Permit ChangeCompareStride to rewrite a comparison when the factor
[llvm/msp430.git] / lib / Transforms / Scalar / LoopStrengthReduce.cpp
bloba6795a72ef9b17524e97c5b40810dfce36c0e94e
1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs a strength reduction on array references inside loops that
11 // have as one or more of their components the loop induction variable.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "loop-reduce"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Type.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/LoopPass.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Support/CFG.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Target/TargetLowering.h"
36 #include <algorithm>
37 using namespace llvm;
39 STATISTIC(NumReduced , "Number of IV uses strength reduced");
40 STATISTIC(NumInserted, "Number of PHIs inserted");
41 STATISTIC(NumVariable, "Number of PHIs with variable strides");
42 STATISTIC(NumEliminated, "Number of strides eliminated");
43 STATISTIC(NumShadow, "Number of Shadow IVs optimized");
44 STATISTIC(NumImmSunk, "Number of common expr immediates sunk into uses");
46 static cl::opt<bool> EnableFullLSRMode("enable-full-lsr",
47 cl::init(false),
48 cl::Hidden);
50 namespace {
52 struct BasedUser;
54 /// IVStrideUse - Keep track of one use of a strided induction variable, where
55 /// the stride is stored externally. The Offset member keeps track of the
56 /// offset from the IV, User is the actual user of the operand, and
57 /// 'OperandValToReplace' is the operand of the User that is the use.
58 struct VISIBILITY_HIDDEN IVStrideUse {
59 SCEVHandle Offset;
60 Instruction *User;
61 Value *OperandValToReplace;
63 // isUseOfPostIncrementedValue - True if this should use the
64 // post-incremented version of this IV, not the preincremented version.
65 // This can only be set in special cases, such as the terminating setcc
66 // instruction for a loop or uses dominated by the loop.
67 bool isUseOfPostIncrementedValue;
69 IVStrideUse(const SCEVHandle &Offs, Instruction *U, Value *O)
70 : Offset(Offs), User(U), OperandValToReplace(O),
71 isUseOfPostIncrementedValue(false) {}
74 /// IVUsersOfOneStride - This structure keeps track of all instructions that
75 /// have an operand that is based on the trip count multiplied by some stride.
76 /// The stride for all of these users is common and kept external to this
77 /// structure.
78 struct VISIBILITY_HIDDEN IVUsersOfOneStride {
79 /// Users - Keep track of all of the users of this stride as well as the
80 /// initial value and the operand that uses the IV.
81 std::vector<IVStrideUse> Users;
83 void addUser(const SCEVHandle &Offset,Instruction *User, Value *Operand) {
84 Users.push_back(IVStrideUse(Offset, User, Operand));
88 /// IVInfo - This structure keeps track of one IV expression inserted during
89 /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
90 /// well as the PHI node and increment value created for rewrite.
91 struct VISIBILITY_HIDDEN IVExpr {
92 SCEVHandle Stride;
93 SCEVHandle Base;
94 PHINode *PHI;
96 IVExpr(const SCEVHandle &stride, const SCEVHandle &base, PHINode *phi)
97 : Stride(stride), Base(base), PHI(phi) {}
100 /// IVsOfOneStride - This structure keeps track of all IV expression inserted
101 /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
102 struct VISIBILITY_HIDDEN IVsOfOneStride {
103 std::vector<IVExpr> IVs;
105 void addIV(const SCEVHandle &Stride, const SCEVHandle &Base, PHINode *PHI) {
106 IVs.push_back(IVExpr(Stride, Base, PHI));
110 class VISIBILITY_HIDDEN LoopStrengthReduce : public LoopPass {
111 LoopInfo *LI;
112 DominatorTree *DT;
113 ScalarEvolution *SE;
114 bool Changed;
116 /// IVUsesByStride - Keep track of all uses of induction variables that we
117 /// are interested in. The key of the map is the stride of the access.
118 std::map<SCEVHandle, IVUsersOfOneStride> IVUsesByStride;
120 /// IVsByStride - Keep track of all IVs that have been inserted for a
121 /// particular stride.
122 std::map<SCEVHandle, IVsOfOneStride> IVsByStride;
124 /// StrideOrder - An ordering of the keys in IVUsesByStride that is stable:
125 /// We use this to iterate over the IVUsesByStride collection without being
126 /// dependent on random ordering of pointers in the process.
127 SmallVector<SCEVHandle, 16> StrideOrder;
129 /// DeadInsts - Keep track of instructions we may have made dead, so that
130 /// we can remove them after we are done working.
131 SmallVector<Instruction*, 16> DeadInsts;
133 /// TLI - Keep a pointer of a TargetLowering to consult for determining
134 /// transformation profitability.
135 const TargetLowering *TLI;
137 public:
138 static char ID; // Pass ID, replacement for typeid
139 explicit LoopStrengthReduce(const TargetLowering *tli = NULL) :
140 LoopPass(&ID), TLI(tli) {
143 bool runOnLoop(Loop *L, LPPassManager &LPM);
145 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
146 // We split critical edges, so we change the CFG. However, we do update
147 // many analyses if they are around.
148 AU.addPreservedID(LoopSimplifyID);
149 AU.addPreserved<LoopInfo>();
150 AU.addPreserved<DominanceFrontier>();
151 AU.addPreserved<DominatorTree>();
153 AU.addRequiredID(LoopSimplifyID);
154 AU.addRequired<LoopInfo>();
155 AU.addRequired<DominatorTree>();
156 AU.addRequired<ScalarEvolution>();
157 AU.addPreserved<ScalarEvolution>();
160 private:
161 bool AddUsersIfInteresting(Instruction *I, Loop *L,
162 SmallPtrSet<Instruction*,16> &Processed);
163 ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
164 IVStrideUse* &CondUse,
165 const SCEVHandle* &CondStride);
166 void OptimizeIndvars(Loop *L);
168 /// OptimizeShadowIV - If IV is used in a int-to-float cast
169 /// inside the loop then try to eliminate the cast opeation.
170 void OptimizeShadowIV(Loop *L);
172 /// OptimizeSMax - Rewrite the loop's terminating condition
173 /// if it uses an smax computation.
174 ICmpInst *OptimizeSMax(Loop *L, ICmpInst *Cond,
175 IVStrideUse* &CondUse);
177 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
178 const SCEVHandle *&CondStride);
179 bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
180 SCEVHandle CheckForIVReuse(bool, bool, bool, const SCEVHandle&,
181 IVExpr&, const Type*,
182 const std::vector<BasedUser>& UsersToProcess);
183 bool ValidStride(bool, int64_t,
184 const std::vector<BasedUser>& UsersToProcess);
185 SCEVHandle CollectIVUsers(const SCEVHandle &Stride,
186 IVUsersOfOneStride &Uses,
187 Loop *L,
188 bool &AllUsesAreAddresses,
189 bool &AllUsesAreOutsideLoop,
190 std::vector<BasedUser> &UsersToProcess);
191 bool ShouldUseFullStrengthReductionMode(
192 const std::vector<BasedUser> &UsersToProcess,
193 const Loop *L,
194 bool AllUsesAreAddresses,
195 SCEVHandle Stride);
196 void PrepareToStrengthReduceFully(
197 std::vector<BasedUser> &UsersToProcess,
198 SCEVHandle Stride,
199 SCEVHandle CommonExprs,
200 const Loop *L,
201 SCEVExpander &PreheaderRewriter);
202 void PrepareToStrengthReduceFromSmallerStride(
203 std::vector<BasedUser> &UsersToProcess,
204 Value *CommonBaseV,
205 const IVExpr &ReuseIV,
206 Instruction *PreInsertPt);
207 void PrepareToStrengthReduceWithNewPhi(
208 std::vector<BasedUser> &UsersToProcess,
209 SCEVHandle Stride,
210 SCEVHandle CommonExprs,
211 Value *CommonBaseV,
212 const Loop *L,
213 SCEVExpander &PreheaderRewriter);
214 void StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
215 IVUsersOfOneStride &Uses,
216 Loop *L);
217 void DeleteTriviallyDeadInstructions();
221 char LoopStrengthReduce::ID = 0;
222 static RegisterPass<LoopStrengthReduce>
223 X("loop-reduce", "Loop Strength Reduction");
225 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
226 return new LoopStrengthReduce(TLI);
229 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
230 /// specified set are trivially dead, delete them and see if this makes any of
231 /// their operands subsequently dead.
232 void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
233 if (DeadInsts.empty()) return;
235 // Sort the deadinsts list so that we can trivially eliminate duplicates as we
236 // go. The code below never adds a non-dead instruction to the worklist, but
237 // callers may not be so careful.
238 array_pod_sort(DeadInsts.begin(), DeadInsts.end());
240 // Drop duplicate instructions and those with uses.
241 for (unsigned i = 0, e = DeadInsts.size()-1; i < e; ++i) {
242 Instruction *I = DeadInsts[i];
243 if (!I->use_empty()) DeadInsts[i] = 0;
244 while (i != e && DeadInsts[i+1] == I)
245 DeadInsts[++i] = 0;
248 while (!DeadInsts.empty()) {
249 Instruction *I = DeadInsts.back();
250 DeadInsts.pop_back();
252 if (I == 0 || !isInstructionTriviallyDead(I))
253 continue;
255 SE->deleteValueFromRecords(I);
257 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
258 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
259 *OI = 0;
260 if (U->use_empty())
261 DeadInsts.push_back(U);
265 I->eraseFromParent();
266 Changed = true;
270 /// containsAddRecFromDifferentLoop - Determine whether expression S involves a
271 /// subexpression that is an AddRec from a loop other than L. An outer loop
272 /// of L is OK, but not an inner loop nor a disjoint loop.
273 static bool containsAddRecFromDifferentLoop(SCEVHandle S, Loop *L) {
274 // This is very common, put it first.
275 if (isa<SCEVConstant>(S))
276 return false;
277 if (const SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) {
278 for (unsigned int i=0; i< AE->getNumOperands(); i++)
279 if (containsAddRecFromDifferentLoop(AE->getOperand(i), L))
280 return true;
281 return false;
283 if (const SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) {
284 if (const Loop *newLoop = AE->getLoop()) {
285 if (newLoop == L)
286 return false;
287 // if newLoop is an outer loop of L, this is OK.
288 if (!LoopInfoBase<BasicBlock>::isNotAlreadyContainedIn(L, newLoop))
289 return false;
291 return true;
293 if (const SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S))
294 return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
295 containsAddRecFromDifferentLoop(DE->getRHS(), L);
296 #if 0
297 // SCEVSDivExpr has been backed out temporarily, but will be back; we'll
298 // need this when it is.
299 if (const SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S))
300 return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
301 containsAddRecFromDifferentLoop(DE->getRHS(), L);
302 #endif
303 if (const SCEVCastExpr *CE = dyn_cast<SCEVCastExpr>(S))
304 return containsAddRecFromDifferentLoop(CE->getOperand(), L);
305 return false;
308 /// getSCEVStartAndStride - Compute the start and stride of this expression,
309 /// returning false if the expression is not a start/stride pair, or true if it
310 /// is. The stride must be a loop invariant expression, but the start may be
311 /// a mix of loop invariant and loop variant expressions. The start cannot,
312 /// however, contain an AddRec from a different loop, unless that loop is an
313 /// outer loop of the current loop.
314 static bool getSCEVStartAndStride(const SCEVHandle &SH, Loop *L,
315 SCEVHandle &Start, SCEVHandle &Stride,
316 ScalarEvolution *SE, DominatorTree *DT) {
317 SCEVHandle TheAddRec = Start; // Initialize to zero.
319 // If the outer level is an AddExpr, the operands are all start values except
320 // for a nested AddRecExpr.
321 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(SH)) {
322 for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i)
323 if (SCEVAddRecExpr *AddRec =
324 dyn_cast<SCEVAddRecExpr>(AE->getOperand(i))) {
325 if (AddRec->getLoop() == L)
326 TheAddRec = SE->getAddExpr(AddRec, TheAddRec);
327 else
328 return false; // Nested IV of some sort?
329 } else {
330 Start = SE->getAddExpr(Start, AE->getOperand(i));
333 } else if (isa<SCEVAddRecExpr>(SH)) {
334 TheAddRec = SH;
335 } else {
336 return false; // not analyzable.
339 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(TheAddRec);
340 if (!AddRec || AddRec->getLoop() != L) return false;
342 // FIXME: Generalize to non-affine IV's.
343 if (!AddRec->isAffine()) return false;
345 // If Start contains an SCEVAddRecExpr from a different loop, other than an
346 // outer loop of the current loop, reject it. SCEV has no concept of
347 // operating on more than one loop at a time so don't confuse it with such
348 // expressions.
349 if (containsAddRecFromDifferentLoop(AddRec->getOperand(0), L))
350 return false;
352 Start = SE->getAddExpr(Start, AddRec->getOperand(0));
354 if (!isa<SCEVConstant>(AddRec->getOperand(1))) {
355 // If stride is an instruction, make sure it dominates the loop preheader.
356 // Otherwise we could end up with a use before def situation.
357 BasicBlock *Preheader = L->getLoopPreheader();
358 if (!AddRec->getOperand(1)->dominates(Preheader, DT))
359 return false;
361 DOUT << "[" << L->getHeader()->getName()
362 << "] Variable stride: " << *AddRec << "\n";
365 Stride = AddRec->getOperand(1);
366 return true;
369 /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
370 /// and now we need to decide whether the user should use the preinc or post-inc
371 /// value. If this user should use the post-inc version of the IV, return true.
373 /// Choosing wrong here can break dominance properties (if we choose to use the
374 /// post-inc value when we cannot) or it can end up adding extra live-ranges to
375 /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
376 /// should use the post-inc value).
377 static bool IVUseShouldUsePostIncValue(Instruction *User, Instruction *IV,
378 Loop *L, DominatorTree *DT, Pass *P,
379 SmallVectorImpl<Instruction*> &DeadInsts){
380 // If the user is in the loop, use the preinc value.
381 if (L->contains(User->getParent())) return false;
383 BasicBlock *LatchBlock = L->getLoopLatch();
385 // Ok, the user is outside of the loop. If it is dominated by the latch
386 // block, use the post-inc value.
387 if (DT->dominates(LatchBlock, User->getParent()))
388 return true;
390 // There is one case we have to be careful of: PHI nodes. These little guys
391 // can live in blocks that do not dominate the latch block, but (since their
392 // uses occur in the predecessor block, not the block the PHI lives in) should
393 // still use the post-inc value. Check for this case now.
394 PHINode *PN = dyn_cast<PHINode>(User);
395 if (!PN) return false; // not a phi, not dominated by latch block.
397 // Look at all of the uses of IV by the PHI node. If any use corresponds to
398 // a block that is not dominated by the latch block, give up and use the
399 // preincremented value.
400 unsigned NumUses = 0;
401 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
402 if (PN->getIncomingValue(i) == IV) {
403 ++NumUses;
404 if (!DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
405 return false;
408 // Okay, all uses of IV by PN are in predecessor blocks that really are
409 // dominated by the latch block. Split the critical edges and use the
410 // post-incremented value.
411 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
412 if (PN->getIncomingValue(i) == IV) {
413 SplitCriticalEdge(PN->getIncomingBlock(i), PN->getParent(), P, false);
414 // Splitting the critical edge can reduce the number of entries in this
415 // PHI.
416 e = PN->getNumIncomingValues();
417 if (--NumUses == 0) break;
420 // PHI node might have become a constant value after SplitCriticalEdge.
421 DeadInsts.push_back(User);
423 return true;
426 /// isAddressUse - Returns true if the specified instruction is using the
427 /// specified value as an address.
428 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
429 bool isAddress = isa<LoadInst>(Inst);
430 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
431 if (SI->getOperand(1) == OperandVal)
432 isAddress = true;
433 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
434 // Addressing modes can also be folded into prefetches and a variety
435 // of intrinsics.
436 switch (II->getIntrinsicID()) {
437 default: break;
438 case Intrinsic::prefetch:
439 case Intrinsic::x86_sse2_loadu_dq:
440 case Intrinsic::x86_sse2_loadu_pd:
441 case Intrinsic::x86_sse_loadu_ps:
442 case Intrinsic::x86_sse_storeu_ps:
443 case Intrinsic::x86_sse2_storeu_pd:
444 case Intrinsic::x86_sse2_storeu_dq:
445 case Intrinsic::x86_sse2_storel_dq:
446 if (II->getOperand(1) == OperandVal)
447 isAddress = true;
448 break;
451 return isAddress;
454 /// getAccessType - Return the type of the memory being accessed.
455 static const Type *getAccessType(const Instruction *Inst) {
456 const Type *UseTy = Inst->getType();
457 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
458 UseTy = SI->getOperand(0)->getType();
459 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
460 // Addressing modes can also be folded into prefetches and a variety
461 // of intrinsics.
462 switch (II->getIntrinsicID()) {
463 default: break;
464 case Intrinsic::x86_sse_storeu_ps:
465 case Intrinsic::x86_sse2_storeu_pd:
466 case Intrinsic::x86_sse2_storeu_dq:
467 case Intrinsic::x86_sse2_storel_dq:
468 UseTy = II->getOperand(1)->getType();
469 break;
472 return UseTy;
475 /// AddUsersIfInteresting - Inspect the specified instruction. If it is a
476 /// reducible SCEV, recursively add its users to the IVUsesByStride set and
477 /// return true. Otherwise, return false.
478 bool LoopStrengthReduce::AddUsersIfInteresting(Instruction *I, Loop *L,
479 SmallPtrSet<Instruction*,16> &Processed) {
480 if (!SE->isSCEVable(I->getType()))
481 return false; // Void and FP expressions cannot be reduced.
483 // LSR is not APInt clean, do not touch integers bigger than 64-bits.
484 if (SE->getTypeSizeInBits(I->getType()) > 64)
485 return false;
487 if (!Processed.insert(I))
488 return true; // Instruction already handled.
490 // Get the symbolic expression for this instruction.
491 SCEVHandle ISE = SE->getSCEV(I);
492 if (isa<SCEVCouldNotCompute>(ISE)) return false;
494 // Get the start and stride for this expression.
495 SCEVHandle Start = SE->getIntegerSCEV(0, ISE->getType());
496 SCEVHandle Stride = Start;
497 if (!getSCEVStartAndStride(ISE, L, Start, Stride, SE, DT))
498 return false; // Non-reducible symbolic expression, bail out.
500 std::vector<Instruction *> IUsers;
501 // Collect all I uses now because IVUseShouldUsePostIncValue may
502 // invalidate use_iterator.
503 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
504 IUsers.push_back(cast<Instruction>(*UI));
506 for (unsigned iused_index = 0, iused_size = IUsers.size();
507 iused_index != iused_size; ++iused_index) {
509 Instruction *User = IUsers[iused_index];
511 // Do not infinitely recurse on PHI nodes.
512 if (isa<PHINode>(User) && Processed.count(User))
513 continue;
515 // Descend recursively, but not into PHI nodes outside the current loop.
516 // It's important to see the entire expression outside the loop to get
517 // choices that depend on addressing mode use right, although we won't
518 // consider references ouside the loop in all cases.
519 // If User is already in Processed, we don't want to recurse into it again,
520 // but do want to record a second reference in the same instruction.
521 bool AddUserToIVUsers = false;
522 if (LI->getLoopFor(User->getParent()) != L) {
523 if (isa<PHINode>(User) || Processed.count(User) ||
524 !AddUsersIfInteresting(User, L, Processed)) {
525 DOUT << "FOUND USER in other loop: " << *User
526 << " OF SCEV: " << *ISE << "\n";
527 AddUserToIVUsers = true;
529 } else if (Processed.count(User) ||
530 !AddUsersIfInteresting(User, L, Processed)) {
531 DOUT << "FOUND USER: " << *User
532 << " OF SCEV: " << *ISE << "\n";
533 AddUserToIVUsers = true;
536 if (AddUserToIVUsers) {
537 IVUsersOfOneStride &StrideUses = IVUsesByStride[Stride];
538 if (StrideUses.Users.empty()) // First occurrence of this stride?
539 StrideOrder.push_back(Stride);
541 // Okay, we found a user that we cannot reduce. Analyze the instruction
542 // and decide what to do with it. If we are a use inside of the loop, use
543 // the value before incrementation, otherwise use it after incrementation.
544 if (IVUseShouldUsePostIncValue(User, I, L, DT, this, DeadInsts)) {
545 // The value used will be incremented by the stride more than we are
546 // expecting, so subtract this off.
547 SCEVHandle NewStart = SE->getMinusSCEV(Start, Stride);
548 StrideUses.addUser(NewStart, User, I);
549 StrideUses.Users.back().isUseOfPostIncrementedValue = true;
550 DOUT << " USING POSTINC SCEV, START=" << *NewStart<< "\n";
551 } else {
552 StrideUses.addUser(Start, User, I);
556 return true;
559 namespace {
560 /// BasedUser - For a particular base value, keep information about how we've
561 /// partitioned the expression so far.
562 struct BasedUser {
563 /// SE - The current ScalarEvolution object.
564 ScalarEvolution *SE;
566 /// Base - The Base value for the PHI node that needs to be inserted for
567 /// this use. As the use is processed, information gets moved from this
568 /// field to the Imm field (below). BasedUser values are sorted by this
569 /// field.
570 SCEVHandle Base;
572 /// Inst - The instruction using the induction variable.
573 Instruction *Inst;
575 /// OperandValToReplace - The operand value of Inst to replace with the
576 /// EmittedBase.
577 Value *OperandValToReplace;
579 /// Imm - The immediate value that should be added to the base immediately
580 /// before Inst, because it will be folded into the imm field of the
581 /// instruction. This is also sometimes used for loop-variant values that
582 /// must be added inside the loop.
583 SCEVHandle Imm;
585 /// Phi - The induction variable that performs the striding that
586 /// should be used for this user.
587 PHINode *Phi;
589 // isUseOfPostIncrementedValue - True if this should use the
590 // post-incremented version of this IV, not the preincremented version.
591 // This can only be set in special cases, such as the terminating setcc
592 // instruction for a loop and uses outside the loop that are dominated by
593 // the loop.
594 bool isUseOfPostIncrementedValue;
596 BasedUser(IVStrideUse &IVSU, ScalarEvolution *se)
597 : SE(se), Base(IVSU.Offset), Inst(IVSU.User),
598 OperandValToReplace(IVSU.OperandValToReplace),
599 Imm(SE->getIntegerSCEV(0, Base->getType())),
600 isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue) {}
602 // Once we rewrite the code to insert the new IVs we want, update the
603 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
604 // to it.
605 void RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
606 Instruction *InsertPt,
607 SCEVExpander &Rewriter, Loop *L, Pass *P,
608 SmallVectorImpl<Instruction*> &DeadInsts);
610 Value *InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
611 const Type *Ty,
612 SCEVExpander &Rewriter,
613 Instruction *IP, Loop *L);
614 void dump() const;
618 void BasedUser::dump() const {
619 cerr << " Base=" << *Base;
620 cerr << " Imm=" << *Imm;
621 cerr << " Inst: " << *Inst;
624 Value *BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
625 const Type *Ty,
626 SCEVExpander &Rewriter,
627 Instruction *IP, Loop *L) {
628 // Figure out where we *really* want to insert this code. In particular, if
629 // the user is inside of a loop that is nested inside of L, we really don't
630 // want to insert this expression before the user, we'd rather pull it out as
631 // many loops as possible.
632 LoopInfo &LI = Rewriter.getLoopInfo();
633 Instruction *BaseInsertPt = IP;
635 // Figure out the most-nested loop that IP is in.
636 Loop *InsertLoop = LI.getLoopFor(IP->getParent());
638 // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
639 // the preheader of the outer-most loop where NewBase is not loop invariant.
640 if (L->contains(IP->getParent()))
641 while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) {
642 BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator();
643 InsertLoop = InsertLoop->getParentLoop();
646 Value *Base = Rewriter.expandCodeFor(NewBase, Ty, BaseInsertPt);
648 // If there is no immediate value, skip the next part.
649 if (Imm->isZero())
650 return Base;
652 // If we are inserting the base and imm values in the same block, make sure to
653 // adjust the IP position if insertion reused a result.
654 if (IP == BaseInsertPt)
655 IP = Rewriter.getInsertionPoint();
657 // Always emit the immediate (if non-zero) into the same block as the user.
658 SCEVHandle NewValSCEV = SE->getAddExpr(SE->getUnknown(Base), Imm);
659 return Rewriter.expandCodeFor(NewValSCEV, Ty, IP);
663 // Once we rewrite the code to insert the new IVs we want, update the
664 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
665 // to it. NewBasePt is the last instruction which contributes to the
666 // value of NewBase in the case that it's a diffferent instruction from
667 // the PHI that NewBase is computed from, or null otherwise.
669 void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
670 Instruction *NewBasePt,
671 SCEVExpander &Rewriter, Loop *L, Pass *P,
672 SmallVectorImpl<Instruction*> &DeadInsts){
673 if (!isa<PHINode>(Inst)) {
674 // By default, insert code at the user instruction.
675 BasicBlock::iterator InsertPt = Inst;
677 // However, if the Operand is itself an instruction, the (potentially
678 // complex) inserted code may be shared by many users. Because of this, we
679 // want to emit code for the computation of the operand right before its old
680 // computation. This is usually safe, because we obviously used to use the
681 // computation when it was computed in its current block. However, in some
682 // cases (e.g. use of a post-incremented induction variable) the NewBase
683 // value will be pinned to live somewhere after the original computation.
684 // In this case, we have to back off.
686 // If this is a use outside the loop (which means after, since it is based
687 // on a loop indvar) we use the post-incremented value, so that we don't
688 // artificially make the preinc value live out the bottom of the loop.
689 if (!isUseOfPostIncrementedValue && L->contains(Inst->getParent())) {
690 if (NewBasePt && isa<PHINode>(OperandValToReplace)) {
691 InsertPt = NewBasePt;
692 ++InsertPt;
693 } else if (Instruction *OpInst
694 = dyn_cast<Instruction>(OperandValToReplace)) {
695 InsertPt = OpInst;
696 while (isa<PHINode>(InsertPt)) ++InsertPt;
699 Value *NewVal = InsertCodeForBaseAtPosition(NewBase,
700 OperandValToReplace->getType(),
701 Rewriter, InsertPt, L);
702 // Replace the use of the operand Value with the new Phi we just created.
703 Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
705 DOUT << " Replacing with ";
706 DEBUG(WriteAsOperand(*DOUT, NewVal, /*PrintType=*/false));
707 DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n";
708 return;
711 // PHI nodes are more complex. We have to insert one copy of the NewBase+Imm
712 // expression into each operand block that uses it. Note that PHI nodes can
713 // have multiple entries for the same predecessor. We use a map to make sure
714 // that a PHI node only has a single Value* for each predecessor (which also
715 // prevents us from inserting duplicate code in some blocks).
716 DenseMap<BasicBlock*, Value*> InsertedCode;
717 PHINode *PN = cast<PHINode>(Inst);
718 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
719 if (PN->getIncomingValue(i) == OperandValToReplace) {
720 // If the original expression is outside the loop, put the replacement
721 // code in the same place as the original expression,
722 // which need not be an immediate predecessor of this PHI. This way we
723 // need only one copy of it even if it is referenced multiple times in
724 // the PHI. We don't do this when the original expression is inside the
725 // loop because multiple copies sometimes do useful sinking of code in
726 // that case(?).
727 Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
728 if (L->contains(OldLoc->getParent())) {
729 // If this is a critical edge, split the edge so that we do not insert
730 // the code on all predecessor/successor paths. We do this unless this
731 // is the canonical backedge for this loop, as this can make some
732 // inserted code be in an illegal position.
733 BasicBlock *PHIPred = PN->getIncomingBlock(i);
734 if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
735 (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
737 // First step, split the critical edge.
738 SplitCriticalEdge(PHIPred, PN->getParent(), P, false);
740 // Next step: move the basic block. In particular, if the PHI node
741 // is outside of the loop, and PredTI is in the loop, we want to
742 // move the block to be immediately before the PHI block, not
743 // immediately after PredTI.
744 if (L->contains(PHIPred) && !L->contains(PN->getParent())) {
745 BasicBlock *NewBB = PN->getIncomingBlock(i);
746 NewBB->moveBefore(PN->getParent());
749 // Splitting the edge can reduce the number of PHI entries we have.
750 e = PN->getNumIncomingValues();
753 Value *&Code = InsertedCode[PN->getIncomingBlock(i)];
754 if (!Code) {
755 // Insert the code into the end of the predecessor block.
756 Instruction *InsertPt = (L->contains(OldLoc->getParent())) ?
757 PN->getIncomingBlock(i)->getTerminator() :
758 OldLoc->getParent()->getTerminator();
759 Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(),
760 Rewriter, InsertPt, L);
762 DOUT << " Changing PHI use to ";
763 DEBUG(WriteAsOperand(*DOUT, Code, /*PrintType=*/false));
764 DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n";
767 // Replace the use of the operand Value with the new Phi we just created.
768 PN->setIncomingValue(i, Code);
769 Rewriter.clear();
773 // PHI node might have become a constant value after SplitCriticalEdge.
774 DeadInsts.push_back(Inst);
778 /// fitsInAddressMode - Return true if V can be subsumed within an addressing
779 /// mode, and does not need to be put in a register first.
780 static bool fitsInAddressMode(const SCEVHandle &V, const Type *UseTy,
781 const TargetLowering *TLI, bool HasBaseReg) {
782 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
783 int64_t VC = SC->getValue()->getSExtValue();
784 if (TLI) {
785 TargetLowering::AddrMode AM;
786 AM.BaseOffs = VC;
787 AM.HasBaseReg = HasBaseReg;
788 return TLI->isLegalAddressingMode(AM, UseTy);
789 } else {
790 // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
791 return (VC > -(1 << 16) && VC < (1 << 16)-1);
795 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
796 if (GlobalValue *GV = dyn_cast<GlobalValue>(SU->getValue())) {
797 TargetLowering::AddrMode AM;
798 AM.BaseGV = GV;
799 AM.HasBaseReg = HasBaseReg;
800 return TLI->isLegalAddressingMode(AM, UseTy);
803 return false;
806 /// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
807 /// loop varying to the Imm operand.
808 static void MoveLoopVariantsToImmediateField(SCEVHandle &Val, SCEVHandle &Imm,
809 Loop *L, ScalarEvolution *SE) {
810 if (Val->isLoopInvariant(L)) return; // Nothing to do.
812 if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
813 std::vector<SCEVHandle> NewOps;
814 NewOps.reserve(SAE->getNumOperands());
816 for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
817 if (!SAE->getOperand(i)->isLoopInvariant(L)) {
818 // If this is a loop-variant expression, it must stay in the immediate
819 // field of the expression.
820 Imm = SE->getAddExpr(Imm, SAE->getOperand(i));
821 } else {
822 NewOps.push_back(SAE->getOperand(i));
825 if (NewOps.empty())
826 Val = SE->getIntegerSCEV(0, Val->getType());
827 else
828 Val = SE->getAddExpr(NewOps);
829 } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
830 // Try to pull immediates out of the start value of nested addrec's.
831 SCEVHandle Start = SARE->getStart();
832 MoveLoopVariantsToImmediateField(Start, Imm, L, SE);
834 std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
835 Ops[0] = Start;
836 Val = SE->getAddRecExpr(Ops, SARE->getLoop());
837 } else {
838 // Otherwise, all of Val is variant, move the whole thing over.
839 Imm = SE->getAddExpr(Imm, Val);
840 Val = SE->getIntegerSCEV(0, Val->getType());
845 /// MoveImmediateValues - Look at Val, and pull out any additions of constants
846 /// that can fit into the immediate field of instructions in the target.
847 /// Accumulate these immediate values into the Imm value.
848 static void MoveImmediateValues(const TargetLowering *TLI,
849 const Type *UseTy,
850 SCEVHandle &Val, SCEVHandle &Imm,
851 bool isAddress, Loop *L,
852 ScalarEvolution *SE) {
853 if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
854 std::vector<SCEVHandle> NewOps;
855 NewOps.reserve(SAE->getNumOperands());
857 for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
858 SCEVHandle NewOp = SAE->getOperand(i);
859 MoveImmediateValues(TLI, UseTy, NewOp, Imm, isAddress, L, SE);
861 if (!NewOp->isLoopInvariant(L)) {
862 // If this is a loop-variant expression, it must stay in the immediate
863 // field of the expression.
864 Imm = SE->getAddExpr(Imm, NewOp);
865 } else {
866 NewOps.push_back(NewOp);
870 if (NewOps.empty())
871 Val = SE->getIntegerSCEV(0, Val->getType());
872 else
873 Val = SE->getAddExpr(NewOps);
874 return;
875 } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
876 // Try to pull immediates out of the start value of nested addrec's.
877 SCEVHandle Start = SARE->getStart();
878 MoveImmediateValues(TLI, UseTy, Start, Imm, isAddress, L, SE);
880 if (Start != SARE->getStart()) {
881 std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
882 Ops[0] = Start;
883 Val = SE->getAddRecExpr(Ops, SARE->getLoop());
885 return;
886 } else if (const SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
887 // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
888 if (isAddress && fitsInAddressMode(SME->getOperand(0), UseTy, TLI, false) &&
889 SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {
891 SCEVHandle SubImm = SE->getIntegerSCEV(0, Val->getType());
892 SCEVHandle NewOp = SME->getOperand(1);
893 MoveImmediateValues(TLI, UseTy, NewOp, SubImm, isAddress, L, SE);
895 // If we extracted something out of the subexpressions, see if we can
896 // simplify this!
897 if (NewOp != SME->getOperand(1)) {
898 // Scale SubImm up by "8". If the result is a target constant, we are
899 // good.
900 SubImm = SE->getMulExpr(SubImm, SME->getOperand(0));
901 if (fitsInAddressMode(SubImm, UseTy, TLI, false)) {
902 // Accumulate the immediate.
903 Imm = SE->getAddExpr(Imm, SubImm);
905 // Update what is left of 'Val'.
906 Val = SE->getMulExpr(SME->getOperand(0), NewOp);
907 return;
913 // Loop-variant expressions must stay in the immediate field of the
914 // expression.
915 if ((isAddress && fitsInAddressMode(Val, UseTy, TLI, false)) ||
916 !Val->isLoopInvariant(L)) {
917 Imm = SE->getAddExpr(Imm, Val);
918 Val = SE->getIntegerSCEV(0, Val->getType());
919 return;
922 // Otherwise, no immediates to move.
925 static void MoveImmediateValues(const TargetLowering *TLI,
926 Instruction *User,
927 SCEVHandle &Val, SCEVHandle &Imm,
928 bool isAddress, Loop *L,
929 ScalarEvolution *SE) {
930 const Type *UseTy = getAccessType(User);
931 MoveImmediateValues(TLI, UseTy, Val, Imm, isAddress, L, SE);
934 /// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
935 /// added together. This is used to reassociate common addition subexprs
936 /// together for maximal sharing when rewriting bases.
937 static void SeparateSubExprs(std::vector<SCEVHandle> &SubExprs,
938 SCEVHandle Expr,
939 ScalarEvolution *SE) {
940 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
941 for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
942 SeparateSubExprs(SubExprs, AE->getOperand(j), SE);
943 } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
944 SCEVHandle Zero = SE->getIntegerSCEV(0, Expr->getType());
945 if (SARE->getOperand(0) == Zero) {
946 SubExprs.push_back(Expr);
947 } else {
948 // Compute the addrec with zero as its base.
949 std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
950 Ops[0] = Zero; // Start with zero base.
951 SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop()));
954 SeparateSubExprs(SubExprs, SARE->getOperand(0), SE);
956 } else if (!Expr->isZero()) {
957 // Do not add zero.
958 SubExprs.push_back(Expr);
962 // This is logically local to the following function, but C++ says we have
963 // to make it file scope.
964 struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
966 /// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
967 /// the Uses, removing any common subexpressions, except that if all such
968 /// subexpressions can be folded into an addressing mode for all uses inside
969 /// the loop (this case is referred to as "free" in comments herein) we do
970 /// not remove anything. This looks for things like (a+b+c) and
971 /// (a+c+d) and computes the common (a+c) subexpression. The common expression
972 /// is *removed* from the Bases and returned.
973 static SCEVHandle
974 RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
975 ScalarEvolution *SE, Loop *L,
976 const TargetLowering *TLI) {
977 unsigned NumUses = Uses.size();
979 // Only one use? This is a very common case, so we handle it specially and
980 // cheaply.
981 SCEVHandle Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
982 SCEVHandle Result = Zero;
983 SCEVHandle FreeResult = Zero;
984 if (NumUses == 1) {
985 // If the use is inside the loop, use its base, regardless of what it is:
986 // it is clearly shared across all the IV's. If the use is outside the loop
987 // (which means after it) we don't want to factor anything *into* the loop,
988 // so just use 0 as the base.
989 if (L->contains(Uses[0].Inst->getParent()))
990 std::swap(Result, Uses[0].Base);
991 return Result;
994 // To find common subexpressions, count how many of Uses use each expression.
995 // If any subexpressions are used Uses.size() times, they are common.
996 // Also track whether all uses of each expression can be moved into an
997 // an addressing mode "for free"; such expressions are left within the loop.
998 // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
999 std::map<SCEVHandle, SubExprUseData> SubExpressionUseData;
1001 // UniqueSubExprs - Keep track of all of the subexpressions we see in the
1002 // order we see them.
1003 std::vector<SCEVHandle> UniqueSubExprs;
1005 std::vector<SCEVHandle> SubExprs;
1006 unsigned NumUsesInsideLoop = 0;
1007 for (unsigned i = 0; i != NumUses; ++i) {
1008 // If the user is outside the loop, just ignore it for base computation.
1009 // Since the user is outside the loop, it must be *after* the loop (if it
1010 // were before, it could not be based on the loop IV). We don't want users
1011 // after the loop to affect base computation of values *inside* the loop,
1012 // because we can always add their offsets to the result IV after the loop
1013 // is done, ensuring we get good code inside the loop.
1014 if (!L->contains(Uses[i].Inst->getParent()))
1015 continue;
1016 NumUsesInsideLoop++;
1018 // If the base is zero (which is common), return zero now, there are no
1019 // CSEs we can find.
1020 if (Uses[i].Base == Zero) return Zero;
1022 // If this use is as an address we may be able to put CSEs in the addressing
1023 // mode rather than hoisting them.
1024 bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace);
1025 // We may need the UseTy below, but only when isAddrUse, so compute it
1026 // only in that case.
1027 const Type *UseTy = 0;
1028 if (isAddrUse)
1029 UseTy = getAccessType(Uses[i].Inst);
1031 // Split the expression into subexprs.
1032 SeparateSubExprs(SubExprs, Uses[i].Base, SE);
1033 // Add one to SubExpressionUseData.Count for each subexpr present, and
1034 // if the subexpr is not a valid immediate within an addressing mode use,
1035 // set SubExpressionUseData.notAllUsesAreFree. We definitely want to
1036 // hoist these out of the loop (if they are common to all uses).
1037 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
1038 if (++SubExpressionUseData[SubExprs[j]].Count == 1)
1039 UniqueSubExprs.push_back(SubExprs[j]);
1040 if (!isAddrUse || !fitsInAddressMode(SubExprs[j], UseTy, TLI, false))
1041 SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true;
1043 SubExprs.clear();
1046 // Now that we know how many times each is used, build Result. Iterate over
1047 // UniqueSubexprs so that we have a stable ordering.
1048 for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
1049 std::map<SCEVHandle, SubExprUseData>::iterator I =
1050 SubExpressionUseData.find(UniqueSubExprs[i]);
1051 assert(I != SubExpressionUseData.end() && "Entry not found?");
1052 if (I->second.Count == NumUsesInsideLoop) { // Found CSE!
1053 if (I->second.notAllUsesAreFree)
1054 Result = SE->getAddExpr(Result, I->first);
1055 else
1056 FreeResult = SE->getAddExpr(FreeResult, I->first);
1057 } else
1058 // Remove non-cse's from SubExpressionUseData.
1059 SubExpressionUseData.erase(I);
1062 if (FreeResult != Zero) {
1063 // We have some subexpressions that can be subsumed into addressing
1064 // modes in every use inside the loop. However, it's possible that
1065 // there are so many of them that the combined FreeResult cannot
1066 // be subsumed, or that the target cannot handle both a FreeResult
1067 // and a Result in the same instruction (for example because it would
1068 // require too many registers). Check this.
1069 for (unsigned i=0; i<NumUses; ++i) {
1070 if (!L->contains(Uses[i].Inst->getParent()))
1071 continue;
1072 // We know this is an addressing mode use; if there are any uses that
1073 // are not, FreeResult would be Zero.
1074 const Type *UseTy = getAccessType(Uses[i].Inst);
1075 if (!fitsInAddressMode(FreeResult, UseTy, TLI, Result!=Zero)) {
1076 // FIXME: could split up FreeResult into pieces here, some hoisted
1077 // and some not. There is no obvious advantage to this.
1078 Result = SE->getAddExpr(Result, FreeResult);
1079 FreeResult = Zero;
1080 break;
1085 // If we found no CSE's, return now.
1086 if (Result == Zero) return Result;
1088 // If we still have a FreeResult, remove its subexpressions from
1089 // SubExpressionUseData. This means they will remain in the use Bases.
1090 if (FreeResult != Zero) {
1091 SeparateSubExprs(SubExprs, FreeResult, SE);
1092 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
1093 std::map<SCEVHandle, SubExprUseData>::iterator I =
1094 SubExpressionUseData.find(SubExprs[j]);
1095 SubExpressionUseData.erase(I);
1097 SubExprs.clear();
1100 // Otherwise, remove all of the CSE's we found from each of the base values.
1101 for (unsigned i = 0; i != NumUses; ++i) {
1102 // Uses outside the loop don't necessarily include the common base, but
1103 // the final IV value coming into those uses does. Instead of trying to
1104 // remove the pieces of the common base, which might not be there,
1105 // subtract off the base to compensate for this.
1106 if (!L->contains(Uses[i].Inst->getParent())) {
1107 Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result);
1108 continue;
1111 // Split the expression into subexprs.
1112 SeparateSubExprs(SubExprs, Uses[i].Base, SE);
1114 // Remove any common subexpressions.
1115 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
1116 if (SubExpressionUseData.count(SubExprs[j])) {
1117 SubExprs.erase(SubExprs.begin()+j);
1118 --j; --e;
1121 // Finally, add the non-shared expressions together.
1122 if (SubExprs.empty())
1123 Uses[i].Base = Zero;
1124 else
1125 Uses[i].Base = SE->getAddExpr(SubExprs);
1126 SubExprs.clear();
1129 return Result;
1132 /// ValidStride - Check whether the given Scale is valid for all loads and
1133 /// stores in UsersToProcess.
1135 bool LoopStrengthReduce::ValidStride(bool HasBaseReg,
1136 int64_t Scale,
1137 const std::vector<BasedUser>& UsersToProcess) {
1138 if (!TLI)
1139 return true;
1141 for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
1142 // If this is a load or other access, pass the type of the access in.
1143 const Type *AccessTy = Type::VoidTy;
1144 if (isAddressUse(UsersToProcess[i].Inst,
1145 UsersToProcess[i].OperandValToReplace))
1146 AccessTy = getAccessType(UsersToProcess[i].Inst);
1147 else if (isa<PHINode>(UsersToProcess[i].Inst))
1148 continue;
1150 TargetLowering::AddrMode AM;
1151 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
1152 AM.BaseOffs = SC->getValue()->getSExtValue();
1153 AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
1154 AM.Scale = Scale;
1156 // If load[imm+r*scale] is illegal, bail out.
1157 if (!TLI->isLegalAddressingMode(AM, AccessTy))
1158 return false;
1160 return true;
1163 /// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
1164 /// a nop.
1165 bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
1166 const Type *Ty2) {
1167 if (Ty1 == Ty2)
1168 return false;
1169 if (SE->getEffectiveSCEVType(Ty1) == SE->getEffectiveSCEVType(Ty2))
1170 return false;
1171 if (Ty1->canLosslesslyBitCastTo(Ty2))
1172 return false;
1173 if (TLI && TLI->isTruncateFree(Ty1, Ty2))
1174 return false;
1175 return true;
1178 /// CheckForIVReuse - Returns the multiple if the stride is the multiple
1179 /// of a previous stride and it is a legal value for the target addressing
1180 /// mode scale component and optional base reg. This allows the users of
1181 /// this stride to be rewritten as prev iv * factor. It returns 0 if no
1182 /// reuse is possible. Factors can be negative on same targets, e.g. ARM.
1184 /// If all uses are outside the loop, we don't require that all multiplies
1185 /// be folded into the addressing mode, nor even that the factor be constant;
1186 /// a multiply (executed once) outside the loop is better than another IV
1187 /// within. Well, usually.
1188 SCEVHandle LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
1189 bool AllUsesAreAddresses,
1190 bool AllUsesAreOutsideLoop,
1191 const SCEVHandle &Stride,
1192 IVExpr &IV, const Type *Ty,
1193 const std::vector<BasedUser>& UsersToProcess) {
1194 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
1195 int64_t SInt = SC->getValue()->getSExtValue();
1196 for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e;
1197 ++NewStride) {
1198 std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
1199 IVsByStride.find(StrideOrder[NewStride]);
1200 if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
1201 continue;
1202 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1203 if (SI->first != Stride &&
1204 (unsigned(abs(SInt)) < SSInt || (SInt % SSInt) != 0))
1205 continue;
1206 int64_t Scale = SInt / SSInt;
1207 // Check that this stride is valid for all the types used for loads and
1208 // stores; if it can be used for some and not others, we might as well use
1209 // the original stride everywhere, since we have to create the IV for it
1210 // anyway. If the scale is 1, then we don't need to worry about folding
1211 // multiplications.
1212 if (Scale == 1 ||
1213 (AllUsesAreAddresses &&
1214 ValidStride(HasBaseReg, Scale, UsersToProcess)))
1215 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1216 IE = SI->second.IVs.end(); II != IE; ++II)
1217 // FIXME: Only handle base == 0 for now.
1218 // Only reuse previous IV if it would not require a type conversion.
1219 if (II->Base->isZero() &&
1220 !RequiresTypeConversion(II->Base->getType(), Ty)) {
1221 IV = *II;
1222 return SE->getIntegerSCEV(Scale, Stride->getType());
1225 } else if (AllUsesAreOutsideLoop) {
1226 // Accept nonconstant strides here; it is really really right to substitute
1227 // an existing IV if we can.
1228 for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e;
1229 ++NewStride) {
1230 std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
1231 IVsByStride.find(StrideOrder[NewStride]);
1232 if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
1233 continue;
1234 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
1235 if (SI->first != Stride && SSInt != 1)
1236 continue;
1237 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1238 IE = SI->second.IVs.end(); II != IE; ++II)
1239 // Accept nonzero base here.
1240 // Only reuse previous IV if it would not require a type conversion.
1241 if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
1242 IV = *II;
1243 return Stride;
1246 // Special case, old IV is -1*x and this one is x. Can treat this one as
1247 // -1*old.
1248 for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e;
1249 ++NewStride) {
1250 std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
1251 IVsByStride.find(StrideOrder[NewStride]);
1252 if (SI == IVsByStride.end())
1253 continue;
1254 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first))
1255 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0)))
1256 if (Stride == ME->getOperand(1) &&
1257 SC->getValue()->getSExtValue() == -1LL)
1258 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
1259 IE = SI->second.IVs.end(); II != IE; ++II)
1260 // Accept nonzero base here.
1261 // Only reuse previous IV if it would not require type conversion.
1262 if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
1263 IV = *II;
1264 return SE->getIntegerSCEV(-1LL, Stride->getType());
1268 return SE->getIntegerSCEV(0, Stride->getType());
1271 /// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
1272 /// returns true if Val's isUseOfPostIncrementedValue is true.
1273 static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
1274 return Val.isUseOfPostIncrementedValue;
1277 /// isNonConstantNegative - Return true if the specified scev is negated, but
1278 /// not a constant.
1279 static bool isNonConstantNegative(const SCEVHandle &Expr) {
1280 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
1281 if (!Mul) return false;
1283 // If there is a constant factor, it will be first.
1284 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
1285 if (!SC) return false;
1287 // Return true if the value is negative, this matches things like (-42 * V).
1288 return SC->getValue()->getValue().isNegative();
1291 // CollectIVUsers - Transform our list of users and offsets to a bit more
1292 // complex table. In this new vector, each 'BasedUser' contains 'Base', the base
1293 // of the strided accesses, as well as the old information from Uses. We
1294 // progressively move information from the Base field to the Imm field, until
1295 // we eventually have the full access expression to rewrite the use.
1296 SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride,
1297 IVUsersOfOneStride &Uses,
1298 Loop *L,
1299 bool &AllUsesAreAddresses,
1300 bool &AllUsesAreOutsideLoop,
1301 std::vector<BasedUser> &UsersToProcess) {
1302 UsersToProcess.reserve(Uses.Users.size());
1303 for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i) {
1304 UsersToProcess.push_back(BasedUser(Uses.Users[i], SE));
1306 // Move any loop variant operands from the offset field to the immediate
1307 // field of the use, so that we don't try to use something before it is
1308 // computed.
1309 MoveLoopVariantsToImmediateField(UsersToProcess.back().Base,
1310 UsersToProcess.back().Imm, L, SE);
1311 assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
1312 "Base value is not loop invariant!");
1315 // We now have a whole bunch of uses of like-strided induction variables, but
1316 // they might all have different bases. We want to emit one PHI node for this
1317 // stride which we fold as many common expressions (between the IVs) into as
1318 // possible. Start by identifying the common expressions in the base values
1319 // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
1320 // "A+B"), emit it to the preheader, then remove the expression from the
1321 // UsersToProcess base values.
1322 SCEVHandle CommonExprs =
1323 RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI);
1325 // Next, figure out what we can represent in the immediate fields of
1326 // instructions. If we can represent anything there, move it to the imm
1327 // fields of the BasedUsers. We do this so that it increases the commonality
1328 // of the remaining uses.
1329 unsigned NumPHI = 0;
1330 bool HasAddress = false;
1331 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1332 // If the user is not in the current loop, this means it is using the exit
1333 // value of the IV. Do not put anything in the base, make sure it's all in
1334 // the immediate field to allow as much factoring as possible.
1335 if (!L->contains(UsersToProcess[i].Inst->getParent())) {
1336 UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm,
1337 UsersToProcess[i].Base);
1338 UsersToProcess[i].Base =
1339 SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
1340 } else {
1341 // Not all uses are outside the loop.
1342 AllUsesAreOutsideLoop = false;
1344 // Addressing modes can be folded into loads and stores. Be careful that
1345 // the store is through the expression, not of the expression though.
1346 bool isPHI = false;
1347 bool isAddress = isAddressUse(UsersToProcess[i].Inst,
1348 UsersToProcess[i].OperandValToReplace);
1349 if (isa<PHINode>(UsersToProcess[i].Inst)) {
1350 isPHI = true;
1351 ++NumPHI;
1354 if (isAddress)
1355 HasAddress = true;
1357 // If this use isn't an address, then not all uses are addresses.
1358 if (!isAddress && !isPHI)
1359 AllUsesAreAddresses = false;
1361 MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base,
1362 UsersToProcess[i].Imm, isAddress, L, SE);
1366 // If one of the use is a PHI node and all other uses are addresses, still
1367 // allow iv reuse. Essentially we are trading one constant multiplication
1368 // for one fewer iv.
1369 if (NumPHI > 1)
1370 AllUsesAreAddresses = false;
1372 // There are no in-loop address uses.
1373 if (AllUsesAreAddresses && (!HasAddress && !AllUsesAreOutsideLoop))
1374 AllUsesAreAddresses = false;
1376 return CommonExprs;
1379 /// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction
1380 /// is valid and profitable for the given set of users of a stride. In
1381 /// full strength-reduction mode, all addresses at the current stride are
1382 /// strength-reduced all the way down to pointer arithmetic.
1384 bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
1385 const std::vector<BasedUser> &UsersToProcess,
1386 const Loop *L,
1387 bool AllUsesAreAddresses,
1388 SCEVHandle Stride) {
1389 if (!EnableFullLSRMode)
1390 return false;
1392 // The heuristics below aim to avoid increasing register pressure, but
1393 // fully strength-reducing all the addresses increases the number of
1394 // add instructions, so don't do this when optimizing for size.
1395 // TODO: If the loop is large, the savings due to simpler addresses
1396 // may oughtweight the costs of the extra increment instructions.
1397 if (L->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize))
1398 return false;
1400 // TODO: For now, don't do full strength reduction if there could
1401 // potentially be greater-stride multiples of the current stride
1402 // which could reuse the current stride IV.
1403 if (StrideOrder.back() != Stride)
1404 return false;
1406 // Iterate through the uses to find conditions that automatically rule out
1407 // full-lsr mode.
1408 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
1409 SCEV *Base = UsersToProcess[i].Base;
1410 SCEV *Imm = UsersToProcess[i].Imm;
1411 // If any users have a loop-variant component, they can't be fully
1412 // strength-reduced.
1413 if (Imm && !Imm->isLoopInvariant(L))
1414 return false;
1415 // If there are to users with the same base and the difference between
1416 // the two Imm values can't be folded into the address, full
1417 // strength reduction would increase register pressure.
1418 do {
1419 SCEV *CurImm = UsersToProcess[i].Imm;
1420 if ((CurImm || Imm) && CurImm != Imm) {
1421 if (!CurImm) CurImm = SE->getIntegerSCEV(0, Stride->getType());
1422 if (!Imm) Imm = SE->getIntegerSCEV(0, Stride->getType());
1423 const Instruction *Inst = UsersToProcess[i].Inst;
1424 const Type *UseTy = getAccessType(Inst);
1425 SCEVHandle Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
1426 if (!Diff->isZero() &&
1427 (!AllUsesAreAddresses ||
1428 !fitsInAddressMode(Diff, UseTy, TLI, /*HasBaseReg=*/true)))
1429 return false;
1431 } while (++i != e && Base == UsersToProcess[i].Base);
1434 // If there's exactly one user in this stride, fully strength-reducing it
1435 // won't increase register pressure. If it's starting from a non-zero base,
1436 // it'll be simpler this way.
1437 if (UsersToProcess.size() == 1 && !UsersToProcess[0].Base->isZero())
1438 return true;
1440 // Otherwise, if there are any users in this stride that don't require
1441 // a register for their base, full strength-reduction will increase
1442 // register pressure.
1443 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1444 if (UsersToProcess[i].Base->isZero())
1445 return false;
1447 // Otherwise, go for it.
1448 return true;
1451 /// InsertAffinePhi Create and insert a PHI node for an induction variable
1452 /// with the specified start and step values in the specified loop.
1454 /// If NegateStride is true, the stride should be negated by using a
1455 /// subtract instead of an add.
1457 /// Return the created phi node.
1459 static PHINode *InsertAffinePhi(SCEVHandle Start, SCEVHandle Step,
1460 const Loop *L,
1461 SCEVExpander &Rewriter) {
1462 assert(Start->isLoopInvariant(L) && "New PHI start is not loop invariant!");
1463 assert(Step->isLoopInvariant(L) && "New PHI stride is not loop invariant!");
1465 BasicBlock *Header = L->getHeader();
1466 BasicBlock *Preheader = L->getLoopPreheader();
1467 BasicBlock *LatchBlock = L->getLoopLatch();
1468 const Type *Ty = Start->getType();
1469 Ty = Rewriter.SE.getEffectiveSCEVType(Ty);
1471 PHINode *PN = PHINode::Create(Ty, "lsr.iv", Header->begin());
1472 PN->addIncoming(Rewriter.expandCodeFor(Start, Ty, Preheader->getTerminator()),
1473 Preheader);
1475 // If the stride is negative, insert a sub instead of an add for the
1476 // increment.
1477 bool isNegative = isNonConstantNegative(Step);
1478 SCEVHandle IncAmount = Step;
1479 if (isNegative)
1480 IncAmount = Rewriter.SE.getNegativeSCEV(Step);
1482 // Insert an add instruction right before the terminator corresponding
1483 // to the back-edge.
1484 Value *StepV = Rewriter.expandCodeFor(IncAmount, Ty,
1485 Preheader->getTerminator());
1486 Instruction *IncV;
1487 if (isNegative) {
1488 IncV = BinaryOperator::CreateSub(PN, StepV, "lsr.iv.next",
1489 LatchBlock->getTerminator());
1490 } else {
1491 IncV = BinaryOperator::CreateAdd(PN, StepV, "lsr.iv.next",
1492 LatchBlock->getTerminator());
1494 if (!isa<ConstantInt>(StepV)) ++NumVariable;
1496 PN->addIncoming(IncV, LatchBlock);
1498 ++NumInserted;
1499 return PN;
1502 static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) {
1503 // We want to emit code for users inside the loop first. To do this, we
1504 // rearrange BasedUser so that the entries at the end have
1505 // isUseOfPostIncrementedValue = false, because we pop off the end of the
1506 // vector (so we handle them first).
1507 std::partition(UsersToProcess.begin(), UsersToProcess.end(),
1508 PartitionByIsUseOfPostIncrementedValue);
1510 // Sort this by base, so that things with the same base are handled
1511 // together. By partitioning first and stable-sorting later, we are
1512 // guaranteed that within each base we will pop off users from within the
1513 // loop before users outside of the loop with a particular base.
1515 // We would like to use stable_sort here, but we can't. The problem is that
1516 // SCEVHandle's don't have a deterministic ordering w.r.t to each other, so
1517 // we don't have anything to do a '<' comparison on. Because we think the
1518 // number of uses is small, do a horrible bubble sort which just relies on
1519 // ==.
1520 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1521 // Get a base value.
1522 SCEVHandle Base = UsersToProcess[i].Base;
1524 // Compact everything with this base to be consecutive with this one.
1525 for (unsigned j = i+1; j != e; ++j) {
1526 if (UsersToProcess[j].Base == Base) {
1527 std::swap(UsersToProcess[i+1], UsersToProcess[j]);
1528 ++i;
1534 /// PrepareToStrengthReduceFully - Prepare to fully strength-reduce
1535 /// UsersToProcess, meaning lowering addresses all the way down to direct
1536 /// pointer arithmetic.
1538 void
1539 LoopStrengthReduce::PrepareToStrengthReduceFully(
1540 std::vector<BasedUser> &UsersToProcess,
1541 SCEVHandle Stride,
1542 SCEVHandle CommonExprs,
1543 const Loop *L,
1544 SCEVExpander &PreheaderRewriter) {
1545 DOUT << " Fully reducing all users\n";
1547 // Rewrite the UsersToProcess records, creating a separate PHI for each
1548 // unique Base value.
1549 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
1550 // TODO: The uses are grouped by base, but not sorted. We arbitrarily
1551 // pick the first Imm value here to start with, and adjust it for the
1552 // other uses.
1553 SCEVHandle Imm = UsersToProcess[i].Imm;
1554 SCEVHandle Base = UsersToProcess[i].Base;
1555 SCEVHandle Start = SE->getAddExpr(CommonExprs, Base, Imm);
1556 PHINode *Phi = InsertAffinePhi(Start, Stride, L,
1557 PreheaderRewriter);
1558 // Loop over all the users with the same base.
1559 do {
1560 UsersToProcess[i].Base = SE->getIntegerSCEV(0, Stride->getType());
1561 UsersToProcess[i].Imm = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
1562 UsersToProcess[i].Phi = Phi;
1563 assert(UsersToProcess[i].Imm->isLoopInvariant(L) &&
1564 "ShouldUseFullStrengthReductionMode should reject this!");
1565 } while (++i != e && Base == UsersToProcess[i].Base);
1569 /// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the
1570 /// given users to share.
1572 void
1573 LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
1574 std::vector<BasedUser> &UsersToProcess,
1575 SCEVHandle Stride,
1576 SCEVHandle CommonExprs,
1577 Value *CommonBaseV,
1578 const Loop *L,
1579 SCEVExpander &PreheaderRewriter) {
1580 DOUT << " Inserting new PHI:\n";
1582 PHINode *Phi = InsertAffinePhi(SE->getUnknown(CommonBaseV),
1583 Stride, L,
1584 PreheaderRewriter);
1586 // Remember this in case a later stride is multiple of this.
1587 IVsByStride[Stride].addIV(Stride, CommonExprs, Phi);
1589 // All the users will share this new IV.
1590 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1591 UsersToProcess[i].Phi = Phi;
1593 DOUT << " IV=";
1594 DEBUG(WriteAsOperand(*DOUT, Phi, /*PrintType=*/false));
1595 DOUT << "\n";
1598 /// PrepareToStrengthReduceWithNewPhi - Prepare for the given users to reuse
1599 /// an induction variable with a stride that is a factor of the current
1600 /// induction variable.
1602 void
1603 LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
1604 std::vector<BasedUser> &UsersToProcess,
1605 Value *CommonBaseV,
1606 const IVExpr &ReuseIV,
1607 Instruction *PreInsertPt) {
1608 DOUT << " Rewriting in terms of existing IV of STRIDE " << *ReuseIV.Stride
1609 << " and BASE " << *ReuseIV.Base << "\n";
1611 // All the users will share the reused IV.
1612 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1613 UsersToProcess[i].Phi = ReuseIV.PHI;
1615 Constant *C = dyn_cast<Constant>(CommonBaseV);
1616 if (C &&
1617 (!C->isNullValue() &&
1618 !fitsInAddressMode(SE->getUnknown(CommonBaseV), CommonBaseV->getType(),
1619 TLI, false)))
1620 // We want the common base emitted into the preheader! This is just
1621 // using cast as a copy so BitCast (no-op cast) is appropriate
1622 CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(),
1623 "commonbase", PreInsertPt);
1626 static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset,
1627 const Type *AccessTy,
1628 std::vector<BasedUser> &UsersToProcess,
1629 const TargetLowering *TLI) {
1630 SmallVector<Instruction*, 16> AddrModeInsts;
1631 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1632 if (UsersToProcess[i].isUseOfPostIncrementedValue)
1633 continue;
1634 ExtAddrMode AddrMode =
1635 AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace,
1636 AccessTy, UsersToProcess[i].Inst,
1637 AddrModeInsts, *TLI);
1638 if (GV && GV != AddrMode.BaseGV)
1639 return false;
1640 if (Offset && !AddrMode.BaseOffs)
1641 // FIXME: How to accurate check it's immediate offset is folded.
1642 return false;
1643 AddrModeInsts.clear();
1645 return true;
1648 /// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
1649 /// stride of IV. All of the users may have different starting values, and this
1650 /// may not be the only stride.
1651 void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
1652 IVUsersOfOneStride &Uses,
1653 Loop *L) {
1654 // If all the users are moved to another stride, then there is nothing to do.
1655 if (Uses.Users.empty())
1656 return;
1658 // Keep track if every use in UsersToProcess is an address. If they all are,
1659 // we may be able to rewrite the entire collection of them in terms of a
1660 // smaller-stride IV.
1661 bool AllUsesAreAddresses = true;
1663 // Keep track if every use of a single stride is outside the loop. If so,
1664 // we want to be more aggressive about reusing a smaller-stride IV; a
1665 // multiply outside the loop is better than another IV inside. Well, usually.
1666 bool AllUsesAreOutsideLoop = true;
1668 // Transform our list of users and offsets to a bit more complex table. In
1669 // this new vector, each 'BasedUser' contains 'Base' the base of the
1670 // strided accessas well as the old information from Uses. We progressively
1671 // move information from the Base field to the Imm field, until we eventually
1672 // have the full access expression to rewrite the use.
1673 std::vector<BasedUser> UsersToProcess;
1674 SCEVHandle CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
1675 AllUsesAreOutsideLoop,
1676 UsersToProcess);
1678 // Sort the UsersToProcess array so that users with common bases are
1679 // next to each other.
1680 SortUsersToProcess(UsersToProcess);
1682 // If we managed to find some expressions in common, we'll need to carry
1683 // their value in a register and add it in for each use. This will take up
1684 // a register operand, which potentially restricts what stride values are
1685 // valid.
1686 bool HaveCommonExprs = !CommonExprs->isZero();
1687 const Type *ReplacedTy = CommonExprs->getType();
1689 // If all uses are addresses, consider sinking the immediate part of the
1690 // common expression back into uses if they can fit in the immediate fields.
1691 if (TLI && HaveCommonExprs && AllUsesAreAddresses) {
1692 SCEVHandle NewCommon = CommonExprs;
1693 SCEVHandle Imm = SE->getIntegerSCEV(0, ReplacedTy);
1694 MoveImmediateValues(TLI, Type::VoidTy, NewCommon, Imm, true, L, SE);
1695 if (!Imm->isZero()) {
1696 bool DoSink = true;
1698 // If the immediate part of the common expression is a GV, check if it's
1699 // possible to fold it into the target addressing mode.
1700 GlobalValue *GV = 0;
1701 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm))
1702 GV = dyn_cast<GlobalValue>(SU->getValue());
1703 int64_t Offset = 0;
1704 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
1705 Offset = SC->getValue()->getSExtValue();
1706 if (GV || Offset)
1707 // Pass VoidTy as the AccessTy to be conservative, because
1708 // there could be multiple access types among all the uses.
1709 DoSink = IsImmFoldedIntoAddrMode(GV, Offset, Type::VoidTy,
1710 UsersToProcess, TLI);
1712 if (DoSink) {
1713 DOUT << " Sinking " << *Imm << " back down into uses\n";
1714 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
1715 UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm);
1716 CommonExprs = NewCommon;
1717 HaveCommonExprs = !CommonExprs->isZero();
1718 ++NumImmSunk;
1723 // Now that we know what we need to do, insert the PHI node itself.
1725 DOUT << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE "
1726 << *Stride << ":\n"
1727 << " Common base: " << *CommonExprs << "\n";
1729 SCEVExpander Rewriter(*SE, *LI);
1730 SCEVExpander PreheaderRewriter(*SE, *LI);
1732 BasicBlock *Preheader = L->getLoopPreheader();
1733 Instruction *PreInsertPt = Preheader->getTerminator();
1734 BasicBlock *LatchBlock = L->getLoopLatch();
1736 Value *CommonBaseV = Constant::getNullValue(ReplacedTy);
1738 SCEVHandle RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy);
1739 IVExpr ReuseIV(SE->getIntegerSCEV(0, Type::Int32Ty),
1740 SE->getIntegerSCEV(0, Type::Int32Ty),
1743 /// Choose a strength-reduction strategy and prepare for it by creating
1744 /// the necessary PHIs and adjusting the bookkeeping.
1745 if (ShouldUseFullStrengthReductionMode(UsersToProcess, L,
1746 AllUsesAreAddresses, Stride)) {
1747 PrepareToStrengthReduceFully(UsersToProcess, Stride, CommonExprs, L,
1748 PreheaderRewriter);
1749 } else {
1750 // Emit the initial base value into the loop preheader.
1751 CommonBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, ReplacedTy,
1752 PreInsertPt);
1754 // If all uses are addresses, check if it is possible to reuse an IV with a
1755 // stride that is a factor of this stride. And that the multiple is a number
1756 // that can be encoded in the scale field of the target addressing mode. And
1757 // that we will have a valid instruction after this substition, including
1758 // the immediate field, if any.
1759 RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses,
1760 AllUsesAreOutsideLoop,
1761 Stride, ReuseIV, ReplacedTy,
1762 UsersToProcess);
1763 if (isa<SCEVConstant>(RewriteFactor) &&
1764 cast<SCEVConstant>(RewriteFactor)->isZero())
1765 PrepareToStrengthReduceWithNewPhi(UsersToProcess, Stride, CommonExprs,
1766 CommonBaseV, L, PreheaderRewriter);
1767 else
1768 PrepareToStrengthReduceFromSmallerStride(UsersToProcess, CommonBaseV,
1769 ReuseIV, PreInsertPt);
1772 // Process all the users now, replacing their strided uses with
1773 // strength-reduced forms. This outer loop handles all bases, the inner
1774 // loop handles all users of a particular base.
1775 while (!UsersToProcess.empty()) {
1776 SCEVHandle Base = UsersToProcess.back().Base;
1777 Instruction *Inst = UsersToProcess.back().Inst;
1779 // Emit the code for Base into the preheader.
1780 Value *BaseV = 0;
1781 if (!Base->isZero()) {
1782 BaseV = PreheaderRewriter.expandCodeFor(Base, Base->getType(),
1783 PreInsertPt);
1785 DOUT << " INSERTING code for BASE = " << *Base << ":";
1786 if (BaseV->hasName())
1787 DOUT << " Result value name = %" << BaseV->getNameStr();
1788 DOUT << "\n";
1790 // If BaseV is a non-zero constant, make sure that it gets inserted into
1791 // the preheader, instead of being forward substituted into the uses. We
1792 // do this by forcing a BitCast (noop cast) to be inserted into the
1793 // preheader in this case.
1794 if (!fitsInAddressMode(Base, getAccessType(Inst), TLI, false)) {
1795 // We want this constant emitted into the preheader! This is just
1796 // using cast as a copy so BitCast (no-op cast) is appropriate
1797 BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
1798 PreInsertPt);
1802 // Emit the code to add the immediate offset to the Phi value, just before
1803 // the instructions that we identified as using this stride and base.
1804 do {
1805 // FIXME: Use emitted users to emit other users.
1806 BasedUser &User = UsersToProcess.back();
1808 DOUT << " Examining use ";
1809 DEBUG(WriteAsOperand(*DOUT, UsersToProcess.back().OperandValToReplace,
1810 /*PrintType=*/false));
1811 DOUT << " in Inst: " << *Inst;
1813 // If this instruction wants to use the post-incremented value, move it
1814 // after the post-inc and use its value instead of the PHI.
1815 Value *RewriteOp = User.Phi;
1816 if (User.isUseOfPostIncrementedValue) {
1817 RewriteOp = User.Phi->getIncomingValueForBlock(LatchBlock);
1819 // If this user is in the loop, make sure it is the last thing in the
1820 // loop to ensure it is dominated by the increment.
1821 if (L->contains(User.Inst->getParent()))
1822 User.Inst->moveBefore(LatchBlock->getTerminator());
1825 SCEVHandle RewriteExpr = SE->getUnknown(RewriteOp);
1827 if (SE->getTypeSizeInBits(RewriteOp->getType()) !=
1828 SE->getTypeSizeInBits(ReplacedTy)) {
1829 assert(SE->getTypeSizeInBits(RewriteOp->getType()) >
1830 SE->getTypeSizeInBits(ReplacedTy) &&
1831 "Unexpected widening cast!");
1832 RewriteExpr = SE->getTruncateExpr(RewriteExpr, ReplacedTy);
1835 // If we had to insert new instructions for RewriteOp, we have to
1836 // consider that they may not have been able to end up immediately
1837 // next to RewriteOp, because non-PHI instructions may never precede
1838 // PHI instructions in a block. In this case, remember where the last
1839 // instruction was inserted so that if we're replacing a different
1840 // PHI node, we can use the later point to expand the final
1841 // RewriteExpr.
1842 Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp);
1843 if (RewriteOp == User.Phi) NewBasePt = 0;
1845 // Clear the SCEVExpander's expression map so that we are guaranteed
1846 // to have the code emitted where we expect it.
1847 Rewriter.clear();
1849 // If we are reusing the iv, then it must be multiplied by a constant
1850 // factor to take advantage of the addressing mode scale component.
1851 if (!RewriteFactor->isZero()) {
1852 // If we're reusing an IV with a nonzero base (currently this happens
1853 // only when all reuses are outside the loop) subtract that base here.
1854 // The base has been used to initialize the PHI node but we don't want
1855 // it here.
1856 if (!ReuseIV.Base->isZero()) {
1857 SCEVHandle typedBase = ReuseIV.Base;
1858 if (SE->getTypeSizeInBits(RewriteExpr->getType()) !=
1859 SE->getTypeSizeInBits(ReuseIV.Base->getType())) {
1860 // It's possible the original IV is a larger type than the new IV,
1861 // in which case we have to truncate the Base. We checked in
1862 // RequiresTypeConversion that this is valid.
1863 assert(SE->getTypeSizeInBits(RewriteExpr->getType()) <
1864 SE->getTypeSizeInBits(ReuseIV.Base->getType()) &&
1865 "Unexpected lengthening conversion!");
1866 typedBase = SE->getTruncateExpr(ReuseIV.Base,
1867 RewriteExpr->getType());
1869 RewriteExpr = SE->getMinusSCEV(RewriteExpr, typedBase);
1872 // Multiply old variable, with base removed, by new scale factor.
1873 RewriteExpr = SE->getMulExpr(RewriteFactor,
1874 RewriteExpr);
1876 // The common base is emitted in the loop preheader. But since we
1877 // are reusing an IV, it has not been used to initialize the PHI node.
1878 // Add it to the expression used to rewrite the uses.
1879 // When this use is outside the loop, we earlier subtracted the
1880 // common base, and are adding it back here. Use the same expression
1881 // as before, rather than CommonBaseV, so DAGCombiner will zap it.
1882 if (!CommonExprs->isZero()) {
1883 if (L->contains(User.Inst->getParent()))
1884 RewriteExpr = SE->getAddExpr(RewriteExpr,
1885 SE->getUnknown(CommonBaseV));
1886 else
1887 RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs);
1891 // Now that we know what we need to do, insert code before User for the
1892 // immediate and any loop-variant expressions.
1893 if (BaseV)
1894 // Add BaseV to the PHI value if needed.
1895 RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV));
1897 User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt,
1898 Rewriter, L, this,
1899 DeadInsts);
1901 // Mark old value we replaced as possibly dead, so that it is eliminated
1902 // if we just replaced the last use of that value.
1903 DeadInsts.push_back(cast<Instruction>(User.OperandValToReplace));
1905 UsersToProcess.pop_back();
1906 ++NumReduced;
1908 // If there are any more users to process with the same base, process them
1909 // now. We sorted by base above, so we just have to check the last elt.
1910 } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
1911 // TODO: Next, find out which base index is the most common, pull it out.
1914 // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
1915 // different starting values, into different PHIs.
1918 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1919 /// set the IV user and stride information and return true, otherwise return
1920 /// false.
1921 bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
1922 const SCEVHandle *&CondStride) {
1923 for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e && !CondUse;
1924 ++Stride) {
1925 std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
1926 IVUsesByStride.find(StrideOrder[Stride]);
1927 assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
1929 for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
1930 E = SI->second.Users.end(); UI != E; ++UI)
1931 if (UI->User == Cond) {
1932 // NOTE: we could handle setcc instructions with multiple uses here, but
1933 // InstCombine does it as well for simple uses, it's not clear that it
1934 // occurs enough in real life to handle.
1935 CondUse = &*UI;
1936 CondStride = &SI->first;
1937 return true;
1940 return false;
1943 namespace {
1944 // Constant strides come first which in turns are sorted by their absolute
1945 // values. If absolute values are the same, then positive strides comes first.
1946 // e.g.
1947 // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
1948 struct StrideCompare {
1949 const ScalarEvolution *SE;
1950 explicit StrideCompare(const ScalarEvolution *se) : SE(se) {}
1952 bool operator()(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1953 const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
1954 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
1955 if (LHSC && RHSC) {
1956 int64_t LV = LHSC->getValue()->getSExtValue();
1957 int64_t RV = RHSC->getValue()->getSExtValue();
1958 uint64_t ALV = (LV < 0) ? -LV : LV;
1959 uint64_t ARV = (RV < 0) ? -RV : RV;
1960 if (ALV == ARV) {
1961 if (LV != RV)
1962 return LV > RV;
1963 } else {
1964 return ALV < ARV;
1967 // If it's the same value but different type, sort by bit width so
1968 // that we emit larger induction variables before smaller
1969 // ones, letting the smaller be re-written in terms of larger ones.
1970 return SE->getTypeSizeInBits(RHS->getType()) <
1971 SE->getTypeSizeInBits(LHS->getType());
1973 return LHSC && !RHSC;
1978 /// ChangeCompareStride - If a loop termination compare instruction is the
1979 /// only use of its stride, and the compaison is against a constant value,
1980 /// try eliminate the stride by moving the compare instruction to another
1981 /// stride and change its constant operand accordingly. e.g.
1983 /// loop:
1984 /// ...
1985 /// v1 = v1 + 3
1986 /// v2 = v2 + 1
1987 /// if (v2 < 10) goto loop
1988 /// =>
1989 /// loop:
1990 /// ...
1991 /// v1 = v1 + 3
1992 /// if (v1 < 30) goto loop
1993 ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
1994 IVStrideUse* &CondUse,
1995 const SCEVHandle* &CondStride) {
1996 if (StrideOrder.size() < 2 ||
1997 IVUsesByStride[*CondStride].Users.size() != 1)
1998 return Cond;
1999 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride);
2000 if (!SC) return Cond;
2002 ICmpInst::Predicate Predicate = Cond->getPredicate();
2003 int64_t CmpSSInt = SC->getValue()->getSExtValue();
2004 unsigned BitWidth = SE->getTypeSizeInBits((*CondStride)->getType());
2005 uint64_t SignBit = 1ULL << (BitWidth-1);
2006 const Type *CmpTy = Cond->getOperand(0)->getType();
2007 const Type *NewCmpTy = NULL;
2008 unsigned TyBits = SE->getTypeSizeInBits(CmpTy);
2009 unsigned NewTyBits = 0;
2010 SCEVHandle *NewStride = NULL;
2011 Value *NewCmpLHS = NULL;
2012 Value *NewCmpRHS = NULL;
2013 int64_t Scale = 1;
2014 SCEVHandle NewOffset = SE->getIntegerSCEV(0, CmpTy);
2016 if (ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1))) {
2017 int64_t CmpVal = C->getValue().getSExtValue();
2019 // Check stride constant and the comparision constant signs to detect
2020 // overflow.
2021 if ((CmpVal & SignBit) != (CmpSSInt & SignBit))
2022 return Cond;
2024 // Look for a suitable stride / iv as replacement.
2025 for (unsigned i = 0, e = StrideOrder.size(); i != e; ++i) {
2026 std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
2027 IVUsesByStride.find(StrideOrder[i]);
2028 if (!isa<SCEVConstant>(SI->first))
2029 continue;
2030 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
2031 if (SSInt == CmpSSInt ||
2032 abs(SSInt) < abs(CmpSSInt) ||
2033 (SSInt % CmpSSInt) != 0)
2034 continue;
2036 Scale = SSInt / CmpSSInt;
2037 int64_t NewCmpVal = CmpVal * Scale;
2038 APInt Mul = APInt(BitWidth, NewCmpVal);
2039 // Check for overflow.
2040 if (Mul.getSExtValue() != NewCmpVal)
2041 continue;
2043 // Watch out for overflow.
2044 if (ICmpInst::isSignedPredicate(Predicate) &&
2045 (CmpVal & SignBit) != (NewCmpVal & SignBit))
2046 continue;
2048 if (NewCmpVal == CmpVal)
2049 continue;
2050 // Pick the best iv to use trying to avoid a cast.
2051 NewCmpLHS = NULL;
2052 for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
2053 E = SI->second.Users.end(); UI != E; ++UI) {
2054 NewCmpLHS = UI->OperandValToReplace;
2055 if (NewCmpLHS->getType() == CmpTy)
2056 break;
2058 if (!NewCmpLHS)
2059 continue;
2061 NewCmpTy = NewCmpLHS->getType();
2062 NewTyBits = SE->getTypeSizeInBits(NewCmpTy);
2063 const Type *NewCmpIntTy = IntegerType::get(NewTyBits);
2064 if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
2065 // Check if it is possible to rewrite it using
2066 // an iv / stride of a smaller integer type.
2067 unsigned Bits = NewTyBits;
2068 if (ICmpInst::isSignedPredicate(Predicate))
2069 --Bits;
2070 uint64_t Mask = (1ULL << Bits) - 1;
2071 if (((uint64_t)NewCmpVal & Mask) != (uint64_t)NewCmpVal)
2072 continue;
2075 // Don't rewrite if use offset is non-constant and the new type is
2076 // of a different type.
2077 // FIXME: too conservative?
2078 if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->Offset))
2079 continue;
2081 bool AllUsesAreAddresses = true;
2082 bool AllUsesAreOutsideLoop = true;
2083 std::vector<BasedUser> UsersToProcess;
2084 SCEVHandle CommonExprs = CollectIVUsers(SI->first, SI->second, L,
2085 AllUsesAreAddresses,
2086 AllUsesAreOutsideLoop,
2087 UsersToProcess);
2088 // Avoid rewriting the compare instruction with an iv of new stride
2089 // if it's likely the new stride uses will be rewritten using the
2090 // stride of the compare instruction.
2091 if (AllUsesAreAddresses &&
2092 ValidStride(!CommonExprs->isZero(), Scale, UsersToProcess))
2093 continue;
2095 // If scale is negative, use swapped predicate unless it's testing
2096 // for equality.
2097 if (Scale < 0 && !Cond->isEquality())
2098 Predicate = ICmpInst::getSwappedPredicate(Predicate);
2100 NewStride = &StrideOrder[i];
2101 if (!isa<PointerType>(NewCmpTy))
2102 NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal);
2103 else {
2104 ConstantInt *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal);
2105 NewCmpRHS = ConstantExpr::getIntToPtr(CI, NewCmpTy);
2107 NewOffset = TyBits == NewTyBits
2108 ? SE->getMulExpr(CondUse->Offset,
2109 SE->getConstant(ConstantInt::get(CmpTy, Scale)))
2110 : SE->getConstant(ConstantInt::get(NewCmpIntTy,
2111 cast<SCEVConstant>(CondUse->Offset)->getValue()->getSExtValue()*Scale));
2112 break;
2116 // Forgo this transformation if it the increment happens to be
2117 // unfortunately positioned after the condition, and the condition
2118 // has multiple uses which prevent it from being moved immediately
2119 // before the branch. See
2120 // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
2121 // for an example of this situation.
2122 if (!Cond->hasOneUse()) {
2123 for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end();
2124 I != E; ++I)
2125 if (I == NewCmpLHS)
2126 return Cond;
2129 if (NewCmpRHS) {
2130 // Create a new compare instruction using new stride / iv.
2131 ICmpInst *OldCond = Cond;
2132 // Insert new compare instruction.
2133 Cond = new ICmpInst(Predicate, NewCmpLHS, NewCmpRHS,
2134 L->getHeader()->getName() + ".termcond",
2135 OldCond);
2137 // Remove the old compare instruction. The old indvar is probably dead too.
2138 DeadInsts.push_back(cast<Instruction>(CondUse->OperandValToReplace));
2139 SE->deleteValueFromRecords(OldCond);
2140 OldCond->replaceAllUsesWith(Cond);
2141 OldCond->eraseFromParent();
2143 IVUsesByStride[*CondStride].Users.pop_back();
2144 IVUsesByStride[*NewStride].addUser(NewOffset, Cond, NewCmpLHS);
2145 CondUse = &IVUsesByStride[*NewStride].Users.back();
2146 CondStride = NewStride;
2147 ++NumEliminated;
2150 return Cond;
2153 /// OptimizeSMax - Rewrite the loop's terminating condition if it uses
2154 /// an smax computation.
2156 /// This is a narrow solution to a specific, but acute, problem. For loops
2157 /// like this:
2159 /// i = 0;
2160 /// do {
2161 /// p[i] = 0.0;
2162 /// } while (++i < n);
2164 /// where the comparison is signed, the trip count isn't just 'n', because
2165 /// 'n' could be negative. And unfortunately this can come up even for loops
2166 /// where the user didn't use a C do-while loop. For example, seemingly
2167 /// well-behaved top-test loops will commonly be lowered like this:
2169 /// if (n > 0) {
2170 /// i = 0;
2171 /// do {
2172 /// p[i] = 0.0;
2173 /// } while (++i < n);
2174 /// }
2176 /// and then it's possible for subsequent optimization to obscure the if
2177 /// test in such a way that indvars can't find it.
2179 /// When indvars can't find the if test in loops like this, it creates a
2180 /// signed-max expression, which allows it to give the loop a canonical
2181 /// induction variable:
2183 /// i = 0;
2184 /// smax = n < 1 ? 1 : n;
2185 /// do {
2186 /// p[i] = 0.0;
2187 /// } while (++i != smax);
2189 /// Canonical induction variables are necessary because the loop passes
2190 /// are designed around them. The most obvious example of this is the
2191 /// LoopInfo analysis, which doesn't remember trip count values. It
2192 /// expects to be able to rediscover the trip count each time it is
2193 /// needed, and it does this using a simple analyis that only succeeds if
2194 /// the loop has a canonical induction variable.
2196 /// However, when it comes time to generate code, the maximum operation
2197 /// can be quite costly, especially if it's inside of an outer loop.
2199 /// This function solves this problem by detecting this type of loop and
2200 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2201 /// the instructions for the maximum computation.
2203 ICmpInst *LoopStrengthReduce::OptimizeSMax(Loop *L, ICmpInst *Cond,
2204 IVStrideUse* &CondUse) {
2205 // Check that the loop matches the pattern we're looking for.
2206 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2207 Cond->getPredicate() != CmpInst::ICMP_NE)
2208 return Cond;
2210 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2211 if (!Sel || !Sel->hasOneUse()) return Cond;
2213 SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2214 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2215 return Cond;
2216 SCEVHandle One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
2218 // Add one to the backedge-taken count to get the trip count.
2219 SCEVHandle IterationCount = SE->getAddExpr(BackedgeTakenCount, One);
2221 // Check for a max calculation that matches the pattern.
2222 SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(IterationCount);
2223 if (!SMax || SMax != SE->getSCEV(Sel)) return Cond;
2225 SCEVHandle SMaxLHS = SMax->getOperand(0);
2226 SCEVHandle SMaxRHS = SMax->getOperand(1);
2227 if (!SMaxLHS || SMaxLHS != One) return Cond;
2229 // Check the relevant induction variable for conformance to
2230 // the pattern.
2231 SCEVHandle IV = SE->getSCEV(Cond->getOperand(0));
2232 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2233 if (!AR || !AR->isAffine() ||
2234 AR->getStart() != One ||
2235 AR->getStepRecurrence(*SE) != One)
2236 return Cond;
2238 assert(AR->getLoop() == L &&
2239 "Loop condition operand is an addrec in a different loop!");
2241 // Check the right operand of the select, and remember it, as it will
2242 // be used in the new comparison instruction.
2243 Value *NewRHS = 0;
2244 if (SE->getSCEV(Sel->getOperand(1)) == SMaxRHS)
2245 NewRHS = Sel->getOperand(1);
2246 else if (SE->getSCEV(Sel->getOperand(2)) == SMaxRHS)
2247 NewRHS = Sel->getOperand(2);
2248 if (!NewRHS) return Cond;
2250 // Ok, everything looks ok to change the condition into an SLT or SGE and
2251 // delete the max calculation.
2252 ICmpInst *NewCond =
2253 new ICmpInst(Cond->getPredicate() == CmpInst::ICMP_NE ?
2254 CmpInst::ICMP_SLT :
2255 CmpInst::ICMP_SGE,
2256 Cond->getOperand(0), NewRHS, "scmp", Cond);
2258 // Delete the max calculation instructions.
2259 SE->deleteValueFromRecords(Cond);
2260 Cond->replaceAllUsesWith(NewCond);
2261 Cond->eraseFromParent();
2262 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2263 SE->deleteValueFromRecords(Sel);
2264 Sel->eraseFromParent();
2265 if (Cmp->use_empty()) {
2266 SE->deleteValueFromRecords(Cmp);
2267 Cmp->eraseFromParent();
2269 CondUse->User = NewCond;
2270 return NewCond;
2273 /// OptimizeShadowIV - If IV is used in a int-to-float cast
2274 /// inside the loop then try to eliminate the cast opeation.
2275 void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
2277 SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2278 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2279 return;
2281 for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e;
2282 ++Stride) {
2283 std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
2284 IVUsesByStride.find(StrideOrder[Stride]);
2285 assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
2286 if (!isa<SCEVConstant>(SI->first))
2287 continue;
2289 for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
2290 E = SI->second.Users.end(); UI != E; /* empty */) {
2291 std::vector<IVStrideUse>::iterator CandidateUI = UI;
2292 ++UI;
2293 Instruction *ShadowUse = CandidateUI->User;
2294 const Type *DestTy = NULL;
2296 /* If shadow use is a int->float cast then insert a second IV
2297 to eliminate this cast.
2299 for (unsigned i = 0; i < n; ++i)
2300 foo((double)i);
2302 is transformed into
2304 double d = 0.0;
2305 for (unsigned i = 0; i < n; ++i, ++d)
2306 foo(d);
2308 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->User))
2309 DestTy = UCast->getDestTy();
2310 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->User))
2311 DestTy = SCast->getDestTy();
2312 if (!DestTy) continue;
2314 if (TLI) {
2315 /* If target does not support DestTy natively then do not apply
2316 this transformation. */
2317 MVT DVT = TLI->getValueType(DestTy);
2318 if (!TLI->isTypeLegal(DVT)) continue;
2321 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2322 if (!PH) continue;
2323 if (PH->getNumIncomingValues() != 2) continue;
2325 const Type *SrcTy = PH->getType();
2326 int Mantissa = DestTy->getFPMantissaWidth();
2327 if (Mantissa == -1) continue;
2328 if ((int)SE->getTypeSizeInBits(SrcTy) > Mantissa)
2329 continue;
2331 unsigned Entry, Latch;
2332 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2333 Entry = 0;
2334 Latch = 1;
2335 } else {
2336 Entry = 1;
2337 Latch = 0;
2340 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2341 if (!Init) continue;
2342 ConstantFP *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
2344 BinaryOperator *Incr =
2345 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2346 if (!Incr) continue;
2347 if (Incr->getOpcode() != Instruction::Add
2348 && Incr->getOpcode() != Instruction::Sub)
2349 continue;
2351 /* Initialize new IV, double d = 0.0 in above example. */
2352 ConstantInt *C = NULL;
2353 if (Incr->getOperand(0) == PH)
2354 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2355 else if (Incr->getOperand(1) == PH)
2356 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2357 else
2358 continue;
2360 if (!C) continue;
2362 /* Add new PHINode. */
2363 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
2365 /* create new increment. '++d' in above example. */
2366 ConstantFP *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2367 BinaryOperator *NewIncr =
2368 BinaryOperator::Create(Incr->getOpcode(),
2369 NewPH, CFP, "IV.S.next.", Incr);
2371 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2372 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2374 /* Remove cast operation */
2375 SE->deleteValueFromRecords(ShadowUse);
2376 ShadowUse->replaceAllUsesWith(NewPH);
2377 ShadowUse->eraseFromParent();
2378 SI->second.Users.erase(CandidateUI);
2379 NumShadow++;
2380 break;
2385 // OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
2386 // uses in the loop, look to see if we can eliminate some, in favor of using
2387 // common indvars for the different uses.
2388 void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
2389 // TODO: implement optzns here.
2391 OptimizeShadowIV(L);
2393 // Finally, get the terminating condition for the loop if possible. If we
2394 // can, we want to change it to use a post-incremented version of its
2395 // induction variable, to allow coalescing the live ranges for the IV into
2396 // one register value.
2397 PHINode *SomePHI = cast<PHINode>(L->getHeader()->begin());
2398 BasicBlock *Preheader = L->getLoopPreheader();
2399 BasicBlock *LatchBlock =
2400 SomePHI->getIncomingBlock(SomePHI->getIncomingBlock(0) == Preheader);
2401 BranchInst *TermBr = dyn_cast<BranchInst>(LatchBlock->getTerminator());
2402 if (!TermBr || TermBr->isUnconditional() ||
2403 !isa<ICmpInst>(TermBr->getCondition()))
2404 return;
2405 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2407 // Search IVUsesByStride to find Cond's IVUse if there is one.
2408 IVStrideUse *CondUse = 0;
2409 const SCEVHandle *CondStride = 0;
2411 if (!FindIVUserForCond(Cond, CondUse, CondStride))
2412 return; // setcc doesn't use the IV.
2414 // If the trip count is computed in terms of an smax (due to ScalarEvolution
2415 // being unable to find a sufficient guard, for example), change the loop
2416 // comparison to use SLT instead of NE.
2417 Cond = OptimizeSMax(L, Cond, CondUse);
2419 // If possible, change stride and operands of the compare instruction to
2420 // eliminate one stride.
2421 Cond = ChangeCompareStride(L, Cond, CondUse, CondStride);
2423 // It's possible for the setcc instruction to be anywhere in the loop, and
2424 // possible for it to have multiple users. If it is not immediately before
2425 // the latch block branch, move it.
2426 if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
2427 if (Cond->hasOneUse()) { // Condition has a single use, just move it.
2428 Cond->moveBefore(TermBr);
2429 } else {
2430 // Otherwise, clone the terminating condition and insert into the loopend.
2431 Cond = cast<ICmpInst>(Cond->clone());
2432 Cond->setName(L->getHeader()->getName() + ".termcond");
2433 LatchBlock->getInstList().insert(TermBr, Cond);
2435 // Clone the IVUse, as the old use still exists!
2436 IVUsesByStride[*CondStride].addUser(CondUse->Offset, Cond,
2437 CondUse->OperandValToReplace);
2438 CondUse = &IVUsesByStride[*CondStride].Users.back();
2442 // If we get to here, we know that we can transform the setcc instruction to
2443 // use the post-incremented version of the IV, allowing us to coalesce the
2444 // live ranges for the IV correctly.
2445 CondUse->Offset = SE->getMinusSCEV(CondUse->Offset, *CondStride);
2446 CondUse->isUseOfPostIncrementedValue = true;
2447 Changed = true;
2450 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
2452 LI = &getAnalysis<LoopInfo>();
2453 DT = &getAnalysis<DominatorTree>();
2454 SE = &getAnalysis<ScalarEvolution>();
2455 Changed = false;
2457 // Find all uses of induction variables in this loop, and categorize
2458 // them by stride. Start by finding all of the PHI nodes in the header for
2459 // this loop. If they are induction variables, inspect their uses.
2460 SmallPtrSet<Instruction*,16> Processed; // Don't reprocess instructions.
2461 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
2462 AddUsersIfInteresting(I, L, Processed);
2464 if (!IVUsesByStride.empty()) {
2465 #ifndef NDEBUG
2466 DOUT << "\nLSR on \"" << L->getHeader()->getParent()->getNameStart()
2467 << "\" ";
2468 DEBUG(L->dump());
2469 #endif
2471 // Sort the StrideOrder so we process larger strides first.
2472 std::stable_sort(StrideOrder.begin(), StrideOrder.end(), StrideCompare(SE));
2474 // Optimize induction variables. Some indvar uses can be transformed to use
2475 // strides that will be needed for other purposes. A common example of this
2476 // is the exit test for the loop, which can often be rewritten to use the
2477 // computation of some other indvar to decide when to terminate the loop.
2478 OptimizeIndvars(L);
2480 // FIXME: We can widen subreg IV's here for RISC targets. e.g. instead of
2481 // doing computation in byte values, promote to 32-bit values if safe.
2483 // FIXME: Attempt to reuse values across multiple IV's. In particular, we
2484 // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
2485 // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
2486 // Need to be careful that IV's are all the same type. Only works for
2487 // intptr_t indvars.
2489 // IVsByStride keeps IVs for one particular loop.
2490 assert(IVsByStride.empty() && "Stale entries in IVsByStride?");
2492 // Note: this processes each stride/type pair individually. All users
2493 // passed into StrengthReduceStridedIVUsers have the same type AND stride.
2494 // Also, note that we iterate over IVUsesByStride indirectly by using
2495 // StrideOrder. This extra layer of indirection makes the ordering of
2496 // strides deterministic - not dependent on map order.
2497 for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) {
2498 std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
2499 IVUsesByStride.find(StrideOrder[Stride]);
2500 assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
2501 StrengthReduceStridedIVUsers(SI->first, SI->second, L);
2505 // We're done analyzing this loop; release all the state we built up for it.
2506 IVUsesByStride.clear();
2507 IVsByStride.clear();
2508 StrideOrder.clear();
2510 // Clean up after ourselves
2511 if (!DeadInsts.empty()) {
2512 DeleteTriviallyDeadInstructions();
2514 BasicBlock::iterator I = L->getHeader()->begin();
2515 while (PHINode *PN = dyn_cast<PHINode>(I++)) {
2516 // At this point, we know that we have killed one or more IV users.
2517 // It is worth checking to see if the cannonical indvar is also
2518 // dead, so that we can remove it as well.
2520 // We can remove a PHI if it is on a cycle in the def-use graph
2521 // where each node in the cycle has degree one, i.e. only one use,
2522 // and is an instruction with no side effects.
2524 // FIXME: this needs to eliminate an induction variable even if it's being
2525 // compared against some value to decide loop termination.
2526 if (!PN->hasOneUse())
2527 continue;
2529 SmallPtrSet<PHINode *, 4> PHIs;
2530 for (Instruction *J = dyn_cast<Instruction>(*PN->use_begin());
2531 J && J->hasOneUse() && !J->mayWriteToMemory();
2532 J = dyn_cast<Instruction>(*J->use_begin())) {
2533 // If we find the original PHI, we've discovered a cycle.
2534 if (J == PN) {
2535 // Break the cycle and mark the PHI for deletion.
2536 SE->deleteValueFromRecords(PN);
2537 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
2538 DeadInsts.push_back(PN);
2539 Changed = true;
2540 break;
2542 // If we find a PHI more than once, we're on a cycle that
2543 // won't prove fruitful.
2544 if (isa<PHINode>(J) && !PHIs.insert(cast<PHINode>(J)))
2545 break;
2548 DeleteTriviallyDeadInstructions();
2550 return Changed;