->getNumElements();
1472 const Type
*RetTy
= FTy
->getReturnType();
1473 const StructType
*ST
= dyn_cast
<StructType
>(RetTy
);
1474 unsigned NumRets
= 1;
1476 NumRets
= ST
->getNumElements();
1481 // Check flags that indicate a type that is an integral vector type with
1482 // elements that are larger or smaller than the elements of the matched
1484 if ((Match
& (ExtendedElementVectorType
|
1485 TruncatedElementVectorType
)) != 0) {
1486 const IntegerType
*IEltTy
= dyn_cast
<IntegerType
>(EltTy
);
1487 if (!VTy
|| !IEltTy
) {
1488 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is not "
1489 "an integral vector type.", F
);
1492 // Adjust the current Ty (in the opposite direction) rather than
1493 // the type being matched against.
1494 if ((Match
& ExtendedElementVectorType
) != 0) {
1495 if ((IEltTy
->getBitWidth() & 1) != 0) {
1496 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " vector "
1497 "element bit-width is odd.", F
);
1500 Ty
= VectorType::getTruncatedElementVectorType(VTy
);
1502 Ty
= VectorType::getExtendedElementVectorType(VTy
);
1503 Match
&= ~(ExtendedElementVectorType
| TruncatedElementVectorType
);
1506 if (Match
<= static_cast<int>(NumRets
- 1)) {
1508 RetTy
= ST
->getElementType(Match
);
1511 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " does not "
1512 "match return type.", F
);
1516 if (Ty
!= FTy
->getParamType(Match
- 1)) {
1517 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " does not "
1518 "match parameter %" + utostr(Match
- 1) + ".", F
);
1522 } else if (VT
== MVT::iAny
) {
1523 if (!EltTy
->isInteger()) {
1524 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is not "
1525 "an integer type.", F
);
1529 unsigned GotBits
= cast
<IntegerType
>(EltTy
)->getBitWidth();
1533 Suffix
+= "v" + utostr(NumElts
);
1535 Suffix
+= "i" + utostr(GotBits
);
1537 // Check some constraints on various intrinsics.
1539 default: break; // Not everything needs to be checked.
1540 case Intrinsic::bswap
:
1541 if (GotBits
< 16 || GotBits
% 16 != 0) {
1542 CheckFailed("Intrinsic requires even byte width argument", F
);
1547 } else if (VT
== MVT::fAny
) {
1548 if (!EltTy
->isFloatingPoint()) {
1549 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is not "
1550 "a floating-point type.", F
);
1557 Suffix
+= "v" + utostr(NumElts
);
1559 Suffix
+= MVT::getMVT(EltTy
).getMVTString();
1560 } else if (VT
== MVT::iPTR
) {
1561 if (!isa
<PointerType
>(Ty
)) {
1562 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is not a "
1563 "pointer and a pointer is required.", F
);
1566 } else if (VT
== MVT::iPTRAny
) {
1567 // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
1568 // and iPTR. In the verifier, we can not distinguish which case we have so
1569 // allow either case to be legal.
1570 if (const PointerType
* PTyp
= dyn_cast
<PointerType
>(Ty
)) {
1571 Suffix
+= ".p" + utostr(PTyp
->getAddressSpace()) +
1572 MVT::getMVT(PTyp
->getElementType()).getMVTString();
1574 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is not a "
1575 "pointer and a pointer is required.", F
);
1578 } else if (MVT((MVT::SimpleValueType
)VT
).isVector()) {
1579 MVT VVT
= MVT((MVT::SimpleValueType
)VT
);
1581 // If this is a vector argument, verify the number and type of elements.
1582 if (VVT
.getVectorElementType() != MVT::getMVT(EltTy
)) {
1583 CheckFailed("Intrinsic prototype has incorrect vector element type!", F
);
1587 if (VVT
.getVectorNumElements() != NumElts
) {
1588 CheckFailed("Intrinsic prototype has incorrect number of "
1589 "vector elements!", F
);
1592 } else if (MVT((MVT::SimpleValueType
)VT
).getTypeForMVT() != EltTy
) {
1593 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is wrong!", F
);
1595 } else if (EltTy
!= Ty
) {
1596 CheckFailed(IntrinsicParam(ArgNo
, NumRets
) + " is a vector "
1597 "and a scalar is required.", F
);
1604 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
1605 /// Intrinsics.gen. This implements a little state machine that verifies the
1606 /// prototype of intrinsics.
1607 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID
, Function
*F
,
1609 unsigned ParamNum
, ...) {
1611 va_start(VA
, ParamNum
);
1612 const FunctionType
*FTy
= F
->getFunctionType();
1614 // For overloaded intrinsics, the Suffix of the function name must match the
1615 // types of the arguments. This variable keeps track of the expected
1616 // suffix, to be checked at the end.
1619 if (FTy
->getNumParams() + FTy
->isVarArg() != ParamNum
) {
1620 CheckFailed("Intrinsic prototype has incorrect number of arguments!", F
);
1624 const Type
*Ty
= FTy
->getReturnType();
1625 const StructType
*ST
= dyn_cast
<StructType
>(Ty
);
1627 // Verify the return types.
1628 if (ST
&& ST
->getNumElements() != RetNum
) {
1629 CheckFailed("Intrinsic prototype has incorrect number of return types!", F
);
1633 for (unsigned ArgNo
= 0; ArgNo
< RetNum
; ++ArgNo
) {
1634 int VT
= va_arg(VA
, int); // An MVT::SimpleValueType when non-negative.
1636 if (ST
) Ty
= ST
->getElementType(ArgNo
);
1638 if (!PerformTypeCheck(ID
, F
, Ty
, VT
, ArgNo
, Suffix
))
1642 // Verify the parameter types.
1643 for (unsigned ArgNo
= 0; ArgNo
< ParamNum
; ++ArgNo
) {
1644 int VT
= va_arg(VA
, int); // An MVT::SimpleValueType when non-negative.
1646 if (VT
== MVT::isVoid
&& ArgNo
> 0) {
1647 if (!FTy
->isVarArg())
1648 CheckFailed("Intrinsic prototype has no '...'!", F
);
1652 if (!PerformTypeCheck(ID
, F
, FTy
->getParamType(ArgNo
), VT
, ArgNo
+ RetNum
,
1659 // For intrinsics without pointer arguments, if we computed a Suffix then the
1660 // intrinsic is overloaded and we need to make sure that the name of the
1661 // function is correct. We add the suffix to the name of the intrinsic and
1662 // compare against the given function name. If they are not the same, the
1663 // function name is invalid. This ensures that overloading of intrinsics
1664 // uses a sane and consistent naming convention. Note that intrinsics with
1665 // pointer argument may or may not be overloaded so we will check assuming it
1666 // has a suffix and not.
1667 if (!Suffix
.empty()) {
1668 std::string
Name(Intrinsic::getName(ID
));
1669 if (Name
+ Suffix
!= F
->getName()) {
1670 CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
1671 F
->getName().substr(Name
.length()) + "'. It should be '" +
1676 // Check parameter attributes.
1677 Assert1(F
->getAttributes() == Intrinsic::getAttributes(ID
),
1678 "Intrinsic has wrong parameter attributes!", F
);
1682 //===----------------------------------------------------------------------===//
1683 // Implement the public interfaces to this file...
1684 //===----------------------------------------------------------------------===//
1686 FunctionPass
*llvm::createVerifierPass(VerifierFailureAction action
) {
1687 return new Verifier(action
);
1691 // verifyFunction - Create
1692 bool llvm::verifyFunction(const Function
&f
, VerifierFailureAction action
) {
1693 Function
&F
= const_cast<Function
&>(f
);
1694 assert(!F
.isDeclaration() && "Cannot verify external functions");
1696 ExistingModuleProvider
MP(F
.getParent());
1697 FunctionPassManager
FPM(&MP
);
1698 Verifier
*V
= new Verifier(action
);
1705 /// verifyModule - Check a module for errors, printing messages on stderr.
1706 /// Return true if the module is corrupt.
1708 bool llvm::verifyModule(const Module
&M
, VerifierFailureAction action
,
1709 std::string
*ErrorInfo
) {
1711 Verifier
*V
= new Verifier(action
);
1713 PM
.run(const_cast<Module
&>(M
));
1715 if (ErrorInfo
&& V
->Broken
)
1716 *ErrorInfo
= V
->msgs
.str();