1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs a strength reduction on array references inside loops that
11 // have as one or more of their components the loop induction variable.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "loop-reduce"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Type.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/LoopPass.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Support/CFG.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Target/TargetLowering.h"
39 STATISTIC(NumReduced
, "Number of IV uses strength reduced");
40 STATISTIC(NumInserted
, "Number of PHIs inserted");
41 STATISTIC(NumVariable
, "Number of PHIs with variable strides");
42 STATISTIC(NumEliminated
, "Number of strides eliminated");
43 STATISTIC(NumShadow
, "Number of Shadow IVs optimized");
44 STATISTIC(NumImmSunk
, "Number of common expr immediates sunk into uses");
46 static cl::opt
<bool> EnableFullLSRMode("enable-full-lsr",
54 /// IVStrideUse - Keep track of one use of a strided induction variable, where
55 /// the stride is stored externally. The Offset member keeps track of the
56 /// offset from the IV, User is the actual user of the operand, and
57 /// 'OperandValToReplace' is the operand of the User that is the use.
58 struct VISIBILITY_HIDDEN IVStrideUse
{
61 Value
*OperandValToReplace
;
63 // isUseOfPostIncrementedValue - True if this should use the
64 // post-incremented version of this IV, not the preincremented version.
65 // This can only be set in special cases, such as the terminating setcc
66 // instruction for a loop or uses dominated by the loop.
67 bool isUseOfPostIncrementedValue
;
69 IVStrideUse(const SCEVHandle
&Offs
, Instruction
*U
, Value
*O
)
70 : Offset(Offs
), User(U
), OperandValToReplace(O
),
71 isUseOfPostIncrementedValue(false) {}
74 /// IVUsersOfOneStride - This structure keeps track of all instructions that
75 /// have an operand that is based on the trip count multiplied by some stride.
76 /// The stride for all of these users is common and kept external to this
78 struct VISIBILITY_HIDDEN IVUsersOfOneStride
{
79 /// Users - Keep track of all of the users of this stride as well as the
80 /// initial value and the operand that uses the IV.
81 std::vector
<IVStrideUse
> Users
;
83 void addUser(const SCEVHandle
&Offset
,Instruction
*User
, Value
*Operand
) {
84 Users
.push_back(IVStrideUse(Offset
, User
, Operand
));
88 /// IVInfo - This structure keeps track of one IV expression inserted during
89 /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
90 /// well as the PHI node and increment value created for rewrite.
91 struct VISIBILITY_HIDDEN IVExpr
{
96 IVExpr(const SCEVHandle
&stride
, const SCEVHandle
&base
, PHINode
*phi
)
97 : Stride(stride
), Base(base
), PHI(phi
) {}
100 /// IVsOfOneStride - This structure keeps track of all IV expression inserted
101 /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
102 struct VISIBILITY_HIDDEN IVsOfOneStride
{
103 std::vector
<IVExpr
> IVs
;
105 void addIV(const SCEVHandle
&Stride
, const SCEVHandle
&Base
, PHINode
*PHI
) {
106 IVs
.push_back(IVExpr(Stride
, Base
, PHI
));
110 class VISIBILITY_HIDDEN LoopStrengthReduce
: public LoopPass
{
116 /// IVUsesByStride - Keep track of all uses of induction variables that we
117 /// are interested in. The key of the map is the stride of the access.
118 std::map
<SCEVHandle
, IVUsersOfOneStride
> IVUsesByStride
;
120 /// IVsByStride - Keep track of all IVs that have been inserted for a
121 /// particular stride.
122 std::map
<SCEVHandle
, IVsOfOneStride
> IVsByStride
;
124 /// StrideOrder - An ordering of the keys in IVUsesByStride that is stable:
125 /// We use this to iterate over the IVUsesByStride collection without being
126 /// dependent on random ordering of pointers in the process.
127 SmallVector
<SCEVHandle
, 16> StrideOrder
;
129 /// DeadInsts - Keep track of instructions we may have made dead, so that
130 /// we can remove them after we are done working.
131 SmallVector
<Instruction
*, 16> DeadInsts
;
133 /// TLI - Keep a pointer of a TargetLowering to consult for determining
134 /// transformation profitability.
135 const TargetLowering
*TLI
;
138 static char ID
; // Pass ID, replacement for typeid
139 explicit LoopStrengthReduce(const TargetLowering
*tli
= NULL
) :
140 LoopPass(&ID
), TLI(tli
) {
143 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
145 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
146 // We split critical edges, so we change the CFG. However, we do update
147 // many analyses if they are around.
148 AU
.addPreservedID(LoopSimplifyID
);
149 AU
.addPreserved
<LoopInfo
>();
150 AU
.addPreserved
<DominanceFrontier
>();
151 AU
.addPreserved
<DominatorTree
>();
153 AU
.addRequiredID(LoopSimplifyID
);
154 AU
.addRequired
<LoopInfo
>();
155 AU
.addRequired
<DominatorTree
>();
156 AU
.addRequired
<ScalarEvolution
>();
157 AU
.addPreserved
<ScalarEvolution
>();
161 bool AddUsersIfInteresting(Instruction
*I
, Loop
*L
,
162 SmallPtrSet
<Instruction
*,16> &Processed
);
163 ICmpInst
*ChangeCompareStride(Loop
*L
, ICmpInst
*Cond
,
164 IVStrideUse
* &CondUse
,
165 const SCEVHandle
* &CondStride
);
166 void OptimizeIndvars(Loop
*L
);
168 /// OptimizeShadowIV - If IV is used in a int-to-float cast
169 /// inside the loop then try to eliminate the cast opeation.
170 void OptimizeShadowIV(Loop
*L
);
172 /// OptimizeSMax - Rewrite the loop's terminating condition
173 /// if it uses an smax computation.
174 ICmpInst
*OptimizeSMax(Loop
*L
, ICmpInst
*Cond
,
175 IVStrideUse
* &CondUse
);
177 bool FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
,
178 const SCEVHandle
*&CondStride
);
179 bool RequiresTypeConversion(const Type
*Ty
, const Type
*NewTy
);
180 SCEVHandle
CheckForIVReuse(bool, bool, bool, const SCEVHandle
&,
181 IVExpr
&, const Type
*,
182 const std::vector
<BasedUser
>& UsersToProcess
);
183 bool ValidStride(bool, int64_t,
184 const std::vector
<BasedUser
>& UsersToProcess
);
185 SCEVHandle
CollectIVUsers(const SCEVHandle
&Stride
,
186 IVUsersOfOneStride
&Uses
,
188 bool &AllUsesAreAddresses
,
189 bool &AllUsesAreOutsideLoop
,
190 std::vector
<BasedUser
> &UsersToProcess
);
191 bool ShouldUseFullStrengthReductionMode(
192 const std::vector
<BasedUser
> &UsersToProcess
,
194 bool AllUsesAreAddresses
,
196 void PrepareToStrengthReduceFully(
197 std::vector
<BasedUser
> &UsersToProcess
,
199 SCEVHandle CommonExprs
,
201 SCEVExpander
&PreheaderRewriter
);
202 void PrepareToStrengthReduceFromSmallerStride(
203 std::vector
<BasedUser
> &UsersToProcess
,
205 const IVExpr
&ReuseIV
,
206 Instruction
*PreInsertPt
);
207 void PrepareToStrengthReduceWithNewPhi(
208 std::vector
<BasedUser
> &UsersToProcess
,
210 SCEVHandle CommonExprs
,
213 SCEVExpander
&PreheaderRewriter
);
214 void StrengthReduceStridedIVUsers(const SCEVHandle
&Stride
,
215 IVUsersOfOneStride
&Uses
,
217 void DeleteTriviallyDeadInstructions();
221 char LoopStrengthReduce::ID
= 0;
222 static RegisterPass
<LoopStrengthReduce
>
223 X("loop-reduce", "Loop Strength Reduction");
225 Pass
*llvm::createLoopStrengthReducePass(const TargetLowering
*TLI
) {
226 return new LoopStrengthReduce(TLI
);
229 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
230 /// specified set are trivially dead, delete them and see if this makes any of
231 /// their operands subsequently dead.
232 void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
233 if (DeadInsts
.empty()) return;
235 // Sort the deadinsts list so that we can trivially eliminate duplicates as we
236 // go. The code below never adds a non-dead instruction to the worklist, but
237 // callers may not be so careful.
238 array_pod_sort(DeadInsts
.begin(), DeadInsts
.end());
240 // Drop duplicate instructions and those with uses.
241 for (unsigned i
= 0, e
= DeadInsts
.size()-1; i
< e
; ++i
) {
242 Instruction
*I
= DeadInsts
[i
];
243 if (!I
->use_empty()) DeadInsts
[i
] = 0;
244 while (i
!= e
&& DeadInsts
[i
+1] == I
)
248 while (!DeadInsts
.empty()) {
249 Instruction
*I
= DeadInsts
.back();
250 DeadInsts
.pop_back();
252 if (I
== 0 || !isInstructionTriviallyDead(I
))
255 SE
->deleteValueFromRecords(I
);
257 for (User::op_iterator OI
= I
->op_begin(), E
= I
->op_end(); OI
!= E
; ++OI
) {
258 if (Instruction
*U
= dyn_cast
<Instruction
>(*OI
)) {
261 DeadInsts
.push_back(U
);
265 I
->eraseFromParent();
270 /// containsAddRecFromDifferentLoop - Determine whether expression S involves a
271 /// subexpression that is an AddRec from a loop other than L. An outer loop
272 /// of L is OK, but not an inner loop nor a disjoint loop.
273 static bool containsAddRecFromDifferentLoop(SCEVHandle S
, Loop
*L
) {
274 // This is very common, put it first.
275 if (isa
<SCEVConstant
>(S
))
277 if (const SCEVCommutativeExpr
*AE
= dyn_cast
<SCEVCommutativeExpr
>(S
)) {
278 for (unsigned int i
=0; i
< AE
->getNumOperands(); i
++)
279 if (containsAddRecFromDifferentLoop(AE
->getOperand(i
), L
))
283 if (const SCEVAddRecExpr
*AE
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
284 if (const Loop
*newLoop
= AE
->getLoop()) {
287 // if newLoop is an outer loop of L, this is OK.
288 if (!LoopInfoBase
<BasicBlock
>::isNotAlreadyContainedIn(L
, newLoop
))
293 if (const SCEVUDivExpr
*DE
= dyn_cast
<SCEVUDivExpr
>(S
))
294 return containsAddRecFromDifferentLoop(DE
->getLHS(), L
) ||
295 containsAddRecFromDifferentLoop(DE
->getRHS(), L
);
297 // SCEVSDivExpr has been backed out temporarily, but will be back; we'll
298 // need this when it is.
299 if (const SCEVSDivExpr
*DE
= dyn_cast
<SCEVSDivExpr
>(S
))
300 return containsAddRecFromDifferentLoop(DE
->getLHS(), L
) ||
301 containsAddRecFromDifferentLoop(DE
->getRHS(), L
);
303 if (const SCEVCastExpr
*CE
= dyn_cast
<SCEVCastExpr
>(S
))
304 return containsAddRecFromDifferentLoop(CE
->getOperand(), L
);
308 /// getSCEVStartAndStride - Compute the start and stride of this expression,
309 /// returning false if the expression is not a start/stride pair, or true if it
310 /// is. The stride must be a loop invariant expression, but the start may be
311 /// a mix of loop invariant and loop variant expressions. The start cannot,
312 /// however, contain an AddRec from a different loop, unless that loop is an
313 /// outer loop of the current loop.
314 static bool getSCEVStartAndStride(const SCEVHandle
&SH
, Loop
*L
,
315 SCEVHandle
&Start
, SCEVHandle
&Stride
,
316 ScalarEvolution
*SE
, DominatorTree
*DT
) {
317 SCEVHandle TheAddRec
= Start
; // Initialize to zero.
319 // If the outer level is an AddExpr, the operands are all start values except
320 // for a nested AddRecExpr.
321 if (const SCEVAddExpr
*AE
= dyn_cast
<SCEVAddExpr
>(SH
)) {
322 for (unsigned i
= 0, e
= AE
->getNumOperands(); i
!= e
; ++i
)
323 if (SCEVAddRecExpr
*AddRec
=
324 dyn_cast
<SCEVAddRecExpr
>(AE
->getOperand(i
))) {
325 if (AddRec
->getLoop() == L
)
326 TheAddRec
= SE
->getAddExpr(AddRec
, TheAddRec
);
328 return false; // Nested IV of some sort?
330 Start
= SE
->getAddExpr(Start
, AE
->getOperand(i
));
333 } else if (isa
<SCEVAddRecExpr
>(SH
)) {
336 return false; // not analyzable.
339 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(TheAddRec
);
340 if (!AddRec
|| AddRec
->getLoop() != L
) return false;
342 // FIXME: Generalize to non-affine IV's.
343 if (!AddRec
->isAffine()) return false;
345 // If Start contains an SCEVAddRecExpr from a different loop, other than an
346 // outer loop of the current loop, reject it. SCEV has no concept of
347 // operating on more than one loop at a time so don't confuse it with such
349 if (containsAddRecFromDifferentLoop(AddRec
->getOperand(0), L
))
352 Start
= SE
->getAddExpr(Start
, AddRec
->getOperand(0));
354 if (!isa
<SCEVConstant
>(AddRec
->getOperand(1))) {
355 // If stride is an instruction, make sure it dominates the loop preheader.
356 // Otherwise we could end up with a use before def situation.
357 BasicBlock
*Preheader
= L
->getLoopPreheader();
358 if (!AddRec
->getOperand(1)->dominates(Preheader
, DT
))
361 DOUT
<< "[" << L
->getHeader()->getName()
362 << "] Variable stride: " << *AddRec
<< "\n";
365 Stride
= AddRec
->getOperand(1);
369 /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
370 /// and now we need to decide whether the user should use the preinc or post-inc
371 /// value. If this user should use the post-inc version of the IV, return true.
373 /// Choosing wrong here can break dominance properties (if we choose to use the
374 /// post-inc value when we cannot) or it can end up adding extra live-ranges to
375 /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
376 /// should use the post-inc value).
377 static bool IVUseShouldUsePostIncValue(Instruction
*User
, Instruction
*IV
,
378 Loop
*L
, DominatorTree
*DT
, Pass
*P
,
379 SmallVectorImpl
<Instruction
*> &DeadInsts
){
380 // If the user is in the loop, use the preinc value.
381 if (L
->contains(User
->getParent())) return false;
383 BasicBlock
*LatchBlock
= L
->getLoopLatch();
385 // Ok, the user is outside of the loop. If it is dominated by the latch
386 // block, use the post-inc value.
387 if (DT
->dominates(LatchBlock
, User
->getParent()))
390 // There is one case we have to be careful of: PHI nodes. These little guys
391 // can live in blocks that do not dominate the latch block, but (since their
392 // uses occur in the predecessor block, not the block the PHI lives in) should
393 // still use the post-inc value. Check for this case now.
394 PHINode
*PN
= dyn_cast
<PHINode
>(User
);
395 if (!PN
) return false; // not a phi, not dominated by latch block.
397 // Look at all of the uses of IV by the PHI node. If any use corresponds to
398 // a block that is not dominated by the latch block, give up and use the
399 // preincremented value.
400 unsigned NumUses
= 0;
401 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
402 if (PN
->getIncomingValue(i
) == IV
) {
404 if (!DT
->dominates(LatchBlock
, PN
->getIncomingBlock(i
)))
408 // Okay, all uses of IV by PN are in predecessor blocks that really are
409 // dominated by the latch block. Split the critical edges and use the
410 // post-incremented value.
411 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
412 if (PN
->getIncomingValue(i
) == IV
) {
413 SplitCriticalEdge(PN
->getIncomingBlock(i
), PN
->getParent(), P
, false);
414 // Splitting the critical edge can reduce the number of entries in this
416 e
= PN
->getNumIncomingValues();
417 if (--NumUses
== 0) break;
420 // PHI node might have become a constant value after SplitCriticalEdge.
421 DeadInsts
.push_back(User
);
426 /// isAddressUse - Returns true if the specified instruction is using the
427 /// specified value as an address.
428 static bool isAddressUse(Instruction
*Inst
, Value
*OperandVal
) {
429 bool isAddress
= isa
<LoadInst
>(Inst
);
430 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
431 if (SI
->getOperand(1) == OperandVal
)
433 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
434 // Addressing modes can also be folded into prefetches and a variety
436 switch (II
->getIntrinsicID()) {
438 case Intrinsic::prefetch
:
439 case Intrinsic::x86_sse2_loadu_dq
:
440 case Intrinsic::x86_sse2_loadu_pd
:
441 case Intrinsic::x86_sse_loadu_ps
:
442 case Intrinsic::x86_sse_storeu_ps
:
443 case Intrinsic::x86_sse2_storeu_pd
:
444 case Intrinsic::x86_sse2_storeu_dq
:
445 case Intrinsic::x86_sse2_storel_dq
:
446 if (II
->getOperand(1) == OperandVal
)
454 /// getAccessType - Return the type of the memory being accessed.
455 static const Type
*getAccessType(const Instruction
*Inst
) {
456 const Type
*UseTy
= Inst
->getType();
457 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
))
458 UseTy
= SI
->getOperand(0)->getType();
459 else if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
460 // Addressing modes can also be folded into prefetches and a variety
462 switch (II
->getIntrinsicID()) {
464 case Intrinsic::x86_sse_storeu_ps
:
465 case Intrinsic::x86_sse2_storeu_pd
:
466 case Intrinsic::x86_sse2_storeu_dq
:
467 case Intrinsic::x86_sse2_storel_dq
:
468 UseTy
= II
->getOperand(1)->getType();
475 /// AddUsersIfInteresting - Inspect the specified instruction. If it is a
476 /// reducible SCEV, recursively add its users to the IVUsesByStride set and
477 /// return true. Otherwise, return false.
478 bool LoopStrengthReduce::AddUsersIfInteresting(Instruction
*I
, Loop
*L
,
479 SmallPtrSet
<Instruction
*,16> &Processed
) {
480 if (!SE
->isSCEVable(I
->getType()))
481 return false; // Void and FP expressions cannot be reduced.
483 // LSR is not APInt clean, do not touch integers bigger than 64-bits.
484 if (SE
->getTypeSizeInBits(I
->getType()) > 64)
487 if (!Processed
.insert(I
))
488 return true; // Instruction already handled.
490 // Get the symbolic expression for this instruction.
491 SCEVHandle ISE
= SE
->getSCEV(I
);
492 if (isa
<SCEVCouldNotCompute
>(ISE
)) return false;
494 // Get the start and stride for this expression.
495 SCEVHandle Start
= SE
->getIntegerSCEV(0, ISE
->getType());
496 SCEVHandle Stride
= Start
;
497 if (!getSCEVStartAndStride(ISE
, L
, Start
, Stride
, SE
, DT
))
498 return false; // Non-reducible symbolic expression, bail out.
500 std::vector
<Instruction
*> IUsers
;
501 // Collect all I uses now because IVUseShouldUsePostIncValue may
502 // invalidate use_iterator.
503 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
; ++UI
)
504 IUsers
.push_back(cast
<Instruction
>(*UI
));
506 for (unsigned iused_index
= 0, iused_size
= IUsers
.size();
507 iused_index
!= iused_size
; ++iused_index
) {
509 Instruction
*User
= IUsers
[iused_index
];
511 // Do not infinitely recurse on PHI nodes.
512 if (isa
<PHINode
>(User
) && Processed
.count(User
))
515 // Descend recursively, but not into PHI nodes outside the current loop.
516 // It's important to see the entire expression outside the loop to get
517 // choices that depend on addressing mode use right, although we won't
518 // consider references ouside the loop in all cases.
519 // If User is already in Processed, we don't want to recurse into it again,
520 // but do want to record a second reference in the same instruction.
521 bool AddUserToIVUsers
= false;
522 if (LI
->getLoopFor(User
->getParent()) != L
) {
523 if (isa
<PHINode
>(User
) || Processed
.count(User
) ||
524 !AddUsersIfInteresting(User
, L
, Processed
)) {
525 DOUT
<< "FOUND USER in other loop: " << *User
526 << " OF SCEV: " << *ISE
<< "\n";
527 AddUserToIVUsers
= true;
529 } else if (Processed
.count(User
) ||
530 !AddUsersIfInteresting(User
, L
, Processed
)) {
531 DOUT
<< "FOUND USER: " << *User
532 << " OF SCEV: " << *ISE
<< "\n";
533 AddUserToIVUsers
= true;
536 if (AddUserToIVUsers
) {
537 IVUsersOfOneStride
&StrideUses
= IVUsesByStride
[Stride
];
538 if (StrideUses
.Users
.empty()) // First occurrence of this stride?
539 StrideOrder
.push_back(Stride
);
541 // Okay, we found a user that we cannot reduce. Analyze the instruction
542 // and decide what to do with it. If we are a use inside of the loop, use
543 // the value before incrementation, otherwise use it after incrementation.
544 if (IVUseShouldUsePostIncValue(User
, I
, L
, DT
, this, DeadInsts
)) {
545 // The value used will be incremented by the stride more than we are
546 // expecting, so subtract this off.
547 SCEVHandle NewStart
= SE
->getMinusSCEV(Start
, Stride
);
548 StrideUses
.addUser(NewStart
, User
, I
);
549 StrideUses
.Users
.back().isUseOfPostIncrementedValue
= true;
550 DOUT
<< " USING POSTINC SCEV, START=" << *NewStart
<< "\n";
552 StrideUses
.addUser(Start
, User
, I
);
560 /// BasedUser - For a particular base value, keep information about how we've
561 /// partitioned the expression so far.
563 /// SE - The current ScalarEvolution object.
566 /// Base - The Base value for the PHI node that needs to be inserted for
567 /// this use. As the use is processed, information gets moved from this
568 /// field to the Imm field (below). BasedUser values are sorted by this
572 /// Inst - The instruction using the induction variable.
575 /// OperandValToReplace - The operand value of Inst to replace with the
577 Value
*OperandValToReplace
;
579 /// Imm - The immediate value that should be added to the base immediately
580 /// before Inst, because it will be folded into the imm field of the
581 /// instruction. This is also sometimes used for loop-variant values that
582 /// must be added inside the loop.
585 /// Phi - The induction variable that performs the striding that
586 /// should be used for this user.
589 // isUseOfPostIncrementedValue - True if this should use the
590 // post-incremented version of this IV, not the preincremented version.
591 // This can only be set in special cases, such as the terminating setcc
592 // instruction for a loop and uses outside the loop that are dominated by
594 bool isUseOfPostIncrementedValue
;
596 BasedUser(IVStrideUse
&IVSU
, ScalarEvolution
*se
)
597 : SE(se
), Base(IVSU
.Offset
), Inst(IVSU
.User
),
598 OperandValToReplace(IVSU
.OperandValToReplace
),
599 Imm(SE
->getIntegerSCEV(0, Base
->getType())),
600 isUseOfPostIncrementedValue(IVSU
.isUseOfPostIncrementedValue
) {}
602 // Once we rewrite the code to insert the new IVs we want, update the
603 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
605 void RewriteInstructionToUseNewBase(const SCEVHandle
&NewBase
,
606 Instruction
*InsertPt
,
607 SCEVExpander
&Rewriter
, Loop
*L
, Pass
*P
,
608 SmallVectorImpl
<Instruction
*> &DeadInsts
);
610 Value
*InsertCodeForBaseAtPosition(const SCEVHandle
&NewBase
,
612 SCEVExpander
&Rewriter
,
613 Instruction
*IP
, Loop
*L
);
618 void BasedUser::dump() const {
619 cerr
<< " Base=" << *Base
;
620 cerr
<< " Imm=" << *Imm
;
621 cerr
<< " Inst: " << *Inst
;
624 Value
*BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle
&NewBase
,
626 SCEVExpander
&Rewriter
,
627 Instruction
*IP
, Loop
*L
) {
628 // Figure out where we *really* want to insert this code. In particular, if
629 // the user is inside of a loop that is nested inside of L, we really don't
630 // want to insert this expression before the user, we'd rather pull it out as
631 // many loops as possible.
632 LoopInfo
&LI
= Rewriter
.getLoopInfo();
633 Instruction
*BaseInsertPt
= IP
;
635 // Figure out the most-nested loop that IP is in.
636 Loop
*InsertLoop
= LI
.getLoopFor(IP
->getParent());
638 // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
639 // the preheader of the outer-most loop where NewBase is not loop invariant.
640 if (L
->contains(IP
->getParent()))
641 while (InsertLoop
&& NewBase
->isLoopInvariant(InsertLoop
)) {
642 BaseInsertPt
= InsertLoop
->getLoopPreheader()->getTerminator();
643 InsertLoop
= InsertLoop
->getParentLoop();
646 Value
*Base
= Rewriter
.expandCodeFor(NewBase
, Ty
, BaseInsertPt
);
648 // If there is no immediate value, skip the next part.
652 // If we are inserting the base and imm values in the same block, make sure to
653 // adjust the IP position if insertion reused a result.
654 if (IP
== BaseInsertPt
)
655 IP
= Rewriter
.getInsertionPoint();
657 // Always emit the immediate (if non-zero) into the same block as the user.
658 SCEVHandle NewValSCEV
= SE
->getAddExpr(SE
->getUnknown(Base
), Imm
);
659 return Rewriter
.expandCodeFor(NewValSCEV
, Ty
, IP
);
663 // Once we rewrite the code to insert the new IVs we want, update the
664 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
665 // to it. NewBasePt is the last instruction which contributes to the
666 // value of NewBase in the case that it's a diffferent instruction from
667 // the PHI that NewBase is computed from, or null otherwise.
669 void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle
&NewBase
,
670 Instruction
*NewBasePt
,
671 SCEVExpander
&Rewriter
, Loop
*L
, Pass
*P
,
672 SmallVectorImpl
<Instruction
*> &DeadInsts
){
673 if (!isa
<PHINode
>(Inst
)) {
674 // By default, insert code at the user instruction.
675 BasicBlock::iterator InsertPt
= Inst
;
677 // However, if the Operand is itself an instruction, the (potentially
678 // complex) inserted code may be shared by many users. Because of this, we
679 // want to emit code for the computation of the operand right before its old
680 // computation. This is usually safe, because we obviously used to use the
681 // computation when it was computed in its current block. However, in some
682 // cases (e.g. use of a post-incremented induction variable) the NewBase
683 // value will be pinned to live somewhere after the original computation.
684 // In this case, we have to back off.
686 // If this is a use outside the loop (which means after, since it is based
687 // on a loop indvar) we use the post-incremented value, so that we don't
688 // artificially make the preinc value live out the bottom of the loop.
689 if (!isUseOfPostIncrementedValue
&& L
->contains(Inst
->getParent())) {
690 if (NewBasePt
&& isa
<PHINode
>(OperandValToReplace
)) {
691 InsertPt
= NewBasePt
;
693 } else if (Instruction
*OpInst
694 = dyn_cast
<Instruction
>(OperandValToReplace
)) {
696 while (isa
<PHINode
>(InsertPt
)) ++InsertPt
;
699 Value
*NewVal
= InsertCodeForBaseAtPosition(NewBase
,
700 OperandValToReplace
->getType(),
701 Rewriter
, InsertPt
, L
);
702 // Replace the use of the operand Value with the new Phi we just created.
703 Inst
->replaceUsesOfWith(OperandValToReplace
, NewVal
);
705 DOUT
<< " Replacing with ";
706 DEBUG(WriteAsOperand(*DOUT
, NewVal
, /*PrintType=*/false));
707 DOUT
<< ", which has value " << *NewBase
<< " plus IMM " << *Imm
<< "\n";
711 // PHI nodes are more complex. We have to insert one copy of the NewBase+Imm
712 // expression into each operand block that uses it. Note that PHI nodes can
713 // have multiple entries for the same predecessor. We use a map to make sure
714 // that a PHI node only has a single Value* for each predecessor (which also
715 // prevents us from inserting duplicate code in some blocks).
716 DenseMap
<BasicBlock
*, Value
*> InsertedCode
;
717 PHINode
*PN
= cast
<PHINode
>(Inst
);
718 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
719 if (PN
->getIncomingValue(i
) == OperandValToReplace
) {
720 // If the original expression is outside the loop, put the replacement
721 // code in the same place as the original expression,
722 // which need not be an immediate predecessor of this PHI. This way we
723 // need only one copy of it even if it is referenced multiple times in
724 // the PHI. We don't do this when the original expression is inside the
725 // loop because multiple copies sometimes do useful sinking of code in
727 Instruction
*OldLoc
= dyn_cast
<Instruction
>(OperandValToReplace
);
728 if (L
->contains(OldLoc
->getParent())) {
729 // If this is a critical edge, split the edge so that we do not insert
730 // the code on all predecessor/successor paths. We do this unless this
731 // is the canonical backedge for this loop, as this can make some
732 // inserted code be in an illegal position.
733 BasicBlock
*PHIPred
= PN
->getIncomingBlock(i
);
734 if (e
!= 1 && PHIPred
->getTerminator()->getNumSuccessors() > 1 &&
735 (PN
->getParent() != L
->getHeader() || !L
->contains(PHIPred
))) {
737 // First step, split the critical edge.
738 SplitCriticalEdge(PHIPred
, PN
->getParent(), P
, false);
740 // Next step: move the basic block. In particular, if the PHI node
741 // is outside of the loop, and PredTI is in the loop, we want to
742 // move the block to be immediately before the PHI block, not
743 // immediately after PredTI.
744 if (L
->contains(PHIPred
) && !L
->contains(PN
->getParent())) {
745 BasicBlock
*NewBB
= PN
->getIncomingBlock(i
);
746 NewBB
->moveBefore(PN
->getParent());
749 // Splitting the edge can reduce the number of PHI entries we have.
750 e
= PN
->getNumIncomingValues();
753 Value
*&Code
= InsertedCode
[PN
->getIncomingBlock(i
)];
755 // Insert the code into the end of the predecessor block.
756 Instruction
*InsertPt
= (L
->contains(OldLoc
->getParent())) ?
757 PN
->getIncomingBlock(i
)->getTerminator() :
758 OldLoc
->getParent()->getTerminator();
759 Code
= InsertCodeForBaseAtPosition(NewBase
, PN
->getType(),
760 Rewriter
, InsertPt
, L
);
762 DOUT
<< " Changing PHI use to ";
763 DEBUG(WriteAsOperand(*DOUT
, Code
, /*PrintType=*/false));
764 DOUT
<< ", which has value " << *NewBase
<< " plus IMM " << *Imm
<< "\n";
767 // Replace the use of the operand Value with the new Phi we just created.
768 PN
->setIncomingValue(i
, Code
);
773 // PHI node might have become a constant value after SplitCriticalEdge.
774 DeadInsts
.push_back(Inst
);
778 /// fitsInAddressMode - Return true if V can be subsumed within an addressing
779 /// mode, and does not need to be put in a register first.
780 static bool fitsInAddressMode(const SCEVHandle
&V
, const Type
*UseTy
,
781 const TargetLowering
*TLI
, bool HasBaseReg
) {
782 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(V
)) {
783 int64_t VC
= SC
->getValue()->getSExtValue();
785 TargetLowering::AddrMode AM
;
787 AM
.HasBaseReg
= HasBaseReg
;
788 return TLI
->isLegalAddressingMode(AM
, UseTy
);
790 // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
791 return (VC
> -(1 << 16) && VC
< (1 << 16)-1);
795 if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(V
))
796 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(SU
->getValue())) {
797 TargetLowering::AddrMode AM
;
799 AM
.HasBaseReg
= HasBaseReg
;
800 return TLI
->isLegalAddressingMode(AM
, UseTy
);
806 /// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
807 /// loop varying to the Imm operand.
808 static void MoveLoopVariantsToImmediateField(SCEVHandle
&Val
, SCEVHandle
&Imm
,
809 Loop
*L
, ScalarEvolution
*SE
) {
810 if (Val
->isLoopInvariant(L
)) return; // Nothing to do.
812 if (const SCEVAddExpr
*SAE
= dyn_cast
<SCEVAddExpr
>(Val
)) {
813 std::vector
<SCEVHandle
> NewOps
;
814 NewOps
.reserve(SAE
->getNumOperands());
816 for (unsigned i
= 0; i
!= SAE
->getNumOperands(); ++i
)
817 if (!SAE
->getOperand(i
)->isLoopInvariant(L
)) {
818 // If this is a loop-variant expression, it must stay in the immediate
819 // field of the expression.
820 Imm
= SE
->getAddExpr(Imm
, SAE
->getOperand(i
));
822 NewOps
.push_back(SAE
->getOperand(i
));
826 Val
= SE
->getIntegerSCEV(0, Val
->getType());
828 Val
= SE
->getAddExpr(NewOps
);
829 } else if (const SCEVAddRecExpr
*SARE
= dyn_cast
<SCEVAddRecExpr
>(Val
)) {
830 // Try to pull immediates out of the start value of nested addrec's.
831 SCEVHandle Start
= SARE
->getStart();
832 MoveLoopVariantsToImmediateField(Start
, Imm
, L
, SE
);
834 std::vector
<SCEVHandle
> Ops(SARE
->op_begin(), SARE
->op_end());
836 Val
= SE
->getAddRecExpr(Ops
, SARE
->getLoop());
838 // Otherwise, all of Val is variant, move the whole thing over.
839 Imm
= SE
->getAddExpr(Imm
, Val
);
840 Val
= SE
->getIntegerSCEV(0, Val
->getType());
845 /// MoveImmediateValues - Look at Val, and pull out any additions of constants
846 /// that can fit into the immediate field of instructions in the target.
847 /// Accumulate these immediate values into the Imm value.
848 static void MoveImmediateValues(const TargetLowering
*TLI
,
850 SCEVHandle
&Val
, SCEVHandle
&Imm
,
851 bool isAddress
, Loop
*L
,
852 ScalarEvolution
*SE
) {
853 if (const SCEVAddExpr
*SAE
= dyn_cast
<SCEVAddExpr
>(Val
)) {
854 std::vector
<SCEVHandle
> NewOps
;
855 NewOps
.reserve(SAE
->getNumOperands());
857 for (unsigned i
= 0; i
!= SAE
->getNumOperands(); ++i
) {
858 SCEVHandle NewOp
= SAE
->getOperand(i
);
859 MoveImmediateValues(TLI
, UseTy
, NewOp
, Imm
, isAddress
, L
, SE
);
861 if (!NewOp
->isLoopInvariant(L
)) {
862 // If this is a loop-variant expression, it must stay in the immediate
863 // field of the expression.
864 Imm
= SE
->getAddExpr(Imm
, NewOp
);
866 NewOps
.push_back(NewOp
);
871 Val
= SE
->getIntegerSCEV(0, Val
->getType());
873 Val
= SE
->getAddExpr(NewOps
);
875 } else if (const SCEVAddRecExpr
*SARE
= dyn_cast
<SCEVAddRecExpr
>(Val
)) {
876 // Try to pull immediates out of the start value of nested addrec's.
877 SCEVHandle Start
= SARE
->getStart();
878 MoveImmediateValues(TLI
, UseTy
, Start
, Imm
, isAddress
, L
, SE
);
880 if (Start
!= SARE
->getStart()) {
881 std::vector
<SCEVHandle
> Ops(SARE
->op_begin(), SARE
->op_end());
883 Val
= SE
->getAddRecExpr(Ops
, SARE
->getLoop());
886 } else if (const SCEVMulExpr
*SME
= dyn_cast
<SCEVMulExpr
>(Val
)) {
887 // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
888 if (isAddress
&& fitsInAddressMode(SME
->getOperand(0), UseTy
, TLI
, false) &&
889 SME
->getNumOperands() == 2 && SME
->isLoopInvariant(L
)) {
891 SCEVHandle SubImm
= SE
->getIntegerSCEV(0, Val
->getType());
892 SCEVHandle NewOp
= SME
->getOperand(1);
893 MoveImmediateValues(TLI
, UseTy
, NewOp
, SubImm
, isAddress
, L
, SE
);
895 // If we extracted something out of the subexpressions, see if we can
897 if (NewOp
!= SME
->getOperand(1)) {
898 // Scale SubImm up by "8". If the result is a target constant, we are
900 SubImm
= SE
->getMulExpr(SubImm
, SME
->getOperand(0));
901 if (fitsInAddressMode(SubImm
, UseTy
, TLI
, false)) {
902 // Accumulate the immediate.
903 Imm
= SE
->getAddExpr(Imm
, SubImm
);
905 // Update what is left of 'Val'.
906 Val
= SE
->getMulExpr(SME
->getOperand(0), NewOp
);
913 // Loop-variant expressions must stay in the immediate field of the
915 if ((isAddress
&& fitsInAddressMode(Val
, UseTy
, TLI
, false)) ||
916 !Val
->isLoopInvariant(L
)) {
917 Imm
= SE
->getAddExpr(Imm
, Val
);
918 Val
= SE
->getIntegerSCEV(0, Val
->getType());
922 // Otherwise, no immediates to move.
925 static void MoveImmediateValues(const TargetLowering
*TLI
,
927 SCEVHandle
&Val
, SCEVHandle
&Imm
,
928 bool isAddress
, Loop
*L
,
929 ScalarEvolution
*SE
) {
930 const Type
*UseTy
= getAccessType(User
);
931 MoveImmediateValues(TLI
, UseTy
, Val
, Imm
, isAddress
, L
, SE
);
934 /// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
935 /// added together. This is used to reassociate common addition subexprs
936 /// together for maximal sharing when rewriting bases.
937 static void SeparateSubExprs(std::vector
<SCEVHandle
> &SubExprs
,
939 ScalarEvolution
*SE
) {
940 if (const SCEVAddExpr
*AE
= dyn_cast
<SCEVAddExpr
>(Expr
)) {
941 for (unsigned j
= 0, e
= AE
->getNumOperands(); j
!= e
; ++j
)
942 SeparateSubExprs(SubExprs
, AE
->getOperand(j
), SE
);
943 } else if (const SCEVAddRecExpr
*SARE
= dyn_cast
<SCEVAddRecExpr
>(Expr
)) {
944 SCEVHandle Zero
= SE
->getIntegerSCEV(0, Expr
->getType());
945 if (SARE
->getOperand(0) == Zero
) {
946 SubExprs
.push_back(Expr
);
948 // Compute the addrec with zero as its base.
949 std::vector
<SCEVHandle
> Ops(SARE
->op_begin(), SARE
->op_end());
950 Ops
[0] = Zero
; // Start with zero base.
951 SubExprs
.push_back(SE
->getAddRecExpr(Ops
, SARE
->getLoop()));
954 SeparateSubExprs(SubExprs
, SARE
->getOperand(0), SE
);
956 } else if (!Expr
->isZero()) {
958 SubExprs
.push_back(Expr
);
962 // This is logically local to the following function, but C++ says we have
963 // to make it file scope.
964 struct SubExprUseData
{ unsigned Count
; bool notAllUsesAreFree
; };
966 /// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
967 /// the Uses, removing any common subexpressions, except that if all such
968 /// subexpressions can be folded into an addressing mode for all uses inside
969 /// the loop (this case is referred to as "free" in comments herein) we do
970 /// not remove anything. This looks for things like (a+b+c) and
971 /// (a+c+d) and computes the common (a+c) subexpression. The common expression
972 /// is *removed* from the Bases and returned.
974 RemoveCommonExpressionsFromUseBases(std::vector
<BasedUser
> &Uses
,
975 ScalarEvolution
*SE
, Loop
*L
,
976 const TargetLowering
*TLI
) {
977 unsigned NumUses
= Uses
.size();
979 // Only one use? This is a very common case, so we handle it specially and
981 SCEVHandle Zero
= SE
->getIntegerSCEV(0, Uses
[0].Base
->getType());
982 SCEVHandle Result
= Zero
;
983 SCEVHandle FreeResult
= Zero
;
985 // If the use is inside the loop, use its base, regardless of what it is:
986 // it is clearly shared across all the IV's. If the use is outside the loop
987 // (which means after it) we don't want to factor anything *into* the loop,
988 // so just use 0 as the base.
989 if (L
->contains(Uses
[0].Inst
->getParent()))
990 std::swap(Result
, Uses
[0].Base
);
994 // To find common subexpressions, count how many of Uses use each expression.
995 // If any subexpressions are used Uses.size() times, they are common.
996 // Also track whether all uses of each expression can be moved into an
997 // an addressing mode "for free"; such expressions are left within the loop.
998 // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
999 std::map
<SCEVHandle
, SubExprUseData
> SubExpressionUseData
;
1001 // UniqueSubExprs - Keep track of all of the subexpressions we see in the
1002 // order we see them.
1003 std::vector
<SCEVHandle
> UniqueSubExprs
;
1005 std::vector
<SCEVHandle
> SubExprs
;
1006 unsigned NumUsesInsideLoop
= 0;
1007 for (unsigned i
= 0; i
!= NumUses
; ++i
) {
1008 // If the user is outside the loop, just ignore it for base computation.
1009 // Since the user is outside the loop, it must be *after* the loop (if it
1010 // were before, it could not be based on the loop IV). We don't want users
1011 // after the loop to affect base computation of values *inside* the loop,
1012 // because we can always add their offsets to the result IV after the loop
1013 // is done, ensuring we get good code inside the loop.
1014 if (!L
->contains(Uses
[i
].Inst
->getParent()))
1016 NumUsesInsideLoop
++;
1018 // If the base is zero (which is common), return zero now, there are no
1019 // CSEs we can find.
1020 if (Uses
[i
].Base
== Zero
) return Zero
;
1022 // If this use is as an address we may be able to put CSEs in the addressing
1023 // mode rather than hoisting them.
1024 bool isAddrUse
= isAddressUse(Uses
[i
].Inst
, Uses
[i
].OperandValToReplace
);
1025 // We may need the UseTy below, but only when isAddrUse, so compute it
1026 // only in that case.
1027 const Type
*UseTy
= 0;
1029 UseTy
= getAccessType(Uses
[i
].Inst
);
1031 // Split the expression into subexprs.
1032 SeparateSubExprs(SubExprs
, Uses
[i
].Base
, SE
);
1033 // Add one to SubExpressionUseData.Count for each subexpr present, and
1034 // if the subexpr is not a valid immediate within an addressing mode use,
1035 // set SubExpressionUseData.notAllUsesAreFree. We definitely want to
1036 // hoist these out of the loop (if they are common to all uses).
1037 for (unsigned j
= 0, e
= SubExprs
.size(); j
!= e
; ++j
) {
1038 if (++SubExpressionUseData
[SubExprs
[j
]].Count
== 1)
1039 UniqueSubExprs
.push_back(SubExprs
[j
]);
1040 if (!isAddrUse
|| !fitsInAddressMode(SubExprs
[j
], UseTy
, TLI
, false))
1041 SubExpressionUseData
[SubExprs
[j
]].notAllUsesAreFree
= true;
1046 // Now that we know how many times each is used, build Result. Iterate over
1047 // UniqueSubexprs so that we have a stable ordering.
1048 for (unsigned i
= 0, e
= UniqueSubExprs
.size(); i
!= e
; ++i
) {
1049 std::map
<SCEVHandle
, SubExprUseData
>::iterator I
=
1050 SubExpressionUseData
.find(UniqueSubExprs
[i
]);
1051 assert(I
!= SubExpressionUseData
.end() && "Entry not found?");
1052 if (I
->second
.Count
== NumUsesInsideLoop
) { // Found CSE!
1053 if (I
->second
.notAllUsesAreFree
)
1054 Result
= SE
->getAddExpr(Result
, I
->first
);
1056 FreeResult
= SE
->getAddExpr(FreeResult
, I
->first
);
1058 // Remove non-cse's from SubExpressionUseData.
1059 SubExpressionUseData
.erase(I
);
1062 if (FreeResult
!= Zero
) {
1063 // We have some subexpressions that can be subsumed into addressing
1064 // modes in every use inside the loop. However, it's possible that
1065 // there are so many of them that the combined FreeResult cannot
1066 // be subsumed, or that the target cannot handle both a FreeResult
1067 // and a Result in the same instruction (for example because it would
1068 // require too many registers). Check this.
1069 for (unsigned i
=0; i
<NumUses
; ++i
) {
1070 if (!L
->contains(Uses
[i
].Inst
->getParent()))
1072 // We know this is an addressing mode use; if there are any uses that
1073 // are not, FreeResult would be Zero.
1074 const Type
*UseTy
= getAccessType(Uses
[i
].Inst
);
1075 if (!fitsInAddressMode(FreeResult
, UseTy
, TLI
, Result
!=Zero
)) {
1076 // FIXME: could split up FreeResult into pieces here, some hoisted
1077 // and some not. There is no obvious advantage to this.
1078 Result
= SE
->getAddExpr(Result
, FreeResult
);
1085 // If we found no CSE's, return now.
1086 if (Result
== Zero
) return Result
;
1088 // If we still have a FreeResult, remove its subexpressions from
1089 // SubExpressionUseData. This means they will remain in the use Bases.
1090 if (FreeResult
!= Zero
) {
1091 SeparateSubExprs(SubExprs
, FreeResult
, SE
);
1092 for (unsigned j
= 0, e
= SubExprs
.size(); j
!= e
; ++j
) {
1093 std::map
<SCEVHandle
, SubExprUseData
>::iterator I
=
1094 SubExpressionUseData
.find(SubExprs
[j
]);
1095 SubExpressionUseData
.erase(I
);
1100 // Otherwise, remove all of the CSE's we found from each of the base values.
1101 for (unsigned i
= 0; i
!= NumUses
; ++i
) {
1102 // Uses outside the loop don't necessarily include the common base, but
1103 // the final IV value coming into those uses does. Instead of trying to
1104 // remove the pieces of the common base, which might not be there,
1105 // subtract off the base to compensate for this.
1106 if (!L
->contains(Uses
[i
].Inst
->getParent())) {
1107 Uses
[i
].Base
= SE
->getMinusSCEV(Uses
[i
].Base
, Result
);
1111 // Split the expression into subexprs.
1112 SeparateSubExprs(SubExprs
, Uses
[i
].Base
, SE
);
1114 // Remove any common subexpressions.
1115 for (unsigned j
= 0, e
= SubExprs
.size(); j
!= e
; ++j
)
1116 if (SubExpressionUseData
.count(SubExprs
[j
])) {
1117 SubExprs
.erase(SubExprs
.begin()+j
);
1121 // Finally, add the non-shared expressions together.
1122 if (SubExprs
.empty())
1123 Uses
[i
].Base
= Zero
;
1125 Uses
[i
].Base
= SE
->getAddExpr(SubExprs
);
1132 /// ValidStride - Check whether the given Scale is valid for all loads and
1133 /// stores in UsersToProcess.
1135 bool LoopStrengthReduce::ValidStride(bool HasBaseReg
,
1137 const std::vector
<BasedUser
>& UsersToProcess
) {
1141 for (unsigned i
=0, e
= UsersToProcess
.size(); i
!=e
; ++i
) {
1142 // If this is a load or other access, pass the type of the access in.
1143 const Type
*AccessTy
= Type::VoidTy
;
1144 if (isAddressUse(UsersToProcess
[i
].Inst
,
1145 UsersToProcess
[i
].OperandValToReplace
))
1146 AccessTy
= getAccessType(UsersToProcess
[i
].Inst
);
1147 else if (isa
<PHINode
>(UsersToProcess
[i
].Inst
))
1150 TargetLowering::AddrMode AM
;
1151 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(UsersToProcess
[i
].Imm
))
1152 AM
.BaseOffs
= SC
->getValue()->getSExtValue();
1153 AM
.HasBaseReg
= HasBaseReg
|| !UsersToProcess
[i
].Base
->isZero();
1156 // If load[imm+r*scale] is illegal, bail out.
1157 if (!TLI
->isLegalAddressingMode(AM
, AccessTy
))
1163 /// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
1165 bool LoopStrengthReduce::RequiresTypeConversion(const Type
*Ty1
,
1169 if (SE
->getEffectiveSCEVType(Ty1
) == SE
->getEffectiveSCEVType(Ty2
))
1171 if (Ty1
->canLosslesslyBitCastTo(Ty2
))
1173 if (TLI
&& TLI
->isTruncateFree(Ty1
, Ty2
))
1178 /// CheckForIVReuse - Returns the multiple if the stride is the multiple
1179 /// of a previous stride and it is a legal value for the target addressing
1180 /// mode scale component and optional base reg. This allows the users of
1181 /// this stride to be rewritten as prev iv * factor. It returns 0 if no
1182 /// reuse is possible. Factors can be negative on same targets, e.g. ARM.
1184 /// If all uses are outside the loop, we don't require that all multiplies
1185 /// be folded into the addressing mode, nor even that the factor be constant;
1186 /// a multiply (executed once) outside the loop is better than another IV
1187 /// within. Well, usually.
1188 SCEVHandle
LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg
,
1189 bool AllUsesAreAddresses
,
1190 bool AllUsesAreOutsideLoop
,
1191 const SCEVHandle
&Stride
,
1192 IVExpr
&IV
, const Type
*Ty
,
1193 const std::vector
<BasedUser
>& UsersToProcess
) {
1194 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Stride
)) {
1195 int64_t SInt
= SC
->getValue()->getSExtValue();
1196 for (unsigned NewStride
= 0, e
= StrideOrder
.size(); NewStride
!= e
;
1198 std::map
<SCEVHandle
, IVsOfOneStride
>::iterator SI
=
1199 IVsByStride
.find(StrideOrder
[NewStride
]);
1200 if (SI
== IVsByStride
.end() || !isa
<SCEVConstant
>(SI
->first
))
1202 int64_t SSInt
= cast
<SCEVConstant
>(SI
->first
)->getValue()->getSExtValue();
1203 if (SI
->first
!= Stride
&&
1204 (unsigned(abs(SInt
)) < SSInt
|| (SInt
% SSInt
) != 0))
1206 int64_t Scale
= SInt
/ SSInt
;
1207 // Check that this stride is valid for all the types used for loads and
1208 // stores; if it can be used for some and not others, we might as well use
1209 // the original stride everywhere, since we have to create the IV for it
1210 // anyway. If the scale is 1, then we don't need to worry about folding
1213 (AllUsesAreAddresses
&&
1214 ValidStride(HasBaseReg
, Scale
, UsersToProcess
)))
1215 for (std::vector
<IVExpr
>::iterator II
= SI
->second
.IVs
.begin(),
1216 IE
= SI
->second
.IVs
.end(); II
!= IE
; ++II
)
1217 // FIXME: Only handle base == 0 for now.
1218 // Only reuse previous IV if it would not require a type conversion.
1219 if (II
->Base
->isZero() &&
1220 !RequiresTypeConversion(II
->Base
->getType(), Ty
)) {
1222 return SE
->getIntegerSCEV(Scale
, Stride
->getType());
1225 } else if (AllUsesAreOutsideLoop
) {
1226 // Accept nonconstant strides here; it is really really right to substitute
1227 // an existing IV if we can.
1228 for (unsigned NewStride
= 0, e
= StrideOrder
.size(); NewStride
!= e
;
1230 std::map
<SCEVHandle
, IVsOfOneStride
>::iterator SI
=
1231 IVsByStride
.find(StrideOrder
[NewStride
]);
1232 if (SI
== IVsByStride
.end() || !isa
<SCEVConstant
>(SI
->first
))
1234 int64_t SSInt
= cast
<SCEVConstant
>(SI
->first
)->getValue()->getSExtValue();
1235 if (SI
->first
!= Stride
&& SSInt
!= 1)
1237 for (std::vector
<IVExpr
>::iterator II
= SI
->second
.IVs
.begin(),
1238 IE
= SI
->second
.IVs
.end(); II
!= IE
; ++II
)
1239 // Accept nonzero base here.
1240 // Only reuse previous IV if it would not require a type conversion.
1241 if (!RequiresTypeConversion(II
->Base
->getType(), Ty
)) {
1246 // Special case, old IV is -1*x and this one is x. Can treat this one as
1248 for (unsigned NewStride
= 0, e
= StrideOrder
.size(); NewStride
!= e
;
1250 std::map
<SCEVHandle
, IVsOfOneStride
>::iterator SI
=
1251 IVsByStride
.find(StrideOrder
[NewStride
]);
1252 if (SI
== IVsByStride
.end())
1254 if (const SCEVMulExpr
*ME
= dyn_cast
<SCEVMulExpr
>(SI
->first
))
1255 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(ME
->getOperand(0)))
1256 if (Stride
== ME
->getOperand(1) &&
1257 SC
->getValue()->getSExtValue() == -1LL)
1258 for (std::vector
<IVExpr
>::iterator II
= SI
->second
.IVs
.begin(),
1259 IE
= SI
->second
.IVs
.end(); II
!= IE
; ++II
)
1260 // Accept nonzero base here.
1261 // Only reuse previous IV if it would not require type conversion.
1262 if (!RequiresTypeConversion(II
->Base
->getType(), Ty
)) {
1264 return SE
->getIntegerSCEV(-1LL, Stride
->getType());
1268 return SE
->getIntegerSCEV(0, Stride
->getType());
1271 /// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
1272 /// returns true if Val's isUseOfPostIncrementedValue is true.
1273 static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser
&Val
) {
1274 return Val
.isUseOfPostIncrementedValue
;
1277 /// isNonConstantNegative - Return true if the specified scev is negated, but
1279 static bool isNonConstantNegative(const SCEVHandle
&Expr
) {
1280 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Expr
);
1281 if (!Mul
) return false;
1283 // If there is a constant factor, it will be first.
1284 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Mul
->getOperand(0));
1285 if (!SC
) return false;
1287 // Return true if the value is negative, this matches things like (-42 * V).
1288 return SC
->getValue()->getValue().isNegative();
1291 // CollectIVUsers - Transform our list of users and offsets to a bit more
1292 // complex table. In this new vector, each 'BasedUser' contains 'Base', the base
1293 // of the strided accesses, as well as the old information from Uses. We
1294 // progressively move information from the Base field to the Imm field, until
1295 // we eventually have the full access expression to rewrite the use.
1296 SCEVHandle
LoopStrengthReduce::CollectIVUsers(const SCEVHandle
&Stride
,
1297 IVUsersOfOneStride
&Uses
,
1299 bool &AllUsesAreAddresses
,
1300 bool &AllUsesAreOutsideLoop
,
1301 std::vector
<BasedUser
> &UsersToProcess
) {
1302 UsersToProcess
.reserve(Uses
.Users
.size());
1303 for (unsigned i
= 0, e
= Uses
.Users
.size(); i
!= e
; ++i
) {
1304 UsersToProcess
.push_back(BasedUser(Uses
.Users
[i
], SE
));
1306 // Move any loop variant operands from the offset field to the immediate
1307 // field of the use, so that we don't try to use something before it is
1309 MoveLoopVariantsToImmediateField(UsersToProcess
.back().Base
,
1310 UsersToProcess
.back().Imm
, L
, SE
);
1311 assert(UsersToProcess
.back().Base
->isLoopInvariant(L
) &&
1312 "Base value is not loop invariant!");
1315 // We now have a whole bunch of uses of like-strided induction variables, but
1316 // they might all have different bases. We want to emit one PHI node for this
1317 // stride which we fold as many common expressions (between the IVs) into as
1318 // possible. Start by identifying the common expressions in the base values
1319 // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
1320 // "A+B"), emit it to the preheader, then remove the expression from the
1321 // UsersToProcess base values.
1322 SCEVHandle CommonExprs
=
1323 RemoveCommonExpressionsFromUseBases(UsersToProcess
, SE
, L
, TLI
);
1325 // Next, figure out what we can represent in the immediate fields of
1326 // instructions. If we can represent anything there, move it to the imm
1327 // fields of the BasedUsers. We do this so that it increases the commonality
1328 // of the remaining uses.
1329 unsigned NumPHI
= 0;
1330 bool HasAddress
= false;
1331 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
) {
1332 // If the user is not in the current loop, this means it is using the exit
1333 // value of the IV. Do not put anything in the base, make sure it's all in
1334 // the immediate field to allow as much factoring as possible.
1335 if (!L
->contains(UsersToProcess
[i
].Inst
->getParent())) {
1336 UsersToProcess
[i
].Imm
= SE
->getAddExpr(UsersToProcess
[i
].Imm
,
1337 UsersToProcess
[i
].Base
);
1338 UsersToProcess
[i
].Base
=
1339 SE
->getIntegerSCEV(0, UsersToProcess
[i
].Base
->getType());
1341 // Not all uses are outside the loop.
1342 AllUsesAreOutsideLoop
= false;
1344 // Addressing modes can be folded into loads and stores. Be careful that
1345 // the store is through the expression, not of the expression though.
1347 bool isAddress
= isAddressUse(UsersToProcess
[i
].Inst
,
1348 UsersToProcess
[i
].OperandValToReplace
);
1349 if (isa
<PHINode
>(UsersToProcess
[i
].Inst
)) {
1357 // If this use isn't an address, then not all uses are addresses.
1358 if (!isAddress
&& !isPHI
)
1359 AllUsesAreAddresses
= false;
1361 MoveImmediateValues(TLI
, UsersToProcess
[i
].Inst
, UsersToProcess
[i
].Base
,
1362 UsersToProcess
[i
].Imm
, isAddress
, L
, SE
);
1366 // If one of the use is a PHI node and all other uses are addresses, still
1367 // allow iv reuse. Essentially we are trading one constant multiplication
1368 // for one fewer iv.
1370 AllUsesAreAddresses
= false;
1372 // There are no in-loop address uses.
1373 if (AllUsesAreAddresses
&& (!HasAddress
&& !AllUsesAreOutsideLoop
))
1374 AllUsesAreAddresses
= false;
1379 /// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction
1380 /// is valid and profitable for the given set of users of a stride. In
1381 /// full strength-reduction mode, all addresses at the current stride are
1382 /// strength-reduced all the way down to pointer arithmetic.
1384 bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
1385 const std::vector
<BasedUser
> &UsersToProcess
,
1387 bool AllUsesAreAddresses
,
1388 SCEVHandle Stride
) {
1389 if (!EnableFullLSRMode
)
1392 // The heuristics below aim to avoid increasing register pressure, but
1393 // fully strength-reducing all the addresses increases the number of
1394 // add instructions, so don't do this when optimizing for size.
1395 // TODO: If the loop is large, the savings due to simpler addresses
1396 // may oughtweight the costs of the extra increment instructions.
1397 if (L
->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize
))
1400 // TODO: For now, don't do full strength reduction if there could
1401 // potentially be greater-stride multiples of the current stride
1402 // which could reuse the current stride IV.
1403 if (StrideOrder
.back() != Stride
)
1406 // Iterate through the uses to find conditions that automatically rule out
1408 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ) {
1409 SCEV
*Base
= UsersToProcess
[i
].Base
;
1410 SCEV
*Imm
= UsersToProcess
[i
].Imm
;
1411 // If any users have a loop-variant component, they can't be fully
1412 // strength-reduced.
1413 if (Imm
&& !Imm
->isLoopInvariant(L
))
1415 // If there are to users with the same base and the difference between
1416 // the two Imm values can't be folded into the address, full
1417 // strength reduction would increase register pressure.
1419 SCEV
*CurImm
= UsersToProcess
[i
].Imm
;
1420 if ((CurImm
|| Imm
) && CurImm
!= Imm
) {
1421 if (!CurImm
) CurImm
= SE
->getIntegerSCEV(0, Stride
->getType());
1422 if (!Imm
) Imm
= SE
->getIntegerSCEV(0, Stride
->getType());
1423 const Instruction
*Inst
= UsersToProcess
[i
].Inst
;
1424 const Type
*UseTy
= getAccessType(Inst
);
1425 SCEVHandle Diff
= SE
->getMinusSCEV(UsersToProcess
[i
].Imm
, Imm
);
1426 if (!Diff
->isZero() &&
1427 (!AllUsesAreAddresses
||
1428 !fitsInAddressMode(Diff
, UseTy
, TLI
, /*HasBaseReg=*/true)))
1431 } while (++i
!= e
&& Base
== UsersToProcess
[i
].Base
);
1434 // If there's exactly one user in this stride, fully strength-reducing it
1435 // won't increase register pressure. If it's starting from a non-zero base,
1436 // it'll be simpler this way.
1437 if (UsersToProcess
.size() == 1 && !UsersToProcess
[0].Base
->isZero())
1440 // Otherwise, if there are any users in this stride that don't require
1441 // a register for their base, full strength-reduction will increase
1442 // register pressure.
1443 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
)
1444 if (UsersToProcess
[i
].Base
->isZero())
1447 // Otherwise, go for it.
1451 /// InsertAffinePhi Create and insert a PHI node for an induction variable
1452 /// with the specified start and step values in the specified loop.
1454 /// If NegateStride is true, the stride should be negated by using a
1455 /// subtract instead of an add.
1457 /// Return the created phi node.
1459 static PHINode
*InsertAffinePhi(SCEVHandle Start
, SCEVHandle Step
,
1461 SCEVExpander
&Rewriter
) {
1462 assert(Start
->isLoopInvariant(L
) && "New PHI start is not loop invariant!");
1463 assert(Step
->isLoopInvariant(L
) && "New PHI stride is not loop invariant!");
1465 BasicBlock
*Header
= L
->getHeader();
1466 BasicBlock
*Preheader
= L
->getLoopPreheader();
1467 BasicBlock
*LatchBlock
= L
->getLoopLatch();
1468 const Type
*Ty
= Start
->getType();
1469 Ty
= Rewriter
.SE
.getEffectiveSCEVType(Ty
);
1471 PHINode
*PN
= PHINode::Create(Ty
, "lsr.iv", Header
->begin());
1472 PN
->addIncoming(Rewriter
.expandCodeFor(Start
, Ty
, Preheader
->getTerminator()),
1475 // If the stride is negative, insert a sub instead of an add for the
1477 bool isNegative
= isNonConstantNegative(Step
);
1478 SCEVHandle IncAmount
= Step
;
1480 IncAmount
= Rewriter
.SE
.getNegativeSCEV(Step
);
1482 // Insert an add instruction right before the terminator corresponding
1483 // to the back-edge.
1484 Value
*StepV
= Rewriter
.expandCodeFor(IncAmount
, Ty
,
1485 Preheader
->getTerminator());
1488 IncV
= BinaryOperator::CreateSub(PN
, StepV
, "lsr.iv.next",
1489 LatchBlock
->getTerminator());
1491 IncV
= BinaryOperator::CreateAdd(PN
, StepV
, "lsr.iv.next",
1492 LatchBlock
->getTerminator());
1494 if (!isa
<ConstantInt
>(StepV
)) ++NumVariable
;
1496 PN
->addIncoming(IncV
, LatchBlock
);
1502 static void SortUsersToProcess(std::vector
<BasedUser
> &UsersToProcess
) {
1503 // We want to emit code for users inside the loop first. To do this, we
1504 // rearrange BasedUser so that the entries at the end have
1505 // isUseOfPostIncrementedValue = false, because we pop off the end of the
1506 // vector (so we handle them first).
1507 std::partition(UsersToProcess
.begin(), UsersToProcess
.end(),
1508 PartitionByIsUseOfPostIncrementedValue
);
1510 // Sort this by base, so that things with the same base are handled
1511 // together. By partitioning first and stable-sorting later, we are
1512 // guaranteed that within each base we will pop off users from within the
1513 // loop before users outside of the loop with a particular base.
1515 // We would like to use stable_sort here, but we can't. The problem is that
1516 // SCEVHandle's don't have a deterministic ordering w.r.t to each other, so
1517 // we don't have anything to do a '<' comparison on. Because we think the
1518 // number of uses is small, do a horrible bubble sort which just relies on
1520 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
) {
1521 // Get a base value.
1522 SCEVHandle Base
= UsersToProcess
[i
].Base
;
1524 // Compact everything with this base to be consecutive with this one.
1525 for (unsigned j
= i
+1; j
!= e
; ++j
) {
1526 if (UsersToProcess
[j
].Base
== Base
) {
1527 std::swap(UsersToProcess
[i
+1], UsersToProcess
[j
]);
1534 /// PrepareToStrengthReduceFully - Prepare to fully strength-reduce
1535 /// UsersToProcess, meaning lowering addresses all the way down to direct
1536 /// pointer arithmetic.
1539 LoopStrengthReduce::PrepareToStrengthReduceFully(
1540 std::vector
<BasedUser
> &UsersToProcess
,
1542 SCEVHandle CommonExprs
,
1544 SCEVExpander
&PreheaderRewriter
) {
1545 DOUT
<< " Fully reducing all users\n";
1547 // Rewrite the UsersToProcess records, creating a separate PHI for each
1548 // unique Base value.
1549 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ) {
1550 // TODO: The uses are grouped by base, but not sorted. We arbitrarily
1551 // pick the first Imm value here to start with, and adjust it for the
1553 SCEVHandle Imm
= UsersToProcess
[i
].Imm
;
1554 SCEVHandle Base
= UsersToProcess
[i
].Base
;
1555 SCEVHandle Start
= SE
->getAddExpr(CommonExprs
, Base
, Imm
);
1556 PHINode
*Phi
= InsertAffinePhi(Start
, Stride
, L
,
1558 // Loop over all the users with the same base.
1560 UsersToProcess
[i
].Base
= SE
->getIntegerSCEV(0, Stride
->getType());
1561 UsersToProcess
[i
].Imm
= SE
->getMinusSCEV(UsersToProcess
[i
].Imm
, Imm
);
1562 UsersToProcess
[i
].Phi
= Phi
;
1563 assert(UsersToProcess
[i
].Imm
->isLoopInvariant(L
) &&
1564 "ShouldUseFullStrengthReductionMode should reject this!");
1565 } while (++i
!= e
&& Base
== UsersToProcess
[i
].Base
);
1569 /// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the
1570 /// given users to share.
1573 LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
1574 std::vector
<BasedUser
> &UsersToProcess
,
1576 SCEVHandle CommonExprs
,
1579 SCEVExpander
&PreheaderRewriter
) {
1580 DOUT
<< " Inserting new PHI:\n";
1582 PHINode
*Phi
= InsertAffinePhi(SE
->getUnknown(CommonBaseV
),
1586 // Remember this in case a later stride is multiple of this.
1587 IVsByStride
[Stride
].addIV(Stride
, CommonExprs
, Phi
);
1589 // All the users will share this new IV.
1590 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
)
1591 UsersToProcess
[i
].Phi
= Phi
;
1594 DEBUG(WriteAsOperand(*DOUT
, Phi
, /*PrintType=*/false));
1598 /// PrepareToStrengthReduceWithNewPhi - Prepare for the given users to reuse
1599 /// an induction variable with a stride that is a factor of the current
1600 /// induction variable.
1603 LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
1604 std::vector
<BasedUser
> &UsersToProcess
,
1606 const IVExpr
&ReuseIV
,
1607 Instruction
*PreInsertPt
) {
1608 DOUT
<< " Rewriting in terms of existing IV of STRIDE " << *ReuseIV
.Stride
1609 << " and BASE " << *ReuseIV
.Base
<< "\n";
1611 // All the users will share the reused IV.
1612 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
)
1613 UsersToProcess
[i
].Phi
= ReuseIV
.PHI
;
1615 Constant
*C
= dyn_cast
<Constant
>(CommonBaseV
);
1617 (!C
->isNullValue() &&
1618 !fitsInAddressMode(SE
->getUnknown(CommonBaseV
), CommonBaseV
->getType(),
1620 // We want the common base emitted into the preheader! This is just
1621 // using cast as a copy so BitCast (no-op cast) is appropriate
1622 CommonBaseV
= new BitCastInst(CommonBaseV
, CommonBaseV
->getType(),
1623 "commonbase", PreInsertPt
);
1626 static bool IsImmFoldedIntoAddrMode(GlobalValue
*GV
, int64_t Offset
,
1627 const Type
*AccessTy
,
1628 std::vector
<BasedUser
> &UsersToProcess
,
1629 const TargetLowering
*TLI
) {
1630 SmallVector
<Instruction
*, 16> AddrModeInsts
;
1631 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
) {
1632 if (UsersToProcess
[i
].isUseOfPostIncrementedValue
)
1634 ExtAddrMode AddrMode
=
1635 AddressingModeMatcher::Match(UsersToProcess
[i
].OperandValToReplace
,
1636 AccessTy
, UsersToProcess
[i
].Inst
,
1637 AddrModeInsts
, *TLI
);
1638 if (GV
&& GV
!= AddrMode
.BaseGV
)
1640 if (Offset
&& !AddrMode
.BaseOffs
)
1641 // FIXME: How to accurate check it's immediate offset is folded.
1643 AddrModeInsts
.clear();
1648 /// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
1649 /// stride of IV. All of the users may have different starting values, and this
1650 /// may not be the only stride.
1651 void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle
&Stride
,
1652 IVUsersOfOneStride
&Uses
,
1654 // If all the users are moved to another stride, then there is nothing to do.
1655 if (Uses
.Users
.empty())
1658 // Keep track if every use in UsersToProcess is an address. If they all are,
1659 // we may be able to rewrite the entire collection of them in terms of a
1660 // smaller-stride IV.
1661 bool AllUsesAreAddresses
= true;
1663 // Keep track if every use of a single stride is outside the loop. If so,
1664 // we want to be more aggressive about reusing a smaller-stride IV; a
1665 // multiply outside the loop is better than another IV inside. Well, usually.
1666 bool AllUsesAreOutsideLoop
= true;
1668 // Transform our list of users and offsets to a bit more complex table. In
1669 // this new vector, each 'BasedUser' contains 'Base' the base of the
1670 // strided accessas well as the old information from Uses. We progressively
1671 // move information from the Base field to the Imm field, until we eventually
1672 // have the full access expression to rewrite the use.
1673 std::vector
<BasedUser
> UsersToProcess
;
1674 SCEVHandle CommonExprs
= CollectIVUsers(Stride
, Uses
, L
, AllUsesAreAddresses
,
1675 AllUsesAreOutsideLoop
,
1678 // Sort the UsersToProcess array so that users with common bases are
1679 // next to each other.
1680 SortUsersToProcess(UsersToProcess
);
1682 // If we managed to find some expressions in common, we'll need to carry
1683 // their value in a register and add it in for each use. This will take up
1684 // a register operand, which potentially restricts what stride values are
1686 bool HaveCommonExprs
= !CommonExprs
->isZero();
1687 const Type
*ReplacedTy
= CommonExprs
->getType();
1689 // If all uses are addresses, consider sinking the immediate part of the
1690 // common expression back into uses if they can fit in the immediate fields.
1691 if (TLI
&& HaveCommonExprs
&& AllUsesAreAddresses
) {
1692 SCEVHandle NewCommon
= CommonExprs
;
1693 SCEVHandle Imm
= SE
->getIntegerSCEV(0, ReplacedTy
);
1694 MoveImmediateValues(TLI
, Type::VoidTy
, NewCommon
, Imm
, true, L
, SE
);
1695 if (!Imm
->isZero()) {
1698 // If the immediate part of the common expression is a GV, check if it's
1699 // possible to fold it into the target addressing mode.
1700 GlobalValue
*GV
= 0;
1701 if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(Imm
))
1702 GV
= dyn_cast
<GlobalValue
>(SU
->getValue());
1704 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Imm
))
1705 Offset
= SC
->getValue()->getSExtValue();
1707 // Pass VoidTy as the AccessTy to be conservative, because
1708 // there could be multiple access types among all the uses.
1709 DoSink
= IsImmFoldedIntoAddrMode(GV
, Offset
, Type::VoidTy
,
1710 UsersToProcess
, TLI
);
1713 DOUT
<< " Sinking " << *Imm
<< " back down into uses\n";
1714 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
)
1715 UsersToProcess
[i
].Imm
= SE
->getAddExpr(UsersToProcess
[i
].Imm
, Imm
);
1716 CommonExprs
= NewCommon
;
1717 HaveCommonExprs
= !CommonExprs
->isZero();
1723 // Now that we know what we need to do, insert the PHI node itself.
1725 DOUT
<< "LSR: Examining IVs of TYPE " << *ReplacedTy
<< " of STRIDE "
1727 << " Common base: " << *CommonExprs
<< "\n";
1729 SCEVExpander
Rewriter(*SE
, *LI
);
1730 SCEVExpander
PreheaderRewriter(*SE
, *LI
);
1732 BasicBlock
*Preheader
= L
->getLoopPreheader();
1733 Instruction
*PreInsertPt
= Preheader
->getTerminator();
1734 BasicBlock
*LatchBlock
= L
->getLoopLatch();
1736 Value
*CommonBaseV
= Constant::getNullValue(ReplacedTy
);
1738 SCEVHandle RewriteFactor
= SE
->getIntegerSCEV(0, ReplacedTy
);
1739 IVExpr
ReuseIV(SE
->getIntegerSCEV(0, Type::Int32Ty
),
1740 SE
->getIntegerSCEV(0, Type::Int32Ty
),
1743 /// Choose a strength-reduction strategy and prepare for it by creating
1744 /// the necessary PHIs and adjusting the bookkeeping.
1745 if (ShouldUseFullStrengthReductionMode(UsersToProcess
, L
,
1746 AllUsesAreAddresses
, Stride
)) {
1747 PrepareToStrengthReduceFully(UsersToProcess
, Stride
, CommonExprs
, L
,
1750 // Emit the initial base value into the loop preheader.
1751 CommonBaseV
= PreheaderRewriter
.expandCodeFor(CommonExprs
, ReplacedTy
,
1754 // If all uses are addresses, check if it is possible to reuse an IV with a
1755 // stride that is a factor of this stride. And that the multiple is a number
1756 // that can be encoded in the scale field of the target addressing mode. And
1757 // that we will have a valid instruction after this substition, including
1758 // the immediate field, if any.
1759 RewriteFactor
= CheckForIVReuse(HaveCommonExprs
, AllUsesAreAddresses
,
1760 AllUsesAreOutsideLoop
,
1761 Stride
, ReuseIV
, ReplacedTy
,
1763 if (isa
<SCEVConstant
>(RewriteFactor
) &&
1764 cast
<SCEVConstant
>(RewriteFactor
)->isZero())
1765 PrepareToStrengthReduceWithNewPhi(UsersToProcess
, Stride
, CommonExprs
,
1766 CommonBaseV
, L
, PreheaderRewriter
);
1768 PrepareToStrengthReduceFromSmallerStride(UsersToProcess
, CommonBaseV
,
1769 ReuseIV
, PreInsertPt
);
1772 // Process all the users now, replacing their strided uses with
1773 // strength-reduced forms. This outer loop handles all bases, the inner
1774 // loop handles all users of a particular base.
1775 while (!UsersToProcess
.empty()) {
1776 SCEVHandle Base
= UsersToProcess
.back().Base
;
1777 Instruction
*Inst
= UsersToProcess
.back().Inst
;
1779 // Emit the code for Base into the preheader.
1781 if (!Base
->isZero()) {
1782 BaseV
= PreheaderRewriter
.expandCodeFor(Base
, Base
->getType(),
1785 DOUT
<< " INSERTING code for BASE = " << *Base
<< ":";
1786 if (BaseV
->hasName())
1787 DOUT
<< " Result value name = %" << BaseV
->getNameStr();
1790 // If BaseV is a non-zero constant, make sure that it gets inserted into
1791 // the preheader, instead of being forward substituted into the uses. We
1792 // do this by forcing a BitCast (noop cast) to be inserted into the
1793 // preheader in this case.
1794 if (!fitsInAddressMode(Base
, getAccessType(Inst
), TLI
, false)) {
1795 // We want this constant emitted into the preheader! This is just
1796 // using cast as a copy so BitCast (no-op cast) is appropriate
1797 BaseV
= new BitCastInst(BaseV
, BaseV
->getType(), "preheaderinsert",
1802 // Emit the code to add the immediate offset to the Phi value, just before
1803 // the instructions that we identified as using this stride and base.
1805 // FIXME: Use emitted users to emit other users.
1806 BasedUser
&User
= UsersToProcess
.back();
1808 DOUT
<< " Examining use ";
1809 DEBUG(WriteAsOperand(*DOUT
, UsersToProcess
.back().OperandValToReplace
,
1810 /*PrintType=*/false));
1811 DOUT
<< " in Inst: " << *Inst
;
1813 // If this instruction wants to use the post-incremented value, move it
1814 // after the post-inc and use its value instead of the PHI.
1815 Value
*RewriteOp
= User
.Phi
;
1816 if (User
.isUseOfPostIncrementedValue
) {
1817 RewriteOp
= User
.Phi
->getIncomingValueForBlock(LatchBlock
);
1819 // If this user is in the loop, make sure it is the last thing in the
1820 // loop to ensure it is dominated by the increment.
1821 if (L
->contains(User
.Inst
->getParent()))
1822 User
.Inst
->moveBefore(LatchBlock
->getTerminator());
1825 SCEVHandle RewriteExpr
= SE
->getUnknown(RewriteOp
);
1827 if (SE
->getTypeSizeInBits(RewriteOp
->getType()) !=
1828 SE
->getTypeSizeInBits(ReplacedTy
)) {
1829 assert(SE
->getTypeSizeInBits(RewriteOp
->getType()) >
1830 SE
->getTypeSizeInBits(ReplacedTy
) &&
1831 "Unexpected widening cast!");
1832 RewriteExpr
= SE
->getTruncateExpr(RewriteExpr
, ReplacedTy
);
1835 // If we had to insert new instructions for RewriteOp, we have to
1836 // consider that they may not have been able to end up immediately
1837 // next to RewriteOp, because non-PHI instructions may never precede
1838 // PHI instructions in a block. In this case, remember where the last
1839 // instruction was inserted so that if we're replacing a different
1840 // PHI node, we can use the later point to expand the final
1842 Instruction
*NewBasePt
= dyn_cast
<Instruction
>(RewriteOp
);
1843 if (RewriteOp
== User
.Phi
) NewBasePt
= 0;
1845 // Clear the SCEVExpander's expression map so that we are guaranteed
1846 // to have the code emitted where we expect it.
1849 // If we are reusing the iv, then it must be multiplied by a constant
1850 // factor to take advantage of the addressing mode scale component.
1851 if (!RewriteFactor
->isZero()) {
1852 // If we're reusing an IV with a nonzero base (currently this happens
1853 // only when all reuses are outside the loop) subtract that base here.
1854 // The base has been used to initialize the PHI node but we don't want
1856 if (!ReuseIV
.Base
->isZero()) {
1857 SCEVHandle typedBase
= ReuseIV
.Base
;
1858 if (SE
->getTypeSizeInBits(RewriteExpr
->getType()) !=
1859 SE
->getTypeSizeInBits(ReuseIV
.Base
->getType())) {
1860 // It's possible the original IV is a larger type than the new IV,
1861 // in which case we have to truncate the Base. We checked in
1862 // RequiresTypeConversion that this is valid.
1863 assert(SE
->getTypeSizeInBits(RewriteExpr
->getType()) <
1864 SE
->getTypeSizeInBits(ReuseIV
.Base
->getType()) &&
1865 "Unexpected lengthening conversion!");
1866 typedBase
= SE
->getTruncateExpr(ReuseIV
.Base
,
1867 RewriteExpr
->getType());
1869 RewriteExpr
= SE
->getMinusSCEV(RewriteExpr
, typedBase
);
1872 // Multiply old variable, with base removed, by new scale factor.
1873 RewriteExpr
= SE
->getMulExpr(RewriteFactor
,
1876 // The common base is emitted in the loop preheader. But since we
1877 // are reusing an IV, it has not been used to initialize the PHI node.
1878 // Add it to the expression used to rewrite the uses.
1879 // When this use is outside the loop, we earlier subtracted the
1880 // common base, and are adding it back here. Use the same expression
1881 // as before, rather than CommonBaseV, so DAGCombiner will zap it.
1882 if (!CommonExprs
->isZero()) {
1883 if (L
->contains(User
.Inst
->getParent()))
1884 RewriteExpr
= SE
->getAddExpr(RewriteExpr
,
1885 SE
->getUnknown(CommonBaseV
));
1887 RewriteExpr
= SE
->getAddExpr(RewriteExpr
, CommonExprs
);
1891 // Now that we know what we need to do, insert code before User for the
1892 // immediate and any loop-variant expressions.
1894 // Add BaseV to the PHI value if needed.
1895 RewriteExpr
= SE
->getAddExpr(RewriteExpr
, SE
->getUnknown(BaseV
));
1897 User
.RewriteInstructionToUseNewBase(RewriteExpr
, NewBasePt
,
1901 // Mark old value we replaced as possibly dead, so that it is eliminated
1902 // if we just replaced the last use of that value.
1903 DeadInsts
.push_back(cast
<Instruction
>(User
.OperandValToReplace
));
1905 UsersToProcess
.pop_back();
1908 // If there are any more users to process with the same base, process them
1909 // now. We sorted by base above, so we just have to check the last elt.
1910 } while (!UsersToProcess
.empty() && UsersToProcess
.back().Base
== Base
);
1911 // TODO: Next, find out which base index is the most common, pull it out.
1914 // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
1915 // different starting values, into different PHIs.
1918 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1919 /// set the IV user and stride information and return true, otherwise return
1921 bool LoopStrengthReduce::FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
,
1922 const SCEVHandle
*&CondStride
) {
1923 for (unsigned Stride
= 0, e
= StrideOrder
.size(); Stride
!= e
&& !CondUse
;
1925 std::map
<SCEVHandle
, IVUsersOfOneStride
>::iterator SI
=
1926 IVUsesByStride
.find(StrideOrder
[Stride
]);
1927 assert(SI
!= IVUsesByStride
.end() && "Stride doesn't exist!");
1929 for (std::vector
<IVStrideUse
>::iterator UI
= SI
->second
.Users
.begin(),
1930 E
= SI
->second
.Users
.end(); UI
!= E
; ++UI
)
1931 if (UI
->User
== Cond
) {
1932 // NOTE: we could handle setcc instructions with multiple uses here, but
1933 // InstCombine does it as well for simple uses, it's not clear that it
1934 // occurs enough in real life to handle.
1936 CondStride
= &SI
->first
;
1944 // Constant strides come first which in turns are sorted by their absolute
1945 // values. If absolute values are the same, then positive strides comes first.
1947 // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
1948 struct StrideCompare
{
1949 const ScalarEvolution
*SE
;
1950 explicit StrideCompare(const ScalarEvolution
*se
) : SE(se
) {}
1952 bool operator()(const SCEVHandle
&LHS
, const SCEVHandle
&RHS
) {
1953 const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
);
1954 const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
);
1956 int64_t LV
= LHSC
->getValue()->getSExtValue();
1957 int64_t RV
= RHSC
->getValue()->getSExtValue();
1958 uint64_t ALV
= (LV
< 0) ? -LV
: LV
;
1959 uint64_t ARV
= (RV
< 0) ? -RV
: RV
;
1967 // If it's the same value but different type, sort by bit width so
1968 // that we emit larger induction variables before smaller
1969 // ones, letting the smaller be re-written in terms of larger ones.
1970 return SE
->getTypeSizeInBits(RHS
->getType()) <
1971 SE
->getTypeSizeInBits(LHS
->getType());
1973 return LHSC
&& !RHSC
;
1978 /// ChangeCompareStride - If a loop termination compare instruction is the
1979 /// only use of its stride, and the compaison is against a constant value,
1980 /// try eliminate the stride by moving the compare instruction to another
1981 /// stride and change its constant operand accordingly. e.g.
1987 /// if (v2 < 10) goto loop
1992 /// if (v1 < 30) goto loop
1993 ICmpInst
*LoopStrengthReduce::ChangeCompareStride(Loop
*L
, ICmpInst
*Cond
,
1994 IVStrideUse
* &CondUse
,
1995 const SCEVHandle
* &CondStride
) {
1996 if (StrideOrder
.size() < 2 ||
1997 IVUsesByStride
[*CondStride
].Users
.size() != 1)
1999 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(*CondStride
);
2000 if (!SC
) return Cond
;
2002 ICmpInst::Predicate Predicate
= Cond
->getPredicate();
2003 int64_t CmpSSInt
= SC
->getValue()->getSExtValue();
2004 unsigned BitWidth
= SE
->getTypeSizeInBits((*CondStride
)->getType());
2005 uint64_t SignBit
= 1ULL << (BitWidth
-1);
2006 const Type
*CmpTy
= Cond
->getOperand(0)->getType();
2007 const Type
*NewCmpTy
= NULL
;
2008 unsigned TyBits
= SE
->getTypeSizeInBits(CmpTy
);
2009 unsigned NewTyBits
= 0;
2010 SCEVHandle
*NewStride
= NULL
;
2011 Value
*NewCmpLHS
= NULL
;
2012 Value
*NewCmpRHS
= NULL
;
2014 SCEVHandle NewOffset
= SE
->getIntegerSCEV(0, CmpTy
);
2016 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Cond
->getOperand(1))) {
2017 int64_t CmpVal
= C
->getValue().getSExtValue();
2019 // Check stride constant and the comparision constant signs to detect
2021 if ((CmpVal
& SignBit
) != (CmpSSInt
& SignBit
))
2024 // Look for a suitable stride / iv as replacement.
2025 for (unsigned i
= 0, e
= StrideOrder
.size(); i
!= e
; ++i
) {
2026 std::map
<SCEVHandle
, IVUsersOfOneStride
>::iterator SI
=
2027 IVUsesByStride
.find(StrideOrder
[i
]);
2028 if (!isa
<SCEVConstant
>(SI
->first
))
2030 int64_t SSInt
= cast
<SCEVConstant
>(SI
->first
)->getValue()->getSExtValue();
2031 if (SSInt
== CmpSSInt
||
2032 abs(SSInt
) < abs(CmpSSInt
) ||
2033 (SSInt
% CmpSSInt
) != 0)
2036 Scale
= SSInt
/ CmpSSInt
;
2037 int64_t NewCmpVal
= CmpVal
* Scale
;
2038 APInt Mul
= APInt(BitWidth
, NewCmpVal
);
2039 // Check for overflow.
2040 if (Mul
.getSExtValue() != NewCmpVal
)
2043 // Watch out for overflow.
2044 if (ICmpInst::isSignedPredicate(Predicate
) &&
2045 (CmpVal
& SignBit
) != (NewCmpVal
& SignBit
))
2048 if (NewCmpVal
== CmpVal
)
2050 // Pick the best iv to use trying to avoid a cast.
2052 for (std::vector
<IVStrideUse
>::iterator UI
= SI
->second
.Users
.begin(),
2053 E
= SI
->second
.Users
.end(); UI
!= E
; ++UI
) {
2054 NewCmpLHS
= UI
->OperandValToReplace
;
2055 if (NewCmpLHS
->getType() == CmpTy
)
2061 NewCmpTy
= NewCmpLHS
->getType();
2062 NewTyBits
= SE
->getTypeSizeInBits(NewCmpTy
);
2063 const Type
*NewCmpIntTy
= IntegerType::get(NewTyBits
);
2064 if (RequiresTypeConversion(NewCmpTy
, CmpTy
)) {
2065 // Check if it is possible to rewrite it using
2066 // an iv / stride of a smaller integer type.
2067 unsigned Bits
= NewTyBits
;
2068 if (ICmpInst::isSignedPredicate(Predicate
))
2070 uint64_t Mask
= (1ULL << Bits
) - 1;
2071 if (((uint64_t)NewCmpVal
& Mask
) != (uint64_t)NewCmpVal
)
2075 // Don't rewrite if use offset is non-constant and the new type is
2076 // of a different type.
2077 // FIXME: too conservative?
2078 if (NewTyBits
!= TyBits
&& !isa
<SCEVConstant
>(CondUse
->Offset
))
2081 bool AllUsesAreAddresses
= true;
2082 bool AllUsesAreOutsideLoop
= true;
2083 std::vector
<BasedUser
> UsersToProcess
;
2084 SCEVHandle CommonExprs
= CollectIVUsers(SI
->first
, SI
->second
, L
,
2085 AllUsesAreAddresses
,
2086 AllUsesAreOutsideLoop
,
2088 // Avoid rewriting the compare instruction with an iv of new stride
2089 // if it's likely the new stride uses will be rewritten using the
2090 // stride of the compare instruction.
2091 if (AllUsesAreAddresses
&&
2092 ValidStride(!CommonExprs
->isZero(), Scale
, UsersToProcess
))
2095 // If scale is negative, use swapped predicate unless it's testing
2097 if (Scale
< 0 && !Cond
->isEquality())
2098 Predicate
= ICmpInst::getSwappedPredicate(Predicate
);
2100 NewStride
= &StrideOrder
[i
];
2101 if (!isa
<PointerType
>(NewCmpTy
))
2102 NewCmpRHS
= ConstantInt::get(NewCmpTy
, NewCmpVal
);
2104 ConstantInt
*CI
= ConstantInt::get(NewCmpIntTy
, NewCmpVal
);
2105 NewCmpRHS
= ConstantExpr::getIntToPtr(CI
, NewCmpTy
);
2107 NewOffset
= TyBits
== NewTyBits
2108 ? SE
->getMulExpr(CondUse
->Offset
,
2109 SE
->getConstant(ConstantInt::get(CmpTy
, Scale
)))
2110 : SE
->getConstant(ConstantInt::get(NewCmpIntTy
,
2111 cast
<SCEVConstant
>(CondUse
->Offset
)->getValue()->getSExtValue()*Scale
));
2116 // Forgo this transformation if it the increment happens to be
2117 // unfortunately positioned after the condition, and the condition
2118 // has multiple uses which prevent it from being moved immediately
2119 // before the branch. See
2120 // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
2121 // for an example of this situation.
2122 if (!Cond
->hasOneUse()) {
2123 for (BasicBlock::iterator I
= Cond
, E
= Cond
->getParent()->end();
2130 // Create a new compare instruction using new stride / iv.
2131 ICmpInst
*OldCond
= Cond
;
2132 // Insert new compare instruction.
2133 Cond
= new ICmpInst(Predicate
, NewCmpLHS
, NewCmpRHS
,
2134 L
->getHeader()->getName() + ".termcond",
2137 // Remove the old compare instruction. The old indvar is probably dead too.
2138 DeadInsts
.push_back(cast
<Instruction
>(CondUse
->OperandValToReplace
));
2139 SE
->deleteValueFromRecords(OldCond
);
2140 OldCond
->replaceAllUsesWith(Cond
);
2141 OldCond
->eraseFromParent();
2143 IVUsesByStride
[*CondStride
].Users
.pop_back();
2144 IVUsesByStride
[*NewStride
].addUser(NewOffset
, Cond
, NewCmpLHS
);
2145 CondUse
= &IVUsesByStride
[*NewStride
].Users
.back();
2146 CondStride
= NewStride
;
2153 /// OptimizeSMax - Rewrite the loop's terminating condition if it uses
2154 /// an smax computation.
2156 /// This is a narrow solution to a specific, but acute, problem. For loops
2162 /// } while (++i < n);
2164 /// where the comparison is signed, the trip count isn't just 'n', because
2165 /// 'n' could be negative. And unfortunately this can come up even for loops
2166 /// where the user didn't use a C do-while loop. For example, seemingly
2167 /// well-behaved top-test loops will commonly be lowered like this:
2173 /// } while (++i < n);
2176 /// and then it's possible for subsequent optimization to obscure the if
2177 /// test in such a way that indvars can't find it.
2179 /// When indvars can't find the if test in loops like this, it creates a
2180 /// signed-max expression, which allows it to give the loop a canonical
2181 /// induction variable:
2184 /// smax = n < 1 ? 1 : n;
2187 /// } while (++i != smax);
2189 /// Canonical induction variables are necessary because the loop passes
2190 /// are designed around them. The most obvious example of this is the
2191 /// LoopInfo analysis, which doesn't remember trip count values. It
2192 /// expects to be able to rediscover the trip count each time it is
2193 /// needed, and it does this using a simple analyis that only succeeds if
2194 /// the loop has a canonical induction variable.
2196 /// However, when it comes time to generate code, the maximum operation
2197 /// can be quite costly, especially if it's inside of an outer loop.
2199 /// This function solves this problem by detecting this type of loop and
2200 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2201 /// the instructions for the maximum computation.
2203 ICmpInst
*LoopStrengthReduce::OptimizeSMax(Loop
*L
, ICmpInst
*Cond
,
2204 IVStrideUse
* &CondUse
) {
2205 // Check that the loop matches the pattern we're looking for.
2206 if (Cond
->getPredicate() != CmpInst::ICMP_EQ
&&
2207 Cond
->getPredicate() != CmpInst::ICMP_NE
)
2210 SelectInst
*Sel
= dyn_cast
<SelectInst
>(Cond
->getOperand(1));
2211 if (!Sel
|| !Sel
->hasOneUse()) return Cond
;
2213 SCEVHandle BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
2214 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2216 SCEVHandle One
= SE
->getIntegerSCEV(1, BackedgeTakenCount
->getType());
2218 // Add one to the backedge-taken count to get the trip count.
2219 SCEVHandle IterationCount
= SE
->getAddExpr(BackedgeTakenCount
, One
);
2221 // Check for a max calculation that matches the pattern.
2222 SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(IterationCount
);
2223 if (!SMax
|| SMax
!= SE
->getSCEV(Sel
)) return Cond
;
2225 SCEVHandle SMaxLHS
= SMax
->getOperand(0);
2226 SCEVHandle SMaxRHS
= SMax
->getOperand(1);
2227 if (!SMaxLHS
|| SMaxLHS
!= One
) return Cond
;
2229 // Check the relevant induction variable for conformance to
2231 SCEVHandle IV
= SE
->getSCEV(Cond
->getOperand(0));
2232 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(IV
);
2233 if (!AR
|| !AR
->isAffine() ||
2234 AR
->getStart() != One
||
2235 AR
->getStepRecurrence(*SE
) != One
)
2238 assert(AR
->getLoop() == L
&&
2239 "Loop condition operand is an addrec in a different loop!");
2241 // Check the right operand of the select, and remember it, as it will
2242 // be used in the new comparison instruction.
2244 if (SE
->getSCEV(Sel
->getOperand(1)) == SMaxRHS
)
2245 NewRHS
= Sel
->getOperand(1);
2246 else if (SE
->getSCEV(Sel
->getOperand(2)) == SMaxRHS
)
2247 NewRHS
= Sel
->getOperand(2);
2248 if (!NewRHS
) return Cond
;
2250 // Ok, everything looks ok to change the condition into an SLT or SGE and
2251 // delete the max calculation.
2253 new ICmpInst(Cond
->getPredicate() == CmpInst::ICMP_NE
?
2256 Cond
->getOperand(0), NewRHS
, "scmp", Cond
);
2258 // Delete the max calculation instructions.
2259 SE
->deleteValueFromRecords(Cond
);
2260 Cond
->replaceAllUsesWith(NewCond
);
2261 Cond
->eraseFromParent();
2262 Instruction
*Cmp
= cast
<Instruction
>(Sel
->getOperand(0));
2263 SE
->deleteValueFromRecords(Sel
);
2264 Sel
->eraseFromParent();
2265 if (Cmp
->use_empty()) {
2266 SE
->deleteValueFromRecords(Cmp
);
2267 Cmp
->eraseFromParent();
2269 CondUse
->User
= NewCond
;
2273 /// OptimizeShadowIV - If IV is used in a int-to-float cast
2274 /// inside the loop then try to eliminate the cast opeation.
2275 void LoopStrengthReduce::OptimizeShadowIV(Loop
*L
) {
2277 SCEVHandle BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
2278 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2281 for (unsigned Stride
= 0, e
= StrideOrder
.size(); Stride
!= e
;
2283 std::map
<SCEVHandle
, IVUsersOfOneStride
>::iterator SI
=
2284 IVUsesByStride
.find(StrideOrder
[Stride
]);
2285 assert(SI
!= IVUsesByStride
.end() && "Stride doesn't exist!");
2286 if (!isa
<SCEVConstant
>(SI
->first
))
2289 for (std::vector
<IVStrideUse
>::iterator UI
= SI
->second
.Users
.begin(),
2290 E
= SI
->second
.Users
.end(); UI
!= E
; /* empty */) {
2291 std::vector
<IVStrideUse
>::iterator CandidateUI
= UI
;
2293 Instruction
*ShadowUse
= CandidateUI
->User
;
2294 const Type
*DestTy
= NULL
;
2296 /* If shadow use is a int->float cast then insert a second IV
2297 to eliminate this cast.
2299 for (unsigned i = 0; i < n; ++i)
2305 for (unsigned i = 0; i < n; ++i, ++d)
2308 if (UIToFPInst
*UCast
= dyn_cast
<UIToFPInst
>(CandidateUI
->User
))
2309 DestTy
= UCast
->getDestTy();
2310 else if (SIToFPInst
*SCast
= dyn_cast
<SIToFPInst
>(CandidateUI
->User
))
2311 DestTy
= SCast
->getDestTy();
2312 if (!DestTy
) continue;
2315 /* If target does not support DestTy natively then do not apply
2316 this transformation. */
2317 MVT DVT
= TLI
->getValueType(DestTy
);
2318 if (!TLI
->isTypeLegal(DVT
)) continue;
2321 PHINode
*PH
= dyn_cast
<PHINode
>(ShadowUse
->getOperand(0));
2323 if (PH
->getNumIncomingValues() != 2) continue;
2325 const Type
*SrcTy
= PH
->getType();
2326 int Mantissa
= DestTy
->getFPMantissaWidth();
2327 if (Mantissa
== -1) continue;
2328 if ((int)SE
->getTypeSizeInBits(SrcTy
) > Mantissa
)
2331 unsigned Entry
, Latch
;
2332 if (PH
->getIncomingBlock(0) == L
->getLoopPreheader()) {
2340 ConstantInt
*Init
= dyn_cast
<ConstantInt
>(PH
->getIncomingValue(Entry
));
2341 if (!Init
) continue;
2342 ConstantFP
*NewInit
= ConstantFP::get(DestTy
, Init
->getZExtValue());
2344 BinaryOperator
*Incr
=
2345 dyn_cast
<BinaryOperator
>(PH
->getIncomingValue(Latch
));
2346 if (!Incr
) continue;
2347 if (Incr
->getOpcode() != Instruction::Add
2348 && Incr
->getOpcode() != Instruction::Sub
)
2351 /* Initialize new IV, double d = 0.0 in above example. */
2352 ConstantInt
*C
= NULL
;
2353 if (Incr
->getOperand(0) == PH
)
2354 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(1));
2355 else if (Incr
->getOperand(1) == PH
)
2356 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(0));
2362 /* Add new PHINode. */
2363 PHINode
*NewPH
= PHINode::Create(DestTy
, "IV.S.", PH
);
2365 /* create new increment. '++d' in above example. */
2366 ConstantFP
*CFP
= ConstantFP::get(DestTy
, C
->getZExtValue());
2367 BinaryOperator
*NewIncr
=
2368 BinaryOperator::Create(Incr
->getOpcode(),
2369 NewPH
, CFP
, "IV.S.next.", Incr
);
2371 NewPH
->addIncoming(NewInit
, PH
->getIncomingBlock(Entry
));
2372 NewPH
->addIncoming(NewIncr
, PH
->getIncomingBlock(Latch
));
2374 /* Remove cast operation */
2375 SE
->deleteValueFromRecords(ShadowUse
);
2376 ShadowUse
->replaceAllUsesWith(NewPH
);
2377 ShadowUse
->eraseFromParent();
2378 SI
->second
.Users
.erase(CandidateUI
);
2385 // OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
2386 // uses in the loop, look to see if we can eliminate some, in favor of using
2387 // common indvars for the different uses.
2388 void LoopStrengthReduce::OptimizeIndvars(Loop
*L
) {
2389 // TODO: implement optzns here.
2391 OptimizeShadowIV(L
);
2393 // Finally, get the terminating condition for the loop if possible. If we
2394 // can, we want to change it to use a post-incremented version of its
2395 // induction variable, to allow coalescing the live ranges for the IV into
2396 // one register value.
2397 PHINode
*SomePHI
= cast
<PHINode
>(L
->getHeader()->begin());
2398 BasicBlock
*Preheader
= L
->getLoopPreheader();
2399 BasicBlock
*LatchBlock
=
2400 SomePHI
->getIncomingBlock(SomePHI
->getIncomingBlock(0) == Preheader
);
2401 BranchInst
*TermBr
= dyn_cast
<BranchInst
>(LatchBlock
->getTerminator());
2402 if (!TermBr
|| TermBr
->isUnconditional() ||
2403 !isa
<ICmpInst
>(TermBr
->getCondition()))
2405 ICmpInst
*Cond
= cast
<ICmpInst
>(TermBr
->getCondition());
2407 // Search IVUsesByStride to find Cond's IVUse if there is one.
2408 IVStrideUse
*CondUse
= 0;
2409 const SCEVHandle
*CondStride
= 0;
2411 if (!FindIVUserForCond(Cond
, CondUse
, CondStride
))
2412 return; // setcc doesn't use the IV.
2414 // If the trip count is computed in terms of an smax (due to ScalarEvolution
2415 // being unable to find a sufficient guard, for example), change the loop
2416 // comparison to use SLT instead of NE.
2417 Cond
= OptimizeSMax(L
, Cond
, CondUse
);
2419 // If possible, change stride and operands of the compare instruction to
2420 // eliminate one stride.
2421 Cond
= ChangeCompareStride(L
, Cond
, CondUse
, CondStride
);
2423 // It's possible for the setcc instruction to be anywhere in the loop, and
2424 // possible for it to have multiple users. If it is not immediately before
2425 // the latch block branch, move it.
2426 if (&*++BasicBlock::iterator(Cond
) != (Instruction
*)TermBr
) {
2427 if (Cond
->hasOneUse()) { // Condition has a single use, just move it.
2428 Cond
->moveBefore(TermBr
);
2430 // Otherwise, clone the terminating condition and insert into the loopend.
2431 Cond
= cast
<ICmpInst
>(Cond
->clone());
2432 Cond
->setName(L
->getHeader()->getName() + ".termcond");
2433 LatchBlock
->getInstList().insert(TermBr
, Cond
);
2435 // Clone the IVUse, as the old use still exists!
2436 IVUsesByStride
[*CondStride
].addUser(CondUse
->Offset
, Cond
,
2437 CondUse
->OperandValToReplace
);
2438 CondUse
= &IVUsesByStride
[*CondStride
].Users
.back();
2442 // If we get to here, we know that we can transform the setcc instruction to
2443 // use the post-incremented version of the IV, allowing us to coalesce the
2444 // live ranges for the IV correctly.
2445 CondUse
->Offset
= SE
->getMinusSCEV(CondUse
->Offset
, *CondStride
);
2446 CondUse
->isUseOfPostIncrementedValue
= true;
2450 bool LoopStrengthReduce::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
2452 LI
= &getAnalysis
<LoopInfo
>();
2453 DT
= &getAnalysis
<DominatorTree
>();
2454 SE
= &getAnalysis
<ScalarEvolution
>();
2457 // Find all uses of induction variables in this loop, and categorize
2458 // them by stride. Start by finding all of the PHI nodes in the header for
2459 // this loop. If they are induction variables, inspect their uses.
2460 SmallPtrSet
<Instruction
*,16> Processed
; // Don't reprocess instructions.
2461 for (BasicBlock::iterator I
= L
->getHeader()->begin(); isa
<PHINode
>(I
); ++I
)
2462 AddUsersIfInteresting(I
, L
, Processed
);
2464 if (!IVUsesByStride
.empty()) {
2466 DOUT
<< "\nLSR on \"" << L
->getHeader()->getParent()->getNameStart()
2471 // Sort the StrideOrder so we process larger strides first.
2472 std::stable_sort(StrideOrder
.begin(), StrideOrder
.end(), StrideCompare(SE
));
2474 // Optimize induction variables. Some indvar uses can be transformed to use
2475 // strides that will be needed for other purposes. A common example of this
2476 // is the exit test for the loop, which can often be rewritten to use the
2477 // computation of some other indvar to decide when to terminate the loop.
2480 // FIXME: We can widen subreg IV's here for RISC targets. e.g. instead of
2481 // doing computation in byte values, promote to 32-bit values if safe.
2483 // FIXME: Attempt to reuse values across multiple IV's. In particular, we
2484 // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
2485 // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
2486 // Need to be careful that IV's are all the same type. Only works for
2487 // intptr_t indvars.
2489 // IVsByStride keeps IVs for one particular loop.
2490 assert(IVsByStride
.empty() && "Stale entries in IVsByStride?");
2492 // Note: this processes each stride/type pair individually. All users
2493 // passed into StrengthReduceStridedIVUsers have the same type AND stride.
2494 // Also, note that we iterate over IVUsesByStride indirectly by using
2495 // StrideOrder. This extra layer of indirection makes the ordering of
2496 // strides deterministic - not dependent on map order.
2497 for (unsigned Stride
= 0, e
= StrideOrder
.size(); Stride
!= e
; ++Stride
) {
2498 std::map
<SCEVHandle
, IVUsersOfOneStride
>::iterator SI
=
2499 IVUsesByStride
.find(StrideOrder
[Stride
]);
2500 assert(SI
!= IVUsesByStride
.end() && "Stride doesn't exist!");
2501 StrengthReduceStridedIVUsers(SI
->first
, SI
->second
, L
);
2505 // We're done analyzing this loop; release all the state we built up for it.
2506 IVUsesByStride
.clear();
2507 IVsByStride
.clear();
2508 StrideOrder
.clear();
2510 // Clean up after ourselves
2511 if (!DeadInsts
.empty()) {
2512 DeleteTriviallyDeadInstructions();
2514 BasicBlock::iterator I
= L
->getHeader()->begin();
2515 while (PHINode
*PN
= dyn_cast
<PHINode
>(I
++)) {
2516 // At this point, we know that we have killed one or more IV users.
2517 // It is worth checking to see if the cannonical indvar is also
2518 // dead, so that we can remove it as well.
2520 // We can remove a PHI if it is on a cycle in the def-use graph
2521 // where each node in the cycle has degree one, i.e. only one use,
2522 // and is an instruction with no side effects.
2524 // FIXME: this needs to eliminate an induction variable even if it's being
2525 // compared against some value to decide loop termination.
2526 if (!PN
->hasOneUse())
2529 SmallPtrSet
<PHINode
*, 4> PHIs
;
2530 for (Instruction
*J
= dyn_cast
<Instruction
>(*PN
->use_begin());
2531 J
&& J
->hasOneUse() && !J
->mayWriteToMemory();
2532 J
= dyn_cast
<Instruction
>(*J
->use_begin())) {
2533 // If we find the original PHI, we've discovered a cycle.
2535 // Break the cycle and mark the PHI for deletion.
2536 SE
->deleteValueFromRecords(PN
);
2537 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
2538 DeadInsts
.push_back(PN
);
2542 // If we find a PHI more than once, we're on a cycle that
2543 // won't prove fruitful.
2544 if (isa
<PHINode
>(J
) && !PHIs
.insert(cast
<PHINode
>(J
)))
2548 DeleteTriviallyDeadInstructions();