Teach getZeroExtendExpr and getSignExtendExpr to use trip-count
[llvm/msp430.git] / lib / Transforms / Utils / CodeExtractor.cpp
blob6d5904e308867180ea6e6655578681fcd15fb109
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Utils/FunctionUtils.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/Module.h"
22 #include "llvm/Pass.h"
23 #include "llvm/Analysis/Dominators.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/Verifier.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include <algorithm>
32 #include <set>
33 using namespace llvm;
35 // Provide a command-line option to aggregate function arguments into a struct
36 // for functions produced by the code extractor. This is useful when converting
37 // extracted functions to pthread-based code, as only one argument (void*) can
38 // be passed in to pthread_create().
39 static cl::opt<bool>
40 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
41 cl::desc("Aggregate arguments to code-extracted functions"));
43 namespace {
44 class VISIBILITY_HIDDEN CodeExtractor {
45 typedef std::vector<Value*> Values;
46 std::set<BasicBlock*> BlocksToExtract;
47 DominatorTree* DT;
48 bool AggregateArgs;
49 unsigned NumExitBlocks;
50 const Type *RetTy;
51 public:
52 CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false)
53 : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}
55 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
57 bool isEligible(const std::vector<BasicBlock*> &code);
59 private:
60 /// definedInRegion - Return true if the specified value is defined in the
61 /// extracted region.
62 bool definedInRegion(Value *V) const {
63 if (Instruction *I = dyn_cast<Instruction>(V))
64 if (BlocksToExtract.count(I->getParent()))
65 return true;
66 return false;
69 /// definedInCaller - Return true if the specified value is defined in the
70 /// function being code extracted, but not in the region being extracted.
71 /// These values must be passed in as live-ins to the function.
72 bool definedInCaller(Value *V) const {
73 if (isa<Argument>(V)) return true;
74 if (Instruction *I = dyn_cast<Instruction>(V))
75 if (!BlocksToExtract.count(I->getParent()))
76 return true;
77 return false;
80 void severSplitPHINodes(BasicBlock *&Header);
81 void splitReturnBlocks();
82 void findInputsOutputs(Values &inputs, Values &outputs);
84 Function *constructFunction(const Values &inputs,
85 const Values &outputs,
86 BasicBlock *header,
87 BasicBlock *newRootNode, BasicBlock *newHeader,
88 Function *oldFunction, Module *M);
90 void moveCodeToFunction(Function *newFunction);
92 void emitCallAndSwitchStatement(Function *newFunction,
93 BasicBlock *newHeader,
94 Values &inputs,
95 Values &outputs);
100 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
101 /// region, we need to split the entry block of the region so that the PHI node
102 /// is easier to deal with.
103 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
104 bool HasPredsFromRegion = false;
105 unsigned NumPredsOutsideRegion = 0;
107 if (Header != &Header->getParent()->getEntryBlock()) {
108 PHINode *PN = dyn_cast<PHINode>(Header->begin());
109 if (!PN) return; // No PHI nodes.
111 // If the header node contains any PHI nodes, check to see if there is more
112 // than one entry from outside the region. If so, we need to sever the
113 // header block into two.
114 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
115 if (BlocksToExtract.count(PN->getIncomingBlock(i)))
116 HasPredsFromRegion = true;
117 else
118 ++NumPredsOutsideRegion;
120 // If there is one (or fewer) predecessor from outside the region, we don't
121 // need to do anything special.
122 if (NumPredsOutsideRegion <= 1) return;
125 // Otherwise, we need to split the header block into two pieces: one
126 // containing PHI nodes merging values from outside of the region, and a
127 // second that contains all of the code for the block and merges back any
128 // incoming values from inside of the region.
129 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
130 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
131 Header->getName()+".ce");
133 // We only want to code extract the second block now, and it becomes the new
134 // header of the region.
135 BasicBlock *OldPred = Header;
136 BlocksToExtract.erase(OldPred);
137 BlocksToExtract.insert(NewBB);
138 Header = NewBB;
140 // Okay, update dominator sets. The blocks that dominate the new one are the
141 // blocks that dominate TIBB plus the new block itself.
142 if (DT)
143 DT->splitBlock(NewBB);
145 // Okay, now we need to adjust the PHI nodes and any branches from within the
146 // region to go to the new header block instead of the old header block.
147 if (HasPredsFromRegion) {
148 PHINode *PN = cast<PHINode>(OldPred->begin());
149 // Loop over all of the predecessors of OldPred that are in the region,
150 // changing them to branch to NewBB instead.
151 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
152 if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
153 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
154 TI->replaceUsesOfWith(OldPred, NewBB);
157 // Okay, everthing within the region is now branching to the right block, we
158 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
159 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
160 PHINode *PN = cast<PHINode>(AfterPHIs);
161 // Create a new PHI node in the new region, which has an incoming value
162 // from OldPred of PN.
163 PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce",
164 NewBB->begin());
165 NewPN->addIncoming(PN, OldPred);
167 // Loop over all of the incoming value in PN, moving them to NewPN if they
168 // are from the extracted region.
169 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
170 if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
171 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
172 PN->removeIncomingValue(i);
173 --i;
180 void CodeExtractor::splitReturnBlocks() {
181 for (std::set<BasicBlock*>::iterator I = BlocksToExtract.begin(),
182 E = BlocksToExtract.end(); I != E; ++I)
183 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator()))
184 (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
187 // findInputsOutputs - Find inputs to, outputs from the code region.
189 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
190 std::set<BasicBlock*> ExitBlocks;
191 for (std::set<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
192 ce = BlocksToExtract.end(); ci != ce; ++ci) {
193 BasicBlock *BB = *ci;
195 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
196 // If a used value is defined outside the region, it's an input. If an
197 // instruction is used outside the region, it's an output.
198 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
199 if (definedInCaller(*O))
200 inputs.push_back(*O);
202 // Consider uses of this instruction (outputs).
203 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
204 UI != E; ++UI)
205 if (!definedInRegion(*UI)) {
206 outputs.push_back(I);
207 break;
209 } // for: insts
211 // Keep track of the exit blocks from the region.
212 TerminatorInst *TI = BB->getTerminator();
213 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
214 if (!BlocksToExtract.count(TI->getSuccessor(i)))
215 ExitBlocks.insert(TI->getSuccessor(i));
216 } // for: basic blocks
218 NumExitBlocks = ExitBlocks.size();
220 // Eliminate duplicates.
221 std::sort(inputs.begin(), inputs.end());
222 inputs.erase(std::unique(inputs.begin(), inputs.end()), inputs.end());
223 std::sort(outputs.begin(), outputs.end());
224 outputs.erase(std::unique(outputs.begin(), outputs.end()), outputs.end());
227 /// constructFunction - make a function based on inputs and outputs, as follows:
228 /// f(in0, ..., inN, out0, ..., outN)
230 Function *CodeExtractor::constructFunction(const Values &inputs,
231 const Values &outputs,
232 BasicBlock *header,
233 BasicBlock *newRootNode,
234 BasicBlock *newHeader,
235 Function *oldFunction,
236 Module *M) {
237 DOUT << "inputs: " << inputs.size() << "\n";
238 DOUT << "outputs: " << outputs.size() << "\n";
240 // This function returns unsigned, outputs will go back by reference.
241 switch (NumExitBlocks) {
242 case 0:
243 case 1: RetTy = Type::VoidTy; break;
244 case 2: RetTy = Type::Int1Ty; break;
245 default: RetTy = Type::Int16Ty; break;
248 std::vector<const Type*> paramTy;
250 // Add the types of the input values to the function's argument list
251 for (Values::const_iterator i = inputs.begin(),
252 e = inputs.end(); i != e; ++i) {
253 const Value *value = *i;
254 DOUT << "value used in func: " << *value << "\n";
255 paramTy.push_back(value->getType());
258 // Add the types of the output values to the function's argument list.
259 for (Values::const_iterator I = outputs.begin(), E = outputs.end();
260 I != E; ++I) {
261 DOUT << "instr used in func: " << **I << "\n";
262 if (AggregateArgs)
263 paramTy.push_back((*I)->getType());
264 else
265 paramTy.push_back(PointerType::getUnqual((*I)->getType()));
268 DOUT << "Function type: " << *RetTy << " f(";
269 for (std::vector<const Type*>::iterator i = paramTy.begin(),
270 e = paramTy.end(); i != e; ++i)
271 DOUT << **i << ", ";
272 DOUT << ")\n";
274 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
275 PointerType *StructPtr = PointerType::getUnqual(StructType::get(paramTy));
276 paramTy.clear();
277 paramTy.push_back(StructPtr);
279 const FunctionType *funcType = FunctionType::get(RetTy, paramTy, false);
281 // Create the new function
282 Function *newFunction = Function::Create(funcType,
283 GlobalValue::InternalLinkage,
284 oldFunction->getName() + "_" +
285 header->getName(), M);
286 // If the old function is no-throw, so is the new one.
287 if (oldFunction->doesNotThrow())
288 newFunction->setDoesNotThrow(true);
290 newFunction->getBasicBlockList().push_back(newRootNode);
292 // Create an iterator to name all of the arguments we inserted.
293 Function::arg_iterator AI = newFunction->arg_begin();
295 // Rewrite all users of the inputs in the extracted region to use the
296 // arguments (or appropriate addressing into struct) instead.
297 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
298 Value *RewriteVal;
299 if (AggregateArgs) {
300 Value *Idx[2];
301 Idx[0] = Constant::getNullValue(Type::Int32Ty);
302 Idx[1] = ConstantInt::get(Type::Int32Ty, i);
303 std::string GEPname = "gep_" + inputs[i]->getName();
304 TerminatorInst *TI = newFunction->begin()->getTerminator();
305 GetElementPtrInst *GEP = GetElementPtrInst::Create(AI, Idx, Idx+2,
306 GEPname, TI);
307 RewriteVal = new LoadInst(GEP, "load" + GEPname, TI);
308 } else
309 RewriteVal = AI++;
311 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
312 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
313 use != useE; ++use)
314 if (Instruction* inst = dyn_cast<Instruction>(*use))
315 if (BlocksToExtract.count(inst->getParent()))
316 inst->replaceUsesOfWith(inputs[i], RewriteVal);
319 // Set names for input and output arguments.
320 if (!AggregateArgs) {
321 AI = newFunction->arg_begin();
322 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
323 AI->setName(inputs[i]->getName());
324 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
325 AI->setName(outputs[i]->getName()+".out");
328 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
329 // within the new function. This must be done before we lose track of which
330 // blocks were originally in the code region.
331 std::vector<User*> Users(header->use_begin(), header->use_end());
332 for (unsigned i = 0, e = Users.size(); i != e; ++i)
333 // The BasicBlock which contains the branch is not in the region
334 // modify the branch target to a new block
335 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
336 if (!BlocksToExtract.count(TI->getParent()) &&
337 TI->getParent()->getParent() == oldFunction)
338 TI->replaceUsesOfWith(header, newHeader);
340 return newFunction;
343 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
344 /// the call instruction, splitting any PHI nodes in the header block as
345 /// necessary.
346 void CodeExtractor::
347 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
348 Values &inputs, Values &outputs) {
349 // Emit a call to the new function, passing in: *pointer to struct (if
350 // aggregating parameters), or plan inputs and allocated memory for outputs
351 std::vector<Value*> params, StructValues, ReloadOutputs;
353 // Add inputs as params, or to be filled into the struct
354 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
355 if (AggregateArgs)
356 StructValues.push_back(*i);
357 else
358 params.push_back(*i);
360 // Create allocas for the outputs
361 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
362 if (AggregateArgs) {
363 StructValues.push_back(*i);
364 } else {
365 AllocaInst *alloca =
366 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
367 codeReplacer->getParent()->begin()->begin());
368 ReloadOutputs.push_back(alloca);
369 params.push_back(alloca);
373 AllocaInst *Struct = 0;
374 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
375 std::vector<const Type*> ArgTypes;
376 for (Values::iterator v = StructValues.begin(),
377 ve = StructValues.end(); v != ve; ++v)
378 ArgTypes.push_back((*v)->getType());
380 // Allocate a struct at the beginning of this function
381 Type *StructArgTy = StructType::get(ArgTypes);
382 Struct =
383 new AllocaInst(StructArgTy, 0, "structArg",
384 codeReplacer->getParent()->begin()->begin());
385 params.push_back(Struct);
387 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
388 Value *Idx[2];
389 Idx[0] = Constant::getNullValue(Type::Int32Ty);
390 Idx[1] = ConstantInt::get(Type::Int32Ty, i);
391 GetElementPtrInst *GEP =
392 GetElementPtrInst::Create(Struct, Idx, Idx + 2,
393 "gep_" + StructValues[i]->getName());
394 codeReplacer->getInstList().push_back(GEP);
395 StoreInst *SI = new StoreInst(StructValues[i], GEP);
396 codeReplacer->getInstList().push_back(SI);
400 // Emit the call to the function
401 CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(),
402 NumExitBlocks > 1 ? "targetBlock" : "");
403 codeReplacer->getInstList().push_back(call);
405 Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
406 unsigned FirstOut = inputs.size();
407 if (!AggregateArgs)
408 std::advance(OutputArgBegin, inputs.size());
410 // Reload the outputs passed in by reference
411 for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
412 Value *Output = 0;
413 if (AggregateArgs) {
414 Value *Idx[2];
415 Idx[0] = Constant::getNullValue(Type::Int32Ty);
416 Idx[1] = ConstantInt::get(Type::Int32Ty, FirstOut + i);
417 GetElementPtrInst *GEP
418 = GetElementPtrInst::Create(Struct, Idx, Idx + 2,
419 "gep_reload_" + outputs[i]->getName());
420 codeReplacer->getInstList().push_back(GEP);
421 Output = GEP;
422 } else {
423 Output = ReloadOutputs[i];
425 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
426 codeReplacer->getInstList().push_back(load);
427 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
428 for (unsigned u = 0, e = Users.size(); u != e; ++u) {
429 Instruction *inst = cast<Instruction>(Users[u]);
430 if (!BlocksToExtract.count(inst->getParent()))
431 inst->replaceUsesOfWith(outputs[i], load);
435 // Now we can emit a switch statement using the call as a value.
436 SwitchInst *TheSwitch =
437 SwitchInst::Create(ConstantInt::getNullValue(Type::Int16Ty),
438 codeReplacer, 0, codeReplacer);
440 // Since there may be multiple exits from the original region, make the new
441 // function return an unsigned, switch on that number. This loop iterates
442 // over all of the blocks in the extracted region, updating any terminator
443 // instructions in the to-be-extracted region that branch to blocks that are
444 // not in the region to be extracted.
445 std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
447 unsigned switchVal = 0;
448 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
449 e = BlocksToExtract.end(); i != e; ++i) {
450 TerminatorInst *TI = (*i)->getTerminator();
451 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
452 if (!BlocksToExtract.count(TI->getSuccessor(i))) {
453 BasicBlock *OldTarget = TI->getSuccessor(i);
454 // add a new basic block which returns the appropriate value
455 BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
456 if (!NewTarget) {
457 // If we don't already have an exit stub for this non-extracted
458 // destination, create one now!
459 NewTarget = BasicBlock::Create(OldTarget->getName() + ".exitStub",
460 newFunction);
461 unsigned SuccNum = switchVal++;
463 Value *brVal = 0;
464 switch (NumExitBlocks) {
465 case 0:
466 case 1: break; // No value needed.
467 case 2: // Conditional branch, return a bool
468 brVal = ConstantInt::get(Type::Int1Ty, !SuccNum);
469 break;
470 default:
471 brVal = ConstantInt::get(Type::Int16Ty, SuccNum);
472 break;
475 ReturnInst *NTRet = ReturnInst::Create(brVal, NewTarget);
477 // Update the switch instruction.
478 TheSwitch->addCase(ConstantInt::get(Type::Int16Ty, SuccNum),
479 OldTarget);
481 // Restore values just before we exit
482 Function::arg_iterator OAI = OutputArgBegin;
483 for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
484 // For an invoke, the normal destination is the only one that is
485 // dominated by the result of the invocation
486 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
488 bool DominatesDef = true;
490 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
491 DefBlock = Invoke->getNormalDest();
493 // Make sure we are looking at the original successor block, not
494 // at a newly inserted exit block, which won't be in the dominator
495 // info.
496 for (std::map<BasicBlock*, BasicBlock*>::iterator I =
497 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
498 if (DefBlock == I->second) {
499 DefBlock = I->first;
500 break;
503 // In the extract block case, if the block we are extracting ends
504 // with an invoke instruction, make sure that we don't emit a
505 // store of the invoke value for the unwind block.
506 if (!DT && DefBlock != OldTarget)
507 DominatesDef = false;
510 if (DT)
511 DominatesDef = DT->dominates(DefBlock, OldTarget);
513 if (DominatesDef) {
514 if (AggregateArgs) {
515 Value *Idx[2];
516 Idx[0] = Constant::getNullValue(Type::Int32Ty);
517 Idx[1] = ConstantInt::get(Type::Int32Ty,FirstOut+out);
518 GetElementPtrInst *GEP =
519 GetElementPtrInst::Create(OAI, Idx, Idx + 2,
520 "gep_" + outputs[out]->getName(),
521 NTRet);
522 new StoreInst(outputs[out], GEP, NTRet);
523 } else {
524 new StoreInst(outputs[out], OAI, NTRet);
527 // Advance output iterator even if we don't emit a store
528 if (!AggregateArgs) ++OAI;
532 // rewrite the original branch instruction with this new target
533 TI->setSuccessor(i, NewTarget);
537 // Now that we've done the deed, simplify the switch instruction.
538 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
539 switch (NumExitBlocks) {
540 case 0:
541 // There are no successors (the block containing the switch itself), which
542 // means that previously this was the last part of the function, and hence
543 // this should be rewritten as a `ret'
545 // Check if the function should return a value
546 if (OldFnRetTy == Type::VoidTy) {
547 ReturnInst::Create(0, TheSwitch); // Return void
548 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
549 // return what we have
550 ReturnInst::Create(TheSwitch->getCondition(), TheSwitch);
551 } else {
552 // Otherwise we must have code extracted an unwind or something, just
553 // return whatever we want.
554 ReturnInst::Create(Constant::getNullValue(OldFnRetTy), TheSwitch);
557 TheSwitch->eraseFromParent();
558 break;
559 case 1:
560 // Only a single destination, change the switch into an unconditional
561 // branch.
562 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
563 TheSwitch->eraseFromParent();
564 break;
565 case 2:
566 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
567 call, TheSwitch);
568 TheSwitch->eraseFromParent();
569 break;
570 default:
571 // Otherwise, make the default destination of the switch instruction be one
572 // of the other successors.
573 TheSwitch->setOperand(0, call);
574 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks));
575 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case
576 break;
580 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
581 Function *oldFunc = (*BlocksToExtract.begin())->getParent();
582 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
583 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
585 for (std::set<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
586 e = BlocksToExtract.end(); i != e; ++i) {
587 // Delete the basic block from the old function, and the list of blocks
588 oldBlocks.remove(*i);
590 // Insert this basic block into the new function
591 newBlocks.push_back(*i);
595 /// ExtractRegion - Removes a loop from a function, replaces it with a call to
596 /// new function. Returns pointer to the new function.
598 /// algorithm:
600 /// find inputs and outputs for the region
602 /// for inputs: add to function as args, map input instr* to arg#
603 /// for outputs: add allocas for scalars,
604 /// add to func as args, map output instr* to arg#
606 /// rewrite func to use argument #s instead of instr*
608 /// for each scalar output in the function: at every exit, store intermediate
609 /// computed result back into memory.
611 Function *CodeExtractor::
612 ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
613 if (!isEligible(code))
614 return 0;
616 // 1) Find inputs, outputs
617 // 2) Construct new function
618 // * Add allocas for defs, pass as args by reference
619 // * Pass in uses as args
620 // 3) Move code region, add call instr to func
622 BlocksToExtract.insert(code.begin(), code.end());
624 Values inputs, outputs;
626 // Assumption: this is a single-entry code region, and the header is the first
627 // block in the region.
628 BasicBlock *header = code[0];
630 for (unsigned i = 1, e = code.size(); i != e; ++i)
631 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
632 PI != E; ++PI)
633 assert(BlocksToExtract.count(*PI) &&
634 "No blocks in this region may have entries from outside the region"
635 " except for the first block!");
637 // If we have to split PHI nodes or the entry block, do so now.
638 severSplitPHINodes(header);
640 // If we have any return instructions in the region, split those blocks so
641 // that the return is not in the region.
642 splitReturnBlocks();
644 Function *oldFunction = header->getParent();
646 // This takes place of the original loop
647 BasicBlock *codeReplacer = BasicBlock::Create("codeRepl", oldFunction,
648 header);
650 // The new function needs a root node because other nodes can branch to the
651 // head of the region, but the entry node of a function cannot have preds.
652 BasicBlock *newFuncRoot = BasicBlock::Create("newFuncRoot");
653 newFuncRoot->getInstList().push_back(BranchInst::Create(header));
655 // Find inputs to, outputs from the code region.
656 findInputsOutputs(inputs, outputs);
658 // Construct new function based on inputs/outputs & add allocas for all defs.
659 Function *newFunction = constructFunction(inputs, outputs, header,
660 newFuncRoot,
661 codeReplacer, oldFunction,
662 oldFunction->getParent());
664 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
666 moveCodeToFunction(newFunction);
668 // Loop over all of the PHI nodes in the header block, and change any
669 // references to the old incoming edge to be the new incoming edge.
670 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
671 PHINode *PN = cast<PHINode>(I);
672 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
673 if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
674 PN->setIncomingBlock(i, newFuncRoot);
677 // Look at all successors of the codeReplacer block. If any of these blocks
678 // had PHI nodes in them, we need to update the "from" block to be the code
679 // replacer, not the original block in the extracted region.
680 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
681 succ_end(codeReplacer));
682 for (unsigned i = 0, e = Succs.size(); i != e; ++i)
683 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
684 PHINode *PN = cast<PHINode>(I);
685 std::set<BasicBlock*> ProcessedPreds;
686 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
687 if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
688 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
689 PN->setIncomingBlock(i, codeReplacer);
690 else {
691 // There were multiple entries in the PHI for this block, now there
692 // is only one, so remove the duplicated entries.
693 PN->removeIncomingValue(i, false);
694 --i; --e;
699 //cerr << "NEW FUNCTION: " << *newFunction;
700 // verifyFunction(*newFunction);
702 // cerr << "OLD FUNCTION: " << *oldFunction;
703 // verifyFunction(*oldFunction);
705 DEBUG(if (verifyFunction(*newFunction)) abort());
706 return newFunction;
709 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) {
710 // Deny code region if it contains allocas or vastarts.
711 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end();
712 BB != e; ++BB)
713 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
714 I != Ie; ++I)
715 if (isa<AllocaInst>(*I))
716 return false;
717 else if (const CallInst *CI = dyn_cast<CallInst>(I))
718 if (const Function *F = CI->getCalledFunction())
719 if (F->getIntrinsicID() == Intrinsic::vastart)
720 return false;
721 return true;
725 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
726 /// function
728 Function* llvm::ExtractCodeRegion(DominatorTree &DT,
729 const std::vector<BasicBlock*> &code,
730 bool AggregateArgs) {
731 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code);
734 /// ExtractBasicBlock - slurp a natural loop into a brand new function
736 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) {
737 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks());
740 /// ExtractBasicBlock - slurp a basic block into a brand new function
742 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) {
743 std::vector<BasicBlock*> Blocks;
744 Blocks.push_back(BB);
745 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks);