1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the parser class for .ll files.
12 //===----------------------------------------------------------------------===//
15 #include "llvm/AutoUpgrade.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Module.h"
22 #include "llvm/ValueSymbolTable.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/Support/raw_ostream.h"
29 /// ValID - Represents a reference of a definition of some sort with no type.
30 /// There are several cases where we have to parse the value but where the
31 /// type can depend on later context. This may either be a numeric reference
32 /// or a symbolic (%var) reference. This is just a discriminated union.
35 t_LocalID
, t_GlobalID
, // ID in UIntVal.
36 t_LocalName
, t_GlobalName
, // Name in StrVal.
37 t_APSInt
, t_APFloat
, // Value in APSIntVal/APFloatVal.
38 t_Null
, t_Undef
, t_Zero
, // No value.
39 t_EmptyArray
, // No value: []
40 t_Constant
, // Value in ConstantVal.
41 t_InlineAsm
// Value in StrVal/StrVal2/UIntVal.
46 std::string StrVal
, StrVal2
;
49 Constant
*ConstantVal
;
50 ValID() : APFloatVal(0.0) {}
54 /// Run: module ::= toplevelentity*
55 bool LLParser::Run() {
59 return ParseTopLevelEntities() ||
60 ValidateEndOfModule();
63 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
65 bool LLParser::ValidateEndOfModule() {
66 if (!ForwardRefTypes
.empty())
67 return Error(ForwardRefTypes
.begin()->second
.second
,
68 "use of undefined type named '" +
69 ForwardRefTypes
.begin()->first
+ "'");
70 if (!ForwardRefTypeIDs
.empty())
71 return Error(ForwardRefTypeIDs
.begin()->second
.second
,
72 "use of undefined type '%" +
73 utostr(ForwardRefTypeIDs
.begin()->first
) + "'");
75 if (!ForwardRefVals
.empty())
76 return Error(ForwardRefVals
.begin()->second
.second
,
77 "use of undefined value '@" + ForwardRefVals
.begin()->first
+
80 if (!ForwardRefValIDs
.empty())
81 return Error(ForwardRefValIDs
.begin()->second
.second
,
82 "use of undefined value '@" +
83 utostr(ForwardRefValIDs
.begin()->first
) + "'");
85 // Look for intrinsic functions and CallInst that need to be upgraded
86 for (Module::iterator FI
= M
->begin(), FE
= M
->end(); FI
!= FE
; )
87 UpgradeCallsToIntrinsic(FI
++); // must be post-increment, as we remove
92 //===----------------------------------------------------------------------===//
94 //===----------------------------------------------------------------------===//
96 bool LLParser::ParseTopLevelEntities() {
98 switch (Lex
.getKind()) {
99 default: return TokError("expected top-level entity");
100 case lltok::Eof
: return false;
101 //case lltok::kw_define:
102 case lltok::kw_declare
: if (ParseDeclare()) return true; break;
103 case lltok::kw_define
: if (ParseDefine()) return true; break;
104 case lltok::kw_module
: if (ParseModuleAsm()) return true; break;
105 case lltok::kw_target
: if (ParseTargetDefinition()) return true; break;
106 case lltok::kw_deplibs
: if (ParseDepLibs()) return true; break;
107 case lltok::kw_type
: if (ParseUnnamedType()) return true; break;
108 case lltok::StringConstant
: // FIXME: REMOVE IN LLVM 3.0
109 case lltok::LocalVar
: if (ParseNamedType()) return true; break;
110 case lltok::GlobalVar
: if (ParseNamedGlobal()) return true; break;
112 // The Global variable production with no name can have many different
113 // optional leading prefixes, the production is:
114 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
115 // OptionalAddrSpace ('constant'|'global') ...
116 case lltok::kw_private
: // OptionalLinkage
117 case lltok::kw_internal
: // OptionalLinkage
118 case lltok::kw_weak
: // OptionalLinkage
119 case lltok::kw_weak_odr
: // OptionalLinkage
120 case lltok::kw_linkonce
: // OptionalLinkage
121 case lltok::kw_linkonce_odr
: // OptionalLinkage
122 case lltok::kw_appending
: // OptionalLinkage
123 case lltok::kw_dllexport
: // OptionalLinkage
124 case lltok::kw_common
: // OptionalLinkage
125 case lltok::kw_dllimport
: // OptionalLinkage
126 case lltok::kw_extern_weak
: // OptionalLinkage
127 case lltok::kw_external
: { // OptionalLinkage
128 unsigned Linkage
, Visibility
;
129 if (ParseOptionalLinkage(Linkage
) ||
130 ParseOptionalVisibility(Visibility
) ||
131 ParseGlobal("", 0, Linkage
, true, Visibility
))
135 case lltok::kw_default
: // OptionalVisibility
136 case lltok::kw_hidden
: // OptionalVisibility
137 case lltok::kw_protected
: { // OptionalVisibility
139 if (ParseOptionalVisibility(Visibility
) ||
140 ParseGlobal("", 0, 0, false, Visibility
))
145 case lltok::kw_thread_local
: // OptionalThreadLocal
146 case lltok::kw_addrspace
: // OptionalAddrSpace
147 case lltok::kw_constant
: // GlobalType
148 case lltok::kw_global
: // GlobalType
149 if (ParseGlobal("", 0, 0, false, 0)) return true;
157 /// ::= 'module' 'asm' STRINGCONSTANT
158 bool LLParser::ParseModuleAsm() {
159 assert(Lex
.getKind() == lltok::kw_module
);
163 if (ParseToken(lltok::kw_asm
, "expected 'module asm'") ||
164 ParseStringConstant(AsmStr
)) return true;
166 const std::string
&AsmSoFar
= M
->getModuleInlineAsm();
167 if (AsmSoFar
.empty())
168 M
->setModuleInlineAsm(AsmStr
);
170 M
->setModuleInlineAsm(AsmSoFar
+"\n"+AsmStr
);
175 /// ::= 'target' 'triple' '=' STRINGCONSTANT
176 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
177 bool LLParser::ParseTargetDefinition() {
178 assert(Lex
.getKind() == lltok::kw_target
);
181 default: return TokError("unknown target property");
182 case lltok::kw_triple
:
184 if (ParseToken(lltok::equal
, "expected '=' after target triple") ||
185 ParseStringConstant(Str
))
187 M
->setTargetTriple(Str
);
189 case lltok::kw_datalayout
:
191 if (ParseToken(lltok::equal
, "expected '=' after target datalayout") ||
192 ParseStringConstant(Str
))
194 M
->setDataLayout(Str
);
200 /// ::= 'deplibs' '=' '[' ']'
201 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
202 bool LLParser::ParseDepLibs() {
203 assert(Lex
.getKind() == lltok::kw_deplibs
);
205 if (ParseToken(lltok::equal
, "expected '=' after deplibs") ||
206 ParseToken(lltok::lsquare
, "expected '=' after deplibs"))
209 if (EatIfPresent(lltok::rsquare
))
213 if (ParseStringConstant(Str
)) return true;
216 while (EatIfPresent(lltok::comma
)) {
217 if (ParseStringConstant(Str
)) return true;
221 return ParseToken(lltok::rsquare
, "expected ']' at end of list");
226 bool LLParser::ParseUnnamedType() {
227 assert(Lex
.getKind() == lltok::kw_type
);
228 LocTy TypeLoc
= Lex
.getLoc();
229 Lex
.Lex(); // eat kw_type
231 PATypeHolder
Ty(Type::VoidTy
);
232 if (ParseType(Ty
)) return true;
234 unsigned TypeID
= NumberedTypes
.size();
236 // See if this type was previously referenced.
237 std::map
<unsigned, std::pair
<PATypeHolder
, LocTy
> >::iterator
238 FI
= ForwardRefTypeIDs
.find(TypeID
);
239 if (FI
!= ForwardRefTypeIDs
.end()) {
240 if (FI
->second
.first
.get() == Ty
)
241 return Error(TypeLoc
, "self referential type is invalid");
243 cast
<DerivedType
>(FI
->second
.first
.get())->refineAbstractTypeTo(Ty
);
244 Ty
= FI
->second
.first
.get();
245 ForwardRefTypeIDs
.erase(FI
);
248 NumberedTypes
.push_back(Ty
);
254 /// ::= LocalVar '=' 'type' type
255 bool LLParser::ParseNamedType() {
256 std::string Name
= Lex
.getStrVal();
257 LocTy NameLoc
= Lex
.getLoc();
258 Lex
.Lex(); // eat LocalVar.
260 PATypeHolder
Ty(Type::VoidTy
);
262 if (ParseToken(lltok::equal
, "expected '=' after name") ||
263 ParseToken(lltok::kw_type
, "expected 'type' after name") ||
267 // Set the type name, checking for conflicts as we do so.
268 bool AlreadyExists
= M
->addTypeName(Name
, Ty
);
269 if (!AlreadyExists
) return false;
271 // See if this type is a forward reference. We need to eagerly resolve
272 // types to allow recursive type redefinitions below.
273 std::map
<std::string
, std::pair
<PATypeHolder
, LocTy
> >::iterator
274 FI
= ForwardRefTypes
.find(Name
);
275 if (FI
!= ForwardRefTypes
.end()) {
276 if (FI
->second
.first
.get() == Ty
)
277 return Error(NameLoc
, "self referential type is invalid");
279 cast
<DerivedType
>(FI
->second
.first
.get())->refineAbstractTypeTo(Ty
);
280 Ty
= FI
->second
.first
.get();
281 ForwardRefTypes
.erase(FI
);
284 // Inserting a name that is already defined, get the existing name.
285 const Type
*Existing
= M
->getTypeByName(Name
);
286 assert(Existing
&& "Conflict but no matching type?!");
288 // Otherwise, this is an attempt to redefine a type. That's okay if
289 // the redefinition is identical to the original.
290 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
291 if (Existing
== Ty
) return false;
293 // Any other kind of (non-equivalent) redefinition is an error.
294 return Error(NameLoc
, "redefinition of type named '" + Name
+ "' of type '" +
295 Ty
->getDescription() + "'");
300 /// ::= 'declare' FunctionHeader
301 bool LLParser::ParseDeclare() {
302 assert(Lex
.getKind() == lltok::kw_declare
);
306 return ParseFunctionHeader(F
, false);
310 /// ::= 'define' FunctionHeader '{' ...
311 bool LLParser::ParseDefine() {
312 assert(Lex
.getKind() == lltok::kw_define
);
316 return ParseFunctionHeader(F
, true) ||
317 ParseFunctionBody(*F
);
323 bool LLParser::ParseGlobalType(bool &IsConstant
) {
324 if (Lex
.getKind() == lltok::kw_constant
)
326 else if (Lex
.getKind() == lltok::kw_global
)
330 return TokError("expected 'global' or 'constant'");
336 /// ParseNamedGlobal:
337 /// GlobalVar '=' OptionalVisibility ALIAS ...
338 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
339 bool LLParser::ParseNamedGlobal() {
340 assert(Lex
.getKind() == lltok::GlobalVar
);
341 LocTy NameLoc
= Lex
.getLoc();
342 std::string Name
= Lex
.getStrVal();
346 unsigned Linkage
, Visibility
;
347 if (ParseToken(lltok::equal
, "expected '=' in global variable") ||
348 ParseOptionalLinkage(Linkage
, HasLinkage
) ||
349 ParseOptionalVisibility(Visibility
))
352 if (HasLinkage
|| Lex
.getKind() != lltok::kw_alias
)
353 return ParseGlobal(Name
, NameLoc
, Linkage
, HasLinkage
, Visibility
);
354 return ParseAlias(Name
, NameLoc
, Visibility
);
358 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
361 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
362 /// ::= 'getelementptr' '(' ... ')'
364 /// Everything through visibility has already been parsed.
366 bool LLParser::ParseAlias(const std::string
&Name
, LocTy NameLoc
,
367 unsigned Visibility
) {
368 assert(Lex
.getKind() == lltok::kw_alias
);
371 LocTy LinkageLoc
= Lex
.getLoc();
372 if (ParseOptionalLinkage(Linkage
))
375 if (Linkage
!= GlobalValue::ExternalLinkage
&&
376 Linkage
!= GlobalValue::WeakAnyLinkage
&&
377 Linkage
!= GlobalValue::WeakODRLinkage
&&
378 Linkage
!= GlobalValue::InternalLinkage
&&
379 Linkage
!= GlobalValue::PrivateLinkage
)
380 return Error(LinkageLoc
, "invalid linkage type for alias");
383 LocTy AliaseeLoc
= Lex
.getLoc();
384 if (Lex
.getKind() != lltok::kw_bitcast
&&
385 Lex
.getKind() != lltok::kw_getelementptr
) {
386 if (ParseGlobalTypeAndValue(Aliasee
)) return true;
388 // The bitcast dest type is not present, it is implied by the dest type.
390 if (ParseValID(ID
)) return true;
391 if (ID
.Kind
!= ValID::t_Constant
)
392 return Error(AliaseeLoc
, "invalid aliasee");
393 Aliasee
= ID
.ConstantVal
;
396 if (!isa
<PointerType
>(Aliasee
->getType()))
397 return Error(AliaseeLoc
, "alias must have pointer type");
399 // Okay, create the alias but do not insert it into the module yet.
400 GlobalAlias
* GA
= new GlobalAlias(Aliasee
->getType(),
401 (GlobalValue::LinkageTypes
)Linkage
, Name
,
403 GA
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
405 // See if this value already exists in the symbol table. If so, it is either
406 // a redefinition or a definition of a forward reference.
407 if (GlobalValue
*Val
=
408 cast_or_null
<GlobalValue
>(M
->getValueSymbolTable().lookup(Name
))) {
409 // See if this was a redefinition. If so, there is no entry in
411 std::map
<std::string
, std::pair
<GlobalValue
*, LocTy
> >::iterator
412 I
= ForwardRefVals
.find(Name
);
413 if (I
== ForwardRefVals
.end())
414 return Error(NameLoc
, "redefinition of global named '@" + Name
+ "'");
416 // Otherwise, this was a definition of forward ref. Verify that types
418 if (Val
->getType() != GA
->getType())
419 return Error(NameLoc
,
420 "forward reference and definition of alias have different types");
422 // If they agree, just RAUW the old value with the alias and remove the
424 Val
->replaceAllUsesWith(GA
);
425 Val
->eraseFromParent();
426 ForwardRefVals
.erase(I
);
429 // Insert into the module, we know its name won't collide now.
430 M
->getAliasList().push_back(GA
);
431 assert(GA
->getNameStr() == Name
&& "Should not be a name conflict!");
437 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
438 /// OptionalAddrSpace GlobalType Type Const
439 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
440 /// OptionalAddrSpace GlobalType Type Const
442 /// Everything through visibility has been parsed already.
444 bool LLParser::ParseGlobal(const std::string
&Name
, LocTy NameLoc
,
445 unsigned Linkage
, bool HasLinkage
,
446 unsigned Visibility
) {
448 bool ThreadLocal
, IsConstant
;
451 PATypeHolder
Ty(Type::VoidTy
);
452 if (ParseOptionalToken(lltok::kw_thread_local
, ThreadLocal
) ||
453 ParseOptionalAddrSpace(AddrSpace
) ||
454 ParseGlobalType(IsConstant
) ||
455 ParseType(Ty
, TyLoc
))
458 // If the linkage is specified and is external, then no initializer is
461 if (!HasLinkage
|| (Linkage
!= GlobalValue::DLLImportLinkage
&&
462 Linkage
!= GlobalValue::ExternalWeakLinkage
&&
463 Linkage
!= GlobalValue::ExternalLinkage
)) {
464 if (ParseGlobalValue(Ty
, Init
))
468 if (isa
<FunctionType
>(Ty
) || Ty
== Type::LabelTy
)
469 return Error(TyLoc
, "invalid type for global variable");
471 GlobalVariable
*GV
= 0;
473 // See if the global was forward referenced, if so, use the global.
475 if ((GV
= M
->getGlobalVariable(Name
, true)) &&
476 !ForwardRefVals
.erase(Name
))
477 return Error(NameLoc
, "redefinition of global '@" + Name
+ "'");
479 std::map
<unsigned, std::pair
<GlobalValue
*, LocTy
> >::iterator
480 I
= ForwardRefValIDs
.find(NumberedVals
.size());
481 if (I
!= ForwardRefValIDs
.end()) {
482 GV
= cast
<GlobalVariable
>(I
->second
.first
);
483 ForwardRefValIDs
.erase(I
);
488 GV
= new GlobalVariable(Ty
, false, GlobalValue::ExternalLinkage
, 0, Name
,
489 M
, false, AddrSpace
);
491 if (GV
->getType()->getElementType() != Ty
)
493 "forward reference and definition of global have different types");
495 // Move the forward-reference to the correct spot in the module.
496 M
->getGlobalList().splice(M
->global_end(), M
->getGlobalList(), GV
);
500 NumberedVals
.push_back(GV
);
502 // Set the parsed properties on the global.
504 GV
->setInitializer(Init
);
505 GV
->setConstant(IsConstant
);
506 GV
->setLinkage((GlobalValue::LinkageTypes
)Linkage
);
507 GV
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
508 GV
->setThreadLocal(ThreadLocal
);
510 // Parse attributes on the global.
511 while (Lex
.getKind() == lltok::comma
) {
514 if (Lex
.getKind() == lltok::kw_section
) {
516 GV
->setSection(Lex
.getStrVal());
517 if (ParseToken(lltok::StringConstant
, "expected global section string"))
519 } else if (Lex
.getKind() == lltok::kw_align
) {
521 if (ParseOptionalAlignment(Alignment
)) return true;
522 GV
->setAlignment(Alignment
);
524 TokError("unknown global variable property!");
532 //===----------------------------------------------------------------------===//
533 // GlobalValue Reference/Resolution Routines.
534 //===----------------------------------------------------------------------===//
536 /// GetGlobalVal - Get a value with the specified name or ID, creating a
537 /// forward reference record if needed. This can return null if the value
538 /// exists but does not have the right type.
539 GlobalValue
*LLParser::GetGlobalVal(const std::string
&Name
, const Type
*Ty
,
541 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
543 Error(Loc
, "global variable reference must have pointer type");
547 // Look this name up in the normal function symbol table.
549 cast_or_null
<GlobalValue
>(M
->getValueSymbolTable().lookup(Name
));
551 // If this is a forward reference for the value, see if we already created a
552 // forward ref record.
554 std::map
<std::string
, std::pair
<GlobalValue
*, LocTy
> >::iterator
555 I
= ForwardRefVals
.find(Name
);
556 if (I
!= ForwardRefVals
.end())
557 Val
= I
->second
.first
;
560 // If we have the value in the symbol table or fwd-ref table, return it.
562 if (Val
->getType() == Ty
) return Val
;
563 Error(Loc
, "'@" + Name
+ "' defined with type '" +
564 Val
->getType()->getDescription() + "'");
568 // Otherwise, create a new forward reference for this value and remember it.
570 if (const FunctionType
*FT
= dyn_cast
<FunctionType
>(PTy
->getElementType())) {
571 // Function types can return opaque but functions can't.
572 if (isa
<OpaqueType
>(FT
->getReturnType())) {
573 Error(Loc
, "function may not return opaque type");
577 FwdVal
= Function::Create(FT
, GlobalValue::ExternalWeakLinkage
, Name
, M
);
579 FwdVal
= new GlobalVariable(PTy
->getElementType(), false,
580 GlobalValue::ExternalWeakLinkage
, 0, Name
, M
);
583 ForwardRefVals
[Name
] = std::make_pair(FwdVal
, Loc
);
587 GlobalValue
*LLParser::GetGlobalVal(unsigned ID
, const Type
*Ty
, LocTy Loc
) {
588 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
590 Error(Loc
, "global variable reference must have pointer type");
594 GlobalValue
*Val
= ID
< NumberedVals
.size() ? NumberedVals
[ID
] : 0;
596 // If this is a forward reference for the value, see if we already created a
597 // forward ref record.
599 std::map
<unsigned, std::pair
<GlobalValue
*, LocTy
> >::iterator
600 I
= ForwardRefValIDs
.find(ID
);
601 if (I
!= ForwardRefValIDs
.end())
602 Val
= I
->second
.first
;
605 // If we have the value in the symbol table or fwd-ref table, return it.
607 if (Val
->getType() == Ty
) return Val
;
608 Error(Loc
, "'@" + utostr(ID
) + "' defined with type '" +
609 Val
->getType()->getDescription() + "'");
613 // Otherwise, create a new forward reference for this value and remember it.
615 if (const FunctionType
*FT
= dyn_cast
<FunctionType
>(PTy
->getElementType())) {
616 // Function types can return opaque but functions can't.
617 if (isa
<OpaqueType
>(FT
->getReturnType())) {
618 Error(Loc
, "function may not return opaque type");
621 FwdVal
= Function::Create(FT
, GlobalValue::ExternalWeakLinkage
, "", M
);
623 FwdVal
= new GlobalVariable(PTy
->getElementType(), false,
624 GlobalValue::ExternalWeakLinkage
, 0, "", M
);
627 ForwardRefValIDs
[ID
] = std::make_pair(FwdVal
, Loc
);
632 //===----------------------------------------------------------------------===//
634 //===----------------------------------------------------------------------===//
636 /// ParseToken - If the current token has the specified kind, eat it and return
637 /// success. Otherwise, emit the specified error and return failure.
638 bool LLParser::ParseToken(lltok::Kind T
, const char *ErrMsg
) {
639 if (Lex
.getKind() != T
)
640 return TokError(ErrMsg
);
645 /// ParseStringConstant
646 /// ::= StringConstant
647 bool LLParser::ParseStringConstant(std::string
&Result
) {
648 if (Lex
.getKind() != lltok::StringConstant
)
649 return TokError("expected string constant");
650 Result
= Lex
.getStrVal();
657 bool LLParser::ParseUInt32(unsigned &Val
) {
658 if (Lex
.getKind() != lltok::APSInt
|| Lex
.getAPSIntVal().isSigned())
659 return TokError("expected integer");
660 uint64_t Val64
= Lex
.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL
+1);
661 if (Val64
!= unsigned(Val64
))
662 return TokError("expected 32-bit integer (too large)");
669 /// ParseOptionalAddrSpace
671 /// := 'addrspace' '(' uint32 ')'
672 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace
) {
674 if (!EatIfPresent(lltok::kw_addrspace
))
676 return ParseToken(lltok::lparen
, "expected '(' in address space") ||
677 ParseUInt32(AddrSpace
) ||
678 ParseToken(lltok::rparen
, "expected ')' in address space");
681 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
682 /// indicates what kind of attribute list this is: 0: function arg, 1: result,
683 /// 2: function attr.
684 /// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
685 bool LLParser::ParseOptionalAttrs(unsigned &Attrs
, unsigned AttrKind
) {
686 Attrs
= Attribute::None
;
687 LocTy AttrLoc
= Lex
.getLoc();
690 switch (Lex
.getKind()) {
693 // Treat these as signext/zeroext if they occur in the argument list after
694 // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the
695 // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
697 // FIXME: REMOVE THIS IN LLVM 3.0
699 if (Lex
.getKind() == lltok::kw_sext
)
700 Attrs
|= Attribute::SExt
;
702 Attrs
|= Attribute::ZExt
;
706 default: // End of attributes.
707 if (AttrKind
!= 2 && (Attrs
& Attribute::FunctionOnly
))
708 return Error(AttrLoc
, "invalid use of function-only attribute");
710 if (AttrKind
!= 0 && AttrKind
!= 3 && (Attrs
& Attribute::ParameterOnly
))
711 return Error(AttrLoc
, "invalid use of parameter-only attribute");
714 case lltok::kw_zeroext
: Attrs
|= Attribute::ZExt
; break;
715 case lltok::kw_signext
: Attrs
|= Attribute::SExt
; break;
716 case lltok::kw_inreg
: Attrs
|= Attribute::InReg
; break;
717 case lltok::kw_sret
: Attrs
|= Attribute::StructRet
; break;
718 case lltok::kw_noalias
: Attrs
|= Attribute::NoAlias
; break;
719 case lltok::kw_nocapture
: Attrs
|= Attribute::NoCapture
; break;
720 case lltok::kw_byval
: Attrs
|= Attribute::ByVal
; break;
721 case lltok::kw_nest
: Attrs
|= Attribute::Nest
; break;
723 case lltok::kw_noreturn
: Attrs
|= Attribute::NoReturn
; break;
724 case lltok::kw_nounwind
: Attrs
|= Attribute::NoUnwind
; break;
725 case lltok::kw_noinline
: Attrs
|= Attribute::NoInline
; break;
726 case lltok::kw_readnone
: Attrs
|= Attribute::ReadNone
; break;
727 case lltok::kw_readonly
: Attrs
|= Attribute::ReadOnly
; break;
728 case lltok::kw_alwaysinline
: Attrs
|= Attribute::AlwaysInline
; break;
729 case lltok::kw_optsize
: Attrs
|= Attribute::OptimizeForSize
; break;
730 case lltok::kw_ssp
: Attrs
|= Attribute::StackProtect
; break;
731 case lltok::kw_sspreq
: Attrs
|= Attribute::StackProtectReq
; break;
734 case lltok::kw_align
: {
736 if (ParseOptionalAlignment(Alignment
))
738 Attrs
|= Attribute::constructAlignmentFromInt(Alignment
);
746 /// ParseOptionalLinkage
753 /// ::= 'linkonce_odr'
758 /// ::= 'extern_weak'
760 bool LLParser::ParseOptionalLinkage(unsigned &Res
, bool &HasLinkage
) {
762 switch (Lex
.getKind()) {
763 default: Res
= GlobalValue::ExternalLinkage
; return false;
764 case lltok::kw_private
: Res
= GlobalValue::PrivateLinkage
; break;
765 case lltok::kw_internal
: Res
= GlobalValue::InternalLinkage
; break;
766 case lltok::kw_weak
: Res
= GlobalValue::WeakAnyLinkage
; break;
767 case lltok::kw_weak_odr
: Res
= GlobalValue::WeakODRLinkage
; break;
768 case lltok::kw_linkonce
: Res
= GlobalValue::LinkOnceAnyLinkage
; break;
769 case lltok::kw_linkonce_odr
: Res
= GlobalValue::LinkOnceODRLinkage
; break;
770 case lltok::kw_available_externally
:
771 Res
= GlobalValue::AvailableExternallyLinkage
;
773 case lltok::kw_appending
: Res
= GlobalValue::AppendingLinkage
; break;
774 case lltok::kw_dllexport
: Res
= GlobalValue::DLLExportLinkage
; break;
775 case lltok::kw_common
: Res
= GlobalValue::CommonLinkage
; break;
776 case lltok::kw_dllimport
: Res
= GlobalValue::DLLImportLinkage
; break;
777 case lltok::kw_extern_weak
: Res
= GlobalValue::ExternalWeakLinkage
; break;
778 case lltok::kw_external
: Res
= GlobalValue::ExternalLinkage
; break;
785 /// ParseOptionalVisibility
791 bool LLParser::ParseOptionalVisibility(unsigned &Res
) {
792 switch (Lex
.getKind()) {
793 default: Res
= GlobalValue::DefaultVisibility
; return false;
794 case lltok::kw_default
: Res
= GlobalValue::DefaultVisibility
; break;
795 case lltok::kw_hidden
: Res
= GlobalValue::HiddenVisibility
; break;
796 case lltok::kw_protected
: Res
= GlobalValue::ProtectedVisibility
; break;
802 /// ParseOptionalCallingConv
807 /// ::= 'x86_stdcallcc'
808 /// ::= 'x86_fastcallcc'
811 bool LLParser::ParseOptionalCallingConv(unsigned &CC
) {
812 switch (Lex
.getKind()) {
813 default: CC
= CallingConv::C
; return false;
814 case lltok::kw_ccc
: CC
= CallingConv::C
; break;
815 case lltok::kw_fastcc
: CC
= CallingConv::Fast
; break;
816 case lltok::kw_coldcc
: CC
= CallingConv::Cold
; break;
817 case lltok::kw_x86_stdcallcc
: CC
= CallingConv::X86_StdCall
; break;
818 case lltok::kw_x86_fastcallcc
: CC
= CallingConv::X86_FastCall
; break;
819 case lltok::kw_cc
: Lex
.Lex(); return ParseUInt32(CC
);
825 /// ParseOptionalAlignment
828 bool LLParser::ParseOptionalAlignment(unsigned &Alignment
) {
830 if (!EatIfPresent(lltok::kw_align
))
832 LocTy AlignLoc
= Lex
.getLoc();
833 if (ParseUInt32(Alignment
)) return true;
834 if (!isPowerOf2_32(Alignment
))
835 return Error(AlignLoc
, "alignment is not a power of two");
839 /// ParseOptionalCommaAlignment
841 /// ::= ',' 'align' 4
842 bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment
) {
844 if (!EatIfPresent(lltok::comma
))
846 return ParseToken(lltok::kw_align
, "expected 'align'") ||
847 ParseUInt32(Alignment
);
851 /// ::= (',' uint32)+
852 bool LLParser::ParseIndexList(SmallVectorImpl
<unsigned> &Indices
) {
853 if (Lex
.getKind() != lltok::comma
)
854 return TokError("expected ',' as start of index list");
856 while (EatIfPresent(lltok::comma
)) {
858 if (ParseUInt32(Idx
)) return true;
859 Indices
.push_back(Idx
);
865 //===----------------------------------------------------------------------===//
867 //===----------------------------------------------------------------------===//
869 /// ParseType - Parse and resolve a full type.
870 bool LLParser::ParseType(PATypeHolder
&Result
, bool AllowVoid
) {
871 LocTy TypeLoc
= Lex
.getLoc();
872 if (ParseTypeRec(Result
)) return true;
874 // Verify no unresolved uprefs.
876 return Error(UpRefs
.back().Loc
, "invalid unresolved type up reference");
878 if (!AllowVoid
&& Result
.get() == Type::VoidTy
)
879 return Error(TypeLoc
, "void type only allowed for function results");
884 /// HandleUpRefs - Every time we finish a new layer of types, this function is
885 /// called. It loops through the UpRefs vector, which is a list of the
886 /// currently active types. For each type, if the up-reference is contained in
887 /// the newly completed type, we decrement the level count. When the level
888 /// count reaches zero, the up-referenced type is the type that is passed in:
889 /// thus we can complete the cycle.
891 PATypeHolder
LLParser::HandleUpRefs(const Type
*ty
) {
892 // If Ty isn't abstract, or if there are no up-references in it, then there is
893 // nothing to resolve here.
894 if (!ty
->isAbstract() || UpRefs
.empty()) return ty
;
898 errs() << "Type '" << Ty
->getDescription()
899 << "' newly formed. Resolving upreferences.\n"
900 << UpRefs
.size() << " upreferences active!\n";
903 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
904 // to zero), we resolve them all together before we resolve them to Ty. At
905 // the end of the loop, if there is anything to resolve to Ty, it will be in
907 OpaqueType
*TypeToResolve
= 0;
909 for (unsigned i
= 0; i
!= UpRefs
.size(); ++i
) {
910 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
912 std::find(Ty
->subtype_begin(), Ty
->subtype_end(),
913 UpRefs
[i
].LastContainedTy
) != Ty
->subtype_end();
916 errs() << " UR#" << i
<< " - TypeContains(" << Ty
->getDescription() << ", "
917 << UpRefs
[i
].LastContainedTy
->getDescription() << ") = "
918 << (ContainsType
? "true" : "false")
919 << " level=" << UpRefs
[i
].NestingLevel
<< "\n";
924 // Decrement level of upreference
925 unsigned Level
= --UpRefs
[i
].NestingLevel
;
926 UpRefs
[i
].LastContainedTy
= Ty
;
928 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
933 errs() << " * Resolving upreference for " << UpRefs
[i
].UpRefTy
<< "\n";
936 TypeToResolve
= UpRefs
[i
].UpRefTy
;
938 UpRefs
[i
].UpRefTy
->refineAbstractTypeTo(TypeToResolve
);
939 UpRefs
.erase(UpRefs
.begin()+i
); // Remove from upreference list.
940 --i
; // Do not skip the next element.
944 TypeToResolve
->refineAbstractTypeTo(Ty
);
950 /// ParseTypeRec - The recursive function used to process the internal
951 /// implementation details of types.
952 bool LLParser::ParseTypeRec(PATypeHolder
&Result
) {
953 switch (Lex
.getKind()) {
955 return TokError("expected type");
957 // TypeRec ::= 'float' | 'void' (etc)
958 Result
= Lex
.getTyVal();
961 case lltok::kw_opaque
:
962 // TypeRec ::= 'opaque'
963 Result
= OpaqueType::get();
967 // TypeRec ::= '{' ... '}'
968 if (ParseStructType(Result
, false))
972 // TypeRec ::= '[' ... ']'
973 Lex
.Lex(); // eat the lsquare.
974 if (ParseArrayVectorType(Result
, false))
977 case lltok::less
: // Either vector or packed struct.
978 // TypeRec ::= '<' ... '>'
980 if (Lex
.getKind() == lltok::lbrace
) {
981 if (ParseStructType(Result
, true) ||
982 ParseToken(lltok::greater
, "expected '>' at end of packed struct"))
984 } else if (ParseArrayVectorType(Result
, true))
987 case lltok::LocalVar
:
988 case lltok::StringConstant
: // FIXME: REMOVE IN LLVM 3.0
990 if (const Type
*T
= M
->getTypeByName(Lex
.getStrVal())) {
993 Result
= OpaqueType::get();
994 ForwardRefTypes
.insert(std::make_pair(Lex
.getStrVal(),
995 std::make_pair(Result
,
997 M
->addTypeName(Lex
.getStrVal(), Result
.get());
1002 case lltok::LocalVarID
:
1004 if (Lex
.getUIntVal() < NumberedTypes
.size())
1005 Result
= NumberedTypes
[Lex
.getUIntVal()];
1007 std::map
<unsigned, std::pair
<PATypeHolder
, LocTy
> >::iterator
1008 I
= ForwardRefTypeIDs
.find(Lex
.getUIntVal());
1009 if (I
!= ForwardRefTypeIDs
.end())
1010 Result
= I
->second
.first
;
1012 Result
= OpaqueType::get();
1013 ForwardRefTypeIDs
.insert(std::make_pair(Lex
.getUIntVal(),
1014 std::make_pair(Result
,
1020 case lltok::backslash
: {
1021 // TypeRec ::= '\' 4
1024 if (ParseUInt32(Val
)) return true;
1025 OpaqueType
*OT
= OpaqueType::get(); // Use temporary placeholder.
1026 UpRefs
.push_back(UpRefRecord(Lex
.getLoc(), Val
, OT
));
1032 // Parse the type suffixes.
1034 switch (Lex
.getKind()) {
1036 default: return false;
1038 // TypeRec ::= TypeRec '*'
1040 if (Result
.get() == Type::LabelTy
)
1041 return TokError("basic block pointers are invalid");
1042 if (Result
.get() == Type::VoidTy
)
1043 return TokError("pointers to void are invalid; use i8* instead");
1044 Result
= HandleUpRefs(PointerType::getUnqual(Result
.get()));
1048 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1049 case lltok::kw_addrspace
: {
1050 if (Result
.get() == Type::LabelTy
)
1051 return TokError("basic block pointers are invalid");
1052 if (Result
.get() == Type::VoidTy
)
1053 return TokError("pointers to void are invalid; use i8* instead");
1055 if (ParseOptionalAddrSpace(AddrSpace
) ||
1056 ParseToken(lltok::star
, "expected '*' in address space"))
1059 Result
= HandleUpRefs(PointerType::get(Result
.get(), AddrSpace
));
1063 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1065 if (ParseFunctionType(Result
))
1072 /// ParseParameterList
1074 /// ::= '(' Arg (',' Arg)* ')'
1076 /// ::= Type OptionalAttributes Value OptionalAttributes
1077 bool LLParser::ParseParameterList(SmallVectorImpl
<ParamInfo
> &ArgList
,
1078 PerFunctionState
&PFS
) {
1079 if (ParseToken(lltok::lparen
, "expected '(' in call"))
1082 while (Lex
.getKind() != lltok::rparen
) {
1083 // If this isn't the first argument, we need a comma.
1084 if (!ArgList
.empty() &&
1085 ParseToken(lltok::comma
, "expected ',' in argument list"))
1088 // Parse the argument.
1090 PATypeHolder
ArgTy(Type::VoidTy
);
1091 unsigned ArgAttrs1
, ArgAttrs2
;
1093 if (ParseType(ArgTy
, ArgLoc
) ||
1094 ParseOptionalAttrs(ArgAttrs1
, 0) ||
1095 ParseValue(ArgTy
, V
, PFS
) ||
1096 // FIXME: Should not allow attributes after the argument, remove this in
1098 ParseOptionalAttrs(ArgAttrs2
, 3))
1100 ArgList
.push_back(ParamInfo(ArgLoc
, V
, ArgAttrs1
|ArgAttrs2
));
1103 Lex
.Lex(); // Lex the ')'.
1109 /// ParseArgumentList - Parse the argument list for a function type or function
1110 /// prototype. If 'inType' is true then we are parsing a FunctionType.
1111 /// ::= '(' ArgTypeListI ')'
1115 /// ::= ArgTypeList ',' '...'
1116 /// ::= ArgType (',' ArgType)*
1118 bool LLParser::ParseArgumentList(std::vector
<ArgInfo
> &ArgList
,
1119 bool &isVarArg
, bool inType
) {
1121 assert(Lex
.getKind() == lltok::lparen
);
1122 Lex
.Lex(); // eat the (.
1124 if (Lex
.getKind() == lltok::rparen
) {
1126 } else if (Lex
.getKind() == lltok::dotdotdot
) {
1130 LocTy TypeLoc
= Lex
.getLoc();
1131 PATypeHolder
ArgTy(Type::VoidTy
);
1135 // If we're parsing a type, use ParseTypeRec, because we allow recursive
1136 // types (such as a function returning a pointer to itself). If parsing a
1137 // function prototype, we require fully resolved types.
1138 if ((inType
? ParseTypeRec(ArgTy
) : ParseType(ArgTy
)) ||
1139 ParseOptionalAttrs(Attrs
, 0)) return true;
1141 if (ArgTy
== Type::VoidTy
)
1142 return Error(TypeLoc
, "argument can not have void type");
1144 if (Lex
.getKind() == lltok::LocalVar
||
1145 Lex
.getKind() == lltok::StringConstant
) { // FIXME: REMOVE IN LLVM 3.0
1146 Name
= Lex
.getStrVal();
1150 if (!ArgTy
->isFirstClassType() && !isa
<OpaqueType
>(ArgTy
))
1151 return Error(TypeLoc
, "invalid type for function argument");
1153 ArgList
.push_back(ArgInfo(TypeLoc
, ArgTy
, Attrs
, Name
));
1155 while (EatIfPresent(lltok::comma
)) {
1156 // Handle ... at end of arg list.
1157 if (EatIfPresent(lltok::dotdotdot
)) {
1162 // Otherwise must be an argument type.
1163 TypeLoc
= Lex
.getLoc();
1164 if ((inType
? ParseTypeRec(ArgTy
) : ParseType(ArgTy
)) ||
1165 ParseOptionalAttrs(Attrs
, 0)) return true;
1167 if (ArgTy
== Type::VoidTy
)
1168 return Error(TypeLoc
, "argument can not have void type");
1170 if (Lex
.getKind() == lltok::LocalVar
||
1171 Lex
.getKind() == lltok::StringConstant
) { // FIXME: REMOVE IN LLVM 3.0
1172 Name
= Lex
.getStrVal();
1178 if (!ArgTy
->isFirstClassType() && !isa
<OpaqueType
>(ArgTy
))
1179 return Error(TypeLoc
, "invalid type for function argument");
1181 ArgList
.push_back(ArgInfo(TypeLoc
, ArgTy
, Attrs
, Name
));
1185 return ParseToken(lltok::rparen
, "expected ')' at end of argument list");
1188 /// ParseFunctionType
1189 /// ::= Type ArgumentList OptionalAttrs
1190 bool LLParser::ParseFunctionType(PATypeHolder
&Result
) {
1191 assert(Lex
.getKind() == lltok::lparen
);
1193 if (!FunctionType::isValidReturnType(Result
))
1194 return TokError("invalid function return type");
1196 std::vector
<ArgInfo
> ArgList
;
1199 if (ParseArgumentList(ArgList
, isVarArg
, true) ||
1200 // FIXME: Allow, but ignore attributes on function types!
1201 // FIXME: Remove in LLVM 3.0
1202 ParseOptionalAttrs(Attrs
, 2))
1205 // Reject names on the arguments lists.
1206 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
1207 if (!ArgList
[i
].Name
.empty())
1208 return Error(ArgList
[i
].Loc
, "argument name invalid in function type");
1209 if (!ArgList
[i
].Attrs
!= 0) {
1210 // Allow but ignore attributes on function types; this permits
1212 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1216 std::vector
<const Type
*> ArgListTy
;
1217 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
1218 ArgListTy
.push_back(ArgList
[i
].Type
);
1220 Result
= HandleUpRefs(FunctionType::get(Result
.get(), ArgListTy
, isVarArg
));
1224 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1227 /// ::= '{' TypeRec (',' TypeRec)* '}'
1228 /// ::= '<' '{' '}' '>'
1229 /// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1230 bool LLParser::ParseStructType(PATypeHolder
&Result
, bool Packed
) {
1231 assert(Lex
.getKind() == lltok::lbrace
);
1232 Lex
.Lex(); // Consume the '{'
1234 if (EatIfPresent(lltok::rbrace
)) {
1235 Result
= StructType::get(std::vector
<const Type
*>(), Packed
);
1239 std::vector
<PATypeHolder
> ParamsList
;
1240 LocTy EltTyLoc
= Lex
.getLoc();
1241 if (ParseTypeRec(Result
)) return true;
1242 ParamsList
.push_back(Result
);
1244 if (Result
== Type::VoidTy
)
1245 return Error(EltTyLoc
, "struct element can not have void type");
1247 while (EatIfPresent(lltok::comma
)) {
1248 EltTyLoc
= Lex
.getLoc();
1249 if (ParseTypeRec(Result
)) return true;
1251 if (Result
== Type::VoidTy
)
1252 return Error(EltTyLoc
, "struct element can not have void type");
1254 ParamsList
.push_back(Result
);
1257 if (ParseToken(lltok::rbrace
, "expected '}' at end of struct"))
1260 std::vector
<const Type
*> ParamsListTy
;
1261 for (unsigned i
= 0, e
= ParamsList
.size(); i
!= e
; ++i
)
1262 ParamsListTy
.push_back(ParamsList
[i
].get());
1263 Result
= HandleUpRefs(StructType::get(ParamsListTy
, Packed
));
1267 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1268 /// token has already been consumed.
1270 /// ::= '[' APSINTVAL 'x' Types ']'
1271 /// ::= '<' APSINTVAL 'x' Types '>'
1272 bool LLParser::ParseArrayVectorType(PATypeHolder
&Result
, bool isVector
) {
1273 if (Lex
.getKind() != lltok::APSInt
|| Lex
.getAPSIntVal().isSigned() ||
1274 Lex
.getAPSIntVal().getBitWidth() > 64)
1275 return TokError("expected number in address space");
1277 LocTy SizeLoc
= Lex
.getLoc();
1278 uint64_t Size
= Lex
.getAPSIntVal().getZExtValue();
1281 if (ParseToken(lltok::kw_x
, "expected 'x' after element count"))
1284 LocTy TypeLoc
= Lex
.getLoc();
1285 PATypeHolder
EltTy(Type::VoidTy
);
1286 if (ParseTypeRec(EltTy
)) return true;
1288 if (EltTy
== Type::VoidTy
)
1289 return Error(TypeLoc
, "array and vector element type cannot be void");
1291 if (ParseToken(isVector
? lltok::greater
: lltok::rsquare
,
1292 "expected end of sequential type"))
1297 return Error(SizeLoc
, "zero element vector is illegal");
1298 if ((unsigned)Size
!= Size
)
1299 return Error(SizeLoc
, "size too large for vector");
1300 if (!EltTy
->isFloatingPoint() && !EltTy
->isInteger())
1301 return Error(TypeLoc
, "vector element type must be fp or integer");
1302 Result
= VectorType::get(EltTy
, unsigned(Size
));
1304 if (!EltTy
->isFirstClassType() && !isa
<OpaqueType
>(EltTy
))
1305 return Error(TypeLoc
, "invalid array element type");
1306 Result
= HandleUpRefs(ArrayType::get(EltTy
, Size
));
1311 //===----------------------------------------------------------------------===//
1312 // Function Semantic Analysis.
1313 //===----------------------------------------------------------------------===//
1315 LLParser::PerFunctionState::PerFunctionState(LLParser
&p
, Function
&f
)
1318 // Insert unnamed arguments into the NumberedVals list.
1319 for (Function::arg_iterator AI
= F
.arg_begin(), E
= F
.arg_end();
1322 NumberedVals
.push_back(AI
);
1325 LLParser::PerFunctionState::~PerFunctionState() {
1326 // If there were any forward referenced non-basicblock values, delete them.
1327 for (std::map
<std::string
, std::pair
<Value
*, LocTy
> >::iterator
1328 I
= ForwardRefVals
.begin(), E
= ForwardRefVals
.end(); I
!= E
; ++I
)
1329 if (!isa
<BasicBlock
>(I
->second
.first
)) {
1330 I
->second
.first
->replaceAllUsesWith(UndefValue::get(I
->second
.first
1332 delete I
->second
.first
;
1333 I
->second
.first
= 0;
1336 for (std::map
<unsigned, std::pair
<Value
*, LocTy
> >::iterator
1337 I
= ForwardRefValIDs
.begin(), E
= ForwardRefValIDs
.end(); I
!= E
; ++I
)
1338 if (!isa
<BasicBlock
>(I
->second
.first
)) {
1339 I
->second
.first
->replaceAllUsesWith(UndefValue::get(I
->second
.first
1341 delete I
->second
.first
;
1342 I
->second
.first
= 0;
1346 bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1347 if (!ForwardRefVals
.empty())
1348 return P
.Error(ForwardRefVals
.begin()->second
.second
,
1349 "use of undefined value '%" + ForwardRefVals
.begin()->first
+
1351 if (!ForwardRefValIDs
.empty())
1352 return P
.Error(ForwardRefValIDs
.begin()->second
.second
,
1353 "use of undefined value '%" +
1354 utostr(ForwardRefValIDs
.begin()->first
) + "'");
1359 /// GetVal - Get a value with the specified name or ID, creating a
1360 /// forward reference record if needed. This can return null if the value
1361 /// exists but does not have the right type.
1362 Value
*LLParser::PerFunctionState::GetVal(const std::string
&Name
,
1363 const Type
*Ty
, LocTy Loc
) {
1364 // Look this name up in the normal function symbol table.
1365 Value
*Val
= F
.getValueSymbolTable().lookup(Name
);
1367 // If this is a forward reference for the value, see if we already created a
1368 // forward ref record.
1370 std::map
<std::string
, std::pair
<Value
*, LocTy
> >::iterator
1371 I
= ForwardRefVals
.find(Name
);
1372 if (I
!= ForwardRefVals
.end())
1373 Val
= I
->second
.first
;
1376 // If we have the value in the symbol table or fwd-ref table, return it.
1378 if (Val
->getType() == Ty
) return Val
;
1379 if (Ty
== Type::LabelTy
)
1380 P
.Error(Loc
, "'%" + Name
+ "' is not a basic block");
1382 P
.Error(Loc
, "'%" + Name
+ "' defined with type '" +
1383 Val
->getType()->getDescription() + "'");
1387 // Don't make placeholders with invalid type.
1388 if (!Ty
->isFirstClassType() && !isa
<OpaqueType
>(Ty
) && Ty
!= Type::LabelTy
) {
1389 P
.Error(Loc
, "invalid use of a non-first-class type");
1393 // Otherwise, create a new forward reference for this value and remember it.
1395 if (Ty
== Type::LabelTy
)
1396 FwdVal
= BasicBlock::Create(Name
, &F
);
1398 FwdVal
= new Argument(Ty
, Name
);
1400 ForwardRefVals
[Name
] = std::make_pair(FwdVal
, Loc
);
1404 Value
*LLParser::PerFunctionState::GetVal(unsigned ID
, const Type
*Ty
,
1406 // Look this name up in the normal function symbol table.
1407 Value
*Val
= ID
< NumberedVals
.size() ? NumberedVals
[ID
] : 0;
1409 // If this is a forward reference for the value, see if we already created a
1410 // forward ref record.
1412 std::map
<unsigned, std::pair
<Value
*, LocTy
> >::iterator
1413 I
= ForwardRefValIDs
.find(ID
);
1414 if (I
!= ForwardRefValIDs
.end())
1415 Val
= I
->second
.first
;
1418 // If we have the value in the symbol table or fwd-ref table, return it.
1420 if (Val
->getType() == Ty
) return Val
;
1421 if (Ty
== Type::LabelTy
)
1422 P
.Error(Loc
, "'%" + utostr(ID
) + "' is not a basic block");
1424 P
.Error(Loc
, "'%" + utostr(ID
) + "' defined with type '" +
1425 Val
->getType()->getDescription() + "'");
1429 if (!Ty
->isFirstClassType() && !isa
<OpaqueType
>(Ty
) && Ty
!= Type::LabelTy
) {
1430 P
.Error(Loc
, "invalid use of a non-first-class type");
1434 // Otherwise, create a new forward reference for this value and remember it.
1436 if (Ty
== Type::LabelTy
)
1437 FwdVal
= BasicBlock::Create("", &F
);
1439 FwdVal
= new Argument(Ty
);
1441 ForwardRefValIDs
[ID
] = std::make_pair(FwdVal
, Loc
);
1445 /// SetInstName - After an instruction is parsed and inserted into its
1446 /// basic block, this installs its name.
1447 bool LLParser::PerFunctionState::SetInstName(int NameID
,
1448 const std::string
&NameStr
,
1449 LocTy NameLoc
, Instruction
*Inst
) {
1450 // If this instruction has void type, it cannot have a name or ID specified.
1451 if (Inst
->getType() == Type::VoidTy
) {
1452 if (NameID
!= -1 || !NameStr
.empty())
1453 return P
.Error(NameLoc
, "instructions returning void cannot have a name");
1457 // If this was a numbered instruction, verify that the instruction is the
1458 // expected value and resolve any forward references.
1459 if (NameStr
.empty()) {
1460 // If neither a name nor an ID was specified, just use the next ID.
1462 NameID
= NumberedVals
.size();
1464 if (unsigned(NameID
) != NumberedVals
.size())
1465 return P
.Error(NameLoc
, "instruction expected to be numbered '%" +
1466 utostr(NumberedVals
.size()) + "'");
1468 std::map
<unsigned, std::pair
<Value
*, LocTy
> >::iterator FI
=
1469 ForwardRefValIDs
.find(NameID
);
1470 if (FI
!= ForwardRefValIDs
.end()) {
1471 if (FI
->second
.first
->getType() != Inst
->getType())
1472 return P
.Error(NameLoc
, "instruction forward referenced with type '" +
1473 FI
->second
.first
->getType()->getDescription() + "'");
1474 FI
->second
.first
->replaceAllUsesWith(Inst
);
1475 ForwardRefValIDs
.erase(FI
);
1478 NumberedVals
.push_back(Inst
);
1482 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1483 std::map
<std::string
, std::pair
<Value
*, LocTy
> >::iterator
1484 FI
= ForwardRefVals
.find(NameStr
);
1485 if (FI
!= ForwardRefVals
.end()) {
1486 if (FI
->second
.first
->getType() != Inst
->getType())
1487 return P
.Error(NameLoc
, "instruction forward referenced with type '" +
1488 FI
->second
.first
->getType()->getDescription() + "'");
1489 FI
->second
.first
->replaceAllUsesWith(Inst
);
1490 ForwardRefVals
.erase(FI
);
1493 // Set the name on the instruction.
1494 Inst
->setName(NameStr
);
1496 if (Inst
->getNameStr() != NameStr
)
1497 return P
.Error(NameLoc
, "multiple definition of local value named '" +
1502 /// GetBB - Get a basic block with the specified name or ID, creating a
1503 /// forward reference record if needed.
1504 BasicBlock
*LLParser::PerFunctionState::GetBB(const std::string
&Name
,
1506 return cast_or_null
<BasicBlock
>(GetVal(Name
, Type::LabelTy
, Loc
));
1509 BasicBlock
*LLParser::PerFunctionState::GetBB(unsigned ID
, LocTy Loc
) {
1510 return cast_or_null
<BasicBlock
>(GetVal(ID
, Type::LabelTy
, Loc
));
1513 /// DefineBB - Define the specified basic block, which is either named or
1514 /// unnamed. If there is an error, this returns null otherwise it returns
1515 /// the block being defined.
1516 BasicBlock
*LLParser::PerFunctionState::DefineBB(const std::string
&Name
,
1520 BB
= GetBB(NumberedVals
.size(), Loc
);
1522 BB
= GetBB(Name
, Loc
);
1523 if (BB
== 0) return 0; // Already diagnosed error.
1525 // Move the block to the end of the function. Forward ref'd blocks are
1526 // inserted wherever they happen to be referenced.
1527 F
.getBasicBlockList().splice(F
.end(), F
.getBasicBlockList(), BB
);
1529 // Remove the block from forward ref sets.
1531 ForwardRefValIDs
.erase(NumberedVals
.size());
1532 NumberedVals
.push_back(BB
);
1534 // BB forward references are already in the function symbol table.
1535 ForwardRefVals
.erase(Name
);
1541 //===----------------------------------------------------------------------===//
1543 //===----------------------------------------------------------------------===//
1545 /// ParseValID - Parse an abstract value that doesn't necessarily have a
1546 /// type implied. For example, if we parse "4" we don't know what integer type
1547 /// it has. The value will later be combined with its type and checked for
1549 bool LLParser::ParseValID(ValID
&ID
) {
1550 ID
.Loc
= Lex
.getLoc();
1551 switch (Lex
.getKind()) {
1552 default: return TokError("expected value token");
1553 case lltok::GlobalID
: // @42
1554 ID
.UIntVal
= Lex
.getUIntVal();
1555 ID
.Kind
= ValID::t_GlobalID
;
1557 case lltok::GlobalVar
: // @foo
1558 ID
.StrVal
= Lex
.getStrVal();
1559 ID
.Kind
= ValID::t_GlobalName
;
1561 case lltok::LocalVarID
: // %42
1562 ID
.UIntVal
= Lex
.getUIntVal();
1563 ID
.Kind
= ValID::t_LocalID
;
1565 case lltok::LocalVar
: // %foo
1566 case lltok::StringConstant
: // "foo" - FIXME: REMOVE IN LLVM 3.0
1567 ID
.StrVal
= Lex
.getStrVal();
1568 ID
.Kind
= ValID::t_LocalName
;
1570 case lltok::Metadata
: { // !{...} MDNode, !"foo" MDString
1571 ID
.Kind
= ValID::t_Constant
;
1573 if (Lex
.getKind() == lltok::lbrace
) {
1575 // ::= '!' '{' TypeAndValue (',' TypeAndValue)* '}'
1576 SmallVector
<Constant
*, 16> Elts
;
1577 if (ParseMDNodeVector(Elts
) ||
1578 ParseToken(lltok::rbrace
, "expected end of metadata node"))
1581 ID
.ConstantVal
= MDNode::get(&Elts
[0], Elts
.size());
1586 // ::= '!' STRINGCONSTANT
1588 if (ParseStringConstant(Str
)) return true;
1590 ID
.ConstantVal
= MDString::get(Str
.data(), Str
.data() + Str
.size());
1594 ID
.APSIntVal
= Lex
.getAPSIntVal();
1595 ID
.Kind
= ValID::t_APSInt
;
1597 case lltok::APFloat
:
1598 ID
.APFloatVal
= Lex
.getAPFloatVal();
1599 ID
.Kind
= ValID::t_APFloat
;
1601 case lltok::kw_true
:
1602 ID
.ConstantVal
= ConstantInt::getTrue();
1603 ID
.Kind
= ValID::t_Constant
;
1605 case lltok::kw_false
:
1606 ID
.ConstantVal
= ConstantInt::getFalse();
1607 ID
.Kind
= ValID::t_Constant
;
1609 case lltok::kw_null
: ID
.Kind
= ValID::t_Null
; break;
1610 case lltok::kw_undef
: ID
.Kind
= ValID::t_Undef
; break;
1611 case lltok::kw_zeroinitializer
: ID
.Kind
= ValID::t_Zero
; break;
1613 case lltok::lbrace
: {
1614 // ValID ::= '{' ConstVector '}'
1616 SmallVector
<Constant
*, 16> Elts
;
1617 if (ParseGlobalValueVector(Elts
) ||
1618 ParseToken(lltok::rbrace
, "expected end of struct constant"))
1621 ID
.ConstantVal
= ConstantStruct::get(&Elts
[0], Elts
.size(), false);
1622 ID
.Kind
= ValID::t_Constant
;
1626 // ValID ::= '<' ConstVector '>' --> Vector.
1627 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1629 bool isPackedStruct
= EatIfPresent(lltok::lbrace
);
1631 SmallVector
<Constant
*, 16> Elts
;
1632 LocTy FirstEltLoc
= Lex
.getLoc();
1633 if (ParseGlobalValueVector(Elts
) ||
1635 ParseToken(lltok::rbrace
, "expected end of packed struct")) ||
1636 ParseToken(lltok::greater
, "expected end of constant"))
1639 if (isPackedStruct
) {
1640 ID
.ConstantVal
= ConstantStruct::get(&Elts
[0], Elts
.size(), true);
1641 ID
.Kind
= ValID::t_Constant
;
1646 return Error(ID
.Loc
, "constant vector must not be empty");
1648 if (!Elts
[0]->getType()->isInteger() &&
1649 !Elts
[0]->getType()->isFloatingPoint())
1650 return Error(FirstEltLoc
,
1651 "vector elements must have integer or floating point type");
1653 // Verify that all the vector elements have the same type.
1654 for (unsigned i
= 1, e
= Elts
.size(); i
!= e
; ++i
)
1655 if (Elts
[i
]->getType() != Elts
[0]->getType())
1656 return Error(FirstEltLoc
,
1657 "vector element #" + utostr(i
) +
1658 " is not of type '" + Elts
[0]->getType()->getDescription());
1660 ID
.ConstantVal
= ConstantVector::get(&Elts
[0], Elts
.size());
1661 ID
.Kind
= ValID::t_Constant
;
1664 case lltok::lsquare
: { // Array Constant
1666 SmallVector
<Constant
*, 16> Elts
;
1667 LocTy FirstEltLoc
= Lex
.getLoc();
1668 if (ParseGlobalValueVector(Elts
) ||
1669 ParseToken(lltok::rsquare
, "expected end of array constant"))
1672 // Handle empty element.
1674 // Use undef instead of an array because it's inconvenient to determine
1675 // the element type at this point, there being no elements to examine.
1676 ID
.Kind
= ValID::t_EmptyArray
;
1680 if (!Elts
[0]->getType()->isFirstClassType())
1681 return Error(FirstEltLoc
, "invalid array element type: " +
1682 Elts
[0]->getType()->getDescription());
1684 ArrayType
*ATy
= ArrayType::get(Elts
[0]->getType(), Elts
.size());
1686 // Verify all elements are correct type!
1687 for (unsigned i
= 0, e
= Elts
.size(); i
!= e
; ++i
) {
1688 if (Elts
[i
]->getType() != Elts
[0]->getType())
1689 return Error(FirstEltLoc
,
1690 "array element #" + utostr(i
) +
1691 " is not of type '" +Elts
[0]->getType()->getDescription());
1694 ID
.ConstantVal
= ConstantArray::get(ATy
, &Elts
[0], Elts
.size());
1695 ID
.Kind
= ValID::t_Constant
;
1698 case lltok::kw_c
: // c "foo"
1700 ID
.ConstantVal
= ConstantArray::get(Lex
.getStrVal(), false);
1701 if (ParseToken(lltok::StringConstant
, "expected string")) return true;
1702 ID
.Kind
= ValID::t_Constant
;
1705 case lltok::kw_asm
: {
1706 // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1709 if (ParseOptionalToken(lltok::kw_sideeffect
, HasSideEffect
) ||
1710 ParseStringConstant(ID
.StrVal
) ||
1711 ParseToken(lltok::comma
, "expected comma in inline asm expression") ||
1712 ParseToken(lltok::StringConstant
, "expected constraint string"))
1714 ID
.StrVal2
= Lex
.getStrVal();
1715 ID
.UIntVal
= HasSideEffect
;
1716 ID
.Kind
= ValID::t_InlineAsm
;
1720 case lltok::kw_trunc
:
1721 case lltok::kw_zext
:
1722 case lltok::kw_sext
:
1723 case lltok::kw_fptrunc
:
1724 case lltok::kw_fpext
:
1725 case lltok::kw_bitcast
:
1726 case lltok::kw_uitofp
:
1727 case lltok::kw_sitofp
:
1728 case lltok::kw_fptoui
:
1729 case lltok::kw_fptosi
:
1730 case lltok::kw_inttoptr
:
1731 case lltok::kw_ptrtoint
: {
1732 unsigned Opc
= Lex
.getUIntVal();
1733 PATypeHolder
DestTy(Type::VoidTy
);
1736 if (ParseToken(lltok::lparen
, "expected '(' after constantexpr cast") ||
1737 ParseGlobalTypeAndValue(SrcVal
) ||
1738 ParseToken(lltok::kw_to
, "expected 'to' int constantexpr cast") ||
1739 ParseType(DestTy
) ||
1740 ParseToken(lltok::rparen
, "expected ')' at end of constantexpr cast"))
1742 if (!CastInst::castIsValid((Instruction::CastOps
)Opc
, SrcVal
, DestTy
))
1743 return Error(ID
.Loc
, "invalid cast opcode for cast from '" +
1744 SrcVal
->getType()->getDescription() + "' to '" +
1745 DestTy
->getDescription() + "'");
1746 ID
.ConstantVal
= ConstantExpr::getCast((Instruction::CastOps
)Opc
, SrcVal
,
1748 ID
.Kind
= ValID::t_Constant
;
1751 case lltok::kw_extractvalue
: {
1754 SmallVector
<unsigned, 4> Indices
;
1755 if (ParseToken(lltok::lparen
, "expected '(' in extractvalue constantexpr")||
1756 ParseGlobalTypeAndValue(Val
) ||
1757 ParseIndexList(Indices
) ||
1758 ParseToken(lltok::rparen
, "expected ')' in extractvalue constantexpr"))
1760 if (!isa
<StructType
>(Val
->getType()) && !isa
<ArrayType
>(Val
->getType()))
1761 return Error(ID
.Loc
, "extractvalue operand must be array or struct");
1762 if (!ExtractValueInst::getIndexedType(Val
->getType(), Indices
.begin(),
1764 return Error(ID
.Loc
, "invalid indices for extractvalue");
1765 ID
.ConstantVal
= ConstantExpr::getExtractValue(Val
,
1766 &Indices
[0], Indices
.size());
1767 ID
.Kind
= ValID::t_Constant
;
1770 case lltok::kw_insertvalue
: {
1772 Constant
*Val0
, *Val1
;
1773 SmallVector
<unsigned, 4> Indices
;
1774 if (ParseToken(lltok::lparen
, "expected '(' in insertvalue constantexpr")||
1775 ParseGlobalTypeAndValue(Val0
) ||
1776 ParseToken(lltok::comma
, "expected comma in insertvalue constantexpr")||
1777 ParseGlobalTypeAndValue(Val1
) ||
1778 ParseIndexList(Indices
) ||
1779 ParseToken(lltok::rparen
, "expected ')' in insertvalue constantexpr"))
1781 if (!isa
<StructType
>(Val0
->getType()) && !isa
<ArrayType
>(Val0
->getType()))
1782 return Error(ID
.Loc
, "extractvalue operand must be array or struct");
1783 if (!ExtractValueInst::getIndexedType(Val0
->getType(), Indices
.begin(),
1785 return Error(ID
.Loc
, "invalid indices for insertvalue");
1786 ID
.ConstantVal
= ConstantExpr::getInsertValue(Val0
, Val1
,
1787 &Indices
[0], Indices
.size());
1788 ID
.Kind
= ValID::t_Constant
;
1791 case lltok::kw_icmp
:
1792 case lltok::kw_fcmp
:
1793 case lltok::kw_vicmp
:
1794 case lltok::kw_vfcmp
: {
1795 unsigned PredVal
, Opc
= Lex
.getUIntVal();
1796 Constant
*Val0
, *Val1
;
1798 if (ParseCmpPredicate(PredVal
, Opc
) ||
1799 ParseToken(lltok::lparen
, "expected '(' in compare constantexpr") ||
1800 ParseGlobalTypeAndValue(Val0
) ||
1801 ParseToken(lltok::comma
, "expected comma in compare constantexpr") ||
1802 ParseGlobalTypeAndValue(Val1
) ||
1803 ParseToken(lltok::rparen
, "expected ')' in compare constantexpr"))
1806 if (Val0
->getType() != Val1
->getType())
1807 return Error(ID
.Loc
, "compare operands must have the same type");
1809 CmpInst::Predicate Pred
= (CmpInst::Predicate
)PredVal
;
1811 if (Opc
== Instruction::FCmp
) {
1812 if (!Val0
->getType()->isFPOrFPVector())
1813 return Error(ID
.Loc
, "fcmp requires floating point operands");
1814 ID
.ConstantVal
= ConstantExpr::getFCmp(Pred
, Val0
, Val1
);
1815 } else if (Opc
== Instruction::ICmp
) {
1816 if (!Val0
->getType()->isIntOrIntVector() &&
1817 !isa
<PointerType
>(Val0
->getType()))
1818 return Error(ID
.Loc
, "icmp requires pointer or integer operands");
1819 ID
.ConstantVal
= ConstantExpr::getICmp(Pred
, Val0
, Val1
);
1820 } else if (Opc
== Instruction::VFCmp
) {
1821 // FIXME: REMOVE VFCMP Support
1822 if (!Val0
->getType()->isFPOrFPVector() ||
1823 !isa
<VectorType
>(Val0
->getType()))
1824 return Error(ID
.Loc
, "vfcmp requires vector floating point operands");
1825 ID
.ConstantVal
= ConstantExpr::getVFCmp(Pred
, Val0
, Val1
);
1826 } else if (Opc
== Instruction::VICmp
) {
1827 // FIXME: REMOVE VICMP Support
1828 if (!Val0
->getType()->isIntOrIntVector() ||
1829 !isa
<VectorType
>(Val0
->getType()))
1830 return Error(ID
.Loc
, "vicmp requires vector floating point operands");
1831 ID
.ConstantVal
= ConstantExpr::getVICmp(Pred
, Val0
, Val1
);
1833 ID
.Kind
= ValID::t_Constant
;
1837 // Binary Operators.
1841 case lltok::kw_udiv
:
1842 case lltok::kw_sdiv
:
1843 case lltok::kw_fdiv
:
1844 case lltok::kw_urem
:
1845 case lltok::kw_srem
:
1846 case lltok::kw_frem
: {
1847 unsigned Opc
= Lex
.getUIntVal();
1848 Constant
*Val0
, *Val1
;
1850 if (ParseToken(lltok::lparen
, "expected '(' in binary constantexpr") ||
1851 ParseGlobalTypeAndValue(Val0
) ||
1852 ParseToken(lltok::comma
, "expected comma in binary constantexpr") ||
1853 ParseGlobalTypeAndValue(Val1
) ||
1854 ParseToken(lltok::rparen
, "expected ')' in binary constantexpr"))
1856 if (Val0
->getType() != Val1
->getType())
1857 return Error(ID
.Loc
, "operands of constexpr must have same type");
1858 if (!Val0
->getType()->isIntOrIntVector() &&
1859 !Val0
->getType()->isFPOrFPVector())
1860 return Error(ID
.Loc
,"constexpr requires integer, fp, or vector operands");
1861 ID
.ConstantVal
= ConstantExpr::get(Opc
, Val0
, Val1
);
1862 ID
.Kind
= ValID::t_Constant
;
1866 // Logical Operations
1868 case lltok::kw_lshr
:
1869 case lltok::kw_ashr
:
1872 case lltok::kw_xor
: {
1873 unsigned Opc
= Lex
.getUIntVal();
1874 Constant
*Val0
, *Val1
;
1876 if (ParseToken(lltok::lparen
, "expected '(' in logical constantexpr") ||
1877 ParseGlobalTypeAndValue(Val0
) ||
1878 ParseToken(lltok::comma
, "expected comma in logical constantexpr") ||
1879 ParseGlobalTypeAndValue(Val1
) ||
1880 ParseToken(lltok::rparen
, "expected ')' in logical constantexpr"))
1882 if (Val0
->getType() != Val1
->getType())
1883 return Error(ID
.Loc
, "operands of constexpr must have same type");
1884 if (!Val0
->getType()->isIntOrIntVector())
1885 return Error(ID
.Loc
,
1886 "constexpr requires integer or integer vector operands");
1887 ID
.ConstantVal
= ConstantExpr::get(Opc
, Val0
, Val1
);
1888 ID
.Kind
= ValID::t_Constant
;
1892 case lltok::kw_getelementptr
:
1893 case lltok::kw_shufflevector
:
1894 case lltok::kw_insertelement
:
1895 case lltok::kw_extractelement
:
1896 case lltok::kw_select
: {
1897 unsigned Opc
= Lex
.getUIntVal();
1898 SmallVector
<Constant
*, 16> Elts
;
1900 if (ParseToken(lltok::lparen
, "expected '(' in constantexpr") ||
1901 ParseGlobalValueVector(Elts
) ||
1902 ParseToken(lltok::rparen
, "expected ')' in constantexpr"))
1905 if (Opc
== Instruction::GetElementPtr
) {
1906 if (Elts
.size() == 0 || !isa
<PointerType
>(Elts
[0]->getType()))
1907 return Error(ID
.Loc
, "getelementptr requires pointer operand");
1909 if (!GetElementPtrInst::getIndexedType(Elts
[0]->getType(),
1910 (Value
**)&Elts
[1], Elts
.size()-1))
1911 return Error(ID
.Loc
, "invalid indices for getelementptr");
1912 ID
.ConstantVal
= ConstantExpr::getGetElementPtr(Elts
[0],
1913 &Elts
[1], Elts
.size()-1);
1914 } else if (Opc
== Instruction::Select
) {
1915 if (Elts
.size() != 3)
1916 return Error(ID
.Loc
, "expected three operands to select");
1917 if (const char *Reason
= SelectInst::areInvalidOperands(Elts
[0], Elts
[1],
1919 return Error(ID
.Loc
, Reason
);
1920 ID
.ConstantVal
= ConstantExpr::getSelect(Elts
[0], Elts
[1], Elts
[2]);
1921 } else if (Opc
== Instruction::ShuffleVector
) {
1922 if (Elts
.size() != 3)
1923 return Error(ID
.Loc
, "expected three operands to shufflevector");
1924 if (!ShuffleVectorInst::isValidOperands(Elts
[0], Elts
[1], Elts
[2]))
1925 return Error(ID
.Loc
, "invalid operands to shufflevector");
1926 ID
.ConstantVal
= ConstantExpr::getShuffleVector(Elts
[0], Elts
[1],Elts
[2]);
1927 } else if (Opc
== Instruction::ExtractElement
) {
1928 if (Elts
.size() != 2)
1929 return Error(ID
.Loc
, "expected two operands to extractelement");
1930 if (!ExtractElementInst::isValidOperands(Elts
[0], Elts
[1]))
1931 return Error(ID
.Loc
, "invalid extractelement operands");
1932 ID
.ConstantVal
= ConstantExpr::getExtractElement(Elts
[0], Elts
[1]);
1934 assert(Opc
== Instruction::InsertElement
&& "Unknown opcode");
1935 if (Elts
.size() != 3)
1936 return Error(ID
.Loc
, "expected three operands to insertelement");
1937 if (!InsertElementInst::isValidOperands(Elts
[0], Elts
[1], Elts
[2]))
1938 return Error(ID
.Loc
, "invalid insertelement operands");
1939 ID
.ConstantVal
= ConstantExpr::getInsertElement(Elts
[0], Elts
[1],Elts
[2]);
1942 ID
.Kind
= ValID::t_Constant
;
1951 /// ParseGlobalValue - Parse a global value with the specified type.
1952 bool LLParser::ParseGlobalValue(const Type
*Ty
, Constant
*&V
) {
1955 return ParseValID(ID
) ||
1956 ConvertGlobalValIDToValue(Ty
, ID
, V
);
1959 /// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1961 bool LLParser::ConvertGlobalValIDToValue(const Type
*Ty
, ValID
&ID
,
1963 if (isa
<FunctionType
>(Ty
))
1964 return Error(ID
.Loc
, "functions are not values, refer to them as pointers");
1967 default: assert(0 && "Unknown ValID!");
1968 case ValID::t_LocalID
:
1969 case ValID::t_LocalName
:
1970 return Error(ID
.Loc
, "invalid use of function-local name");
1971 case ValID::t_InlineAsm
:
1972 return Error(ID
.Loc
, "inline asm can only be an operand of call/invoke");
1973 case ValID::t_GlobalName
:
1974 V
= GetGlobalVal(ID
.StrVal
, Ty
, ID
.Loc
);
1976 case ValID::t_GlobalID
:
1977 V
= GetGlobalVal(ID
.UIntVal
, Ty
, ID
.Loc
);
1979 case ValID::t_APSInt
:
1980 if (!isa
<IntegerType
>(Ty
))
1981 return Error(ID
.Loc
, "integer constant must have integer type");
1982 ID
.APSIntVal
.extOrTrunc(Ty
->getPrimitiveSizeInBits());
1983 V
= ConstantInt::get(ID
.APSIntVal
);
1985 case ValID::t_APFloat
:
1986 if (!Ty
->isFloatingPoint() ||
1987 !ConstantFP::isValueValidForType(Ty
, ID
.APFloatVal
))
1988 return Error(ID
.Loc
, "floating point constant invalid for type");
1990 // The lexer has no type info, so builds all float and double FP constants
1991 // as double. Fix this here. Long double does not need this.
1992 if (&ID
.APFloatVal
.getSemantics() == &APFloat::IEEEdouble
&&
1993 Ty
== Type::FloatTy
) {
1995 ID
.APFloatVal
.convert(APFloat::IEEEsingle
, APFloat::rmNearestTiesToEven
,
1998 V
= ConstantFP::get(ID
.APFloatVal
);
2000 if (V
->getType() != Ty
)
2001 return Error(ID
.Loc
, "floating point constant does not have type '" +
2002 Ty
->getDescription() + "'");
2006 if (!isa
<PointerType
>(Ty
))
2007 return Error(ID
.Loc
, "null must be a pointer type");
2008 V
= ConstantPointerNull::get(cast
<PointerType
>(Ty
));
2010 case ValID::t_Undef
:
2011 // FIXME: LabelTy should not be a first-class type.
2012 if ((!Ty
->isFirstClassType() || Ty
== Type::LabelTy
) &&
2013 !isa
<OpaqueType
>(Ty
))
2014 return Error(ID
.Loc
, "invalid type for undef constant");
2015 V
= UndefValue::get(Ty
);
2017 case ValID::t_EmptyArray
:
2018 if (!isa
<ArrayType
>(Ty
) || cast
<ArrayType
>(Ty
)->getNumElements() != 0)
2019 return Error(ID
.Loc
, "invalid empty array initializer");
2020 V
= UndefValue::get(Ty
);
2023 // FIXME: LabelTy should not be a first-class type.
2024 if (!Ty
->isFirstClassType() || Ty
== Type::LabelTy
)
2025 return Error(ID
.Loc
, "invalid type for null constant");
2026 V
= Constant::getNullValue(Ty
);
2028 case ValID::t_Constant
:
2029 if (ID
.ConstantVal
->getType() != Ty
)
2030 return Error(ID
.Loc
, "constant expression type mismatch");
2036 bool LLParser::ParseGlobalTypeAndValue(Constant
*&V
) {
2037 PATypeHolder
Type(Type::VoidTy
);
2038 return ParseType(Type
) ||
2039 ParseGlobalValue(Type
, V
);
2042 /// ParseGlobalValueVector
2044 /// ::= TypeAndValue (',' TypeAndValue)*
2045 bool LLParser::ParseGlobalValueVector(SmallVectorImpl
<Constant
*> &Elts
) {
2047 if (Lex
.getKind() == lltok::rbrace
||
2048 Lex
.getKind() == lltok::rsquare
||
2049 Lex
.getKind() == lltok::greater
||
2050 Lex
.getKind() == lltok::rparen
)
2054 if (ParseGlobalTypeAndValue(C
)) return true;
2057 while (EatIfPresent(lltok::comma
)) {
2058 if (ParseGlobalTypeAndValue(C
)) return true;
2066 //===----------------------------------------------------------------------===//
2067 // Function Parsing.
2068 //===----------------------------------------------------------------------===//
2070 bool LLParser::ConvertValIDToValue(const Type
*Ty
, ValID
&ID
, Value
*&V
,
2071 PerFunctionState
&PFS
) {
2072 if (ID
.Kind
== ValID::t_LocalID
)
2073 V
= PFS
.GetVal(ID
.UIntVal
, Ty
, ID
.Loc
);
2074 else if (ID
.Kind
== ValID::t_LocalName
)
2075 V
= PFS
.GetVal(ID
.StrVal
, Ty
, ID
.Loc
);
2076 else if (ID
.Kind
== ValID::t_InlineAsm
) {
2077 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
);
2078 const FunctionType
*FTy
=
2079 PTy
? dyn_cast
<FunctionType
>(PTy
->getElementType()) : 0;
2080 if (!FTy
|| !InlineAsm::Verify(FTy
, ID
.StrVal2
))
2081 return Error(ID
.Loc
, "invalid type for inline asm constraint string");
2082 V
= InlineAsm::get(FTy
, ID
.StrVal
, ID
.StrVal2
, ID
.UIntVal
);
2086 if (ConvertGlobalValIDToValue(Ty
, ID
, C
)) return true;
2094 bool LLParser::ParseValue(const Type
*Ty
, Value
*&V
, PerFunctionState
&PFS
) {
2097 return ParseValID(ID
) ||
2098 ConvertValIDToValue(Ty
, ID
, V
, PFS
);
2101 bool LLParser::ParseTypeAndValue(Value
*&V
, PerFunctionState
&PFS
) {
2102 PATypeHolder
T(Type::VoidTy
);
2103 return ParseType(T
) ||
2104 ParseValue(T
, V
, PFS
);
2108 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2109 /// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2110 /// OptionalAlign OptGC
2111 bool LLParser::ParseFunctionHeader(Function
*&Fn
, bool isDefine
) {
2112 // Parse the linkage.
2113 LocTy LinkageLoc
= Lex
.getLoc();
2116 unsigned Visibility
, CC
, RetAttrs
;
2117 PATypeHolder
RetType(Type::VoidTy
);
2118 LocTy RetTypeLoc
= Lex
.getLoc();
2119 if (ParseOptionalLinkage(Linkage
) ||
2120 ParseOptionalVisibility(Visibility
) ||
2121 ParseOptionalCallingConv(CC
) ||
2122 ParseOptionalAttrs(RetAttrs
, 1) ||
2123 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/))
2126 // Verify that the linkage is ok.
2127 switch ((GlobalValue::LinkageTypes
)Linkage
) {
2128 case GlobalValue::ExternalLinkage
:
2129 break; // always ok.
2130 case GlobalValue::DLLImportLinkage
:
2131 case GlobalValue::ExternalWeakLinkage
:
2133 return Error(LinkageLoc
, "invalid linkage for function definition");
2135 case GlobalValue::PrivateLinkage
:
2136 case GlobalValue::InternalLinkage
:
2137 case GlobalValue::AvailableExternallyLinkage
:
2138 case GlobalValue::LinkOnceAnyLinkage
:
2139 case GlobalValue::LinkOnceODRLinkage
:
2140 case GlobalValue::WeakAnyLinkage
:
2141 case GlobalValue::WeakODRLinkage
:
2142 case GlobalValue::DLLExportLinkage
:
2144 return Error(LinkageLoc
, "invalid linkage for function declaration");
2146 case GlobalValue::AppendingLinkage
:
2147 case GlobalValue::GhostLinkage
:
2148 case GlobalValue::CommonLinkage
:
2149 return Error(LinkageLoc
, "invalid function linkage type");
2152 if (!FunctionType::isValidReturnType(RetType
) ||
2153 isa
<OpaqueType
>(RetType
))
2154 return Error(RetTypeLoc
, "invalid function return type");
2156 LocTy NameLoc
= Lex
.getLoc();
2158 std::string FunctionName
;
2159 if (Lex
.getKind() == lltok::GlobalVar
) {
2160 FunctionName
= Lex
.getStrVal();
2161 } else if (Lex
.getKind() == lltok::GlobalID
) { // @42 is ok.
2162 unsigned NameID
= Lex
.getUIntVal();
2164 if (NameID
!= NumberedVals
.size())
2165 return TokError("function expected to be numbered '%" +
2166 utostr(NumberedVals
.size()) + "'");
2168 return TokError("expected function name");
2173 if (Lex
.getKind() != lltok::lparen
)
2174 return TokError("expected '(' in function argument list");
2176 std::vector
<ArgInfo
> ArgList
;
2179 std::string Section
;
2183 if (ParseArgumentList(ArgList
, isVarArg
, false) ||
2184 ParseOptionalAttrs(FuncAttrs
, 2) ||
2185 (EatIfPresent(lltok::kw_section
) &&
2186 ParseStringConstant(Section
)) ||
2187 ParseOptionalAlignment(Alignment
) ||
2188 (EatIfPresent(lltok::kw_gc
) &&
2189 ParseStringConstant(GC
)))
2192 // If the alignment was parsed as an attribute, move to the alignment field.
2193 if (FuncAttrs
& Attribute::Alignment
) {
2194 Alignment
= Attribute::getAlignmentFromAttrs(FuncAttrs
);
2195 FuncAttrs
&= ~Attribute::Alignment
;
2198 // Okay, if we got here, the function is syntactically valid. Convert types
2199 // and do semantic checks.
2200 std::vector
<const Type
*> ParamTypeList
;
2201 SmallVector
<AttributeWithIndex
, 8> Attrs
;
2202 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2204 unsigned ObsoleteFuncAttrs
= Attribute::ZExt
|Attribute::SExt
|Attribute::InReg
;
2205 if (FuncAttrs
& ObsoleteFuncAttrs
) {
2206 RetAttrs
|= FuncAttrs
& ObsoleteFuncAttrs
;
2207 FuncAttrs
&= ~ObsoleteFuncAttrs
;
2210 if (RetAttrs
!= Attribute::None
)
2211 Attrs
.push_back(AttributeWithIndex::get(0, RetAttrs
));
2213 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
2214 ParamTypeList
.push_back(ArgList
[i
].Type
);
2215 if (ArgList
[i
].Attrs
!= Attribute::None
)
2216 Attrs
.push_back(AttributeWithIndex::get(i
+1, ArgList
[i
].Attrs
));
2219 if (FuncAttrs
!= Attribute::None
)
2220 Attrs
.push_back(AttributeWithIndex::get(~0, FuncAttrs
));
2222 AttrListPtr PAL
= AttrListPtr::get(Attrs
.begin(), Attrs
.end());
2224 if (PAL
.paramHasAttr(1, Attribute::StructRet
) &&
2225 RetType
!= Type::VoidTy
)
2226 return Error(RetTypeLoc
, "functions with 'sret' argument must return void");
2228 const FunctionType
*FT
= FunctionType::get(RetType
, ParamTypeList
, isVarArg
);
2229 const PointerType
*PFT
= PointerType::getUnqual(FT
);
2232 if (!FunctionName
.empty()) {
2233 // If this was a definition of a forward reference, remove the definition
2234 // from the forward reference table and fill in the forward ref.
2235 std::map
<std::string
, std::pair
<GlobalValue
*, LocTy
> >::iterator FRVI
=
2236 ForwardRefVals
.find(FunctionName
);
2237 if (FRVI
!= ForwardRefVals
.end()) {
2238 Fn
= M
->getFunction(FunctionName
);
2239 ForwardRefVals
.erase(FRVI
);
2240 } else if ((Fn
= M
->getFunction(FunctionName
))) {
2241 // If this function already exists in the symbol table, then it is
2242 // multiply defined. We accept a few cases for old backwards compat.
2243 // FIXME: Remove this stuff for LLVM 3.0.
2244 if (Fn
->getType() != PFT
|| Fn
->getAttributes() != PAL
||
2245 (!Fn
->isDeclaration() && isDefine
)) {
2246 // If the redefinition has different type or different attributes,
2247 // reject it. If both have bodies, reject it.
2248 return Error(NameLoc
, "invalid redefinition of function '" +
2249 FunctionName
+ "'");
2250 } else if (Fn
->isDeclaration()) {
2251 // Make sure to strip off any argument names so we can't get conflicts.
2252 for (Function::arg_iterator AI
= Fn
->arg_begin(), AE
= Fn
->arg_end();
2258 } else if (FunctionName
.empty()) {
2259 // If this is a definition of a forward referenced function, make sure the
2261 std::map
<unsigned, std::pair
<GlobalValue
*, LocTy
> >::iterator I
2262 = ForwardRefValIDs
.find(NumberedVals
.size());
2263 if (I
!= ForwardRefValIDs
.end()) {
2264 Fn
= cast
<Function
>(I
->second
.first
);
2265 if (Fn
->getType() != PFT
)
2266 return Error(NameLoc
, "type of definition and forward reference of '@" +
2267 utostr(NumberedVals
.size()) +"' disagree");
2268 ForwardRefValIDs
.erase(I
);
2273 Fn
= Function::Create(FT
, GlobalValue::ExternalLinkage
, FunctionName
, M
);
2274 else // Move the forward-reference to the correct spot in the module.
2275 M
->getFunctionList().splice(M
->end(), M
->getFunctionList(), Fn
);
2277 if (FunctionName
.empty())
2278 NumberedVals
.push_back(Fn
);
2280 Fn
->setLinkage((GlobalValue::LinkageTypes
)Linkage
);
2281 Fn
->setVisibility((GlobalValue::VisibilityTypes
)Visibility
);
2282 Fn
->setCallingConv(CC
);
2283 Fn
->setAttributes(PAL
);
2284 Fn
->setAlignment(Alignment
);
2285 Fn
->setSection(Section
);
2286 if (!GC
.empty()) Fn
->setGC(GC
.c_str());
2288 // Add all of the arguments we parsed to the function.
2289 Function::arg_iterator ArgIt
= Fn
->arg_begin();
2290 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
, ++ArgIt
) {
2291 // If the argument has a name, insert it into the argument symbol table.
2292 if (ArgList
[i
].Name
.empty()) continue;
2294 // Set the name, if it conflicted, it will be auto-renamed.
2295 ArgIt
->setName(ArgList
[i
].Name
);
2297 if (ArgIt
->getNameStr() != ArgList
[i
].Name
)
2298 return Error(ArgList
[i
].Loc
, "redefinition of argument '%" +
2299 ArgList
[i
].Name
+ "'");
2306 /// ParseFunctionBody
2307 /// ::= '{' BasicBlock+ '}'
2308 /// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2310 bool LLParser::ParseFunctionBody(Function
&Fn
) {
2311 if (Lex
.getKind() != lltok::lbrace
&& Lex
.getKind() != lltok::kw_begin
)
2312 return TokError("expected '{' in function body");
2313 Lex
.Lex(); // eat the {.
2315 PerFunctionState
PFS(*this, Fn
);
2317 while (Lex
.getKind() != lltok::rbrace
&& Lex
.getKind() != lltok::kw_end
)
2318 if (ParseBasicBlock(PFS
)) return true;
2323 // Verify function is ok.
2324 return PFS
.VerifyFunctionComplete();
2328 /// ::= LabelStr? Instruction*
2329 bool LLParser::ParseBasicBlock(PerFunctionState
&PFS
) {
2330 // If this basic block starts out with a name, remember it.
2332 LocTy NameLoc
= Lex
.getLoc();
2333 if (Lex
.getKind() == lltok::LabelStr
) {
2334 Name
= Lex
.getStrVal();
2338 BasicBlock
*BB
= PFS
.DefineBB(Name
, NameLoc
);
2339 if (BB
== 0) return true;
2341 std::string NameStr
;
2343 // Parse the instructions in this block until we get a terminator.
2346 // This instruction may have three possibilities for a name: a) none
2347 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2348 LocTy NameLoc
= Lex
.getLoc();
2352 if (Lex
.getKind() == lltok::LocalVarID
) {
2353 NameID
= Lex
.getUIntVal();
2355 if (ParseToken(lltok::equal
, "expected '=' after instruction id"))
2357 } else if (Lex
.getKind() == lltok::LocalVar
||
2358 // FIXME: REMOVE IN LLVM 3.0
2359 Lex
.getKind() == lltok::StringConstant
) {
2360 NameStr
= Lex
.getStrVal();
2362 if (ParseToken(lltok::equal
, "expected '=' after instruction name"))
2366 if (ParseInstruction(Inst
, BB
, PFS
)) return true;
2368 BB
->getInstList().push_back(Inst
);
2370 // Set the name on the instruction.
2371 if (PFS
.SetInstName(NameID
, NameStr
, NameLoc
, Inst
)) return true;
2372 } while (!isa
<TerminatorInst
>(Inst
));
2377 //===----------------------------------------------------------------------===//
2378 // Instruction Parsing.
2379 //===----------------------------------------------------------------------===//
2381 /// ParseInstruction - Parse one of the many different instructions.
2383 bool LLParser::ParseInstruction(Instruction
*&Inst
, BasicBlock
*BB
,
2384 PerFunctionState
&PFS
) {
2385 lltok::Kind Token
= Lex
.getKind();
2386 if (Token
== lltok::Eof
)
2387 return TokError("found end of file when expecting more instructions");
2388 LocTy Loc
= Lex
.getLoc();
2389 unsigned KeywordVal
= Lex
.getUIntVal();
2390 Lex
.Lex(); // Eat the keyword.
2393 default: return Error(Loc
, "expected instruction opcode");
2394 // Terminator Instructions.
2395 case lltok::kw_unwind
: Inst
= new UnwindInst(); return false;
2396 case lltok::kw_unreachable
: Inst
= new UnreachableInst(); return false;
2397 case lltok::kw_ret
: return ParseRet(Inst
, BB
, PFS
);
2398 case lltok::kw_br
: return ParseBr(Inst
, PFS
);
2399 case lltok::kw_switch
: return ParseSwitch(Inst
, PFS
);
2400 case lltok::kw_invoke
: return ParseInvoke(Inst
, PFS
);
2401 // Binary Operators.
2404 case lltok::kw_mul
: return ParseArithmetic(Inst
, PFS
, KeywordVal
, 0);
2406 case lltok::kw_udiv
:
2407 case lltok::kw_sdiv
:
2408 case lltok::kw_urem
:
2409 case lltok::kw_srem
: return ParseArithmetic(Inst
, PFS
, KeywordVal
, 1);
2410 case lltok::kw_fdiv
:
2411 case lltok::kw_frem
: return ParseArithmetic(Inst
, PFS
, KeywordVal
, 2);
2413 case lltok::kw_lshr
:
2414 case lltok::kw_ashr
:
2417 case lltok::kw_xor
: return ParseLogical(Inst
, PFS
, KeywordVal
);
2418 case lltok::kw_icmp
:
2419 case lltok::kw_fcmp
:
2420 case lltok::kw_vicmp
:
2421 case lltok::kw_vfcmp
: return ParseCompare(Inst
, PFS
, KeywordVal
);
2423 case lltok::kw_trunc
:
2424 case lltok::kw_zext
:
2425 case lltok::kw_sext
:
2426 case lltok::kw_fptrunc
:
2427 case lltok::kw_fpext
:
2428 case lltok::kw_bitcast
:
2429 case lltok::kw_uitofp
:
2430 case lltok::kw_sitofp
:
2431 case lltok::kw_fptoui
:
2432 case lltok::kw_fptosi
:
2433 case lltok::kw_inttoptr
:
2434 case lltok::kw_ptrtoint
: return ParseCast(Inst
, PFS
, KeywordVal
);
2436 case lltok::kw_select
: return ParseSelect(Inst
, PFS
);
2437 case lltok::kw_va_arg
: return ParseVA_Arg(Inst
, PFS
);
2438 case lltok::kw_extractelement
: return ParseExtractElement(Inst
, PFS
);
2439 case lltok::kw_insertelement
: return ParseInsertElement(Inst
, PFS
);
2440 case lltok::kw_shufflevector
: return ParseShuffleVector(Inst
, PFS
);
2441 case lltok::kw_phi
: return ParsePHI(Inst
, PFS
);
2442 case lltok::kw_call
: return ParseCall(Inst
, PFS
, false);
2443 case lltok::kw_tail
: return ParseCall(Inst
, PFS
, true);
2445 case lltok::kw_alloca
:
2446 case lltok::kw_malloc
: return ParseAlloc(Inst
, PFS
, KeywordVal
);
2447 case lltok::kw_free
: return ParseFree(Inst
, PFS
);
2448 case lltok::kw_load
: return ParseLoad(Inst
, PFS
, false);
2449 case lltok::kw_store
: return ParseStore(Inst
, PFS
, false);
2450 case lltok::kw_volatile
:
2451 if (EatIfPresent(lltok::kw_load
))
2452 return ParseLoad(Inst
, PFS
, true);
2453 else if (EatIfPresent(lltok::kw_store
))
2454 return ParseStore(Inst
, PFS
, true);
2456 return TokError("expected 'load' or 'store'");
2457 case lltok::kw_getresult
: return ParseGetResult(Inst
, PFS
);
2458 case lltok::kw_getelementptr
: return ParseGetElementPtr(Inst
, PFS
);
2459 case lltok::kw_extractvalue
: return ParseExtractValue(Inst
, PFS
);
2460 case lltok::kw_insertvalue
: return ParseInsertValue(Inst
, PFS
);
2464 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2465 bool LLParser::ParseCmpPredicate(unsigned &P
, unsigned Opc
) {
2466 // FIXME: REMOVE vicmp/vfcmp!
2467 if (Opc
== Instruction::FCmp
|| Opc
== Instruction::VFCmp
) {
2468 switch (Lex
.getKind()) {
2469 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2470 case lltok::kw_oeq
: P
= CmpInst::FCMP_OEQ
; break;
2471 case lltok::kw_one
: P
= CmpInst::FCMP_ONE
; break;
2472 case lltok::kw_olt
: P
= CmpInst::FCMP_OLT
; break;
2473 case lltok::kw_ogt
: P
= CmpInst::FCMP_OGT
; break;
2474 case lltok::kw_ole
: P
= CmpInst::FCMP_OLE
; break;
2475 case lltok::kw_oge
: P
= CmpInst::FCMP_OGE
; break;
2476 case lltok::kw_ord
: P
= CmpInst::FCMP_ORD
; break;
2477 case lltok::kw_uno
: P
= CmpInst::FCMP_UNO
; break;
2478 case lltok::kw_ueq
: P
= CmpInst::FCMP_UEQ
; break;
2479 case lltok::kw_une
: P
= CmpInst::FCMP_UNE
; break;
2480 case lltok::kw_ult
: P
= CmpInst::FCMP_ULT
; break;
2481 case lltok::kw_ugt
: P
= CmpInst::FCMP_UGT
; break;
2482 case lltok::kw_ule
: P
= CmpInst::FCMP_ULE
; break;
2483 case lltok::kw_uge
: P
= CmpInst::FCMP_UGE
; break;
2484 case lltok::kw_true
: P
= CmpInst::FCMP_TRUE
; break;
2485 case lltok::kw_false
: P
= CmpInst::FCMP_FALSE
; break;
2488 switch (Lex
.getKind()) {
2489 default: TokError("expected icmp predicate (e.g. 'eq')");
2490 case lltok::kw_eq
: P
= CmpInst::ICMP_EQ
; break;
2491 case lltok::kw_ne
: P
= CmpInst::ICMP_NE
; break;
2492 case lltok::kw_slt
: P
= CmpInst::ICMP_SLT
; break;
2493 case lltok::kw_sgt
: P
= CmpInst::ICMP_SGT
; break;
2494 case lltok::kw_sle
: P
= CmpInst::ICMP_SLE
; break;
2495 case lltok::kw_sge
: P
= CmpInst::ICMP_SGE
; break;
2496 case lltok::kw_ult
: P
= CmpInst::ICMP_ULT
; break;
2497 case lltok::kw_ugt
: P
= CmpInst::ICMP_UGT
; break;
2498 case lltok::kw_ule
: P
= CmpInst::ICMP_ULE
; break;
2499 case lltok::kw_uge
: P
= CmpInst::ICMP_UGE
; break;
2506 //===----------------------------------------------------------------------===//
2507 // Terminator Instructions.
2508 //===----------------------------------------------------------------------===//
2510 /// ParseRet - Parse a return instruction.
2512 /// ::= 'ret' TypeAndValue
2513 /// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]]
2514 bool LLParser::ParseRet(Instruction
*&Inst
, BasicBlock
*BB
,
2515 PerFunctionState
&PFS
) {
2516 PATypeHolder
Ty(Type::VoidTy
);
2517 if (ParseType(Ty
, true /*void allowed*/)) return true;
2519 if (Ty
== Type::VoidTy
) {
2520 Inst
= ReturnInst::Create();
2525 if (ParseValue(Ty
, RV
, PFS
)) return true;
2527 // The normal case is one return value.
2528 if (Lex
.getKind() == lltok::comma
) {
2529 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2530 // of 'ret {i32,i32} {i32 1, i32 2}'
2531 SmallVector
<Value
*, 8> RVs
;
2534 while (EatIfPresent(lltok::comma
)) {
2535 if (ParseTypeAndValue(RV
, PFS
)) return true;
2539 RV
= UndefValue::get(PFS
.getFunction().getReturnType());
2540 for (unsigned i
= 0, e
= RVs
.size(); i
!= e
; ++i
) {
2541 Instruction
*I
= InsertValueInst::Create(RV
, RVs
[i
], i
, "mrv");
2542 BB
->getInstList().push_back(I
);
2546 Inst
= ReturnInst::Create(RV
);
2552 /// ::= 'br' TypeAndValue
2553 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2554 bool LLParser::ParseBr(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2556 Value
*Op0
, *Op1
, *Op2
;
2557 if (ParseTypeAndValue(Op0
, Loc
, PFS
)) return true;
2559 if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(Op0
)) {
2560 Inst
= BranchInst::Create(BB
);
2564 if (Op0
->getType() != Type::Int1Ty
)
2565 return Error(Loc
, "branch condition must have 'i1' type");
2567 if (ParseToken(lltok::comma
, "expected ',' after branch condition") ||
2568 ParseTypeAndValue(Op1
, Loc
, PFS
) ||
2569 ParseToken(lltok::comma
, "expected ',' after true destination") ||
2570 ParseTypeAndValue(Op2
, Loc2
, PFS
))
2573 if (!isa
<BasicBlock
>(Op1
))
2574 return Error(Loc
, "true destination of branch must be a basic block");
2575 if (!isa
<BasicBlock
>(Op2
))
2576 return Error(Loc2
, "true destination of branch must be a basic block");
2578 Inst
= BranchInst::Create(cast
<BasicBlock
>(Op1
), cast
<BasicBlock
>(Op2
), Op0
);
2584 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2586 /// ::= (TypeAndValue ',' TypeAndValue)*
2587 bool LLParser::ParseSwitch(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2588 LocTy CondLoc
, BBLoc
;
2589 Value
*Cond
, *DefaultBB
;
2590 if (ParseTypeAndValue(Cond
, CondLoc
, PFS
) ||
2591 ParseToken(lltok::comma
, "expected ',' after switch condition") ||
2592 ParseTypeAndValue(DefaultBB
, BBLoc
, PFS
) ||
2593 ParseToken(lltok::lsquare
, "expected '[' with switch table"))
2596 if (!isa
<IntegerType
>(Cond
->getType()))
2597 return Error(CondLoc
, "switch condition must have integer type");
2598 if (!isa
<BasicBlock
>(DefaultBB
))
2599 return Error(BBLoc
, "default destination must be a basic block");
2601 // Parse the jump table pairs.
2602 SmallPtrSet
<Value
*, 32> SeenCases
;
2603 SmallVector
<std::pair
<ConstantInt
*, BasicBlock
*>, 32> Table
;
2604 while (Lex
.getKind() != lltok::rsquare
) {
2605 Value
*Constant
, *DestBB
;
2607 if (ParseTypeAndValue(Constant
, CondLoc
, PFS
) ||
2608 ParseToken(lltok::comma
, "expected ',' after case value") ||
2609 ParseTypeAndValue(DestBB
, BBLoc
, PFS
))
2612 if (!SeenCases
.insert(Constant
))
2613 return Error(CondLoc
, "duplicate case value in switch");
2614 if (!isa
<ConstantInt
>(Constant
))
2615 return Error(CondLoc
, "case value is not a constant integer");
2616 if (!isa
<BasicBlock
>(DestBB
))
2617 return Error(BBLoc
, "case destination is not a basic block");
2619 Table
.push_back(std::make_pair(cast
<ConstantInt
>(Constant
),
2620 cast
<BasicBlock
>(DestBB
)));
2623 Lex
.Lex(); // Eat the ']'.
2625 SwitchInst
*SI
= SwitchInst::Create(Cond
, cast
<BasicBlock
>(DefaultBB
),
2627 for (unsigned i
= 0, e
= Table
.size(); i
!= e
; ++i
)
2628 SI
->addCase(Table
[i
].first
, Table
[i
].second
);
2634 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2635 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2636 bool LLParser::ParseInvoke(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2637 LocTy CallLoc
= Lex
.getLoc();
2638 unsigned CC
, RetAttrs
, FnAttrs
;
2639 PATypeHolder
RetType(Type::VoidTy
);
2642 SmallVector
<ParamInfo
, 16> ArgList
;
2644 Value
*NormalBB
, *UnwindBB
;
2645 if (ParseOptionalCallingConv(CC
) ||
2646 ParseOptionalAttrs(RetAttrs
, 1) ||
2647 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/) ||
2648 ParseValID(CalleeID
) ||
2649 ParseParameterList(ArgList
, PFS
) ||
2650 ParseOptionalAttrs(FnAttrs
, 2) ||
2651 ParseToken(lltok::kw_to
, "expected 'to' in invoke") ||
2652 ParseTypeAndValue(NormalBB
, PFS
) ||
2653 ParseToken(lltok::kw_unwind
, "expected 'unwind' in invoke") ||
2654 ParseTypeAndValue(UnwindBB
, PFS
))
2657 if (!isa
<BasicBlock
>(NormalBB
))
2658 return Error(CallLoc
, "normal destination is not a basic block");
2659 if (!isa
<BasicBlock
>(UnwindBB
))
2660 return Error(CallLoc
, "unwind destination is not a basic block");
2662 // If RetType is a non-function pointer type, then this is the short syntax
2663 // for the call, which means that RetType is just the return type. Infer the
2664 // rest of the function argument types from the arguments that are present.
2665 const PointerType
*PFTy
= 0;
2666 const FunctionType
*Ty
= 0;
2667 if (!(PFTy
= dyn_cast
<PointerType
>(RetType
)) ||
2668 !(Ty
= dyn_cast
<FunctionType
>(PFTy
->getElementType()))) {
2669 // Pull out the types of all of the arguments...
2670 std::vector
<const Type
*> ParamTypes
;
2671 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
2672 ParamTypes
.push_back(ArgList
[i
].V
->getType());
2674 if (!FunctionType::isValidReturnType(RetType
))
2675 return Error(RetTypeLoc
, "Invalid result type for LLVM function");
2677 Ty
= FunctionType::get(RetType
, ParamTypes
, false);
2678 PFTy
= PointerType::getUnqual(Ty
);
2681 // Look up the callee.
2683 if (ConvertValIDToValue(PFTy
, CalleeID
, Callee
, PFS
)) return true;
2685 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2686 // function attributes.
2687 unsigned ObsoleteFuncAttrs
= Attribute::ZExt
|Attribute::SExt
|Attribute::InReg
;
2688 if (FnAttrs
& ObsoleteFuncAttrs
) {
2689 RetAttrs
|= FnAttrs
& ObsoleteFuncAttrs
;
2690 FnAttrs
&= ~ObsoleteFuncAttrs
;
2693 // Set up the Attributes for the function.
2694 SmallVector
<AttributeWithIndex
, 8> Attrs
;
2695 if (RetAttrs
!= Attribute::None
)
2696 Attrs
.push_back(AttributeWithIndex::get(0, RetAttrs
));
2698 SmallVector
<Value
*, 8> Args
;
2700 // Loop through FunctionType's arguments and ensure they are specified
2701 // correctly. Also, gather any parameter attributes.
2702 FunctionType::param_iterator I
= Ty
->param_begin();
2703 FunctionType::param_iterator E
= Ty
->param_end();
2704 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
2705 const Type
*ExpectedTy
= 0;
2708 } else if (!Ty
->isVarArg()) {
2709 return Error(ArgList
[i
].Loc
, "too many arguments specified");
2712 if (ExpectedTy
&& ExpectedTy
!= ArgList
[i
].V
->getType())
2713 return Error(ArgList
[i
].Loc
, "argument is not of expected type '" +
2714 ExpectedTy
->getDescription() + "'");
2715 Args
.push_back(ArgList
[i
].V
);
2716 if (ArgList
[i
].Attrs
!= Attribute::None
)
2717 Attrs
.push_back(AttributeWithIndex::get(i
+1, ArgList
[i
].Attrs
));
2721 return Error(CallLoc
, "not enough parameters specified for call");
2723 if (FnAttrs
!= Attribute::None
)
2724 Attrs
.push_back(AttributeWithIndex::get(~0, FnAttrs
));
2726 // Finish off the Attributes and check them
2727 AttrListPtr PAL
= AttrListPtr::get(Attrs
.begin(), Attrs
.end());
2729 InvokeInst
*II
= InvokeInst::Create(Callee
, cast
<BasicBlock
>(NormalBB
),
2730 cast
<BasicBlock
>(UnwindBB
),
2731 Args
.begin(), Args
.end());
2732 II
->setCallingConv(CC
);
2733 II
->setAttributes(PAL
);
2740 //===----------------------------------------------------------------------===//
2741 // Binary Operators.
2742 //===----------------------------------------------------------------------===//
2745 /// ::= ArithmeticOps TypeAndValue ',' Value
2747 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
2748 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
2749 bool LLParser::ParseArithmetic(Instruction
*&Inst
, PerFunctionState
&PFS
,
2750 unsigned Opc
, unsigned OperandType
) {
2751 LocTy Loc
; Value
*LHS
, *RHS
;
2752 if (ParseTypeAndValue(LHS
, Loc
, PFS
) ||
2753 ParseToken(lltok::comma
, "expected ',' in arithmetic operation") ||
2754 ParseValue(LHS
->getType(), RHS
, PFS
))
2758 switch (OperandType
) {
2759 default: assert(0 && "Unknown operand type!");
2760 case 0: // int or FP.
2761 Valid
= LHS
->getType()->isIntOrIntVector() ||
2762 LHS
->getType()->isFPOrFPVector();
2764 case 1: Valid
= LHS
->getType()->isIntOrIntVector(); break;
2765 case 2: Valid
= LHS
->getType()->isFPOrFPVector(); break;
2769 return Error(Loc
, "invalid operand type for instruction");
2771 Inst
= BinaryOperator::Create((Instruction::BinaryOps
)Opc
, LHS
, RHS
);
2776 /// ::= ArithmeticOps TypeAndValue ',' Value {
2777 bool LLParser::ParseLogical(Instruction
*&Inst
, PerFunctionState
&PFS
,
2779 LocTy Loc
; Value
*LHS
, *RHS
;
2780 if (ParseTypeAndValue(LHS
, Loc
, PFS
) ||
2781 ParseToken(lltok::comma
, "expected ',' in logical operation") ||
2782 ParseValue(LHS
->getType(), RHS
, PFS
))
2785 if (!LHS
->getType()->isIntOrIntVector())
2786 return Error(Loc
,"instruction requires integer or integer vector operands");
2788 Inst
= BinaryOperator::Create((Instruction::BinaryOps
)Opc
, LHS
, RHS
);
2794 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
2795 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
2796 /// ::= 'vicmp' IPredicates TypeAndValue ',' Value
2797 /// ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2798 bool LLParser::ParseCompare(Instruction
*&Inst
, PerFunctionState
&PFS
,
2800 // Parse the integer/fp comparison predicate.
2804 if (ParseCmpPredicate(Pred
, Opc
) ||
2805 ParseTypeAndValue(LHS
, Loc
, PFS
) ||
2806 ParseToken(lltok::comma
, "expected ',' after compare value") ||
2807 ParseValue(LHS
->getType(), RHS
, PFS
))
2810 if (Opc
== Instruction::FCmp
) {
2811 if (!LHS
->getType()->isFPOrFPVector())
2812 return Error(Loc
, "fcmp requires floating point operands");
2813 Inst
= new FCmpInst(CmpInst::Predicate(Pred
), LHS
, RHS
);
2814 } else if (Opc
== Instruction::ICmp
) {
2815 if (!LHS
->getType()->isIntOrIntVector() &&
2816 !isa
<PointerType
>(LHS
->getType()))
2817 return Error(Loc
, "icmp requires integer operands");
2818 Inst
= new ICmpInst(CmpInst::Predicate(Pred
), LHS
, RHS
);
2819 } else if (Opc
== Instruction::VFCmp
) {
2820 if (!LHS
->getType()->isFPOrFPVector() || !isa
<VectorType
>(LHS
->getType()))
2821 return Error(Loc
, "vfcmp requires vector floating point operands");
2822 Inst
= new VFCmpInst(CmpInst::Predicate(Pred
), LHS
, RHS
);
2823 } else if (Opc
== Instruction::VICmp
) {
2824 if (!LHS
->getType()->isIntOrIntVector() || !isa
<VectorType
>(LHS
->getType()))
2825 return Error(Loc
, "vicmp requires vector floating point operands");
2826 Inst
= new VICmpInst(CmpInst::Predicate(Pred
), LHS
, RHS
);
2831 //===----------------------------------------------------------------------===//
2832 // Other Instructions.
2833 //===----------------------------------------------------------------------===//
2837 /// ::= CastOpc TypeAndValue 'to' Type
2838 bool LLParser::ParseCast(Instruction
*&Inst
, PerFunctionState
&PFS
,
2840 LocTy Loc
; Value
*Op
;
2841 PATypeHolder
DestTy(Type::VoidTy
);
2842 if (ParseTypeAndValue(Op
, Loc
, PFS
) ||
2843 ParseToken(lltok::kw_to
, "expected 'to' after cast value") ||
2847 if (!CastInst::castIsValid((Instruction::CastOps
)Opc
, Op
, DestTy
)) {
2848 CastInst::castIsValid((Instruction::CastOps
)Opc
, Op
, DestTy
);
2849 return Error(Loc
, "invalid cast opcode for cast from '" +
2850 Op
->getType()->getDescription() + "' to '" +
2851 DestTy
->getDescription() + "'");
2853 Inst
= CastInst::Create((Instruction::CastOps
)Opc
, Op
, DestTy
);
2858 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2859 bool LLParser::ParseSelect(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2861 Value
*Op0
, *Op1
, *Op2
;
2862 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
2863 ParseToken(lltok::comma
, "expected ',' after select condition") ||
2864 ParseTypeAndValue(Op1
, PFS
) ||
2865 ParseToken(lltok::comma
, "expected ',' after select value") ||
2866 ParseTypeAndValue(Op2
, PFS
))
2869 if (const char *Reason
= SelectInst::areInvalidOperands(Op0
, Op1
, Op2
))
2870 return Error(Loc
, Reason
);
2872 Inst
= SelectInst::Create(Op0
, Op1
, Op2
);
2877 /// ::= 'va_arg' TypeAndValue ',' Type
2878 bool LLParser::ParseVA_Arg(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2880 PATypeHolder
EltTy(Type::VoidTy
);
2882 if (ParseTypeAndValue(Op
, PFS
) ||
2883 ParseToken(lltok::comma
, "expected ',' after vaarg operand") ||
2884 ParseType(EltTy
, TypeLoc
))
2887 if (!EltTy
->isFirstClassType())
2888 return Error(TypeLoc
, "va_arg requires operand with first class type");
2890 Inst
= new VAArgInst(Op
, EltTy
);
2894 /// ParseExtractElement
2895 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
2896 bool LLParser::ParseExtractElement(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2899 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
2900 ParseToken(lltok::comma
, "expected ',' after extract value") ||
2901 ParseTypeAndValue(Op1
, PFS
))
2904 if (!ExtractElementInst::isValidOperands(Op0
, Op1
))
2905 return Error(Loc
, "invalid extractelement operands");
2907 Inst
= new ExtractElementInst(Op0
, Op1
);
2911 /// ParseInsertElement
2912 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2913 bool LLParser::ParseInsertElement(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2915 Value
*Op0
, *Op1
, *Op2
;
2916 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
2917 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
2918 ParseTypeAndValue(Op1
, PFS
) ||
2919 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
2920 ParseTypeAndValue(Op2
, PFS
))
2923 if (!InsertElementInst::isValidOperands(Op0
, Op1
, Op2
))
2924 return Error(Loc
, "invalid extractelement operands");
2926 Inst
= InsertElementInst::Create(Op0
, Op1
, Op2
);
2930 /// ParseShuffleVector
2931 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2932 bool LLParser::ParseShuffleVector(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2934 Value
*Op0
, *Op1
, *Op2
;
2935 if (ParseTypeAndValue(Op0
, Loc
, PFS
) ||
2936 ParseToken(lltok::comma
, "expected ',' after shuffle mask") ||
2937 ParseTypeAndValue(Op1
, PFS
) ||
2938 ParseToken(lltok::comma
, "expected ',' after shuffle value") ||
2939 ParseTypeAndValue(Op2
, PFS
))
2942 if (!ShuffleVectorInst::isValidOperands(Op0
, Op1
, Op2
))
2943 return Error(Loc
, "invalid extractelement operands");
2945 Inst
= new ShuffleVectorInst(Op0
, Op1
, Op2
);
2950 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
2951 bool LLParser::ParsePHI(Instruction
*&Inst
, PerFunctionState
&PFS
) {
2952 PATypeHolder
Ty(Type::VoidTy
);
2954 LocTy TypeLoc
= Lex
.getLoc();
2956 if (ParseType(Ty
) ||
2957 ParseToken(lltok::lsquare
, "expected '[' in phi value list") ||
2958 ParseValue(Ty
, Op0
, PFS
) ||
2959 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
2960 ParseValue(Type::LabelTy
, Op1
, PFS
) ||
2961 ParseToken(lltok::rsquare
, "expected ']' in phi value list"))
2964 SmallVector
<std::pair
<Value
*, BasicBlock
*>, 16> PHIVals
;
2966 PHIVals
.push_back(std::make_pair(Op0
, cast
<BasicBlock
>(Op1
)));
2968 if (!EatIfPresent(lltok::comma
))
2971 if (ParseToken(lltok::lsquare
, "expected '[' in phi value list") ||
2972 ParseValue(Ty
, Op0
, PFS
) ||
2973 ParseToken(lltok::comma
, "expected ',' after insertelement value") ||
2974 ParseValue(Type::LabelTy
, Op1
, PFS
) ||
2975 ParseToken(lltok::rsquare
, "expected ']' in phi value list"))
2979 if (!Ty
->isFirstClassType())
2980 return Error(TypeLoc
, "phi node must have first class type");
2982 PHINode
*PN
= PHINode::Create(Ty
);
2983 PN
->reserveOperandSpace(PHIVals
.size());
2984 for (unsigned i
= 0, e
= PHIVals
.size(); i
!= e
; ++i
)
2985 PN
->addIncoming(PHIVals
[i
].first
, PHIVals
[i
].second
);
2991 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
2992 /// ParameterList OptionalAttrs
2993 bool LLParser::ParseCall(Instruction
*&Inst
, PerFunctionState
&PFS
,
2995 unsigned CC
, RetAttrs
, FnAttrs
;
2996 PATypeHolder
RetType(Type::VoidTy
);
2999 SmallVector
<ParamInfo
, 16> ArgList
;
3000 LocTy CallLoc
= Lex
.getLoc();
3002 if ((isTail
&& ParseToken(lltok::kw_call
, "expected 'tail call'")) ||
3003 ParseOptionalCallingConv(CC
) ||
3004 ParseOptionalAttrs(RetAttrs
, 1) ||
3005 ParseType(RetType
, RetTypeLoc
, true /*void allowed*/) ||
3006 ParseValID(CalleeID
) ||
3007 ParseParameterList(ArgList
, PFS
) ||
3008 ParseOptionalAttrs(FnAttrs
, 2))
3011 // If RetType is a non-function pointer type, then this is the short syntax
3012 // for the call, which means that RetType is just the return type. Infer the
3013 // rest of the function argument types from the arguments that are present.
3014 const PointerType
*PFTy
= 0;
3015 const FunctionType
*Ty
= 0;
3016 if (!(PFTy
= dyn_cast
<PointerType
>(RetType
)) ||
3017 !(Ty
= dyn_cast
<FunctionType
>(PFTy
->getElementType()))) {
3018 // Pull out the types of all of the arguments...
3019 std::vector
<const Type
*> ParamTypes
;
3020 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
)
3021 ParamTypes
.push_back(ArgList
[i
].V
->getType());
3023 if (!FunctionType::isValidReturnType(RetType
))
3024 return Error(RetTypeLoc
, "Invalid result type for LLVM function");
3026 Ty
= FunctionType::get(RetType
, ParamTypes
, false);
3027 PFTy
= PointerType::getUnqual(Ty
);
3030 // Look up the callee.
3032 if (ConvertValIDToValue(PFTy
, CalleeID
, Callee
, PFS
)) return true;
3034 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3035 // function attributes.
3036 unsigned ObsoleteFuncAttrs
= Attribute::ZExt
|Attribute::SExt
|Attribute::InReg
;
3037 if (FnAttrs
& ObsoleteFuncAttrs
) {
3038 RetAttrs
|= FnAttrs
& ObsoleteFuncAttrs
;
3039 FnAttrs
&= ~ObsoleteFuncAttrs
;
3042 // Set up the Attributes for the function.
3043 SmallVector
<AttributeWithIndex
, 8> Attrs
;
3044 if (RetAttrs
!= Attribute::None
)
3045 Attrs
.push_back(AttributeWithIndex::get(0, RetAttrs
));
3047 SmallVector
<Value
*, 8> Args
;
3049 // Loop through FunctionType's arguments and ensure they are specified
3050 // correctly. Also, gather any parameter attributes.
3051 FunctionType::param_iterator I
= Ty
->param_begin();
3052 FunctionType::param_iterator E
= Ty
->param_end();
3053 for (unsigned i
= 0, e
= ArgList
.size(); i
!= e
; ++i
) {
3054 const Type
*ExpectedTy
= 0;
3057 } else if (!Ty
->isVarArg()) {
3058 return Error(ArgList
[i
].Loc
, "too many arguments specified");
3061 if (ExpectedTy
&& ExpectedTy
!= ArgList
[i
].V
->getType())
3062 return Error(ArgList
[i
].Loc
, "argument is not of expected type '" +
3063 ExpectedTy
->getDescription() + "'");
3064 Args
.push_back(ArgList
[i
].V
);
3065 if (ArgList
[i
].Attrs
!= Attribute::None
)
3066 Attrs
.push_back(AttributeWithIndex::get(i
+1, ArgList
[i
].Attrs
));
3070 return Error(CallLoc
, "not enough parameters specified for call");
3072 if (FnAttrs
!= Attribute::None
)
3073 Attrs
.push_back(AttributeWithIndex::get(~0, FnAttrs
));
3075 // Finish off the Attributes and check them
3076 AttrListPtr PAL
= AttrListPtr::get(Attrs
.begin(), Attrs
.end());
3078 CallInst
*CI
= CallInst::Create(Callee
, Args
.begin(), Args
.end());
3079 CI
->setTailCall(isTail
);
3080 CI
->setCallingConv(CC
);
3081 CI
->setAttributes(PAL
);
3086 //===----------------------------------------------------------------------===//
3087 // Memory Instructions.
3088 //===----------------------------------------------------------------------===//
3091 /// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3092 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3093 bool LLParser::ParseAlloc(Instruction
*&Inst
, PerFunctionState
&PFS
,
3095 PATypeHolder
Ty(Type::VoidTy
);
3098 unsigned Alignment
= 0;
3099 if (ParseType(Ty
)) return true;
3101 if (EatIfPresent(lltok::comma
)) {
3102 if (Lex
.getKind() == lltok::kw_align
) {
3103 if (ParseOptionalAlignment(Alignment
)) return true;
3104 } else if (ParseTypeAndValue(Size
, SizeLoc
, PFS
) ||
3105 ParseOptionalCommaAlignment(Alignment
)) {
3110 if (Size
&& Size
->getType() != Type::Int32Ty
)
3111 return Error(SizeLoc
, "element count must be i32");
3113 if (Opc
== Instruction::Malloc
)
3114 Inst
= new MallocInst(Ty
, Size
, Alignment
);
3116 Inst
= new AllocaInst(Ty
, Size
, Alignment
);
3121 /// ::= 'free' TypeAndValue
3122 bool LLParser::ParseFree(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3123 Value
*Val
; LocTy Loc
;
3124 if (ParseTypeAndValue(Val
, Loc
, PFS
)) return true;
3125 if (!isa
<PointerType
>(Val
->getType()))
3126 return Error(Loc
, "operand to free must be a pointer");
3127 Inst
= new FreeInst(Val
);
3132 /// ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
3133 bool LLParser::ParseLoad(Instruction
*&Inst
, PerFunctionState
&PFS
,
3135 Value
*Val
; LocTy Loc
;
3137 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
3138 ParseOptionalCommaAlignment(Alignment
))
3141 if (!isa
<PointerType
>(Val
->getType()) ||
3142 !cast
<PointerType
>(Val
->getType())->getElementType()->isFirstClassType())
3143 return Error(Loc
, "load operand must be a pointer to a first class type");
3145 Inst
= new LoadInst(Val
, "", isVolatile
, Alignment
);
3150 /// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3151 bool LLParser::ParseStore(Instruction
*&Inst
, PerFunctionState
&PFS
,
3153 Value
*Val
, *Ptr
; LocTy Loc
, PtrLoc
;
3155 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
3156 ParseToken(lltok::comma
, "expected ',' after store operand") ||
3157 ParseTypeAndValue(Ptr
, PtrLoc
, PFS
) ||
3158 ParseOptionalCommaAlignment(Alignment
))
3161 if (!isa
<PointerType
>(Ptr
->getType()))
3162 return Error(PtrLoc
, "store operand must be a pointer");
3163 if (!Val
->getType()->isFirstClassType())
3164 return Error(Loc
, "store operand must be a first class value");
3165 if (cast
<PointerType
>(Ptr
->getType())->getElementType() != Val
->getType())
3166 return Error(Loc
, "stored value and pointer type do not match");
3168 Inst
= new StoreInst(Val
, Ptr
, isVolatile
, Alignment
);
3173 /// ::= 'getresult' TypeAndValue ',' uint
3174 /// FIXME: Remove support for getresult in LLVM 3.0
3175 bool LLParser::ParseGetResult(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3176 Value
*Val
; LocTy ValLoc
, EltLoc
;
3178 if (ParseTypeAndValue(Val
, ValLoc
, PFS
) ||
3179 ParseToken(lltok::comma
, "expected ',' after getresult operand") ||
3180 ParseUInt32(Element
, EltLoc
))
3183 if (!isa
<StructType
>(Val
->getType()) && !isa
<ArrayType
>(Val
->getType()))
3184 return Error(ValLoc
, "getresult inst requires an aggregate operand");
3185 if (!ExtractValueInst::getIndexedType(Val
->getType(), Element
))
3186 return Error(EltLoc
, "invalid getresult index for value");
3187 Inst
= ExtractValueInst::Create(Val
, Element
);
3191 /// ParseGetElementPtr
3192 /// ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3193 bool LLParser::ParseGetElementPtr(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3194 Value
*Ptr
, *Val
; LocTy Loc
, EltLoc
;
3195 if (ParseTypeAndValue(Ptr
, Loc
, PFS
)) return true;
3197 if (!isa
<PointerType
>(Ptr
->getType()))
3198 return Error(Loc
, "base of getelementptr must be a pointer");
3200 SmallVector
<Value
*, 16> Indices
;
3201 while (EatIfPresent(lltok::comma
)) {
3202 if (ParseTypeAndValue(Val
, EltLoc
, PFS
)) return true;
3203 if (!isa
<IntegerType
>(Val
->getType()))
3204 return Error(EltLoc
, "getelementptr index must be an integer");
3205 Indices
.push_back(Val
);
3208 if (!GetElementPtrInst::getIndexedType(Ptr
->getType(),
3209 Indices
.begin(), Indices
.end()))
3210 return Error(Loc
, "invalid getelementptr indices");
3211 Inst
= GetElementPtrInst::Create(Ptr
, Indices
.begin(), Indices
.end());
3215 /// ParseExtractValue
3216 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
3217 bool LLParser::ParseExtractValue(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3218 Value
*Val
; LocTy Loc
;
3219 SmallVector
<unsigned, 4> Indices
;
3220 if (ParseTypeAndValue(Val
, Loc
, PFS
) ||
3221 ParseIndexList(Indices
))
3224 if (!isa
<StructType
>(Val
->getType()) && !isa
<ArrayType
>(Val
->getType()))
3225 return Error(Loc
, "extractvalue operand must be array or struct");
3227 if (!ExtractValueInst::getIndexedType(Val
->getType(), Indices
.begin(),
3229 return Error(Loc
, "invalid indices for extractvalue");
3230 Inst
= ExtractValueInst::Create(Val
, Indices
.begin(), Indices
.end());
3234 /// ParseInsertValue
3235 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3236 bool LLParser::ParseInsertValue(Instruction
*&Inst
, PerFunctionState
&PFS
) {
3237 Value
*Val0
, *Val1
; LocTy Loc0
, Loc1
;
3238 SmallVector
<unsigned, 4> Indices
;
3239 if (ParseTypeAndValue(Val0
, Loc0
, PFS
) ||
3240 ParseToken(lltok::comma
, "expected comma after insertvalue operand") ||
3241 ParseTypeAndValue(Val1
, Loc1
, PFS
) ||
3242 ParseIndexList(Indices
))
3245 if (!isa
<StructType
>(Val0
->getType()) && !isa
<ArrayType
>(Val0
->getType()))
3246 return Error(Loc0
, "extractvalue operand must be array or struct");
3248 if (!ExtractValueInst::getIndexedType(Val0
->getType(), Indices
.begin(),
3250 return Error(Loc0
, "invalid indices for insertvalue");
3251 Inst
= InsertValueInst::Create(Val0
, Val1
, Indices
.begin(), Indices
.end());
3255 //===----------------------------------------------------------------------===//
3256 // Embedded metadata.
3257 //===----------------------------------------------------------------------===//
3259 /// ParseMDNodeVector
3260 /// ::= TypeAndValue (',' TypeAndValue)*
3261 bool LLParser::ParseMDNodeVector(SmallVectorImpl
<Constant
*> &Elts
) {
3262 assert(Lex
.getKind() == lltok::lbrace
);
3266 if (ParseGlobalTypeAndValue(C
)) return true;
3268 } while (EatIfPresent(lltok::comma
));