Now that PR2957 is resolved, remove a bunch of
[llvm/msp430.git] / lib / CodeGen / SelectionDAG / FastISel.cpp
blob12b0b12c40b57304836cc0dabcb9335386dbfdd2
1 ///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Function.h"
43 #include "llvm/GlobalVariable.h"
44 #include "llvm/Instructions.h"
45 #include "llvm/IntrinsicInst.h"
46 #include "llvm/CodeGen/FastISel.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineModuleInfo.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/DebugLoc.h"
51 #include "llvm/CodeGen/DwarfWriter.h"
52 #include "llvm/Analysis/DebugInfo.h"
53 #include "llvm/Target/TargetData.h"
54 #include "llvm/Target/TargetInstrInfo.h"
55 #include "llvm/Target/TargetLowering.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include "SelectionDAGBuild.h"
58 using namespace llvm;
60 unsigned FastISel::getRegForValue(Value *V) {
61 MVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
62 // Don't handle non-simple values in FastISel.
63 if (!RealVT.isSimple())
64 return 0;
66 // Ignore illegal types. We must do this before looking up the value
67 // in ValueMap because Arguments are given virtual registers regardless
68 // of whether FastISel can handle them.
69 MVT::SimpleValueType VT = RealVT.getSimpleVT();
70 if (!TLI.isTypeLegal(VT)) {
71 // Promote MVT::i1 to a legal type though, because it's common and easy.
72 if (VT == MVT::i1)
73 VT = TLI.getTypeToTransformTo(VT).getSimpleVT();
74 else
75 return 0;
78 // Look up the value to see if we already have a register for it. We
79 // cache values defined by Instructions across blocks, and other values
80 // only locally. This is because Instructions already have the SSA
81 // def-dominatess-use requirement enforced.
82 if (ValueMap.count(V))
83 return ValueMap[V];
84 unsigned Reg = LocalValueMap[V];
85 if (Reg != 0)
86 return Reg;
88 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
89 if (CI->getValue().getActiveBits() <= 64)
90 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
91 } else if (isa<AllocaInst>(V)) {
92 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
93 } else if (isa<ConstantPointerNull>(V)) {
94 // Translate this as an integer zero so that it can be
95 // local-CSE'd with actual integer zeros.
96 Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType()));
97 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
98 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
100 if (!Reg) {
101 const APFloat &Flt = CF->getValueAPF();
102 MVT IntVT = TLI.getPointerTy();
104 uint64_t x[2];
105 uint32_t IntBitWidth = IntVT.getSizeInBits();
106 bool isExact;
107 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
108 APFloat::rmTowardZero, &isExact);
109 if (isExact) {
110 APInt IntVal(IntBitWidth, 2, x);
112 unsigned IntegerReg = getRegForValue(ConstantInt::get(IntVal));
113 if (IntegerReg != 0)
114 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
117 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
118 if (!SelectOperator(CE, CE->getOpcode())) return 0;
119 Reg = LocalValueMap[CE];
120 } else if (isa<UndefValue>(V)) {
121 Reg = createResultReg(TLI.getRegClassFor(VT));
122 BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
125 // If target-independent code couldn't handle the value, give target-specific
126 // code a try.
127 if (!Reg && isa<Constant>(V))
128 Reg = TargetMaterializeConstant(cast<Constant>(V));
130 // Don't cache constant materializations in the general ValueMap.
131 // To do so would require tracking what uses they dominate.
132 if (Reg != 0)
133 LocalValueMap[V] = Reg;
134 return Reg;
137 unsigned FastISel::lookUpRegForValue(Value *V) {
138 // Look up the value to see if we already have a register for it. We
139 // cache values defined by Instructions across blocks, and other values
140 // only locally. This is because Instructions already have the SSA
141 // def-dominatess-use requirement enforced.
142 if (ValueMap.count(V))
143 return ValueMap[V];
144 return LocalValueMap[V];
147 /// UpdateValueMap - Update the value map to include the new mapping for this
148 /// instruction, or insert an extra copy to get the result in a previous
149 /// determined register.
150 /// NOTE: This is only necessary because we might select a block that uses
151 /// a value before we select the block that defines the value. It might be
152 /// possible to fix this by selecting blocks in reverse postorder.
153 unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
154 if (!isa<Instruction>(I)) {
155 LocalValueMap[I] = Reg;
156 return Reg;
159 unsigned &AssignedReg = ValueMap[I];
160 if (AssignedReg == 0)
161 AssignedReg = Reg;
162 else if (Reg != AssignedReg) {
163 const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
164 TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
165 Reg, RegClass, RegClass);
167 return AssignedReg;
170 unsigned FastISel::getRegForGEPIndex(Value *Idx) {
171 unsigned IdxN = getRegForValue(Idx);
172 if (IdxN == 0)
173 // Unhandled operand. Halt "fast" selection and bail.
174 return 0;
176 // If the index is smaller or larger than intptr_t, truncate or extend it.
177 MVT PtrVT = TLI.getPointerTy();
178 MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
179 if (IdxVT.bitsLT(PtrVT))
180 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
181 ISD::SIGN_EXTEND, IdxN);
182 else if (IdxVT.bitsGT(PtrVT))
183 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
184 ISD::TRUNCATE, IdxN);
185 return IdxN;
188 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
189 /// which has an opcode which directly corresponds to the given ISD opcode.
191 bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
192 MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
193 if (VT == MVT::Other || !VT.isSimple())
194 // Unhandled type. Halt "fast" selection and bail.
195 return false;
197 // We only handle legal types. For example, on x86-32 the instruction
198 // selector contains all of the 64-bit instructions from x86-64,
199 // under the assumption that i64 won't be used if the target doesn't
200 // support it.
201 if (!TLI.isTypeLegal(VT)) {
202 // MVT::i1 is special. Allow AND, OR, or XOR because they
203 // don't require additional zeroing, which makes them easy.
204 if (VT == MVT::i1 &&
205 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
206 ISDOpcode == ISD::XOR))
207 VT = TLI.getTypeToTransformTo(VT);
208 else
209 return false;
212 unsigned Op0 = getRegForValue(I->getOperand(0));
213 if (Op0 == 0)
214 // Unhandled operand. Halt "fast" selection and bail.
215 return false;
217 // Check if the second operand is a constant and handle it appropriately.
218 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
219 unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
220 ISDOpcode, Op0, CI->getZExtValue());
221 if (ResultReg != 0) {
222 // We successfully emitted code for the given LLVM Instruction.
223 UpdateValueMap(I, ResultReg);
224 return true;
228 // Check if the second operand is a constant float.
229 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
230 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
231 ISDOpcode, Op0, CF);
232 if (ResultReg != 0) {
233 // We successfully emitted code for the given LLVM Instruction.
234 UpdateValueMap(I, ResultReg);
235 return true;
239 unsigned Op1 = getRegForValue(I->getOperand(1));
240 if (Op1 == 0)
241 // Unhandled operand. Halt "fast" selection and bail.
242 return false;
244 // Now we have both operands in registers. Emit the instruction.
245 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
246 ISDOpcode, Op0, Op1);
247 if (ResultReg == 0)
248 // Target-specific code wasn't able to find a machine opcode for
249 // the given ISD opcode and type. Halt "fast" selection and bail.
250 return false;
252 // We successfully emitted code for the given LLVM Instruction.
253 UpdateValueMap(I, ResultReg);
254 return true;
257 bool FastISel::SelectGetElementPtr(User *I) {
258 unsigned N = getRegForValue(I->getOperand(0));
259 if (N == 0)
260 // Unhandled operand. Halt "fast" selection and bail.
261 return false;
263 const Type *Ty = I->getOperand(0)->getType();
264 MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
265 for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
266 OI != E; ++OI) {
267 Value *Idx = *OI;
268 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
269 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
270 if (Field) {
271 // N = N + Offset
272 uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
273 // FIXME: This can be optimized by combining the add with a
274 // subsequent one.
275 N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
276 if (N == 0)
277 // Unhandled operand. Halt "fast" selection and bail.
278 return false;
280 Ty = StTy->getElementType(Field);
281 } else {
282 Ty = cast<SequentialType>(Ty)->getElementType();
284 // If this is a constant subscript, handle it quickly.
285 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
286 if (CI->getZExtValue() == 0) continue;
287 uint64_t Offs =
288 TD.getTypePaddedSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
289 N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
290 if (N == 0)
291 // Unhandled operand. Halt "fast" selection and bail.
292 return false;
293 continue;
296 // N = N + Idx * ElementSize;
297 uint64_t ElementSize = TD.getTypePaddedSize(Ty);
298 unsigned IdxN = getRegForGEPIndex(Idx);
299 if (IdxN == 0)
300 // Unhandled operand. Halt "fast" selection and bail.
301 return false;
303 if (ElementSize != 1) {
304 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
305 if (IdxN == 0)
306 // Unhandled operand. Halt "fast" selection and bail.
307 return false;
309 N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
310 if (N == 0)
311 // Unhandled operand. Halt "fast" selection and bail.
312 return false;
316 // We successfully emitted code for the given LLVM Instruction.
317 UpdateValueMap(I, N);
318 return true;
321 bool FastISel::SelectCall(User *I) {
322 Function *F = cast<CallInst>(I)->getCalledFunction();
323 if (!F) return false;
325 unsigned IID = F->getIntrinsicID();
326 switch (IID) {
327 default: break;
328 case Intrinsic::dbg_stoppoint: {
329 DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
330 if (DW && DW->ValidDebugInfo(SPI->getContext(), true)) {
331 DICompileUnit CU(cast<GlobalVariable>(SPI->getContext()));
332 std::string Dir, FN;
333 unsigned SrcFile = DW->getOrCreateSourceID(CU.getDirectory(Dir),
334 CU.getFilename(FN));
335 unsigned Line = SPI->getLine();
336 unsigned Col = SPI->getColumn();
337 unsigned ID = DW->RecordSourceLine(Line, Col, SrcFile);
338 unsigned Idx = MF.getOrCreateDebugLocID(SrcFile, Line, Col);
339 setCurDebugLoc(DebugLoc::get(Idx));
340 const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
341 BuildMI(MBB, DL, II).addImm(ID);
343 return true;
345 case Intrinsic::dbg_region_start: {
346 DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
347 if (DW && DW->ValidDebugInfo(RSI->getContext(), true)) {
348 unsigned ID =
349 DW->RecordRegionStart(cast<GlobalVariable>(RSI->getContext()));
350 const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
351 BuildMI(MBB, DL, II).addImm(ID);
353 return true;
355 case Intrinsic::dbg_region_end: {
356 DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
357 if (DW && DW->ValidDebugInfo(REI->getContext(), true)) {
358 unsigned ID = 0;
359 DISubprogram Subprogram(cast<GlobalVariable>(REI->getContext()));
360 if (!Subprogram.isNull() && !Subprogram.describes(MF.getFunction())) {
361 // This is end of an inlined function.
362 const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
363 ID = DW->RecordInlinedFnEnd(Subprogram);
364 if (ID)
365 // Returned ID is 0 if this is unbalanced "end of inlined
366 // scope". This could happen if optimizer eats dbg intrinsics
367 // or "beginning of inlined scope" is not recoginized due to
368 // missing location info. In such cases, do ignore this region.end.
369 BuildMI(MBB, DL, II).addImm(ID);
370 } else {
371 const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
372 ID = DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext()));
373 BuildMI(MBB, DL, II).addImm(ID);
376 return true;
378 case Intrinsic::dbg_func_start: {
379 if (!DW) return true;
380 DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
381 Value *SP = FSI->getSubprogram();
383 if (DW->ValidDebugInfo(SP, true)) {
384 // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what
385 // (most?) gdb expects.
386 DebugLoc PrevLoc = DL;
387 DISubprogram Subprogram(cast<GlobalVariable>(SP));
388 DICompileUnit CompileUnit = Subprogram.getCompileUnit();
389 std::string Dir, FN;
390 unsigned SrcFile = DW->getOrCreateSourceID(CompileUnit.getDirectory(Dir),
391 CompileUnit.getFilename(FN));
393 if (!Subprogram.describes(MF.getFunction())) {
394 // This is a beginning of an inlined function.
396 // If llvm.dbg.func.start is seen in a new block before any
397 // llvm.dbg.stoppoint intrinsic then the location info is unknown.
398 // FIXME : Why DebugLoc is reset at the beginning of each block ?
399 if (PrevLoc.isUnknown())
400 return true;
401 // Record the source line.
402 unsigned Line = Subprogram.getLineNumber();
403 unsigned LabelID = DW->RecordSourceLine(Line, 0, SrcFile);
404 setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(SrcFile, Line, 0)));
406 const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
407 BuildMI(MBB, DL, II).addImm(LabelID);
408 DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
409 DW->RecordInlinedFnStart(FSI, Subprogram, LabelID,
410 PrevLocTpl.Src,
411 PrevLocTpl.Line,
412 PrevLocTpl.Col);
413 } else {
414 // Record the source line.
415 unsigned Line = Subprogram.getLineNumber();
416 setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(SrcFile, Line, 0)));
417 DW->RecordSourceLine(Line, 0, SrcFile);
418 // llvm.dbg.func_start also defines beginning of function scope.
419 DW->RecordRegionStart(cast<GlobalVariable>(FSI->getSubprogram()));
423 return true;
425 case Intrinsic::dbg_declare: {
426 DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
427 Value *Variable = DI->getVariable();
428 if (DW && DW->ValidDebugInfo(Variable, true)) {
429 // Determine the address of the declared object.
430 Value *Address = DI->getAddress();
431 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
432 Address = BCI->getOperand(0);
433 AllocaInst *AI = dyn_cast<AllocaInst>(Address);
434 // Don't handle byval struct arguments or VLAs, for example.
435 if (!AI) break;
436 DenseMap<const AllocaInst*, int>::iterator SI =
437 StaticAllocaMap.find(AI);
438 if (SI == StaticAllocaMap.end()) break; // VLAs.
439 int FI = SI->second;
441 // Determine the debug globalvariable.
442 GlobalValue *GV = cast<GlobalVariable>(Variable);
444 // Build the DECLARE instruction.
445 const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
446 MachineInstr *DeclareMI
447 = BuildMI(MBB, DL, II).addFrameIndex(FI).addGlobalAddress(GV);
448 DIVariable DV(cast<GlobalVariable>(GV));
449 if (!DV.isNull()) {
450 // This is a local variable
451 DW->RecordVariableScope(DV, DeclareMI);
454 return true;
456 case Intrinsic::eh_exception: {
457 MVT VT = TLI.getValueType(I->getType());
458 switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
459 default: break;
460 case TargetLowering::Expand: {
461 if (!MBB->isLandingPad()) {
462 // FIXME: Mark exception register as live in. Hack for PR1508.
463 unsigned Reg = TLI.getExceptionAddressRegister();
464 if (Reg) MBB->addLiveIn(Reg);
466 unsigned Reg = TLI.getExceptionAddressRegister();
467 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
468 unsigned ResultReg = createResultReg(RC);
469 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
470 Reg, RC, RC);
471 assert(InsertedCopy && "Can't copy address registers!");
472 InsertedCopy = InsertedCopy;
473 UpdateValueMap(I, ResultReg);
474 return true;
477 break;
479 case Intrinsic::eh_selector_i32:
480 case Intrinsic::eh_selector_i64: {
481 MVT VT = TLI.getValueType(I->getType());
482 switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
483 default: break;
484 case TargetLowering::Expand: {
485 MVT VT = (IID == Intrinsic::eh_selector_i32 ?
486 MVT::i32 : MVT::i64);
488 if (MMI) {
489 if (MBB->isLandingPad())
490 AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
491 else {
492 #ifndef NDEBUG
493 CatchInfoLost.insert(cast<CallInst>(I));
494 #endif
495 // FIXME: Mark exception selector register as live in. Hack for PR1508.
496 unsigned Reg = TLI.getExceptionSelectorRegister();
497 if (Reg) MBB->addLiveIn(Reg);
500 unsigned Reg = TLI.getExceptionSelectorRegister();
501 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
502 unsigned ResultReg = createResultReg(RC);
503 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
504 Reg, RC, RC);
505 assert(InsertedCopy && "Can't copy address registers!");
506 InsertedCopy = InsertedCopy;
507 UpdateValueMap(I, ResultReg);
508 } else {
509 unsigned ResultReg =
510 getRegForValue(Constant::getNullValue(I->getType()));
511 UpdateValueMap(I, ResultReg);
513 return true;
516 break;
519 return false;
522 bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
523 MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
524 MVT DstVT = TLI.getValueType(I->getType());
526 if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
527 DstVT == MVT::Other || !DstVT.isSimple())
528 // Unhandled type. Halt "fast" selection and bail.
529 return false;
531 // Check if the destination type is legal. Or as a special case,
532 // it may be i1 if we're doing a truncate because that's
533 // easy and somewhat common.
534 if (!TLI.isTypeLegal(DstVT))
535 if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
536 // Unhandled type. Halt "fast" selection and bail.
537 return false;
539 // Check if the source operand is legal. Or as a special case,
540 // it may be i1 if we're doing zero-extension because that's
541 // easy and somewhat common.
542 if (!TLI.isTypeLegal(SrcVT))
543 if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
544 // Unhandled type. Halt "fast" selection and bail.
545 return false;
547 unsigned InputReg = getRegForValue(I->getOperand(0));
548 if (!InputReg)
549 // Unhandled operand. Halt "fast" selection and bail.
550 return false;
552 // If the operand is i1, arrange for the high bits in the register to be zero.
553 if (SrcVT == MVT::i1) {
554 SrcVT = TLI.getTypeToTransformTo(SrcVT);
555 InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
556 if (!InputReg)
557 return false;
559 // If the result is i1, truncate to the target's type for i1 first.
560 if (DstVT == MVT::i1)
561 DstVT = TLI.getTypeToTransformTo(DstVT);
563 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
564 DstVT.getSimpleVT(),
565 Opcode,
566 InputReg);
567 if (!ResultReg)
568 return false;
570 UpdateValueMap(I, ResultReg);
571 return true;
574 bool FastISel::SelectBitCast(User *I) {
575 // If the bitcast doesn't change the type, just use the operand value.
576 if (I->getType() == I->getOperand(0)->getType()) {
577 unsigned Reg = getRegForValue(I->getOperand(0));
578 if (Reg == 0)
579 return false;
580 UpdateValueMap(I, Reg);
581 return true;
584 // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
585 MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
586 MVT DstVT = TLI.getValueType(I->getType());
588 if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
589 DstVT == MVT::Other || !DstVT.isSimple() ||
590 !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
591 // Unhandled type. Halt "fast" selection and bail.
592 return false;
594 unsigned Op0 = getRegForValue(I->getOperand(0));
595 if (Op0 == 0)
596 // Unhandled operand. Halt "fast" selection and bail.
597 return false;
599 // First, try to perform the bitcast by inserting a reg-reg copy.
600 unsigned ResultReg = 0;
601 if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
602 TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
603 TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
604 ResultReg = createResultReg(DstClass);
606 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
607 Op0, DstClass, SrcClass);
608 if (!InsertedCopy)
609 ResultReg = 0;
612 // If the reg-reg copy failed, select a BIT_CONVERT opcode.
613 if (!ResultReg)
614 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
615 ISD::BIT_CONVERT, Op0);
617 if (!ResultReg)
618 return false;
620 UpdateValueMap(I, ResultReg);
621 return true;
624 bool
625 FastISel::SelectInstruction(Instruction *I) {
626 return SelectOperator(I, I->getOpcode());
629 /// FastEmitBranch - Emit an unconditional branch to the given block,
630 /// unless it is the immediate (fall-through) successor, and update
631 /// the CFG.
632 void
633 FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
634 MachineFunction::iterator NextMBB =
635 next(MachineFunction::iterator(MBB));
637 if (MBB->isLayoutSuccessor(MSucc)) {
638 // The unconditional fall-through case, which needs no instructions.
639 } else {
640 // The unconditional branch case.
641 TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
643 MBB->addSuccessor(MSucc);
646 bool
647 FastISel::SelectOperator(User *I, unsigned Opcode) {
648 switch (Opcode) {
649 case Instruction::Add: {
650 ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD;
651 return SelectBinaryOp(I, Opc);
653 case Instruction::Sub: {
654 ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB;
655 return SelectBinaryOp(I, Opc);
657 case Instruction::Mul: {
658 ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL;
659 return SelectBinaryOp(I, Opc);
661 case Instruction::SDiv:
662 return SelectBinaryOp(I, ISD::SDIV);
663 case Instruction::UDiv:
664 return SelectBinaryOp(I, ISD::UDIV);
665 case Instruction::FDiv:
666 return SelectBinaryOp(I, ISD::FDIV);
667 case Instruction::SRem:
668 return SelectBinaryOp(I, ISD::SREM);
669 case Instruction::URem:
670 return SelectBinaryOp(I, ISD::UREM);
671 case Instruction::FRem:
672 return SelectBinaryOp(I, ISD::FREM);
673 case Instruction::Shl:
674 return SelectBinaryOp(I, ISD::SHL);
675 case Instruction::LShr:
676 return SelectBinaryOp(I, ISD::SRL);
677 case Instruction::AShr:
678 return SelectBinaryOp(I, ISD::SRA);
679 case Instruction::And:
680 return SelectBinaryOp(I, ISD::AND);
681 case Instruction::Or:
682 return SelectBinaryOp(I, ISD::OR);
683 case Instruction::Xor:
684 return SelectBinaryOp(I, ISD::XOR);
686 case Instruction::GetElementPtr:
687 return SelectGetElementPtr(I);
689 case Instruction::Br: {
690 BranchInst *BI = cast<BranchInst>(I);
692 if (BI->isUnconditional()) {
693 BasicBlock *LLVMSucc = BI->getSuccessor(0);
694 MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
695 FastEmitBranch(MSucc);
696 return true;
699 // Conditional branches are not handed yet.
700 // Halt "fast" selection and bail.
701 return false;
704 case Instruction::Unreachable:
705 // Nothing to emit.
706 return true;
708 case Instruction::PHI:
709 // PHI nodes are already emitted.
710 return true;
712 case Instruction::Alloca:
713 // FunctionLowering has the static-sized case covered.
714 if (StaticAllocaMap.count(cast<AllocaInst>(I)))
715 return true;
717 // Dynamic-sized alloca is not handled yet.
718 return false;
720 case Instruction::Call:
721 return SelectCall(I);
723 case Instruction::BitCast:
724 return SelectBitCast(I);
726 case Instruction::FPToSI:
727 return SelectCast(I, ISD::FP_TO_SINT);
728 case Instruction::ZExt:
729 return SelectCast(I, ISD::ZERO_EXTEND);
730 case Instruction::SExt:
731 return SelectCast(I, ISD::SIGN_EXTEND);
732 case Instruction::Trunc:
733 return SelectCast(I, ISD::TRUNCATE);
734 case Instruction::SIToFP:
735 return SelectCast(I, ISD::SINT_TO_FP);
737 case Instruction::IntToPtr: // Deliberate fall-through.
738 case Instruction::PtrToInt: {
739 MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
740 MVT DstVT = TLI.getValueType(I->getType());
741 if (DstVT.bitsGT(SrcVT))
742 return SelectCast(I, ISD::ZERO_EXTEND);
743 if (DstVT.bitsLT(SrcVT))
744 return SelectCast(I, ISD::TRUNCATE);
745 unsigned Reg = getRegForValue(I->getOperand(0));
746 if (Reg == 0) return false;
747 UpdateValueMap(I, Reg);
748 return true;
751 default:
752 // Unhandled instruction. Halt "fast" selection and bail.
753 return false;
757 FastISel::FastISel(MachineFunction &mf,
758 MachineModuleInfo *mmi,
759 DwarfWriter *dw,
760 DenseMap<const Value *, unsigned> &vm,
761 DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
762 DenseMap<const AllocaInst *, int> &am
763 #ifndef NDEBUG
764 , SmallSet<Instruction*, 8> &cil
765 #endif
767 : MBB(0),
768 ValueMap(vm),
769 MBBMap(bm),
770 StaticAllocaMap(am),
771 #ifndef NDEBUG
772 CatchInfoLost(cil),
773 #endif
774 MF(mf),
775 MMI(mmi),
776 DW(dw),
777 MRI(MF.getRegInfo()),
778 MFI(*MF.getFrameInfo()),
779 MCP(*MF.getConstantPool()),
780 TM(MF.getTarget()),
781 TD(*TM.getTargetData()),
782 TII(*TM.getInstrInfo()),
783 TLI(*TM.getTargetLowering()) {
786 FastISel::~FastISel() {}
788 unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
789 ISD::NodeType) {
790 return 0;
793 unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
794 ISD::NodeType, unsigned /*Op0*/) {
795 return 0;
798 unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
799 ISD::NodeType, unsigned /*Op0*/,
800 unsigned /*Op0*/) {
801 return 0;
804 unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
805 ISD::NodeType, uint64_t /*Imm*/) {
806 return 0;
809 unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
810 ISD::NodeType, ConstantFP * /*FPImm*/) {
811 return 0;
814 unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
815 ISD::NodeType, unsigned /*Op0*/,
816 uint64_t /*Imm*/) {
817 return 0;
820 unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
821 ISD::NodeType, unsigned /*Op0*/,
822 ConstantFP * /*FPImm*/) {
823 return 0;
826 unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
827 ISD::NodeType,
828 unsigned /*Op0*/, unsigned /*Op1*/,
829 uint64_t /*Imm*/) {
830 return 0;
833 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
834 /// to emit an instruction with an immediate operand using FastEmit_ri.
835 /// If that fails, it materializes the immediate into a register and try
836 /// FastEmit_rr instead.
837 unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
838 unsigned Op0, uint64_t Imm,
839 MVT::SimpleValueType ImmType) {
840 // First check if immediate type is legal. If not, we can't use the ri form.
841 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
842 if (ResultReg != 0)
843 return ResultReg;
844 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
845 if (MaterialReg == 0)
846 return 0;
847 return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
850 /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
851 /// to emit an instruction with a floating-point immediate operand using
852 /// FastEmit_rf. If that fails, it materializes the immediate into a register
853 /// and try FastEmit_rr instead.
854 unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
855 unsigned Op0, ConstantFP *FPImm,
856 MVT::SimpleValueType ImmType) {
857 // First check if immediate type is legal. If not, we can't use the rf form.
858 unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
859 if (ResultReg != 0)
860 return ResultReg;
862 // Materialize the constant in a register.
863 unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
864 if (MaterialReg == 0) {
865 // If the target doesn't have a way to directly enter a floating-point
866 // value into a register, use an alternate approach.
867 // TODO: The current approach only supports floating-point constants
868 // that can be constructed by conversion from integer values. This should
869 // be replaced by code that creates a load from a constant-pool entry,
870 // which will require some target-specific work.
871 const APFloat &Flt = FPImm->getValueAPF();
872 MVT IntVT = TLI.getPointerTy();
874 uint64_t x[2];
875 uint32_t IntBitWidth = IntVT.getSizeInBits();
876 bool isExact;
877 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
878 APFloat::rmTowardZero, &isExact);
879 if (!isExact)
880 return 0;
881 APInt IntVal(IntBitWidth, 2, x);
883 unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
884 ISD::Constant, IntVal.getZExtValue());
885 if (IntegerReg == 0)
886 return 0;
887 MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
888 ISD::SINT_TO_FP, IntegerReg);
889 if (MaterialReg == 0)
890 return 0;
892 return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
895 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
896 return MRI.createVirtualRegister(RC);
899 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
900 const TargetRegisterClass* RC) {
901 unsigned ResultReg = createResultReg(RC);
902 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
904 BuildMI(MBB, DL, II, ResultReg);
905 return ResultReg;
908 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
909 const TargetRegisterClass *RC,
910 unsigned Op0) {
911 unsigned ResultReg = createResultReg(RC);
912 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
914 if (II.getNumDefs() >= 1)
915 BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
916 else {
917 BuildMI(MBB, DL, II).addReg(Op0);
918 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
919 II.ImplicitDefs[0], RC, RC);
920 if (!InsertedCopy)
921 ResultReg = 0;
924 return ResultReg;
927 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
928 const TargetRegisterClass *RC,
929 unsigned Op0, unsigned Op1) {
930 unsigned ResultReg = createResultReg(RC);
931 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
933 if (II.getNumDefs() >= 1)
934 BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
935 else {
936 BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
937 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
938 II.ImplicitDefs[0], RC, RC);
939 if (!InsertedCopy)
940 ResultReg = 0;
942 return ResultReg;
945 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
946 const TargetRegisterClass *RC,
947 unsigned Op0, uint64_t Imm) {
948 unsigned ResultReg = createResultReg(RC);
949 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
951 if (II.getNumDefs() >= 1)
952 BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
953 else {
954 BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
955 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
956 II.ImplicitDefs[0], RC, RC);
957 if (!InsertedCopy)
958 ResultReg = 0;
960 return ResultReg;
963 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
964 const TargetRegisterClass *RC,
965 unsigned Op0, ConstantFP *FPImm) {
966 unsigned ResultReg = createResultReg(RC);
967 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
969 if (II.getNumDefs() >= 1)
970 BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
971 else {
972 BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
973 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
974 II.ImplicitDefs[0], RC, RC);
975 if (!InsertedCopy)
976 ResultReg = 0;
978 return ResultReg;
981 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
982 const TargetRegisterClass *RC,
983 unsigned Op0, unsigned Op1, uint64_t Imm) {
984 unsigned ResultReg = createResultReg(RC);
985 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
987 if (II.getNumDefs() >= 1)
988 BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
989 else {
990 BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
991 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
992 II.ImplicitDefs[0], RC, RC);
993 if (!InsertedCopy)
994 ResultReg = 0;
996 return ResultReg;
999 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1000 const TargetRegisterClass *RC,
1001 uint64_t Imm) {
1002 unsigned ResultReg = createResultReg(RC);
1003 const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1005 if (II.getNumDefs() >= 1)
1006 BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
1007 else {
1008 BuildMI(MBB, DL, II).addImm(Imm);
1009 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1010 II.ImplicitDefs[0], RC, RC);
1011 if (!InsertedCopy)
1012 ResultReg = 0;
1014 return ResultReg;
1017 unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT,
1018 unsigned Op0, uint32_t Idx) {
1019 const TargetRegisterClass* RC = MRI.getRegClass(Op0);
1021 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1022 const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
1024 if (II.getNumDefs() >= 1)
1025 BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
1026 else {
1027 BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
1028 bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1029 II.ImplicitDefs[0], RC, RC);
1030 if (!InsertedCopy)
1031 ResultReg = 0;
1033 return ResultReg;
1036 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1037 /// with all but the least significant bit set to zero.
1038 unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT, unsigned Op) {
1039 return FastEmit_ri(VT, VT, ISD::AND, Op, 1);