1 ///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the implementation of the FastISel class.
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Function.h"
43 #include "llvm/GlobalVariable.h"
44 #include "llvm/Instructions.h"
45 #include "llvm/IntrinsicInst.h"
46 #include "llvm/CodeGen/FastISel.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineModuleInfo.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/DebugLoc.h"
51 #include "llvm/CodeGen/DwarfWriter.h"
52 #include "llvm/Analysis/DebugInfo.h"
53 #include "llvm/Target/TargetData.h"
54 #include "llvm/Target/TargetInstrInfo.h"
55 #include "llvm/Target/TargetLowering.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include "SelectionDAGBuild.h"
60 unsigned FastISel::getRegForValue(Value
*V
) {
61 MVT RealVT
= TLI
.getValueType(V
->getType(), /*AllowUnknown=*/true);
62 // Don't handle non-simple values in FastISel.
63 if (!RealVT
.isSimple())
66 // Ignore illegal types. We must do this before looking up the value
67 // in ValueMap because Arguments are given virtual registers regardless
68 // of whether FastISel can handle them.
69 MVT::SimpleValueType VT
= RealVT
.getSimpleVT();
70 if (!TLI
.isTypeLegal(VT
)) {
71 // Promote MVT::i1 to a legal type though, because it's common and easy.
73 VT
= TLI
.getTypeToTransformTo(VT
).getSimpleVT();
78 // Look up the value to see if we already have a register for it. We
79 // cache values defined by Instructions across blocks, and other values
80 // only locally. This is because Instructions already have the SSA
81 // def-dominatess-use requirement enforced.
82 if (ValueMap
.count(V
))
84 unsigned Reg
= LocalValueMap
[V
];
88 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
89 if (CI
->getValue().getActiveBits() <= 64)
90 Reg
= FastEmit_i(VT
, VT
, ISD::Constant
, CI
->getZExtValue());
91 } else if (isa
<AllocaInst
>(V
)) {
92 Reg
= TargetMaterializeAlloca(cast
<AllocaInst
>(V
));
93 } else if (isa
<ConstantPointerNull
>(V
)) {
94 // Translate this as an integer zero so that it can be
95 // local-CSE'd with actual integer zeros.
96 Reg
= getRegForValue(Constant::getNullValue(TD
.getIntPtrType()));
97 } else if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(V
)) {
98 Reg
= FastEmit_f(VT
, VT
, ISD::ConstantFP
, CF
);
101 const APFloat
&Flt
= CF
->getValueAPF();
102 MVT IntVT
= TLI
.getPointerTy();
105 uint32_t IntBitWidth
= IntVT
.getSizeInBits();
107 (void) Flt
.convertToInteger(x
, IntBitWidth
, /*isSigned=*/true,
108 APFloat::rmTowardZero
, &isExact
);
110 APInt
IntVal(IntBitWidth
, 2, x
);
112 unsigned IntegerReg
= getRegForValue(ConstantInt::get(IntVal
));
114 Reg
= FastEmit_r(IntVT
.getSimpleVT(), VT
, ISD::SINT_TO_FP
, IntegerReg
);
117 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
118 if (!SelectOperator(CE
, CE
->getOpcode())) return 0;
119 Reg
= LocalValueMap
[CE
];
120 } else if (isa
<UndefValue
>(V
)) {
121 Reg
= createResultReg(TLI
.getRegClassFor(VT
));
122 BuildMI(MBB
, DL
, TII
.get(TargetInstrInfo::IMPLICIT_DEF
), Reg
);
125 // If target-independent code couldn't handle the value, give target-specific
127 if (!Reg
&& isa
<Constant
>(V
))
128 Reg
= TargetMaterializeConstant(cast
<Constant
>(V
));
130 // Don't cache constant materializations in the general ValueMap.
131 // To do so would require tracking what uses they dominate.
133 LocalValueMap
[V
] = Reg
;
137 unsigned FastISel::lookUpRegForValue(Value
*V
) {
138 // Look up the value to see if we already have a register for it. We
139 // cache values defined by Instructions across blocks, and other values
140 // only locally. This is because Instructions already have the SSA
141 // def-dominatess-use requirement enforced.
142 if (ValueMap
.count(V
))
144 return LocalValueMap
[V
];
147 /// UpdateValueMap - Update the value map to include the new mapping for this
148 /// instruction, or insert an extra copy to get the result in a previous
149 /// determined register.
150 /// NOTE: This is only necessary because we might select a block that uses
151 /// a value before we select the block that defines the value. It might be
152 /// possible to fix this by selecting blocks in reverse postorder.
153 unsigned FastISel::UpdateValueMap(Value
* I
, unsigned Reg
) {
154 if (!isa
<Instruction
>(I
)) {
155 LocalValueMap
[I
] = Reg
;
159 unsigned &AssignedReg
= ValueMap
[I
];
160 if (AssignedReg
== 0)
162 else if (Reg
!= AssignedReg
) {
163 const TargetRegisterClass
*RegClass
= MRI
.getRegClass(Reg
);
164 TII
.copyRegToReg(*MBB
, MBB
->end(), AssignedReg
,
165 Reg
, RegClass
, RegClass
);
170 unsigned FastISel::getRegForGEPIndex(Value
*Idx
) {
171 unsigned IdxN
= getRegForValue(Idx
);
173 // Unhandled operand. Halt "fast" selection and bail.
176 // If the index is smaller or larger than intptr_t, truncate or extend it.
177 MVT PtrVT
= TLI
.getPointerTy();
178 MVT IdxVT
= MVT::getMVT(Idx
->getType(), /*HandleUnknown=*/false);
179 if (IdxVT
.bitsLT(PtrVT
))
180 IdxN
= FastEmit_r(IdxVT
.getSimpleVT(), PtrVT
.getSimpleVT(),
181 ISD::SIGN_EXTEND
, IdxN
);
182 else if (IdxVT
.bitsGT(PtrVT
))
183 IdxN
= FastEmit_r(IdxVT
.getSimpleVT(), PtrVT
.getSimpleVT(),
184 ISD::TRUNCATE
, IdxN
);
188 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
189 /// which has an opcode which directly corresponds to the given ISD opcode.
191 bool FastISel::SelectBinaryOp(User
*I
, ISD::NodeType ISDOpcode
) {
192 MVT VT
= MVT::getMVT(I
->getType(), /*HandleUnknown=*/true);
193 if (VT
== MVT::Other
|| !VT
.isSimple())
194 // Unhandled type. Halt "fast" selection and bail.
197 // We only handle legal types. For example, on x86-32 the instruction
198 // selector contains all of the 64-bit instructions from x86-64,
199 // under the assumption that i64 won't be used if the target doesn't
201 if (!TLI
.isTypeLegal(VT
)) {
202 // MVT::i1 is special. Allow AND, OR, or XOR because they
203 // don't require additional zeroing, which makes them easy.
205 (ISDOpcode
== ISD::AND
|| ISDOpcode
== ISD::OR
||
206 ISDOpcode
== ISD::XOR
))
207 VT
= TLI
.getTypeToTransformTo(VT
);
212 unsigned Op0
= getRegForValue(I
->getOperand(0));
214 // Unhandled operand. Halt "fast" selection and bail.
217 // Check if the second operand is a constant and handle it appropriately.
218 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(1))) {
219 unsigned ResultReg
= FastEmit_ri(VT
.getSimpleVT(), VT
.getSimpleVT(),
220 ISDOpcode
, Op0
, CI
->getZExtValue());
221 if (ResultReg
!= 0) {
222 // We successfully emitted code for the given LLVM Instruction.
223 UpdateValueMap(I
, ResultReg
);
228 // Check if the second operand is a constant float.
229 if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(I
->getOperand(1))) {
230 unsigned ResultReg
= FastEmit_rf(VT
.getSimpleVT(), VT
.getSimpleVT(),
232 if (ResultReg
!= 0) {
233 // We successfully emitted code for the given LLVM Instruction.
234 UpdateValueMap(I
, ResultReg
);
239 unsigned Op1
= getRegForValue(I
->getOperand(1));
241 // Unhandled operand. Halt "fast" selection and bail.
244 // Now we have both operands in registers. Emit the instruction.
245 unsigned ResultReg
= FastEmit_rr(VT
.getSimpleVT(), VT
.getSimpleVT(),
246 ISDOpcode
, Op0
, Op1
);
248 // Target-specific code wasn't able to find a machine opcode for
249 // the given ISD opcode and type. Halt "fast" selection and bail.
252 // We successfully emitted code for the given LLVM Instruction.
253 UpdateValueMap(I
, ResultReg
);
257 bool FastISel::SelectGetElementPtr(User
*I
) {
258 unsigned N
= getRegForValue(I
->getOperand(0));
260 // Unhandled operand. Halt "fast" selection and bail.
263 const Type
*Ty
= I
->getOperand(0)->getType();
264 MVT::SimpleValueType VT
= TLI
.getPointerTy().getSimpleVT();
265 for (GetElementPtrInst::op_iterator OI
= I
->op_begin()+1, E
= I
->op_end();
268 if (const StructType
*StTy
= dyn_cast
<StructType
>(Ty
)) {
269 unsigned Field
= cast
<ConstantInt
>(Idx
)->getZExtValue();
272 uint64_t Offs
= TD
.getStructLayout(StTy
)->getElementOffset(Field
);
273 // FIXME: This can be optimized by combining the add with a
275 N
= FastEmit_ri_(VT
, ISD::ADD
, N
, Offs
, VT
);
277 // Unhandled operand. Halt "fast" selection and bail.
280 Ty
= StTy
->getElementType(Field
);
282 Ty
= cast
<SequentialType
>(Ty
)->getElementType();
284 // If this is a constant subscript, handle it quickly.
285 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx
)) {
286 if (CI
->getZExtValue() == 0) continue;
288 TD
.getTypePaddedSize(Ty
)*cast
<ConstantInt
>(CI
)->getSExtValue();
289 N
= FastEmit_ri_(VT
, ISD::ADD
, N
, Offs
, VT
);
291 // Unhandled operand. Halt "fast" selection and bail.
296 // N = N + Idx * ElementSize;
297 uint64_t ElementSize
= TD
.getTypePaddedSize(Ty
);
298 unsigned IdxN
= getRegForGEPIndex(Idx
);
300 // Unhandled operand. Halt "fast" selection and bail.
303 if (ElementSize
!= 1) {
304 IdxN
= FastEmit_ri_(VT
, ISD::MUL
, IdxN
, ElementSize
, VT
);
306 // Unhandled operand. Halt "fast" selection and bail.
309 N
= FastEmit_rr(VT
, VT
, ISD::ADD
, N
, IdxN
);
311 // Unhandled operand. Halt "fast" selection and bail.
316 // We successfully emitted code for the given LLVM Instruction.
317 UpdateValueMap(I
, N
);
321 bool FastISel::SelectCall(User
*I
) {
322 Function
*F
= cast
<CallInst
>(I
)->getCalledFunction();
323 if (!F
) return false;
325 unsigned IID
= F
->getIntrinsicID();
328 case Intrinsic::dbg_stoppoint
: {
329 DbgStopPointInst
*SPI
= cast
<DbgStopPointInst
>(I
);
330 if (DW
&& DW
->ValidDebugInfo(SPI
->getContext(), true)) {
331 DICompileUnit
CU(cast
<GlobalVariable
>(SPI
->getContext()));
333 unsigned SrcFile
= DW
->getOrCreateSourceID(CU
.getDirectory(Dir
),
335 unsigned Line
= SPI
->getLine();
336 unsigned Col
= SPI
->getColumn();
337 unsigned ID
= DW
->RecordSourceLine(Line
, Col
, SrcFile
);
338 unsigned Idx
= MF
.getOrCreateDebugLocID(SrcFile
, Line
, Col
);
339 setCurDebugLoc(DebugLoc::get(Idx
));
340 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
341 BuildMI(MBB
, DL
, II
).addImm(ID
);
345 case Intrinsic::dbg_region_start
: {
346 DbgRegionStartInst
*RSI
= cast
<DbgRegionStartInst
>(I
);
347 if (DW
&& DW
->ValidDebugInfo(RSI
->getContext(), true)) {
349 DW
->RecordRegionStart(cast
<GlobalVariable
>(RSI
->getContext()));
350 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
351 BuildMI(MBB
, DL
, II
).addImm(ID
);
355 case Intrinsic::dbg_region_end
: {
356 DbgRegionEndInst
*REI
= cast
<DbgRegionEndInst
>(I
);
357 if (DW
&& DW
->ValidDebugInfo(REI
->getContext(), true)) {
359 DISubprogram
Subprogram(cast
<GlobalVariable
>(REI
->getContext()));
360 if (!Subprogram
.isNull() && !Subprogram
.describes(MF
.getFunction())) {
361 // This is end of an inlined function.
362 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
363 ID
= DW
->RecordInlinedFnEnd(Subprogram
);
365 // Returned ID is 0 if this is unbalanced "end of inlined
366 // scope". This could happen if optimizer eats dbg intrinsics
367 // or "beginning of inlined scope" is not recoginized due to
368 // missing location info. In such cases, do ignore this region.end.
369 BuildMI(MBB
, DL
, II
).addImm(ID
);
371 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
372 ID
= DW
->RecordRegionEnd(cast
<GlobalVariable
>(REI
->getContext()));
373 BuildMI(MBB
, DL
, II
).addImm(ID
);
378 case Intrinsic::dbg_func_start
: {
379 if (!DW
) return true;
380 DbgFuncStartInst
*FSI
= cast
<DbgFuncStartInst
>(I
);
381 Value
*SP
= FSI
->getSubprogram();
383 if (DW
->ValidDebugInfo(SP
, true)) {
384 // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what
385 // (most?) gdb expects.
386 DebugLoc PrevLoc
= DL
;
387 DISubprogram
Subprogram(cast
<GlobalVariable
>(SP
));
388 DICompileUnit CompileUnit
= Subprogram
.getCompileUnit();
390 unsigned SrcFile
= DW
->getOrCreateSourceID(CompileUnit
.getDirectory(Dir
),
391 CompileUnit
.getFilename(FN
));
393 if (!Subprogram
.describes(MF
.getFunction())) {
394 // This is a beginning of an inlined function.
396 // If llvm.dbg.func.start is seen in a new block before any
397 // llvm.dbg.stoppoint intrinsic then the location info is unknown.
398 // FIXME : Why DebugLoc is reset at the beginning of each block ?
399 if (PrevLoc
.isUnknown())
401 // Record the source line.
402 unsigned Line
= Subprogram
.getLineNumber();
403 unsigned LabelID
= DW
->RecordSourceLine(Line
, 0, SrcFile
);
404 setCurDebugLoc(DebugLoc::get(MF
.getOrCreateDebugLocID(SrcFile
, Line
, 0)));
406 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DBG_LABEL
);
407 BuildMI(MBB
, DL
, II
).addImm(LabelID
);
408 DebugLocTuple PrevLocTpl
= MF
.getDebugLocTuple(PrevLoc
);
409 DW
->RecordInlinedFnStart(FSI
, Subprogram
, LabelID
,
414 // Record the source line.
415 unsigned Line
= Subprogram
.getLineNumber();
416 setCurDebugLoc(DebugLoc::get(MF
.getOrCreateDebugLocID(SrcFile
, Line
, 0)));
417 DW
->RecordSourceLine(Line
, 0, SrcFile
);
418 // llvm.dbg.func_start also defines beginning of function scope.
419 DW
->RecordRegionStart(cast
<GlobalVariable
>(FSI
->getSubprogram()));
425 case Intrinsic::dbg_declare
: {
426 DbgDeclareInst
*DI
= cast
<DbgDeclareInst
>(I
);
427 Value
*Variable
= DI
->getVariable();
428 if (DW
&& DW
->ValidDebugInfo(Variable
, true)) {
429 // Determine the address of the declared object.
430 Value
*Address
= DI
->getAddress();
431 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Address
))
432 Address
= BCI
->getOperand(0);
433 AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Address
);
434 // Don't handle byval struct arguments or VLAs, for example.
436 DenseMap
<const AllocaInst
*, int>::iterator SI
=
437 StaticAllocaMap
.find(AI
);
438 if (SI
== StaticAllocaMap
.end()) break; // VLAs.
441 // Determine the debug globalvariable.
442 GlobalValue
*GV
= cast
<GlobalVariable
>(Variable
);
444 // Build the DECLARE instruction.
445 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::DECLARE
);
446 MachineInstr
*DeclareMI
447 = BuildMI(MBB
, DL
, II
).addFrameIndex(FI
).addGlobalAddress(GV
);
448 DIVariable
DV(cast
<GlobalVariable
>(GV
));
450 // This is a local variable
451 DW
->RecordVariableScope(DV
, DeclareMI
);
456 case Intrinsic::eh_exception
: {
457 MVT VT
= TLI
.getValueType(I
->getType());
458 switch (TLI
.getOperationAction(ISD::EXCEPTIONADDR
, VT
)) {
460 case TargetLowering::Expand
: {
461 if (!MBB
->isLandingPad()) {
462 // FIXME: Mark exception register as live in. Hack for PR1508.
463 unsigned Reg
= TLI
.getExceptionAddressRegister();
464 if (Reg
) MBB
->addLiveIn(Reg
);
466 unsigned Reg
= TLI
.getExceptionAddressRegister();
467 const TargetRegisterClass
*RC
= TLI
.getRegClassFor(VT
);
468 unsigned ResultReg
= createResultReg(RC
);
469 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
471 assert(InsertedCopy
&& "Can't copy address registers!");
472 InsertedCopy
= InsertedCopy
;
473 UpdateValueMap(I
, ResultReg
);
479 case Intrinsic::eh_selector_i32
:
480 case Intrinsic::eh_selector_i64
: {
481 MVT VT
= TLI
.getValueType(I
->getType());
482 switch (TLI
.getOperationAction(ISD::EHSELECTION
, VT
)) {
484 case TargetLowering::Expand
: {
485 MVT VT
= (IID
== Intrinsic::eh_selector_i32
?
486 MVT::i32
: MVT::i64
);
489 if (MBB
->isLandingPad())
490 AddCatchInfo(*cast
<CallInst
>(I
), MMI
, MBB
);
493 CatchInfoLost
.insert(cast
<CallInst
>(I
));
495 // FIXME: Mark exception selector register as live in. Hack for PR1508.
496 unsigned Reg
= TLI
.getExceptionSelectorRegister();
497 if (Reg
) MBB
->addLiveIn(Reg
);
500 unsigned Reg
= TLI
.getExceptionSelectorRegister();
501 const TargetRegisterClass
*RC
= TLI
.getRegClassFor(VT
);
502 unsigned ResultReg
= createResultReg(RC
);
503 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
505 assert(InsertedCopy
&& "Can't copy address registers!");
506 InsertedCopy
= InsertedCopy
;
507 UpdateValueMap(I
, ResultReg
);
510 getRegForValue(Constant::getNullValue(I
->getType()));
511 UpdateValueMap(I
, ResultReg
);
522 bool FastISel::SelectCast(User
*I
, ISD::NodeType Opcode
) {
523 MVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
524 MVT DstVT
= TLI
.getValueType(I
->getType());
526 if (SrcVT
== MVT::Other
|| !SrcVT
.isSimple() ||
527 DstVT
== MVT::Other
|| !DstVT
.isSimple())
528 // Unhandled type. Halt "fast" selection and bail.
531 // Check if the destination type is legal. Or as a special case,
532 // it may be i1 if we're doing a truncate because that's
533 // easy and somewhat common.
534 if (!TLI
.isTypeLegal(DstVT
))
535 if (DstVT
!= MVT::i1
|| Opcode
!= ISD::TRUNCATE
)
536 // Unhandled type. Halt "fast" selection and bail.
539 // Check if the source operand is legal. Or as a special case,
540 // it may be i1 if we're doing zero-extension because that's
541 // easy and somewhat common.
542 if (!TLI
.isTypeLegal(SrcVT
))
543 if (SrcVT
!= MVT::i1
|| Opcode
!= ISD::ZERO_EXTEND
)
544 // Unhandled type. Halt "fast" selection and bail.
547 unsigned InputReg
= getRegForValue(I
->getOperand(0));
549 // Unhandled operand. Halt "fast" selection and bail.
552 // If the operand is i1, arrange for the high bits in the register to be zero.
553 if (SrcVT
== MVT::i1
) {
554 SrcVT
= TLI
.getTypeToTransformTo(SrcVT
);
555 InputReg
= FastEmitZExtFromI1(SrcVT
.getSimpleVT(), InputReg
);
559 // If the result is i1, truncate to the target's type for i1 first.
560 if (DstVT
== MVT::i1
)
561 DstVT
= TLI
.getTypeToTransformTo(DstVT
);
563 unsigned ResultReg
= FastEmit_r(SrcVT
.getSimpleVT(),
570 UpdateValueMap(I
, ResultReg
);
574 bool FastISel::SelectBitCast(User
*I
) {
575 // If the bitcast doesn't change the type, just use the operand value.
576 if (I
->getType() == I
->getOperand(0)->getType()) {
577 unsigned Reg
= getRegForValue(I
->getOperand(0));
580 UpdateValueMap(I
, Reg
);
584 // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
585 MVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
586 MVT DstVT
= TLI
.getValueType(I
->getType());
588 if (SrcVT
== MVT::Other
|| !SrcVT
.isSimple() ||
589 DstVT
== MVT::Other
|| !DstVT
.isSimple() ||
590 !TLI
.isTypeLegal(SrcVT
) || !TLI
.isTypeLegal(DstVT
))
591 // Unhandled type. Halt "fast" selection and bail.
594 unsigned Op0
= getRegForValue(I
->getOperand(0));
596 // Unhandled operand. Halt "fast" selection and bail.
599 // First, try to perform the bitcast by inserting a reg-reg copy.
600 unsigned ResultReg
= 0;
601 if (SrcVT
.getSimpleVT() == DstVT
.getSimpleVT()) {
602 TargetRegisterClass
* SrcClass
= TLI
.getRegClassFor(SrcVT
);
603 TargetRegisterClass
* DstClass
= TLI
.getRegClassFor(DstVT
);
604 ResultReg
= createResultReg(DstClass
);
606 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
607 Op0
, DstClass
, SrcClass
);
612 // If the reg-reg copy failed, select a BIT_CONVERT opcode.
614 ResultReg
= FastEmit_r(SrcVT
.getSimpleVT(), DstVT
.getSimpleVT(),
615 ISD::BIT_CONVERT
, Op0
);
620 UpdateValueMap(I
, ResultReg
);
625 FastISel::SelectInstruction(Instruction
*I
) {
626 return SelectOperator(I
, I
->getOpcode());
629 /// FastEmitBranch - Emit an unconditional branch to the given block,
630 /// unless it is the immediate (fall-through) successor, and update
633 FastISel::FastEmitBranch(MachineBasicBlock
*MSucc
) {
634 MachineFunction::iterator NextMBB
=
635 next(MachineFunction::iterator(MBB
));
637 if (MBB
->isLayoutSuccessor(MSucc
)) {
638 // The unconditional fall-through case, which needs no instructions.
640 // The unconditional branch case.
641 TII
.InsertBranch(*MBB
, MSucc
, NULL
, SmallVector
<MachineOperand
, 0>());
643 MBB
->addSuccessor(MSucc
);
647 FastISel::SelectOperator(User
*I
, unsigned Opcode
) {
649 case Instruction::Add
: {
650 ISD::NodeType Opc
= I
->getType()->isFPOrFPVector() ? ISD::FADD
: ISD::ADD
;
651 return SelectBinaryOp(I
, Opc
);
653 case Instruction::Sub
: {
654 ISD::NodeType Opc
= I
->getType()->isFPOrFPVector() ? ISD::FSUB
: ISD::SUB
;
655 return SelectBinaryOp(I
, Opc
);
657 case Instruction::Mul
: {
658 ISD::NodeType Opc
= I
->getType()->isFPOrFPVector() ? ISD::FMUL
: ISD::MUL
;
659 return SelectBinaryOp(I
, Opc
);
661 case Instruction::SDiv
:
662 return SelectBinaryOp(I
, ISD::SDIV
);
663 case Instruction::UDiv
:
664 return SelectBinaryOp(I
, ISD::UDIV
);
665 case Instruction::FDiv
:
666 return SelectBinaryOp(I
, ISD::FDIV
);
667 case Instruction::SRem
:
668 return SelectBinaryOp(I
, ISD::SREM
);
669 case Instruction::URem
:
670 return SelectBinaryOp(I
, ISD::UREM
);
671 case Instruction::FRem
:
672 return SelectBinaryOp(I
, ISD::FREM
);
673 case Instruction::Shl
:
674 return SelectBinaryOp(I
, ISD::SHL
);
675 case Instruction::LShr
:
676 return SelectBinaryOp(I
, ISD::SRL
);
677 case Instruction::AShr
:
678 return SelectBinaryOp(I
, ISD::SRA
);
679 case Instruction::And
:
680 return SelectBinaryOp(I
, ISD::AND
);
681 case Instruction::Or
:
682 return SelectBinaryOp(I
, ISD::OR
);
683 case Instruction::Xor
:
684 return SelectBinaryOp(I
, ISD::XOR
);
686 case Instruction::GetElementPtr
:
687 return SelectGetElementPtr(I
);
689 case Instruction::Br
: {
690 BranchInst
*BI
= cast
<BranchInst
>(I
);
692 if (BI
->isUnconditional()) {
693 BasicBlock
*LLVMSucc
= BI
->getSuccessor(0);
694 MachineBasicBlock
*MSucc
= MBBMap
[LLVMSucc
];
695 FastEmitBranch(MSucc
);
699 // Conditional branches are not handed yet.
700 // Halt "fast" selection and bail.
704 case Instruction::Unreachable
:
708 case Instruction::PHI
:
709 // PHI nodes are already emitted.
712 case Instruction::Alloca
:
713 // FunctionLowering has the static-sized case covered.
714 if (StaticAllocaMap
.count(cast
<AllocaInst
>(I
)))
717 // Dynamic-sized alloca is not handled yet.
720 case Instruction::Call
:
721 return SelectCall(I
);
723 case Instruction::BitCast
:
724 return SelectBitCast(I
);
726 case Instruction::FPToSI
:
727 return SelectCast(I
, ISD::FP_TO_SINT
);
728 case Instruction::ZExt
:
729 return SelectCast(I
, ISD::ZERO_EXTEND
);
730 case Instruction::SExt
:
731 return SelectCast(I
, ISD::SIGN_EXTEND
);
732 case Instruction::Trunc
:
733 return SelectCast(I
, ISD::TRUNCATE
);
734 case Instruction::SIToFP
:
735 return SelectCast(I
, ISD::SINT_TO_FP
);
737 case Instruction::IntToPtr
: // Deliberate fall-through.
738 case Instruction::PtrToInt
: {
739 MVT SrcVT
= TLI
.getValueType(I
->getOperand(0)->getType());
740 MVT DstVT
= TLI
.getValueType(I
->getType());
741 if (DstVT
.bitsGT(SrcVT
))
742 return SelectCast(I
, ISD::ZERO_EXTEND
);
743 if (DstVT
.bitsLT(SrcVT
))
744 return SelectCast(I
, ISD::TRUNCATE
);
745 unsigned Reg
= getRegForValue(I
->getOperand(0));
746 if (Reg
== 0) return false;
747 UpdateValueMap(I
, Reg
);
752 // Unhandled instruction. Halt "fast" selection and bail.
757 FastISel::FastISel(MachineFunction
&mf
,
758 MachineModuleInfo
*mmi
,
760 DenseMap
<const Value
*, unsigned> &vm
,
761 DenseMap
<const BasicBlock
*, MachineBasicBlock
*> &bm
,
762 DenseMap
<const AllocaInst
*, int> &am
764 , SmallSet
<Instruction
*, 8> &cil
777 MRI(MF
.getRegInfo()),
778 MFI(*MF
.getFrameInfo()),
779 MCP(*MF
.getConstantPool()),
781 TD(*TM
.getTargetData()),
782 TII(*TM
.getInstrInfo()),
783 TLI(*TM
.getTargetLowering()) {
786 FastISel::~FastISel() {}
788 unsigned FastISel::FastEmit_(MVT::SimpleValueType
, MVT::SimpleValueType
,
793 unsigned FastISel::FastEmit_r(MVT::SimpleValueType
, MVT::SimpleValueType
,
794 ISD::NodeType
, unsigned /*Op0*/) {
798 unsigned FastISel::FastEmit_rr(MVT::SimpleValueType
, MVT::SimpleValueType
,
799 ISD::NodeType
, unsigned /*Op0*/,
804 unsigned FastISel::FastEmit_i(MVT::SimpleValueType
, MVT::SimpleValueType
,
805 ISD::NodeType
, uint64_t /*Imm*/) {
809 unsigned FastISel::FastEmit_f(MVT::SimpleValueType
, MVT::SimpleValueType
,
810 ISD::NodeType
, ConstantFP
* /*FPImm*/) {
814 unsigned FastISel::FastEmit_ri(MVT::SimpleValueType
, MVT::SimpleValueType
,
815 ISD::NodeType
, unsigned /*Op0*/,
820 unsigned FastISel::FastEmit_rf(MVT::SimpleValueType
, MVT::SimpleValueType
,
821 ISD::NodeType
, unsigned /*Op0*/,
822 ConstantFP
* /*FPImm*/) {
826 unsigned FastISel::FastEmit_rri(MVT::SimpleValueType
, MVT::SimpleValueType
,
828 unsigned /*Op0*/, unsigned /*Op1*/,
833 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
834 /// to emit an instruction with an immediate operand using FastEmit_ri.
835 /// If that fails, it materializes the immediate into a register and try
836 /// FastEmit_rr instead.
837 unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT
, ISD::NodeType Opcode
,
838 unsigned Op0
, uint64_t Imm
,
839 MVT::SimpleValueType ImmType
) {
840 // First check if immediate type is legal. If not, we can't use the ri form.
841 unsigned ResultReg
= FastEmit_ri(VT
, VT
, Opcode
, Op0
, Imm
);
844 unsigned MaterialReg
= FastEmit_i(ImmType
, ImmType
, ISD::Constant
, Imm
);
845 if (MaterialReg
== 0)
847 return FastEmit_rr(VT
, VT
, Opcode
, Op0
, MaterialReg
);
850 /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
851 /// to emit an instruction with a floating-point immediate operand using
852 /// FastEmit_rf. If that fails, it materializes the immediate into a register
853 /// and try FastEmit_rr instead.
854 unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT
, ISD::NodeType Opcode
,
855 unsigned Op0
, ConstantFP
*FPImm
,
856 MVT::SimpleValueType ImmType
) {
857 // First check if immediate type is legal. If not, we can't use the rf form.
858 unsigned ResultReg
= FastEmit_rf(VT
, VT
, Opcode
, Op0
, FPImm
);
862 // Materialize the constant in a register.
863 unsigned MaterialReg
= FastEmit_f(ImmType
, ImmType
, ISD::ConstantFP
, FPImm
);
864 if (MaterialReg
== 0) {
865 // If the target doesn't have a way to directly enter a floating-point
866 // value into a register, use an alternate approach.
867 // TODO: The current approach only supports floating-point constants
868 // that can be constructed by conversion from integer values. This should
869 // be replaced by code that creates a load from a constant-pool entry,
870 // which will require some target-specific work.
871 const APFloat
&Flt
= FPImm
->getValueAPF();
872 MVT IntVT
= TLI
.getPointerTy();
875 uint32_t IntBitWidth
= IntVT
.getSizeInBits();
877 (void) Flt
.convertToInteger(x
, IntBitWidth
, /*isSigned=*/true,
878 APFloat::rmTowardZero
, &isExact
);
881 APInt
IntVal(IntBitWidth
, 2, x
);
883 unsigned IntegerReg
= FastEmit_i(IntVT
.getSimpleVT(), IntVT
.getSimpleVT(),
884 ISD::Constant
, IntVal
.getZExtValue());
887 MaterialReg
= FastEmit_r(IntVT
.getSimpleVT(), VT
,
888 ISD::SINT_TO_FP
, IntegerReg
);
889 if (MaterialReg
== 0)
892 return FastEmit_rr(VT
, VT
, Opcode
, Op0
, MaterialReg
);
895 unsigned FastISel::createResultReg(const TargetRegisterClass
* RC
) {
896 return MRI
.createVirtualRegister(RC
);
899 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode
,
900 const TargetRegisterClass
* RC
) {
901 unsigned ResultReg
= createResultReg(RC
);
902 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
904 BuildMI(MBB
, DL
, II
, ResultReg
);
908 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode
,
909 const TargetRegisterClass
*RC
,
911 unsigned ResultReg
= createResultReg(RC
);
912 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
914 if (II
.getNumDefs() >= 1)
915 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
);
917 BuildMI(MBB
, DL
, II
).addReg(Op0
);
918 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
919 II
.ImplicitDefs
[0], RC
, RC
);
927 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode
,
928 const TargetRegisterClass
*RC
,
929 unsigned Op0
, unsigned Op1
) {
930 unsigned ResultReg
= createResultReg(RC
);
931 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
933 if (II
.getNumDefs() >= 1)
934 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addReg(Op1
);
936 BuildMI(MBB
, DL
, II
).addReg(Op0
).addReg(Op1
);
937 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
938 II
.ImplicitDefs
[0], RC
, RC
);
945 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode
,
946 const TargetRegisterClass
*RC
,
947 unsigned Op0
, uint64_t Imm
) {
948 unsigned ResultReg
= createResultReg(RC
);
949 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
951 if (II
.getNumDefs() >= 1)
952 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addImm(Imm
);
954 BuildMI(MBB
, DL
, II
).addReg(Op0
).addImm(Imm
);
955 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
956 II
.ImplicitDefs
[0], RC
, RC
);
963 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode
,
964 const TargetRegisterClass
*RC
,
965 unsigned Op0
, ConstantFP
*FPImm
) {
966 unsigned ResultReg
= createResultReg(RC
);
967 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
969 if (II
.getNumDefs() >= 1)
970 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addFPImm(FPImm
);
972 BuildMI(MBB
, DL
, II
).addReg(Op0
).addFPImm(FPImm
);
973 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
974 II
.ImplicitDefs
[0], RC
, RC
);
981 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode
,
982 const TargetRegisterClass
*RC
,
983 unsigned Op0
, unsigned Op1
, uint64_t Imm
) {
984 unsigned ResultReg
= createResultReg(RC
);
985 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
987 if (II
.getNumDefs() >= 1)
988 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addReg(Op1
).addImm(Imm
);
990 BuildMI(MBB
, DL
, II
).addReg(Op0
).addReg(Op1
).addImm(Imm
);
991 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
992 II
.ImplicitDefs
[0], RC
, RC
);
999 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode
,
1000 const TargetRegisterClass
*RC
,
1002 unsigned ResultReg
= createResultReg(RC
);
1003 const TargetInstrDesc
&II
= TII
.get(MachineInstOpcode
);
1005 if (II
.getNumDefs() >= 1)
1006 BuildMI(MBB
, DL
, II
, ResultReg
).addImm(Imm
);
1008 BuildMI(MBB
, DL
, II
).addImm(Imm
);
1009 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
1010 II
.ImplicitDefs
[0], RC
, RC
);
1017 unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT
,
1018 unsigned Op0
, uint32_t Idx
) {
1019 const TargetRegisterClass
* RC
= MRI
.getRegClass(Op0
);
1021 unsigned ResultReg
= createResultReg(TLI
.getRegClassFor(RetVT
));
1022 const TargetInstrDesc
&II
= TII
.get(TargetInstrInfo::EXTRACT_SUBREG
);
1024 if (II
.getNumDefs() >= 1)
1025 BuildMI(MBB
, DL
, II
, ResultReg
).addReg(Op0
).addImm(Idx
);
1027 BuildMI(MBB
, DL
, II
).addReg(Op0
).addImm(Idx
);
1028 bool InsertedCopy
= TII
.copyRegToReg(*MBB
, MBB
->end(), ResultReg
,
1029 II
.ImplicitDefs
[0], RC
, RC
);
1036 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1037 /// with all but the least significant bit set to zero.
1038 unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT
, unsigned Op
) {
1039 return FastEmit_ri(VT
, VT
, ISD::AND
, Op
, 1);