1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Cloning.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Module.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/IntrinsicInst.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/Attributes.h"
23 #include "llvm/Analysis/CallGraph.h"
24 #include "llvm/Analysis/DebugInfo.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Support/CallSite.h"
31 bool llvm::InlineFunction(CallInst
*CI
, CallGraph
*CG
, const TargetData
*TD
) {
32 return InlineFunction(CallSite(CI
), CG
, TD
);
34 bool llvm::InlineFunction(InvokeInst
*II
, CallGraph
*CG
, const TargetData
*TD
) {
35 return InlineFunction(CallSite(II
), CG
, TD
);
38 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
39 /// in the body of the inlined function into invokes and turn unwind
40 /// instructions into branches to the invoke unwind dest.
42 /// II is the invoke instruction being inlined. FirstNewBlock is the first
43 /// block of the inlined code (the last block is the end of the function),
44 /// and InlineCodeInfo is information about the code that got inlined.
45 static void HandleInlinedInvoke(InvokeInst
*II
, BasicBlock
*FirstNewBlock
,
46 ClonedCodeInfo
&InlinedCodeInfo
,
48 BasicBlock
*InvokeDest
= II
->getUnwindDest();
49 std::vector
<Value
*> InvokeDestPHIValues
;
51 // If there are PHI nodes in the unwind destination block, we need to
52 // keep track of which values came into them from this invoke, then remove
53 // the entry for this block.
54 BasicBlock
*InvokeBlock
= II
->getParent();
55 for (BasicBlock::iterator I
= InvokeDest
->begin(); isa
<PHINode
>(I
); ++I
) {
56 PHINode
*PN
= cast
<PHINode
>(I
);
57 // Save the value to use for this edge.
58 InvokeDestPHIValues
.push_back(PN
->getIncomingValueForBlock(InvokeBlock
));
61 Function
*Caller
= FirstNewBlock
->getParent();
63 // The inlined code is currently at the end of the function, scan from the
64 // start of the inlined code to its end, checking for stuff we need to
66 if (InlinedCodeInfo
.ContainsCalls
|| InlinedCodeInfo
.ContainsUnwinds
) {
67 for (Function::iterator BB
= FirstNewBlock
, E
= Caller
->end();
69 if (InlinedCodeInfo
.ContainsCalls
) {
70 for (BasicBlock::iterator BBI
= BB
->begin(), E
= BB
->end(); BBI
!= E
; ){
71 Instruction
*I
= BBI
++;
73 // We only need to check for function calls: inlined invoke
74 // instructions require no special handling.
75 if (!isa
<CallInst
>(I
)) continue;
76 CallInst
*CI
= cast
<CallInst
>(I
);
78 // If this call cannot unwind, don't convert it to an invoke.
79 if (CI
->doesNotThrow())
82 // Convert this function call into an invoke instruction.
83 // First, split the basic block.
84 BasicBlock
*Split
= BB
->splitBasicBlock(CI
, CI
->getName()+".noexc");
86 // Next, create the new invoke instruction, inserting it at the end
87 // of the old basic block.
88 SmallVector
<Value
*, 8> InvokeArgs(CI
->op_begin()+1, CI
->op_end());
90 InvokeInst::Create(CI
->getCalledValue(), Split
, InvokeDest
,
91 InvokeArgs
.begin(), InvokeArgs
.end(),
92 CI
->getName(), BB
->getTerminator());
93 II
->setCallingConv(CI
->getCallingConv());
94 II
->setAttributes(CI
->getAttributes());
96 // Make sure that anything using the call now uses the invoke!
97 CI
->replaceAllUsesWith(II
);
99 // Update the callgraph.
101 // We should be able to do this:
102 // (*CG)[Caller]->replaceCallSite(CI, II);
103 // but that fails if the old call site isn't in the call graph,
104 // which, because of LLVM bug 3601, it sometimes isn't.
105 CallGraphNode
*CGN
= (*CG
)[Caller
];
106 for (CallGraphNode::iterator NI
= CGN
->begin(), NE
= CGN
->end();
108 if (NI
->first
== CI
) {
115 // Delete the unconditional branch inserted by splitBasicBlock
116 BB
->getInstList().pop_back();
117 Split
->getInstList().pop_front(); // Delete the original call
119 // Update any PHI nodes in the exceptional block to indicate that
120 // there is now a new entry in them.
122 for (BasicBlock::iterator I
= InvokeDest
->begin();
123 isa
<PHINode
>(I
); ++I
, ++i
) {
124 PHINode
*PN
= cast
<PHINode
>(I
);
125 PN
->addIncoming(InvokeDestPHIValues
[i
], BB
);
128 // This basic block is now complete, start scanning the next one.
133 if (UnwindInst
*UI
= dyn_cast
<UnwindInst
>(BB
->getTerminator())) {
134 // An UnwindInst requires special handling when it gets inlined into an
135 // invoke site. Once this happens, we know that the unwind would cause
136 // a control transfer to the invoke exception destination, so we can
137 // transform it into a direct branch to the exception destination.
138 BranchInst::Create(InvokeDest
, UI
);
140 // Delete the unwind instruction!
141 UI
->eraseFromParent();
143 // Update any PHI nodes in the exceptional block to indicate that
144 // there is now a new entry in them.
146 for (BasicBlock::iterator I
= InvokeDest
->begin();
147 isa
<PHINode
>(I
); ++I
, ++i
) {
148 PHINode
*PN
= cast
<PHINode
>(I
);
149 PN
->addIncoming(InvokeDestPHIValues
[i
], BB
);
155 // Now that everything is happy, we have one final detail. The PHI nodes in
156 // the exception destination block still have entries due to the original
157 // invoke instruction. Eliminate these entries (which might even delete the
159 InvokeDest
->removePredecessor(II
->getParent());
162 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
163 /// into the caller, update the specified callgraph to reflect the changes we
164 /// made. Note that it's possible that not all code was copied over, so only
165 /// some edges of the callgraph may remain.
166 static void UpdateCallGraphAfterInlining(CallSite CS
,
167 Function::iterator FirstNewBlock
,
168 DenseMap
<const Value
*, Value
*> &ValueMap
,
170 const Function
*Caller
= CS
.getInstruction()->getParent()->getParent();
171 const Function
*Callee
= CS
.getCalledFunction();
172 CallGraphNode
*CalleeNode
= CG
[Callee
];
173 CallGraphNode
*CallerNode
= CG
[Caller
];
175 // Since we inlined some uninlined call sites in the callee into the caller,
176 // add edges from the caller to all of the callees of the callee.
177 CallGraphNode::iterator I
= CalleeNode
->begin(), E
= CalleeNode
->end();
179 // Consider the case where CalleeNode == CallerNode.
180 CallGraphNode::CalledFunctionsVector CallCache
;
181 if (CalleeNode
== CallerNode
) {
182 CallCache
.assign(I
, E
);
183 I
= CallCache
.begin();
187 for (; I
!= E
; ++I
) {
188 const Instruction
*OrigCall
= I
->first
.getInstruction();
190 DenseMap
<const Value
*, Value
*>::iterator VMI
= ValueMap
.find(OrigCall
);
191 // Only copy the edge if the call was inlined!
192 if (VMI
!= ValueMap
.end() && VMI
->second
) {
193 // If the call was inlined, but then constant folded, there is no edge to
194 // add. Check for this case.
195 if (Instruction
*NewCall
= dyn_cast
<Instruction
>(VMI
->second
))
196 CallerNode
->addCalledFunction(CallSite::get(NewCall
), I
->second
);
199 // Update the call graph by deleting the edge from Callee to Caller. We must
200 // do this after the loop above in case Caller and Callee are the same.
201 CallerNode
->removeCallEdgeFor(CS
);
204 /// findFnRegionEndMarker - This is a utility routine that is used by
205 /// InlineFunction. Return llvm.dbg.region.end intrinsic that corresponds
206 /// to the llvm.dbg.func.start of the function F. Otherwise return NULL.
207 static const DbgRegionEndInst
*findFnRegionEndMarker(const Function
*F
) {
209 GlobalVariable
*FnStart
= NULL
;
210 const DbgRegionEndInst
*FnEnd
= NULL
;
211 for (Function::const_iterator FI
= F
->begin(), FE
=F
->end(); FI
!= FE
; ++FI
)
212 for (BasicBlock::const_iterator BI
= FI
->begin(), BE
= FI
->end(); BI
!= BE
;
214 if (FnStart
== NULL
) {
215 if (const DbgFuncStartInst
*FSI
= dyn_cast
<DbgFuncStartInst
>(BI
)) {
216 DISubprogram
SP(cast
<GlobalVariable
>(FSI
->getSubprogram()));
217 assert (SP
.isNull() == false && "Invalid llvm.dbg.func.start");
219 FnStart
= SP
.getGV();
222 if (const DbgRegionEndInst
*REI
= dyn_cast
<DbgRegionEndInst
>(BI
))
223 if (REI
->getContext() == FnStart
)
230 // InlineFunction - This function inlines the called function into the basic
231 // block of the caller. This returns false if it is not possible to inline this
232 // call. The program is still in a well defined state if this occurs though.
234 // Note that this only does one level of inlining. For example, if the
235 // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
236 // exists in the instruction stream. Similiarly this will inline a recursive
237 // function by one level.
239 bool llvm::InlineFunction(CallSite CS
, CallGraph
*CG
, const TargetData
*TD
) {
240 Instruction
*TheCall
= CS
.getInstruction();
241 assert(TheCall
->getParent() && TheCall
->getParent()->getParent() &&
242 "Instruction not in function!");
244 const Function
*CalledFunc
= CS
.getCalledFunction();
245 if (CalledFunc
== 0 || // Can't inline external function or indirect
246 CalledFunc
->isDeclaration() || // call, or call to a vararg function!
247 CalledFunc
->getFunctionType()->isVarArg()) return false;
250 // If the call to the callee is not a tail call, we must clear the 'tail'
251 // flags on any calls that we inline.
252 bool MustClearTailCallFlags
=
253 !(isa
<CallInst
>(TheCall
) && cast
<CallInst
>(TheCall
)->isTailCall());
255 // If the call to the callee cannot throw, set the 'nounwind' flag on any
256 // calls that we inline.
257 bool MarkNoUnwind
= CS
.doesNotThrow();
259 BasicBlock
*OrigBB
= TheCall
->getParent();
260 Function
*Caller
= OrigBB
->getParent();
262 // GC poses two hazards to inlining, which only occur when the callee has GC:
263 // 1. If the caller has no GC, then the callee's GC must be propagated to the
265 // 2. If the caller has a differing GC, it is invalid to inline.
266 if (CalledFunc
->hasGC()) {
267 if (!Caller
->hasGC())
268 Caller
->setGC(CalledFunc
->getGC());
269 else if (CalledFunc
->getGC() != Caller
->getGC())
273 // Get an iterator to the last basic block in the function, which will have
274 // the new function inlined after it.
276 Function::iterator LastBlock
= &Caller
->back();
278 // Make sure to capture all of the return instructions from the cloned
280 std::vector
<ReturnInst
*> Returns
;
281 ClonedCodeInfo InlinedFunctionInfo
;
282 Function::iterator FirstNewBlock
;
284 { // Scope to destroy ValueMap after cloning.
285 DenseMap
<const Value
*, Value
*> ValueMap
;
287 assert(CalledFunc
->arg_size() == CS
.arg_size() &&
288 "No varargs calls can be inlined!");
290 // Calculate the vector of arguments to pass into the function cloner, which
291 // matches up the formal to the actual argument values.
292 CallSite::arg_iterator AI
= CS
.arg_begin();
294 for (Function::const_arg_iterator I
= CalledFunc
->arg_begin(),
295 E
= CalledFunc
->arg_end(); I
!= E
; ++I
, ++AI
, ++ArgNo
) {
296 Value
*ActualArg
= *AI
;
298 // When byval arguments actually inlined, we need to make the copy implied
299 // by them explicit. However, we don't do this if the callee is readonly
300 // or readnone, because the copy would be unneeded: the callee doesn't
301 // modify the struct.
302 if (CalledFunc
->paramHasAttr(ArgNo
+1, Attribute::ByVal
) &&
303 !CalledFunc
->onlyReadsMemory()) {
304 const Type
*AggTy
= cast
<PointerType
>(I
->getType())->getElementType();
305 const Type
*VoidPtrTy
= PointerType::getUnqual(Type::Int8Ty
);
307 // Create the alloca. If we have TargetData, use nice alignment.
309 if (TD
) Align
= TD
->getPrefTypeAlignment(AggTy
);
310 Value
*NewAlloca
= new AllocaInst(AggTy
, 0, Align
, I
->getName(),
311 Caller
->begin()->begin());
313 const Type
*Tys
[] = { Type::Int64Ty
};
314 Function
*MemCpyFn
= Intrinsic::getDeclaration(Caller
->getParent(),
317 Value
*DestCast
= new BitCastInst(NewAlloca
, VoidPtrTy
, "tmp", TheCall
);
318 Value
*SrcCast
= new BitCastInst(*AI
, VoidPtrTy
, "tmp", TheCall
);
322 Size
= ConstantExpr::getSizeOf(AggTy
);
324 Size
= ConstantInt::get(Type::Int64Ty
, TD
->getTypeStoreSize(AggTy
));
326 // Always generate a memcpy of alignment 1 here because we don't know
327 // the alignment of the src pointer. Other optimizations can infer
329 Value
*CallArgs
[] = {
330 DestCast
, SrcCast
, Size
, ConstantInt::get(Type::Int32Ty
, 1)
332 CallInst
*TheMemCpy
=
333 CallInst::Create(MemCpyFn
, CallArgs
, CallArgs
+4, "", TheCall
);
335 // If we have a call graph, update it.
337 CallGraphNode
*MemCpyCGN
= CG
->getOrInsertFunction(MemCpyFn
);
338 CallGraphNode
*CallerNode
= (*CG
)[Caller
];
339 CallerNode
->addCalledFunction(TheMemCpy
, MemCpyCGN
);
342 // Uses of the argument in the function should use our new alloca
344 ActualArg
= NewAlloca
;
347 ValueMap
[I
] = ActualArg
;
350 // Adjust llvm.dbg.region.end. If the CalledFunc has region end
351 // marker then clone that marker after next stop point at the
352 // call site. The function body cloner does not clone original
353 // region end marker from the CalledFunc. This will ensure that
354 // inlined function's scope ends at the right place.
355 const DbgRegionEndInst
*DREI
= findFnRegionEndMarker(CalledFunc
);
357 for (BasicBlock::iterator BI
= TheCall
,
358 BE
= TheCall
->getParent()->end(); BI
!= BE
; ++BI
) {
359 if (DbgStopPointInst
*DSPI
= dyn_cast
<DbgStopPointInst
>(BI
)) {
360 if (DbgRegionEndInst
*NewDREI
=
361 dyn_cast
<DbgRegionEndInst
>(DREI
->clone()))
362 NewDREI
->insertAfter(DSPI
);
368 // We want the inliner to prune the code as it copies. We would LOVE to
369 // have no dead or constant instructions leftover after inlining occurs
370 // (which can happen, e.g., because an argument was constant), but we'll be
371 // happy with whatever the cloner can do.
372 CloneAndPruneFunctionInto(Caller
, CalledFunc
, ValueMap
, Returns
, ".i",
373 &InlinedFunctionInfo
, TD
);
375 // Remember the first block that is newly cloned over.
376 FirstNewBlock
= LastBlock
; ++FirstNewBlock
;
378 // Update the callgraph if requested.
380 UpdateCallGraphAfterInlining(CS
, FirstNewBlock
, ValueMap
, *CG
);
383 // If there are any alloca instructions in the block that used to be the entry
384 // block for the callee, move them to the entry block of the caller. First
385 // calculate which instruction they should be inserted before. We insert the
386 // instructions at the end of the current alloca list.
389 BasicBlock::iterator InsertPoint
= Caller
->begin()->begin();
390 for (BasicBlock::iterator I
= FirstNewBlock
->begin(),
391 E
= FirstNewBlock
->end(); I
!= E
; )
392 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
++)) {
393 // If the alloca is now dead, remove it. This often occurs due to code
395 if (AI
->use_empty()) {
396 AI
->eraseFromParent();
400 if (isa
<Constant
>(AI
->getArraySize())) {
401 // Scan for the block of allocas that we can move over, and move them
403 while (isa
<AllocaInst
>(I
) &&
404 isa
<Constant
>(cast
<AllocaInst
>(I
)->getArraySize()))
407 // Transfer all of the allocas over in a block. Using splice means
408 // that the instructions aren't removed from the symbol table, then
410 Caller
->getEntryBlock().getInstList().splice(
412 FirstNewBlock
->getInstList(),
418 // If the inlined code contained dynamic alloca instructions, wrap the inlined
419 // code with llvm.stacksave/llvm.stackrestore intrinsics.
420 if (InlinedFunctionInfo
.ContainsDynamicAllocas
) {
421 Module
*M
= Caller
->getParent();
422 // Get the two intrinsics we care about.
423 Constant
*StackSave
, *StackRestore
;
424 StackSave
= Intrinsic::getDeclaration(M
, Intrinsic::stacksave
);
425 StackRestore
= Intrinsic::getDeclaration(M
, Intrinsic::stackrestore
);
427 // If we are preserving the callgraph, add edges to the stacksave/restore
428 // functions for the calls we insert.
429 CallGraphNode
*StackSaveCGN
= 0, *StackRestoreCGN
= 0, *CallerNode
= 0;
431 // We know that StackSave/StackRestore are Function*'s, because they are
432 // intrinsics which must have the right types.
433 StackSaveCGN
= CG
->getOrInsertFunction(cast
<Function
>(StackSave
));
434 StackRestoreCGN
= CG
->getOrInsertFunction(cast
<Function
>(StackRestore
));
435 CallerNode
= (*CG
)[Caller
];
438 // Insert the llvm.stacksave.
439 CallInst
*SavedPtr
= CallInst::Create(StackSave
, "savedstack",
440 FirstNewBlock
->begin());
441 if (CG
) CallerNode
->addCalledFunction(SavedPtr
, StackSaveCGN
);
443 // Insert a call to llvm.stackrestore before any return instructions in the
445 for (unsigned i
= 0, e
= Returns
.size(); i
!= e
; ++i
) {
446 CallInst
*CI
= CallInst::Create(StackRestore
, SavedPtr
, "", Returns
[i
]);
447 if (CG
) CallerNode
->addCalledFunction(CI
, StackRestoreCGN
);
450 // Count the number of StackRestore calls we insert.
451 unsigned NumStackRestores
= Returns
.size();
453 // If we are inlining an invoke instruction, insert restores before each
454 // unwind. These unwinds will be rewritten into branches later.
455 if (InlinedFunctionInfo
.ContainsUnwinds
&& isa
<InvokeInst
>(TheCall
)) {
456 for (Function::iterator BB
= FirstNewBlock
, E
= Caller
->end();
458 if (UnwindInst
*UI
= dyn_cast
<UnwindInst
>(BB
->getTerminator())) {
459 CallInst::Create(StackRestore
, SavedPtr
, "", UI
);
465 // If we are inlining tail call instruction through a call site that isn't
466 // marked 'tail', we must remove the tail marker for any calls in the inlined
467 // code. Also, calls inlined through a 'nounwind' call site should be marked
469 if (InlinedFunctionInfo
.ContainsCalls
&&
470 (MustClearTailCallFlags
|| MarkNoUnwind
)) {
471 for (Function::iterator BB
= FirstNewBlock
, E
= Caller
->end();
473 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
474 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
475 if (MustClearTailCallFlags
)
476 CI
->setTailCall(false);
478 CI
->setDoesNotThrow();
482 // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
483 // instructions are unreachable.
484 if (InlinedFunctionInfo
.ContainsUnwinds
&& MarkNoUnwind
)
485 for (Function::iterator BB
= FirstNewBlock
, E
= Caller
->end();
487 TerminatorInst
*Term
= BB
->getTerminator();
488 if (isa
<UnwindInst
>(Term
)) {
489 new UnreachableInst(Term
);
490 BB
->getInstList().erase(Term
);
494 // If we are inlining for an invoke instruction, we must make sure to rewrite
495 // any inlined 'unwind' instructions into branches to the invoke exception
496 // destination, and call instructions into invoke instructions.
497 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TheCall
))
498 HandleInlinedInvoke(II
, FirstNewBlock
, InlinedFunctionInfo
, CG
);
500 // If we cloned in _exactly one_ basic block, and if that block ends in a
501 // return instruction, we splice the body of the inlined callee directly into
502 // the calling basic block.
503 if (Returns
.size() == 1 && std::distance(FirstNewBlock
, Caller
->end()) == 1) {
504 // Move all of the instructions right before the call.
505 OrigBB
->getInstList().splice(TheCall
, FirstNewBlock
->getInstList(),
506 FirstNewBlock
->begin(), FirstNewBlock
->end());
507 // Remove the cloned basic block.
508 Caller
->getBasicBlockList().pop_back();
510 // If the call site was an invoke instruction, add a branch to the normal
512 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TheCall
))
513 BranchInst::Create(II
->getNormalDest(), TheCall
);
515 // If the return instruction returned a value, replace uses of the call with
516 // uses of the returned value.
517 if (!TheCall
->use_empty()) {
518 ReturnInst
*R
= Returns
[0];
519 TheCall
->replaceAllUsesWith(R
->getReturnValue());
521 // Since we are now done with the Call/Invoke, we can delete it.
522 TheCall
->eraseFromParent();
524 // Since we are now done with the return instruction, delete it also.
525 Returns
[0]->eraseFromParent();
527 // We are now done with the inlining.
531 // Otherwise, we have the normal case, of more than one block to inline or
532 // multiple return sites.
534 // We want to clone the entire callee function into the hole between the
535 // "starter" and "ender" blocks. How we accomplish this depends on whether
536 // this is an invoke instruction or a call instruction.
537 BasicBlock
*AfterCallBB
;
538 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TheCall
)) {
540 // Add an unconditional branch to make this look like the CallInst case...
541 BranchInst
*NewBr
= BranchInst::Create(II
->getNormalDest(), TheCall
);
543 // Split the basic block. This guarantees that no PHI nodes will have to be
544 // updated due to new incoming edges, and make the invoke case more
545 // symmetric to the call case.
546 AfterCallBB
= OrigBB
->splitBasicBlock(NewBr
,
547 CalledFunc
->getName()+".exit");
549 } else { // It's a call
550 // If this is a call instruction, we need to split the basic block that
551 // the call lives in.
553 AfterCallBB
= OrigBB
->splitBasicBlock(TheCall
,
554 CalledFunc
->getName()+".exit");
557 // Change the branch that used to go to AfterCallBB to branch to the first
558 // basic block of the inlined function.
560 TerminatorInst
*Br
= OrigBB
->getTerminator();
561 assert(Br
&& Br
->getOpcode() == Instruction::Br
&&
562 "splitBasicBlock broken!");
563 Br
->setOperand(0, FirstNewBlock
);
566 // Now that the function is correct, make it a little bit nicer. In
567 // particular, move the basic blocks inserted from the end of the function
568 // into the space made by splitting the source basic block.
569 Caller
->getBasicBlockList().splice(AfterCallBB
, Caller
->getBasicBlockList(),
570 FirstNewBlock
, Caller
->end());
572 // Handle all of the return instructions that we just cloned in, and eliminate
573 // any users of the original call/invoke instruction.
574 const Type
*RTy
= CalledFunc
->getReturnType();
576 if (Returns
.size() > 1) {
577 // The PHI node should go at the front of the new basic block to merge all
578 // possible incoming values.
580 if (!TheCall
->use_empty()) {
581 PHI
= PHINode::Create(RTy
, TheCall
->getName(),
582 AfterCallBB
->begin());
583 // Anything that used the result of the function call should now use the
584 // PHI node as their operand.
585 TheCall
->replaceAllUsesWith(PHI
);
588 // Loop over all of the return instructions adding entries to the PHI node
591 for (unsigned i
= 0, e
= Returns
.size(); i
!= e
; ++i
) {
592 ReturnInst
*RI
= Returns
[i
];
593 assert(RI
->getReturnValue()->getType() == PHI
->getType() &&
594 "Ret value not consistent in function!");
595 PHI
->addIncoming(RI
->getReturnValue(), RI
->getParent());
599 // Add a branch to the merge points and remove return instructions.
600 for (unsigned i
= 0, e
= Returns
.size(); i
!= e
; ++i
) {
601 ReturnInst
*RI
= Returns
[i
];
602 BranchInst::Create(AfterCallBB
, RI
);
603 RI
->eraseFromParent();
605 } else if (!Returns
.empty()) {
606 // Otherwise, if there is exactly one return value, just replace anything
607 // using the return value of the call with the computed value.
608 if (!TheCall
->use_empty())
609 TheCall
->replaceAllUsesWith(Returns
[0]->getReturnValue());
611 // Splice the code from the return block into the block that it will return
612 // to, which contains the code that was after the call.
613 BasicBlock
*ReturnBB
= Returns
[0]->getParent();
614 AfterCallBB
->getInstList().splice(AfterCallBB
->begin(),
615 ReturnBB
->getInstList());
617 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
618 ReturnBB
->replaceAllUsesWith(AfterCallBB
);
620 // Delete the return instruction now and empty ReturnBB now.
621 Returns
[0]->eraseFromParent();
622 ReturnBB
->eraseFromParent();
623 } else if (!TheCall
->use_empty()) {
624 // No returns, but something is using the return value of the call. Just
626 TheCall
->replaceAllUsesWith(UndefValue::get(TheCall
->getType()));
629 // Since we are now done with the Call/Invoke, we can delete it.
630 TheCall
->eraseFromParent();
632 // We should always be able to fold the entry block of the function into the
633 // single predecessor of the block...
634 assert(cast
<BranchInst
>(Br
)->isUnconditional() && "splitBasicBlock broken!");
635 BasicBlock
*CalleeEntry
= cast
<BranchInst
>(Br
)->getSuccessor(0);
637 // Splice the code entry block into calling block, right before the
638 // unconditional branch.
639 OrigBB
->getInstList().splice(Br
, CalleeEntry
->getInstList());
640 CalleeEntry
->replaceAllUsesWith(OrigBB
); // Update PHI nodes
642 // Remove the unconditional branch.
643 OrigBB
->getInstList().erase(Br
);
645 // Now we can remove the CalleeEntry block, which is now empty.
646 Caller
->getBasicBlockList().erase(CalleeEntry
);