Merge branch 'master' into msp430
[llvm/msp430.git] / lib / AsmParser / LLParser.cpp
bloba2edf05050872538acb803792c75e93c44b2af49
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the parser class for .ll files.
12 //===----------------------------------------------------------------------===//
14 #include "LLParser.h"
15 #include "llvm/AutoUpgrade.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Module.h"
22 #include "llvm/ValueSymbolTable.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace llvm;
28 namespace llvm {
29 /// ValID - Represents a reference of a definition of some sort with no type.
30 /// There are several cases where we have to parse the value but where the
31 /// type can depend on later context. This may either be a numeric reference
32 /// or a symbolic (%var) reference. This is just a discriminated union.
33 struct ValID {
34 enum {
35 t_LocalID, t_GlobalID, // ID in UIntVal.
36 t_LocalName, t_GlobalName, // Name in StrVal.
37 t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal.
38 t_Null, t_Undef, t_Zero, // No value.
39 t_EmptyArray, // No value: []
40 t_Constant, // Value in ConstantVal.
41 t_InlineAsm // Value in StrVal/StrVal2/UIntVal.
42 } Kind;
44 LLParser::LocTy Loc;
45 unsigned UIntVal;
46 std::string StrVal, StrVal2;
47 APSInt APSIntVal;
48 APFloat APFloatVal;
49 Constant *ConstantVal;
50 ValID() : APFloatVal(0.0) {}
54 /// Run: module ::= toplevelentity*
55 bool LLParser::Run() {
56 // Prime the lexer.
57 Lex.Lex();
59 return ParseTopLevelEntities() ||
60 ValidateEndOfModule();
63 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
64 /// module.
65 bool LLParser::ValidateEndOfModule() {
66 if (!ForwardRefTypes.empty())
67 return Error(ForwardRefTypes.begin()->second.second,
68 "use of undefined type named '" +
69 ForwardRefTypes.begin()->first + "'");
70 if (!ForwardRefTypeIDs.empty())
71 return Error(ForwardRefTypeIDs.begin()->second.second,
72 "use of undefined type '%" +
73 utostr(ForwardRefTypeIDs.begin()->first) + "'");
75 if (!ForwardRefVals.empty())
76 return Error(ForwardRefVals.begin()->second.second,
77 "use of undefined value '@" + ForwardRefVals.begin()->first +
78 "'");
80 if (!ForwardRefValIDs.empty())
81 return Error(ForwardRefValIDs.begin()->second.second,
82 "use of undefined value '@" +
83 utostr(ForwardRefValIDs.begin()->first) + "'");
85 // Look for intrinsic functions and CallInst that need to be upgraded
86 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
87 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
89 return false;
92 //===----------------------------------------------------------------------===//
93 // Top-Level Entities
94 //===----------------------------------------------------------------------===//
96 bool LLParser::ParseTopLevelEntities() {
97 while (1) {
98 switch (Lex.getKind()) {
99 default: return TokError("expected top-level entity");
100 case lltok::Eof: return false;
101 //case lltok::kw_define:
102 case lltok::kw_declare: if (ParseDeclare()) return true; break;
103 case lltok::kw_define: if (ParseDefine()) return true; break;
104 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
105 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
106 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
107 case lltok::kw_type: if (ParseUnnamedType()) return true; break;
108 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
109 case lltok::LocalVar: if (ParseNamedType()) return true; break;
110 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
112 // The Global variable production with no name can have many different
113 // optional leading prefixes, the production is:
114 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
115 // OptionalAddrSpace ('constant'|'global') ...
116 case lltok::kw_private: // OptionalLinkage
117 case lltok::kw_internal: // OptionalLinkage
118 case lltok::kw_weak: // OptionalLinkage
119 case lltok::kw_weak_odr: // OptionalLinkage
120 case lltok::kw_linkonce: // OptionalLinkage
121 case lltok::kw_linkonce_odr: // OptionalLinkage
122 case lltok::kw_appending: // OptionalLinkage
123 case lltok::kw_dllexport: // OptionalLinkage
124 case lltok::kw_common: // OptionalLinkage
125 case lltok::kw_dllimport: // OptionalLinkage
126 case lltok::kw_extern_weak: // OptionalLinkage
127 case lltok::kw_external: { // OptionalLinkage
128 unsigned Linkage, Visibility;
129 if (ParseOptionalLinkage(Linkage) ||
130 ParseOptionalVisibility(Visibility) ||
131 ParseGlobal("", 0, Linkage, true, Visibility))
132 return true;
133 break;
135 case lltok::kw_default: // OptionalVisibility
136 case lltok::kw_hidden: // OptionalVisibility
137 case lltok::kw_protected: { // OptionalVisibility
138 unsigned Visibility;
139 if (ParseOptionalVisibility(Visibility) ||
140 ParseGlobal("", 0, 0, false, Visibility))
141 return true;
142 break;
145 case lltok::kw_thread_local: // OptionalThreadLocal
146 case lltok::kw_addrspace: // OptionalAddrSpace
147 case lltok::kw_constant: // GlobalType
148 case lltok::kw_global: // GlobalType
149 if (ParseGlobal("", 0, 0, false, 0)) return true;
150 break;
156 /// toplevelentity
157 /// ::= 'module' 'asm' STRINGCONSTANT
158 bool LLParser::ParseModuleAsm() {
159 assert(Lex.getKind() == lltok::kw_module);
160 Lex.Lex();
162 std::string AsmStr;
163 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
164 ParseStringConstant(AsmStr)) return true;
166 const std::string &AsmSoFar = M->getModuleInlineAsm();
167 if (AsmSoFar.empty())
168 M->setModuleInlineAsm(AsmStr);
169 else
170 M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
171 return false;
174 /// toplevelentity
175 /// ::= 'target' 'triple' '=' STRINGCONSTANT
176 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
177 bool LLParser::ParseTargetDefinition() {
178 assert(Lex.getKind() == lltok::kw_target);
179 std::string Str;
180 switch (Lex.Lex()) {
181 default: return TokError("unknown target property");
182 case lltok::kw_triple:
183 Lex.Lex();
184 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
185 ParseStringConstant(Str))
186 return true;
187 M->setTargetTriple(Str);
188 return false;
189 case lltok::kw_datalayout:
190 Lex.Lex();
191 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
192 ParseStringConstant(Str))
193 return true;
194 M->setDataLayout(Str);
195 return false;
199 /// toplevelentity
200 /// ::= 'deplibs' '=' '[' ']'
201 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
202 bool LLParser::ParseDepLibs() {
203 assert(Lex.getKind() == lltok::kw_deplibs);
204 Lex.Lex();
205 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
206 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
207 return true;
209 if (EatIfPresent(lltok::rsquare))
210 return false;
212 std::string Str;
213 if (ParseStringConstant(Str)) return true;
214 M->addLibrary(Str);
216 while (EatIfPresent(lltok::comma)) {
217 if (ParseStringConstant(Str)) return true;
218 M->addLibrary(Str);
221 return ParseToken(lltok::rsquare, "expected ']' at end of list");
224 /// toplevelentity
225 /// ::= 'type' type
226 bool LLParser::ParseUnnamedType() {
227 assert(Lex.getKind() == lltok::kw_type);
228 LocTy TypeLoc = Lex.getLoc();
229 Lex.Lex(); // eat kw_type
231 PATypeHolder Ty(Type::VoidTy);
232 if (ParseType(Ty)) return true;
234 unsigned TypeID = NumberedTypes.size();
236 // See if this type was previously referenced.
237 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
238 FI = ForwardRefTypeIDs.find(TypeID);
239 if (FI != ForwardRefTypeIDs.end()) {
240 if (FI->second.first.get() == Ty)
241 return Error(TypeLoc, "self referential type is invalid");
243 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
244 Ty = FI->second.first.get();
245 ForwardRefTypeIDs.erase(FI);
248 NumberedTypes.push_back(Ty);
250 return false;
253 /// toplevelentity
254 /// ::= LocalVar '=' 'type' type
255 bool LLParser::ParseNamedType() {
256 std::string Name = Lex.getStrVal();
257 LocTy NameLoc = Lex.getLoc();
258 Lex.Lex(); // eat LocalVar.
260 PATypeHolder Ty(Type::VoidTy);
262 if (ParseToken(lltok::equal, "expected '=' after name") ||
263 ParseToken(lltok::kw_type, "expected 'type' after name") ||
264 ParseType(Ty))
265 return true;
267 // Set the type name, checking for conflicts as we do so.
268 bool AlreadyExists = M->addTypeName(Name, Ty);
269 if (!AlreadyExists) return false;
271 // See if this type is a forward reference. We need to eagerly resolve
272 // types to allow recursive type redefinitions below.
273 std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
274 FI = ForwardRefTypes.find(Name);
275 if (FI != ForwardRefTypes.end()) {
276 if (FI->second.first.get() == Ty)
277 return Error(NameLoc, "self referential type is invalid");
279 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
280 Ty = FI->second.first.get();
281 ForwardRefTypes.erase(FI);
284 // Inserting a name that is already defined, get the existing name.
285 const Type *Existing = M->getTypeByName(Name);
286 assert(Existing && "Conflict but no matching type?!");
288 // Otherwise, this is an attempt to redefine a type. That's okay if
289 // the redefinition is identical to the original.
290 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
291 if (Existing == Ty) return false;
293 // Any other kind of (non-equivalent) redefinition is an error.
294 return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
295 Ty->getDescription() + "'");
299 /// toplevelentity
300 /// ::= 'declare' FunctionHeader
301 bool LLParser::ParseDeclare() {
302 assert(Lex.getKind() == lltok::kw_declare);
303 Lex.Lex();
305 Function *F;
306 return ParseFunctionHeader(F, false);
309 /// toplevelentity
310 /// ::= 'define' FunctionHeader '{' ...
311 bool LLParser::ParseDefine() {
312 assert(Lex.getKind() == lltok::kw_define);
313 Lex.Lex();
315 Function *F;
316 return ParseFunctionHeader(F, true) ||
317 ParseFunctionBody(*F);
320 /// ParseGlobalType
321 /// ::= 'constant'
322 /// ::= 'global'
323 bool LLParser::ParseGlobalType(bool &IsConstant) {
324 if (Lex.getKind() == lltok::kw_constant)
325 IsConstant = true;
326 else if (Lex.getKind() == lltok::kw_global)
327 IsConstant = false;
328 else {
329 IsConstant = false;
330 return TokError("expected 'global' or 'constant'");
332 Lex.Lex();
333 return false;
336 /// ParseNamedGlobal:
337 /// GlobalVar '=' OptionalVisibility ALIAS ...
338 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
339 bool LLParser::ParseNamedGlobal() {
340 assert(Lex.getKind() == lltok::GlobalVar);
341 LocTy NameLoc = Lex.getLoc();
342 std::string Name = Lex.getStrVal();
343 Lex.Lex();
345 bool HasLinkage;
346 unsigned Linkage, Visibility;
347 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
348 ParseOptionalLinkage(Linkage, HasLinkage) ||
349 ParseOptionalVisibility(Visibility))
350 return true;
352 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
353 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
354 return ParseAlias(Name, NameLoc, Visibility);
357 /// ParseAlias:
358 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
359 /// Aliasee
360 /// ::= TypeAndValue
361 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
362 /// ::= 'getelementptr' '(' ... ')'
364 /// Everything through visibility has already been parsed.
366 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
367 unsigned Visibility) {
368 assert(Lex.getKind() == lltok::kw_alias);
369 Lex.Lex();
370 unsigned Linkage;
371 LocTy LinkageLoc = Lex.getLoc();
372 if (ParseOptionalLinkage(Linkage))
373 return true;
375 if (Linkage != GlobalValue::ExternalLinkage &&
376 Linkage != GlobalValue::WeakAnyLinkage &&
377 Linkage != GlobalValue::WeakODRLinkage &&
378 Linkage != GlobalValue::InternalLinkage &&
379 Linkage != GlobalValue::PrivateLinkage)
380 return Error(LinkageLoc, "invalid linkage type for alias");
382 Constant *Aliasee;
383 LocTy AliaseeLoc = Lex.getLoc();
384 if (Lex.getKind() != lltok::kw_bitcast &&
385 Lex.getKind() != lltok::kw_getelementptr) {
386 if (ParseGlobalTypeAndValue(Aliasee)) return true;
387 } else {
388 // The bitcast dest type is not present, it is implied by the dest type.
389 ValID ID;
390 if (ParseValID(ID)) return true;
391 if (ID.Kind != ValID::t_Constant)
392 return Error(AliaseeLoc, "invalid aliasee");
393 Aliasee = ID.ConstantVal;
396 if (!isa<PointerType>(Aliasee->getType()))
397 return Error(AliaseeLoc, "alias must have pointer type");
399 // Okay, create the alias but do not insert it into the module yet.
400 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
401 (GlobalValue::LinkageTypes)Linkage, Name,
402 Aliasee);
403 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
405 // See if this value already exists in the symbol table. If so, it is either
406 // a redefinition or a definition of a forward reference.
407 if (GlobalValue *Val =
408 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
409 // See if this was a redefinition. If so, there is no entry in
410 // ForwardRefVals.
411 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
412 I = ForwardRefVals.find(Name);
413 if (I == ForwardRefVals.end())
414 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
416 // Otherwise, this was a definition of forward ref. Verify that types
417 // agree.
418 if (Val->getType() != GA->getType())
419 return Error(NameLoc,
420 "forward reference and definition of alias have different types");
422 // If they agree, just RAUW the old value with the alias and remove the
423 // forward ref info.
424 Val->replaceAllUsesWith(GA);
425 Val->eraseFromParent();
426 ForwardRefVals.erase(I);
429 // Insert into the module, we know its name won't collide now.
430 M->getAliasList().push_back(GA);
431 assert(GA->getNameStr() == Name && "Should not be a name conflict!");
433 return false;
436 /// ParseGlobal
437 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
438 /// OptionalAddrSpace GlobalType Type Const
439 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
440 /// OptionalAddrSpace GlobalType Type Const
442 /// Everything through visibility has been parsed already.
444 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
445 unsigned Linkage, bool HasLinkage,
446 unsigned Visibility) {
447 unsigned AddrSpace;
448 bool ThreadLocal, IsConstant;
449 LocTy TyLoc;
451 PATypeHolder Ty(Type::VoidTy);
452 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
453 ParseOptionalAddrSpace(AddrSpace) ||
454 ParseGlobalType(IsConstant) ||
455 ParseType(Ty, TyLoc))
456 return true;
458 // If the linkage is specified and is external, then no initializer is
459 // present.
460 Constant *Init = 0;
461 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
462 Linkage != GlobalValue::ExternalWeakLinkage &&
463 Linkage != GlobalValue::ExternalLinkage)) {
464 if (ParseGlobalValue(Ty, Init))
465 return true;
468 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
469 return Error(TyLoc, "invalid type for global variable");
471 GlobalVariable *GV = 0;
473 // See if the global was forward referenced, if so, use the global.
474 if (!Name.empty()) {
475 if ((GV = M->getGlobalVariable(Name, true)) &&
476 !ForwardRefVals.erase(Name))
477 return Error(NameLoc, "redefinition of global '@" + Name + "'");
478 } else {
479 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
480 I = ForwardRefValIDs.find(NumberedVals.size());
481 if (I != ForwardRefValIDs.end()) {
482 GV = cast<GlobalVariable>(I->second.first);
483 ForwardRefValIDs.erase(I);
487 if (GV == 0) {
488 GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
489 M, false, AddrSpace);
490 } else {
491 if (GV->getType()->getElementType() != Ty)
492 return Error(TyLoc,
493 "forward reference and definition of global have different types");
495 // Move the forward-reference to the correct spot in the module.
496 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
499 if (Name.empty())
500 NumberedVals.push_back(GV);
502 // Set the parsed properties on the global.
503 if (Init)
504 GV->setInitializer(Init);
505 GV->setConstant(IsConstant);
506 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
507 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
508 GV->setThreadLocal(ThreadLocal);
510 // Parse attributes on the global.
511 while (Lex.getKind() == lltok::comma) {
512 Lex.Lex();
514 if (Lex.getKind() == lltok::kw_section) {
515 Lex.Lex();
516 GV->setSection(Lex.getStrVal());
517 if (ParseToken(lltok::StringConstant, "expected global section string"))
518 return true;
519 } else if (Lex.getKind() == lltok::kw_align) {
520 unsigned Alignment;
521 if (ParseOptionalAlignment(Alignment)) return true;
522 GV->setAlignment(Alignment);
523 } else {
524 TokError("unknown global variable property!");
528 return false;
532 //===----------------------------------------------------------------------===//
533 // GlobalValue Reference/Resolution Routines.
534 //===----------------------------------------------------------------------===//
536 /// GetGlobalVal - Get a value with the specified name or ID, creating a
537 /// forward reference record if needed. This can return null if the value
538 /// exists but does not have the right type.
539 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
540 LocTy Loc) {
541 const PointerType *PTy = dyn_cast<PointerType>(Ty);
542 if (PTy == 0) {
543 Error(Loc, "global variable reference must have pointer type");
544 return 0;
547 // Look this name up in the normal function symbol table.
548 GlobalValue *Val =
549 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
551 // If this is a forward reference for the value, see if we already created a
552 // forward ref record.
553 if (Val == 0) {
554 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
555 I = ForwardRefVals.find(Name);
556 if (I != ForwardRefVals.end())
557 Val = I->second.first;
560 // If we have the value in the symbol table or fwd-ref table, return it.
561 if (Val) {
562 if (Val->getType() == Ty) return Val;
563 Error(Loc, "'@" + Name + "' defined with type '" +
564 Val->getType()->getDescription() + "'");
565 return 0;
568 // Otherwise, create a new forward reference for this value and remember it.
569 GlobalValue *FwdVal;
570 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
571 // Function types can return opaque but functions can't.
572 if (isa<OpaqueType>(FT->getReturnType())) {
573 Error(Loc, "function may not return opaque type");
574 return 0;
577 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
578 } else {
579 FwdVal = new GlobalVariable(PTy->getElementType(), false,
580 GlobalValue::ExternalWeakLinkage, 0, Name, M);
583 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
584 return FwdVal;
587 GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
588 const PointerType *PTy = dyn_cast<PointerType>(Ty);
589 if (PTy == 0) {
590 Error(Loc, "global variable reference must have pointer type");
591 return 0;
594 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
596 // If this is a forward reference for the value, see if we already created a
597 // forward ref record.
598 if (Val == 0) {
599 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
600 I = ForwardRefValIDs.find(ID);
601 if (I != ForwardRefValIDs.end())
602 Val = I->second.first;
605 // If we have the value in the symbol table or fwd-ref table, return it.
606 if (Val) {
607 if (Val->getType() == Ty) return Val;
608 Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
609 Val->getType()->getDescription() + "'");
610 return 0;
613 // Otherwise, create a new forward reference for this value and remember it.
614 GlobalValue *FwdVal;
615 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
616 // Function types can return opaque but functions can't.
617 if (isa<OpaqueType>(FT->getReturnType())) {
618 Error(Loc, "function may not return opaque type");
619 return 0;
621 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
622 } else {
623 FwdVal = new GlobalVariable(PTy->getElementType(), false,
624 GlobalValue::ExternalWeakLinkage, 0, "", M);
627 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
628 return FwdVal;
632 //===----------------------------------------------------------------------===//
633 // Helper Routines.
634 //===----------------------------------------------------------------------===//
636 /// ParseToken - If the current token has the specified kind, eat it and return
637 /// success. Otherwise, emit the specified error and return failure.
638 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
639 if (Lex.getKind() != T)
640 return TokError(ErrMsg);
641 Lex.Lex();
642 return false;
645 /// ParseStringConstant
646 /// ::= StringConstant
647 bool LLParser::ParseStringConstant(std::string &Result) {
648 if (Lex.getKind() != lltok::StringConstant)
649 return TokError("expected string constant");
650 Result = Lex.getStrVal();
651 Lex.Lex();
652 return false;
655 /// ParseUInt32
656 /// ::= uint32
657 bool LLParser::ParseUInt32(unsigned &Val) {
658 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
659 return TokError("expected integer");
660 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
661 if (Val64 != unsigned(Val64))
662 return TokError("expected 32-bit integer (too large)");
663 Val = Val64;
664 Lex.Lex();
665 return false;
669 /// ParseOptionalAddrSpace
670 /// := /*empty*/
671 /// := 'addrspace' '(' uint32 ')'
672 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
673 AddrSpace = 0;
674 if (!EatIfPresent(lltok::kw_addrspace))
675 return false;
676 return ParseToken(lltok::lparen, "expected '(' in address space") ||
677 ParseUInt32(AddrSpace) ||
678 ParseToken(lltok::rparen, "expected ')' in address space");
681 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
682 /// indicates what kind of attribute list this is: 0: function arg, 1: result,
683 /// 2: function attr.
684 /// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
685 bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
686 Attrs = Attribute::None;
687 LocTy AttrLoc = Lex.getLoc();
689 while (1) {
690 switch (Lex.getKind()) {
691 case lltok::kw_sext:
692 case lltok::kw_zext:
693 // Treat these as signext/zeroext if they occur in the argument list after
694 // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the
695 // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
696 // expr.
697 // FIXME: REMOVE THIS IN LLVM 3.0
698 if (AttrKind == 3) {
699 if (Lex.getKind() == lltok::kw_sext)
700 Attrs |= Attribute::SExt;
701 else
702 Attrs |= Attribute::ZExt;
703 break;
705 // FALL THROUGH.
706 default: // End of attributes.
707 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
708 return Error(AttrLoc, "invalid use of function-only attribute");
710 if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
711 return Error(AttrLoc, "invalid use of parameter-only attribute");
713 return false;
714 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
715 case lltok::kw_signext: Attrs |= Attribute::SExt; break;
716 case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
717 case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
718 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
719 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
720 case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
721 case lltok::kw_nest: Attrs |= Attribute::Nest; break;
723 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
724 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
725 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
726 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
727 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
728 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
729 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
730 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
731 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
734 case lltok::kw_align: {
735 unsigned Alignment;
736 if (ParseOptionalAlignment(Alignment))
737 return true;
738 Attrs |= Attribute::constructAlignmentFromInt(Alignment);
739 continue;
742 Lex.Lex();
746 /// ParseOptionalLinkage
747 /// ::= /*empty*/
748 /// ::= 'private'
749 /// ::= 'internal'
750 /// ::= 'weak'
751 /// ::= 'weak_odr'
752 /// ::= 'linkonce'
753 /// ::= 'linkonce_odr'
754 /// ::= 'appending'
755 /// ::= 'dllexport'
756 /// ::= 'common'
757 /// ::= 'dllimport'
758 /// ::= 'extern_weak'
759 /// ::= 'external'
760 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
761 HasLinkage = false;
762 switch (Lex.getKind()) {
763 default: Res = GlobalValue::ExternalLinkage; return false;
764 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
765 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
766 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
767 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
768 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
769 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
770 case lltok::kw_available_externally:
771 Res = GlobalValue::AvailableExternallyLinkage;
772 break;
773 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
774 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
775 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
776 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
777 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
778 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
780 Lex.Lex();
781 HasLinkage = true;
782 return false;
785 /// ParseOptionalVisibility
786 /// ::= /*empty*/
787 /// ::= 'default'
788 /// ::= 'hidden'
789 /// ::= 'protected'
790 ///
791 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
792 switch (Lex.getKind()) {
793 default: Res = GlobalValue::DefaultVisibility; return false;
794 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
795 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
796 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
798 Lex.Lex();
799 return false;
802 /// ParseOptionalCallingConv
803 /// ::= /*empty*/
804 /// ::= 'ccc'
805 /// ::= 'fastcc'
806 /// ::= 'coldcc'
807 /// ::= 'x86_stdcallcc'
808 /// ::= 'x86_fastcallcc'
809 /// ::= 'cc' UINT
810 ///
811 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
812 switch (Lex.getKind()) {
813 default: CC = CallingConv::C; return false;
814 case lltok::kw_ccc: CC = CallingConv::C; break;
815 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
816 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
817 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
818 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
819 case lltok::kw_cc: Lex.Lex(); return ParseUInt32(CC);
821 Lex.Lex();
822 return false;
825 /// ParseOptionalAlignment
826 /// ::= /* empty */
827 /// ::= 'align' 4
828 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
829 Alignment = 0;
830 if (!EatIfPresent(lltok::kw_align))
831 return false;
832 LocTy AlignLoc = Lex.getLoc();
833 if (ParseUInt32(Alignment)) return true;
834 if (!isPowerOf2_32(Alignment))
835 return Error(AlignLoc, "alignment is not a power of two");
836 return false;
839 /// ParseOptionalCommaAlignment
840 /// ::= /* empty */
841 /// ::= ',' 'align' 4
842 bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
843 Alignment = 0;
844 if (!EatIfPresent(lltok::comma))
845 return false;
846 return ParseToken(lltok::kw_align, "expected 'align'") ||
847 ParseUInt32(Alignment);
850 /// ParseIndexList
851 /// ::= (',' uint32)+
852 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
853 if (Lex.getKind() != lltok::comma)
854 return TokError("expected ',' as start of index list");
856 while (EatIfPresent(lltok::comma)) {
857 unsigned Idx;
858 if (ParseUInt32(Idx)) return true;
859 Indices.push_back(Idx);
862 return false;
865 //===----------------------------------------------------------------------===//
866 // Type Parsing.
867 //===----------------------------------------------------------------------===//
869 /// ParseType - Parse and resolve a full type.
870 bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
871 LocTy TypeLoc = Lex.getLoc();
872 if (ParseTypeRec(Result)) return true;
874 // Verify no unresolved uprefs.
875 if (!UpRefs.empty())
876 return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
878 if (!AllowVoid && Result.get() == Type::VoidTy)
879 return Error(TypeLoc, "void type only allowed for function results");
881 return false;
884 /// HandleUpRefs - Every time we finish a new layer of types, this function is
885 /// called. It loops through the UpRefs vector, which is a list of the
886 /// currently active types. For each type, if the up-reference is contained in
887 /// the newly completed type, we decrement the level count. When the level
888 /// count reaches zero, the up-referenced type is the type that is passed in:
889 /// thus we can complete the cycle.
891 PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
892 // If Ty isn't abstract, or if there are no up-references in it, then there is
893 // nothing to resolve here.
894 if (!ty->isAbstract() || UpRefs.empty()) return ty;
896 PATypeHolder Ty(ty);
897 #if 0
898 errs() << "Type '" << Ty->getDescription()
899 << "' newly formed. Resolving upreferences.\n"
900 << UpRefs.size() << " upreferences active!\n";
901 #endif
903 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
904 // to zero), we resolve them all together before we resolve them to Ty. At
905 // the end of the loop, if there is anything to resolve to Ty, it will be in
906 // this variable.
907 OpaqueType *TypeToResolve = 0;
909 for (unsigned i = 0; i != UpRefs.size(); ++i) {
910 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
911 bool ContainsType =
912 std::find(Ty->subtype_begin(), Ty->subtype_end(),
913 UpRefs[i].LastContainedTy) != Ty->subtype_end();
915 #if 0
916 errs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
917 << UpRefs[i].LastContainedTy->getDescription() << ") = "
918 << (ContainsType ? "true" : "false")
919 << " level=" << UpRefs[i].NestingLevel << "\n";
920 #endif
921 if (!ContainsType)
922 continue;
924 // Decrement level of upreference
925 unsigned Level = --UpRefs[i].NestingLevel;
926 UpRefs[i].LastContainedTy = Ty;
928 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
929 if (Level != 0)
930 continue;
932 #if 0
933 errs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
934 #endif
935 if (!TypeToResolve)
936 TypeToResolve = UpRefs[i].UpRefTy;
937 else
938 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
939 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list.
940 --i; // Do not skip the next element.
943 if (TypeToResolve)
944 TypeToResolve->refineAbstractTypeTo(Ty);
946 return Ty;
950 /// ParseTypeRec - The recursive function used to process the internal
951 /// implementation details of types.
952 bool LLParser::ParseTypeRec(PATypeHolder &Result) {
953 switch (Lex.getKind()) {
954 default:
955 return TokError("expected type");
956 case lltok::Type:
957 // TypeRec ::= 'float' | 'void' (etc)
958 Result = Lex.getTyVal();
959 Lex.Lex();
960 break;
961 case lltok::kw_opaque:
962 // TypeRec ::= 'opaque'
963 Result = OpaqueType::get();
964 Lex.Lex();
965 break;
966 case lltok::lbrace:
967 // TypeRec ::= '{' ... '}'
968 if (ParseStructType(Result, false))
969 return true;
970 break;
971 case lltok::lsquare:
972 // TypeRec ::= '[' ... ']'
973 Lex.Lex(); // eat the lsquare.
974 if (ParseArrayVectorType(Result, false))
975 return true;
976 break;
977 case lltok::less: // Either vector or packed struct.
978 // TypeRec ::= '<' ... '>'
979 Lex.Lex();
980 if (Lex.getKind() == lltok::lbrace) {
981 if (ParseStructType(Result, true) ||
982 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
983 return true;
984 } else if (ParseArrayVectorType(Result, true))
985 return true;
986 break;
987 case lltok::LocalVar:
988 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
989 // TypeRec ::= %foo
990 if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
991 Result = T;
992 } else {
993 Result = OpaqueType::get();
994 ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
995 std::make_pair(Result,
996 Lex.getLoc())));
997 M->addTypeName(Lex.getStrVal(), Result.get());
999 Lex.Lex();
1000 break;
1002 case lltok::LocalVarID:
1003 // TypeRec ::= %4
1004 if (Lex.getUIntVal() < NumberedTypes.size())
1005 Result = NumberedTypes[Lex.getUIntVal()];
1006 else {
1007 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1008 I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1009 if (I != ForwardRefTypeIDs.end())
1010 Result = I->second.first;
1011 else {
1012 Result = OpaqueType::get();
1013 ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1014 std::make_pair(Result,
1015 Lex.getLoc())));
1018 Lex.Lex();
1019 break;
1020 case lltok::backslash: {
1021 // TypeRec ::= '\' 4
1022 Lex.Lex();
1023 unsigned Val;
1024 if (ParseUInt32(Val)) return true;
1025 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder.
1026 UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1027 Result = OT;
1028 break;
1032 // Parse the type suffixes.
1033 while (1) {
1034 switch (Lex.getKind()) {
1035 // End of type.
1036 default: return false;
1038 // TypeRec ::= TypeRec '*'
1039 case lltok::star:
1040 if (Result.get() == Type::LabelTy)
1041 return TokError("basic block pointers are invalid");
1042 if (Result.get() == Type::VoidTy)
1043 return TokError("pointers to void are invalid; use i8* instead");
1044 Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1045 Lex.Lex();
1046 break;
1048 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1049 case lltok::kw_addrspace: {
1050 if (Result.get() == Type::LabelTy)
1051 return TokError("basic block pointers are invalid");
1052 if (Result.get() == Type::VoidTy)
1053 return TokError("pointers to void are invalid; use i8* instead");
1054 unsigned AddrSpace;
1055 if (ParseOptionalAddrSpace(AddrSpace) ||
1056 ParseToken(lltok::star, "expected '*' in address space"))
1057 return true;
1059 Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1060 break;
1063 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1064 case lltok::lparen:
1065 if (ParseFunctionType(Result))
1066 return true;
1067 break;
1072 /// ParseParameterList
1073 /// ::= '(' ')'
1074 /// ::= '(' Arg (',' Arg)* ')'
1075 /// Arg
1076 /// ::= Type OptionalAttributes Value OptionalAttributes
1077 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1078 PerFunctionState &PFS) {
1079 if (ParseToken(lltok::lparen, "expected '(' in call"))
1080 return true;
1082 while (Lex.getKind() != lltok::rparen) {
1083 // If this isn't the first argument, we need a comma.
1084 if (!ArgList.empty() &&
1085 ParseToken(lltok::comma, "expected ',' in argument list"))
1086 return true;
1088 // Parse the argument.
1089 LocTy ArgLoc;
1090 PATypeHolder ArgTy(Type::VoidTy);
1091 unsigned ArgAttrs1, ArgAttrs2;
1092 Value *V;
1093 if (ParseType(ArgTy, ArgLoc) ||
1094 ParseOptionalAttrs(ArgAttrs1, 0) ||
1095 ParseValue(ArgTy, V, PFS) ||
1096 // FIXME: Should not allow attributes after the argument, remove this in
1097 // LLVM 3.0.
1098 ParseOptionalAttrs(ArgAttrs2, 3))
1099 return true;
1100 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1103 Lex.Lex(); // Lex the ')'.
1104 return false;
1109 /// ParseArgumentList - Parse the argument list for a function type or function
1110 /// prototype. If 'inType' is true then we are parsing a FunctionType.
1111 /// ::= '(' ArgTypeListI ')'
1112 /// ArgTypeListI
1113 /// ::= /*empty*/
1114 /// ::= '...'
1115 /// ::= ArgTypeList ',' '...'
1116 /// ::= ArgType (',' ArgType)*
1118 bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1119 bool &isVarArg, bool inType) {
1120 isVarArg = false;
1121 assert(Lex.getKind() == lltok::lparen);
1122 Lex.Lex(); // eat the (.
1124 if (Lex.getKind() == lltok::rparen) {
1125 // empty
1126 } else if (Lex.getKind() == lltok::dotdotdot) {
1127 isVarArg = true;
1128 Lex.Lex();
1129 } else {
1130 LocTy TypeLoc = Lex.getLoc();
1131 PATypeHolder ArgTy(Type::VoidTy);
1132 unsigned Attrs;
1133 std::string Name;
1135 // If we're parsing a type, use ParseTypeRec, because we allow recursive
1136 // types (such as a function returning a pointer to itself). If parsing a
1137 // function prototype, we require fully resolved types.
1138 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1139 ParseOptionalAttrs(Attrs, 0)) return true;
1141 if (ArgTy == Type::VoidTy)
1142 return Error(TypeLoc, "argument can not have void type");
1144 if (Lex.getKind() == lltok::LocalVar ||
1145 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1146 Name = Lex.getStrVal();
1147 Lex.Lex();
1150 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1151 return Error(TypeLoc, "invalid type for function argument");
1153 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1155 while (EatIfPresent(lltok::comma)) {
1156 // Handle ... at end of arg list.
1157 if (EatIfPresent(lltok::dotdotdot)) {
1158 isVarArg = true;
1159 break;
1162 // Otherwise must be an argument type.
1163 TypeLoc = Lex.getLoc();
1164 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1165 ParseOptionalAttrs(Attrs, 0)) return true;
1167 if (ArgTy == Type::VoidTy)
1168 return Error(TypeLoc, "argument can not have void type");
1170 if (Lex.getKind() == lltok::LocalVar ||
1171 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1172 Name = Lex.getStrVal();
1173 Lex.Lex();
1174 } else {
1175 Name = "";
1178 if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1179 return Error(TypeLoc, "invalid type for function argument");
1181 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1185 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1188 /// ParseFunctionType
1189 /// ::= Type ArgumentList OptionalAttrs
1190 bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1191 assert(Lex.getKind() == lltok::lparen);
1193 if (!FunctionType::isValidReturnType(Result))
1194 return TokError("invalid function return type");
1196 std::vector<ArgInfo> ArgList;
1197 bool isVarArg;
1198 unsigned Attrs;
1199 if (ParseArgumentList(ArgList, isVarArg, true) ||
1200 // FIXME: Allow, but ignore attributes on function types!
1201 // FIXME: Remove in LLVM 3.0
1202 ParseOptionalAttrs(Attrs, 2))
1203 return true;
1205 // Reject names on the arguments lists.
1206 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1207 if (!ArgList[i].Name.empty())
1208 return Error(ArgList[i].Loc, "argument name invalid in function type");
1209 if (!ArgList[i].Attrs != 0) {
1210 // Allow but ignore attributes on function types; this permits
1211 // auto-upgrade.
1212 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1216 std::vector<const Type*> ArgListTy;
1217 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1218 ArgListTy.push_back(ArgList[i].Type);
1220 Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1221 return false;
1224 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1225 /// TypeRec
1226 /// ::= '{' '}'
1227 /// ::= '{' TypeRec (',' TypeRec)* '}'
1228 /// ::= '<' '{' '}' '>'
1229 /// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1230 bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1231 assert(Lex.getKind() == lltok::lbrace);
1232 Lex.Lex(); // Consume the '{'
1234 if (EatIfPresent(lltok::rbrace)) {
1235 Result = StructType::get(std::vector<const Type*>(), Packed);
1236 return false;
1239 std::vector<PATypeHolder> ParamsList;
1240 LocTy EltTyLoc = Lex.getLoc();
1241 if (ParseTypeRec(Result)) return true;
1242 ParamsList.push_back(Result);
1244 if (Result == Type::VoidTy)
1245 return Error(EltTyLoc, "struct element can not have void type");
1247 while (EatIfPresent(lltok::comma)) {
1248 EltTyLoc = Lex.getLoc();
1249 if (ParseTypeRec(Result)) return true;
1251 if (Result == Type::VoidTy)
1252 return Error(EltTyLoc, "struct element can not have void type");
1254 ParamsList.push_back(Result);
1257 if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1258 return true;
1260 std::vector<const Type*> ParamsListTy;
1261 for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1262 ParamsListTy.push_back(ParamsList[i].get());
1263 Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1264 return false;
1267 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1268 /// token has already been consumed.
1269 /// TypeRec
1270 /// ::= '[' APSINTVAL 'x' Types ']'
1271 /// ::= '<' APSINTVAL 'x' Types '>'
1272 bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1273 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1274 Lex.getAPSIntVal().getBitWidth() > 64)
1275 return TokError("expected number in address space");
1277 LocTy SizeLoc = Lex.getLoc();
1278 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1279 Lex.Lex();
1281 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1282 return true;
1284 LocTy TypeLoc = Lex.getLoc();
1285 PATypeHolder EltTy(Type::VoidTy);
1286 if (ParseTypeRec(EltTy)) return true;
1288 if (EltTy == Type::VoidTy)
1289 return Error(TypeLoc, "array and vector element type cannot be void");
1291 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1292 "expected end of sequential type"))
1293 return true;
1295 if (isVector) {
1296 if (Size == 0)
1297 return Error(SizeLoc, "zero element vector is illegal");
1298 if ((unsigned)Size != Size)
1299 return Error(SizeLoc, "size too large for vector");
1300 if (!EltTy->isFloatingPoint() && !EltTy->isInteger())
1301 return Error(TypeLoc, "vector element type must be fp or integer");
1302 Result = VectorType::get(EltTy, unsigned(Size));
1303 } else {
1304 if (!EltTy->isFirstClassType() && !isa<OpaqueType>(EltTy))
1305 return Error(TypeLoc, "invalid array element type");
1306 Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1308 return false;
1311 //===----------------------------------------------------------------------===//
1312 // Function Semantic Analysis.
1313 //===----------------------------------------------------------------------===//
1315 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1316 : P(p), F(f) {
1318 // Insert unnamed arguments into the NumberedVals list.
1319 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1320 AI != E; ++AI)
1321 if (!AI->hasName())
1322 NumberedVals.push_back(AI);
1325 LLParser::PerFunctionState::~PerFunctionState() {
1326 // If there were any forward referenced non-basicblock values, delete them.
1327 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1328 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1329 if (!isa<BasicBlock>(I->second.first)) {
1330 I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1331 ->getType()));
1332 delete I->second.first;
1333 I->second.first = 0;
1336 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1337 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1338 if (!isa<BasicBlock>(I->second.first)) {
1339 I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1340 ->getType()));
1341 delete I->second.first;
1342 I->second.first = 0;
1346 bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1347 if (!ForwardRefVals.empty())
1348 return P.Error(ForwardRefVals.begin()->second.second,
1349 "use of undefined value '%" + ForwardRefVals.begin()->first +
1350 "'");
1351 if (!ForwardRefValIDs.empty())
1352 return P.Error(ForwardRefValIDs.begin()->second.second,
1353 "use of undefined value '%" +
1354 utostr(ForwardRefValIDs.begin()->first) + "'");
1355 return false;
1359 /// GetVal - Get a value with the specified name or ID, creating a
1360 /// forward reference record if needed. This can return null if the value
1361 /// exists but does not have the right type.
1362 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1363 const Type *Ty, LocTy Loc) {
1364 // Look this name up in the normal function symbol table.
1365 Value *Val = F.getValueSymbolTable().lookup(Name);
1367 // If this is a forward reference for the value, see if we already created a
1368 // forward ref record.
1369 if (Val == 0) {
1370 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1371 I = ForwardRefVals.find(Name);
1372 if (I != ForwardRefVals.end())
1373 Val = I->second.first;
1376 // If we have the value in the symbol table or fwd-ref table, return it.
1377 if (Val) {
1378 if (Val->getType() == Ty) return Val;
1379 if (Ty == Type::LabelTy)
1380 P.Error(Loc, "'%" + Name + "' is not a basic block");
1381 else
1382 P.Error(Loc, "'%" + Name + "' defined with type '" +
1383 Val->getType()->getDescription() + "'");
1384 return 0;
1387 // Don't make placeholders with invalid type.
1388 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1389 P.Error(Loc, "invalid use of a non-first-class type");
1390 return 0;
1393 // Otherwise, create a new forward reference for this value and remember it.
1394 Value *FwdVal;
1395 if (Ty == Type::LabelTy)
1396 FwdVal = BasicBlock::Create(Name, &F);
1397 else
1398 FwdVal = new Argument(Ty, Name);
1400 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1401 return FwdVal;
1404 Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1405 LocTy Loc) {
1406 // Look this name up in the normal function symbol table.
1407 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1409 // If this is a forward reference for the value, see if we already created a
1410 // forward ref record.
1411 if (Val == 0) {
1412 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1413 I = ForwardRefValIDs.find(ID);
1414 if (I != ForwardRefValIDs.end())
1415 Val = I->second.first;
1418 // If we have the value in the symbol table or fwd-ref table, return it.
1419 if (Val) {
1420 if (Val->getType() == Ty) return Val;
1421 if (Ty == Type::LabelTy)
1422 P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1423 else
1424 P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1425 Val->getType()->getDescription() + "'");
1426 return 0;
1429 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1430 P.Error(Loc, "invalid use of a non-first-class type");
1431 return 0;
1434 // Otherwise, create a new forward reference for this value and remember it.
1435 Value *FwdVal;
1436 if (Ty == Type::LabelTy)
1437 FwdVal = BasicBlock::Create("", &F);
1438 else
1439 FwdVal = new Argument(Ty);
1441 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1442 return FwdVal;
1445 /// SetInstName - After an instruction is parsed and inserted into its
1446 /// basic block, this installs its name.
1447 bool LLParser::PerFunctionState::SetInstName(int NameID,
1448 const std::string &NameStr,
1449 LocTy NameLoc, Instruction *Inst) {
1450 // If this instruction has void type, it cannot have a name or ID specified.
1451 if (Inst->getType() == Type::VoidTy) {
1452 if (NameID != -1 || !NameStr.empty())
1453 return P.Error(NameLoc, "instructions returning void cannot have a name");
1454 return false;
1457 // If this was a numbered instruction, verify that the instruction is the
1458 // expected value and resolve any forward references.
1459 if (NameStr.empty()) {
1460 // If neither a name nor an ID was specified, just use the next ID.
1461 if (NameID == -1)
1462 NameID = NumberedVals.size();
1464 if (unsigned(NameID) != NumberedVals.size())
1465 return P.Error(NameLoc, "instruction expected to be numbered '%" +
1466 utostr(NumberedVals.size()) + "'");
1468 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1469 ForwardRefValIDs.find(NameID);
1470 if (FI != ForwardRefValIDs.end()) {
1471 if (FI->second.first->getType() != Inst->getType())
1472 return P.Error(NameLoc, "instruction forward referenced with type '" +
1473 FI->second.first->getType()->getDescription() + "'");
1474 FI->second.first->replaceAllUsesWith(Inst);
1475 ForwardRefValIDs.erase(FI);
1478 NumberedVals.push_back(Inst);
1479 return false;
1482 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1483 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1484 FI = ForwardRefVals.find(NameStr);
1485 if (FI != ForwardRefVals.end()) {
1486 if (FI->second.first->getType() != Inst->getType())
1487 return P.Error(NameLoc, "instruction forward referenced with type '" +
1488 FI->second.first->getType()->getDescription() + "'");
1489 FI->second.first->replaceAllUsesWith(Inst);
1490 ForwardRefVals.erase(FI);
1493 // Set the name on the instruction.
1494 Inst->setName(NameStr);
1496 if (Inst->getNameStr() != NameStr)
1497 return P.Error(NameLoc, "multiple definition of local value named '" +
1498 NameStr + "'");
1499 return false;
1502 /// GetBB - Get a basic block with the specified name or ID, creating a
1503 /// forward reference record if needed.
1504 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1505 LocTy Loc) {
1506 return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1509 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1510 return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1513 /// DefineBB - Define the specified basic block, which is either named or
1514 /// unnamed. If there is an error, this returns null otherwise it returns
1515 /// the block being defined.
1516 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1517 LocTy Loc) {
1518 BasicBlock *BB;
1519 if (Name.empty())
1520 BB = GetBB(NumberedVals.size(), Loc);
1521 else
1522 BB = GetBB(Name, Loc);
1523 if (BB == 0) return 0; // Already diagnosed error.
1525 // Move the block to the end of the function. Forward ref'd blocks are
1526 // inserted wherever they happen to be referenced.
1527 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1529 // Remove the block from forward ref sets.
1530 if (Name.empty()) {
1531 ForwardRefValIDs.erase(NumberedVals.size());
1532 NumberedVals.push_back(BB);
1533 } else {
1534 // BB forward references are already in the function symbol table.
1535 ForwardRefVals.erase(Name);
1538 return BB;
1541 //===----------------------------------------------------------------------===//
1542 // Constants.
1543 //===----------------------------------------------------------------------===//
1545 /// ParseValID - Parse an abstract value that doesn't necessarily have a
1546 /// type implied. For example, if we parse "4" we don't know what integer type
1547 /// it has. The value will later be combined with its type and checked for
1548 /// sanity.
1549 bool LLParser::ParseValID(ValID &ID) {
1550 ID.Loc = Lex.getLoc();
1551 switch (Lex.getKind()) {
1552 default: return TokError("expected value token");
1553 case lltok::GlobalID: // @42
1554 ID.UIntVal = Lex.getUIntVal();
1555 ID.Kind = ValID::t_GlobalID;
1556 break;
1557 case lltok::GlobalVar: // @foo
1558 ID.StrVal = Lex.getStrVal();
1559 ID.Kind = ValID::t_GlobalName;
1560 break;
1561 case lltok::LocalVarID: // %42
1562 ID.UIntVal = Lex.getUIntVal();
1563 ID.Kind = ValID::t_LocalID;
1564 break;
1565 case lltok::LocalVar: // %foo
1566 case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0
1567 ID.StrVal = Lex.getStrVal();
1568 ID.Kind = ValID::t_LocalName;
1569 break;
1570 case lltok::Metadata: { // !{...} MDNode, !"foo" MDString
1571 ID.Kind = ValID::t_Constant;
1572 Lex.Lex();
1573 if (Lex.getKind() == lltok::lbrace) {
1574 // MDNode:
1575 // ::= '!' '{' TypeAndValue (',' TypeAndValue)* '}'
1576 SmallVector<Constant*, 16> Elts;
1577 if (ParseMDNodeVector(Elts) ||
1578 ParseToken(lltok::rbrace, "expected end of metadata node"))
1579 return true;
1581 ID.ConstantVal = MDNode::get(&Elts[0], Elts.size());
1582 return false;
1585 // MDString:
1586 // ::= '!' STRINGCONSTANT
1587 std::string Str;
1588 if (ParseStringConstant(Str)) return true;
1590 ID.ConstantVal = MDString::get(Str.data(), Str.data() + Str.size());
1591 return false;
1593 case lltok::APSInt:
1594 ID.APSIntVal = Lex.getAPSIntVal();
1595 ID.Kind = ValID::t_APSInt;
1596 break;
1597 case lltok::APFloat:
1598 ID.APFloatVal = Lex.getAPFloatVal();
1599 ID.Kind = ValID::t_APFloat;
1600 break;
1601 case lltok::kw_true:
1602 ID.ConstantVal = ConstantInt::getTrue();
1603 ID.Kind = ValID::t_Constant;
1604 break;
1605 case lltok::kw_false:
1606 ID.ConstantVal = ConstantInt::getFalse();
1607 ID.Kind = ValID::t_Constant;
1608 break;
1609 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1610 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1611 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1613 case lltok::lbrace: {
1614 // ValID ::= '{' ConstVector '}'
1615 Lex.Lex();
1616 SmallVector<Constant*, 16> Elts;
1617 if (ParseGlobalValueVector(Elts) ||
1618 ParseToken(lltok::rbrace, "expected end of struct constant"))
1619 return true;
1621 ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), false);
1622 ID.Kind = ValID::t_Constant;
1623 return false;
1625 case lltok::less: {
1626 // ValID ::= '<' ConstVector '>' --> Vector.
1627 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1628 Lex.Lex();
1629 bool isPackedStruct = EatIfPresent(lltok::lbrace);
1631 SmallVector<Constant*, 16> Elts;
1632 LocTy FirstEltLoc = Lex.getLoc();
1633 if (ParseGlobalValueVector(Elts) ||
1634 (isPackedStruct &&
1635 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1636 ParseToken(lltok::greater, "expected end of constant"))
1637 return true;
1639 if (isPackedStruct) {
1640 ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), true);
1641 ID.Kind = ValID::t_Constant;
1642 return false;
1645 if (Elts.empty())
1646 return Error(ID.Loc, "constant vector must not be empty");
1648 if (!Elts[0]->getType()->isInteger() &&
1649 !Elts[0]->getType()->isFloatingPoint())
1650 return Error(FirstEltLoc,
1651 "vector elements must have integer or floating point type");
1653 // Verify that all the vector elements have the same type.
1654 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1655 if (Elts[i]->getType() != Elts[0]->getType())
1656 return Error(FirstEltLoc,
1657 "vector element #" + utostr(i) +
1658 " is not of type '" + Elts[0]->getType()->getDescription());
1660 ID.ConstantVal = ConstantVector::get(&Elts[0], Elts.size());
1661 ID.Kind = ValID::t_Constant;
1662 return false;
1664 case lltok::lsquare: { // Array Constant
1665 Lex.Lex();
1666 SmallVector<Constant*, 16> Elts;
1667 LocTy FirstEltLoc = Lex.getLoc();
1668 if (ParseGlobalValueVector(Elts) ||
1669 ParseToken(lltok::rsquare, "expected end of array constant"))
1670 return true;
1672 // Handle empty element.
1673 if (Elts.empty()) {
1674 // Use undef instead of an array because it's inconvenient to determine
1675 // the element type at this point, there being no elements to examine.
1676 ID.Kind = ValID::t_EmptyArray;
1677 return false;
1680 if (!Elts[0]->getType()->isFirstClassType())
1681 return Error(FirstEltLoc, "invalid array element type: " +
1682 Elts[0]->getType()->getDescription());
1684 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1686 // Verify all elements are correct type!
1687 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1688 if (Elts[i]->getType() != Elts[0]->getType())
1689 return Error(FirstEltLoc,
1690 "array element #" + utostr(i) +
1691 " is not of type '" +Elts[0]->getType()->getDescription());
1694 ID.ConstantVal = ConstantArray::get(ATy, &Elts[0], Elts.size());
1695 ID.Kind = ValID::t_Constant;
1696 return false;
1698 case lltok::kw_c: // c "foo"
1699 Lex.Lex();
1700 ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1701 if (ParseToken(lltok::StringConstant, "expected string")) return true;
1702 ID.Kind = ValID::t_Constant;
1703 return false;
1705 case lltok::kw_asm: {
1706 // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1707 bool HasSideEffect;
1708 Lex.Lex();
1709 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1710 ParseStringConstant(ID.StrVal) ||
1711 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1712 ParseToken(lltok::StringConstant, "expected constraint string"))
1713 return true;
1714 ID.StrVal2 = Lex.getStrVal();
1715 ID.UIntVal = HasSideEffect;
1716 ID.Kind = ValID::t_InlineAsm;
1717 return false;
1720 case lltok::kw_trunc:
1721 case lltok::kw_zext:
1722 case lltok::kw_sext:
1723 case lltok::kw_fptrunc:
1724 case lltok::kw_fpext:
1725 case lltok::kw_bitcast:
1726 case lltok::kw_uitofp:
1727 case lltok::kw_sitofp:
1728 case lltok::kw_fptoui:
1729 case lltok::kw_fptosi:
1730 case lltok::kw_inttoptr:
1731 case lltok::kw_ptrtoint: {
1732 unsigned Opc = Lex.getUIntVal();
1733 PATypeHolder DestTy(Type::VoidTy);
1734 Constant *SrcVal;
1735 Lex.Lex();
1736 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1737 ParseGlobalTypeAndValue(SrcVal) ||
1738 ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") ||
1739 ParseType(DestTy) ||
1740 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1741 return true;
1742 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1743 return Error(ID.Loc, "invalid cast opcode for cast from '" +
1744 SrcVal->getType()->getDescription() + "' to '" +
1745 DestTy->getDescription() + "'");
1746 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1747 DestTy);
1748 ID.Kind = ValID::t_Constant;
1749 return false;
1751 case lltok::kw_extractvalue: {
1752 Lex.Lex();
1753 Constant *Val;
1754 SmallVector<unsigned, 4> Indices;
1755 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1756 ParseGlobalTypeAndValue(Val) ||
1757 ParseIndexList(Indices) ||
1758 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1759 return true;
1760 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1761 return Error(ID.Loc, "extractvalue operand must be array or struct");
1762 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1763 Indices.end()))
1764 return Error(ID.Loc, "invalid indices for extractvalue");
1765 ID.ConstantVal = ConstantExpr::getExtractValue(Val,
1766 &Indices[0], Indices.size());
1767 ID.Kind = ValID::t_Constant;
1768 return false;
1770 case lltok::kw_insertvalue: {
1771 Lex.Lex();
1772 Constant *Val0, *Val1;
1773 SmallVector<unsigned, 4> Indices;
1774 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1775 ParseGlobalTypeAndValue(Val0) ||
1776 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1777 ParseGlobalTypeAndValue(Val1) ||
1778 ParseIndexList(Indices) ||
1779 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1780 return true;
1781 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1782 return Error(ID.Loc, "extractvalue operand must be array or struct");
1783 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1784 Indices.end()))
1785 return Error(ID.Loc, "invalid indices for insertvalue");
1786 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
1787 &Indices[0], Indices.size());
1788 ID.Kind = ValID::t_Constant;
1789 return false;
1791 case lltok::kw_icmp:
1792 case lltok::kw_fcmp:
1793 case lltok::kw_vicmp:
1794 case lltok::kw_vfcmp: {
1795 unsigned PredVal, Opc = Lex.getUIntVal();
1796 Constant *Val0, *Val1;
1797 Lex.Lex();
1798 if (ParseCmpPredicate(PredVal, Opc) ||
1799 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1800 ParseGlobalTypeAndValue(Val0) ||
1801 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1802 ParseGlobalTypeAndValue(Val1) ||
1803 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1804 return true;
1806 if (Val0->getType() != Val1->getType())
1807 return Error(ID.Loc, "compare operands must have the same type");
1809 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1811 if (Opc == Instruction::FCmp) {
1812 if (!Val0->getType()->isFPOrFPVector())
1813 return Error(ID.Loc, "fcmp requires floating point operands");
1814 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1815 } else if (Opc == Instruction::ICmp) {
1816 if (!Val0->getType()->isIntOrIntVector() &&
1817 !isa<PointerType>(Val0->getType()))
1818 return Error(ID.Loc, "icmp requires pointer or integer operands");
1819 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1820 } else if (Opc == Instruction::VFCmp) {
1821 // FIXME: REMOVE VFCMP Support
1822 if (!Val0->getType()->isFPOrFPVector() ||
1823 !isa<VectorType>(Val0->getType()))
1824 return Error(ID.Loc, "vfcmp requires vector floating point operands");
1825 ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1826 } else if (Opc == Instruction::VICmp) {
1827 // FIXME: REMOVE VICMP Support
1828 if (!Val0->getType()->isIntOrIntVector() ||
1829 !isa<VectorType>(Val0->getType()))
1830 return Error(ID.Loc, "vicmp requires vector floating point operands");
1831 ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1833 ID.Kind = ValID::t_Constant;
1834 return false;
1837 // Binary Operators.
1838 case lltok::kw_add:
1839 case lltok::kw_sub:
1840 case lltok::kw_mul:
1841 case lltok::kw_udiv:
1842 case lltok::kw_sdiv:
1843 case lltok::kw_fdiv:
1844 case lltok::kw_urem:
1845 case lltok::kw_srem:
1846 case lltok::kw_frem: {
1847 unsigned Opc = Lex.getUIntVal();
1848 Constant *Val0, *Val1;
1849 Lex.Lex();
1850 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1851 ParseGlobalTypeAndValue(Val0) ||
1852 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1853 ParseGlobalTypeAndValue(Val1) ||
1854 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1855 return true;
1856 if (Val0->getType() != Val1->getType())
1857 return Error(ID.Loc, "operands of constexpr must have same type");
1858 if (!Val0->getType()->isIntOrIntVector() &&
1859 !Val0->getType()->isFPOrFPVector())
1860 return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1861 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1862 ID.Kind = ValID::t_Constant;
1863 return false;
1866 // Logical Operations
1867 case lltok::kw_shl:
1868 case lltok::kw_lshr:
1869 case lltok::kw_ashr:
1870 case lltok::kw_and:
1871 case lltok::kw_or:
1872 case lltok::kw_xor: {
1873 unsigned Opc = Lex.getUIntVal();
1874 Constant *Val0, *Val1;
1875 Lex.Lex();
1876 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1877 ParseGlobalTypeAndValue(Val0) ||
1878 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1879 ParseGlobalTypeAndValue(Val1) ||
1880 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1881 return true;
1882 if (Val0->getType() != Val1->getType())
1883 return Error(ID.Loc, "operands of constexpr must have same type");
1884 if (!Val0->getType()->isIntOrIntVector())
1885 return Error(ID.Loc,
1886 "constexpr requires integer or integer vector operands");
1887 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1888 ID.Kind = ValID::t_Constant;
1889 return false;
1892 case lltok::kw_getelementptr:
1893 case lltok::kw_shufflevector:
1894 case lltok::kw_insertelement:
1895 case lltok::kw_extractelement:
1896 case lltok::kw_select: {
1897 unsigned Opc = Lex.getUIntVal();
1898 SmallVector<Constant*, 16> Elts;
1899 Lex.Lex();
1900 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1901 ParseGlobalValueVector(Elts) ||
1902 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1903 return true;
1905 if (Opc == Instruction::GetElementPtr) {
1906 if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1907 return Error(ID.Loc, "getelementptr requires pointer operand");
1909 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1910 (Value**)&Elts[1], Elts.size()-1))
1911 return Error(ID.Loc, "invalid indices for getelementptr");
1912 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1913 &Elts[1], Elts.size()-1);
1914 } else if (Opc == Instruction::Select) {
1915 if (Elts.size() != 3)
1916 return Error(ID.Loc, "expected three operands to select");
1917 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1918 Elts[2]))
1919 return Error(ID.Loc, Reason);
1920 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1921 } else if (Opc == Instruction::ShuffleVector) {
1922 if (Elts.size() != 3)
1923 return Error(ID.Loc, "expected three operands to shufflevector");
1924 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1925 return Error(ID.Loc, "invalid operands to shufflevector");
1926 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1927 } else if (Opc == Instruction::ExtractElement) {
1928 if (Elts.size() != 2)
1929 return Error(ID.Loc, "expected two operands to extractelement");
1930 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1931 return Error(ID.Loc, "invalid extractelement operands");
1932 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1933 } else {
1934 assert(Opc == Instruction::InsertElement && "Unknown opcode");
1935 if (Elts.size() != 3)
1936 return Error(ID.Loc, "expected three operands to insertelement");
1937 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1938 return Error(ID.Loc, "invalid insertelement operands");
1939 ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1942 ID.Kind = ValID::t_Constant;
1943 return false;
1947 Lex.Lex();
1948 return false;
1951 /// ParseGlobalValue - Parse a global value with the specified type.
1952 bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1953 V = 0;
1954 ValID ID;
1955 return ParseValID(ID) ||
1956 ConvertGlobalValIDToValue(Ty, ID, V);
1959 /// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1960 /// constant.
1961 bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1962 Constant *&V) {
1963 if (isa<FunctionType>(Ty))
1964 return Error(ID.Loc, "functions are not values, refer to them as pointers");
1966 switch (ID.Kind) {
1967 default: assert(0 && "Unknown ValID!");
1968 case ValID::t_LocalID:
1969 case ValID::t_LocalName:
1970 return Error(ID.Loc, "invalid use of function-local name");
1971 case ValID::t_InlineAsm:
1972 return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1973 case ValID::t_GlobalName:
1974 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1975 return V == 0;
1976 case ValID::t_GlobalID:
1977 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1978 return V == 0;
1979 case ValID::t_APSInt:
1980 if (!isa<IntegerType>(Ty))
1981 return Error(ID.Loc, "integer constant must have integer type");
1982 ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
1983 V = ConstantInt::get(ID.APSIntVal);
1984 return false;
1985 case ValID::t_APFloat:
1986 if (!Ty->isFloatingPoint() ||
1987 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
1988 return Error(ID.Loc, "floating point constant invalid for type");
1990 // The lexer has no type info, so builds all float and double FP constants
1991 // as double. Fix this here. Long double does not need this.
1992 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
1993 Ty == Type::FloatTy) {
1994 bool Ignored;
1995 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1996 &Ignored);
1998 V = ConstantFP::get(ID.APFloatVal);
2000 if (V->getType() != Ty)
2001 return Error(ID.Loc, "floating point constant does not have type '" +
2002 Ty->getDescription() + "'");
2004 return false;
2005 case ValID::t_Null:
2006 if (!isa<PointerType>(Ty))
2007 return Error(ID.Loc, "null must be a pointer type");
2008 V = ConstantPointerNull::get(cast<PointerType>(Ty));
2009 return false;
2010 case ValID::t_Undef:
2011 // FIXME: LabelTy should not be a first-class type.
2012 if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) &&
2013 !isa<OpaqueType>(Ty))
2014 return Error(ID.Loc, "invalid type for undef constant");
2015 V = UndefValue::get(Ty);
2016 return false;
2017 case ValID::t_EmptyArray:
2018 if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2019 return Error(ID.Loc, "invalid empty array initializer");
2020 V = UndefValue::get(Ty);
2021 return false;
2022 case ValID::t_Zero:
2023 // FIXME: LabelTy should not be a first-class type.
2024 if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
2025 return Error(ID.Loc, "invalid type for null constant");
2026 V = Constant::getNullValue(Ty);
2027 return false;
2028 case ValID::t_Constant:
2029 if (ID.ConstantVal->getType() != Ty)
2030 return Error(ID.Loc, "constant expression type mismatch");
2031 V = ID.ConstantVal;
2032 return false;
2036 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2037 PATypeHolder Type(Type::VoidTy);
2038 return ParseType(Type) ||
2039 ParseGlobalValue(Type, V);
2042 /// ParseGlobalValueVector
2043 /// ::= /*empty*/
2044 /// ::= TypeAndValue (',' TypeAndValue)*
2045 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2046 // Empty list.
2047 if (Lex.getKind() == lltok::rbrace ||
2048 Lex.getKind() == lltok::rsquare ||
2049 Lex.getKind() == lltok::greater ||
2050 Lex.getKind() == lltok::rparen)
2051 return false;
2053 Constant *C;
2054 if (ParseGlobalTypeAndValue(C)) return true;
2055 Elts.push_back(C);
2057 while (EatIfPresent(lltok::comma)) {
2058 if (ParseGlobalTypeAndValue(C)) return true;
2059 Elts.push_back(C);
2062 return false;
2066 //===----------------------------------------------------------------------===//
2067 // Function Parsing.
2068 //===----------------------------------------------------------------------===//
2070 bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2071 PerFunctionState &PFS) {
2072 if (ID.Kind == ValID::t_LocalID)
2073 V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2074 else if (ID.Kind == ValID::t_LocalName)
2075 V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2076 else if (ID.Kind == ValID::t_InlineAsm) {
2077 const PointerType *PTy = dyn_cast<PointerType>(Ty);
2078 const FunctionType *FTy =
2079 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2080 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2081 return Error(ID.Loc, "invalid type for inline asm constraint string");
2082 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2083 return false;
2084 } else {
2085 Constant *C;
2086 if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2087 V = C;
2088 return false;
2091 return V == 0;
2094 bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2095 V = 0;
2096 ValID ID;
2097 return ParseValID(ID) ||
2098 ConvertValIDToValue(Ty, ID, V, PFS);
2101 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2102 PATypeHolder T(Type::VoidTy);
2103 return ParseType(T) ||
2104 ParseValue(T, V, PFS);
2107 /// FunctionHeader
2108 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2109 /// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2110 /// OptionalAlign OptGC
2111 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2112 // Parse the linkage.
2113 LocTy LinkageLoc = Lex.getLoc();
2114 unsigned Linkage;
2116 unsigned Visibility, CC, RetAttrs;
2117 PATypeHolder RetType(Type::VoidTy);
2118 LocTy RetTypeLoc = Lex.getLoc();
2119 if (ParseOptionalLinkage(Linkage) ||
2120 ParseOptionalVisibility(Visibility) ||
2121 ParseOptionalCallingConv(CC) ||
2122 ParseOptionalAttrs(RetAttrs, 1) ||
2123 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2124 return true;
2126 // Verify that the linkage is ok.
2127 switch ((GlobalValue::LinkageTypes)Linkage) {
2128 case GlobalValue::ExternalLinkage:
2129 break; // always ok.
2130 case GlobalValue::DLLImportLinkage:
2131 case GlobalValue::ExternalWeakLinkage:
2132 if (isDefine)
2133 return Error(LinkageLoc, "invalid linkage for function definition");
2134 break;
2135 case GlobalValue::PrivateLinkage:
2136 case GlobalValue::InternalLinkage:
2137 case GlobalValue::AvailableExternallyLinkage:
2138 case GlobalValue::LinkOnceAnyLinkage:
2139 case GlobalValue::LinkOnceODRLinkage:
2140 case GlobalValue::WeakAnyLinkage:
2141 case GlobalValue::WeakODRLinkage:
2142 case GlobalValue::DLLExportLinkage:
2143 if (!isDefine)
2144 return Error(LinkageLoc, "invalid linkage for function declaration");
2145 break;
2146 case GlobalValue::AppendingLinkage:
2147 case GlobalValue::GhostLinkage:
2148 case GlobalValue::CommonLinkage:
2149 return Error(LinkageLoc, "invalid function linkage type");
2152 if (!FunctionType::isValidReturnType(RetType) ||
2153 isa<OpaqueType>(RetType))
2154 return Error(RetTypeLoc, "invalid function return type");
2156 LocTy NameLoc = Lex.getLoc();
2158 std::string FunctionName;
2159 if (Lex.getKind() == lltok::GlobalVar) {
2160 FunctionName = Lex.getStrVal();
2161 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
2162 unsigned NameID = Lex.getUIntVal();
2164 if (NameID != NumberedVals.size())
2165 return TokError("function expected to be numbered '%" +
2166 utostr(NumberedVals.size()) + "'");
2167 } else {
2168 return TokError("expected function name");
2171 Lex.Lex();
2173 if (Lex.getKind() != lltok::lparen)
2174 return TokError("expected '(' in function argument list");
2176 std::vector<ArgInfo> ArgList;
2177 bool isVarArg;
2178 unsigned FuncAttrs;
2179 std::string Section;
2180 unsigned Alignment;
2181 std::string GC;
2183 if (ParseArgumentList(ArgList, isVarArg, false) ||
2184 ParseOptionalAttrs(FuncAttrs, 2) ||
2185 (EatIfPresent(lltok::kw_section) &&
2186 ParseStringConstant(Section)) ||
2187 ParseOptionalAlignment(Alignment) ||
2188 (EatIfPresent(lltok::kw_gc) &&
2189 ParseStringConstant(GC)))
2190 return true;
2192 // If the alignment was parsed as an attribute, move to the alignment field.
2193 if (FuncAttrs & Attribute::Alignment) {
2194 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2195 FuncAttrs &= ~Attribute::Alignment;
2198 // Okay, if we got here, the function is syntactically valid. Convert types
2199 // and do semantic checks.
2200 std::vector<const Type*> ParamTypeList;
2201 SmallVector<AttributeWithIndex, 8> Attrs;
2202 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2203 // attributes.
2204 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2205 if (FuncAttrs & ObsoleteFuncAttrs) {
2206 RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2207 FuncAttrs &= ~ObsoleteFuncAttrs;
2210 if (RetAttrs != Attribute::None)
2211 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2213 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2214 ParamTypeList.push_back(ArgList[i].Type);
2215 if (ArgList[i].Attrs != Attribute::None)
2216 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2219 if (FuncAttrs != Attribute::None)
2220 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2222 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2224 if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2225 RetType != Type::VoidTy)
2226 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2228 const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2229 const PointerType *PFT = PointerType::getUnqual(FT);
2231 Fn = 0;
2232 if (!FunctionName.empty()) {
2233 // If this was a definition of a forward reference, remove the definition
2234 // from the forward reference table and fill in the forward ref.
2235 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2236 ForwardRefVals.find(FunctionName);
2237 if (FRVI != ForwardRefVals.end()) {
2238 Fn = M->getFunction(FunctionName);
2239 ForwardRefVals.erase(FRVI);
2240 } else if ((Fn = M->getFunction(FunctionName))) {
2241 // If this function already exists in the symbol table, then it is
2242 // multiply defined. We accept a few cases for old backwards compat.
2243 // FIXME: Remove this stuff for LLVM 3.0.
2244 if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2245 (!Fn->isDeclaration() && isDefine)) {
2246 // If the redefinition has different type or different attributes,
2247 // reject it. If both have bodies, reject it.
2248 return Error(NameLoc, "invalid redefinition of function '" +
2249 FunctionName + "'");
2250 } else if (Fn->isDeclaration()) {
2251 // Make sure to strip off any argument names so we can't get conflicts.
2252 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2253 AI != AE; ++AI)
2254 AI->setName("");
2258 } else if (FunctionName.empty()) {
2259 // If this is a definition of a forward referenced function, make sure the
2260 // types agree.
2261 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2262 = ForwardRefValIDs.find(NumberedVals.size());
2263 if (I != ForwardRefValIDs.end()) {
2264 Fn = cast<Function>(I->second.first);
2265 if (Fn->getType() != PFT)
2266 return Error(NameLoc, "type of definition and forward reference of '@" +
2267 utostr(NumberedVals.size()) +"' disagree");
2268 ForwardRefValIDs.erase(I);
2272 if (Fn == 0)
2273 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2274 else // Move the forward-reference to the correct spot in the module.
2275 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2277 if (FunctionName.empty())
2278 NumberedVals.push_back(Fn);
2280 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2281 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2282 Fn->setCallingConv(CC);
2283 Fn->setAttributes(PAL);
2284 Fn->setAlignment(Alignment);
2285 Fn->setSection(Section);
2286 if (!GC.empty()) Fn->setGC(GC.c_str());
2288 // Add all of the arguments we parsed to the function.
2289 Function::arg_iterator ArgIt = Fn->arg_begin();
2290 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2291 // If the argument has a name, insert it into the argument symbol table.
2292 if (ArgList[i].Name.empty()) continue;
2294 // Set the name, if it conflicted, it will be auto-renamed.
2295 ArgIt->setName(ArgList[i].Name);
2297 if (ArgIt->getNameStr() != ArgList[i].Name)
2298 return Error(ArgList[i].Loc, "redefinition of argument '%" +
2299 ArgList[i].Name + "'");
2302 return false;
2306 /// ParseFunctionBody
2307 /// ::= '{' BasicBlock+ '}'
2308 /// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2310 bool LLParser::ParseFunctionBody(Function &Fn) {
2311 if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2312 return TokError("expected '{' in function body");
2313 Lex.Lex(); // eat the {.
2315 PerFunctionState PFS(*this, Fn);
2317 while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2318 if (ParseBasicBlock(PFS)) return true;
2320 // Eat the }.
2321 Lex.Lex();
2323 // Verify function is ok.
2324 return PFS.VerifyFunctionComplete();
2327 /// ParseBasicBlock
2328 /// ::= LabelStr? Instruction*
2329 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2330 // If this basic block starts out with a name, remember it.
2331 std::string Name;
2332 LocTy NameLoc = Lex.getLoc();
2333 if (Lex.getKind() == lltok::LabelStr) {
2334 Name = Lex.getStrVal();
2335 Lex.Lex();
2338 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2339 if (BB == 0) return true;
2341 std::string NameStr;
2343 // Parse the instructions in this block until we get a terminator.
2344 Instruction *Inst;
2345 do {
2346 // This instruction may have three possibilities for a name: a) none
2347 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2348 LocTy NameLoc = Lex.getLoc();
2349 int NameID = -1;
2350 NameStr = "";
2352 if (Lex.getKind() == lltok::LocalVarID) {
2353 NameID = Lex.getUIntVal();
2354 Lex.Lex();
2355 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2356 return true;
2357 } else if (Lex.getKind() == lltok::LocalVar ||
2358 // FIXME: REMOVE IN LLVM 3.0
2359 Lex.getKind() == lltok::StringConstant) {
2360 NameStr = Lex.getStrVal();
2361 Lex.Lex();
2362 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2363 return true;
2366 if (ParseInstruction(Inst, BB, PFS)) return true;
2368 BB->getInstList().push_back(Inst);
2370 // Set the name on the instruction.
2371 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2372 } while (!isa<TerminatorInst>(Inst));
2374 return false;
2377 //===----------------------------------------------------------------------===//
2378 // Instruction Parsing.
2379 //===----------------------------------------------------------------------===//
2381 /// ParseInstruction - Parse one of the many different instructions.
2383 bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2384 PerFunctionState &PFS) {
2385 lltok::Kind Token = Lex.getKind();
2386 if (Token == lltok::Eof)
2387 return TokError("found end of file when expecting more instructions");
2388 LocTy Loc = Lex.getLoc();
2389 unsigned KeywordVal = Lex.getUIntVal();
2390 Lex.Lex(); // Eat the keyword.
2392 switch (Token) {
2393 default: return Error(Loc, "expected instruction opcode");
2394 // Terminator Instructions.
2395 case lltok::kw_unwind: Inst = new UnwindInst(); return false;
2396 case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2397 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
2398 case lltok::kw_br: return ParseBr(Inst, PFS);
2399 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
2400 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
2401 // Binary Operators.
2402 case lltok::kw_add:
2403 case lltok::kw_sub:
2404 case lltok::kw_mul: return ParseArithmetic(Inst, PFS, KeywordVal, 0);
2406 case lltok::kw_udiv:
2407 case lltok::kw_sdiv:
2408 case lltok::kw_urem:
2409 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2410 case lltok::kw_fdiv:
2411 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2412 case lltok::kw_shl:
2413 case lltok::kw_lshr:
2414 case lltok::kw_ashr:
2415 case lltok::kw_and:
2416 case lltok::kw_or:
2417 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
2418 case lltok::kw_icmp:
2419 case lltok::kw_fcmp:
2420 case lltok::kw_vicmp:
2421 case lltok::kw_vfcmp: return ParseCompare(Inst, PFS, KeywordVal);
2422 // Casts.
2423 case lltok::kw_trunc:
2424 case lltok::kw_zext:
2425 case lltok::kw_sext:
2426 case lltok::kw_fptrunc:
2427 case lltok::kw_fpext:
2428 case lltok::kw_bitcast:
2429 case lltok::kw_uitofp:
2430 case lltok::kw_sitofp:
2431 case lltok::kw_fptoui:
2432 case lltok::kw_fptosi:
2433 case lltok::kw_inttoptr:
2434 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
2435 // Other.
2436 case lltok::kw_select: return ParseSelect(Inst, PFS);
2437 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
2438 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2439 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
2440 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
2441 case lltok::kw_phi: return ParsePHI(Inst, PFS);
2442 case lltok::kw_call: return ParseCall(Inst, PFS, false);
2443 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
2444 // Memory.
2445 case lltok::kw_alloca:
2446 case lltok::kw_malloc: return ParseAlloc(Inst, PFS, KeywordVal);
2447 case lltok::kw_free: return ParseFree(Inst, PFS);
2448 case lltok::kw_load: return ParseLoad(Inst, PFS, false);
2449 case lltok::kw_store: return ParseStore(Inst, PFS, false);
2450 case lltok::kw_volatile:
2451 if (EatIfPresent(lltok::kw_load))
2452 return ParseLoad(Inst, PFS, true);
2453 else if (EatIfPresent(lltok::kw_store))
2454 return ParseStore(Inst, PFS, true);
2455 else
2456 return TokError("expected 'load' or 'store'");
2457 case lltok::kw_getresult: return ParseGetResult(Inst, PFS);
2458 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2459 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
2460 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
2464 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2465 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2466 // FIXME: REMOVE vicmp/vfcmp!
2467 if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2468 switch (Lex.getKind()) {
2469 default: TokError("expected fcmp predicate (e.g. 'oeq')");
2470 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2471 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2472 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2473 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2474 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2475 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2476 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2477 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2478 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2479 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2480 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2481 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2482 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2483 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2484 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2485 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2487 } else {
2488 switch (Lex.getKind()) {
2489 default: TokError("expected icmp predicate (e.g. 'eq')");
2490 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
2491 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
2492 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2493 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2494 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2495 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2496 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2497 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2498 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2499 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2502 Lex.Lex();
2503 return false;
2506 //===----------------------------------------------------------------------===//
2507 // Terminator Instructions.
2508 //===----------------------------------------------------------------------===//
2510 /// ParseRet - Parse a return instruction.
2511 /// ::= 'ret' void
2512 /// ::= 'ret' TypeAndValue
2513 /// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]]
2514 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2515 PerFunctionState &PFS) {
2516 PATypeHolder Ty(Type::VoidTy);
2517 if (ParseType(Ty, true /*void allowed*/)) return true;
2519 if (Ty == Type::VoidTy) {
2520 Inst = ReturnInst::Create();
2521 return false;
2524 Value *RV;
2525 if (ParseValue(Ty, RV, PFS)) return true;
2527 // The normal case is one return value.
2528 if (Lex.getKind() == lltok::comma) {
2529 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2530 // of 'ret {i32,i32} {i32 1, i32 2}'
2531 SmallVector<Value*, 8> RVs;
2532 RVs.push_back(RV);
2534 while (EatIfPresent(lltok::comma)) {
2535 if (ParseTypeAndValue(RV, PFS)) return true;
2536 RVs.push_back(RV);
2539 RV = UndefValue::get(PFS.getFunction().getReturnType());
2540 for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2541 Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2542 BB->getInstList().push_back(I);
2543 RV = I;
2546 Inst = ReturnInst::Create(RV);
2547 return false;
2551 /// ParseBr
2552 /// ::= 'br' TypeAndValue
2553 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2554 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2555 LocTy Loc, Loc2;
2556 Value *Op0, *Op1, *Op2;
2557 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2559 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2560 Inst = BranchInst::Create(BB);
2561 return false;
2564 if (Op0->getType() != Type::Int1Ty)
2565 return Error(Loc, "branch condition must have 'i1' type");
2567 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2568 ParseTypeAndValue(Op1, Loc, PFS) ||
2569 ParseToken(lltok::comma, "expected ',' after true destination") ||
2570 ParseTypeAndValue(Op2, Loc2, PFS))
2571 return true;
2573 if (!isa<BasicBlock>(Op1))
2574 return Error(Loc, "true destination of branch must be a basic block");
2575 if (!isa<BasicBlock>(Op2))
2576 return Error(Loc2, "true destination of branch must be a basic block");
2578 Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2579 return false;
2582 /// ParseSwitch
2583 /// Instruction
2584 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2585 /// JumpTable
2586 /// ::= (TypeAndValue ',' TypeAndValue)*
2587 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2588 LocTy CondLoc, BBLoc;
2589 Value *Cond, *DefaultBB;
2590 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2591 ParseToken(lltok::comma, "expected ',' after switch condition") ||
2592 ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2593 ParseToken(lltok::lsquare, "expected '[' with switch table"))
2594 return true;
2596 if (!isa<IntegerType>(Cond->getType()))
2597 return Error(CondLoc, "switch condition must have integer type");
2598 if (!isa<BasicBlock>(DefaultBB))
2599 return Error(BBLoc, "default destination must be a basic block");
2601 // Parse the jump table pairs.
2602 SmallPtrSet<Value*, 32> SeenCases;
2603 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2604 while (Lex.getKind() != lltok::rsquare) {
2605 Value *Constant, *DestBB;
2607 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2608 ParseToken(lltok::comma, "expected ',' after case value") ||
2609 ParseTypeAndValue(DestBB, BBLoc, PFS))
2610 return true;
2612 if (!SeenCases.insert(Constant))
2613 return Error(CondLoc, "duplicate case value in switch");
2614 if (!isa<ConstantInt>(Constant))
2615 return Error(CondLoc, "case value is not a constant integer");
2616 if (!isa<BasicBlock>(DestBB))
2617 return Error(BBLoc, "case destination is not a basic block");
2619 Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2620 cast<BasicBlock>(DestBB)));
2623 Lex.Lex(); // Eat the ']'.
2625 SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2626 Table.size());
2627 for (unsigned i = 0, e = Table.size(); i != e; ++i)
2628 SI->addCase(Table[i].first, Table[i].second);
2629 Inst = SI;
2630 return false;
2633 /// ParseInvoke
2634 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2635 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2636 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2637 LocTy CallLoc = Lex.getLoc();
2638 unsigned CC, RetAttrs, FnAttrs;
2639 PATypeHolder RetType(Type::VoidTy);
2640 LocTy RetTypeLoc;
2641 ValID CalleeID;
2642 SmallVector<ParamInfo, 16> ArgList;
2644 Value *NormalBB, *UnwindBB;
2645 if (ParseOptionalCallingConv(CC) ||
2646 ParseOptionalAttrs(RetAttrs, 1) ||
2647 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2648 ParseValID(CalleeID) ||
2649 ParseParameterList(ArgList, PFS) ||
2650 ParseOptionalAttrs(FnAttrs, 2) ||
2651 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2652 ParseTypeAndValue(NormalBB, PFS) ||
2653 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2654 ParseTypeAndValue(UnwindBB, PFS))
2655 return true;
2657 if (!isa<BasicBlock>(NormalBB))
2658 return Error(CallLoc, "normal destination is not a basic block");
2659 if (!isa<BasicBlock>(UnwindBB))
2660 return Error(CallLoc, "unwind destination is not a basic block");
2662 // If RetType is a non-function pointer type, then this is the short syntax
2663 // for the call, which means that RetType is just the return type. Infer the
2664 // rest of the function argument types from the arguments that are present.
2665 const PointerType *PFTy = 0;
2666 const FunctionType *Ty = 0;
2667 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2668 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2669 // Pull out the types of all of the arguments...
2670 std::vector<const Type*> ParamTypes;
2671 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2672 ParamTypes.push_back(ArgList[i].V->getType());
2674 if (!FunctionType::isValidReturnType(RetType))
2675 return Error(RetTypeLoc, "Invalid result type for LLVM function");
2677 Ty = FunctionType::get(RetType, ParamTypes, false);
2678 PFTy = PointerType::getUnqual(Ty);
2681 // Look up the callee.
2682 Value *Callee;
2683 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2685 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2686 // function attributes.
2687 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2688 if (FnAttrs & ObsoleteFuncAttrs) {
2689 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2690 FnAttrs &= ~ObsoleteFuncAttrs;
2693 // Set up the Attributes for the function.
2694 SmallVector<AttributeWithIndex, 8> Attrs;
2695 if (RetAttrs != Attribute::None)
2696 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2698 SmallVector<Value*, 8> Args;
2700 // Loop through FunctionType's arguments and ensure they are specified
2701 // correctly. Also, gather any parameter attributes.
2702 FunctionType::param_iterator I = Ty->param_begin();
2703 FunctionType::param_iterator E = Ty->param_end();
2704 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2705 const Type *ExpectedTy = 0;
2706 if (I != E) {
2707 ExpectedTy = *I++;
2708 } else if (!Ty->isVarArg()) {
2709 return Error(ArgList[i].Loc, "too many arguments specified");
2712 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2713 return Error(ArgList[i].Loc, "argument is not of expected type '" +
2714 ExpectedTy->getDescription() + "'");
2715 Args.push_back(ArgList[i].V);
2716 if (ArgList[i].Attrs != Attribute::None)
2717 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2720 if (I != E)
2721 return Error(CallLoc, "not enough parameters specified for call");
2723 if (FnAttrs != Attribute::None)
2724 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2726 // Finish off the Attributes and check them
2727 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2729 InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2730 cast<BasicBlock>(UnwindBB),
2731 Args.begin(), Args.end());
2732 II->setCallingConv(CC);
2733 II->setAttributes(PAL);
2734 Inst = II;
2735 return false;
2740 //===----------------------------------------------------------------------===//
2741 // Binary Operators.
2742 //===----------------------------------------------------------------------===//
2744 /// ParseArithmetic
2745 /// ::= ArithmeticOps TypeAndValue ',' Value
2747 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
2748 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
2749 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2750 unsigned Opc, unsigned OperandType) {
2751 LocTy Loc; Value *LHS, *RHS;
2752 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2753 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2754 ParseValue(LHS->getType(), RHS, PFS))
2755 return true;
2757 bool Valid;
2758 switch (OperandType) {
2759 default: assert(0 && "Unknown operand type!");
2760 case 0: // int or FP.
2761 Valid = LHS->getType()->isIntOrIntVector() ||
2762 LHS->getType()->isFPOrFPVector();
2763 break;
2764 case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
2765 case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
2768 if (!Valid)
2769 return Error(Loc, "invalid operand type for instruction");
2771 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2772 return false;
2775 /// ParseLogical
2776 /// ::= ArithmeticOps TypeAndValue ',' Value {
2777 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2778 unsigned Opc) {
2779 LocTy Loc; Value *LHS, *RHS;
2780 if (ParseTypeAndValue(LHS, Loc, PFS) ||
2781 ParseToken(lltok::comma, "expected ',' in logical operation") ||
2782 ParseValue(LHS->getType(), RHS, PFS))
2783 return true;
2785 if (!LHS->getType()->isIntOrIntVector())
2786 return Error(Loc,"instruction requires integer or integer vector operands");
2788 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2789 return false;
2793 /// ParseCompare
2794 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
2795 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
2796 /// ::= 'vicmp' IPredicates TypeAndValue ',' Value
2797 /// ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2798 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2799 unsigned Opc) {
2800 // Parse the integer/fp comparison predicate.
2801 LocTy Loc;
2802 unsigned Pred;
2803 Value *LHS, *RHS;
2804 if (ParseCmpPredicate(Pred, Opc) ||
2805 ParseTypeAndValue(LHS, Loc, PFS) ||
2806 ParseToken(lltok::comma, "expected ',' after compare value") ||
2807 ParseValue(LHS->getType(), RHS, PFS))
2808 return true;
2810 if (Opc == Instruction::FCmp) {
2811 if (!LHS->getType()->isFPOrFPVector())
2812 return Error(Loc, "fcmp requires floating point operands");
2813 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2814 } else if (Opc == Instruction::ICmp) {
2815 if (!LHS->getType()->isIntOrIntVector() &&
2816 !isa<PointerType>(LHS->getType()))
2817 return Error(Loc, "icmp requires integer operands");
2818 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2819 } else if (Opc == Instruction::VFCmp) {
2820 if (!LHS->getType()->isFPOrFPVector() || !isa<VectorType>(LHS->getType()))
2821 return Error(Loc, "vfcmp requires vector floating point operands");
2822 Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2823 } else if (Opc == Instruction::VICmp) {
2824 if (!LHS->getType()->isIntOrIntVector() || !isa<VectorType>(LHS->getType()))
2825 return Error(Loc, "vicmp requires vector floating point operands");
2826 Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2828 return false;
2831 //===----------------------------------------------------------------------===//
2832 // Other Instructions.
2833 //===----------------------------------------------------------------------===//
2836 /// ParseCast
2837 /// ::= CastOpc TypeAndValue 'to' Type
2838 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2839 unsigned Opc) {
2840 LocTy Loc; Value *Op;
2841 PATypeHolder DestTy(Type::VoidTy);
2842 if (ParseTypeAndValue(Op, Loc, PFS) ||
2843 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2844 ParseType(DestTy))
2845 return true;
2847 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
2848 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
2849 return Error(Loc, "invalid cast opcode for cast from '" +
2850 Op->getType()->getDescription() + "' to '" +
2851 DestTy->getDescription() + "'");
2853 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2854 return false;
2857 /// ParseSelect
2858 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2859 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2860 LocTy Loc;
2861 Value *Op0, *Op1, *Op2;
2862 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2863 ParseToken(lltok::comma, "expected ',' after select condition") ||
2864 ParseTypeAndValue(Op1, PFS) ||
2865 ParseToken(lltok::comma, "expected ',' after select value") ||
2866 ParseTypeAndValue(Op2, PFS))
2867 return true;
2869 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2870 return Error(Loc, Reason);
2872 Inst = SelectInst::Create(Op0, Op1, Op2);
2873 return false;
2876 /// ParseVA_Arg
2877 /// ::= 'va_arg' TypeAndValue ',' Type
2878 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
2879 Value *Op;
2880 PATypeHolder EltTy(Type::VoidTy);
2881 LocTy TypeLoc;
2882 if (ParseTypeAndValue(Op, PFS) ||
2883 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2884 ParseType(EltTy, TypeLoc))
2885 return true;
2887 if (!EltTy->isFirstClassType())
2888 return Error(TypeLoc, "va_arg requires operand with first class type");
2890 Inst = new VAArgInst(Op, EltTy);
2891 return false;
2894 /// ParseExtractElement
2895 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
2896 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2897 LocTy Loc;
2898 Value *Op0, *Op1;
2899 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2900 ParseToken(lltok::comma, "expected ',' after extract value") ||
2901 ParseTypeAndValue(Op1, PFS))
2902 return true;
2904 if (!ExtractElementInst::isValidOperands(Op0, Op1))
2905 return Error(Loc, "invalid extractelement operands");
2907 Inst = new ExtractElementInst(Op0, Op1);
2908 return false;
2911 /// ParseInsertElement
2912 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2913 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2914 LocTy Loc;
2915 Value *Op0, *Op1, *Op2;
2916 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2917 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2918 ParseTypeAndValue(Op1, PFS) ||
2919 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2920 ParseTypeAndValue(Op2, PFS))
2921 return true;
2923 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2924 return Error(Loc, "invalid extractelement operands");
2926 Inst = InsertElementInst::Create(Op0, Op1, Op2);
2927 return false;
2930 /// ParseShuffleVector
2931 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2932 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2933 LocTy Loc;
2934 Value *Op0, *Op1, *Op2;
2935 if (ParseTypeAndValue(Op0, Loc, PFS) ||
2936 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2937 ParseTypeAndValue(Op1, PFS) ||
2938 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2939 ParseTypeAndValue(Op2, PFS))
2940 return true;
2942 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2943 return Error(Loc, "invalid extractelement operands");
2945 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2946 return false;
2949 /// ParsePHI
2950 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
2951 bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2952 PATypeHolder Ty(Type::VoidTy);
2953 Value *Op0, *Op1;
2954 LocTy TypeLoc = Lex.getLoc();
2956 if (ParseType(Ty) ||
2957 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2958 ParseValue(Ty, Op0, PFS) ||
2959 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2960 ParseValue(Type::LabelTy, Op1, PFS) ||
2961 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2962 return true;
2964 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2965 while (1) {
2966 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2968 if (!EatIfPresent(lltok::comma))
2969 break;
2971 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2972 ParseValue(Ty, Op0, PFS) ||
2973 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2974 ParseValue(Type::LabelTy, Op1, PFS) ||
2975 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2976 return true;
2979 if (!Ty->isFirstClassType())
2980 return Error(TypeLoc, "phi node must have first class type");
2982 PHINode *PN = PHINode::Create(Ty);
2983 PN->reserveOperandSpace(PHIVals.size());
2984 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
2985 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
2986 Inst = PN;
2987 return false;
2990 /// ParseCall
2991 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
2992 /// ParameterList OptionalAttrs
2993 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
2994 bool isTail) {
2995 unsigned CC, RetAttrs, FnAttrs;
2996 PATypeHolder RetType(Type::VoidTy);
2997 LocTy RetTypeLoc;
2998 ValID CalleeID;
2999 SmallVector<ParamInfo, 16> ArgList;
3000 LocTy CallLoc = Lex.getLoc();
3002 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3003 ParseOptionalCallingConv(CC) ||
3004 ParseOptionalAttrs(RetAttrs, 1) ||
3005 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3006 ParseValID(CalleeID) ||
3007 ParseParameterList(ArgList, PFS) ||
3008 ParseOptionalAttrs(FnAttrs, 2))
3009 return true;
3011 // If RetType is a non-function pointer type, then this is the short syntax
3012 // for the call, which means that RetType is just the return type. Infer the
3013 // rest of the function argument types from the arguments that are present.
3014 const PointerType *PFTy = 0;
3015 const FunctionType *Ty = 0;
3016 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3017 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3018 // Pull out the types of all of the arguments...
3019 std::vector<const Type*> ParamTypes;
3020 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3021 ParamTypes.push_back(ArgList[i].V->getType());
3023 if (!FunctionType::isValidReturnType(RetType))
3024 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3026 Ty = FunctionType::get(RetType, ParamTypes, false);
3027 PFTy = PointerType::getUnqual(Ty);
3030 // Look up the callee.
3031 Value *Callee;
3032 if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3034 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3035 // function attributes.
3036 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3037 if (FnAttrs & ObsoleteFuncAttrs) {
3038 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3039 FnAttrs &= ~ObsoleteFuncAttrs;
3042 // Set up the Attributes for the function.
3043 SmallVector<AttributeWithIndex, 8> Attrs;
3044 if (RetAttrs != Attribute::None)
3045 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3047 SmallVector<Value*, 8> Args;
3049 // Loop through FunctionType's arguments and ensure they are specified
3050 // correctly. Also, gather any parameter attributes.
3051 FunctionType::param_iterator I = Ty->param_begin();
3052 FunctionType::param_iterator E = Ty->param_end();
3053 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3054 const Type *ExpectedTy = 0;
3055 if (I != E) {
3056 ExpectedTy = *I++;
3057 } else if (!Ty->isVarArg()) {
3058 return Error(ArgList[i].Loc, "too many arguments specified");
3061 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3062 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3063 ExpectedTy->getDescription() + "'");
3064 Args.push_back(ArgList[i].V);
3065 if (ArgList[i].Attrs != Attribute::None)
3066 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3069 if (I != E)
3070 return Error(CallLoc, "not enough parameters specified for call");
3072 if (FnAttrs != Attribute::None)
3073 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3075 // Finish off the Attributes and check them
3076 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3078 CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3079 CI->setTailCall(isTail);
3080 CI->setCallingConv(CC);
3081 CI->setAttributes(PAL);
3082 Inst = CI;
3083 return false;
3086 //===----------------------------------------------------------------------===//
3087 // Memory Instructions.
3088 //===----------------------------------------------------------------------===//
3090 /// ParseAlloc
3091 /// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3092 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3093 bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3094 unsigned Opc) {
3095 PATypeHolder Ty(Type::VoidTy);
3096 Value *Size = 0;
3097 LocTy SizeLoc = 0;
3098 unsigned Alignment = 0;
3099 if (ParseType(Ty)) return true;
3101 if (EatIfPresent(lltok::comma)) {
3102 if (Lex.getKind() == lltok::kw_align) {
3103 if (ParseOptionalAlignment(Alignment)) return true;
3104 } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3105 ParseOptionalCommaAlignment(Alignment)) {
3106 return true;
3110 if (Size && Size->getType() != Type::Int32Ty)
3111 return Error(SizeLoc, "element count must be i32");
3113 if (Opc == Instruction::Malloc)
3114 Inst = new MallocInst(Ty, Size, Alignment);
3115 else
3116 Inst = new AllocaInst(Ty, Size, Alignment);
3117 return false;
3120 /// ParseFree
3121 /// ::= 'free' TypeAndValue
3122 bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3123 Value *Val; LocTy Loc;
3124 if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3125 if (!isa<PointerType>(Val->getType()))
3126 return Error(Loc, "operand to free must be a pointer");
3127 Inst = new FreeInst(Val);
3128 return false;
3131 /// ParseLoad
3132 /// ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
3133 bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3134 bool isVolatile) {
3135 Value *Val; LocTy Loc;
3136 unsigned Alignment;
3137 if (ParseTypeAndValue(Val, Loc, PFS) ||
3138 ParseOptionalCommaAlignment(Alignment))
3139 return true;
3141 if (!isa<PointerType>(Val->getType()) ||
3142 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3143 return Error(Loc, "load operand must be a pointer to a first class type");
3145 Inst = new LoadInst(Val, "", isVolatile, Alignment);
3146 return false;
3149 /// ParseStore
3150 /// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3151 bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3152 bool isVolatile) {
3153 Value *Val, *Ptr; LocTy Loc, PtrLoc;
3154 unsigned Alignment;
3155 if (ParseTypeAndValue(Val, Loc, PFS) ||
3156 ParseToken(lltok::comma, "expected ',' after store operand") ||
3157 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3158 ParseOptionalCommaAlignment(Alignment))
3159 return true;
3161 if (!isa<PointerType>(Ptr->getType()))
3162 return Error(PtrLoc, "store operand must be a pointer");
3163 if (!Val->getType()->isFirstClassType())
3164 return Error(Loc, "store operand must be a first class value");
3165 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3166 return Error(Loc, "stored value and pointer type do not match");
3168 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3169 return false;
3172 /// ParseGetResult
3173 /// ::= 'getresult' TypeAndValue ',' uint
3174 /// FIXME: Remove support for getresult in LLVM 3.0
3175 bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3176 Value *Val; LocTy ValLoc, EltLoc;
3177 unsigned Element;
3178 if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3179 ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3180 ParseUInt32(Element, EltLoc))
3181 return true;
3183 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3184 return Error(ValLoc, "getresult inst requires an aggregate operand");
3185 if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3186 return Error(EltLoc, "invalid getresult index for value");
3187 Inst = ExtractValueInst::Create(Val, Element);
3188 return false;
3191 /// ParseGetElementPtr
3192 /// ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3193 bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3194 Value *Ptr, *Val; LocTy Loc, EltLoc;
3195 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3197 if (!isa<PointerType>(Ptr->getType()))
3198 return Error(Loc, "base of getelementptr must be a pointer");
3200 SmallVector<Value*, 16> Indices;
3201 while (EatIfPresent(lltok::comma)) {
3202 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3203 if (!isa<IntegerType>(Val->getType()))
3204 return Error(EltLoc, "getelementptr index must be an integer");
3205 Indices.push_back(Val);
3208 if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3209 Indices.begin(), Indices.end()))
3210 return Error(Loc, "invalid getelementptr indices");
3211 Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3212 return false;
3215 /// ParseExtractValue
3216 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
3217 bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3218 Value *Val; LocTy Loc;
3219 SmallVector<unsigned, 4> Indices;
3220 if (ParseTypeAndValue(Val, Loc, PFS) ||
3221 ParseIndexList(Indices))
3222 return true;
3224 if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3225 return Error(Loc, "extractvalue operand must be array or struct");
3227 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3228 Indices.end()))
3229 return Error(Loc, "invalid indices for extractvalue");
3230 Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3231 return false;
3234 /// ParseInsertValue
3235 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3236 bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3237 Value *Val0, *Val1; LocTy Loc0, Loc1;
3238 SmallVector<unsigned, 4> Indices;
3239 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3240 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3241 ParseTypeAndValue(Val1, Loc1, PFS) ||
3242 ParseIndexList(Indices))
3243 return true;
3245 if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3246 return Error(Loc0, "extractvalue operand must be array or struct");
3248 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3249 Indices.end()))
3250 return Error(Loc0, "invalid indices for insertvalue");
3251 Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3252 return false;
3255 //===----------------------------------------------------------------------===//
3256 // Embedded metadata.
3257 //===----------------------------------------------------------------------===//
3259 /// ParseMDNodeVector
3260 /// ::= TypeAndValue (',' TypeAndValue)*
3261 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Constant*> &Elts) {
3262 assert(Lex.getKind() == lltok::lbrace);
3263 Lex.Lex();
3264 do {
3265 Constant *C;
3266 if (ParseGlobalTypeAndValue(C)) return true;
3267 Elts.push_back(C);
3268 } while (EatIfPresent(lltok::comma));
3270 return false;